Sistemas de funções iteradas e um exemplo de uma função continua que e nao diferenciavel em todos os pontos
Fecha
1996Tutor
Nivel académico
Maestría
Tipo
Resumo
O objetivo deste trabalho é mostrar a existência de uma função contínua que é não-diferenciável em todo ponto. Seguiremos aqui a exposição de H. Katsuura (Amer. Math. Monthly (1991)) e que utiliza conceitos como sistemas de funções iteradas (iterated function systems) e o espaço de Hausdorff de subconjuntos compactos de um espaco métrico completo. Para ter uma descrição completa do assunto, vamos apresentar uma exposição sistemática de tais conceitos. Na Seção 1 apresentamos o Espaço de Hausdor ...
O objetivo deste trabalho é mostrar a existência de uma função contínua que é não-diferenciável em todo ponto. Seguiremos aqui a exposição de H. Katsuura (Amer. Math. Monthly (1991)) e que utiliza conceitos como sistemas de funções iteradas (iterated function systems) e o espaço de Hausdorff de subconjuntos compactos de um espaco métrico completo. Para ter uma descrição completa do assunto, vamos apresentar uma exposição sistemática de tais conceitos. Na Seção 1 apresentamos o Espaço de Hausdorff dos conjuntos compactos. Na Seção 2 mostramos que um certo sistema iterado de funções determina uma contração no espaço de Hausdorff. Finalmente na Seção 3 mostramos o exemplo de uma função contínua que não é diferenciável em nenhum ponto. No apêndice apresentamos uma breve introdução aos conceitos utilizados de espaços métricos e a prova do teorema da contração. ...
Abstract
In this thesis we show the existence of a continuous function which is nowhere differentiable. We follow the H. Katsuura's work in Amer. Math. Month. (1991) which utilizes concepts as iterated function systems and Hausdorff space of compact subsets of a complete metric space. For having a full description of the subject, we give a systematic description of sucb concepts. In Section 1 we introduce the Hausdorff space of compact subsets. In Section 2 we sbow that some iterated function systems de ...
In this thesis we show the existence of a continuous function which is nowhere differentiable. We follow the H. Katsuura's work in Amer. Math. Month. (1991) which utilizes concepts as iterated function systems and Hausdorff space of compact subsets of a complete metric space. For having a full description of the subject, we give a systematic description of sucb concepts. In Section 1 we introduce the Hausdorff space of compact subsets. In Section 2 we sbow that some iterated function systems determines a contraction in the Hausdorff space. Finally, in Section 3, we construct an example of a continuous function nowhere differentiable. In tbe Appendix we give a breve exposi tion of some concepts in Metric Spaces and we prove Contraction Theorem. ...
Institución
Universidade Federal do Rio Grande do Sul. Instituto de Matemática. Programa de Pós-Graduação em Matemática.
Colecciones
-
Ciencias Exactas y Naturales (5143)Matemática (367)
Este ítem está licenciado en la Creative Commons License