Equaquação de Schrödinger-Newton : influência da condição inicial em um modelo semi-clássico para gravitação
View/ Open
Date
2015Author
Advisor
Co-advisor
Academic level
Graduation
Abstract in Portuguese (Brasil)
Neste trabalho usamos uma aproximação semi-clássica para melhor entender a interação entre gravidade e matéria. Essa aproximação é estudada a partir da Equação de Schrödinger-Newton (SN), que consiste na Equação de Schrödinger com um potencial newtoniano clássico auto-interagente. Dependendo de parâmetros como a massa e a condição inicial, o pacote pode se manter gravitacionalmente confinado ou pode ter um comportamento difusivo, aproximadamente como partícula livre. O valor de massa cujo pacot ...
Neste trabalho usamos uma aproximação semi-clássica para melhor entender a interação entre gravidade e matéria. Essa aproximação é estudada a partir da Equação de Schrödinger-Newton (SN), que consiste na Equação de Schrödinger com um potencial newtoniano clássico auto-interagente. Dependendo de parâmetros como a massa e a condição inicial, o pacote pode se manter gravitacionalmente confinado ou pode ter um comportamento difusivo, aproximadamente como partícula livre. O valor de massa cujo pacote de onda não confina nem difunde é definido como massa crítica, mc. Estudamos a dinâmica da equação SN usando duas condições iniciais diferentes: um pacote de onda com uma Gaussiana centrada na origem e um pacote de onda composto por duas funções Gaussianas, uma centrada na origem e outra em R. Este modelo foi estudado, entre outros autores, por [7, 11], onde um valor alto de mc, na ordem de 109 u (unidades de massa atômica), foi encontrado. Neste trabalho procuramos alguma condição inicial (qualquer conjunto de parâmetros específicos) que diminuam a massa crítica. Foi encontrado que, usando a condição inicial com duas Gaussianas, a massa crítica encontrada é menor que a massa crítica para condição inicial com apenas uma função Gaussiana. ...
Abstract
In this work we use the semi-classical approximation to try a better understanding of how gravity interacts with matter. This aproximation is studied through the Schrödinger-Newton (SN) Equation, that is, the SchrödingerEquation coupled with a self gravitational newtonian potential. Depending on the parameters, such as mass and initial condition, the wave-packet can maintain itself gravitationally con ned or can exhibit a di usive behavior, similar to a free particle. The value of mass for whic ...
In this work we use the semi-classical approximation to try a better understanding of how gravity interacts with matter. This aproximation is studied through the Schrödinger-Newton (SN) Equation, that is, the SchrödingerEquation coupled with a self gravitational newtonian potential. Depending on the parameters, such as mass and initial condition, the wave-packet can maintain itself gravitationally con ned or can exhibit a di usive behavior, similar to a free particle. The value of mass for which the wave-packet does not con ne or di use itself is de ned as the critical mass, mc. Here we study the dynamics of the SN Equation using two di erent initial conditions: a wave-packet with a Gaussian function peaked at the origin and a wave-packet composed by two Gaussian functions, one centered at the origin and the other at R. This model was studied, among other authors, by [7, 11], where a very large value of mc, of order 109 u, was found. In this work we searched for an initial condition (any set of speci c parameters) that could lower the critical mass. It was found that, using a initial condition with two Gaussians, the critical mass is lower than the critical mass for the initial condition considering just one Gaussian. ...
Institution
Universidade Federal do Rio Grande do Sul. Instituto de Física. Curso de Astrofísica: Bacharelado.
Collections
This item is licensed under a Creative Commons License