Mostrar el registro sencillo del ítem

dc.contributor.advisorLopes, Silvia Regina Costapt_BR
dc.contributor.authorDias Junior, Avelino Vianapt_BR
dc.date.accessioned2015-04-23T01:58:52Zpt_BR
dc.date.issued2010pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/115499pt_BR
dc.description.abstractA abordagem Bayesiana na inferência estatística tem sido muito utilizada como uma alternativa aos métodos clássicos. Neste trabalho, apresentamos uma abordagem Bayesiana para a estimação dos parâmetros dos modelos autoregressivos de médias móveis de ordens p e g, denotados por ARMA(p, q) e do modelo autoregressivo fracionariamente integrado de médias móveis, denotado por ARFIMA(p, d, q). Para o último modelo, a abordagem Bayesiana é realizada assumindo p = g = 0. Considerando o modelo AR(p), que é um caso particular do modelo ARMA(p, g) onde g = O, um estimador é proposto através da abordagem Bayesiana. A eficiência do estimador é verificada através de simulações de Monte Cario e os resultados são comparados com o método clássico da máxima verossimilhança. No caso do modelo ARFIMA(0, d, 0), um estudo teórico é realizado através de uma abordagem Bayesiana. Para estimar os parâmetros desse modelo, é utilizada a sua representação autoregressiva. Alguns algoritmos computacionais Bayesianos são apresentados nesse trabalho já que desempenham um papel importante na inferência Bayesiana. Alguns desses algoritmos, como o amostrador de Gibbs e o Metropolis-Hastings, foram utilizados na construção dos estimadores para os parâmetros dos modelos ARMA e ARFIMA.pt_BR
dc.description.abstractThe Bayesian approach in statistical inference has been widely used as an alternative to traditional methods. In this work, we present a Bayesian approach for estimating the parameters of the autoregressive moving average processes of orderp and q, denoted by ARMA(p, g) and of the autoregressive fractionally integrated moving average process, denoted by ARFIMA(p, d, g). For the later model, the Bayesian approach is performed assuming p = g = 0. Whereas AR(p), which is a particular case of the ARMA(p, g) model when g = O, an estimator is proposed via the Bayesian approach. The efficiency of the estimator is verified by Monte Cario simulations and the results are compared with the classical maximum likelihood estimator. In the case of ARFIMA(0, d, 0) process, a theoretical study is performed by the Bayesian approach. For estimating the parameters of that process we consider its infiriite autoregressive representation. Some Bayesian computational algorithms are presented in this work since they play an important role in Bayesian inferences. Some of these algorithms, such as Gibbs sampler and Metropolis-Hastings algorithm, were used in building the estimators for the parameters of ARMA and ARFIMA models.en
dc.format.mimetypeapplication/pdf
dc.language.isoporpt_BR
dc.rightsOpen Accessen
dc.subjectAnálise estatísticapt_BR
dc.subjectEstimadores : Estatísticapt_BR
dc.subjectAlgoritmos computacionaispt_BR
dc.titleAnálise estatística bayesiana em processos com longa dependênciapt_BR
dc.typeDissertaçãopt_BR
dc.identifier.nrb000776362pt_BR
dc.degree.grantorUniversidade Federal do Rio Grande do Sulpt_BR
dc.degree.departmentInstituto de Matemáticapt_BR
dc.degree.programPrograma de Pós-Graduação em Matemáticapt_BR
dc.degree.localPorto Alegre, BR-RSpt_BR
dc.degree.date2010pt_BR
dc.degree.levelmestradopt_BR


Ficheros en el ítem

Thumbnail
   

Este ítem está licenciado en la Creative Commons License

Mostrar el registro sencillo del ítem