Minimum/maximum autocorrelation factors applied to grade estimation
Visualizar/abrir
Data
2014Tipo
Outro título
Fatores de mínimas/máximas autocorrelações aplicada à estimativa de teores
Assunto
Abstract
It is frequent to face estimation problems when dealing with mineral deposits involving multiple correlated variables. The resulting model is expected to reproduce data correlation. However, is not guaranteed that the correlation observed among data will be reproduced by the model, if the variables are estimated independently, and this correlation is not explicitly taken into account. The adequate geostatistical approach to address this estimation problem is co-kriging which requires cross and ...
It is frequent to face estimation problems when dealing with mineral deposits involving multiple correlated variables. The resulting model is expected to reproduce data correlation. However, is not guaranteed that the correlation observed among data will be reproduced by the model, if the variables are estimated independently, and this correlation is not explicitly taken into account. The adequate geostatistical approach to address this estimation problem is co-kriging which requires cross and direct covariance modeling of all variables, satisfying the LMC. An alternative is to decorrelate the variables and estimate each independently, using for instance, the minimum/maximum autocorrelation factors (MAF) approach, which uses a linear transformation on the correlated variables, transforming them to a new uncorrelated set. The transformed data can be estimated through kriging. Afterwards, the estimates are back-transformed to the original data space. The methodology is illustrated in a case study where three correlated variables are estimated using the MAF method combined with kriging and through co-kriging, used as a benchmark. The results show less than a 2% deviation between both methodologies. ...
Resumo
Na indústria mineira, a estimativa de múltiplas variáveis correlacionadas é comum, na qual os modelos devem reproduzir a correlação exibida pelos dados. Porém, se as variáveis forem estimadas individualmente por krigagem e a informação da correlação não for incorporada explicitamente, não há garantia de que a correlação observada nos dados será reproduzida. A abordagem clássica para estimativa de múltiplas variáveis correlacionadas, cokrigagem, exige um modelo que satisfaça as condições de posi ...
Na indústria mineira, a estimativa de múltiplas variáveis correlacionadas é comum, na qual os modelos devem reproduzir a correlação exibida pelos dados. Porém, se as variáveis forem estimadas individualmente por krigagem e a informação da correlação não for incorporada explicitamente, não há garantia de que a correlação observada nos dados será reproduzida. A abordagem clássica para estimativa de múltiplas variáveis correlacionadas, cokrigagem, exige um modelo que satisfaça as condições de positividade impostas pelo modelo linear de corregionalização, condição que torna essa metodologia extremamente laboriosa, quando há mais de duas variáveis. Uma alternativa à cokrigagem é descorrelacionar as variáveis e as estimar de forma independente. Para isso, pode-se utilizar de fatores de mínimas/máximas autocorrelações (MAF), aplicando-se uma transformação linear nos dados, transformando-os em outro conjunto descorrelacionado. Os novos fatores calculados, a partir dos dados, podem ser estimados através de krigagem individualizada. Essa metodologia é ilustrada por meio de um estudo de caso, no qual três variáveis correlacionadas são estimadas, aplicando krigagem aos MAF, denominados de KMAF. A cokrigagem é utilizada, aqui, como referência. Os resultados apresentam menos de 1% de desvio relativo. ...
Contido em
Rem: revista Escola de Minas. Ouro Preto, MG. Vol. 67, n.2 (abr./jun. 2014), p. 209-214
Origem
Nacional
Coleções
-
Artigos de Periódicos (40361)Engenharias (2440)
Este item está licenciado na Creative Commons License