Mostrar registro simples

dc.contributor.authorTheumann, Walter Karlpt_BR
dc.contributor.authorGusmao, Miguel Angelo Cavalheiropt_BR
dc.date.accessioned2014-10-01T02:10:18Zpt_BR
dc.date.issued1984pt_BR
dc.identifier.issn0163-1829pt_BR
dc.identifier.urihttp://hdl.handle.net/10183/103994pt_BR
dc.description.abstractThe effect of quadratic symmetry breaking (QSB) on two representations for the Potts vectors in a continuum-field model are studied to two-loop order in renormalized perturbation theory in d=6-E dimensions, in extension of an earlier group-theoretical analysis by Wallace and Young. The explicit dependence of the crossover exponent ф that corresponds to QSB that destroys the equivalence between pairs of Potts vectors is obtained as a function of d and n for the p-state model with p = n + 1. It is shown that this exponent follows from the calculation of vertex functions in a representation dueto Wallace and Young, whereas a second crossover exponent ф, that can be identified with the criticai exponent β, and which corresponds to QSB that favors a single Potts vector against the others, follows from a calculation using the representation of the Potts vectors due to Priest and Lubensky.en
dc.format.mimetypeapplication/pdf
dc.language.isoengpt_BR
dc.relation.ispartofPhysical review. B, Condensed matter. New York. Vol. 30, no. 5 (Sept. 1984), p. 2800-2805pt_BR
dc.rightsOpen Accessen
dc.subjectFísica da matéria condensadapt_BR
dc.subjectTeoria de redes e estatisticapt_BR
dc.subjectQuebra de simetriapt_BR
dc.titleCrossover exponents for the potts model with quadratic symmetry breakingpt_BR
dc.typeArtigo de periódicopt_BR
dc.identifier.nrb000115614pt_BR
dc.type.originEstrangeiropt_BR


Thumbnail
   

Este item está licenciado na Creative Commons License

Mostrar registro simples