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Barci and Stariolo Reply: The focus of our work [1] was
to identify conditions for the presence of an isotropic-
nematic phase transition in the context of a generic system
with isotropic competing interactions. By taking into ac-
count nontrivial angular momentum contributions from the
interaction, we found a second order isotropic-nematic
phase transition at mean field level, which becomes a
Kosterlitz-Thouless one [2] when fluctuations are taken
into account.

In his Comment [3], Levin criticizes our results by
showing that the low temperature fluctuations of a stripe
phase in 2d diverge linearly in the thermodynamic limit.
His analysis is restricted to the stripe phase and, contrary to
what is suggested in the Comment, does not apply to the
central result of our Letter which is the existence of an
isotropic-nematic phase transition. In fact, as clearly an-
ticipated by us in the Letter [1], the corresponding analysis
of the fluctuations of the nematic order parameter displays
a logarithmic divergence leading to a low temperature
phase with quasi-long-range order.

In our model, despite the involved calculations, it is
straightforward to understand this fact. Introducing the
nematic order parameter O, ;= a(fh; —46;;) [where
A; = (cosh, sinf) is the director field] through a
Hubbard-Stratonovich transformation, it is possible to de-
couple the quartic ¢ terms. Integrating out the ¢ field, we
obtain the following long wavelength effective free energy
for the nematic order parameter: F(Q) = (a,/2)Tr (Q?) +
(ay/MTr (0" + (p/HTr(ODQ) + ..., where the sym-
metric derivative tensor D;; = V,;V; and a,, a4, and p
are temperature dependent coefficients given in terms of
the parameters of the original model. At mean field, the last
term is zero, and we find & = \/—a,/ay for a, <0, going
continuously to &« = 0 for a, > 0. Note that any global
rotation of the order parameter costs no energy. Therefore,
parametrizing the order parameter by a modulus and an
angle, the long wavelength angle fluctuations #(x) domi-
nate the low energy physics. Computing the free energy at
lowest order in the derivatives of the angle fluctuations, we
find AF = pa? [d?x|V6|?, where AF is the excess of free
energy relative to the saddle point value. Therefore, the
free energy of fluctuations corresponds to that of the XY
model. The only difference with the usual vector orien-
tational order is that the system should have the sym-
metry § — 6 + 7 modifying the vorticity of the topologi-
cal defects. Thus, one finds for the angle fluctuations
(0(x)0(x")) ~ In[ko(x — x')], which in turn lead to an alge-
braic decay of the order parameter correlations. In an
extended paper we will show the explicit dependence of
the Frank constant K(T) = pa? with the parameters of our
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model k,, m, ug, and u,. The conclusion is that the
isotropic-nematic transition takes place by the Kosterlitz-
Thouless mechanism of vortex (disclination) unbinding
[2]. This result agrees with the predictions of the well-
known Kosterlitz-Thouless-Halperin-Nelson-Young
(KTHNY) theory that predicts the same kind of transition
in a layered two-dimensional system [4]. The main differ-
ence between our work and the KTHNY theory is that
while KTHNY begin the analysis from an elastic energy
valid at low temperatures already in the crystal phase and
explicitly add a term to take into account topological
defects, we approach the transition form the disordered
phase, allowing the possible emergence of spontaneous
symmetry breaking. In this way, we make contact with
more microscopic parameters, clarifying in some way the
role of competing interactions in the development of ori-
entational phases, contrary to what is suggested in the
Comment. It is well known that Ginzburg-Landau func-
tionals similar to the one explored by us can be obtained
from more microscopic interactions like those in ultrathin
magnetic films [5] and copolymers in 2d [6].

In conclusion, we have shown that the model introduced
in Egs. (1) and (7) of Ref. [1] undergoes an isotropic-
nematic phase transition in the Kosterlitz-Thouless univer-
sality class.
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