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We discuss 2D systems with Ising symmetry and competing interactions at different scales. In the
framework of the renormalization group, we study the effect of relevant quartic interactions. In addition to
the usual constant interaction term, we analyze the effect of quadrupole interactions in the self-consistent
Hartree approximation. We show that in the case of a repulsive quadrupole interaction, there is a first-
order phase transition to a stripe phase in agreement with the well-known Brazovskii result. However, in
the case of attractive quadrupole interactions there is an isotropic-nematic second-order transition with
higher critical temperature.
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The interest in phases with complex translational and/or
orientational order has been growing in the condensed
matter community in recent years. Systems with very dif-
ferent microscopic origin present phase transitions from
disorder isotropic, homogeneous phases to anisotropic and/
or inhomogeneous ones. The physical origin of this behav-
ior is in many cases associated with the competition be-
tween short-ranged attractive and long-ranged repulsive
interactions [1]. The attractive part tends to form ordered
phases or condensates, or in the case of conserved order
parameter, tends to produce phase separation. However, a
long-ranged repulsion frustrates this tendency, favoring the
emergence of complex phases that break translational and/
or rotational symmetry. Examples of these systems go from
highly correlated quantum systems like quantum Hall
samples [2,3] and high-Tc superconductors [4] to classical
systems like ferromagnetic films [5,6], diblock copolymers
[7], and liquid crystals [8,9], to name but a few. All these
systems have a special regime where physical properties
are dominated by an extended region in momentum space
with large degeneracy. For instance, in Fermi liquids this
degeneracy is related to the existence of a Fermi surface at
low temperatures. In classical systems, the competing in-
teractions lead to a shift of the dominant wave vector in the
structure factor to a nonzero value. In nearly isotropic
systems, the low energy degrees of freedom are kinemati-
cally constrained to a thin spherical shell of radius k0

determined by interactions. Examples of scalar and vector
order parameters behaving this way were studied by
Brazovskii in a seminal work [10]. He showed that in
systems with a spectrum of fluctuations dominated by a
nonzero wave vector, there is a first-order phase transition
at a finite temperature form an isotropic to a stripe phase,
induced by field fluctuations. His prediction was experi-
mentally confirmed in the microphase separation transition

in diblock copolymers [11]. It is also observed in
Monte Carlo simulations of ultrathin magnetic films with
perpendicular anisotropy [12] and in the Coulomb frus-
trated ferromagnet [13], where the first-order transition is
clearly seen. However, theoretical and numerical work on
ferromagnetic films [5,14] and the classic KTHNY theory
of two dimensional melting [15] predict a more complex
phase diagram. For instance, it could be possible to melt
the stripes into a nematic phase, where the translational
order is lost, but orientational order remains.

With this motivation we review in this Letter the effec-
tive low energy theory for systems with competing inter-
actions under the perspective of the renormalization group
(RG) [16]. The presence of a new scale k0 with a large
momentum space allowed for fluctuations completely
changes the properties of the Gaussian fixed point. We
found that, upon expanding the angular momentum content
of the interaction, the d � 2 system is characterized by an
infinite number of relevant quartic coupling constants. This
result resembles the Fermi liquid theory where there is an
infinite number of marginal Landau parameters controlling
the fixed point [17]. In particular, we found that the first
nontrivial coupling after the usual local �4 theory repre-
sents an interaction between local quadrupole moments. If
this interaction is repulsive, the Brazovskii analysis re-
mains the correct one, predicting a first-order transition
to an inhomogeneous state. However, if this interaction is
attractive, there is a new instability describing a second-
order isotropic-nematic phase transition with critical tem-
perature higher than the melting transition of the
Brazovskii model. We have characterized this d � 2 ne-
matic critical point in the self-consistent Hartree approxi-
mation. We have computed the critical temperature Tc as
well as the critical exponents � � 1=2, � � 1. The con-
ditions for the existence of the nematic phase and its
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critical properties are the main results of this Letter. In the
rest of the Letter we sketch the analysis leading to these
results.

In general, the low temperature physics of 2d models
with competing interactions and Ising symmetry is well
described by a coarse-grained Hamiltonian of the type

 H0 �
Z

�

d2k

�2��2
�� ~k�

�
r0 �

1

m
�k� k0�

2 � � � �

�
��� ~k�;

(1)

where r0�T� � �T � Tc�, k � j ~kj, and k0 � j ~k0j is a con-
stant given by the nature of the competing interactions.R

� d
2k �

R
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is a cutoff
where the expansion of the free energy up to quadratic
order in the momentum makes sense. The ‘‘mass’’ m
measures the curvature of the dispersion relation around
the minimum k0 and the ‘‘� � �’’ in Eq. (1) means higher
order terms in (k� k0). The structure factor has a maxi-
mum at k � k0 with a correlation length �� 1=

���������
mr0
p

.
Therefore, near criticality (r0 ! 0) the physics is domi-
nated by an annulus in momentum space with momenta
k� k0 and width 2�. This situation is quite similar with
fermionic systems at low temperature, where the role of k0

is the Fermi momentum, and the reduction of phase space
to a spherical shell centered at the Fermi momentum is
ruled by the Pauli exclusion principle. In our case of
interest, the microscopic physics is very different, but the
effects of kinematical constraints on momentum space are
equivalent.

We would like to determine what kind of interaction
terms are relevant to study the low energy physics of a
system given by the Hamiltonian of Eq. (1). The method is
similar to the RG for Fermi liquids developed in Ref. [18]
and already applied to the Brazovskii model in Ref. [19] to
study the first-order transition to the stripe phase. The
standard procedure is to identify a scale transformation
that leaves the Gaussian theory invariant, and then study
the relevance of interactions in the scaling limit very near
the circle k � k0. With this aim, as usual, we define a small
radial wave vector q � k� k0, we reduce the cutoff to
�=s, with s > 1, and integrate over rapid modes �=s <
jqj<�, then we rescale the fields and wave vectors to
reestablish the same scale and compare the couplings.
First, note that the kinetic term in Eq. (1) is invariant under
the rescalings

 �0 � �=s; (2)

 q0 � sq; (3)

 �0�q0� � s�3=2��q0=s�: (4)

Some important comments are in order. These transforma-
tions are independent of the dimension of the momentum
space. This result is very different for systems without

competing interactions where k0 � 0. In this case, the
fields would scale as �0�q0� � s��d�2�=2��q0=s�, where d
is the spatial dimension of the system. This fact leads to a
completely different analysis in the case of competing
interactions. In fact, the usual concepts of upper and lower
critical dimensions will change in our case, due essentially
to the degeneracy of the lowest energy manifold. With this
scaling in mind we immediately conclude that the term
r0j�j2 in Eq. (1) is relevant as it should be, as this term
controls criticality. Let us now analyze a generic quartic
interaction (we do not analyze cubic terms in this article
since we are interested in systems with Ising symmetry
�! ��):
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�
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�2��2
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	�� ~k2��� ~k3��� ~k4��� ~k1 � ~k2 � ~k3 � ~k4�: (5)

Changing variables qi � ki � k0i, with i � 1; . . . ; 4, and
rescaling the momenta and fields following Eqs. (2)–(4),
we obtain at ‘‘tree level’’ u0�q01; q

0
2; q

0
3; q

0
4� �

s3u�q01=s; q
0
2=s; q

0
3=s; q

0
4=s� [20]. We immediately see that

the constant term is relevant. Therefore, at this level of
approximation it is enough to keep the quartic term replac-
ing qi � 0 in the expression for u�qi�. It is important to
note a difference with the case k0 � 0; even though the
coupling u is a constant, in the sense that it does not depend
on q, it still depends on the angles �i of each ~k0i, and then
u � u��1; �2; �3; �4�. However, these angles are strongly
constrained by kinematics. Momentum conservation al-
lows us to eliminate one of them in terms of the other
three. Furthermore, as the momenta are constrained to
move in a very narrow circular region of radius k0 and
width �, we can fix only two of them and the other two are
automatically slaved. Finally, since the system is rotational
invariant, the couplings can only depend on the difference
between these two angles, u��1; �2; �1 � �; �2 � �� �
u��1 � �2� � u���. Thus, the quartic interaction is repre-
sented, not by few constants, but by a continuous function
of an angle. There is still a last constraint, due to the fact
that u� ~k1; ~k2; ~k3; ~k4� in Eq. (5) is invariant under any per-
mutation of the four indexes, implying that u��� � u���
��. Therefore, we can expand u��� in a Fourier series,
obtaining an infinite set of coupling constants representing
angular momentum ‘‘channels’’ of the interaction:

 u��� � u0 � u2 cos�2�� � u4 cos�4�� � � � � : (6)

The first term u0 leads to the usual�4 theory considered by
Brazovskii in his model for the isotropic-smectic transi-
tion. In Ref. [19] a detailed RG analysis showed the
evolution of the running coupling constants u0 and r0 far
from criticality, T 
 Tc. This analysis is justified because
it is in this region that the fluctuation induced first-order
transition occurs. In this Letter we are interested in another
regime, T � Tc, where the whole set of couplings
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fu0; u2; u4; . . .g has to be considered, in principle, at the
same level. A detailed analysis of the RG flow will be
presented elsewhere [21].

For simplicity, let us consider the effect of the first two
terms. A convenient way of representing the Hamiltonian
in terms of u0 and u2 in real space is

 Hint �
Z
d2xfu0�

4� ~x� � u2 trQ̂2g; (7)

where

 Q̂ ij� ~x� � �� ~x�
�
rirj �

1

2
r2�ij

�
�� ~x� (8)

can be easily recognized as the quadrupole moment of the
density �2 [22].
Q̂ij is a traceless symmetric tensor, being a natural local

order parameter for a phase with orientational order. In
fact, a phase with h�� ~x�i � 0 and ~Qij �

R
dxhQ̂ij� ~x�i � 0

is a homogeneous phase, with orientational order with the
nematic symmetry �! �� �. In the following, we will
show that under certain conditions this is the ordered phase
produced at the onset of the instability r0 � 0.

To study this phase transition, we make a self-consistent
Hartree approximation and analyze the Hamiltonian
Eq. (7) in the same lines of Brazovskii’s work [10]. This
approximation is exact in an O�N� model in the limit N !
1. In our case, it will present 1=N corrections. In this
analysis, we should also consider corrections of the type
� trQ̂4 with � > 0. Although this term does not enter the
critical properties of the system at this level of approxima-
tion, it will be important to stabilize the low temperature
phase.

As usual, we replace in Eq. (7) �4 ! �2h�2i and
trQ̂2 ! trf��rirj �

1
2r

2�ij��ghQ̂ij� ~x�i, where the mean
values will be determined self-consistently. With this pro-
cedure we obtain a quadratic Hamiltonian in the Hartree
approximation given in momentum space by

 HHartree �
1

2

Z d2k

�2��2
�� ~k����1C�1� ~k����� ~k�; (9)

where the static structure factor C� ~k� is now given by

 C� ~k� �
T

r� 1
m �k� k0�

2 � �k2 cos�2���u2 � ��2�
; (10)

and

 r � r0 � u0

Z d2k

�2��2
C� ~k�; (11)

where we have chosen ~Qij � ��n̂in̂j �
1
2�i;j� and we have

absorbed unimportant numerical factors in the definition of

u0. � is the angle subtended by ~k with the director n̂. Note
that the new quartic term explicitly introduces an anisot-
ropy in the structure factor of Eq. (10). The coupling has
exactly the form of the second term in Eq. (6), as it should
be. This new term is also responsible for a shift in the value
of the dominant wave vector. From the definition of the
nematic order parameter, Eq. (8), we find that the ampli-
tude of ~Qij is given by

 � � �
1

2

Z d2k

�2��2
k2 cos�2��C� ~k� (12)

which, together with (10) and (11), completes a set of
equations to be solved self-consistently.

After the exact integration over the angles, we have
integrated the radial variable k in the limit where the
correlation length �� 1=�

�������
mr
p

� is much larger than the
typical wavelength of the system 1=k0. It can also easily be
checked that � � 0 is always a solution of Eq. (12), and we
expect that at high temperatures this is the only possible
solution at finite r. Therefore, upon the k integrations at
leading order in

�������
mr
p

=k0, the result can be expanded in
powers of �2=r. It is convenient to write the equations in
terms of the adimensional parameters r! rT, k0 !

k0

��������
mT
p

, and r0 ! 	 � c�1� Tc=T�, obtaining at leading
order in (�2=r)

 r � 	� u0k0m
1���
r
p �O

�
�2

r

�
(13)

and

 �2

�
a1�r; T� � a2�r; T�

�2

r
�O

��
�2

r

�
2
��
� 0; (14)

where a1�r; T� � u2�8� u2k
5
0m

3T2=2r3=2� and a2�r; T� �
8r�� k5

0m
3u2���

15
64m

2k4
0u2=r

2�=
���
r
p

.
From this result, it is clear that if u2 > 0, corresponding

to repulsive quadrupolar interaction, a1�r; T�> 0 and
a2�r; T�> 0 for all r and T. Therefore, in this case, the
only possible solution is � � 0. The model then reduces to
that of Brazovskii, and a careful study of Eq. (13) follows
the same lines of Ref. [10]. In this case nothing happens at
T � Tc. The system shows a first-order phase transition to
a stripe phase, with a melting temperature Tm � Tc=�1�
rc�< Tc, where rc � r�	 � 0� � �u0k0m�

2=3. However, in
the case of attractive quadrupole interactions, u2 < 0,
Eqs. (13) and (14) have nontrivial solutions. For high
temperatures T > Tc the only possible solution is � � 0,
as anticipated. This represents a high temperature disor-
dered homogeneous and isotropic phase. On the other
hand, if T < Tc, a nematic phase emerges continuously
with �� jT � Tcj1=2. From Eqs. (13) and (14) and the
condition a1�rc; Tc� � 0, we can read the critical tempera-
ture to be Tc � 4=�mk2

0�
�������������
u0=u2

p
.
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We have also computed the nematic susceptibility, by
coupling the system to a small external field conjugate to
the nematic order parameter. Considering for simplicity the
orientation of the field in the same direction as the order
parameter, we find for the nematic susceptibility 
n �
1=�T � Tc�. This confirms the second-order nature of this
transition, with critical exponents � � 1=2 and � � 1.
One has to bear in mind that these critical exponents will
certainly be modified by fluctuations. The reason is that in
our Hartree approximation the order parameter Qij de-
pends on � fluctuations. In other words, it is a Hartree
approximation for the order parameter �; however, a mean
field one in Qij. We expect that upon improving this
approximation including fluctuations in Qij, the
isotropic-nematic transition should be of the Kosterlitz-
Thouless type [21].

In summary, we have analyzed a general model of a
scalar field theory with competing interactions in two
dimensions. This model is dominated by a small circular
shell in momentum space, profoundly modifying the criti-
cal properties of the corresponding model without compe-
tition (k0 � 0). In particular, we have shown that, in the
framework of the renormalization group, the Gaussian
fixed point is affected by an infinite set of relevant coupling
constants that codify the angular momentum content of a
particular microscopic interaction. We have analyzed the
simplest model with two coupling constants, correspond-
ing to consider quadrupole moment interactions. We have
found that the repulsive case reduces to the well-known
Brazovskii model, with a fluctuation induced first-order
phase transition to a nonhomogeneous stripe state.
However, for attractive quadrupole interactions the phase
diagram changes considerably. By applying a self-
consistent Hartree approximation in the fields we found
a phase transition from a high temperature disordered
phase to a nematic phase at lower temperatures. The criti-
cal temperature is higher than the melting temperature
found by Brazovskii, opening the possibility of having a
more complex phase diagram, with an intermediate ne-
matic phase and a possible first-order nematic-stripe phase
transition. Whether u2 is positive or negative in a real
system depends on the microscopic interactions. Our re-
sults also highlight how to measure nematic order from
data for the structure factor and predict the temperature
window between Tm and Tc opening the way to look for
this phase experimentally, in systems like anisotropic thin
film ferromagnets and diblock copolymers, among many
others.
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