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Self-Similarities in the Frequency-Amplitude Space of a Loss-Modulated CO2 Laser
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We show the standard two-level continuous-time model of loss-modulated CO2 lasers to display the
same regular network of self-similar stability islands known so far to be typically present only in discrete-
time models based on mappings. Our results suggest that the two-parameter space of class B laser models
and that of a certain class of discrete mappings could be isomorphic.
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Lasers with modulated parameters are arguably among
the simplest and most accessible laser systems of interest
for applications in science and engineering and for theo-
retical investigations. The intrinsic interest in practical
applications and in the nonlinear dynamics of modulated
lasers has spurred a wide range of studies after the remark-
ably influential work of Arecchi et al. [1] reporting the first
measurement of subharmonic bifurcations, multistability,
and chaotic behavior in a Q-switched CO2 laser. Since
then, CO2 lasers have been fruitfully exploited in many
situations. Recent applications include studies of stochastic
bifurcations in modulated CO2 lasers [2], multistability
induced by periodic modulations [3], rich nonlinear re-
sponse of CO2 lasers with current modulation and cavity
detuning [4], and self-focusing effects in nematic liquid
crystals [5].

In the last 20 years the CO2 laser was extensively studied
theoretically, numerically, and experimentally [6–8], but
focusing mainly on the characterization of dynamical be-
haviors in phase space for specific parameters. For many
systems, much more attention has been devoted to the
description of phase-space dynamics than to the parameter
space [6,9–11]. Concerning the parameter space of the
CO2 laser, Goswami [12] investigated analytically the first
few period-doubling bifurcations for the Toda model of the
laser [13].

The present Letter reports an investigation of the pa-
rameter space of a paradigmatic model of class B lasers,
the CO2 laser. More specifically, we study a popular two-
level model of a CO2 laser with modulated losses, focusing
on the global stability of the laser with respect to the
modulation, not the intensity. The remarkable discovery
reported here is that stability islands of the continuous-time
laser model emerge organized in a very regular network of
self-similar structures called shrimps [14], illustrated in
Figs. 1 and 2, and previously known to exist only in the
parameter space of discrete-time dynamical systems [14–
17]. Although there are theoretical grounds to expect them
to be present [17], thus far all attempts to uncover shrimps
in flows, i.e., in continuous-time dynamical systems mod-
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eled with sets of differential equations, have failed to
produce them [18].

The single-mode dynamics of the loss-modulated CO2

laser involves two coupled degrees of freedom and a time-
dependent parameter which we write, as usual [3,6,7],

du
dt
�

1

�
�z� k�u; (1a)

dz
dt
� �z0 � z��� uz: (1b)

Here, u is proportional to the radiation density, z and z0 are
the gain and unsaturated gain in the medium, respectively,
� denotes the transit time of the light in the laser cavity, � is
the gain decay rate, and k � k�t� represents the total cavity
losses. The losses are modulated periodically as follows,

k�t� � k0�1� a cos2�ft�; (2)

where k0 is the constant part of the losses and a and f, the
amplitude and frequency of the modulation, are the main
bifurcation parameters. The remaining parameters are
fixed at � � 3:5� 10�9 s, � � 1:978� 105 s�1, z0 �
0:175, and k0 � 0:1731, realistic values used in recent
investigations [3]. Integrations were done using the stan-
dard fourth-order Runge-Kutta scheme with fixed time
step, equal to h � 4� 10�8. Phase diagrams in a� f
space are obtained by computing Lyapunov exponents for
a mesh of 600� 600 equally spaced parameters. Starting
from an arbitrary initial condition, we ‘‘followed the at-
tractor’’, that is, after increasing parameters we initiated
iterations using the last obtained values as the new initial
conditions. The largest exponents were codified into a bit
map with a continuous color scale ranging from the maxi-
mum positive (green) to maximum negative (blue) expo-
nents. Zero exponents were codified in black. One of the
exponents is always zero since it is simply related to the
time evolution. Three illustrative bit maps for the laser
model are shown in Fig. 1.

Figure 1(a) displays a global view of the parameter
space. The most prominent features, the broad curved
structures in Fig. 1(a), show that the parameter space of
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FIG. 1 (color online). Structure of the frequency-amplitude phase diagram of the laser showing a regular network of stability islands
(a) Global view, (b) Zoom of the box in (a). Numbers indicate the main period of each stability island; (c) Magnification of the period-
11 stability island [indicated in (b) by the encircled 11], displaying the generic shape of all stability islands [15]. Color intensities are
proportional to Lyapunov exponents: blue (dark gray) for negative exponents (periodic oscillations), black for zero, and green (light
gray) for positive exponents (chaotic oscillations). Frequencies are in kHz.
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the laser model above, Eqs. (1a) and (1b), agrees qualita-
tively quite well with the description of Goswami [12] for
the Toda model of the CO2 laser. For the parameters
chosen, the relaxation frequency of our laser model is
50 kHz. From Fig. 1(a) it is possible to see that there is a
minimum amplitude threshold a beyond which subhar-
monic bifurcations start to occur, corresponding to about
100 kHz, the harmonic of the relaxation frequency. In
addition, for certain parameter values new stability do-
mains are created by saddle-node bifurcations, each of
them undergoing then its own cascade of period doublings.
So, in certain parameter ranges more than one stable mode
coexist, giving rise to generalized multistability. This fea-
ture may be recognized in Fig. 1 from the apparent sudden
discontinuities in the coloring, due only to the impossibil-
ity of plotting two distinct shades in the same place.

The most interesting feature in Fig. 1(a) is the remark-
ably regular structuring which appears in the region con-
taining the box, shown magnified in Fig. 1(b). This figure
shows that embedded in the wide domain of parameters
leading to chaotic laser oscillations there is a regular
structuring of self-similar parameter windows, shrimps,
containing cascades of stable periodic oscillations, the
main period of a few of the larger shrimps indicated by
the number near to them. The period-11 shrimp seen in
Fig. 1(b) is shown magnified in Fig. 1(c). Starting from the
main period-11 body, it displays two distinct doubling
cascades as well as an infinite number of additional
period-doubling cascades, as thoroughly described for
discrete-time systems in Refs. [14,15].

The computation of bit maps for the laser model is very
computer demanding. To alleviate this problem and to
manifest the isomorphism between the parameter spaces
of flows and maps, we display the generic fine and hyper-
fine structure of stability islands typically present in multi-
dimensional systems using the two-parameter Hénon map
as a paradigm:
14390
xt�1 � a� x2
t � byt; yt�1 � xt: (3)

The nonlinearity parameter a (forcing) represents the bi-
furcation or control parameter. The damping parameter b
varies between �1 � b � 1, with b � 1 representing the
conservative limit and b � 0 the limit of strong damping.
While for b � 0 there exists just a single attractor over a
wide range of the parameter a, several periodic and chaotic
attractors may coexist when b � 0.

We consider here the strongly dissipative limit, focusing
on slightly negative values of b where Pando et al. [19]
found that a sophisticated four-level model of the laser
behaves qualitatively similar to the Hénon map. The CO2

laser dynamics, as that of any class B laser, is characterized
by a time delay between the intensity and the population
inversion, a fact that nicely matches the delayed character
of the Hénon map when written as a one-dimensional
recurrence relation.

Figure 2 shows how regularly shrimps organize them-
selves along very specific directions in parameter space.
The ordering along the main diagonal of Fig. 2(a) is the
same found for the laser, in Fig. 1(a), along the direction
containing the encircled periods. Analogously, the second-
ary diagonal in Fig. 2(a) displays the same ordering that the
parabolic arc in the middle of Fig. 1(c).

The laser-Hénon agreement in parameter space perme-
ates also to the phase space as corroborated by Fig. 3,
comparing return maps for the laser (on the left column)
with those for the Hénon map (right column). The laser
return maps were constructed using the sequence ul�t�, l �
1; 2; 3; . . . of normalized relative maxima of u�t�. As it is
easy to see, both sets of return maps agree remarkably well
[20].

How easy is it to detect experimentally the regular
structuring reported here? Figure 4 illustrates a represen-
tative laser signal in two scales. Although waveforms and
underlying periodicities are easy to recognize in logarith-
5-2
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FIG. 2 (color online). Structure of the parameter space of the Hénon map. (a) The organization of shrimps here coincides with that of
the laser [see Fig. 1(b)]. The fine structure observed around period-8 here reproduces the laser period-8 sequence along the curve
passing by the encircled numbers in Fig. 1(b). (b) Magnification of the box in (a). (c) Magnification of the box in (b). Numbers indicate
the main period of each stability island. Points mark windows, not doubly superstable crossings.
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mic scale, their experimental detection may become
strenuous, particularly as the period increases. For in-
stance, contemplating the six period-16 stability islands
in Fig. 1(b), two of them arising from period-8 via period-
doubling bifurcations, one may ask what sort of differences
should be expected in their measurement. The answer is
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FIG. 3. Comparison of return maps. Left column: Laser return
maps for period-8 and its pair of doublings. Parameters are:
(a) �a; f� � �0:06 984; 89:8�, period 8, (b) (0.07 138, 90.47),
period-16, (c) (0.06 902, 87.43), period-16. Frequencies are in
kHz. Right column: Hénon return maps for period-8 and its
doublings seen at the center of Fig. 2(a). Parameters are:
(d) �a; b� � �1:80 287;�0:02 514�, period-8, (e) �1:80 395;
�0:0257�, period-16, (f) �1:80 642;�0:02 356�, period-16.
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depicted in Fig. 5. In a real experimental setup, the diffi-
culties to surmount are mainly to access narrow high-
period windows, and to have a wide enough detection
range. Modulated losses are usually obtained with an intra-
cavity polarizer and an electro-optical modulator. Recent
progress in low-voltage electro-optical modulators have
considerably improved their performances [21]. To detect
large and small peaks simultaneously one can use a loga-
rithmic preamplifier [22]. Thus, detection and discrimina-
tion of the laser signals in Fig. 5 is experimentally feasible
with existing technology. We believe our investigation to
shed new light on a matter which seemed already fully
explored, opening new challenges for experimentalists and
having potential applications beyond the selected example.

To uncover isomorphisms between the parameter space
of continuous-time (flows) and discrete-time (maps) is an
important event both from a physical and a dynamical
point of view. In this context, we emphasize a relevant
result of Hunt et al. [17] showing that for two-parameter
systems there is a canonical family of quartic maps such
that, typically, the bifurcations within a periodic window of
a given scalar map are well approximated by a linear
transformation of the bifurcation diagram of the canonical
quartic map. For practical applications, an important ques-
tion now is to investigate if parameter isomorphisms
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FIG. 4. Time evolution of the laser intensity u�t� for the large
period-8 structure in Fig. 1(b), plotted in (a) logarithmic scale,
(b) linear scale. Here T � 1=�89:8 kHz� is the period of the
modulation.
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FIG. 5. Predicted signal intensity for the six period-16 stability
islands labeled A; B; . . .F, in Fig. 1(b). Signals (a) and (b), at
points A and B, are period-8 doublings. All other signals are
from islands which begin with period-16. Note that signals look
very similar, despite the fact that they originate from very
distinct regions of the parameter space. Parameters �a; f� are:
(a) A � �0:06 902; 87:43�, (b) B � �0:07 138; 90:47�, (c) C �
�0:063 725; 92:15�, (d) D � �0:062 255; 75:735�, (e) E �
�0:0 749 617; 67:3281�, (f) F � �0:073 666; 83:359�. Note that
T � 1=f is slightly different for each signal.
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should be expected also for more refined laser models such
as those discussed in Refs. [23–25]. For these systems it
would be useful to know what sort of basin entanglements
exist for multistable domains where self-similar structures
are abundant [26]. To conclude, let us briefly mention
preliminary results showing that shrimps also exist for
systems of autonomous differential equations as well as
in semiconductor lasers subjected to optical injection. This
will be reported elsewhere.
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