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Topology, Phase Transitions, and the Spherical Model
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The topological hypothesis states that phase transitions should be related to changes in the topology of
configuration space. The necessity of such changes has already been demonstrated. We characterize
exactly the topology of the configuration space of the short range Berlin-Kac spherical model, for spins
lying in hypercubic lattices of dimension d. We find a continuum of changes in the topology and also a
finite number of discontinuities in some topological functions. We show, however, that these disconti-
nuities do not coincide with the phase transitions which happen for d � 3, and conversely, that no
topological discontinuity can be associated with them. This is the first short range, confining potential for
which the existence of special topological changes are shown not to be sufficient to infer the occurrence of
a phase transition.
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TABLE I. Critical temperatures Tc and mean potential ener-
gies per particle hvci for hypercubic lattices in d dimensions.
Values obtained from analytical expressions in [8].

d kTc=J hvci=J

3 3.9573 �1:0216
4 6.4537 �0:7728
5 8.6468 �0:6759
6 10.7411 �0:6283
Phase transitions (PTs) remain one of the most intrigu-
ing and interesting phenomena in physics. Mathematically,
a PT is signaled by the loss of analyticity of some thermo-
dynamic function [1] in the thermodynamic limit.

Recently, a new characterization of PTs has been pro-
posed, that conjectures that ‘‘at their deepest level PTs of a
system are due to a change of the topology of suitable
submanifolds in its configuration space’’ [2]. This is known
as the topological hypothesis (TH) [3]. In this new method
one studies the topology of the configuration space � of the
potential energy V�x� of a system with N degrees of free-
dom, determining the changes that take place in the mani-
folds Mv � fx 2 � : V�x�=N < vg as the parameter v is
increased. A topological transition (TT) is said to take
place at c if Mc�� and Mc�� are not homeomorphic. The
idea is that somehow TTs may be related to PTs.

The necessity of TTs at a phase transition point has been
demonstrated for short ranged, confining models [4]. In the
XY model [2] TTs are found both in the mean field (MF)
and unidimensional short range versions, whereas a PT is
present only in the MF case. This led to a refinement of the
TH: only sufficiently ‘‘strong’’ TTs would be able to
induce a PT. It was found that in the MF version a macro-
scopic change of the Euler characteristic happens at ex-
actly the same point vc where a PT appears. Several other
models seem to be in agreement with this behavior [5]. But
recently it was proved for a nonconfining potential that no
topological criterion seems to be sufficient to induce a PT
[6]. We show below that the same happens for the spherical
model, which is a confining, short ranged potential.

In the spherical model it has been found that there is a
direct correlation between the TT and the PT, in its mean
field version [7]. Interestingly, in the case of nonvanishing
external field there is no PT, but the configuration space
displays a TT at energies that cannot be thermodynami-
cally reached.

In this Letter we study the original Berlin-Kac spherical
model [8] for spins placed on a d-dimensional lattice,
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interacting with their first neighbors. Using tools from
topology theory we were able, for the case of vanishing
field, to determine its topology exactly (up to homology).
We show that the PT occurring for d � 3 cannot be related
to any discontinuity in the homology of the manifolds at
vc. For nonvanishing field we cannot characterize the
topology completely for all v, but show that a very abrupt
change in the topology happens that does not have a
corresponding PT. At variance with the MF version, the
value of v at which this topological change occurs is
thermodynamically accessible.

The spherical model is defined by a set of N spins �i
lying on a d-dimensional hypercubic lattice and interacting
through the potential V � � 1

2

P
hijiJij�i�j �H

P
i�i where

Jij � J gives the strength of the interaction between
nearest-neighbor spins i and j, and H is an external field.
The spin variables are real and constrained to lie on the
sphere SN�1 (i.e.,

P
i�

2
i � N). Periodic boundary condi-

tions are imposed on the lattice.
In [8] it is shown that, at zero field, a continuous PT

appears at a critical temperature Tc�d� for d � 3, which is a
strictly increasing function of d (see Table I). On the other
hand, no PT is possible in an external field.

As in previous works, the thermodynamic function we
use to relate the statistical mechanical and topological
approaches is the average potential energy per particle
hvi. Although the specific details of hvi depend on d, some
2-1 © 2005 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.95.145702


PRL 95, 145702 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
30 SEPTEMBER 2005
features are common to all hypercubic lattices: hvi ! 0 for
T ! 1 and hvi ! �d (its lower bound) when T ! 0.

In the topological approach one looks for changes in the
topology of Mv as v is increased. A topological change
happens at a certain value vT if the manifolds MvT�� and
MvT�� are not homeomorphic [9] for arbitrarily small �. To
make a connection with statistical mechanics Casetti et al.
[3] proposed the nontrivial ansatz that, at the phase tran-
sition, vT can be identified with hvci, the thermodynamical
average critical potential energy per particle. To study the
topology of the configuration space of the spherical model
it is most convenient to write the potential using the
coordinates xi that diagonalize the interaction matrix
through an orthogonal transformation:

V � �
1

2

XN
i�1

�ix2
i �

����
N
p

x1H (1)

where we set J � 1, and �i (i � 1; . . . ; N) are the eigen-
values of the interaction matrix, ordered from largest to
smallest. We define the sets Cj, j � 0; . . . ; N̂, where N̂ � 1
is the number of distinct eigenvalues. Cj is the set contain-
ing the indices of the eigenvalues that have the �j� 1�th
largest value. Therefore, jCjj gives the degeneracy associ-
ated with the �j� 1�th largest eigenvalue. The Frobenius-
Perron theorem ensures that the largest eigenvalue is not
degenerated, i.e., C0 � f1g.

The critical points of this potential on the sphere � �

SN�1 � fx 2 RN :
PN
j�1 x

2
j � Ng are found using

Lagrange multipliers. Along with the spherical constraint,
the critical point equations are:

x1�2�� �1� �
����
N
p

H � 0; xi�2�� �i� � 0;

i � 2; . . . ; N;
(2)

where � is the Lagrangian multiplier that results from
enforcing the spherical constraint. From these equations
and Eq. (1) N̂ � 1 critical values of v are obtained, denoted
vk � ��l=2, with l 2 Ck, and k � 0; . . . ; N̂ (ordered from
smallest to largest). Notice that the degeneracy of the
eigenvalues causes the corresponding critical points to
be, in fact, critical submanifolds. This implies that in the
directions tangent to the critical submanifolds the Hessian
vanishes, which in turn implies that the potential is not a
proper Morse function. Nevertheless, using Bott’s exten-
sion of Morse theory the Euler characteristic can be found
exactly [10]. However, profiting from the symmetries of
the spherical model we took a more direct route to study its
topology. As we show below, for vanishing external field it
is possible to characterize completely the topology of the
Mv, by explicitly giving the values of all the Betti numbers
of the manifolds.

For H � 0 the critical manifolds �vj , j � 0; . . . ; N̂, are
given by �vj � fx 2 � :

P
i2Cjx

2
i � Ng [see Eq. (2)].

These are (hyper)spheres whose dimension is given by
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the degeneracy of the corresponding eigenvalues. To
understand the nature of the topological change that hap-
pens at the critical values of v it is necessary to know the
topology of the Mv for v between two critical values. We
show below that in the interval �vj; vj�1� all the manifolds
Mv are homotopy equivalent to SD�1, where D is the
number of eigenvalues larger than �2vj. In fact we prove
that SD�1 is a deformation retract of Mv, which in turn
implies their homotopy equivalence [9].

A submanifold S � M is a deformation retract of a
manifold M if there exists a series of maps f� : M ! M
with � 2 �0; 1	, such that f0 � I, f1�M� � S and f�jS � I
for all �. The map when considered as f : M
 �0; 1	 ! M
must be continuous. Let us take v 2 �vj; vj�1�. The de-
formation retract that takes the manifold Mv onto its sub-
manifold SD�1 � fx 2 Mv :

PD
i�1 x

2
i � Ng is given by

x��� � �f�1 �x�; . . . ; f�N�x�� with

f�i �x� �

8<
: xi

�������������������������������������������������������
1� �

PN
k�D�1 x

2
k=
PD
k�1 x

2
k

q
for i � D

xi
������������
1� �
p

for i > D
:

(3)

This map can easily be shown to be continuous at all
points x 2 Mv. The properties for � � 0 and � � 1 are
evidently fulfilled. It is also easy to see that the retraction
f� does not map any points outside Mv, since the image
points always lie on the sphere SN�1, and their potential
energy does not exceed v.

Homotopy equivalence implies that the Betti numbers of
the Mv with v 2 �vj; vj�1� are the same as those of SD�1:
bi�Mv� � 1 for i � 0 and i � D� 1, and bi�Mv� � 0
otherwise. Thus at each vj a topological transition occurs
that changes the topology of the phase space from one
homotopy equivalent to SD�jCjj�1 to one homotopy
equivalent to SD�1. In terms of the Betti numbers, each
transition changes two of them from 0 to 1 and from 1 to 0.
Thus, at variance with other models, the magnitude of the
Betti numbers is not a useful quantity in order to character-
ize the TT. It is better to look at changes in D� 1, the
highest index of the Betti number that changes at each
transition. Furthermore, as we have shown that the mani-
folds Mv are homotopy equivalent to (hyper)spheres, the
information about their dimension D� 1 completely char-
acterizes their topology. Thus D is the relevant quantity to
be studied. As shown above, the increase ofD at each TT is
given by the degeneracy of the corresponding eigenvalue.
If the degeneracy jCjj is o�N�, given thatD �

Pj
i�0 jCij, in

the N ! 1 limit D is equivalent to the order of the critical
manifolds, which is defined as the number of negative
eigenvalues of the Hessian (

Pj�1
i�0 jCij) when restricted to

the submanifold normal to the jth critical submanifold.
This generalizes to degenerate manifolds the definition of
order of a saddle point.

For the spherical model it can be shown that the spec-
trum of eigenvalues is continuous in the infinite N limit.
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Thus, the set of N̂ � 1 critical energies will be dense in
��d; d	, the interval of allowed potential energies.
Consequently, the model has a continuum of TTs. In this
limit, and considering that D is O�N�, it is convenient to
introduce a continuous and normalized version of D,
d�v� � D=N, and also a degeneracy density c�v�. They
are related by c�v� � @d�v�

@v . In the following we search for
singularities in these functions or their derivatives which
could point to particularly strong TTs.

The spectrum of the adjacency matrix is given by [8]:

�p� 2
Xd
i�1

cos�2�pi=N1=d�; pi� 0; . . . ;N1=d� 1: (4)

In the N ! 1 limit, the degeneracy density is

c�v� � �2��d
Z 2�

0
��d

i�1d!i���v� ��!�=2�

�
Z 1

0

dx
�

cos�xv��J0�x��
d (5)

where ��!� � 2
Pd
i�1 cos�!i�. It can be shown [11] that

the integral converges uniformly for all values of d and
therefore c�v� is a continuous function (see Fig. 1). The
derivatives with respect to v can be obtained by performing
the derivative inside the integral. But, as this is only valid if
the resulting integral converges, this procedure allows us to
obtain only the first b�d� 1�=2c derivatives. All these
derivatives are continuous [11] except for the last, which
is discontinuous only at the following points: at odd values
of v if d is odd, at even values of v=2 if d=2 is odd and at
odd values of v=2 if d=2 is even. But these values are
FIG. 1. Degeneracy density c�v� and relative index d�v� of the
critical manifolds, for a vanishing external field.
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clearly different from the ones at which a PT takes place,
for all values of d (see Table I). The manifolds Mv display
TTs at the points hvci where PTs occur, since there is a
continuum of TTs. These TTs, however, are not particu-
larly abrupt. This noncoincidence between the levels where
a special TT (vT) and a PT (hvci) take place has also been
observed in the �4 mean field model [12].

The only possibility left to look for a relationship be-
tween TT’s (in the sense of a discontinuity of some func-
tion of the topology) and PT’s would be in the higher
derivatives of c�v�, which cannot be studied by interchang-
ing the integral and derivative operations. This possibility
seems to us rather unreasonable, because it would imply
not only that the derivative where discontinuities are to be
looked for depends on the dimension of the lattice, but also
that those discontinuities present in lower order derivatives
should be disregarded.

We have thus shown that discontinuities in the deriva-
tives of c�v� are not sufficient to induce the PT present in
the model. Furthermore, we show in the following that,
even though in the case of a nonzero external field there
appear discontinuities in the function c�v� itself, no con-
nection between such TTs and PTs can exist, simply
because the model does not display any PTs at all.

WithH � 0 it is not so easy to find the homotopy type of
the submanifolds Mv, because of the breaking of the
symmetry introduced by the field term in the Hamil-
tonian. Nevertheless, using Morse theory it is at least
possible to establish the homotopy type of the submani-
folds up to above the second smallest critical energy, where
an abrupt topological change is shown to take place.

According to Morse theory, if there is one nondegener-
ate critical point at c 2 �a; b�, the manifold Mc�� is ho-
meomorphic to Mc�� [ ek, where ek is a k cell (i.e., a
k-dimensional open disk). In other words, at the critical
point, a k cell is attached to the manifold, where k is the
index of the critical point, defined as the number of nega-
tive eigenvalues of the Hessian at that point.

From the critical point Eq. (2) we obtain that the small-
est critical energy is v� � ���1=2�H�, and the next is
v� � ���1=2�H�. The Hessian of the potential on the
sphere at the critical points x� � ��

����
N
p

; 0; . . . ; 0� is a di-
agonal matrix with V�ii � �1 �H � �i (i > 1). Therefore,
at these two points the Hessian is not singular, which
implies that x� are nondegenerate critical points. But �1

is the largest eigenvalue, therefore for v� all the eigenval-
ues Vii are positive. This was to be expected because this is
the absolute minimum of the potential. Topologically this
means that for v < v� Mv is homotopy equivalent to a
disk. For v � v� the index of the critical point depends on
the field: if �2 < �1 �H, v� is a minimum. Thus, denot-
ing the next critical value by v2, Mv for v 2 �v�; v2� is
homotopy equivalent to the union of two disjoint disks on
the sphere. However, for large values of N the topological
scenario is different. Since in this limit the spectrum of the
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FIG. 2. Degeneracy density c�v� and relative index d�v� of the
critical manifolds, for a finite field. A delta function is assumed
at the discontinuity point in the graphs of the left column.
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adjacency matrix becomes dense, a certain number k of its
eigenvalues will fall into the interval �v�; v��. This num-
ber becomes the order of the critical point at v�, and gives
the dimension of the k cell that is attached to the disk. The
manifold Mv for v 2 �v�; v2� is therefore homotopy
equivalent to a sphere of k dimensions. For large N, k
becomes proportional to N. In the interval �v�; v�� the
manifoldsMv have the homotopy type of a point. At v� an
abrupt change in the topology takes place, and theMv have
now the homotopy type of a sphere with a macroscopic
number of dimensions [see the jump of c�v� in Fig. 2].

For higher values of V, the critical values are given by
vj � ��j=2�H2=2��1 � �j�, but only for j such that
�1 � �j > H. Notice that, at variance with the case of
vanishing H, there is a threshold energy below which the
critical values have been suppressed. The critical submani-
folds occurring at each vj are again hyperspheres whose
dimension is given by the degeneracy of the corresponding
eigenvalue �j. For all critical values we have calculated the
order of the critical manifolds, d�v�, as well as the relative
degeneracy, c�v�, for a few values of d (see Fig. 2). The
main difference with the results for H � 0 is that now the
connection between the order and the topology of the
different manifolds is less obvious, and we have not been
able to identify the homotopy types for all values of v.
Nevertheless we have found exactly the topological change
that takes place at v�, and have shown that it is macro-
scopic. It may come as a surprise that this very abrupt
change does not have a PT associated with it.
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We have shown that the manifolds of the configuration
space of the short range spherical model display a contin-
uum of topological transitions. Hence the necessity condi-
tion implied by the theorem in [4] is trivially met. Also,
strong discontinuities have been found either in a func-
tion of the topology or in its derivatives. Although these
discontinuities represent abrupt changes in the topology
we have shown that they are not associated with PTs.
Conversely, at the points where PTs take place no abrupt
changes are observed in the topology. These are the first
results on a short range confining potential to challenge the
sufficiency of a topological mechanism in the origin of a
phase transition.

One intriguing question that arises is whether the topo-
logically abrupt changes that we have found can have some
influence on the dynamics of the model.
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