The mass ratio and initial mass functions in spectroscopic binaries

J. R. Ducati ${ }^{1}$, E. M. Penteado ${ }^{1,2, \star}$, and R. Turcati ${ }^{1, \star \star}$
${ }^{1}$ Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91 501-970 Porto Alegre, Brazil
e-mail: ducati@if.ufrgs.br
${ }^{2}$ Observatório do Valongo, Universidade Federal do Rio de Janeiro, Ladeira Pedro Antônio 43, 20 080-090 Rio de Janeiro, Brazil

Received 17 December 2009 / Accepted 8 September 2010

Abstract

Context. Spectroscopic binaries are important in studies of binary star-formation, since original information linked to the forming stars, such as the mass ratio, can be kept in the system and observationally retrieved. Aims. We aim to derive the more probable mass ratio distributions, to test a possible Initial Mass Functions acting on the formation of spectroscopic binaries, and to derive the value of q_{0}, the minimal mass ratio for which both binary components are simultaneously in the main sequence. Methods. The sample has 249 systems, selected from the Ninth Catalogue of Spectroscopic Binaries, with selection criteria that include only those systems with periods longer than four days and magnitudes brighter than $m_{V}=7.0$, and main-sequence primaries, to avoid mass exchange. Monte Carlo simulations of observational parameters were performed. We performed simulations by comparing an observational quantity, $Y_{\text {obs }}$, equal to $f(m) / m_{1}$, where $f(m)$ is the mass function, to theoretical $Y_{\text {th }}$, which is a function of the system inclination (assumed to be random), and of the mass ratio $q=m_{2} / m_{1}$. We considered a minimal mass ratio q_{0}, which is the limiting condition, to ensure that both components are simultaneously on main sequence, avoiding evolutionary effects leading to mass exchange and loss of information on the original masses. Calculations were done using several q_{0} values. The form of the distribution of mass ratios was studied by simulations of Y, involving several functions, with slopes which are increasing, decreasing, constant, or bimodal. Other simulations were done by the generation of stars following several initial mass function laws. We combined pairs of stars generated from different IMFs, assuming that binaries arise from the pairing of stars simultaneously formed. In this case, several values of q_{0} were also used in the input equations. Results. Our results indicate that decreasing q distributions match better with observations and also that a unique IMF gives better fits to observations than a composite IMF, with a slope around 1.4 , rather than the widely used 2.35 slope. Values of q_{0} tend to be lower than what is suggested by previous studies, which point to q_{0} around 0.2 ; all simulations suggest that q_{0} values as low as 0.08 produce the best fits to observations.

Key words. binaries: spectroscopic

1. Introduction

The understanding of star formation can benefit from data of binary stars, since these systems carry information which is lost when single stars form (Larson 2001). However, formation processes of binary and multiple stars are far from being completely understood. Possible processes include simultaneous condensation from a common primordial nebula, fission, and aftercondensation capture. Numerical simulations involving now available high-performance computing have provided some new insights on this question (Tohline \& Durisen 2001). Alternative approaches can use models describing those processes taking as a fundamental parameter the mass ratio, $q=m_{2} / m_{1}$ (m_{1} and m_{2} being the primary and second masses of the binary components), on the grounds that some values of q are only possible from certain processes, and that different physical processes can favor higher or lower values of the mass ratio. The form of the mass ratio distribution, $f(q)$, has been the object of extensive

[^0]discussion on whether $f(q)$ decreases or increases with increasing q, if it has a bimodal behavior, or if $f(q)$ depends on the orbital period. Model-fitting approaches have produced results in every direction. Decreasing functions, of the form $q^{-7 / 3}$, were suggested by Jaschek \& Ferrer (1972); this function has some theoretical background, because it is the original mass function of Salpeter (1955), as pointed out by Jaschek (1969). Besides, this paper by Jaschek and Ferrer introduced the parameter q_{0}, the minimal mass ratio that ensures that both stars are simultaneously at the main sequence, thus avoiding conditions where evolutionary processes lead to mass exchange and loss of information on primordial component masses. Concerning mass ratio distributions, similar results were published more recently by Heacox (1998). However, more results have been published favoring other $f(q)$'s. Hogeveen (1990, 1992a,b) finds that $f(q)$ can be a power law, either decreasing or increasing, depending on whether the sample (from Batten et al. 1978 Eighth Catalogue of Spectroscopic Binaries - SB) was formed by single-line (SBI) or double-line (SBII) systems. This calls attention to the extent to which selection effects can influence results. Increasing $f(q) \mathrm{s}$, with peaks near high q 's were suggested by Lucy \& Ricco (1979), among others, for close SBs; however, most studies with similar results (Garmany et al. 1980; Abt \& Levy 1985; Levato et al. 1987; Fekel et al. 1988) are based on samples composed
of close systems, where contact or mass exchange lead to loss of information on the original mass of the components. Bimodal distributions have been suggested by Trimble (1974), and as well by Abt \& Levy (1976); finally, both q^{n} and bimodal distributions were the results of model-fittings by Dabrowski \& Beardsley (1977) and Trimble \& Ostriker (1978). Also based on Batten's Eighth Catalogue is the study by Fisher et al. (2005) concerning a sample of local field stars, which indicated a q distribution of field binaries with many q values near unity, and thus dominated by double-lined systems. The above results indicate that confusion does exist, a problem that can be approached by the use of carefully selected samples where biases are minimized. The recent release of a large database on spectroscopic binary stars has allowed more significant model-fitting tests. The choice of spectroscopic systems is convenient because of the availability of useful parameters, especially radial velocities, which in visual binaries lack the necessary accuracy and amplitude. Using a selected sample of spectroscopic binaries as a reference, the scope of this work is threefold: to look for the more probable mass ratio distributions, to test Initial Mass Functions acting during binary formation, and to derive values for the parameter q_{0}; to reach these objectives, we performed Monte Carlo simulations involving assumptions on mass ratio distributions, on initial mass functions, and testing several q_{0} values.

2. Data and basic methodology

Following former compilations of spectroscopic binary observational parameters, for example, that by Batten et al. (1978), we selected the observational sample from the online version of the Ninth Catalogue of Spectroscopic Binary Orbits (Pourbaix et al. 2004), which provides information on 2385 systems. Observational biases are certainly present, and several criteria were applied to compile a sample with a bias as small as possible, as follows:
a) An important bias in the Ninth Catalogue is that the percentage of eclipsing binaries is statistically increased. This happens because variability is easily detected, and systems with deeper eclipses are even more easily discovered, because they have components of similar brightness and, therefore, with higher mass ratios. This bias in favor of eclipsing SBs is stronger in fainter systems. To minimize this bias, the sample included only binaries brighter than $m_{V}=7.0$, on the grounds that those objects belonging to the bright star catalogue (BSC) and its Supplement (Warren \& Hoffleit 1987), which list systems brighter than $m_{V}=7.0$, have been extensively observed and few spectroscopic systems, if any, remain undetected.
b) Mass exchange may influence the evolution of close systems, so to ensure a sample that conserves the original information of both components, the sample included only systems with periods longer than four days, corresponding to orbits with semi-major axis of about 7.4 million kilometers. This value is about 40% higher than the largest O stars in the sample, and accordingly, systems with possible contact between the components were not included in the compilation. This criterion leads to the exclusion of certain pairs of multiple systems (HD 25 204, HD 36695, HD 71 663, HD 157482, HD 201 433), even if these systems would have remained in the sample due to other criteria.
c) Another condition imposed to avoid mass exchange was the exclusion of all systems with non-main sequence primaries. These last two criteria are complementary, producing a
sample with non-interacting stars even for the eventual systems which, being formed by capture, do not have coeval components.

The final, homogeneous sample, had 249 systems, with primary spectral types distributed as follows: 29% OB, $55 \% \mathrm{AF}, 16 \%$ GK. The list of stars is given in Table 2 at the end of this paper. This sample is significantly greater than those used in most of the papers cited in Sect. 1, and includes single (144 objects) and double-lined (105) systems.

A special mention has to be made concerning the paper by Fisher et al. (2005), because this paper, in a first analysis, has partially similar scopes and sources of data. However, an important objective for us was to derive values of q_{0}, a parameter which was not approached in their paper because it is seldom studied. Approaches to the other scopes are heavily influenced by the sample used, and here, it is true that the present sample of 249 systems is smaller than that of Fisher and collaborators, which has 371 objects; these samples, however, have some important differences. The larger sample was compiled with data from Batten's Eighth Catalogue and from private communications; it used all values of periods, thus allowing the inclusion of contact systems and evolved stars, where mass exchanges can occur, processes which modify the original mas ratios at system formation. Unfortunately, the paper by Fisher et al. (2005) does not provide the list of systems forming the sample used for their study, so a direct comparison is not possible. However, from their criteria of $d \leq 100 \mathrm{pc}$ and $M_{V} \leq 4$, it can be deduced that for later stars, G and K dwarfs are excluded, because of the luminosity criterion. On the earlier side, an examination of the Bright Star Catalogue suggests that there are significant differences between Fisher's and our sample. For example, from the BSC it is evident that the criterion for distances smaller than 100 pc only allows the inclusion, in Fisher's sample, of about eight dwarfs of spectral type B3 or hotter, not necessarily primaries of spectroscopic binaries. On the other hand, GK dwarfs make up 16\% of primaries of our sample, which besides includes 31 B 3 , or earlier, dwarf primaries. The same reasoning extends to all B dwarfs. Consequently, even if the exact content of Fisher's list is not known, a clear perception arises that the ensemble of these differences is very significant and results in very different samples, for the spectral types and luminosity classes, and also for the volume of space studied.

Mass ratios can be directly derived from the radial velocities measured from SBIIs; however, with the present number of 105 systems, they are not enough to provide reliable information about the form of a mass ratio distribution. Besides, in doing this, the resulting sample presents a bias towards higher mass ratios, a perception already expressed at the modelings performed by Tout (1991). This author, and also Hogeveen (1992a), use different arguments to show that an inverse bias is present if only SBI systems are used. Indeed, both cite and use a former result, summarized in Fig. 1 of Staniucha (1979). The database used to produce this result carries the biases which are avoided in our sample. Also, given a fixed sample, the relative proportion of SBI to SBII will change steadily in favor of SBII, as time passes and observational techniques improve. Modeling this shifting subsamples separately would give unreliable results. So, the question is how to avoid those biases, and at the same time, how to put the observational information from systems with only one spectrum into a useful form. The so-called "mass function", $f(m)$, is a well known expression that addresses this problem. Not to be confused with the Initial Mass Function, the $f(m)$ for spectroscopic binaries is derived from Kepler's third

Fig. 1. Histogram for observed Y, from 249 spectroscopic binaries (solid line). Also shown are normalized tracings of sub-samples, for periods longer (dotted line) or shorter (dot-dashed line) than 40 days.
law, and has been presented and used in Halbwachs (1987) or in Duquennoy \& Mayor (1991) among others. It is given by
$f(m)=\frac{m_{2}^{3} \sin ^{3} i}{\left(m_{1}+m_{2}\right)^{2}}$
with m_{1} and m_{2} defined as above, and i the inclination of the plane of the system with respect to the line of sight. The mass function can also be expressed in terms of observational quantities, in the form
$f(m)=1.0385 \times 10^{-7} k_{1}{ }^{3} P\left(1-e^{2}\right)^{3 / 2}$
where k_{1} is the radial velocity of the primary component, in $\mathrm{km} \mathrm{s}^{-1}, P$ is the period in days, and e is the system's orbital eccentricity. This allows the use of SBI in exactly the same way as for SBII, as was pointed by Trimbe (1990), with the advantage that only information from the primary is needed. In a lengthy analysis, and after stating that it is impossible to determine an overall mass-ratio distribution by adding the observed q distributions of SBI and SBII systems, Hogeveen (1992b) finally suggests that the observed q distribution of SBII systems is compatible with the assumption that all binary stars in the solar neighborhood have mass ratios distributed according to the intrinsic q distribution found from SBI systems. The purpose of this study is to perform a comparison of observational information from Eq. (2) with theoretical predictions from Eq. (1); here, a problem arises because to use Eq. (1) one has to know m_{2}, a piece of information that is absent from Eq. (2). This difficulty can be negotiated by dividing both Eqs. (1) and (2) by m_{1}. This gives, for the theoretical expression,
$\frac{f(m)}{m_{1}}=\frac{q^{3} \sin ^{3} i}{(1+q)^{2}} \equiv Y_{\text {th }}$
and for the observational equation
$\frac{f(m)}{m_{1}}=\frac{1.0385 \times 10^{-7} k_{1}^{3} P\left(1-e^{2}\right)^{3 / 2}}{m_{1}} \equiv Y_{\mathrm{obs}}$.
The modeling of Y_{th}, as just defined, will be compared with observations, expressed by $Y_{\text {obs }}$. To obtain $Y_{\text {obs }}$, the masses of the primary stars are needed. With the spectral types (main sequence) of the primaries being known for all 249 objects in the

Table 1. List of mass ratio, q distributions used in the construction of histograms for theoretical Y.

Number	$f(q)$	Function is
01	constant	constant
02	q	increasing
03	$q-q_{0}$	increasing
04	$1-q$	decreasing
05	$1-a q$	decreasing
06	q^{-2}	decreasing
07	$q^{-\frac{7}{3}}$	decreasing
08	$\left(q-q_{0}\right)^{2}$	bimodal
09	$\left[q-\frac{\left(1+q_{0}\right)}{2}\right]^{2}$	bimodal
10	$q^{\frac{1}{3}}$	increasing
11	$\left(q-q_{0}\right)^{\frac{1}{3}}$	increasing

sample, the masses of the primaries can be obtained from a spectral type-mass table, like that from Lang (1991), where missing spectral types had their masses determined by iteration. With data on periods and eccentricity from the Ninth Catalogue, it was possible to derive the mass function, and $Y_{\text {obs }}$. The histogram for $Y_{\text {obs }}$ is shown in Fig. 1. To investigate a possible dependency of the period on the mass function, the observational sample was divided into two groups: periods longer or shorter than 40 days, a value that approximately divides the sample into two equal parts. The normalized traces for these sub-samples are also shown in Fig. 1.

3. Simulations from mass ratio functions

The function Y_{th} depends on the form of the distribution function of mass ratios, $f(q)$. The modeling of $Y_{\text {th }}$, which will be compared to $Y_{\text {obs }}$, thus totally depends on the expression of $f(q)$. This is done by assuming several test $f(q)$'s, which are each used to generate a $Y_{\text {th }}$. With respect to the $\sin i$ dependency in Eq. (3), inclinations of systems are supposed to be random, as widely accepted (Halbwachs 1987). The choice of test $f(q)$'s must cover most of the possible slopes or forms. Table 1 lists the $f(q)$'s used in simulations.

The construction of the histograms for $Y_{\text {th }}$ was made for each q distribution listed in Table 1, by generation of successive $Y_{\text {th }}$ values using random numbers. The procedure is as follows: given any distribution $f(q)$,
$\frac{\int_{q_{0}}^{q} f(q) \mathrm{d} q}{\int_{q_{0}}^{1} f(q) \mathrm{d} q}=x$.
Here, x is a random number and the q_{0} parameter is introduced, which is the minimal mass ratio that ensures that both stars are simultaneously at the main sequence, thus avoiding conditions where evolutionary processes lead to mass exchange and loss of information on primordial component masses; in this sense, q_{0} is a critical parameter for this study, and finding its value is a result in itself. It can be determined from evolutionary lifetime models, following Iben (1964). A system in which the primary is too massive with respect to its secondary will never have both components simultaneously in the main sequence, because by the time the secondary arrives at the ZAMS, the primary will already have left it. The approximate limit of q_{0} for coexistence as dwarfs would be around 0.17 , as suggested by Giannone \& Giannuzzi (1969) and Jaschek (1969). Solving the integrals (Eq. (5)) for each distribution leads to an expression for q that

Fig. 2. Behavior of simulations of binary formation, compared to observations. Several mass distributions from Table 1 are shown. Distributions favoring lower mass ratios and values of q_{0}, the minimal mass ratio around 0.08 provides the best fits.
contains both q_{0} and x. A similar procedure is performed for the sine component. Values of modeled Y_{th} (Eq. (3)) are generated in this way and successive executions lead to the construction of histograms, one for each adopted $f(q)$ distribution, where a q_{0} value is adopted. These modeled histograms have to be compared to the $Y_{\text {obs }}$ histogram. The comparison takes into account that the observational sample contains non-negligible noise, because it is relatively small (249 objects), even if it is one of the largest compiled to date. So, simulations for each $f(q)$ were, accordingly, generated up to 249 executions, producing histograms of Y_{th} which have the same size as the Y_{obs} histogram; the histogram for $Y_{\text {th }}$ has a noise similar to the $Y_{\text {obs }}$ noise and, because it has the same size, allows also a comparison on a normalized basis. Both distributions, $Y_{\text {obs }}$ and $Y_{\text {th }}$, are compared point-to-point for 25 partitions in the domain of possible Y values, which go from 0 to 0.25 . The modulus of the difference within any partition k is
$d i f_{k}=\left|Y_{\mathrm{obs}, k}-Y_{\mathrm{th}, k}\right|$
and the total difference between the histograms is
$D=\sum_{k=1}^{25} d i f_{k}$.
This comparison is performed repeatedly to generate a mean difference, which is given by
$\bar{D}=\sum_{j=1}^{N} D_{j}$.
Here, N was set to 1000 , a value sufficient for the convergence of \bar{D}. This procedure, which has made on a normalized basis, produces values of D within the interval $(0,1)$, where $\bar{D}=1$ means a model totally different from the observations. Values of D for selected test distributions from Table 1 are presented in Fig. 2, which also gives information on the minimal mass ratio, q_{0}.

4. Simulations from initial mass functions

Another modeling of the observed Y was performed by creating binary systems from the random combination, two by two,
of stars generated following a formation law: the Initial Mass Function. The expression of the IMF, since its first formulation by Salpeter (1955), has been frequently modified. More recently, Kennicut (1998) suggested that observations are best fitted by a composite IMF, with a slope 1.4 for formation up to one solar mass, and a slope 2.35 for greater masses. However, the situation can be different when star-forming cores undergo fragmentation, a scenario studied by Goodwin \& Kroupa (2005). In these cases, a binary can be formed after additional members are ejected from the system, leading to the formation of close binaries. This would fit the description of many spectroscopic binaries, in which case a slightly different IMF could apply. The fragmentation process can produce stars of different masses, the smaller ones are the first to be ejected. The two remaining masses may or may not obey a specific, even composite IMF. To test these possibilities we performed a simulation of the random combination of stars that are independently formed. Here, the variables are the minimum and maximum masses possible in the star-formation processes and the IMF slopes; many values around those suggested by Kennicut were tested. The minimal mass was set to 0.06 solar masses; the upper limit for stellar masses was set to 120 solar masses, a conservative approach to the value suggested by Figer (2005). The generation of masses m_{1} and m_{2} starts with the equation
$\frac{\int_{m_{\min }}^{m} m^{-t} \mathrm{~d} m}{\int_{m_{\min }}^{m_{\max }} m^{-t} \mathrm{~d} m}=x$
where t, the slope of the IMF is also a variable with values t_{1} and t_{2}, allowing the existence of a composite IMF (Kennicut 1998). The generation of m_{1} and m_{2} is subject to conditions that, if t is t_{1}, masses greater than a critical value (here, one solar mass) are discarded; and if t is t_{2}, masses smaller than the critical value are discarded. Here, t_{1} and t_{2} are first defined; which one will be used comes from a random sorting; this t_{i} value is then used to generate m_{1}, and after a new t_{i} definition, the mass m_{2} is generated. Therefore, in all systems created by this simulation, IMFs for primaries and secondaries can be different. The same consideration for q_{0} already made in Sect. 3 applies. Repeated executions are performed, and applied in Eq. (3) together with the random $\sin i$, to produce a histogram of simulated Y_{th}, which can be compared to the observations. We did this following the same procedure described in the previous section; the number of modules of point-to-point subtractions, observational minus modeling, was also set to be 1000 . We show some results for various slopes and q_{0} in Fig. 3.

5. Discussion and concluding remarks

An inspection of Fig. 1 does not provide evidence of a period dependency on the Y distribution and, therefore, the form of $f(q)$ does not seems to be period-dependent. An analogous histogram is found in Fisher et al. (2005), with a different shape; indeed, since the criteria used to compile the samples are very different, a similarity is not expected. The question of the form of the mass ratio distribution in spectroscopic binaries as well as on the q_{0} value can be addressed by an analysis of Fig. 2, where the histogram of the entire sample of 249 stars was compared with the various simulations; similar calculations using the subsamples for shorter and longer periods did not produce significantly different results. We analysed the evolution of D values because several q_{0} are used in each q distribution. From Fig. 2 it is clear that those q distributions that are bimodal or

Fig. 3. Behavior of simulations of binary formation, compared to observations. Several slopes (the " t " parameter) of initial mass functions are shown. The IMFs with smaller slopes, together with $0.06 \leq q_{0} \leq 0.1$, provide the best fits.
increase with q, have higher D, regardless of which q_{0} is used. Therefore, this family of functions is unsuitable for the present simulations. Another group of functions seems to provide better fits. A mass ratio distribution with uniform probability (function 1) gives good results. However, linear, decreasing q functions in the form $f(q)=1-a q$ with $a \approx 0.5$, produce the best fits to observations, and also give important information on the q_{0} value, which is around 0.08 . These functions are preferred over function 1 because they provide information on the constraint on q_{0}, while function 1 only returns low D values for unphysical (i.e. too low) values of q_{0}. Function 5 with $a=0.5$ seems to be the best compromise between low D and a physical q_{0}. Consequently estimates of q_{0} around 0.2 do not produce the best results. A q_{0} from 0.08 to 0.1 , meaning that one component can be more than ten times more massive than the other, puts limits on the primary masses, giving preference to the formation of systems with non-massive primaries, and where both components, with low masses and slower evolutionary rates, can coexist as main-sequence stars. An examination of the observational sample shows that 29% of the primaries are OB stars; even if this frequency is higher than the frequency of $O B$ stars in the Galaxy, it must be stressed that the sample may carry a bias toward brighter younger stars because it was limited to stars brighter than $m_{V}=7.0$. This strongly suggests that the majority of SBs is composed of low-mass stars, and that a q_{0} limit around 0.1 , allowing simultaneous main sequence components, is the best fit to observations.

Considering the initial mass functions for spectroscopic binaries, Fig. 3 shows that steeper slopes, around 2.35, are not the best fits to observations. Indeed, slopes of about 1.4 seem
to be more adequate, even when combined with steeper ones. With respect to q_{0}, differences between the three curves at the bottom of Fig. 3 are small, with slight advantage to the homogeneous distribution with slope 1.4 , which has its minimum around $q_{0}=0.08$ to $q_{0}=0.1$, reinforcing the perception gained in the former paragraph. So, a reasonably good fit to observations is obtained from the pairing of stars that are independently formed; the standard IMF is not followed, which suggests an alternative process of binary formation, different from that of single field stars. The process of fragmentation, which is defined as breakup occurring during the dynamical collapse phase of protostellar clouds, leading to equal mass binaries and a dominance of high mass-ratios (Boss 1988), is not confirmed by the present study, because the best fit to observations comes from models with mass ratio distributions favoring low values of q. Processes of spectroscopic binary formation, as expected, are different from those of visual binaries.

References

Abt, H. A., \& Levy, S. G. 1976, ApJS, 30, 273
Abt, H. A., \& Levy, S. G. 1985, ApJS, 59, 229
Batten, A. H., Fletcher, J. M., \& Mann, P. J. 1978, Pub. Dominion Astrophys. Obs. 15, 121
Boss, A. P. 1988, Comments Astrophys. 12(4), 169
Dabrowski, J. P., \& Beardsley, W. R. 1977, PASP, 89, 227
Duquennoy, A., \& Mayor, M. 1991, A\&A, 248, 485
Fekel, F. C., Gillies, K., Africano, J., \& Quigley, R. 1988, AJ, 96, 1426
Figer, D. F. 2005, Nature, 434(7030), 192
Fisher, J., Schroder, K. P., \& Smith, R. C. 2005, MNRAS, 361, 495
Garmany, C. D., Conti, P. S., \& Massey, P. C. 1980, AJ, 242, 1063
Giannone, P., \& Giannuzzi, M. A. 1969, Ap\&SS, 84, 292
Goodwin, S. P., \& Kroupa, P. 2005, A\&A, 439, 565
Halbwachs, J. L. 1987, A\&A, 183, 234
Heacox, W. D. 1998, AJ, 115, 325
Hogeveen, S. J. 1990, Ap\&SS, 173, 315
Hogeveen, S. J. 1992a, Ap\&SS, 193, 29
Hogeveen, S. J. 1992b, Ap\&SS, 196, 299
Iben, I. Jr. 1964, ApJ, 140, 1631
Jaschek, C. 1969, Arch. Sc. Geneve, 24(1), 167
Jaschek, C., \& Ferrer, O. 1972, PASP, 84, 292
Kennicut, R. C. 1998, in The Stellar Initial Mass Function, ed. G. Gilmore, \& D. Howell, ASP Conf. Ser., 142, 1
Lang, K. R. 1991, Astrophysical Data: Planets and Stars (Springer), 133
Larson, R. B. 2001, PASP, in The Formation of Binary Stars, , ed. H. Zinnecker, \& R. D. Mathieu (Potsdam), Proc. IAU Symp., 200, 3
Levato, H., Malaroda, S., Morrell, N., \& Solivella, G. 1987, ApJS, 64, 487
Lucy, L. B., \& Ricco, E. 1979, AJ, 84, 401
Pourbaix, D., Tokovinin, A. A., Batten, A. H., et al. 2004, A\&A, 424, 727
Salpeter, E. E. 1955, ApJ, 121, 161
Staniucha, M. 1979, Acta Astron., 29(4), 587
Tohline, J. E., \& Durisen, R. H. 2001, PASP, in The Formation of Binary Stars, ed. H. Zinnecker, \& R. D. Mathieu (Potsdam), Proc. IAU Symp., 200, 40
Tout, C. A. 1991, MNRAS, 250, 701
Trimble, V. 1974, AJ, 79, 967
Trimble, V. 1990, MNRAS, 242, 79
Trimble, V., \& Ostriker, J. P. 1978, A\&A, 63, 437
Warren Jr, W. H., \& Hoffleit, D. 1987, BAAS, 19, 733

Table 2. Observational data. Column headings: system identification, primary spectral type, primary mass, primary magnitude, system period (days), system orbital excentricity, primary radial velocity ($\mathrm{km} \mathrm{s}^{-1}$), mass function, Y value (from Eq. (4)); in last column, a "II" marks SBII systems.

Id	Sp	m_{1}	V	P	e	k_{1}	$f(\mathrm{~m})$	Y	SB
HD 358	A0 p	2.9	2.17	96.70050	0.53	27.74	0.1307179	$4.507 \mathrm{E}-02$	II
HD 434	A4 Vm	2.2	6.52	34.26010	0.38	33.60	0.1068118	$4.855 \mathrm{E}-02$	
HD 861	A2 m	2.49	6.64	11.21530	0.22	43.80	$9.084 \mathrm{E}-02$	$3.648 \mathrm{E}-02$	
HD 1273	G2 V	0.95	6.84	411.4490	0.57	13.90	6.365E-02	$6.700 \mathrm{E}-02$	
HD 3369	B5 V	5.9	4.35	143.6065	0.56	47.50	0.9089235	0.1540548	II
HD 3443	G8 V	0.85	6.31	9165.640	0.23	5.130	0.1180137	0.1388396	II
HD 3901	B2 V	9.8	4.80	940.2000	0.40	11.90	0.1266737	$1.292 \mathrm{E}-02$	
HD 4161	A1 V	2.7	5.63	4.467200	0.01	73.40	0.1834277	$6.793 \mathrm{E}-02$	II
HD 4676	F8 V	1.11	5.07	13.83180	0.24	57.31	0.2473599	0.222	II
HD 4727	B5 V	5.9	4.53	4.282700	0.03	71.70	0.1637175	$2.774 \mathrm{E}-02$	II
HD 4775	B9.5 V	3.05	5.37	2091.200	0.53	11.02	0.1756563	$5.759 \mathrm{E}-02$	
HD 6118	B9 V	3.25	5.50	81.12000	0.90	54.30	0.1117029	$3.437 \mathrm{E}-02$	II
HD 7345	F7 V	1.21	6.27	9.075300	0.04	53.40	0.1431687	0.1183212	II
HD 8374	F2 m	1.54	5.58	35.37100	0.63	39.00	0.1020544	$6.626 \mathrm{E}-02$	II
HD 9021	F6 V	1.24	5.82	134.0780	0.31	19.90	$9.429 \mathrm{E}-02$	7.604E-02	
HD 10009	F7 V	1.21	7.00	10540.00	0.79	9.327	0.1950920	0.1612331	II
HD 10516	B2 Vep	9.8	4.07	126.6960	0.02	16.80	$6.235 \mathrm{E}-02$	$6.362 \mathrm{E}-03$	II
HD 11291	B9 p	3.25	5.62	5.627000	0.02	26.50	$1.086 \mathrm{E}-02$	$3.344 \mathrm{E}-03$	
HD 11636	A5 V	2.0	2.60	106.9940	0.88	34.09	$4.716 \mathrm{E}-02$	$2.358 \mathrm{E}-02$	II
HD 11753	A3 V	2.35	5.11	41.48900	0.32	9.000	$2.671 \mathrm{E}-03$	$1.136 \mathrm{E}-03$	
HD 11860	A0 V	2.9	6.65	7.439100	0.00	31.60	$2.437 \mathrm{E}-02$	8.406E-03	II
HD 11909	K1 p	0.71	5.10	1567.660	0.36	10.80	0.1665360	0.2345577	
HD 12111	A4 V	2.2	4.54	15011.50	0.34	4.000	8.298E-02	$3.771 \mathrm{E}-02$	
HD 13974	G0 V	1.05	4.87	10.01950	0.01	10.52	$1.211 \mathrm{E}-03$	$1.153 \mathrm{E}-03$	
HD 14214	F9 V	1.09	5.56	93.50000	0.45	19.40	$5.049 \mathrm{E}-02$	$4.632 \mathrm{E}-02$	
HD 15138	F4 V	1.42	6.12	10.99030	0.18	46.50	0.1092242	7.691E-02	II
HD 15814	F7 V	1.21	6.04	19.37870	0.39	24.00	$2.172 \mathrm{E}-02$	$1.795 \mathrm{E}-02$	II
HD 16458	G8 p...	0.85	5.79	2018.000	0.10	5.830	$4.091 \mathrm{E}-02$	$4.813 \mathrm{E}-02$	
HD 16739	F9 V	1.09	4.92	330.9910	0.67	20.91	0.1285	0.1179	II
HD 16908	B3V	7.6	4.66	490.0000	0.14	8.800	3.366E-02	$4.429 \mathrm{E}-03$	
HD 16920	F2 V	1.54	5.20	12.92740	0.25	58.10	0.2390028	0.1551966	II
HD 18894	F8 V	1.11	6.19	363.1000	0.69	24.00	0.1976693	0.1780804	II
HD 20210	A9 m	1.66	6.24	5.543500	0.03	62.70	0.1417120	$8.536 \mathrm{E}-02$	
HD 21242	G5 V	0.92	6.37	6.437870	0.00	57.86	0.1295	0.1407	II
HD 21278	B5 V	5.9	4.98	21.65900	0.12	22.70	$2.574 \mathrm{E}-02$	$4.363 \mathrm{E}-03$	II
HD 22203	B8 V	3.8	4.26	6.223600	0.20	107.0	0.7447429	0.1959850	II
HD 22805	A2 V	2.49	6.11	20.48700	0.61	34.20	$4.234 \mathrm{E}-02$	$1.700 \mathrm{E}-02$	
HD 23964	B9.5 V	3.05	6.72	16.72500	0.00	32.40	$5.907 \mathrm{E}-02$	$1.936 \mathrm{E}-02$	II
HD 24587	B5 V	5.9	4.60	459.0000	0.18	21.70	0.4635988	$7.857 \mathrm{E}-02$	
HD 25204	B3 V	7.6	3.47	33.07000	0.15	10.50	3.842E-03	$5.055 \mathrm{E}-04$	
HD 25823	A0 p	2.9	5.19	7.227400	0.18	16.60	$3.267 \mathrm{E}-03$	$1.126 \mathrm{E}-03$	
HD 26961	A2 V	2.49	4.59	701.7600	0.24	11.40	$9.877 \mathrm{E}-02$	$3.967 \mathrm{E}-02$	
HD 27176	A8 V	1.69	5.65	4145.720	0.17	7.355	0.1639	$9.699 \mathrm{E}-02$	II
HD 27295	B9 Vp	3.25	5.35	4.452100	0.06	9.600	$4.068 \mathrm{E}-04$	$1.251 \mathrm{E}-04$	
HD 27376	B8.5 V	3.52	3.55	5.010500	0.01	63.80	0.1351090	$1.251 \mathrm{E}-04$	II
HD 27991	F7 V	1.21	6.44	2295.090	0.71	12.36	0.1537837	0.1270940	II
HD 28271	F7 V	1.21	6.38	460.7000	0.31	19.35	0.2966517	0.2451667	
HD 28910	F0 V	1.6	4.65	488.5000	0.09	18.50	0.3173132	0.1983207	
HD 30453	A8 m	1.69	5.86	7.050900	0.00	58.90	0.1496	$8.853 \mathrm{E}-02$	II
HD 30455	G2 V	0.95	6.79	45.43140	0.34	13.74	$1.017 \mathrm{E}-02$	$1.071 \mathrm{E}-02$	
HD 30869	F5 V	1.4	6.27	143.5300	0.61	18.00	$4.32 \mathrm{E}-02$	$3.089 \mathrm{E}-02$	
HD 32537	F0 V	1.6	4.99	391.7000	0.37	5.800	$6.364 \mathrm{E}-03$	$3.977 \mathrm{E}-03$	
HD 32964	B9.5 V	3.05	5.10	5.522700	0.10	103.8	0.6318338	0.2071586	II
HD 32990	B2 V	9.8	5.50	58.31000	0.19	36.70	0.2832668	$2.890 \mathrm{E}-02$	
HD 34364	B9 V	3.25	6.15	4.134600	0.00	107.2	0.5289618	0.1627575	II
HD 34759	B5 V	5.9	5.22	35.50000	0.00	28.00	$8.092 \mathrm{E}-02$	$1.371 \mathrm{E}-02$	
HD 34762	B8 V	3.8	6.33	5.433700	0.08	26.80	$1.075 \mathrm{E}-02$	$2.831 \mathrm{E}-03$	
HD 35317	F7 V	1.21	6.11	22.58040	0.61	53.25	0.1761703	0.1455953	II
HD 35411	B1 V	13.0	3.35	7.984100	0.00	145.2	2.538238	0.1952491	
HD 35411	B1 V	13.0	3.35	3360.230	0.10	17.50	1.842224	0.1417095	
HD 36485	B2 V	9.8	6.85	25.59200	0.26	10.00	$2.392 \mathrm{E}-03$	$2.441 \mathrm{E}-04$	
HD 36695	B1 V	13.0	5.33	119.0880	0.29	13.50	$2.667 \mathrm{E}-02$	$2.051 \mathrm{E}-03$	
HD 36964	B3 V	7.6	6.97	4.623900	0.12	48.10	$5.228 \mathrm{E}-02$	$6.879 \mathrm{E}-03$	
HD 37017	B1.5 V	12.12	6.54	18.65560	0.31	36.00	$7.767 \mathrm{E}-02$	$6.409 \mathrm{E}-03$	
HD 37041	O9.5 V	18.1	5.07	20.96433	0.23	101.3	2.0859	0.1152	

J. R. Ducati et al.: The mass ratio and initial mass functions in spectroscopic binaries

Table 2. continued.

Id	Sp	m_{1}	V	P	e	k_{1}	f(m)	Y	SB
HD 37438	B2 V	9.8	5.15	27.86400	0.55	25.50	$2.795 \mathrm{E}-02$	$2.852 \mathrm{E}-03$	
HD 39357	B9.5 V	3.05	4.54	5.969000	0.00	48.90	$7.248 \mathrm{E}-02$	$2.376 \mathrm{E}-02$	II
HD 39587	G0 V	1.05	4.41	5136.000	0.45	1.850	$2.405 \mathrm{E}-03$	$2.290 \mathrm{E}-03$	
HD 39698	B2 V	9.8	5.90	7.996900	0.01	70.00	0.2848112	$2.906 \mathrm{E}-02$	II
HD 39780	A0 V	2.9	6.19	8.569000	0.04	62.20	0.2136312	7.366E-02	II
HD 41335	B2 Ven	9.8	5.21	80.86000	0.00	9.400	$6.974 \mathrm{E}-03$	$7.117 \mathrm{E}-04$	
HD 41357	A4 m	2.2	5.35	28.28000	0.56	51.40	0.2267990	0.1030905	II
HD 41511	B9 V	3.25	4.92	260.0000	0.13	21.00	0.2437442	$7.499 \mathrm{E}-02$	
HD 41753	B3 V	7.6	4.40	131.2110	0.64	33.30	0.2282595	$3.003 \mathrm{E}-02$	
HD 42083	A2 m	2.49	6.17	106.0000	0.63	40.50	0.3425007	0.1375505	II
HD 44402	B3 V	7.6	3.02	675.0000	0.57	13.50	$9.566 \mathrm{E}-02$	$1.258 \mathrm{E}-02$	
HD 44691	A3 m	2.35	5.50	9.945100	0.08	65.65	0.2900876	0.1234415	II
HD 45088	K3 V	0.68	6.79	6.991900	0.15	56.60	0.1272407	0.1871187	II
HD 47839	O7 Ve	26.5	4.66	9247.000	0.67	9.400	0.3263146	$1.231 \mathrm{E}-02$	
HD 48766	F6 V	1.24	6.28	4.258560	0.00	12.82	$9.318 \mathrm{E}-04$	$7.514 \mathrm{E}-04$	
HD 48915	A1 V	2.7	1.47	18276.70	0.59	2.400	$1.381 \mathrm{E}-02$	$5.115 \mathrm{E}-03$	
HD 51424	A 2 V	2.49	6.34	6007.000	0.13	3.500	$2.598 \mathrm{E}-02$	$1.043 \mathrm{E}-02$	
HD 54563	G8 V	0.85	6.43	113.3460	0.40	20.80	$8.154 \mathrm{E}-02$	$9.594 \mathrm{E}-02$	
HD 58661	B9 pHgMn	3.25	5.72	1834.000	0.30	5.000	$2.066 \mathrm{E}-02$	$6.359 \mathrm{E}-03$	
HD 59543	B2 V	9.8	6.94	17.91100	0.52	45.60	0.10099127	$1.121 \mathrm{E}-02$	
HD 60179	A1 V	2.7	1.58	9.212800	0.50	12.90	$1.334 \mathrm{E}-03$	$4.940 \mathrm{E}-04$	
HD 61859	F7 V	1.21	5.97	31.50000	0.21	45.20	0.2823261	0.2333274	II
HD 64096	G1 V	0.99	5.16	8291.550	0.74	9.125	0.1990	0.2010	II
HD 66824	A1 V	2.7	6.36	18.72200	0.17	64.60	0.5015938	0.1857755	II
HD 68256	G5 V	0.92	6.20	6302.000	0.11	4.280	$5.022 \mathrm{E}-02$	$5.459 \mathrm{E}-02$	
HD 68351	B9 p	3.25	5.64	635.7300	0.55	9.600	$3.402 \mathrm{E}-02$	$1.046 \mathrm{E}-02$	
HD 68520	B5 V	5.9	4.34	14.16830	0.00	66.70	0.4366181	$7.400 \mathrm{E}-02$	
HD 71581	A1 V	2.7	6.56	4.596200	0.10	103.6	0.5228022	0.1936305	II
HD 71663	A5 m	2.0	6.38	5.977100	0.00	42.10	$4.631 \mathrm{E}-02$	$2.315 \mathrm{E}-02$	II
HD 72208	B9 pHg:	3.25	6.83	22.01160	0.38	48.20	0.2025841	$6.233 \mathrm{E}-02$	
HD 73712	A9 Vn	1.66	6.78	48.71700	0.11	31.60	0.1567537	$9.442 \mathrm{E}-02$	II
HD 73731	A5 m	2.0	6.30	35.20200	0.32	53.00	0.4628345	0.2314172	II
HD 75759	B0 V	17.5	5.98	33.31100	0.63	121.3	2.891749	0.1652428	II
HD 75767	G1 V	0.99	6.57	10.24806	0.00	23.59	$1.397 \mathrm{E}-02$	$1.411 \mathrm{E}-02$	
HD 76370	A2 m	2.49	6.07	18.83020	0.49	13.73	$3.333 \mathrm{E}-03$	$1.338 \mathrm{E}-03$	
HD 76644	A7 V	1.79	3.14	4028.000	0.36	6.000	$7.337 \mathrm{E}-02$	$4.098 \mathrm{E}-02$	
HD 76943	F5 V	1.4	3.97	7980.700	0.15	4.000	$5.126 \mathrm{E}-02$	$3.661 \mathrm{E}-02$	
HD 77350	B9 p	3.25	5.43	1401.400	0.35	7.700	$5.461 \mathrm{E}-02$	$1.680 \mathrm{E}-02$	
HD 77464	B2.5 V	9.5	6.69	6.889500	0.00	127.0	1.465566	0.1542701	II
HD 78316	B8 p	3.8	5.24	6.393300	0.13	67.40	0.1981563	$5.214 \mathrm{E}-02$	
HD 79028	F9 V	1.09	5.17	16.23970	0.009	35.30	7.328E-02	$6.723 \mathrm{E}-02$	
HD 79096	G9 V	0.82	6.51	988.0580	0.43	11.49	0.1145	0.1396	II
HD 79193	A3 m	2.35	6.11	7.750500	0.09	70.10	0.2739000	0.1165532	II
HD 79763	A1 V	2.7	5.97	15.98600	0.50	63.30	0.2734949	0.1012944	II
HD 81809	G0 V	1.05	5.74	12589.60	0.24	4.752	0.1277253	0.1216432	II
HD 81858	F8 V	1.11	5.40	42678.50	0.56	2.200	$2.683 \mathrm{E}-02$	$2.417 \mathrm{E}-02$	
HD 83809	A5 V	2.0	3.52	14.49808	0.00	54.80	0.2477	0.1238	II
HD 86118	B2 V	9.8	6.64	4.478000	0.28	167.0	1.916257	0.1955364	II
HD 86146	F5 V	1.4	5.12	9.283500	0.00	18.90	$6.508 \mathrm{E}-03$	$4.649 \mathrm{E}-03$	II
HD 87810	F3 V	1.47	6.67	12.94724	0.43	55.50	0.1667240	0.1134177	II
HD 88215	F5 V	1.4	5.30	28.09800	0.07	10.10	2.984E-03	$2.131 \mathrm{E}-03$	
HD 89822	A0 p	2.9	4.93	11.57910	0.26	38.90	$6.372 \mathrm{E}-02$	$2.197 \mathrm{E}-02$	II
HD 92168	F8 V	1.11	5.85	7.799100	0.02	24.10	$1.133 \mathrm{E}-02$	$1.020 \mathrm{E}-02$	
HD 93903	A3 m	2.35	5.79	6.166900	0.00	46.60	$6.480 \mathrm{E}-02$	$2.757 \mathrm{E}-02$	
HD 94334	A1 V	2.7	4.68	15.83070	0.31	22.20	$1.545 \mathrm{E}-02$	$5.725 \mathrm{E}-03$	
HD 96528	A5 m	2.0	6.46	40.45000	0.10	18.00	$2.413 \mathrm{E}-02$	$1.206 \mathrm{E}-02$	
HD 98088	A3 Vp	2.35	6.14	5.905100	0.17	74.70	0.2446197	0.1040935	II
HD 98231	G5 V	0.92	4.41	670.2400	0.53	8.950	$3.042 \mathrm{E}-02$	$3.307 \mathrm{E}-02$	
HD 99967	K0 V	0.79	6.38	74.86100	0.03	28.80	0.1854612	0.2347610	
HD 101013	K 0 pBa 3	0.79	6.14	1710.900	0.19	6.070	$3.760 \mathrm{E}-02$	$4.760 \mathrm{E}-02$	
HD 101606	F5 V	1.4	5.74	267.5078	0.85	39.07	0.2364242	0.1688744	II
HD 102509	A7 V	1.79	4.53	71.69060	0.00	30.12	0.2034	0.1136	II
HD 103578	A3 V	2.35	5.50	6.625400	0.02	57.60	0.1314091	$5.591 \mathrm{E}-02$	
HD 104321	A4 V	2.2	4.64	282.6900	0.27	26.20	0.4713145	0.2142338	
HD 105981	K2 V	0.69	5.66	461.0000	0.17	14.30	0.1339712	0.1941611	
HD 106516	F5 V	1.4	6.11	843.9000	0.05	7.930	$4.353 \mathrm{E}-02$	$3.109 \mathrm{E}-02$	
HD 107259	A2 V	2.49	3.88	71.79190	0.27	26.67	0.1262	$5.070 \mathrm{E}-02$	II

Table 2. continued.

Id	Sp	m_{1}	V	P	e	k_{1}	f(m)	Y	SB
HD 107259	A2 V	2.49	3.88	4791.900	0.08	4.820	$5.519 \mathrm{E}-02$	$2.216 \mathrm{E}-02$	
HD 107935	A7 V	1.79	6.71	176.0800	0.19	19.40	0.1263484	$7.058 \mathrm{E}-02$	
HD 108642	A2 m	2.49	6.52	11.78243	0.00	41.14	$8.519 \mathrm{E}-02$	$3.412 \mathrm{E}-02$	
HD 108945	A2 pvar	2.49	5.44	18.81300	0.19	30.50	$5.245 \mathrm{E}-02$	$2.106 \mathrm{E}-02$	II
HD 110854	A0 V	2.9	6.56	7.904000	0.03	69.60	0.2763723	$9.530 \mathrm{E}-02$	II
HD 112486	A5 m	2.0	5.82	5.125900	0.00	65.80	0.1516542	$7.582 \mathrm{E}-02$	II
HD 114911	B8 V	3.8	4.79	20.00520	0.12	56.50	0.3666450	$9.648 \mathrm{E}-02$	
HD 116656	A2 V	2.49	2.27	20.53850	0.53	67.26	0.3957	0.1589	II
HD 116658	B1 V	13.0	0.97	4.014500	0.18	120.0	0.6856863	$5.274 \mathrm{E}-02$	II
HD 120710	B8 V	3.8	6.06	17.42800	0.21	17.00	$8.310 \mathrm{E}-03$	$2.186 \mathrm{E}-03$	
HD 121648	F2 V	1.54	6.79	4.991670	0.00	89.85	0.3760	0.2441	II
HD 122742	G8 V	0.85	6.36	3617.000	0.48	6.410	$6.079 \mathrm{E}-02$	$7.857 \mathrm{E}-02$	
HD 125248	A0 p	2.9	5.89	1607.070	0.21	7.500	$6.580 \mathrm{E}-02$	$2.269 \mathrm{E}-02$	
HD 126983	A2 V	2.49	5.36	11.82000	0.33	76.60	0.4640875	0.1863805	II
HD 128620	G2 V	0.95	0.01	29188.10	0.52	4.610	0.1850	0.1948	II
HD 129132	G0 V	1.05	6.76	101.6060	0.12	19.00	$7.081 \mathrm{E}-02$	$6.744 \mathrm{E}-02$	
HD 129132	G0 V	1.05	6.76	3385.000	0.07	8.500	0.2242	0.2040	
HD 131511	K1 V	0.71	6.00	125.3960	0.51	19.10	$5.774 \mathrm{E}-02$	$8.133 \mathrm{E}-02$	
HD 137052	F5 V	1.4	4.93	226.9500	0.68	14.00	$2.549 \mathrm{E}-02$	$1.820 \mathrm{E}-02$	
HD 137108	G0 V	1.05	4.98	15189.00	0.27	4.709	0.1470	0.1400	II
HD 137763	K1 V	0.71	6.83	889.6200	0.97	37.14	$5.131 \mathrm{E}-02$	$7.227 \mathrm{E}-02$	II
HD 137909	F0 p	1.6	3.66	3833.580	0.41	9.200	0.2352238	0.1470149	
HD 138213	A5 m	2.0	6.15	105.9500	0.00	10.80	$1.386 \mathrm{E}-02$	$6.930 \mathrm{E}-03$	
HD 139461	F6 V	1.24	6.48	887.6600	0.90	13.96	$2.077 \mathrm{E}-02$	$1.675 \mathrm{E}-02$	
HD 140008	B6 V	5.0	4.74	12.26000	0.19	63.30	0.3056019	$6.112 \mathrm{E}-02$	II
HD 141458	A0 V	2.9	6.82	28.94900	0.64	60.60	0.3035131	0.1046597	II
HD 142096	B2.5 V	9.5	5.03	12.46190	0.40	33.50	$3.745 \mathrm{E}-02$	$3.942 \mathrm{E}-03$	
HD 142883	B3 V	7.6	5.85	10.53500	0.58	64.00	0.1479528	$1.946 \mathrm{E}-02$	
HD 143807	A 0 pHg	2.9	5.12	35.47400	0.56	2.300	$2.548 \mathrm{E}-05$	$8.789 \mathrm{E}-06$	
HD 144426	A3 m	2.35	6.28	8.855000	0.38	31.60	$2.296 \mathrm{E}-02$	$9.772 \mathrm{E}-03$	
HD 145389	B9 p	3.25	4.24	560.5000	0.47	2.400	$5.533 \mathrm{E}-04$	$1.702 \mathrm{E}-04$	
HD 145482	B2 V	9.8	4.59	5.780500	0.19	31.50	$1.775 \mathrm{E}-02$	$1.811 \mathrm{E}-03$	
HD 147584	G0 V	1.05	4.90	12.97620	0.06	7.400	$5.431 \mathrm{E}-04$	$5.172 \mathrm{E}-04$	
HD 147869	A2 $\mathrm{p}(\mathrm{Sr})$	2.49	5.84	5.019928	0.21	14.83	$1.589 \mathrm{E}-03$	$6.381 \mathrm{E}-04$	
HD 149632	A2 V	2.49	6.41	10.56000	0.43	62.40	0.1960833	$7.874 \mathrm{E}-02$	II
HD 151613	F2 V	1.54	4.85	363.5700	0.35	6.000	$6.703 \mathrm{E}-03$	$4.353 \mathrm{E}-03$	
HD 152830	F3 Vs	1.47	6.34	11.85859	0.36	27.44	$2.066 \mathrm{E}-02$	$1.405 \mathrm{E}-02$	
HD 153597	F6 V	1.24	4.88	52.10890	0.21	17.60	$2.757 \mathrm{E}-02$	$2.223 \mathrm{E}-02$	
HD 153808	A0 V	2.9	3.92	4.023500	0.02	70.70	0.1475734	$5.088 \mathrm{E}-02$	II
HD 154905	F7 V	1.21	5.83	2270.000	0.43	2.800	$3.808 \mathrm{E}-03$	$3.147 \mathrm{E}-03$	
HD 155375	A1 m	2.7	6.60	23.24500	0.43	27.70	$3.775 \mathrm{E}-02$	$1.398 \mathrm{E}-02$	
HD 157482	F9 Vn	1.09	5.56	2018.800	0.67	12.89	0.1823576	0.1673005	II
HD 157950	F3 V	1.47	4.53	26.27650	0.49	47.50	0.1937267	0.1317869	II
HD 158261	A0 V	2.9	5.94	5.918200	0.03	25.10	$9.705 \mathrm{E}-03$	$3.346 \mathrm{E}-03$	
HD 159082	B9.5 V	3.05	6.42	6.797500	0.07	48.90	8.193E-02	$2.686 \mathrm{E}-02$	
HD 159560	A4 m	2.2	4.89	38.03400	0.03	10.00	$3.944 \mathrm{E}-03$	$1.792 \mathrm{E}-03$	
HD 160346	K3 V	0.68	6.52	83.72800	0.22	5.700	$1.488 \mathrm{E}-03$	$2.188 \mathrm{E}-03$	
HD 160922	F5 V	1.4	4.80	5.279800	0.00	35.80	$2.515 \mathrm{E}-02$	$1.796 \mathrm{E}-02$	II
HD 161573	B4 V	6.86	6.85	19.08500	0.14	5.800	$3.753 \mathrm{E}-04$	$5.472 \mathrm{E}-05$	
HD 162515	B9.5 V	3.05	6.51	6.678300	0.02	57.60	0.1324583	$4.342 \mathrm{E}-02$	
HD 162780	B9 V	3.25	6.89	6.622600	0.54	13.20	$9.431 \mathrm{E}-04$	$2.901 \mathrm{E}-04$	
HD 163840	G0 V	1.05	6.39	881.8080	0.41	11.22	$9.807 \mathrm{E}-02$	$9.340 \mathrm{E}-02$	II
HD 165341	K0 V	0.79	4.02	32280.50	0.50	3.657	0.1064	0.1347	II
HD 166285	F5 V	1.4	5.68	199.5500	0.30	14.20	$5.140 \mathrm{E}-02$	$3.671 \mathrm{E}-02$	II
HD 166865	K2 V	0.69	6.04	10.52785	0.37	39.14	$5.256 \mathrm{E}-02$	7.618E-02	II
HD 166866	F7 V	1.21	5.68	1247.200	0.97	44.79	0.1246728	0.1030354	II
HD 167858	F1 V	1.57	6.62	4.485180	0.00	6.200	$1.110 \mathrm{E}-04$	$4.070 \mathrm{E}-05$	
HD 167954	F8 V	1.11	6.85	120.0074	0.04	15.50	$4.629 \mathrm{E}-02$	$4.171 \mathrm{E}-02$	
HD 168913	A5 m	2.0	5.63	5.127000	0.00	70.10	0.1972082	$9.860 \mathrm{E}-02$	II
HD 169981	A2 V	2.49	5.88	9.612000	0.47	28.50	$1.589 \mathrm{E}-02$	$6.381 \mathrm{E}-03$	
HD 170000	A0 p	2.9	4.18	26.76800	0.39	26.60	$4.084 \mathrm{E}-02$	$1.408 \mathrm{E}-02$	
HD 170153	F7 V	1.21	3.57	280.5170	0.41	17.31	0.1146	$9.474 \mathrm{E}-02$	II
HD 171978	A2 V	2.49	5.77	14.67400	0.21	38.60	$8.190 \mathrm{E}-02$	$3.289 \mathrm{E}-02$	II
HD 172103	F4 V	1.42	6.65	39.52600	0.37	21.68	$3.345 \mathrm{E}-02$	$2.355 \mathrm{E}-02$	II
HD 173282	F5 V	1.4	6.36	33.16070	0.72	49.80	0.1421	0.1015	II
HD 173654	A2 Vm	2.49	5.90	4.765300	0.02	17.30	$2.560 \mathrm{E}-03$	$1.028 \mathrm{E}-03$	II
HD 174933	B7 V	4.4	5.48	6.362400	0.12	17.70	$3.585 \mathrm{E}-03$	$8.147 \mathrm{E}-04$	

J. R. Ducati et al.: The mass ratio and initial mass functions in spectroscopic binaries

Table 2. continued.

Id	Sp	m_{1}	V	P	e	k_{1}	f(m)	Y	SB
HD 175426	B2.5 V	9.5	5.75	88.35200	0.37	39.70	0.4603478	$4.845 \mathrm{E}-02$	
HD 177863	B8 V	3.8	6.29	11.91540	0.60	42.50	$4.822 \mathrm{E}-02$	$1.269 \mathrm{E}-02$	
HD 178322	B6 V	5.0	5.87	12.47000	0.05	79.70	0.6531565	0.1306313	II
HD 178428	G5 V	0.92	6.08	21.95536	0.08	13.42	$5.457 \mathrm{E}-03$	$5.932 \mathrm{E}-03$	
HD 178449	F0 V	1.6	5.23	42.85700	0.00	13.10	$1.000 \mathrm{E}-02$	$6.253 \mathrm{E}-03$	
HD 178911	G1 V	0.99	6.90	1296.300	0.58	6.570	$2.014 \mathrm{E}-02$	$2.035 \mathrm{E}-02$	II
HD 180939	B5 V	5.9	6.79	4.477300	0.00	55.00	$7.735 \mathrm{E}-02$	$1.311 \mathrm{E}-02$	II
HD 183007	A3 p	2.35	5.69	164.6400	0.12	11.80	$2.748 \mathrm{E}-02$	$1.169 \mathrm{E}-02$	
HD 183056	B8 p	3.8	5.11	35.02250	0.45	5.700	$4.797 \mathrm{E}-04$	$1.262 \mathrm{E}-04$	
HD 184467	K1 V	0.71	6.59	494.0910	0.36	9.564	$3.645 \mathrm{E}-$	$5.133 \mathrm{E}-02$	II
HD 184552	A8 m	1.69	5.66	8.115800	0.14	20.90	$7.469 \mathrm{E}-03$	$4.419 \mathrm{E}-03$	
HD 185912	F5 V	1.4	5.86	7.640800	0.54	88.20	0.3246152	0.2318680	II
HD 188164	A3 p	2.35	6.38	14.98590	0.56	42.90	$6.987 \mathrm{E}-02$	$2.973 \mathrm{E}-02$	II
HD 189178	B5 Vp	5.9	5.41	70.23000	0.34	43.50	0.4993	$8.462 \mathrm{E}-02$	
HD 189340	F8 V	1.11	6.21	1786.270	0.59	4.688	$9.988 \mathrm{E}-03$	$8.998 \mathrm{E}-03$	II
HD 189783	F5 V	1.4	6.98	4.469600	0.10	41.30	$3.220 \mathrm{E}-02$	$2.300 \mathrm{E}-02$	
HD 190229	B9 p	3.25	5.67	61.54100	0.49	4.200	$3.136 \mathrm{E}-04$	$9.650 \mathrm{E}-05$	
HD 192276	B7 V	4.4	6.92	7.185800	0.01	18.50	$4.724 \mathrm{E}-03$	$1.073 \mathrm{E}-03$	
HD 193495	B8 V	3.8	3.08	8.677700	0.34	35.10	$3.241 \mathrm{E}-02$	$8.529 \mathrm{E}-03$	
HD 193964	B9 V	3.25	5.62	5.298100	0.04	49.70	$6.738 \mathrm{E}-02$	$2.073 \mathrm{E}-02$	
HD 194215	K3 V	0.68	5.84	377.6000	0.07	11.20	$5.468 \mathrm{E}-02$	$8.042 \mathrm{E}-02$	
HD 196133	A0p	2.9	6.70	87.68700	0.76	32.50	$8.581 \mathrm{E}-02$	$2.959 \mathrm{E}-02$	
HD 196544	A2 V	2.49	5.44	11.03900	0.23	26.00	$1.857 \mathrm{E}-02$	$7.458 \mathrm{E}-03$	
HD 198391	A1 Vs	2.7	6.33	10.88300	0.39	31.40	$2.731 \mathrm{E}-02$	$1.011 \mathrm{E}-02$	
HD 201433	B9 V	3.25	5.55	154.0900	0.00	9.700	$1.460 \mathrm{E}-02$	$4.493 \mathrm{E}-03$	
HD 202275	F5 V	1.4	4.49	2082.100	0.46	12.40	0.2885978	0.2061413	II
HD 202940	G5 V	0.92	6.55	21.34620	0.25	24.00	$2.781 \mathrm{E}-02$	$3.023 \mathrm{E}-02$	
HD 203064	O7 V(f)	26.5	5.00	5.100000	0.00	30.00	$1.430 \mathrm{E}-02$	$5.396 \mathrm{E}-04$	
HD 203439	A2 V	2.49	6.04	20.30000	0.44	45.70	0.1457058	$5.851 \mathrm{E}-02$	II
HD 203858	A2 V	2.49	6.16	6.946300	0.00	71.40	0.2625758	0.1054521	II
HD 204188	A8 m	1.69	6.08	21.72200	0.00	46.00	0.2195	0.1299	
HD 206155	A3 m	2.35	6.93	1464.000	0.52	4.400	$8.071 \mathrm{E}-03$	$3.434 \mathrm{E}-03$	II
HD 206672	B3 V	7.6	4.67	26.33000	0.00	16.50	$1.228 \mathrm{E}-02$	$1.616 \mathrm{E}-03$	
HD 207650	A0 V	2.9	5.09	5.304700	0.53	37.00	$1.701 \mathrm{E}-02$	$5.867 \mathrm{E}-03$	II
HD 208132	A1 m	2.7	6.37	8.303440	0.19	21.80	$8.434 \mathrm{E}-03$	$3.123 \mathrm{E}-03$	
HD 208509	A2 V	2.49	6.64	28.81840	0.12	17.10	$1.461 \mathrm{E}-02$	$5.869 \mathrm{E}-03$	
HD 208776	G0 V	1.05	6.94	2624.000	0.27	5.460	$3.959 \mathrm{E}-02$	$3.770 \mathrm{E}-02$	
HD 210027	F5 V	1.4	3.76	10.21300	0.00	48.10	0.1180307	$8.430 \mathrm{E}-02$	II
HD 213429	F7 V	1.21	6.26	630.1400	0.38	11.44	$7.734 \mathrm{E}-02$	$6.392 \mathrm{E}-02$	II
HD 214608	F9 V	1.09	6.83	551.6000	0.05	13.10	0.1282963	0.1177030	II
HD 214608	F9 V	1.09	6.83	10957.30	0.30	5.900	0.2028748	0.1861237	II
HD 214686	F7 V	1.21	6.89	21.70140	0.41	55.10	0.2860591	0.2364125	II
HD 216608	A3 m	2.35	5.81	24.22800	0.20	5.800	$4.617 \mathrm{E}-04$	$1.964 \mathrm{E}-04$	
HD 217792	F0 V	1.6	5.10	178.3177	0.53	21.30	0.1091249	$8.820 \mathrm{E}-02$	
HD 219749	B9 pSi	3.25	6.48	48.30400	0.50	25.70	$5.530 \mathrm{E}-02$	$1.701 \mathrm{E}-02$	
HD 221253	B3 V	7.6	4.88	6.066300	0.25	56.70	0.1042405	$1.371 \mathrm{E}-02$	
HD 221950	F6 V	1.24	5.66	45.45900	0.37	40.10	0.2440906	0.1968473	II
HD 222098	A2 V	2.49	6.26	11.22980	0.04	26.70	$2.214 \mathrm{E}-02$	$8.893 \mathrm{E}-03$	
HD 223778	K3 V	0.68	6.40	7.753100	0.00	39.90	$5.114 \mathrm{E}-02$	$7.521 \mathrm{E}-02$	II
HD 224930	G2 V	0.95	5.75	9610.000	0.37	4.490	$7.243 \mathrm{E}-02$	$7.642 \mathrm{E}-02$	

[^0]: * Present address: Greenberg fellow, Leiden Observatory, University of Leiden, PO Box 9 513, 2300 RA Leiden, The Netherlands e-mail: penteado@strw.leidenuniv.nl
 ** Present address: Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22 290-180 Rio de Janeiro, Brazil
 e-mail: turcati@cbpf.br

