
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

MARCO ANTONIO ZANATA ALVES

Increasing Energy Efficiency of
Processor Caches via Line Usage Predictors

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr. Philippe O. A. Navaux
Advisor

Porto Alegre, 2014

CIP – CATALOGING-IN-PUBLICATION

Alves, Marco Antonio Zanata

Increasing Energy Efficiency of
Processor Caches via Line Usage Predictors / Marco Antonio
Zanata Alves. – Porto Alegre: PPGC da UFRGS, 2014.

116 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2014. Advisor: Philippe O. A. Navaux.

1. Line Usage Predictors. 2. Sub-block Usage Predictors.
3. Replacement Policy. 4. Early Write-Back. 5. Cache Memo-
ries. 6. Energy Efficient. I. Navaux, Philippe O. A.. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Pró-Reitor de Coordenação Acadêmica: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Dedicated to my parents and my beloved wife.

ACKNOWLEDGEMENTS

To all my family, friends, collaborators and advisors a sincere thank you.

LIST OF FIGURES

Figure 1.1: Breakdown of Core 2 Duo energy consumption. 24
Figure 1.2: Breakdown of Sandy Bridge energy consumption. 24

Figure 2.1: Opportunities for increasing the cache memory efficiency. 30
Figure 2.2: Overall cache energy consumption for the oracle line usage and ora-

cle sub-block usage predictors. 31

Figure 3.1: SiNUCA architecture with its main components and interconnections. 41
Figure 3.2: Results for the single-threaded microbenchmarks. 54
Figure 3.3: Results for the SPEC-CPU2006 suite. 57
Figure 3.4: Results for the SPEC-OMP2001 suite. 58
Figure 3.5: Results for the NAS-NPB suite. 58
Figure 3.6: Sandy Bridge simulation performance for the SPEC-CPU2006 suite. . 60
Figure 3.7: Sandy Bridge simulation performance for the SPEC-OMP2001 suite. 61

Figure 4.1: Scenario with low cache sub-block usage. 64
Figure 4.2: Number of sub-blocks accessed per cache line. 65
Figure 4.3: Number of sub-block accesses before cache line eviction. 66
Figure 4.4: Potential for L1 cache energy savings for two oracle predictors. . . . 67
Figure 4.5: DSBP: Mechanism architecture including cache metadata and PHT. . 68
Figure 4.6: DSBP: Working example. 70
Figure 4.7: DSBP: Mechanism accuracy results. 73
Figure 4.8: DSBP: Total energy consumption of the cache sub-system. 74
Figure 4.9: DSBP: Normalized extra cache misses. 76
Figure 4.10: DSBP: Normalized execution time. 76
Figure 4.11: DSBP: Pattern History Table (PHT) design space exploration. 77

Figure 5.1: Potential of speedup for a perfect early write-back predictor. 80
Figure 5.2: Memory requests and write-back operations over time for libquantum. 81
Figure 5.3: Memory requests and write-back operations over time for gcc. 81
Figure 5.4: Potential for LLC energy savings for an oracle line usage predictor. . 82
Figure 5.5: DEWP: Mechanism architecture including cache metadata and AHT. 83
Figure 5.6: DEWP: Mechanism accuracy results. 87
Figure 5.7: DEWP: Total energy consumption of the cache sub-system. 88
Figure 5.8: DEWP: Normalized extra cache misses. 88
Figure 5.9: DEWP: Normalized execution time. 88
Figure 5.10: DEWP: Impact of varying the LLC size on energy and performance. . 90
Figure 5.11: Average number of cycles between the OS context-switch. 91

Figure 6.1: MIXED: Total energy consumption of the cache sub-system. 94
Figure 6.2: MIXED: Normalized cache misses. 94
Figure 6.3: MIXED: Normalized execution time. 96

LIST OF TABLES

Table 2.1: State-of-the-art last access predictors. 34
Table 2.2: State-of-the-art last write predictors. 35

Table 3.1: Comparison of state-of-the-art simulators. 40
Table 3.2: Source code example written in C and Assembly. 45
Table 3.3: SiNUCA traces for a simple source code. 45
Table 3.4: Average number of instructions (millions) per thread. 49
Table 3.5: Memory footprint of the benchmarks. 50
Table 3.6: Parameters to model the Core 2 Duo and Sandy Bridge processors. . . 51
Table 3.7: Single-threaded microbenchmarks results for Core 2 Duo. 52
Table 3.8: Single-threaded microbenchmarks results for Sandy Bridge. 53
Table 3.9: Multi-threaded microbenchmarks results for Core 2 Duo. 55
Table 3.10: Multi-threaded microbenchmarks results for Sandy Bridge. 55

Table 4.1: DSBP: Total energy consumption of the cache sub-system. 75

Table 5.1: DEWP: Total energy consumption of the cache sub-system. 89

Table 6.1: MIXED: Total energy consumption of the cache sub-system. 95

LIST OF ABBREVIATIONS AND ACRONYMS

AHT Access History Table

AIP Access Interval Predictor

AL Added Latency for column accesses

BBV Basic Block Vector

BTB Branch Target Buffer

CAS Column Address Strobe

CCD Column to Column Delay

CMP Chip Multiprocessor

CMT Chip Multithreading

CWD Column Write Delay

DBI Dynamic Binary Instrumentation

DDR Double Data Rate

DEWP Dead Line and Early Write-Back Predictor

DRAM Dynamic Random Access Memory

DSBP Dead Sub-Block Predictor

FAW Four row Activation Window

FCFS First-Come First-Serve

GAg Global Adaptive branch prediction using one Global PHT

GAs Global Adaptive branch prediction using per-Set PHT

GCC GNU Compiler Collection

GEMS General Execution-driven Multiprocessor Simulator

ILP Instruction Level Parallelism

IPC Instructions per Cycle

ISA Instruction Set Architecture

KIPS Kilo Instructions per Second

LFSR Linear Feedback Shift Register

LLC Last-Level Cache

LRU Least Recently Used

LTP Last-Touch Predictor

LvP Live-time Predictor

LWP Last Write Predictor

McPAT Multi-core Power, Area, and Timing

MOB Memory Order Buffer

MPKI Misses per Kilo Instructions

MSHR Miss-Status Handling Registers

NAS Numerical Aerodynamic Simulation

NoC Network-on-Chip

NUCA Non-Uniform Cache Architecture

NUMA Non-Uniform Memory Access

OoO Out-of-Order

OpenMP Open Multi-Processing

OS Operating System

PAg Per-address Adaptive branch prediction using one Global PHT

PAs Per-address Adaptive branch prediction using per-Set PHT

PC Program Counter

PCM Performance Counter Monitor

PHT Pattern History Table

RAPL Running Average Power Limit

RAS Row Address Strobe

RAT Registers Alias Table

RC Row Cycle

RCD RAS to CAS Delay

ROB Reorder Buffer

RP Row Precharge

RRD Row to Row activation Delay

RTP Read To Precharge

SDP Skewed Dead-Block Predictor

SFP Spatial Footprint Predictor

SiNUCA Simulator of Non-Uniform Cache Architectures

SMT Simultaneous Multi-Threading

SPP Spatial Pattern Predictor

SSV Search Set Vector

TLB Translation Look-aside Buffer

TLP Thread Level Parallelism

VWQ Virtual Write Queue

WR Write To Read delay time

WTR Write Recovery time

CONTENTS

ABSTRACT . 19

RESUMO . 21

1 INTRODUCTION . 23
1.1 The Problem . 23
1.2 Motivation . 25
1.3 Hypotheses and Objectives . 26
1.4 Contributions . 27
1.5 Document Organization . 27

2 ENERGY EFFICIENCY IN CACHE MEMORIES 29
2.1 Sources of Inefficiency in Cache Memories 29
2.2 Related work . 32
2.2.1 Line Usage Predictors . 32
2.2.2 Counter Based Dead Line Predictor . 33
2.2.3 Trace Based Dead Line Predictors . 33
2.2.4 Time Based Dead Line Predictors . 33
2.2.5 Last Write Predictors . 34
2.2.6 Overall Comparison . 34

3 SIMULATOR OF NON-UNIFORM CACHE ARCHITECTURE (SINUCA) 37
3.1 Related Work . 38
3.2 SiNUCA . 40
3.2.1 System Model . 41
3.2.2 Processor Description . 43
3.2.3 Simulator Traces . 44
3.2.4 Energy Modeling . 46
3.3 Microbenchmarks . 47
3.3.1 Single-Threaded Microbenchmarks . 47
3.3.2 Multi-Threaded Microbenchmarks . 48
3.4 Evaluation . 49
3.4.1 Methodology . 49
3.4.2 Results . 52
3.4.3 Sources of Difference . 57
3.4.4 Simulator Performance . 60
3.5 Summary . 61

4 DEAD SUB-BLOCK PREDICTOR (DSBP) 63
4.1 Motivation . 64
4.1.1 Cache Line Usage on the Sub-Block Level 64
4.1.2 Potential for Energy Savings in L1 Cache 67
4.2 The Dead Sub-Block Predictor (DSBP) 67
4.2.1 Usage Example . 69
4.2.2 Improving the Cache Replacement Policy 70
4.2.3 Prefetching Adaptations . 70
4.2.4 Implementation on Multiple Cache Levels 71
4.3 Methodology . 71
4.4 Evaluation . 72
4.4.1 Mechanism Accuracy . 72
4.4.2 Energy Savings . 73
4.4.3 Performance Impact . 74
4.5 Design Space Exploration . 76
4.6 Summary . 77

5 DEAD LINE AND EARLY WRITE-BACK PREDICTOR (DEWP) 79
5.1 Motivation . 80
5.1.1 Sensitivity to Early Write-Back . 80
5.1.2 Potential for Energy Savings in LLC . 81
5.1.3 Overall Potential Benefits . 82
5.2 The Dead Line and Early Write-Back Predictor (DEWP) 82
5.2.1 Overview of the Mechanism . 82
5.2.2 Mechanism Operations . 83
5.2.3 Improving the Cache Replacement Policy 84
5.3 Methodology . 85
5.4 Evaluation . 85
5.4.1 Mechanism Accuracy . 86
5.4.2 Energy Savings . 86
5.4.3 Performance Impact . 87
5.5 Design Space Exploration . 89
5.6 Summary . 90

6 COMBINING DSBP AND DEWP . 93
6.1 Introduction . 93
6.2 Evaluation . 93
6.2.1 Energy Savings . 94
6.2.2 Performance Impact . 94
6.3 Summary . 96

7 CONCLUSIONS AND FUTURE WORK 97
7.1 Future Work . 97
7.2 Published Papers . 98

REFERENCES . 101

APPENDIX A ADDITIONAL VALIDATION RESULTS 107
A.1 SPEC-CPU2006 Results . 107
A.2 SPEC-OMP2001 Results . 109
A.3 NAS-NPB Results . 110

APPENDIX B RESUMO EXPANDIDO EM PORTUGUÊS 111
B.1 Simulator of Non-Uniform Cache Architecture (SiNUCA) 112
B.2 Dead Sub-Block Predictor (DSBP) . 114
B.3 Dead Line and Early Write-Back Predictor (DEWP) 115
B.4 Combinando os mecanismos DSBP e DEWP 116
B.5 Conclusões . 116

ABSTRACT

Increasing Energy Efficiency of Processor Caches via Line Usage Predictors

Energy consumption is becoming more important for processor architectures, where
the number of cores inside the chip is increasing and the total power budget is kept at the
same level or even reduced. Thus, energy saving techniques such as frequency scaling
options and automatic shutdown of sub-systems are being used to maintain the trade-off
between power and performance. To deliver high performance, current Chip Multiproces-
sors (CMPs) integrate large caches in order to reduce the average memory access latency
by allocating the applications’ working set on-chip. These cache memories have tradi-
tionally been designed to exploit temporal locality by using smart replacement policies,
and spatial locality by fetching entire cache lines from memory on a cache miss.

However, recent studies have shown that the number of sub-blocks within a line that
are actually used is often low, and those sub-blocks that are used are accessed only a few
times before becoming dead (that is, never accessed again). Additionally, many of the
cache lines remain powered for a long period of time even if the data is not used again,
or is invalid. For modified cache lines, the cache memory waits until the line is evicted
to perform the write-back to next memory level. These write-backs compete with read
requests (processor demand and cache prefetch), increasing the pressure on the memory
controller. For these reasons, the energy efficiency and performance of cache memories
are not ideal.

This thesis introduces cache line usage predictors to increase the energy efficiency
of cache memories. We propose the Dead Sub-Block Predictor (DSBP) and Dead Line
and Early Write-Back Predictor (DEWP) mechanisms to enable energy savings without
performance degradation. DSBP is used to predict which sub-blocks of a cache line will
be actually accessed and how many times they will be used in order to bring into the cache
only those sub-blocks that are necessary, and power them off after they are accessed
the predicted number of times. DEWP predicts dead lines as soon as they receive the
last access, and turns off these lines. Dirty lines are scheduled for write-back after the
last write operation occurs, increasing the energy savings potential and also reducing the
pressure on the memory controller. Both proposed mechanisms also reduce pollution in
cache memories by prioritizing dead lines for eviction in the existing replacement policy.

Although each introduced mechanism is capable of performing separately inside a
system, both mechanisms can also be mixed in the same cache hierarchy. This mixed
implementation is interesting because the sub-block granularity is more suitable for cache
levels closer to the processor, where the cache lines are quickly evicted, while the Last-
Level Cache (LLC) tends to use the whole cache line before its eviction.

In order to evaluate our proposed mechanisms, we introduce the Simulator of Non-
Uniform Cache Architectures (SiNUCA). This cycle-accurate microarchitecture simula-
tor is validated in terms of performance and energy consumption by comparing it to a real

processor. Our performance results were obtained executing single-threaded applications
from SPEC-CPU2006 and multi-threaded applications from SPEC-OMP2001 and NAS-
NPB benchmark suites. The energy related results were obtained by integrating SiNUCA
with the Multi-core Power, Area, and Timing (McPAT) framework and the CACTI power
modeling tool.

When applying our mechanisms on all the cache levels, we observe on average a 36%
energy reduction for DSBP, 25% energy reduction using DEWP and an average reduction
of 37% in the energy consumption applying DSBP on L1 and L2 and DEWP on the LLC.
All these reductions caused a negligible performance loss of less than 4% on average.

Keywords: Line Usage Predictors, Sub-block Usage Predictors, Replacement Policy,
Early Write-Back, Cache Memories, Energy Efficient.

RESUMO

Aumentando a Eficiência Energética da Memória Cache de Processadores
através de Preditores de Uso de Linhas da Cache

O consumo de energia se torna cada vez mais importante para a arquitetura de pro-
cessadores, onde o número de cores dentro de um mesmo chip está aumentando mas o
total de energia disponível se mantém no mesmo nível ou até mesmo se reduz. Assim,
técnicas para economizar energia, tais como opções de escala de frequência e desliga-
mento automático de subsistemas, estão sendo usadas para manter a troca entre energia e
desempenho. Para se obter alto desempenho, os atuais Chip Multiprocessors (CMPs) in-
tegram grandes memórias cache a fim de reduzir a latência média para acesso a memória
principal, através da alocação do conjunto de dados da aplicação dentro do chip. Essas
memórias cache tem sido projetadas tradicionalmente para explorar a localidade tempo-
ral usando políticas de substituição inteligentes e localidade espacial buscando todos os
dados da linha da cache após uma falta de dados.

Entretanto, estudos recentes mostraram que o número de sub-blocos dentro da linha da
memória cache, que são realmente usados, costuma ser baixo, sendo que, os sub-blocos
que são usados recebem poucos acessos antes de se tornarem mortos (isto é, nunca mais
são acessados). Além disso, muitas da linhas da memória cache permanecem ligadas
por longos períodos de tempo, mesmo que os dados não sejam usados novamente ou são
inválidos. Para linhas de cache modificadas, a memória cache aguarda até que a linha seja
expulsa para que esta seja gravada (write-back) de volta no próximo nível de memória.
Essas escritas competem com as requisições de leitura (demanda do processador e pré-
busca da cache), aumentando a pressão no controlador de memória. Por essas razões, a
eficiência energética e o desempenho das memórias cache não são ideais.

Essa tese propõe a aplicação de preditores de uso de linhas da cache para aumentar a
eficiência energética das memórias cache. São propostos os mecanismos Dead Sub-Block
Predictor (DSBP) e Dead Line and Early Write-Back Predictor (DEWP) para permitir
economia de energia sem que haja degradação do desempenho. DSBP é usado para pre-
ver quais sub-blocos da linha da cache serão usados e quantas vezes eles serão acessados
de forma a trazer para a cache apenas os sub-blocos úteis e desliga-los após eles serem
acessados pelo número de vezes previsto. DEWP prevê linhas de cache mortas assim que
elas recebem o último acesso, desligando essas linhas. As linhas sujas são escalonadas
para sofrerem write-back após a última operação de escrita, aumentando o potencial de
salvar energia, reduzindo também a pressão no controlador de memória. Ambos os me-
canismos propostos também reduzem a poluição nas memórias cache, dando prioridade
para a expulsão de linhas mortas, melhorando as atuais políticas de substituição.

Embora cada mecanismo apresentado seja capaz de funcionar separadamente dentro
do sistema, ambos os mecanismos podem também ser misturados em uma mesma hierar-
quia de cache. Essa implementação mista é interessante pois a granularidade de sub-bloco
é preferível para níveis de cache próximos do processador, onde as linhas de memória ca-

che são expulsas rapidamente, enquanto o último nível de cache tende a usar toda a linha
antes da sua expulsão.

Com o intuito de avaliar os mecanismos propostos, é apresentado o Simulator of Non-
Uniform Cache Architectures (SiNUCA). Esse simulador de microarquitetura com pre-
cisão de ciclos é validado em termos de desempenho e consumo de energia através da
comparação com um processador real.

Os resultados de desempenho foram obtidos executando aplicações das cargas de tra-
balho single-threaded do conjunto SPEC-CPU2006 e aplicações multi-threaded dos con-
juntos SPEC-OMP2001 e NAS-NPB. Os resultados relativos a energia foram obtidos inte-
grando o SiNUCA com as ferramentas de modelagem Multi-core Power, Area, and Timing
(McPAT) e CACTI.

Quando aplicados os mecanismos em todos os níveis de memória cache, observou-se
em média uma redução de 36% no consumo de energia usando o DSBP, 25% usando o
DEWP e 37% quando usou-se o DSBP nos níveis L1 e L2 e o DEWP no último nível.
Todas essas reduções causaram uma perda desprezível de desempenho de menos de 4%
em média.

Palavras-chave: Preditores de Linha da Cache, Memórias Cache, Eficiência Energética.

23

1 INTRODUCTION

High performance computing uses aggressive techniques to obtain parallelism in mul-
tiple levels: at the instruction level using superscalar pipelines with Out-of-Order (OoO)
execution (SMITH; SOHI, 1995), larger OoO execution windows, frequency increase,
and others (HENNESSY; PATTERSON, 2007) such as better branch predictors and data
prefetchers; at the thread and process level using Chip Multithreading (CMT) techniques
with Chip Multiprocessor (CMP).

However, Instruction Level Parallelism (ILP) techniques have less room for improve-
ments due to limits imposed by wire-delay problems (clock wall), power consumption
limit (power wall) (BORKAR, 1999), and ILP extraction problems (ILP wall) (AGAR-
WAL et al., 2000). Thus, Thread Level Parallelism (TLP) techniques such as CMP with
increasing number of cores have become the most likely way for the industry to continue
delivering more powerful processors on each new generation.

Most of the multi-core processors are built with cores simpler than traditional single
cores, with shorter pipelines and simpler control structures (OLUKOTUN et al., 1996).
This leads to the possibility of integrating more cores on the same physical silicon area.
This complexity reduction on the cores is also beneficial for the power constraints inside
the chip. For these reasons, the focus has changed to also explore the thread and process
parallelism (UNGERER; ROBIC; SILC, 2002).

Recently, energy efficiency has become a key design parameter in computer architec-
tures. While the number of transistors on a chip has been increasing rapidly, the total
power budget remains at the same level or even decreases. In this context, each tech-
nique that leads to reduction of power consumption has a great impact on the total energy
consumption of the system. Thus, new processors begin to present frequency scaling op-
tions, automatic shutdown of sub-systems and other techniques to ensure that machines
will reduce the unnecessary energy consumption, and will consume full power only when
demanded.

1.1 The Problem

Cache memories, while key to high performance, consume a significant fraction of
total chip power (LI et al., 2009), varying from 15% to 23% of the total chip power. As
such, designing energy efficient processors starts with efficient design of such power-
hungry components.

In order to evaluate the cache energy consumption inside the chip, we executed the
SPEC-CPU2006 single threaded benchmark suite and the SPEC-OMP2001 and NAS-
NPB parallel benchmark suites modeling two different processors using the McPAT frame-

24

Figure 1.1: Breakdown of Core 2 Duo energy consumption, executing SPEC-CPU2006,
SPEC-OMP2001 and NAS-NPB benchmark suites.

Cores
62%

I-L1
8%

D-L1
17%

LLC
11%

Buses
2%

(a) Total chip energy consumption.

I-L1 Dynamic
15%

I-L1
Static
7%

D-L1 Dynamic
26%

D-L1 Static
20%

LLC
Dynamic

2%

LLC Static
30%

(b) Cache memory energy consumption.

Figure 1.2: Breakdown of Sandy Bridge energy consumption, executing SPEC-CPU2006,
SPEC-OMP2001 and NAS-NPB benchmark suites.

Cores
50%

I-L1
5%

D-L1
27%

L2
3%

LLC
8%

Buses
3%

Mem. Ctrl.
4%

(a) Total chip energy consumption.

I-L1 Dynamic
7%

I-L1 Static
4%

D-L1
Dynamic

45%

D-L1
Static
17%

L2
Dynamic

1%

L2 Static
6%

LLC
Dynamic

1%

LLC Static
19%

(b) Cache memory energy consumption.

work (LI et al., 2009). The parallel benchmarks execute with the same number of threads
as the number of cores available in the processor.

Figure 1.1 shows the Intel Core 2 Duo (Conroe microarchitecture (BOJAN et al.,
2007)) energy consumption. The average power consumed by the chip corresponds to
22 W according to our energy model. It can be observed that 36% of energy consumed
inside the chip is consumed by the cache memories, while each core (2 cores in total) is
responsible for 31% of the energy consumed by the chip (62% in total).

Figure 1.2 shows the Intel Xeon (Sandy Bridge microarchitecture (YUFFE et al.,
2011)) energy consumption. The average power consumed by the chip corresponds to
37 W. It can be observed that 43% of energy consumed inside the chip is consumed by
the cache memories, while each core (8 cores in total) is responsible for 6% of the energy
consumed by the chip (50% in total).

Due to the reduced power budget, and the increasing portion of energy being con-
sumed by the cache memories, mechanisms to improve the cache efficiency are becoming

25

more important. Moreover, as we can see in Figures 1.2(b),1.3(b) the major sources of
energy consumption inside the cache sub-system are related to the L1 dynamic and static
energy, and the Last-Level Cache (LLC) static energy, which can be explained by to the
high number of L1 operations and to the large area occupied by the LLC.

For today’s processors with a fixed cache line size, energy inefficiency can occur on
two levels: 1) on a cache line level where a line is kept alive much longer than necessary,
and 2) on a sub-block level, when parts of a cache line that will never be used are brought
into the cache, and also when active sub-blocks become dead after a few accesses but are
kept alive until the line is evicted.

Besides the energy consumption problem, keeping cache lines that will not be used
anymore (dead lines) inside the cache, increases cache pollution and memory contention.
Cache pollution increases when the replacement policy takes wrong decisions by remov-
ing alive blocks instead of already dead blocks. Pollution can also increase the number
of cache misses, thus generating negative impact on the performance of the system. The
impact on memory contention happens when the cache keeps dirty lines which already
received the last write. By doing so, these lines will only suffer write-back to the main
memory whenever the cache line is evicted. However, considering that memory accesses
occur in bursts (WANG; KHAN; JIMÉNEZ, 2012a), the write-back operation can in-
crease the memory pressure in those moments when lots of data are being requested (burst
of operations).

1.2 Motivation

In order to evaluate the inefficiency of current cache memories, we measured the
average usage of L1 cache lines in the sub-block granularity. Figure 4.2 using SPEC-
CPU2006, SPEC-OMP2001 and NAS-NPB shows that on average only 57% of a line is
used by the single threaded benchmarks and 81% for multi-threaded benchmarks. Similar
results were observed in (KUMAR; WILKERSON, 1998; CHEN et al., 2004; KHAR-
BUTLI; SOLIHIN, 2008). We make the new observation (Figure 4.3) that 83% of sub-
blocks become dead after less than four accesses.

Measuring the average time between the last access to a cache line and the line eviction
from the cache memory, we can evaluate the inefficiency in the cache line granularity. On
average the time between the last access to a cache line and its eviction is 40% of the
lifetime of the line (KAXIRAS; HU; MARTONOSI, 2001).

These results show that there are several opportunities for energy savings in traditional
cache designs. Cache lines are unused for long periods of time while still consuming
energy. Furthermore, the L1 and L2 caches present more inefficiency on the sub-block
level, while the LLC uses the whole line more consistently, but the line is still powered
on for a long time without accesses.

Based on the Sandy Bridge processor, we show in Section 4.1 that an oracle mecha-
nism that perfectly predicts the dead sub-blocks inside the L1 cache and turns-off those
sub-blocks can save on average 51% of the L1 cache energy consumption, that represents
savings of 34% for the entire cache sub-system energy consumption.

Another oracle mechanism, presented in Section 5.1, that turns off LLC lines after
their last access or when the cache line becomes invalid, generates LLC energy savings
of 65% on average, that represents savings of 11% for the entire cache sub-system energy
consumption.

26

Considering the high theoretical energy savings achieved by cache line usage predic-
tors, at the sub-block or cache line granularities, the benefits of such mechanisms inside
the cache memory to increase its energy efficiency are clear.

1.3 Hypotheses and Objectives

In order to increase the energy efficiency of cache memories, we formulate the fol-
lowing hypotheses:

• By studying the historic memory access behavior of the application, it is possible
to predict the cache line usage.

• Using the predicted cache line usage, dead lines can be identified and turned off in
order to save energy and reduce the cache pollution and memory pressure.

• Looking at the sub-block granularity allows to further increase the energy savings.

Based on these hypotheses, the main goal of this thesis is to introduce mechanisms to
increase the energy efficiency of the cache memories. This objective will be achieved by
the following steps:

• We propose a Dead Sub-Block Predictor (DSBP) to predict at run-time the cache
line usage at the sub-block granularity. This mechanism will be used to store only
the useful sub-blocks inside the cache line and to turn-off the sub-blocks when they
become dead.

• We propose a Dead Line and Early Write-Back Predictor (DEWP) to detect when
a cache line receives its last read and last write. This predictor will be used to early
write-back dirty lines as soon as they receive their last access and to turn-off the
line as it receives its last read.

• To evaluate the new mechanisms, we developed the Simulator of Non-Uniform
Cache Architectures (SiNUCA), a new cycle accurate, trace-driven simulator com-
posed of the following main components: processor, cache memories, interconnec-
tions and memory system. This simulator is able to simulate multi-core systems,
with multi-banked caches and Network-on-Chip (NoC) interconnections. This sim-
ulator is validated with a real machine in terms of performance and energy con-
sumption.

DSBP and DEWP overlap in functionalities, however, the sub-block granularity fits
better for small caches that are closer to the processor while the line granularity fits better
for big LLC memories. The smaller caches have a lower sub-block usage compared to the
cache levels closer to the main memory. The reason for this low usage is that the smaller
caches tend to evict the cache lines sooner, reducing the chances for full cache line usage.

The dead line predictors should also be used to improve the cache replacement policy
in order to reduce cache pollution. For the cases where the cache lines are dirty, the last
write predictor will help to reduce the memory pressure in the memory controller.

The general goal of this thesis is to design mechanisms that enable energy savings
in the cache memory, maintaining the performance of the system. The overhead of such
mechanisms will also be evaluated in order to show their benefits and possible drawbacks.

27

The simulator used for the evaluations will be mainly developed to verify our mech-
anisms, by providing a controlled environment capable to simulate the microarchitecture
inside the cores, the cache memory sub-system with multi-banked caches, including the
NoC interconnection and a detailed memory controller.

1.4 Contributions

The main contributions of this thesis are:

• DSBP – Dead Sub-Block Predictor (ALVES et al., 2012)

Sub-block usage predictor: A mechanism to predict and turn on only the useful
sub-blocks of each cache line.
Dead sub-block predictor: A mechanism to predict when each sub-block inside a
cache line becomes dead and turn off these dead sub-blocks.
Earlier eviction of dead lines: A mechanism to improve the cache replacement al-
gorithm. The sub-block predictor gives feedback to the replacement algorithm after
all the sub-blocks become dead, marking dead lines as future victims for eviction.

• DEWP – Dead Line and Early Write-Back Predictor (ALVES et al., 2013)

Last line read predictor: A mechanism that aims to save energy by turning off
dead or invalid cache lines when the cache line receives a write in another cache.
Last line write predictor: A mechanism to perform early write-back of dirty cache
lines to main memory, since these lines will not be modified anymore.
Earlier eviction of dead lines: A predictor to detect whenever a cache line receives
its last access, prioritizing those lines for early eviction.

• SiNUCA – Simulator of Non-Uniform Cache Architectures

Performance and energy validated simulator: Our simulator is validated in terms
of performance and energy compared to real processor. It will be used to implement
and evaluate our proposed mechanisms.

Compared to the related work, our mechanisms produce more accurate predictions
achieving higher energy savings, with a negligible overhead that keeps the performance
on the same level. DSBP is the first mechanism that is capable of predicting and turning
off cache lines on the sub-block granularity, enabling dynamic and static cache energy
savings. DEWP predicts last writes, saving static energy whenever the cache line be-
comes dead. Both mechanisms do not require broadcast signals for all the cache lines nor
complex internal simulators to predict the cache line usage.

1.5 Document Organization

The remainder of this text is organized as follows. Background and related work are
presented in Chapter 2. Chapter 3 gives a detailed overview of the new simulator, together
with the workloads used in our evaluations. Chapter 4 presents the Dead Sub-Block
Predictor. Chapter 5 introduces the Dead Line and Early Write-Back Predictor. Chapter 6
presents the analysis of a system implementing both predictors. Chapter 7 discuss the
main conclusions of this thesis. Appendix A shows additional SiNUCA validation results.

28

29

2 ENERGY EFFICIENCY IN CACHE MEMORIES

This chapter introduces the concepts and the sources of inefficiency in cache memo-
ries. We also discuss the related work on cache usage predictors. The prior work related
to the simulator is discussed in the next chapter.

2.1 Sources of Inefficiency in Cache Memories

Cache memories are energy and performance inefficient in cache line and sub-block
granularity. In order to understand the sources of inefficiency some terms must be ex-
plained first:

Dead line: A cache line is considered being dead on the period of time between its last
access (read or write) and its eviction from the cache memory.

Dead sub-block: In the same way as the dead line, a sub-block is dead after its last access.
However, a sub-block may become dead before the line is declared dead. This is because
some sub-block can be accessed separately from the others.

Cache pollution: The fact of having multiple cache lines, that the program will not use in
a close future, residing inside the cache, causing other still useful lines to be prematurely
evicted from the cache, is considered a cache pollution problem. This cache pollution
problem is also called as cache noise by some authors.

Memory pressure: Considering that memory operations tends to occur in bursts of ac-
cesses (see Figure 5.2), the high number of requests into the main memory causes a mem-
ory pressure, which is even higher considering that dirty cache lines need to be written-
back to the main memory before its complete eviction to make room for a new cache line.
These write-back operations competing with the read requests into the memory controller
is a source of a high memory pressure.

Figure 2.1 presents a scenario with several opportunities to increase the cache memory
efficiency. This figure shows a series of memory accesses (reads and writes) from the
processor to several addresses of cache lines (X, Y and Z) over the time. There are two
cache levels. The L1 cache is a direct-mapped sectored cache, split into 8 sub-blocks of
8 bytes each. The LLC is a 2-way set associative without sub-blocks. For simplicity we
assume that these addresses have the same index, which means that they get mapped to
the same cache set. The two horizontal lines referent to lines A and B show two specific
cache lines in the L1 cache and LLC. A solid line indicates that the line with address X is
present and valid, while the dashed line indicates not present.

Several events are shown in the figure:

30

Figure 2.1: Opportunities for increasing the cache memory efficiency, modeling a direct-
mapped L1 cache and 2-way set associative LLC.

Pr
oc

es
so

r R
ea

d
X[

1]
L1

 R
ea

d
X

LL
C

 R
ea

d
X

D
R

AM
 A

ns
we

rX
LL

C
 A

ns
we

rX
L1

 A
ns

we
rX

[1
]

Pr
oc

es
so

r R
ea

d
X[

3]
L1

 A
ns

we
rX

[3
]

Pr
oc

es
so

r W
rit

e
X[

5]

L1
 W

rit
e-

Ba
ck

 X

L1
 In

va
lid

at
io

n
X

Pr
oc

es
so

r R
ea

d
X[

1]
L1

 R
ea

d
X

LL
C

 A
ns

we
rX

L1
 A

ns
we

rX
[1

]

Pr
oc

es
so

r R
ea

d
X[

3]
L1

 A
ns

we
rX

[3
]

Pr
oc

es
so

r W
rit

e
X[

5]
L1

 In
va

lid
at

io
n

X

L1
 W

rit
e-

Ba
ck

 X

LL
C

 W
rit

e-
Ba

ck
 X

Address X Not Present

Address X Present

Unused Sub-Block

Used Sub-Block

L1
Cache

LLC
Cache

Se
ct

or
ed

C
ac

he
 L

in
e

Processor

Memory
Controller

Energy Savings

Less Memory Pressure

Less Cache Pollution

Opportunities for:

X
Ev

ic
tio

n

X
Ev

ic
tio

n

X
Ev

ic
tio

n

Event 1 Event 2 Event 3

Event 1: The processor reads the address X, requesting the sub-block 1. As the line is not
present in the L1 cache and LLC, it needs to be requested from the memory controller.
After one more read and write operations all the sub-blocks inside the cache line become
dead due to the read of another line. Due to another cache accesses the address X is
written-back to the LLC and then evicted from the L1 cache.

On the sub-block level (L1 cache), we can observe two opportunities to save static
energy. First, when a never used sub-block is brought to the cache line, it could be turned
off. Second, when a sub-block receives its last access and it becomes dead, it could also be
turned off. Cache pollution could also be reduced by early evicting the cache line X after
it receives its last access (all the sub-blocks are dead). Notice that the sub-block number
X[5] needs to be turned on until the write operation, considering that the processor is
capable of writing only one part within the sub-block.

On the cache line granularity (LLC), we have the opportunity to save energy by turning
off the cache line during the time the line is invalid.

31

Event 2: Once again, the processor requests the address X, bringing a copy of this line
from the LLC. We can observe the same opportunities to save energy and reduce cache
pollution.

Event 3: At this point, the cache address X is evicted from the L1 cache and written-back
to the LLC. After a certain period of time, this line X is evicted from the LLC, performing
thus a write-back to the main memory of the dirty cache line X. Energy savings can be
obtained by turning off the line X in the LLC when it is invalid and after it receives the
write-back. We can also observe opportunities to reduce the memory pressure between
the moment when the LLC receives the last write-back of the address X and it writes-back
this line to the main memory. The opportunity to reduce cache pollution happens in the
same time, when the line becomes dead and it could be marked for early eviction to make
room for a new line.

During a L1 cache miss, the first operation performed by the cache is to access the
whole cache line at the same time as the tag is obtained. The second operation is to
compare the tag to the target memory address and forward the requested bytes in the
same cycle (HUANG et al., 2001). The parallel access to the data and the tag arrays
guarantees a low cache latency.

Besides the static energy on the sub-block level, we could also save dynamic energy
during cache reads. If several sub-blocks are turned off, less bytes need to be accessed,
which requires less dynamic energy.

The gains in terms of cache energy savings using an oracle line predictor can be easy
modeled by computing the time when the line is invalid, as well as between the last
access and the line eviction, subtracting the static energy spent on those cycles from the
total energy consumption of the cache sub-system. For the oracle sub-block predictor, the
static energy savings can be easily extended from the line predictor. The dynamic energy
savings can be computed by analyzing the number of alive sub-blocks on every cache line
access. Further modeling details are presented in Sections 4.3 and 5.3.

Figure 2.2: Overall cache energy consumption for the oracle line usage and oracle sub-
block usage predictors.

86% 89%
97% 98%

91%
84% 87%

96% 98%
89%

63% 67% 70% 65% 66%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

SPEC-CPU2006
CINT

SPEC-CPU2006
CFP

SPEC OMP2001 NAS-NPB Overall

En
er

gy
 C

on
su

m
pt

io
n

L1 Oracle Line Usage LLC Oracle Line Usage L1 Oracle Sub-block Usage

Figure 2.2 presents the overall energy consumption for the entire cache sub-system
considering two different oracles (line usage and sub-block usage) applied to different
cache levels (L1 and LLC), modeling a Sandy Bridge machine.

We can observe that energy savings are achievable on both the line and sub-block
granularities. However, working on the sub-block basis, more opportunities for energy
savings are present. The reason is that the applications tend to access the sub-blocks
of line unevenly during the lifetime of the line, such that waiting for the whole line to
become dead loses energy savings opportunities. The oracle mechanisms can also reduce

32

the energy consumption of never used prefetched cache lines, reducing the impact of these
lines on the total static energy consumption.

The possible gains in terms of performance are hard to be modeled, because any small
difference in the replacement policy leads the cache to have a completely different line
allocation.

To exploit these energy savings opportunities, it is necessary to create an accurate and
low overhead mechanism capable of predicting line and sub-block usage. We propose
two mechanisms to work in both sub-block and cache line granularity, in order to re-
duce the energy consumption, while using the performance opportunities to keep the final
execution time at the same level.

2.2 Related work

Previous work has introduced line usage predictors, dead line predictors and last write
predictors, which are applied to problems such as reducing static energy consumption,
prefetching, cache pollution, memory controller contention among others.

This section discusses these mechanisms and compares them to our approaches. We
also introduce the mechanism based on related work that will be compared to our predic-
tors.

2.2.1 Line Usage Predictors

KUMAR; WILKERSON (1998) proposed a Spatial Footprint Predictor (SFP) which
predicts the neighboring words to be prefetched on a cache miss. The goal is to reduce
the L1 miss ratio while keeping the cache pollution at a minimum. Based on run-time
history tables, the predictor explores spatial locality by using a cache with small lines but
fetching multiple neighboring lines that are likely to be used in the near future.

CHEN et al. (2004) proposed a Spatial Pattern Predictor (SPP) to predict cache line
usage patterns. The mechanism uses the Program Counter (PC) and the first data offset
requested to correlate historical data about line usage to predict future usage patterns of
L1 cache lines. The goal of this technique is to reduce static energy by bringing into the
cache just those sub-blocks that were predicted to be accessed. The authors also introduce
a prefetching technique to bring only the predicted spatial patterns for contiguous groups
of up to 512 bytes.

PUJARA; AGGARWAL (2008) studied three types of mechanisms to predict the use-
less data in a cache block (cache noise), guided by the usage history of words in a cache
line. Their results motivate the use of PC and offset as the index of a history table. In
order to couple their mechanism with any prefetcher, the authors proposed an implemen-
tation considering that the pattern of the line being prefetched will be the same as the line
which triggered the prefetcher.

Line usage predictors like SPP (CHEN et al., 2004) could be easily extended in order
to start predicting dead sub-blocks. We extended SPP to predict useful and dead sub-
blocks. However, our results show that DSBP performs on average 10% better in terms
of energy reduction than the adapted SPP. Moreover, the adapted SPP increased the total
cache misses on all the cache levels by 20% on average compared to the baseline without
any predictor. This increase on total cache misses caused a 9% increase in the execution
time.

The reason adapted SPP achieves poor results is that it uses an algorithm that resets the
old pattern and starts a new one every time a new cache line comes into the cache so that

33

new patterns can be learned quickly. However, this allows multiple Pattern History Table
(PHT) pointers to the same PHT entry to simultaneously co-exist and therefore incorrect
patterns are recorded more frequently.

2.2.2 Counter Based Dead Line Predictor

KHARBUTLI; SOLIHIN (2008) presented two counter-based mechanisms (AIP and
LvP). Access Interval Predictor (AIP) counts the number of accesses to the set that has
the line during the line’s current access interval and identifies it as dead when the event
count reaches the threshold. Live-time Predictor (LvP) records the number of accesses
to a cache line and predicts the line as dead when the access counter reaches a certain
threshold. The results show that LvP delivers higher accuracy with less complexity. The
mechanism uses a hash of the PC which caused the cache miss to index into a table that
stores the history of the number of accesses from previously evicted lines. The mechanism
is used to identify dead lines and to evict them early, and also to bypass never re-accessed
cache lines.

2.2.3 Trace Based Dead Line Predictors

LAI; FIDE; FALSAFI (2001) introduced the Last-Touch Predictor (LTP) which uses
an execution trace to predict the last touch to a cache line. The key intuition behind LTP
is that memory evictions are triggered by program instructions and that program behavior
tends to repeat. The mechanism generates a signature based on a trace of instructions that
access a cache line. By matching current signatures with previously stored signatures that
lead to dead cache lines, the mechanism can predict when a given line becomes dead. The
goal of this work is to allow the lines to self-invalidate when their last access is detected.

KHAN et al. (2010) proposed a Skewed Dead-Block Predictor (SDP) to predict dead
lines and use these lines as a virtual victim cache. This skewed predictor is similar to
the LTP mechanism, but uses two global tables. Each one of the tables is indexed by a
different hash function to reduce the impact of conflicts between them. They also propose
a more complex mechanism (KHAN et al., 2010), which uses three tables to implement
the skewed predictor. This mechanism also introduces a sampling cache structure which
uses only some of the cache lines to build the prediction table’s information.

2.2.4 Time Based Dead Line Predictors

KAXIRAS; HU; MARTONOSI (2001) presented a cache decay mechanism which
uses theories from competitive algorithms to create a time-based strategy. They exploit
long dead periods by turning off cache lines during such periods. This approach aims to
reduce static power dissipated by the cache. Each line contains a counter with a number
of cycles since the last access and each line is turned off after a certain interval. A hi-
erarchical counter mechanism is adopted to reduce the bits required per cache line. This
hierarchical counter is formed by a global counter which broadcasts an increment sig-
nal to the smaller counters every time it overflows. The authors also explore an adaptive
mechanism to automatically choose the best decay interval on a cache line granularity.

ABELLA et al. (2005) introduced the Inter-Access Time per Access Count (IATAC)
mechanism to predict and turn off dead lines with the objective of reducing L2 cache
static energy. This mechanism predicts a cache line to be dead when it detects that the line
has not received any access for a period greater than the average time between different
accesses. The mechanism keeps track of the average time between accesses in a global

34

table with a separate entry for each access count (i.e., there is a different average time
stored for the difference between the 1st and 2nd access and the difference between the
2nd and 3rd access and so on).

2.2.5 Last Write Predictors

LEE; TYSON; FARRENS (2000) proposed the Eager Write-back mechanism which
performs early write-back of dirty lines from the L1 cache whenever the line achieves
the Least Recently Used (LRU) position. The objective of this work is to speculatively
“clean” the dirty cache lines prior to their eviction, in order to avoid the performance
degradation during clustering bus traffic in a write-back approach.

STUECHELI et al. (2010) presented the Virtual Write Queue (VWQ) technique,
which exposes to the memory controller the dirty blocks near to the LRU position in
the LLC. The mechanism issues scheduled write-backs to improve the write-back effi-
ciency when the memory rank is idle, considering that a bank can be formed by more
than one rank. This technique uses a Search Set Vector (SSV) which gathers information
from all the sets, in order to keep track of the dirty lines and how close they are from the
LRU position. As a cache line becomes close to the LRU position, that line is marked as
critical blocks to write-back.

WANG; KHAN; JIMÉNEZ (2012a) proposed a Last Write Predictor (LWP) to predict
whenever the cache line receives its last write. The prediction mechanism uses three
tables with a skewed organization similar to SDP mechanism to detect the last-written
blocks and store pointers of these blocks into a last-write buffer. The objective of this
mechanism is to make the last-write blocks available for the main memory scheduling
before the line gets evicted. This predictor issues a write-back request to the memory
when no read request targets the same rank.

WANG; KHAN; JIMÉNEZ (2012b) presents a two level rank idle predictor to sched-
ule the write-back to the memory only when long phases of idle rank cycles are predicted.
Together with the rank idle predictor, this paper uses the SSV in order to keep track of
dirty lines and send the blocks close to the LRU position to write-back.

2.2.6 Overall Comparison

Table 2.1: State-of-the-art last access predictors.
Mechanism Saves Predicts Sub-block
Description Energy Dead Lines Level
SPP: Line usage predictor.
(CHEN et al., 2004). Yes No Yes

LvP: Counter based dead line predictor.
(KHARBUTLI; SOLIHIN, 2008). No Yes No

LTP: Trace based dead line predictor.
(LAI; FIDE; FALSAFI, 2001). No Yes No

SDP: Trace based dead line predictor.
(KHAN et al., 2010). No Yes No

IATAC: Time based dead line predictor.
(ABELLA et al., 2005). Yes Yes No

DSBP: Dead Sub-Block Predictor.
(ALVES et al., 2012). Yes Yes Yes

Table 2.1 presents a comparison between DSBP and its related work. DSBP performs
better than previous work by treating the energy consumption problem at all the levels

35

of the cache hierarchy, and not only predict which sub-blocks should be brought into the
cache, but also when active sub-blocks become dead. Additionally, DSBP reduces the
number of accesses to the pattern history table by updating it only when a new pattern is
detected.

Table 2.2: State-of-the-art last write predictors.
Mechanism Saves Predicts Early
Description Energy Dead Lines Write-Back
Eager Write-Back.
(LEE; TYSON; FARRENS, 2000). No No Yes

VWQ: Virtual Write Queue.
(STUECHELI et al., 2010). No No Yes

SSV: Search Set Vector.
(LAI; FIDE; FALSAFI, 2001). No No Yes

LWP: Last Write Predictor.
(WANG; KHAN; JIMÉNEZ, 2012a). No No Yes

Two Level Rank Idle Predictor.
(WANG; KHAN; JIMÉNEZ, 2012b). Yes No Yes

DEWP: Dead Line and Early Write-Back Predictor.
(ALVES et al., 2013). Yes Yes Yes

Table 2.2 shows a comparison between DEWP and its related work. Regarding the
DEWP mechanism, none of the previous approaches have taken into account that dirty
lines remain turned on for long periods of time, wasting energy while these lines could be
evicted early. Thereby, energy can be saved and memory contention reduced. This thesis
introduces a mechanism that performs the prediction of last read, last write and last access
on a cache line basis, exploring the energy savings achievable by turning off invalid and
dead lines, and performing early write-backs.

To evaluate DSBP and DEWP, we implemented a mechanism similar to those present
in LTP (LAI; FALSAFI, 2000; LAI; FIDE; FALSAFI, 2001), SDP (KHAN et al., 2010)
and LWP (WANG; KHAN; JIMÉNEZ, 2012a). These previous predictors represent the
state-of-the-art and they were proposed to be used for bypassing dead lines or prioritizing
them for eviction or perform early write-back after the cache line receives its last write.
In our evaluations, we implemented the basis of these previous mechanisms, the skewed
predictor, to power off the cache lines predicted to be dead and prioritizing them for
eviction, also performing early write-back of dirty cache lines when predicted to be dead.
This implementation is called SKEWED in the thesis.

36

37

3 SIMULATOR OF NON-UNIFORM CACHE ARCHITEC-
TURE (SINUCA)

Some existing open source academia simulators have been verified for single threaded
applications (DESIKAN; BURGER; KECKLER, 2001). However, with the latest ad-
vances in CMP, Simultaneous Multi-Threading (SMT), branch prediction, memory dis-
ambiguation prediction (DOWECK, 2006), Non-Uniform Cache Architecture (NUCA)
(KIM; BURGER; KECKLER, 2003, 2002), NoC (BJERREGAARD; MAHADEVAN,
2006; BERTOZZI et al., 2005) and other mechanisms, academia does not continue the
process of validating its microarchitecture simulators. For parallel architectures, mecha-
nisms such as cache coherence, locks and synchronization between threads, interconnec-
tion networks and memory controllers affect application performance. The correct use of
these shared resources can be very different depending on their implementation.

Another problem that academia researchers suffer when validating their simulators
is the lack of a suite of microbenchmarks that stresses different hardware components
independently to correlate their implementation with real processors. Each developer
usually creates his own microbenchmarks and seldom shares them. The reason why the
community accepts this is because there is no better option currently available. Moreover,
the operation of specific components in the processor is not published for intellectual
property reasons. For this reason, the processor must be seen as a black box, whose
behavior can only be measured on a high level. As a possible way to observe the behavior
at a finer granularity, microbenchmarks should be used. An emerging issue is the energy
consumption modeling of the processor components, which is another feature missing
from current simulators.

For these reasons, writing an accurate and validated simulator for modern microar-
chitectures is a difficult task, and no publicly available simulator is validated for modern
parallel architectures.

With these problems in mind, we developed SiNUCA, a performance and energy val-
idated, trace-driven, cycle accurate simulator for the x86 architecture. The simulator is
capable of running single and multi-threaded applications and multiple workloads with
a high level of detail of all the pipeline components. Additionally, we implemented a
large set of microbenchmarks to correlate the simulator results (performance and other
statistics) with two existing x86 platforms.

SiNUCA has the following main features:

High Accuracy: SiNUCA implements architectural components with a high level of de-
tail, not only in the execution pipeline, but also in the memory and interconnection com-
ponents. We also accurately model parallel architectures such as multi-core and multi-
processor systems. We used publicly available information for the implementation of the

38

simulator. Where this information was not available, we used microbenchmarks in order
to observe the behavior of a real machine.

SiNUCA was validated with single-threaded and multi-threaded applications using
microbenchmarks and larger workloads. The simulation statistics are compared to real
machines. The microbenchmarks had an average difference of 7% while the SPEC-
CPU2006 achieved a difference of 12% comparing the Instructions per Cycle (IPC) when
simulating machines with the x86 Sandy Bridge architecture.

Energy Model: Energy consumption is becoming more important for current and future
processor architectures. However, most current simulators do not model energy con-
sumption, only performance. To evaluate the energy consumption, we integrated the
Multi-core Power, Area, and Timing (McPAT) (LI et al., 2009, 2013) tool, which uses
component statistics generated by SiNUCA. These results were validated using energy
hardware counters in the real machine. Our results show a difference of 18% comparing
the average energy consumption when simulating the microbenchmarks.

Support for Emerging Techniques: SiNUCA is able to model several state-of-the-art
technologies, such as NUCA, Non-Uniform Memory Access (NUMA), NoC and Double
Data Rate (DDR) 3 memory controllers. Besides the traditional techniques such as cache
prefetchers, branch predictors and others, the support for new technologies is important
for accurate simulation of new systems.

Flexibility: Another important feature to support computer architecture research is the
ease of implementing or extending features. This is provided by SiNUCA with a modular
architecture, written in C++, which provides a direct access to the operational details of
all the components. Other simulators are limited by metalanguages that do not expose
all the functionalities of the microarchitecture, making it more difficult to model new
mechanisms and modify the existing ones.

The rest of this chapter is organized as follows: We begin with an overview of the
state-of-the-art in computer architecture simulation. SiNUCA is presented in Section 3.2.
The microbenchmarks are introduced in Section 3.3. The evaluation methodology and
results are presented in Section 3.4. We summarize SiNUCA in Section 3.5.

3.1 Related Work

In this section, we analyze related computer architecture simulators and compare them
to our proposed simulator.

The work of (DESIKAN; BURGER; KECKLER, 2001) validates sim-alpha, a simu-
lator based on the sim-out-order version of SimpleScalar (AUSTIN; LARSON; ERNST,
2002). In this work, the authors aim to simulate the Alpha 21264 processor, using all
available documentation. They use microbenchmarks in order to scrutinize every aspect
of the architecture, being able to achieve an average error of 2% for a set of microbench-
marks, and an error of 18% for the SPEC-CPU2000 applications. The authors identify the
memory model as the main source of errors. They show that often used simulators, such
as SimpleScalar, might contain modeling errors and become less reliable to test certain
new features.

We use a similar validation process for SiNUCA, making separate evaluations for spe-
cific components inside the processor by using microbenchmarks. We extend the control
and memory microbenchmarks and include parallel applications.

39

Virtutech SimICS (MAGNUSSON et al., 2002) is a full-system, functional simulator
which measures execution time based on the number of instructions executed multiplied
by a fixed IPC, and the number of stall cycles caused by the latency of all components.

WEAVER; MCKEE (2008) compared the SESC simulator (RENAU et al., 2005) to
the Dynamic Binary Instrumentation (DBI) using QEMU (BELLARD, 2005). The au-
thors show that in general, cycle-accurate simulators generate inaccurate results over a
long execution time, due to lack of correctness in architectural details. They are able to
obtain similar results in an order of magnitude shorter time with DBI. The paper also
lists the flaws in cycle-accurate simulators. They cite speed, obscurity, source code forks,
generalization, validation, documentation and lack of operating system influence as the
major factors when considering the use of a simulator. Regarding these issues, SiNUCA
solves several issues with code modularity, use of traced instructions and validation.

Gem5 (BINKERT et al., 2011) is a combination of two simulators: M5 (BINKERT
et al., 2006) and General Execution-driven Multiprocessor Simulator (GEMS) (MARTY
et al., 2005). Within Gem5, M5 simulates the cores, whereas GEMS simulates the mem-
ory hierarchy. The validation of the Gem5 simulator, modeling a simple embedded system
(BUTKO et al., 2012), shows that errors can vary from 0.5% to 16% for the applications
from the SPLASH-2 and ALPBench suites. However, for small synthetic benchmarks
with tiny input sizes, the error varies from 3.7% to 35.9%. The authors conclude that the
Dynamic Random Access Memory (DRAM) model is inaccurate.

PTLsim (YOURST, 2007) is a cycle accurate, full-system x86-64 microprocessor sim-
ulator and virtual machine. It is integrated with the Xen hypervisor in order to provide
full-system capabilities.

Multi2Sim (UBAL et al., 2007) is an event-driven simulator based on the premise of
simulating multi-threaded systems. It was extended to simulate heterogeneous CPU-GPU
systems in (UBAL et al., 2012).

COTSon is a simulator framework jointly developed by HP Labs and AMD (AR-
GOLLO et al., 2009) to provide fast and accurate evaluation of current and future com-
puting systems, covering the full software stack and complete hardware models. As Sim-
ICS, COTSon also abstracts processor microarchitecture details, prohibiting development
of novelty at this level.

MARSSx86 (PATEL et al., 2011) is a cycle-accurate simulator based on PTLSim.
Although it simulates all architectural details, it does not ensure accuracy, as can be seen
in their comparison to the SPEC-CPU2006 workload, getting errors of up to 60% with an
average error of 21%.

Table 3.1 summarizes the main characteristics for computer architecture simulators.
Full-system simulation enables processor designers to evaluate OS improvements or its
impact on the final performance. However, the OS simulation can introduce noise during
the evaluations, requiring several simulation repetitions (higher simulation time) in order
to obtain reliable results with a reduced Operating System (OS) influence.

Microarchitectural and multi-core simulation are required to evaluate most of the
state-of-the-art component proposals.

We consider SimICS, GEMS, Gem5 and COTSon as not easy to extend because these
simulators have private source code, need metalanguages to modify the architecture or
require modifications of multiple simulation levels in order to perform microarchitectural
changes.

40

Table 3.1: Comparison of state-of-the-art simulators.
Full- Micro- Memory

Simulator System Architecture Multi-Core Extension NoC NUCA Controller
Name Simulation Simulation Simulation Flexibility Modeling Support Modeling
SimAlpha No Yes No High No No No
SimICS Yes No Yes Low No No No
SESC No Yes Yes High Detailed Yes Extension
GEMS No Yes Yes Low Simple Yes No
M5 Yes Yes Yes High Simple Yes No
Gem5 Yes Yes Yes Low Simple Yes No
PTLsim Yes Yes No High No No Extension
Multi2Sim No Yes Yes High Detailed Yes No
COTSon Yes No Yes Low Detailed Yes No
MARSSx86 Yes Yes Yes High Detailed No No
SiNUCA No Yes Yes High Detailed Yes Detailed

Regarding NoC modeling, different detail levels can be observed among the simula-
tors. SimAlpha, SimICS and PTLsim do not natively support it. GEMS, M5 and Gem5
model only the interconnection latency without modeling traffic contention.

Considering NUCA, we classified the simulators as having support if they model at
least multi-banked caches, also known as static NUCA (KIM; BURGER; KECKLER,
2003).

The memory controller is becoming more important in modern processors, because
of its integration inside the processor chip. If a simulator only simulates a fixed latency
for every DRAM request, it is classified as not capable of modeling a memory controller.
Although SESC and PTLsim do not support memory controller modeling natively, exten-
sions were proposed in order to overcome this deficiency.

We can observe that SiNUCA offers all the features required to evaluate cache mem-
ory mechanisms, simulating in detail the cache memories and memory controllers, while
offering a highly detailed model of the OoO processor microarchitecture.

3.2 SiNUCA

We developed SiNUCA, a trace-driven simulator, which executes traces generated on
a real machine with a real workload without the influence from the OS or other processes.
The traces are simulated in a cycle-accurate way, where each component is modeled to
execute its operations on a clock cycle basis. SiNUCA currently focuses on the x86_32
and x86_64 architectures.

SiNUCA was developed in C++ to make use of object-oriented principles and generate
modular components. Such characteristics are preferable for simulators in order to ease
the implementation of new features or components.

The ideal simulator should be as flexible as possible. Considering this, multiple pa-
rameters are available to be set through the SiNUCA configuration file. The configuration
file is split into modules, such that each module contains the internal parameters to be
used by the simulator. The simulator uses a component called SiNUCA configurator. It
uses the libconfig (LINDNER, 2013) library internally to read the configuration file and to
instantiate all the components inside SiNUCA. Libconfig is a fully reentrant parser and it
supports include directives. In this way, SiNUCA components can be defined separately
and included multiple times inside the main configuration file, facilitating the description
of multi-core and many-core systems.

41

3.2.1 System Model

Figure 3.1: SiNUCA architecture with its main components and interconnections, mod-
eling an Intel Core 2 Duo architecture.

Router

D-Cache

TokensMSHR
Prefetcher

Memory Controller (DRAM)

Memory
Channel

Memory
Channel

Network
Controller

Directory

Network
Controller

Directory

Processor (Core 0)

Branch Predictor

Rename

RAT

ROB

Dispatch

Uop

Execution

ALU MUL DIV

FALU FMUL FDIV

Load Store

CommitDecode

Uop

Fetch

Op

MOB

Op

Mem
Mem

Mem

BTB

Mem

Memory
Package

Op

Opcode
Package

Uop

MicroOp
Package

Connections
without latency

Connections
with latency

<Name>

Local
component

<Name>

Global
component

I-Cache

TokensMSHR
Prefetcher

Network
Controller

Directory

L2-Cache

TokensMSHR
Prefetcher

Router

Network
Controller

Mem
Mem

Mem

D-CacheI-Cache

Processor (Core 1)

Memory
Disambiguation

Tokens

The main components of SiNUCA are illustrated in Figure 3.1. The description of
the components is presented below:

Memory Package: Every memory operation inside the simulator is encapsulated within
this component.

Opcode Package: The instructions inside the simulator trace and front-end are encapsu-
lated within this component.

MicroOp Package: After decoding the Opcode Package, the micro-operations are en-
capsulated within this component.

Token: Every communication between two memory components, such as cache memo-
ries and memory controllers, needs to request a token from the final package destination

42

before the communication starts. Tokens avoid deadlocks during package transfers that
require more than one hop to reach their final destination.

Processor: This component is responsible for executing the Opcodes. It consists of the
fetch, decode, rename, dispatch, execute and commit stages. Currently, only an OoO
processor is modeled, implementing a Reorder Buffer (ROB) to handle the OoO exe-
cution. Further details about the processor’s internal components will be presented in
Section 3.2.2.

Cache Memory: This component is responsible for modeling instruction and data caches,
both single and multi-banked models (static NUCA), implementing a Miss-Status Han-
dling Registers (MSHR) internally per bank. This component keeps only the tag array of
the cache, reducing the memory usage and the trace size.

Miss-Status Handling Register (MSHR): This buffer keeps information about the cache
misses which arrive at each cache bank. The requests wait to be serviced and are then sent
back to the requester in the case of a cache hit, or replicated to the next memory level in
the case of a cache miss.

Prefetcher: The memory packages serviced by the cache memory are sent to the prefetcher,
so that the memory addresses required by the application in the future can be predicted
and fetched. This component is responsible for implementing several prefetch policies
and to provide the cache memory with the generated requests as soon the cache has space
in its MSHR. Currently, a stride prefetcher (BAER; CHEN, 1991) and a stream prefetcher
(JOUPPI, 1990) are available to be simulated.

Memory Controller: This component implements the memory controller, formed by
multiple channels, each channel with multiple banks. All memory requests that miss in
all the cache levels will be sent to this component, which will schedule the requests to the
memory banks. The memory controllers can support NUMA modeling as well.

Memory Channel: Inside the memory controller, multiple memory channels can be in-
stantiated. Each channel may be connected to one or more banks, each bank with its own
read and write buffers.

Router: This component was developed to model the contention and delays imposed
by the interconnections. It implements a general NoC router that automatically delivers
packages using the routing information inside each package.

Network Controller: This controller is used to generate a communication graph with the
routes available in the modeled architecture. All packages that need to be transmitted have
a pointer to the routing information contained in the routing table. The routing informa-
tion describes which path to take for each intermediary component (routing input/output
ports).

Directory: This component models the MOESI cache coherence protocol, which is ac-
cessed directly by the caches for every memory operation. It is responsible for creating
locks on cache lines in order to control concurrent operations, to change the cache line
status (for example, after writes or when propagating invalidations), to generate write-
backs and to inform the caches about hits or misses. During read requests, the directory
creates a read lock to that memory address, thus only read accesses can be provided to
that address in any cache in the system. During write operations, the directory locks the
cache line for the write operation. In this way, no other operation can be performed by
other caches on the same address until the lock is released.

43

The network controller and the directory are virtual components, which model lookup
tables and do not generate latency on accesses to them. All other components are real
components and the connection between them always generates latency.

3.2.2 Processor Description

Figure 3.1 presents the details of the processor architecture. The processor consists of
6 main stages, each stage can be configured to take multiple cycles to complete. Although
the processor could be simulated with less stages, we chose to implement these main
stages separately in order to increase the flexibility and ease simulator extensions. The
implementation details for the main components and stages inside the processor are given
below:

Fetch Stage: This stage is responsible for fetching new opcodes from the trace reader.
Internally, it handles the next two opcodes from the trace in order to send them to the
branch predictor. In case of a branch instruction, the branch predictor can inform if it was
correctly predicted or not, and update the prediction mechanism. In case of a non-branch
instruction or a correctly predicted branch, it sends the next instruction to the fetch buffer,
so the instruction address can be requested from the instruction cache.

In the case of a mispredicted branch, the fetch stage will be stalled until the branch is
solved. The fetch stage is also responsible for controlling the synchronization of multiple
threads according to the Open Multi-Processing (OpenMP) primitives inside the trace.
For instance, during an OpenMP barrier, the fetch stage of each processor will control
when all processors reach the same barrier, so the simulation can continue. During this
stall period, no new instruction is fetched from the trace for the processors waiting in the
barrier.

Decode Stage: This stage takes the opcodes ready in the fetch buffer, and decodes them
into multiple microOps. The microOps are inserted into the decode buffer. For every
branch decoded, an in-flight branch counter is incremented, and then decremented after
the branch is retired. This stage stalls when the maximum number of branches inside the
pipeline is reached.

Rename Stage: This stage obtains available microOps from the decode buffer and inserts
them into the ROB. If the microOp contains a register operation, the Registers Alias Table
(RAT) solves false dependencies, and stores information about real dependencies. If the
microOp contains a memory operation, the related memory operation will be inserted into
the Memory Order Buffer (MOB) read or write buffer. In case of a full ROB or MOB,
this stage will stall.

Dispatch Stage: MicroOps are sent to the reservation stations, even if they still have
missing dependencies. This stage stalls if all the reservation stations are full.

Execution Stage: Once the microOp is ready for execution, with all the dependencies
solved, the microOp is executed. In this stage, the constraints on the number of func-
tional units (such as integer and floating-point ALU) and cycles between microOps are
respected. In the end of this stage, data forwarding is performed, and the real dependent
microOps are marked as resolved. For memory operations, the memory package inside
the MOB relative to this operation will be marked as ready.

Commit Stage: This stage is responsible for retiring the opcodes in-order from the ROB.

Branch Predictor: The predictor receives the current and next instruction in the trace. It
is responsible for implementing any branch predictor mechanism with its Branch Target

44

Buffer (BTB) and other structures. It returns to the processor if the branch was predicted
correctly or not, together with the information about the stage in which the branch will be
solved. Thus, the fetch stage will stall until the mispredicted branch reaches the informed
stage. During each prediction, the prediction correctness information is also updated in-
side the predictor structures. Currently, the Per-address Adaptive branch prediction using
per-Set PHT (PAs), Global Adaptive branch prediction using per-Set PHT (GAs), Per-
address Adaptive branch prediction using one Global PHT (PAg) and Global Adaptive
branch prediction using one Global PHT (GAg) (YEH; PATT, 1991, 1992) branch pre-
dictor mechanisms are available inside the simulator.

Reorder Buffer (ROB): This circular buffer stores the microOps after the decode stage.
It also handles information about the dependencies and the current stage of the microOps.

Register Alias Table (RAT): This table stores the information of the last microOps to
write every register. Every time a register is going to be re-written by a microOp or the
microOp is executed, this table is updated. Every time a register is being read, this table is
consulted in order to gather information about the true dependencies between microOps.

Memory Order Buffer (MOB): Whenever a memory operation is executed, that is, its
address is generated, the memory package inside the load or store buffer located inside
the MOB is marked as ready. The package waits in one of these buffers until the memory
services the request. After the memory operation is serviced, the data dependencies are
solved and the memory operation can be committed.

Memory Disambiguation: This component contains the table that stores the last memory
write addresses and their sizes. This table works in a similar manner as the RAT, but in
this case, it can solve false dependencies between memory operations depending on the
disambiguation policy.

3.2.3 Simulator Traces

The SiNUCA input traces are split into three different files:

Static trace: This file contains the trace of the assembly code divided in basic blocks.
This file is completely loaded into the main memory at the beginning of the simulation.

Dynamic trace: This file contains the calls to the basic blocks generated during the
program execution. For each basic block call, the instructions are obtained from the static
trace.

Memory trace: This file contains information about the memory operations generated
during the program execution. For each memory operation, a new trace line is read so the
memory address and memory size can be retrieved.

3.2.3.1 Trace Format

In order to show a simple example from the SiNUCA traces, Table 3.2 presents a short
synthetic code, consisting of a loop that executes two iterations, adding the loop index to
a variable.

Table 3.3 shows the static, dynamic and memory traces for SiNUCA, generated from
the synthetic code presented in Table 3.2.

The static trace is divided into basic blocks, which are presented after @. The instruc-
tions inside the basic block consist of the following fields: assembler instruction, Opcode

45

Table 3.2: Source code example written in C and Assembly.
C source code Assembly code (AT&T syntax)

for (i = 0; i < 2; i++) {
sum += i;

}

movl $0x0,-0x8(%rbp)
loop: mov -0x8(%rbp),%eax

add %eax,-0x4(%rbp)
addl $0x1,-0x8(%rbp)
cmpl $0x1,-0x8(%rbp)
jbe loop

Table 3.3: SiNUCA traces for a simple source code.
Static Memory Dynamic
Trace Trace Trace

#main
@1
MOV 1 0x95727 4 1 14 1 34 14 0 1 0 0 0 0 0
#main
@2
MOV 8 0x95717 3 1 14 1 65 14 0 1 0 0 0 0 0
ADD 1 0x95720 3 2 14 65 1 34 14 0 1 0 1 0 0 0
ADD 1 0x95723 4 1 14 1 34 14 0 1 0 1 0 0 0
CMP 1 0x95727 4 1 14 1 34 14 0 1 0 0 0 0 0
JBE 7 0x95731 2 2 35 34 1 35 0 0 0 0 0 1 0 0

R 4 0x1701448 1
#
R 4 0x1701448 2
R 4 0x1701452 2
W 4 0x1701452 2
R 4 0x1701448 2
W 4 0x1701448 2
R 4 0x1701448 2
#
R 4 0x1701448 2
R 4 0x1701452 2
W 4 0x1701452 2
R 4 0x1701448 2
W 4 0x1701448 2
R 4 0x1701448 2

1
2
2

type, instruction address, instruction size, number of read registers, read registers, num-
ber of write registers, write registers, base register, index register, is-read flag, is-read2
flag, is-write flag, is-branch flag, is-predicated flag, is-prefetch flag.

The assembler instruction is only saved in order to ease the trace debug, but it is not
used inside the simulator. The registers inside SiNUCA are represented by the register
number given by Pin, instead of the register name. This transformation facilitates the
dependency analysis.

The base register and index register fields are needed to differentiate the registers
used to access the memory from the other registers used inside the instruction. This is
necessary to keep the correct dependencies inside each microOp.

The flags is-read, is-read2, is-write and is-branch are used in order to decode the
opcode into multiple microOps. The is-predicated and is-prefetch flags are not currently
used, but they are kept so the simulator can be easily extended.

The memory trace is formed by the following fields: R/W indicator, memory operation
size, memory address, basic block number. The R/W indicator and the basic block number
are only used to guarantee that the memory trace is correct, that is, these fields are matched
with the static instruction which fetched the memory operation.

The dynamic trace only contains the basic block number. In order to read the trace, the
processor reads this file fetching the basic block number, then it fetches the instructions
inside the static trace for that specific basic block. The basic blocks present in the dynamic
trace correspond only to the actual execution flow, that is, no wrong path (such as a
mispredicted branch) is traced. If the instruction in the basic block performs a memory

46

operation, the memory trace is fetched in order to get the memory address and the size of
the memory access.

3.2.3.2 Trace Generation

Considering that some applications can take a very long time to run on a real ma-
chine, it is impractical to execute them completely in a cycle accurate simulator such as
SiNUCA. Our trace generator uses the PinPoints (PATIL et al., 2004) tool to find and
trace only the representative portions of the applications.

PinPoints uses the SimPoint methodology (SHERWOOD et al., 2002) to profile and
identify representative portions (slices) of an application, in order to trace only the most
significant slice of single-threaded applications.

SimPoints uses basic block distribution analysis (SHERWOOD; PERELMAN; CALDER,
2001) in order to determine cyclic behavior of an application. This analysis correlates
clusters of basic blocks called Basic Block Vectors (BBVs) to the entire execution, in
order to identify the initialization phase and phases with periodic behavior inside the pro-
gram. The final goal of this analysis is to find the preferred simulation points in the
application in order to achieve a representative sample of its execution. According to the
authors, using the basic block distribution analysis, it is possible to find small representa-
tive slices of the program, which result in an IPC error of 6% or less.

Considering that PinPoints does not work well for parallel applications, we used it
only to generate traces from the SPEC-CPU2006 applications. For the parallel applica-
tions, we instrumented the trace generator to trace only given parallel regions. For the
microbenchmarks, the full execution traces were used.

For multi-threaded applications, the waiting time in a OpenMP spin-lock during the
trace generation can represent a large portion of the execution time. This occurs because
threads need to wait for others to write their traces. This spin-lock waiting time can be
higher if the number of threads being traced is bigger than the number of cores of the
machine that is generating the traces.

In order to avoid the spin-lock stalls, the basic blocks that contain OpenMP locks are
removed from the traces. However, in order to correctly simulate the barriers and the
waiting time lost during synchronization, the traces still contain the OpenMP primitives
that are used to synchronize the threads internally during the simulation.

During the simulation of multi-threaded applications, the simulated processors treat
the OpenMP primitives as they appear in the dynamic trace. This means that during pro-
gram barriers, each processor that reaches the barrier stops fetching instructions and waits
until all the processors reach the same barrier. When all processors reach the barrier, the
lock is released and the execution continues. The OpenMP atomic and critical primitives
are preserved inside the dynamic trace, and the processors also guarantee that only one
processor will enter a critical section at a time.

3.2.4 Energy Modeling

In order to obtain estimations regarding the energy and power consumption, we in-
strumented the simulator to generate all the statistics required by McPAT, version 1.0 (LI
et al., 2009, 2013).

The McPAT framework is a validated and widely used tool which supports proces-
sor configurations ranging from 90 nm to 22 nm and beyond, modeling timing, area and
power for the device types forecast in the ITRS roadmap (Semiconductor Industry Asso-

47

ciation, 2007). It supports splitting energy results into dynamic and static energy, with the
static energy formed by subthreshold and gate leakage.

The power, area and timing models are organized into three levels: The Architectural
level, where a multi-core model is decomposed into major components such as cores,
interconnections, caches and memory controllers; The Circuit level, which maps the ar-
chitectural blocks to hierarchical wires, arrays, logic and clocking networks; The Tech-
nology level, which uses data from the ITRS roadmap to calculate the physical parameters
of devices and wires.

3.3 Microbenchmarks

As mentioned before, many architectural details of modern processors are not public.
For this reason, a set of microbenchmarks was developed in order to evaluate and estimate
the behavior of processor components. We developed a suite of single and multi-threaded
microbenchmarks to isolate and validate specific aspects of SiNUCA. These benchmarks
will be presented in this section.

3.3.1 Single-Threaded Microbenchmarks

The single-threaded microbenchmarks were inspired by the SimAlpha validation (DE-
SIKAN; BURGER; KECKLER, 2001). Five categories of benchmarks were defined.
These are Control, Dependency, Execution, Memory and Multi-thread. These categories
stress different stages of the pipeline and evaluate different components separately.

3.3.1.1 Control Benchmarks

Five Control benchmarks were designed to stress different situations commonly found
in programs: Complex, Conditional, Random, Small BBL, and Switch.

Control Complex mixes if-else and switch constructs in order to create a hard to predict
branch behavior.

Control Conditional implements a simple if-then-else construct in a loop that is repeat-
edly executed, and alternates between taking and not taking the conditional branch.

Control Random implements an if-then-else construct in a loop that is repeatedly exe-
cuted. For every iteration, a Linear Feedback Shift Register (LFSR) function decides be-
tween taking and not taking the conditional branch. The LFSR function is a well known
fast pseudo-random number generator, which was implemented with 16 bits in order to
get a period length of 65535 iterations.

Control Small BBL evaluates the number of in-flight branches at the same time inside
the processor by executing a loop with only the control variable incrementing inside the
loop.

Control Switch tests indirect jumps with a switch construct formed by 10 case statements
within a loop. Each case statement is taken n/10 times on consecutive loop iterations
before moving to the next case statement, where n is the total number of repetitions of the
loop.

3.3.1.2 Dependency Benchmarks

Six Dependency Chain benchmarks were used to stress the forwarding of dependen-
cies between instructions. These evaluate dependency chains every 1, 2, 3, 4, 5 and 6

48

instructions. In this way, every instruction needs to wait for the execution of the previous
one with a real dependency, evaluating thus the data forwarding time.

3.3.1.3 Execution Benchmarks

Six Execution benchmarks were defined to stress the integer and floating point func-
tional units: integer-add, integer-multiply, integer-division, floating-point-add, floating-
point-multiply, floating-point-division.

All the Execution benchmarks execute 32 independent operations inside a loop, with
a reduced amount of memory operations, control hazards and data dependences, allowing
a close-to-ideal throughput.

3.3.1.4 Memory Benchmarks

Three Memory benchmarks were created: load-dependent, load-independent, store-
independent.

Load Dependent executes a loop which walks a linked list, waiting for each load to
complete before starting the next. Different linked list sizes (16 KB, 32 KB, 64 KB,
128 KB, 256 KB, 512 KB, 1024 KB, 2048 KB, 4096 KB, 8192 KB, 16384 KB and
32768 KB) are used in the evaluation.

Load Independent repeatedly executes 32 parallel independent loads from an array and
adds its values in a scalar variable. Different array sizes were used in the evaluation.
Twelve array sizes were evaluated (16 KB, 32 KB, 64 KB, 128 KB, 256 KB, 512 KB,
1024 KB, 2048 KB, 4096 KB, 8192 KB, 16384 KB and 32768 KB) in order to stress
different cache levels.

Store Independent repeatedly performs 32 parallel independent stores of a fixed scalar
iterating over all the positions of an array, evaluating multiple array sizes as well. The
same twelve array sizes as for the load independent were evaluated.

3.3.2 Multi-Threaded Microbenchmarks

Four multi-threaded microbenchmarks were designed to reproduce different scenarios
from real multi-threaded applications. The applications consist basically of two loops, i
and j, where the loop j executes a single iteration per thread. Every thread accumulates
the multiplication of i per j.

Barrier All Together: all threads have the same amount of work, waiting for a barrier
after every new iteration in the loop i.

Barrier Master Slow: in this case, only the thread master iterates over an inner loop,
forcing all other threads to wait at the barrier to synchronize.

Critical: for this application, the accumulator used by all the threads is a shared variable,
thus, all the increments requires the thread to enter in a critical section, creating great
contention.

False Sharing: to stress the coherence protocol, an array is shared by different threads
to store the sum being calculated. However, since the multiple array elements (8 bytes
each) will share the same cache line, a false sharing effect occurs. In order to evaluate
the influence of different amounts of threads suffering from false sharing, different pads
of 0, 8, 24 and 56 bytes were evaluated. These pad sizes were chosen to keep the same

49

amount of threads falsely sharing the cache lines. Notice that this would not be possible
with a pad of 16 bytes, as there would be one variable every 24 bytes, leading to some
cache lines having 3 elements and others having 4 elements.

3.4 Evaluation

To evaluate and validate SiNUCA, we performed extensive experiments with a large
set of sequential and parallel benchmarks. This section presents the methodology of the
experiments, validation results, a discussion of the differences between the simulator and
the real machine, and the simulator performance.

3.4.1 Methodology

3.4.1.1 Workloads

For the microbenchmarks, we equalized their execution time to 0.5 seconds on the real
machine. This ensures that the amount of work performed is significant while keeping the
simulation time reasonable for the full execution.

Besides the microbenchmarks, we used 43 benchmarks from 3 different benchmark
suites: all 29 applications from the SPEC-CPU2006 (HENNING, 2006) suite, 7 OpenMP
multi-threaded applications from SPEC-OMP2001 (SAITO et al., 2006), and 7 OpenMP
multi-threaded applications from the Numerical Aerodynamic Simulation (NAS) Parallel
Benchmarks (NPB) version 3.3.1 (BAILEY et al., 1991) suite. All benchmarks were
compiled for x86-64 using the GNU Compiler Collection (GCC) version 4.6.3 with the
-O3 performance optimization flag.

The SPEC-CPU2006 benchmark suites (integer and floating point) were executed us-
ing the reference input set, executing a representative slice of 200 million instructions
selected by PinPoints.

The SPEC-OMP2001 benchmarks were executed using the reference input set as well,
while the NAS-NBP suite was run using input set size A. Each benchmark executes up to
one time step from its parallel region.

Table 3.4: Average number of instructions (millions) per thread.
Name 1 Thread 2 Threads 4 Threads 8 Threads
applu.M 809 M 404 M 200 M 97 M
apsi.M 1437 M 717 M 359 M 177 M
fma3d.M 329 M 165 M 82 M 41 M
galgel.M 417 M 209 M 105 M 53 M
mgrid.M 1136 M 568 M 284 M 142 M
swim.M 1383 M 690 M 345 M 170 M
wupwise.M 1629 M 815 M 407 M 202 MSP
E

C
-O

M
P2

00
1

Average 1020 M 510 M 255 M 126 M
BT.A 1851 M 926 M 463 M 231 M
CG.A 355 M 178 M 89 M 44 M
FT.A 3077 M 1539 M 769 M 385 M
IS.A 247 M 123 M 62 M 31 M
LU.A 805 M 419 M 221 M 124 M
MG.A 2081 M 1040 M 520 M 260 M
SP.A 467 M 234 M 117 M 58 M

N
A

S-
N

PB

Average 1269 M 637 M 320 M 162 M

50

Table 3.4 shows the average number of instructions simulated per thread, for the
SPEC-OMP2001 and NAS-NBP suites. Notice that we are always tracing only one time
step of each application, such that the total number of executed instructions across the
different numbers of threads are similar.

Table 3.5: Memory footprint of the benchmarks.
SPEC-CPU2006 INT SPEC-CPU2006 FP SPEC-OMP2001 NAS-NPB

Name Footprint Name Footprint Name Footprint Name Footprint
astar 36.80 MB bwaves 96.82 MB applu 1387.36 MB BT 42.74 MB
bzip2 4.25 MB cactusADM 55.50 MB apsi 206.14 MB CG 21.80 MB
gcc 21.13 MB calculix 16.06 MB fma3d 614.94 MB FT 321.52 MB
gobmk 3.10 MB dealII 2.48 MB galgel 4.70 MB IS 66.01 MB
h264ref 2.04 MB gamess 0.33 MB mgrid 429.68 MB LU 40.59 MB
hmmer 3.98 MB GemsFDTD 149.71 MB swim 1433.71 MB MG 429.58 MB
libquantum 32.00 MB gromacs 3.49 MB wupwise 768.00 MB SP 45.19 MB
mcf 382.64 MB lbm 198.37 MB
omnetpp 26.78 MB leslie3d 74.41 MB
perlbench 1.99 MB milc 150.65 MB
sjeng 4.29 MB namd 1.95 MB
xalancbmk 30.28 MB povray 0.17 MB

soplex 213.28 MB
sphinx3 5.88 MB
tonto 0.88 MB
wrf 47.09 MB
zeusmp 47.54 MB

Average 45.77 MB Average 62.62 MB Average 692.08 MB Average 138.20 MB

The applications from SPEC-CPU2006, SPEC-OMP2001 and NAS-NPB are pre-
sented in Table 3.5. The memory footprint of each application is shown along its name.
For the parallel applications, the memory footprint is split among the threads, where each
thread footprint is almost the same.

Two applications from the multi-threaded benchmarks, art from SPEC-OMP2001 and
EP.A from NAS-NPB, are formed by a small initialization parallel region and between 3
and 5 huge parallel regions. Considering that simulating less than one algorithm step
would be meaningless, these applications were removed from our evaluations.

Trace-driven simulators usually have a limitation simulating applications with a producer-
consumer behavior. This happens because the trace often does not have information about
the dependency between the producer and consumer. Due to this reason, the applications
that contain OpenMP locks (ammp, equake, gafort from SPEC-OMP2001 and UA.A from
NAS-NPB) were removed from our evaluation.

3.4.1.2 Real Machine and Simulation Parameters

Table 3.6 presents the parameters used in order to model the Intel Core 2 Duo (Con-
roe microarchitecture - model E6300)(BOJAN et al., 2007)) and Intel Xeon (Sandy Bridge
microarchitecture - model Xeon E5-2650)(YUFFE et al., 2011) architectures inside SiN-
UCA. The table shows parameters of the execution cores, branch predictor, cache memo-
ries and prefetchers, as well as the memory controller.

3.4.1.3 Evaluation Methodology

In order to reduce the influence from the operating system, the experiments in the real
machine were repeated 100 times. For each execution, we set a static affinity between

51

Table 3.6: Parameters to model the Core 2 Duo and Sandy Bridge processors.
Parameter Core 2 Duo Configuration Sandy Bridge Configuration

OoO
Execution
Cores

2 cores @ 1.8 GHz, 65 nm; 8 cores @ 2.0 GHz, 32 nm;
in-order front-end and commit; in-order front-end and commit;
12 stages (2-fetch, 2-decode, 2-rename, 16 stages (3-fetch, 3-decode, 3-rename,
2-dispatch, 2-commit stages); 2-dispatch, 3-commit stages);
16 B fetch block size, fetch up to 6 instructions 16 B fetch block size, fetch up to 6 instructions
Decode and commit up to 4 instructions; Decode and commit up to 5 instructions;
Rename/dispatch/execute up to 4 micro instructions; Rename/dispatch/execute up to 5 micro instructions;
18-entry fetch buffer, 24-entry decode buffer; 18-entry fetch buffer, 28-entry decode buffer;
3-alu, 1-mul. and 1-div. int. units (1-4-26 cycle); 3-alu, 1-mul. and 1-div. int. units (1-3-32 cycle);
1-alu, 1-mul. and 1-div. fp. units (3-5-5 cycle); 1-alu, 1-mul. and 1-div. fp. units (3-5-10 cycle);
1-load and 1-store functional units (1-1 cycle); 1-load and 1-store functional units (1-1 cycle);
MOB entries: 24-read and 16-write; 96-entry ROB; MOB entries: 64-read and 36-write; 168-entry ROB;
1 branch per fetch; 8 parallel in-flight branches; 1 branch per fetch; 8 parallel in-flight branches;

Branch 4 K-entry 4-way set-associative, LRU policy BTB; 4 K-entry 4-way set-associative, LRU policy BTB;
Predictor Two-Level PAs 2-bits predictor; 16 K-entry PBHT; Two-Level GAs 2-bits predictor; 16 K-entry PBHT;

128 lines and 1024 sets SPHT; 256 lines and 2048 sets SPHT;
L1 32 KB, 8-way, 64 B line size; LRU policy; 1-cycle; 32 KB, 8-way, 64 B line size; LRU policy; 2-cycle;
Data MSHR: 8-request, 10-write-back, 1-prefetch; MSHR: 8-request, 10-write-back, 1-prefetch;
Cache Stride prefetch: 1-degree, 16-strides table; Stride prefetch: 1-degree, 16-strides table;
L1 32 KB, 8-way, 64 B line size; LRU policy; 1-cycle; 32 KB, 8-way, 64 B line size; LRU policy; 2-cycle;
Inst. MSHR: 8-request, 1-prefetch; MSHR: 8-request, 1-prefetch;
Cache Stride prefetch: 1-degree, 16-strides table; Stride prefetch: 1-degree, 16-strides table;

Shared 2 MB, 8-way, 64 B line size; LRU policy; Private 256 KB, 8-way, 64 B line size; LRU policy;
L2 Inclusive Cache; MOESI coherence protocol; 4-cycle; MSHR: 4-request, 6-write-back, 2-prefetch; 4-cycle;
Cache MSHR: 2-request, 6-write-back, 2-prefetch; Stream prefetch: 2-degree, 32-distance, 256-streams;

Stream prefetch: 2-degree, 16-distance, 64-streams;

L3 Cache

Shared 16 MB (8-banks), 2 MB per bank;
16-way, 64 B line size; LRU policy; 6-cycle;

None Inclusive LLC; MOESI coherence protocol;
MSHR: 8-request, 12-write-back;
Bi-directional ring interconnection;

Off-chip DRAM controller, 8 DRAM banks/channel; On-chip DRAM controller, 8 DRAM banks/channel;
DRAM 2-channels, 4 burst length; 4-channels, 8 burst length;
Controller 8 KB row buffer per bank, Open-row first; 8 KB row buffer per bank, Open-row first;
and Bus DDR2 667 MHz; 2.8 core-to-bus frequency ratio; DDR3 1333 MHz; 1.5 core-to-bus frequency ratio;

4-CAS, 4-RP, 4-RCD and 30-RAS DRAM cycles; 9-CAS, 9-RP, 9-RCD and 28-RAS DRAM cycles;

the threads and the processor cores, in order to reduce the overhead of migration. The
OS priority for the benchmark applications was set to 10 using nice − 10, reducing the
influence of the background tasks.

To obtain the performance counters (cycles, instructions, branch mispredictions and
cache misses) we used the perf tool (Linux Kernel Developers, 2013). To measure the
energy consumption, the Intel Performance Counter Monitor (PCM) tool (INTEL, 2012)
was used to measure the Running Average Power Limit (RAPL) counters (INTEL, 2013).
Core 2 Duo architecture does not provide energy related hardware counter, thus, only
performance wide evaluations are performed for this architecture.

Our evaluation shows information regarding the difference between the real machine
and the simulator. This difference represents the absolute accuracy of SiNUCA, it de-
termines if the individual components and total performance and power are correctly
modeled. However, the standard deviations of the differences are also presented in or-
der to evaluate the relative accuracy of SiNUCA. A low standard deviation indicates that
simulation and real machine are behaving similarly.

In order to summarize the results, the arithmetic mean was used for raw numbers while
the geometric mean was used for normalized results. Geometric mean is considered the
only correct mean when averaging normalized results (FLEMING; WALLACE, 1986),
that is results that are presented as ratios to reference values, this is because using the
arithmetic or harmonic mean could change the conclusions depending on what number is
used as a reference for the normalization (JAIN, 1991).

52

3.4.2 Results

3.4.2.1 Single-Threaded Microbenchmarks

Table 3.7: Single-threaded microbenchmarks results for Core 2 Duo.

B
ra

nc
h

Pr
ed

ic
to

r
B

ra
nc

h
M

is
s

Pe
na

lty
In

-fl
ig

ht
 B

ra
nc

he
s

R
eg

is
te

r F
ile

Fu
nc

tio
na

l U
ni

ts
L1

 C
ac

he
L2

 C
ac

he
LL

C
D

R
A

M
Pr

ef
et

ch
er

Real Sim Diff Real Sim Real Sim
Complex ● 1.42 2.58 82% 2.89% 0.00% 0.01 0.00
Conditional ● 1.67 2.73 63% 0.00% 0.00% 0.00 0.00
Random ● ● 0.93 0.95 2% 28.56% 28.57% 0.01 0.00
Small_bbl ● ● 3.01 3.00 0% 0.00% 0.00% 0.01 0.00
Switch ● 1.43 1.83 28% 0.00% 0.00% 0.01 0.00
Chain-1 ● 1.07 1.09 2% 0.01% 0.00% 0.01 0.00
Chain-2 ● 1.55 2.19 41% 0.01% 0.00% 0.01 0.00
Chain-3 ● 2.17 3.00 38% 0.01% 0.00% 0.01 0.00
Chain-4 ● 2.74 3.00 9% 0.01% 0.00% 0.00 0.00
Chain-5 ● 2.87 3.00 4% 0.00% 0.00% 0.01 0.00
Chain-6 ● 2.93 3.00 2% 0.01% 0.00% 0.00 0.00
FP-add ● 1.10 1.09 0% 0.01% 0.01% 0.02 0.00
FP-div ● 0.22 0.22 0% 0.05% 0.03% 0.02 0.01
FP-mul ● 1.10 1.09 1% 0.01% 0.01% 0.02 0.00
INT-add ● 2.90 3.00 3% 0.00% 0.00% 0.00 0.00
INT-div ● 0.03 0.04 51% 0.35% 0.27% 0.37 0.10
INT-mul ● 0.55 0.55 1% 0.02% 0.01% 0.03 0.01
00016kb ● 0.46 0.41 12% 0.05% 0.36% 0.35 0.13
00032kb ● 0.26 0.36 38% 0.06% 5.76% 36.27 15.53
00064kb ● 0.08 0.10 23% 0.17% 3.25% 940.87 880.20
00128kb ● 0.08 0.09 14% 0.16% 1.88% 857.39 881.92
00256kb ● 0.08 0.09 14% 0.76% 1.17% 841.51 882.58
00512kb ● 0.08 0.09 13% 0.44% 0.81% 831.49 882.51
01024kb ● 0.08 0.09 12% 0.33% 0.62% 840.23 881.67
02048kb ● 0.06 0.02 61% 0.28% 0.52% 813.89 879.67
04096kb ● 0.05 0.02 52% 0.16% 0.46% 757.55 875.55
08192kb ● 0.06 0.02 62% 0.25% 0.42% 594.17 867.41
16384kb ● 0.07 0.02 65% 0.43% 0.37% 519.98 851.80
32768kb ● 0.06 0.02 59% 0.51% 0.30% 654.83 823.14
00016kb ● ● 1.15 1.14 1% 0.11% 0.18% 0.05 0.06
00032kb ● ● 1.14 1.09 4% 0.11% 5.66% 0.16 0.06
00064kb ● ● 0.25 0.28 13% 0.16% 3.10% 867.25 881.82
00128kb ● ● 0.25 0.27 7% 0.17% 1.70% 864.00 884.07
00256kb ● ● 0.25 0.24 5% 0.85% 0.97% 863.54 885.12
00512kb ● ● 0.25 0.24 6% 0.49% 0.60% 861.11 885.51
01024kb ● ● 0.22 0.22 1% 0.27% 0.41% 854.58 885.42
02048kb ● ● 0.08 0.02 72% 0.23% 0.32% 840.56 884.83
04096kb ● ● 0.06 0.02 59% 0.24% 0.27% 784.72 883.42
08192kb ● ● 0.06 0.02 63% 0.39% 0.24% 719.36 880.53
16384kb ● ● 0.06 0.02 62% 0.64% 0.21% 718.11 874.75
32768kb ● ● 0.07 0.02 65% 0.46% 0.19% 667.61 863.47
00016kb ● ● 1.16 1.14 1% 0.09% 0.18% 0.02 0.06
00032kb ● ● 1.14 1.09 5% 0.11% 5.66% 0.13 0.06
00064kb ● ● 0.12 0.14 14% 0.19% 3.10% 885.18 880.35
00128kb ● ● 0.12 0.14 14% 0.20% 1.71% 887.39 883.40
00256kb ● ● 0.12 0.14 13% 0.90% 0.98% 889.46 884.92
00512kb ● ● 0.12 0.14 13% 0.55% 0.60% 884.44 885.69
01024kb ● ● 0.10 0.18 69% 0.33% 0.42% 852.44 886.07
02048kb ● ● 0.04 0.01 79% 0.38% 0.32% 741.83 886.26
04096kb ● ● 0.02 0.01 67% 0.39% 0.27% 637.85 886.36
08192kb ● ● 0.03 0.01 69% 0.41% 0.25% 592.45 886.41
16384kb ● ● 0.03 0.01 71% 0.50% 0.24% 558.08 886.43
32768kb ● ● 0.03 0.01 74% 0.62% 0.23% 529.15 886.44

0.24 0.19 12% 0.11% 0.14% 8.42 5.25
29%

GeoMean
StDev

M
em

. S
to

re
 In

de
pe

nd
en

t

Characteristic

Ex
ec

ut
io

n
M

em
. L

oa
d

D
ep

en
de

nt
M

em
. L

oa
d

In
de

pe
nd

en
t

IPC Branch Miss L1 DATA MPKI

C
on

tro
l

D
ep

en
de

nc
y

Table 3.7 and Table 3.8 present the comparison in terms of IPC, branch miss ratio and
L1 data Misses per Kilo Instructions (MPKI) for the single-threaded microbenchmarks
running on the real Core 2 Duo and Sandy Bridge machine and with SiNUCA (sim). For
Core 2 Duo, the geometric mean of the absolute IPC difference for all the microbench-
marks is 12%, with a standard deviation of 29%. For Sandy Bridge, the geometric mean of
the absolute IPC difference for all the microbenchmarks is 6%, with a standard deviation
of 27%.

53

Table 3.8: Single-threaded microbenchmarks results for Sandy Bridge.

B
ra

n
ch

 P
re

d
ic

to
r

B
ra

n
ch

 M
is

s
 P

en
a

lt
y

In
-f

lig
h

t
B

ra
n

ch
e

s

R
eg

is
te

r
F

ile

F
u

n
ct

io
n

al
 U

n
it

s

L
1

C
ac

h
e

L
2

C
ac

h
e

L
L

C

D
R

A
M

P
re

fe
tc

h
er

Real Sim Diff Real Sim Real Sim Real Sim
Complex ● 1.81 2.61 44% 0.00% 0.00% 0.00 0.00 13.34 17.15
Conditional ● 3.00 3.00 0% 0.00% 0.00% 0.00 0.00 10.82 9.16
Random ● ● 0.96 0.97 1% 28.54% 28.57% 0.01 0.00 13.11 13.75
Small_bbl ● ● 3.00 3.00 0% 0.00% 0.00% 0.00 0.00 4.17 17.77
Switch ● 2.75 1.83 33% 0.00% 0.00% 0.00 0.00 4.45 10.92
Chain-1 ● 1.09 1.09 0% 0.00% 0.00% 0.00 0.00 4.78 21.16
Chain-2 ● 2.14 2.19 2% 0.00% 0.00% 0.00 0.00 1.77 11.37
Chain-3 ● 3.00 3.00 0% 0.00% 0.00% 0.00 0.00 3.94 8.23
Chain-4 ● 3.09 3.00 3% 0.00% 0.00% 0.00 0.00 3.48 8.72
Chain-5 ● 3.09 3.00 3% 0.00% 0.00% 0.00 0.00 5.56 8.23
Chain-6 ● 3.09 3.00 3% 0.00% 0.00% 0.00 0.00 8.74 8.23
FP-add ● 1.08 1.09 1% 0.01% 0.01% 0.01 0.00 10.82 10.93
FP-div ● 0.11 0.11 0% 0.04% 0.03% 0.03 0.02 26.52 24.76
FP-mul ● 1.08 1.09 1% 0.01% 0.01% 0.01 0.00 10.85 11.28
INT-add ● 3.09 3.00 3% 0.00% 0.00% 0.00 0.00 9.38 10.90
INT-div ● 0.03 0.03 19% 0.24% 0.28% 0.26 0.19 10.74 7.85
INT-mul ● 1.08 1.09 1% 0.01% 0.01% 0.01 0.01 5.38 5.31
00016kb ● 0.32 0.35 10% 2.64% 0.36% 0.28 0.22 1.03 0.91
00032kb ● 0.28 0.29 4% 0.18% 5.76% 15.89 15.62 1.15 1.06
00064kb ● 0.10 0.09 5% 0.21% 3.25% 874.63 880.29 3.45 3.29
00128kb ● 0.09 0.09 5% 1.83% 1.89% 875.07 882.01 3.55 3.37
00256kb ● 0.08 0.09 8% 0.91% 1.18% 873.41 882.66 4.19 3.44
00512kb ● 0.07 0.06 17% 0.57% 0.81% 868.48 882.60 4.81 5.12
01024kb ● 0.07 0.06 17% 0.39% 0.63% 859.70 881.76 4.84 5.14
02048kb ● 0.07 0.06 19% 0.32% 0.53% 842.57 879.76 4.85 5.14
04096kb ● 0.07 0.06 20% 0.28% 0.47% 810.86 875.64 4.90 5.15
08192kb ● 0.08 0.06 25% 0.26% 0.42% 752.75 867.50 4.93 5.16
16384kb ● 0.08 0.06 21% 0.24% 0.37% 658.64 851.88 5.55 5.21
32768kb ● 0.06 0.02 65% 0.23% 0.31% 528.70 823.22 7.91 14.98
00016kb ● ● 1.14 1.15 0% 0.08% 0.18% 0.12 0.10 0.61 0.71
00032kb ● ● 1.13 1.13 0% 0.09% 5.66% 0.19 0.11 0.61 0.71
00064kb ● ● 0.56 0.50 10% 0.10% 3.10% 880.57 881.87 1.25 1.49
00128kb ● ● 0.54 0.50 8% 0.10% 1.71% 882.16 884.11 1.27 1.49
00256kb ● ● 0.35 0.45 26% 0.85% 0.98% 881.68 885.16 1.97 1.67
00512kb ● ● 0.19 0.18 6% 0.48% 0.61% 879.48 885.55 3.69 4.00
01024kb ● ● 0.19 0.18 7% 0.30% 0.42% 875.49 885.47 3.73 4.06
02048kb ● ● 0.20 0.18 8% 0.22% 0.32% 867.18 884.87 3.74 4.05
04096kb ● ● 0.20 0.18 9% 0.19% 0.27% 852.45 883.47 3.77 4.06
08192kb ● ● 0.20 0.18 10% 0.18% 0.24% 821.45 880.57 3.80 4.02
16384kb ● ● 0.17 0.18 6% 0.19% 0.21% 765.52 874.80 4.60 4.04
32768kb ● ● 0.10 0.07 28% 0.19% 0.19% 674.21 863.52 8.68 10.43
00016kb ● ● 1.13 1.14 1% 0.08% 0.19% 0.12 0.10 0.61 0.66
00032kb ● ● 1.12 1.13 1% 0.09% 5.66% 0.26 0.11 0.61 0.99
00064kb ● ● 0.17 0.28 62% 0.11% 3.10% 1754.80 880.40 3.91 2.51
00128kb ● ● 0.17 0.28 65% 0.11% 1.71% 1759.56 883.44 3.99 2.51
00256kb ● ● 0.16 0.41 150% 0.85% 0.98% 1760.56 884.97 4.27 1.80
00512kb ● ● 0.12 0.18 45% 0.49% 0.61% 1756.31 885.73 5.78 3.79
01024kb ● ● 0.12 0.18 46% 0.31% 0.42% 1749.05 886.12 5.93 3.81
02048kb ● ● 0.12 0.18 44% 0.23% 0.32% 1733.53 886.31 5.94 3.83
04096kb ● ● 0.12 0.18 42% 0.19% 0.28% 1704.49 886.40 5.96 3.84
08192kb ● ● 0.13 0.18 38% 0.19% 0.25% 1645.38 886.45 5.98 3.84
16384kb ● ● 0.11 0.18 57% 0.20% 0.24% 1537.79 886.48 7.30 3.85
32768kb ● ● 0.08 0.02 72% 0.21% 0.23% 1357.70 886.49 17.11 28.56

0.34 0.34 6% 0.07% 0.14% 8.68 6.77 4.24 4.70
27%

GeoMean
StDev

Energy (Joules)

M
em

. S
to

re
 In

d
ep

en
de

nt

Characteristic IPC Branch Miss L1 Data MPKI

C
on

tr
ol

D
ep

en
de

nc
y

E
xe

cu
tio

n
M

em
. L

o
ad

 D
ep

en
de

nt
M

em
. L

o
ad

 In
d

ep
en

de
nt

Figure 3.2 depicts the IPC results for the real machines and the simulation.

Control benchmarks: Evaluating the control benchmark Small_ bbl, we conclude that
the maximum number of parallel predicted branches in execution inside the pipeline is
equal to 8. With the Random benchmark, we calculate the misprediction penalty as 20
cycles. For the other control benchmarks, we can observe the different behavior from our
PAs branch predictor to the real machine implementation.

Dependency benchmarks: Observing the behavior of dependency benchmarks, we can
notice that for Chain-1 and Chain-6 the simulation obtains very close results to the real
machines. Inside the simulator, all the dependencies are solved one cycle after the result
is available. For Chain-1, we can observe that the latency for data forwarding is modeled
correctly. However, the results from Chain-2 to Chain-5 show that the real machines have

54

Figure 3.2: Results for the single-threaded microbenchmarks.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50
C

om
pl

ex
C

on
di

tio
na

l
R

an
do

m
Sm

al
l_

bb
l

Sw
itc

h
C

ha
in

-1
C

ha
in

-2
C

ha
in

-3
C

ha
in

-4
C

ha
in

-5
C

ha
in

-6
FP

-a
dd

FP
-d

iv
FP

-m
ul

IN
T-

ad
d

IN
T-

di
v

IN
T-

m
ul

00
01

6k
b

00
03

2k
b

00
06

4k
b

00
12

8k
b

00
25

6k
b

00
51

2k
b

01
02

4k
b

02
04

8k
b

04
09

6k
b

08
19

2k
b

16
38

4k
b

32
76

8k
b

00
01

6k
b

00
03

2k
b

00
06

4k
b

00
12

8k
b

00
25

6k
b

00
51

2k
b

01
02

4k
b

02
04

8k
b

04
09

6k
b

08
19

2k
b

16
38

4k
b

32
76

8k
b

00
01

6k
b

00
03

2k
b

00
06

4k
b

00
12

8k
b

00
25

6k
b

00
51

2k
b

01
02

4k
b

02
04

8k
b

04
09

6k
b

08
19

2k
b

16
38

4k
b

32
76

8k
b

Control Dependency Execution Mem. Load Dependent Mem. Load Independent Mem. Store Independent

IP
C

Real Sim

(a) Core 2 Duo.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

C
o

m
p

le
x

C
o

n
di

tio
n

a
l

R
an

do
m

S
m

al
l_

bb
l

S
w

itc
h

C
ha

in
-1

C
ha

in
-2

C
ha

in
-3

C
ha

in
-4

C
ha

in
-5

C
ha

in
-6

F
P

-a
dd

F
P

-d
iv

F
P

-m
ul

IN
T

-a
dd

IN
T

-d
iv

IN
T

-m
u

l
00

01
6k

b
00

03
2k

b
00

06
4k

b
00

12
8k

b
00

25
6k

b
00

51
2k

b
01

02
4k

b
02

04
8k

b
04

09
6k

b
08

19
2k

b
16

38
4k

b
32

76
8k

b
00

01
6k

b
00

03
2k

b
00

06
4k

b
00

12
8k

b
00

25
6k

b
00

51
2k

b
01

02
4k

b
02

04
8k

b
04

09
6k

b
08

19
2k

b
16

38
4k

b
32

76
8k

b
00

01
6k

b
00

03
2k

b
00

06
4k

b
00

12
8k

b
00

25
6k

b
00

51
2k

b
01

02
4k

b
02

04
8k

b
04

09
6k

b
08

19
2k

b
16

38
4k

b
32

76
8k

b

Control Dependency Execution Mem. Load Dependent Mem. Load Independent Mem. Store Independent

IP
C

Real Sim

(b) Sandy Bridge.

a limited maximum number of data forwardings per cycle. For Chain-6, the instruction
parallelism is high enough to hide this bottleneck.

Execution benchmarks: Although we obtained very accurate results for the integer and
floating point applications (less than 4% of difference), we notice that INT-div has a very
low IPC, which is caused by the high latency of the functional unit. Due to the low IPC,
the performance difference is high compared to the simulation.

Memory benchmarks: For the memory benchmarks, the execution of the 16 KB sized
benchmarks requires 8 repetitions to access the full vector. This happens because inside
the application, it was modeled in such a way that every element is in a different cache line
(64 bytes), and each loop repetition has 32 memory accesses. In the same way, the 32 KB
vector size requires 16 repetitions. The increase in the number of repetitions leads to
different behavior from the branch predictor. Since we do not implement a loop predictor,
the PAs predictor requires a signature size of 16 bits to correctly predict a pattern of 16
takens and 1 not taken, such as the one present when accessing 32 KB.

We also notice that the prefetcher has a great influence for the memory benchmarks
with 16 KB and 32 KB vector sizes. This is because an aggressive prefetch can start
trashing useful data from the L1 data cache.

We can notice that memory applications that stress the DRAM have a lower perfor-
mance inside the simulator. This can be caused by possible improvements in the memory
controller system in the real machine, such as priority schemes for the memory requests.

For the Memory Store Independent results on Sandy Bridge, we consider that the real
processor counts every store miss twice, one being a write miss and also a read miss,

55

while our simulator counts only the write miss. This explains that the number of misses
per thousand instructions is higher than one thousand. Dividing the obtained number of
L1 MPKI for the real machine would give us a reasonable approximation of the real L1
MPKI number, which also matches the simulator results.

3.4.2.2 Multi-Threaded Microbenchmarks

Table 3.9: Multi-threaded microbenchmarks results for Core 2 Duo.

Real Sim Diff Real Sim Real Sim

barrier_all_together 1.11 1.56 41% 0.00 0.00 0.01 0.02
barrier_master_slow 1.92 2.52 31% 0.00 0.00 0.01 0.00
critical 1.19 1.53 28% 0.00 0.00 0.06 0.02
false_sharing_pad00 0.66 0.57 14% 0.00 0.00 0.02 0.01
false_sharing_pad08 0.66 0.57 14% 0.00 0.00 0.02 0.01
false_sharing_pad24 0.66 0.80 21% 0.00 0.00 0.02 0.01
false_sharing_pad56 0.66 0.80 21% 0.00 0.00 0.02 0.01
GeoMean 0.90 1.03 23% 0.00 0.00 0.02 0.01
StDev 10%

barrier_all_together 0.52 0.77 48% 0.01 0.00 12.50 38.01
barrier_master_slow 0.89 1.23 38% 0.00 0.00 5.22 4.39
critical 0.46 0.76 63% 0.01 0.00 13.88 65.90
false_sharing_pad00 0.10 0.27 180% 0.00 0.00 224.85 385.55
false_sharing_pad08 0.14 0.27 95% 0.00 0.00 193.96 399.95
false_sharing_pad24 0.44 0.43 1% 0.00 0.00 144.41 185.98
false_sharing_pad56 0.66 0.76 14% 0.00 0.00 0.01 0.01
GeoMean 0.36 0.56 30% 0.00 0.00 13.55 23.30
StDev 60%

1
T

hr
ea

d
2

T
hr

ea
ds

Average IPC Branch Miss L1 DATA MPKI

0 1 2 3
Avg. IPC

Real Sim

Table 3.10: Multi-threaded microbenchmarks results for Sandy Bridge.

Real Sim Diff Real Sim Real Sim Real Sim

barrier_all_together 1.42 1.69 19% 0.00 0.00 0.01 0.00 3.39 1.39
barrier_master_slow 2.09 2.58 23% 0.00 0.00 0.00 0.00 7.22 5.16
critical 1.51 1.61 7% 0.00 0.00 0.02 0.00 2.29 1.46
false_sharing_pad00 0.59 0.67 12% 0.00 0.00 0.01 0.00 11.53 10.49
false_sharing_pad08 0.62 0.67 8% 0.00 0.00 0.01 0.00 10.91 10.15
false_sharing_pad24 0.62 0.67 8% 0.00 0.00 0.01 0.00 10.88 10.15
false_sharing_pad56 0.62 0.67 8% 0.00 0.00 0.01 0.00 10.93 11.72
GeoMean 0.94 1.05 11% 0.00 0.00 0.01 0.00 7.02 5.39
StDev 7%

barrier_all_together 0.25 0.86 247% 0.00 0.00 14.05 12.51 4.79 0.87
barrier_master_slow 0.46 1.27 177% 0.00 0.00 7.04 2.64 6.67 2.76
critical 0.23 0.82 253% 0.00 0.00 17.13 17.35 5.64 0.91
false_sharing_pad00 0.17 0.17 2% 0.00 0.00 19.68 291.65 10.63 19.78
false_sharing_pad08 0.20 0.18 13% 0.00 0.00 16.58 243.93 9.43 19.33
false_sharing_pad24 0.24 0.18 28% 0.00 0.00 12.44 244.43 7.96 20.75
false_sharing_pad56 0.63 0.64 2% 0.00 0.00 0.02 0.00 6.26 7.17
GeoMean 0.28 0.44 28% 0.00 0.00 5.45 10.25 7.09 5.35
StDev 117%

barrier_all_together 0.19 0.44 124% 0.01 0.00 12.27 32.66 4.52 0.55
barrier_master_slow 0.27 0.63 133% 0.00 0.00 9.05 8.00 5.49 1.49
critical 0.20 0.38 87% 0.01 0.02 13.18 43.93 5.98 0.64
false_sharing_pad00 0.10 0.12 16% 0.00 0.00 24.99 383.32 12.89 15.07
false_sharing_pad08 0.12 0.08 30% 0.00 0.00 23.30 281.43 10.05 22.13
false_sharing_pad24 0.19 0.16 13% 0.00 0.00 19.43 222.61 7.33 12.83
false_sharing_pad56 0.62 0.60 5% 0.00 0.00 0.03 0.00 3.94 4.81
GeoMean 0.20 0.27 33% 0.00 0.00 6.43 16.94 6.62 3.77
StDev 55%

barrier_all_together 0.17 0.21 23% 0.00 0.00 9.34 54.50 4.66 0.40
barrier_master_slow 0.19 0.31 60% 0.00 0.00 8.75 16.22 4.82 0.85
critical 0.16 0.22 35% 0.01 0.02 10.40 68.88 7.36 0.41
false_sharing_pad00 0.07 0.08 24% 0.00 0.00 27.51 305.18 15.01 10.36
false_sharing_pad08 0.10 0.16 67% 0.00 0.00 25.52 178.06 10.52 5.35
false_sharing_pad24 0.16 0.51 225% 0.00 0.00 20.58 0.00 7.17 1.72
false_sharing_pad56 0.61 0.50 18% 0.00 0.00 0.12 0.01 2.81 2.86
GeoMean 0.17 0.24 44% 0.00 0.00 7.59 5.08 6.56 1.68
StDev 73%

2
 T

h
re

a
d

s
4

 T
h

re
a

d
s

8
 T

h
re

a
d

s

Average IPC Energy (Joules)Branch Miss L1 DATA MPKI

1
 T

h
re

a
d

0 1 2 3
Avg. IPC

Real Sim

56

Table 3.9 presents the comparison for the multi-threaded microbenchmarks running
on the real Core 2 Duo machine and with SiNUCA. The table shows the average IPC
between the cores, the branch miss ratio and L1 data MPKI. The geometric mean of the
absolute IPC difference for 1 thread execution is 23%, with a standard deviation of 10%,
the difference for 2 threads execution is 30% with a standard deviation of 60%.

Table 3.10 presents the comparison for the multi-threaded microbenchmarks running
on the real Sandy Bridge machine and with SiNUCA. The table shows the average IPC
between the cores, the branch miss ratio, L1 data MPKI and also the energy consumption.
The geometric mean of the absolute IPC difference for 1, 2, 4 and 8 threads are 11%,
28%, 33%, 44%, with standard deviations of 7%, 117%, 55 % and 73% respectively.

The parallel benchmarks have a simple code, formed by easy to predict loops, making
the number of branch mispredictions close to zero.

The False Sharing application presents the higher numbers of L1 MPKI, where our
evaluations changing the pad size, reduces the L1 MPKI as less threads falsely share the
same cache line. The L1 MPKI difference between the real processor and SiNUCA is
partially explained by the possible differences in the directory line lock policy, where the
real machine could give the control of the cache line for a single core for a longer period of
time, in order to reduce the successive cache line invalidations. Considering that for this
application multiple cache-to-cache operations can occur during cache misses, the real
machine can account those misses in a different manner, however no detailed information
about the implementation of the hardware counters is available.

During the execution on the simulator of the 8 threaded False Sharing application with
a 24 bytes padding, the first L1 caches to request the shared cache line obtained the lock
on the directory for most of the time until these threads finish executing. Only then, the
other threads can continue their execution, leading to a higher average IPC and a reduced
L1 MPKI on the simulator.

3.4.2.3 Commercial Workloads

Figure 3.3 presents the IPC for the SPEC-CPU2006 benchmark suite running on the
Core 2 Duo and Sandy Bridge machines. For the Core 2 Duo, the geometric mean of IPC
difference is 19% for all suite, with a standard deviation of 27%. For Sandy Bridge ma-
chine, the geometric mean of IPC difference is 12% for all suite, with a standard deviation
of 16%.

For the SPEC-CPU2006 benchmarks, the major source of difference was the branch
predictor (see Appendix A). We could see that applications behave differently when
switching between PAs and GAs branch predictors, in such way that a hybrid predictor is
being considered to reduce the gap between the real and simulator difference.

Figure 3.4 presents the speed-up for the SPEC-OMP2001 benchmark suite running
on Core 2 Duo and Sandy Bridge machines. For the Core 2 Duo, the geometric mean of
speed-up difference is 6% for these applications executing with 2 threads, with a standard
deviation of 10% for all suite applications. For the Sandy Bridge, the geometric mean of
speed-up difference for 2, 4 and 8 threads are 10%, 27%, 41%, with standard deviations
of 17%, 55%, 70% respectively.

Figure 3.5 presents the speed-up for the NAS-NPB benchmark suite running on the
Core 2 Duo and Sandy Bridge machine. For Core 2 Duo, the geometric mean of speed-up
difference is 7% for these applications using 2 threads, with a standard deviation of 8%
for all suite applications. For Sandy Bridge, the geometric mean of speed-up difference

57

Figure 3.3: Results for the SPEC-CPU2006 suite.

0.00

0.50

1.00

1.50

2.00

2.50

as
ta

r

bz
ip

2

gc
c

go
bm

k

h2
64

re
f

hm
m

er

lib
qu

an
tu

m

m
cf

om
ne

tp
p

pe
rlb

en
ch

sj
en

g

xa
la

nc
bm

k

G
eo

M
ea

n

bw
av

es

ca
ct

us
AD

M

ca
lc

ul
ix

de
al

II

ga
m

es
s

G
em

sF
D

TD

gr
om

ac
s

lb
m

le
sl

ie
3d m
ilc

na
m

d

po
vr

ay

so
pl

ex

sp
hi

nx
3

to
nt

o

w
rf

ze
us

m
p

G
eo

M
ea

n

G
eo

M
ea

n

SPEC-CPU2006 - CINT SPEC-CPU2006 - CFP *

IP
C

Real Sim

(a) Core 2 Duo.

0.00

0.50

1.00

1.50

2.00

2.50

as
ta

r

bz
ip

2

gc
c

go
bm

k

h2
64

re
f

hm
m

er

lib
qu

an
tu

m

m
cf

om
ne

tp
p

pe
rlb

en
ch

sj
en

g

xa
la

nc
bm

k

G
eo

M
ea

n

bw
av

es

ca
ct

us
AD

M

ca
lc

ul
ix

de
al

II

ga
m

es
s

G
em

sF
D

TD

gr
om

ac
s

lb
m

le
sl

ie
3d m
ilc

na
m

d

po
vr

ay

so
pl

ex

sp
hi

nx
3

to
nt

o

w
rf

ze
us

m
p

G
eo

M
ea

n

G
eo

M
ea

n

SPEC-CPU2006 - CINT SPEC-CPU2006 - CFP *

IP
C

Real Sim

(b) Sandy Bridge.

for 2, 4 and 8 threads are 6%, 19%, 23% with standard deviations of 5%, 23% and 58%,
respectively.

It is possible to observe that the speedup and IPC results for 2 threads have a lower
difference between the real and simulated processor, compared to an increasing number of
threads. As the number of threads increases, the synchronization has an increased effect
on the execution time. This difference can change the threads lock priority, the cache
misses that each thread causes, and others.

3.4.3 Sources of Difference

There are multiple sources of difference between SiNUCA and the real processor,
because commercial processors have undisclosed details which we tried to approximate.
However, we believe that the main differences were caused by the following components:

Branch Predictor: The first source of differences regarding the two-level branch predic-
tor implemented inside SiNUCA is that this well known mechanism is not guaranteed to
be exactly the same as the one implemented in a real machine. Since this mechanism’s
prediction is sensitive to its implementation, small implementation differences can lead
to different predictions.

During branch mispredictions, the simulator stops fetching new instructions until the
branch is solved. However, in a real machine, the processor would continue fetching and
executing instructions until detection of a misprediction causes a rollback. In such cases,

58

Figure 3.4: Results for the SPEC-OMP2001 suite.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

ap
pl

u.
M

ap
si

.M
fm

a3
d.

M
ga

lg
el

.M
m

gr
id

.M
sw

im
.M

w
up

w
is

e.
M

G
eo

M
ea

n

2 Threads

Sp
ee

du
p

Real Sim

(a) Core 2 Duo.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

ap
pl

u.
M

ap
si

.M
fm

a3
d.

M
ga

lg
el

.M
m

gr
id

.M
sw

im
.M

w
up

w
is

e.
M

G
eo

M
ea

n
ap

pl
u.

M
ap

si
.M

fm
a3

d.
M

ga
lg

el
.M

m
gr

id
.M

sw
im

.M
w

up
w

is
e.

M
G

eo
M

ea
n

ap
pl

u.
M

ap
si

.M
fm

a3
d.

M
ga

lg
el

.M
m

gr
id

.M
sw

im
.M

w
up

w
is

e.
M

G
eo

M
ea

n

2 Threads 4 Threads 8 Threads

Sp
ee

du
p

Real Sim

(b) Sandy Bridge.

Figure 3.5: Results for the NAS-NPB suite.

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60
1.80
2.00

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
G

eo
M

ea
n

2 Threads

Sp
ee

du
p

Real Sim

(a) Core 2 Duo.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
G

eo
M

ea
n

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
G

eo
M

ea
n

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
G

eo
M

ea
n

2 Threads 4 Threads 8 Threads

Sp
ee

du
p

Real Sim

(b) Sandy Bridge.

the cache memory can be in a different state, since the wrong path may perform memory
loads. These operations will change the cache state.

Functional Units: The real machine contention in the number of ports connecting the
reservation station and functional units is not modeled inside SiNUCA, thus representing
a source of inaccuracy.

Additionally, the latencies for instructions that use the same functional unit can vary
in a real machine depending on the type of the operands and their precisions. However,
inside SiNUCA, the execution latencies are defined by the functional unit used, and not by
the instruction itself. Such modification in the simulator would be impractical since there
are hundreds of instructions inside the x86-64 Instruction Set Architecture (ISA). Thus,
latencies for single precision and double precision floating point are the same. The laten-
cies configured for our evaluations were chosen to take into account that most benchmarks
use double precision floating point.

Memory Disambiguation: A real processor memory disambiguation unit can cause dif-
ferences in the performance. However, the implementation details for this unit are un-
known for commercial processors, and this could cause performance differences when

59

comparing the simulator to the real machine (DOWECK, 2006). During our experiments,
perfect disambiguation was modeled, enabling reads to be scheduled before writes, as
long as the operation addresses do not overlap.

Translation Lookaside Buffer: Although the Translation Look-aside Buffer (TLB) is
present in most real processors, SiNUCA does not implement this component. This sim-
plification was made because we consider that for most of the benchmarks this component
would not influence performance. However the energy consumption of this component
was fully modeled, considering the number of L1 accesses.

A second source of difference that can be caused by the address translation, is the
different virtual to physical address mapping present in the real and simulated processor.
Any different address mapping can cause different cache statistics. However, it is ex-
pected that the general behavior of the cache system would be the same, even for different
address mappings.

Cache Prefetcher: The memory prefetching algorithms implemented in SiNUCA are
well known techniques presented in multiple papers. However, the information about the
real processor prefetcher is missing some details. Thus, it is not guaranteed that the simu-
lated prefetchers would perform exactly the same as the real machine. This difference also
happens because small changes in the prefetcher parameters, such as number of strides,
can cause a high impact on the final MPKI.

Trace Cache: The real machine used in our experiments has a trace instruction cache,
which reduces the fetch and decode latency when executing loops. Such mechanism
is also able to reduce the energy consumption. However, it is not yet implemented in
SiNUCA.

Cache Memories: Different MSHR scheduling policies can lead to different performance
results. If the policy gives priority to processor load requests over the prefetches or over
write transactions, this can generate different performance results. The actual policy im-
plemented in SiNUCA is based on First-Come First-Serve (FCFS). This policy is only not
respected when the request corresponds to a cache line that is locked in the directory by
another cache, in this case the cache serves the next oldest request.

Memory Controller: The memory controller details in a real hardware were simplified
in the SiNUCA implementation, in such a way that the main operations would perform in
the same way, but some corner cases can perform differently. However, most of the DDR
latencies are being simulated, such as Added Latency for column accesses (AL), Column
Address Strobe (CAS), Column to Column Delay (CCD), Column Write Delay (CWD),
Four row Activation Window (FAW), Row Address Strobe (RAS), Row Cycle (RC), RAS
to CAS Delay (RCD), Row Precharge (RP), Row to Row activation Delay (RRD), Read
To Precharge (RTP), Write To Read delay time (WR) and Write Recovery time (WTR).

The memory scheduling policy can also cause performance differences, depending on
the real hardware implementation. For our experiments, the simple open-row first policy
was used.

General Parameters: Parameters, such as the size of internal buffers, size of tables and
number of bits used for branch predictors and prefetchers may affect the final performance
of a system in different ways. Considering that most of the processor internals are intel-
lectual property, the internal parameters are not public. Such unknown parameters were
modeled considering a balanced design and also considering the parameters commonly
used in papers from main conferences.

60

Operating System Interference: The traces generated to feed the simulator are always
generated considering only the application instructions. No operating system instructions
are tracked. The lack of operating system in our traces guarantee that only the application
behavior will interfere in the final performance, without external noise.

Multi-Thread synchronization: OpenMP offers three thread wait policies (active, pas-
sive and hybrid wait). For the active wait, it uses a spin lock to keep the threads running
waiting in the barrier. The passive wait automatically puts the thread to sleep when it
reaches any barrier. The hybrid wait policy offers a balanced design which makes the
threads wait actively for a period of time before the thread is sent to sleep.

For multi-threaded benchmarks, the simulator respects the synchronization barriers
and atomic points. However, it does not simulate active wait nor the sleep and wake-up in-
structions from the OS. We observed in our experiments that when using the passive wait
policy, the fact of not simulating the sleep/wakeup instructions could cause differences
in our multi-threaded microbenchmarks. In order to reduce this source of difference, the
hybrid OpenMP wait policy was used during our evaluations.

3.4.4 Simulator Performance

The results regarding the simulator performance refer to how fast the traces can be
simulated. For this evaluation, all the benchmarks from SPEC-CPU2006 and SPEC-
OMP2001 suites were simulated with SiNUCA modeling a Sandy Bridge processor, exe-
cuting on a real Intel Sandy Bridge machine.

Figure 3.6: Sandy Bridge simulation performance for the SPEC-CPU2006 suite.

0

100

200

300

400

500

600

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
er

lib
qu

an
tu

m
m

cf
om

ne
tp

p
pe

rlb
en

ch
sj

en
g

xa
la

nc
bm

k
Av

er
ag

e
bw

av
es

ca
ct

us
AD

M
ca

lc
ul

ix
de

al
II

ga
m

es
s

G
em

sF
D

TD
gr

om
ac

s
lb

m
le

sl
ie

3d m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

Av
er

ag
e

Av
er

ag
e

SPEC-CPU2006 - CINT SPEC-CPU2006 - CFP *

R
el

at
ive

 P
er

fo
rm

an
ce

KHz KIPS

Figure 3.6 presents the simulator performance when executing the SPEC-CPU2006
applications. It is possible to see that SiNUCA varies from 100 to 400 Kilo Instructions
per Second (KIPS), with an average of 250 KIPS. Considering the number of cycles be-
ing simulated and the simulation time, we obtain the maximum frequency at which our
simulator simulates the processor clock, which varies from 170 kHz to 530 kHz, with an
average of 270 kHz.

To evaluate the performance when simulating multi-threaded benchmarks, Figure 3.7
presents the SPEC-OMP2001 simulation performance results for different numbers of
threads. The KIPS varies from 75 to 330, and the simulation frequency varies from 25 to
420 kHz.

61

Figure 3.7: Sandy Bridge simulation performance for the SPEC-OMP2001 suite.

0

50

100

150

200

250

300

350

400

a
pp

lu

a
ps

i

fm
a3

d

g
al

ge
l

m
g

ri
d

sw
im

w
up

w
is

e

A
ve

ra
g

e

K
IP

S

1 Thread 2 Threads

4 Threads 8 Threads

0

50

100

150

200

250

300

350

400

450

a
pp

lu

a
ps

i

fm
a

3
d

ga
lg

e
l

m
g

ri
d

sw
im

w
up

w
is

e

A
ve

ra
g

e

K
H

z

1 Thread 2 Threads
4 Threads 8 Threads

Although the increase on number of threads reduces the cycles simulated per second,
SiNUCA keeps the number of instructions simulated at the same level (200 KIPS).

To give one example of the simulator performance, to execute a single threaded bench-
mark with 200 million instructions with SiNUCA takes on average only 14 minutes. To
simulate 8 threads executing 200 million instructions each, takes on average 19 minutes.
Such performance enables the user to perform multiple experiments in a reasonable time,
eliminating a very common problem in computer architecture evaluations.

3.5 Summary

We presented SiNUCA, a performance and energy validated simulator, which is in-
tegrated with McPAT to enable energy modeling. It supports simulation of emerging
techniques and it is easy to extend.

Our validation process shows an average difference on performance of 12% for single-
threaded and 26% for multi-threaded microbenchmarks when simulating the Core-2Duo
machine. An average difference on performance of 6% for single-threaded and 29% for
multi-threaded benchmarks when simulating a Sandy Bridge architecture.

Considering the energy modeling using McPAT together with our simulator, we ob-
tain an average difference of 18% for single-threaded and 46 % for multi-threaded mi-
crobenchmarks related to energy consumption when modeling the Sandy Bridge architec-
ture.

The results regarding the simulator performance show that SiNUCA enables com-
puter architects to evaluate new techniques in a reasonable time, simulating at 270 kHz
(250 KIPS) on average.

62

63

4 DEAD SUB-BLOCK PREDICTOR (DSBP)

As explained in Section 2.1, energy inefficiency occurs on two levels: 1) on the cache
line level, where a line is kept alive in the cache for much longer than it is needed, and 2)
on the sub-block level, when parts of a cache line which will never be used are brought
into the cache, and also when active sub-blocks become dead after a few accesses but are
kept alive until the line is evicted.

Prior work has made attempts at achieving these benefits by, for example, predicting
when a line is last accessed, and then powering it off (KAXIRAS; HU; MARTONOSI,
2001; ABELLA et al., 2005). On the sub-block level a prior work presented a mechanism
(CHEN et al., 2004) that only brings into the cache the useful sub-blocks. In this chapter,
we show that turning off dead sub-blocks can significantly improve energy savings in
the cache hierarchy. In fact, by considering sub-block usage patterns, our mechanism
increases the potential for energy savings compared to a perfect hypothetical mechanism
that turns off an entire cache line immediately after it is last accessed.

We propose the Dead Sub-Block Predictor (DSBP) (ALVES et al., 2012) to improve
energy efficiency of cache memories. DSBP uses recent history information to predict
which sub-block(s) will be useful and how many accesses each sub-block will receive
before it becomes dead. DSBP’s main goal is to reduce dynamic and static energy con-
sumption by bringing only useful sub-blocks into the cache, and also by turning off active
sub-blocks after their predicted number of accesses. We also use DSBP to improve the
existing cache replacement policy by prioritizing dead lines (that is, cache lines with all
sub-blocks turned off) for eviction. We find that this policy effectively offsets the addi-
tional cache misses DSBP may cause when it mispredicts the usage pattern of a cache
line.

The main contributions of the DSBP mechanism are:

Sub-block usage predictor: We present a mechanism to predict and allocate only the
useful sub-blocks of each cache line. Unlike prior work, which requires an access to the
prediction table after each cache line access, we access the predictor structure only when
the mechanism is training a new usage pattern. On average, our mechanism accesses its
global structure on only 60% of the cache memory accesses.

Dead sub-block predictor: Our mechanism also predicts when each sub-block inside a
cache line becomes dead. To our knowledge, this is the first usage predictor that acts on a
sub-block level, turning off dead sub-blocks and saving 36% energy on average compared
to a traditional cache design.

Earlier eviction of dead lines: Our mechanism improves the cache replacement algo-
rithm. The sub-block predictor gives feedback to the replacement algorithm by marking
dead lines as future victim lines as soon as they become dead.

64

Figure 4.1: Scenario with low cache sub-block usage.

for (i=0; i<10000; i++){
if (record[i].ID == 100){

break;
}

}

(a) Code example.

... key age ID

... key age ID

... key age ID

..
.

key age ID

Record Structure

Fields

...

List of
Entries

Record 0

Record 1

Record 2

Record N

..
.

(b) Data structure layout in memory.

... key age ID

Tag Data

... key age ID

... key age ID

...

Sub-Blocks

Used
Sub-Blocks

Cache
Lines

8250

8250

8250

..
.

..
.

Index n

Index n+1

Index n+2

...

(c) Cache memory, way number 0.

4.1 Motivation

We present an example that illustrates the need for sub-block level cache manage-
ment, and we also present statistics about cache line usage for different benchmark appli-
cations from the SPEC-CPU2006, SPEC-OMP2001 and NAS-NPB suites, presented in
Section 3.3. The results are based on experiments simulating a Sandy Bridge machine,
using an 8 byte sub-block size on the cache memories. Further simulation details can be
found in Section 4.3.

During program execution, cache lines typically have a low sub-block usage. As
an example, consider the code fragment shown in Figure 4.2(a). The memory access
behavior of this code is illustrated in Figure 4.1. The code iterates over a list of records,
searching for the record whose ID is equal to 100. Each record contains several fields and
occupies 64 bytes, as shown in Figure 4.2(b). The code accesses only the ID field of each
record, and therefore only that field is accessed by the processor. However, traditional
caches will bring in all fields of each record as shown in Figure 4.2(c). Only the sub-
blocks which store the ID field are useful, while the other sub-blocks remain unused until
the line is evicted, resulting in considerable energy waste.

4.1.1 Cache Line Usage on the Sub-Block Level

Figure 4.2 shows how cache lines of 64 bytes are used at the sub-block granularity of
8 bytes per block for the L1, L2 and LLC across multiple benchmark suites. For example,
looking at the leftmost bar from Figure 4.3(a), one can see that 38% of L1 cache lines were
evicted with only one sub-block accessed (for the astar application from SPEC-CPU2006
integer). The average number of sub-blocks accessed in a cache line for each application
is presented at the top of each bar. We can therefore conclude that a significant number
of cache sub-blocks that are brought into the cache are never used, thereby wasting cache
energy, capacity and bandwidth.

65

Figure 4.2: Number of sub-blocks accessed per cache line.

40
%

26
%

44
%

63
%

84
%

96
%

85
%

33
%

30
%

35
%

40
%

62
%

42
%

47
%

99
%

96
%

69
%

40
%

38
%

41
%

30
%

95
%

80
%

98
%

37
%

79
%

81
%

89
%

93
%

68
%

62
%

99
%

81
%

57
%

99
%

99
%

10
0%

10
0%

93
%

92
%

33
%

99
%

48
%

97
%

99
%

87
%

87
%

82
%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
er

lib
qu

an
tu

m
m

cf
om

ne
tp

p
pe

rlb
en

ch
sj

en
g

xa
la

nc
bm

k
Av

er
ag

e
bw

av
es

ca
ct

us
AD

M
ca

lc
ul

ix
de

al
II

ga
m

es
s

G
em

sF
D

TD
gr

om
ac

s
lb

m
le

sl
ie

3d m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

Av
er

ag
e

ap
pl

u.
M

ap
si

.M
fm

a3
d.

M
ga

lg
el

.M
m

gr
id

.M
sw

im
.M

w
up

w
is

e.
M

Av
er

ag
e

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
Av

er
ag

e
Av

er
ag

e

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

C
ac

he
 L

in
es

 E
vic

te
d

(%
)

Average of Line Usage

8
7
6
5
4
3
2
1

Su
b-

bl
oc

ks
 A

cc
es

se
d

(a) L1 cache.

49
%

52
%

72
%

75
%

89
%

98
%

87
%

42
%

40
%

60
%

32
%

73
%

53
%

10
0%

96
%

99
%

86
%

87
%

60
%

86
%

74
%

96
%

84
%

99
%

65
%

87
%

89
%

86
%

94
%

94
%

84
%

10
0%

99
%

71
%

96
%

98
%

10
0%

10
0%

95
%

97
%

10
0%

95
%

98
%

99
%

10
0%

94
%

97
%

90
%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
er

lib
qu

an
tu

m
m

cf
om

ne
tp

p
pe

rlb
en

ch
sj

en
g

xa
la

nc
bm

k
Av

er
ag

e
bw

av
es

ca
ct

us
AD

M
ca

lc
ul

ix
de

al
II

ga
m

es
s

G
em

sF
D

TD
gr

om
ac

s
lb

m
le

sl
ie

3d m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

Av
er

ag
e

ap
pl

u.
M

ap
si

.M
fm

a3
d.

M
ga

lg
el

.M
m

gr
id

.M
sw

im
.M

w
up

w
is

e.
M

Av
er

ag
e

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
Av

er
ag

e
Av

er
ag

e

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

C
ac

he
 L

in
es

 E
vic

te
d

(%
)

Average of Line Usage

8
7
6
5
4
3
2
1

Su
b-

bl
oc

ks
 A

cc
es

se
d

(b) L2 cache.

67
%

10
0%

79
%

69
%

92
%

99
%

87
%

66
%

48
%

77
%

27
%

90
%

72
%

10
0%

96
%

10
0%

97
%

96
%

75
%

98
%

99
%

99
%

84
%

99
%

82
%

93
%

94
%

90
%

98
%

97
%

91
%

10
0%

10
0%

72
%

10
0%

99
%

10
0%

10
0%

95
%

99
%

10
0%

10
0%

10
0%

99
%

10
0%

99
%

10
0%

94
%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
er

lib
qu

an
tu

m
m

cf
om

ne
tp

p
pe

rlb
en

ch
sj

en
g

xa
la

nc
bm

k
Av

er
ag

e
bw

av
es

ca
ct

us
AD

M
ca

lc
ul

ix
de

al
II

ga
m

es
s

G
em

sF
D

TD
gr

om
ac

s
lb

m
le

sl
ie

3d m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

Av
er

ag
e

ap
pl

u.
M

ap
si

.M
fm

a3
d.

M
ga

lg
el

.M
m

gr
id

.M
sw

im
.M

w
up

w
is

e.
M

Av
er

ag
e

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
Av

er
ag

e
Av

er
ag

e

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

C
ac

he
 L

in
es

 E
vic

te
d

(%
)

Average of Line Usage

8
7
6
5
4
3
2
1

Su
b-

bl
oc

ks
 A

cc
es

se
d

(c) LLC cache.

We can observe that the percentage of cache line usage increases over the cache levels,
from the L1 to the LLC. It happens because the line stays for a longer time in the lower
level caches (closer to the main memory) than in the higher level caches (closer to the
processor). This means that cache lines present in the LLC have a higher probability of
being completely accessed.

Comparing the single and multi-threading benchmarks, we can see that the usage is
higher for the multi-threaded. This happens because the scientific applications act more
well behaved (for example, accessing all the elements of the matrix).

66

Figure 4.3: Number of sub-block accesses before cache line eviction.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
as

ta
r

bz
ip

2
gc

c
go

bm
k

h2
64

re
f

hm
m

e
r

lib
q

ua
n

tu
m

m
cf

om
ne

tp
p

pe
rlb

e
nc

h
sj

e
ng

xa
la

nc
bm

k
A

ve
ra

ge
bw

av
es

ca
ct

us
A

D
M

ca
lc

u
lix

de
al

II
ga

m
es

s
G

em
sF

D
T

D
gr

om
ac

s
lb

m
le

sl
ie

3d
m

ilc
na

m
d

po
vr

ay
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
ze

us
m

p
A

ve
ra

ge
ap

pl
u.

M
ap

si
.M

fm
a3

d
.M

ga
lg

el
.M

m
g

rid
.M

sw
im

.M
w

u
pw

is
e

.M
A

ve
ra

ge
bt

.A
cg

.A
ft.

A
is

.A
lu

.A
m

g
.A

sp
.A

A
ve

ra
ge

A
ve

ra
ge

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

S
ub

-b
lo

ck
 E

vi
ct

ed
 (

%
) 8...

4...7

2...3

1

0

A
cc

um
ul

at
ed

 A
cc

es
se

s

(a) L1 cache.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
e

r
lib

q
ua

n
tu

m
m

cf
om

ne
tp

p
pe

rlb
e

nc
h

sj
e

ng
xa

la
nc

bm
k

A
ve

ra
ge

bw
av

es
ca

ct
us

A
D

M
ca

lc
u

lix
de

al
II

ga
m

es
s

G
em

sF
D

T
D

gr
om

ac
s

lb
m

le
sl

ie
3d

m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

A
ve

ra
ge

ap
pl

u.
M

ap
si

.M
fm

a3
d

.M
ga

lg
el

.M
m

g
rid

.M
sw

im
.M

w
u

pw
is

e
.M

A
ve

ra
ge

bt
.A

cg
.A

ft.
A

is
.A

lu
.A

m
g

.A
sp

.A
A

ve
ra

ge
A

ve
ra

ge

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

S
ub

-b
lo

ck
 E

vi
ct

ed
 (

%
) 8...

4...7

2...3

1

0

A
cc
u
m
u
la
te
d
 A
cc
e
ss
es

(b) L2 cache.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
e

r
lib

q
ua

n
tu

m
m

cf
om

ne
tp

p
pe

rlb
e

nc
h

sj
e

ng
xa

la
nc

bm
k

A
ve

ra
ge

bw
av

es
ca

ct
us

A
D

M
ca

lc
u

lix
de

al
II

ga
m

es
s

G
em

sF
D

T
D

gr
om

ac
s

lb
m

le
sl

ie
3d

m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

A
ve

ra
ge

ap
pl

u.
M

ap
si

.M
fm

a3
d

.M
ga

lg
el

.M
m

g
rid

.M
sw

im
.M

w
u

pw
is

e
.M

A
ve

ra
ge

bt
.A

cg
.A

ft.
A

is
.A

lu
.A

m
g

.A
sp

.A
A

ve
ra

ge
A

ve
ra

ge

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

S
ub

-b
lo

ck
 E

vi
ct

ed
 (

%
) 8...

4...7

2...3

1

0

A
cc
u
m
u
la
te
d
 A
cc
e
ss
es

(c) LLC cache.

Figure 4.3 shows the number of accesses a sub-block receives before the line is evicted
from the L1, L2 and LLC. The figure shows that, on average for the L1 data cache, 18%
of the sub-blocks are never used, and about 68% of sub-blocks are used between one and
three times. This once again shows opportunity for energy savings. Sub-blocks that are
never used should not be brought into the cache. Furthermore, most of the active sub-
blocks can be powered off after just a few accesses, saving even more energy. This holds
true for the lower level caches (L2 and LLC) as well. On average, the percentage of sub-

67

blocks that receive less than 4 accesses before their eviction on the L1, L2 and LLC is
85%, 61% and 93% respectively.

Although the LLC cache holds the cache lines for a longer period of time, the L1
cache filters most of the processor requests. For this reason, the number of accesses
per sub-block on the L1 tends to be higher than on lower level caches. Similar to the
number of sub-blocks used per line, the single-threaded benchmarks have a lower number
of accesses per sub-block than the multi-threaded benchmarks.

4.1.2 Potential for Energy Savings in L1 Cache

Figure 4.4: Potential for L1 cache energy savings for two oracle predictors.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
er

lib
qu

an
tu

m
m

cf
om

ne
tp

p
pe

rlb
en

ch
sj

en
g

xa
la

nc
bm

k
G

eo
M

ea
n

bw
av

es
ca

ct
us

AD
M

ca
lc

ul
ix

de
al

II
ga

m
es

s
G

em
sF

D
TD

gr
om

ac
s

lb
m

le
sl

ie
3d m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

G
eo

M
ea

n
ap

pl
u.

M
ap

si
.M

fm
a3

d.
M

ga
lg

el
.M

m
gr

id
.M

sw
im

.M
w

up
w

is
e.

M
G

eo
M

ea
n

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
G

eo
M

ea
n

G
eo

M
ea

n

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

L1
 E

ne
rg

y
C

on
su

m
pt

io
n

L1 Oracle Line Usage L1 Oracle Sub-block Usage

Figure 4.4 shows the potential for L1 static and dynamic energy savings by presenting
results for two oracles implemented on the L1 cache: 1) An oracle dead line predictor
that saves static power by turning off cache lines as soon as they receive their last access.
2) An oracle dead sub-block predictor that saves both static and dynamic power by never
bringing and never turning on unused sub-blocks in the cache and in addition powers off
active sub-blocks as soon as they are last accessed.

The results are normalized to a baseline without any dead line predictor. Note that
these oracles operate without the use of any additional prediction structures (for example,
they consume no additional energy and can only save energy) and therefore truly represent
ideal scenarios.

The oracle dead line predictor reduces L1 cache energy (17% on average) by turning
off dead lines as soon as possible. However, its effectiveness is limited by the fact that
it operates only at the cache line level. The oracle dead sub-block predictor, which does
not bring unused sub-blocks into the cache and in addition turns off active sub-blocks
once they are dead, reduces cache energy by 51% on average. For most benchmarks, the
energy savings correlate with the cache line usage. These results show that significant
energy reduction can be achieved by operating at the sub-block level.

4.2 The Dead Sub-Block Predictor (DSBP)

This chapter proposes the Dead Sub-Block Predictor (DSBP) for detecting when a
given cache line sub-block is dead (that is, it will not be accessed again). We use recent
history information stored in a pattern history table to predict usage patterns. Traditional
gated VDD circuit techniques (POWELL et al., 2000) are used to power off sub-blocks
once they are predicted to be dead to save energy.

68

Figure 4.5: DSBP: Mechanism architecture including cache metadata and PHT.

Data Sub-Blocks

…

StatusTag

……

Usage Counters

…

Overflow

…

PHT Pointer

…

Usage Counters

…

Overflow

…
Pattern History Table

PC Offset

………

…

Sectored Data Cache Cache Metadata

Train

Pointer

Figure 4.5 shows a traditional sector cache architecture (IBM, 1974), and the addi-
tional cache metadata and PHT required by our mechanism. The sector cache containing
tag and data arrays in the left part of the figure shows how cache lines are divided into
sub-blocks. The cache metadata contains information to guide our predictor. Each cache
metadata line includes the following fields:

• A train flag to indicate if accesses on that specific cache line should update the
pattern in the PHT.

• Sub-block usage counters to store the number of accesses the sub-block is predicted
to receive before it becomes dead,

• A set of overflow bits to indicate if the predicted number of sub-block accesses
exceeds the maximum value the usage counters can hold. If set, the sub-block will
remain powered on until the line is evicted.

• A PHT Pointer linking a cache line to its respective entry in the PHT.

The PHT is used to store previous sub-block usage patterns. It is indexed by the PC
of the load/store instruction that caused the cache miss and the requested cache line offset
(byte within the line) of the miss address. The key observation behind using the PC along
with the line offset as the index is that a given sequence of memory instructions often
accesses the same fields of a record (see the example in Figure 4.1). Although different
instances of a record may have different offsets within the cache line, the number of
different offsets of an instance is bounded (CHEN et al., 2004; KUMAR; WILKERSON,
1998; PUJARA; AGGARWAL, 2008). Therefore, the PC+offset combination provides a
high coverage of patterns even with moderately sized Pattern History Tables.

Each entry in the PHT includes: 1) a Pointer flag indicating that some cache line has
a pointer to that specific PHT entry, 2) a set of usage counters and 3) Overflow bits. The
usage counters and overflow bits are identical to those in the cache metadata and will be
copied from the PHT to the metadata as our mechanism operates.

The main operations performed by the mechanism during cache accesses are:

69

Cache Line Miss: The PHT is searched for an entry matching the PC and offset of the
instruction that caused the miss. For a PHT hit, the mechanism will copy the PHT’s usage
counter and overflow bits into the cache metadata and only the sub-blocks predicted to be
used are fetched and stored into the cache line. The pattern in the PHT is kept intact. If
the PHT entry indicates that no other pointer exists to that entry (pointer flag field zero),
the new cache line is linked to the PHT pattern. In the case of a PHT miss, the train flag
is set, and all usage counter and overflow bits are reset in the cache metadata. The PHT
will reset all the usage counter and overflow bits and evict the LRU entry to make room
for a new pattern. A PHT pointer is created to link the cache metadata and the new entry.
Since the train flag is set, subsequent accesses to this line will update the usage counters
in the PHT.

Cache Line Hit and Sub-Block Hit: If the train flag is disabled, the sub-block usage
counter in the metadata is decremented and the sub-block is turned off if its usage counter
and overflow bit are zero. The PHT will be updated only when the train flag is enabled. In
case our mechanism predicts a dead sub-block in a dirty cache line, the sub-blocks remain
powered on until all the sub-blocks inside that line are predicted to be dead. Afterwards, a
write-back operation will be issue for this cache line, and all the sub-blocks will be turned
off.

Cache Line Hit and Sub-Block Miss:1 The requested sub-block will be brought into the
cache line and its overflow bit will be set. If the cache metadata has a valid pointer to
a PHT entry, then the mechanism will increment the corresponding usage counter in the
PHT entry.

Cache Line Eviction: If the cache line contains a valid link to a PHT entry, the flag that
indicates that a valid pointer exists must be disabled in the PHT. Also, if any of the usage
counters in the metadata are non-zero (indicating that the corresponding sub-block was
accessed fewer than the predicted number of times), the corresponding usage counters in
the PHT entry are updated by decrementing each counter by the non-zero value. For this
reason, we avoid using saturated counters.

Cache Line Invalidation: All the prediction information is kept intact. However, all the
sub-blocks inside the cache line are turned off until the line receives valid data.

4.2.1 Usage Example

Figure 4.6 illustrates how DSBP learns and predicts access patterns based on previous
usage. In the piece of code present in Figure 4.6(a), the program is iterating over a list
of records of 64 bytes each, but is accessing only a single field of the record (similar to
the example shown in Figure 4.1). Therefore, just the sub-block starting from the offset
value 16 is being loaded into a register. For this example, the cache and PHT are initially
empty.

Figure 4.6(b) presents the state of the cache, metadata, and PHT after the first iteration
of the loop. Since there was no matching entry in the PHT, a new PHT entry is allocated,
all the usage counters and overflow bits are reset, and since no other pointer exists to
that PHT entry, a new pointer will be stored in the cache metadata and the pointer flag
in the PHT entry is set. Because no previous pattern was available for the prediction
(that is, PHT miss), all sub-blocks are brought into the cache line. The train flag is also

1The term “sub-block miss” applies to the situation where the cache line is present in the cache (that is,
a matching tag is found), but the requested sub-block is not. This is in contrast to a “cache line miss” where
no matching tag is found (that is, the entire line is not in the cache)

70

Figure 4.6: DSBP: Working example.
LOOP: PC=A: ld [%r1], %r5

PC=B: add %r1, 64, %r1
PC=C: cmp %r5, %r6
PC=D: jz LOOP

Ite
ra

tio
n

0

12

PC

8250

Memory Address

000 16Iteration 0:

Tag Index Offset

12 8250 001 16Iteration 1:Ite
ra

tio
ns

(a)

(b)

Data Sub-Blocks
D D D D D D D D

…

StatusTag

…

8250

…

Usage Counters
0

…

0 0 0 0 0 0 0
Overflow

0

…

0 00 0 0 0 0
PHT Pointer

12 / 16

…

Usage Counters

0 …0 1 0 0 0 0 0

Overflow

0 …0 00 0 0 0 0

Pattern History Table

112 16

PC Offset
………

Sectored Data Cache Cache Metadata

Pointer

Ite
ra

tio
n

1

(c)

Data Sub-Blocks
D D D D D D D D
- - D - - - - -…

StatusTag

…

8250
8250…

Usage Counters
0
0 …

0
0

0
1

0
0

0
0

0
0

0
0

0
0

Overflow
0
0 …

0
0

0
0

0
0

0
0

0
0

0
0

0
0

PHT Pointer
12 / 16

-…
Usage Counters

0 …0 1 0 0 0 0 0

Overflow

0 …0 00 0 0 0 0

Pattern History Table

112 16

PC Offset

………

Sectored Data Cache Cache Metadata

Pointer

1

…

Train

1
-…

Train

set in order to capture all the subsequent access to that line and learn the usage pattern.
Assuming that a single access was made to the 3rd sub-block, the corresponding usage
counter in the PHT entry is incremented to one.

Figure 4.6(c) shows a cache miss on the second iteration. This time, the predictor
accesses the PHT and finds a matching entry. The usage bits indicate that only the 3rd
sub-block will be used, and therefore only a single sub-block will be brought into the
cache. Since the PHT pointer flag is already set, no new pointer will be generated. After
the mechanism copies the usage counters and overflow bits to the metadata, the data can
be used. Once the sub-block is used, the usage counter will be decremented to zero and
the sub-block will be turned off. Subsequent loop iterations would operate in exactly the
same way.

4.2.2 Improving the Cache Replacement Policy

We also use our mechanism to improve the traditional LRU cache replacement policy
by prioritizing lines with all sub-blocks powered off for eviction. If a line has all sub-
blocks powered off, that means our predictor has identified this line as dead (that is, it
will not be accessed again). Evicting dead lines early, before they actually become a
victim (being at the LRU position), can reduce the cache miss ratio by letting the not-
dead lines stay longer in the cache. This also offsets the additional sub-block misses our
predictor may cause when it underpredicts the usage pattern of a cache line.

4.2.3 Prefetching Adaptations

In order to obtain correct predictions with our mechanism, it is essential to have the
instruction address (PC) that caused the cache miss, together with the offset requested on
this cache miss. For the processor requests, this correlation information is easily obtained.
However, in a presence of a prefetcher, this information may not be available for the cache
misses caused when prefetching data. Different approaches can be planned to include the
information required to the predictor inside the prefetcher structure.

71

The stride prefetch (BAER; CHEN, 1991) already stores the instruction address from
the memory request which started a new prefetch pattern. We adapted this mechanism to
also store the first memory address for each pattern. Thus, all the prefetched lines include
the instruction address and an offset used to index the PHT inside our mechanism, in
order to generate predictions. For the stream prefetch (JOUPPI, 1990), we included the
instruction address and the offset which started a new stream. This enables the prefetch
to send this extra information together to the prefetched lines in order to generate usage
information for these lines.

4.2.4 Implementation on Multiple Cache Levels

Our mechanism operates at the sub-block level and therefore implementing our pre-
dictor on first level caches is straightforward since requests from the processor are also
made at the sub-block level. However, next level caches receive requests from the pre-
vious level at a cache line granularity. Therefore, in order to implement our mechanism
on systems with multi-level cache hierarchies, miss requests must be forwarded from one
level to the next on a sub-block granularity. This also implies that our mechanism can be
applied to a cache level only if applied to all previous levels. For example, in a 3-level
cache hierarchy, we could apply our mechanism to just the L1, both the L1 and L2 but not
the LLC, or all three levels.

4.3 Methodology

The baseline configuration for the processor is based on the Intel Sandy Bridge as
shown in Table 3.6. The single-threaded applications from SPEC-CPU2006 and multi-
threaded (8 threads) applications from SPEC-OMP2001 and NAS-NPB suites were used
as workloads to evaluate DSBP. All the results are normalized to a baseline system with-
out any predictor.

In order to improve the energy consumption at a finer granularity than current cache
memories, we turn off sub-blocks from the cache line using gated VDD circuit techniques
as in (POWELL et al., 2000). Gated VDD techniques use a transistor to gate the supply
voltage (VDD) of the cache SRAM cells. Previous work reports that the transition delay of
turning on a gated-ground transistor shared by a 16 byte sub-block is only 0.20 ns (that is,
one clock cycle in a 5 GHz microprocessor) (CHEN et al., 2004). Therefore, we assume
our 8-byte sub-blocks can be powered on in a single cycle. Furthermore, this single-cycle
latency can be hidden during a cache miss, since a sub-block can be powered on while the
data being requested are fetched from the next level in the cache hierarchy.

In order to model the dynamic and static energy savings due to dead sub-block pre-
diction, we model both the baseline cache architecture and our proposed mechanism with
CACTI 6.5++ (MURALIMANOHAR; BALASUBRAMONIAN; JOUPPI, 2008) which
is available inside McPAT version 1.0 (LI et al., 2009, 2013). To take into account a sector
cache memory, we model a cache with 8 sectors (that is, sub-blocks) and the additional
bits required to control the sub-blocks. Since our proposed mechanism requires extra
metadata, the cache lines were also modeled with the extra bits necessary to support the
usage counters, the overflow bits, the learn flag and the PHT pointer. After modeling the
8 sub-blocked cache with all the metadata, the CACTI power model was used to compute
the dynamic energy and static when all sub-blocks are enabled. We also modeled the PHT
table as a cache memory of the same size.

72

To compute the energy when just a part of the cache line is turned on, we modeled
cache architectures with the same number of lines but fewer 8-byte sub-blocks (from 1 to
7 sub-blocks). The energy consumed by these smaller cache lines is used to model the
energy consumption when just a few sub-blocks in the cache line are enabled.

Gated VDD techniques require a 3% area overhead on the data array (POWELL et al.,
2000). In order to model this overhead, two extra bytes (3.1% of line size) were added to
the cache line in our mechanism’s cache tag as the VDD technique overhead.

4.4 Evaluation

The DSBP evaluated in this chapter uses 2-bit usage counters per sub-block and a
512-entry PHT organized as an 8-way set associative cache. To maintain the metadata
information, 34 bits per cache line were added, which represents an overhead of 6.25% of
the total cache size, assuming a tag size of 32 bits.

For the PHT, using only 16 bits to store the least significant part of the PC demon-
strated to be enough to obtain accurate results. Moreover, since most of the accesses are
aligned inside the cache line in sub-blocks of 8 bytes, only 3 bits are necessary to store the
sub-block accessed inside the cache line (instead of using the full offset). The total size
of the PHT used in our experiments is 2.75 KB per cache bank, which represents 8.60 %
of the L1, 1.10% of the L2 and less than 0.30% of the total LLC size.

In order to evaluate our proposed mechanism, we compare it with the SKEWED
mechanism, explained in Section 2.2.6. We implemented SKEWED using three tables
with 8192 entries each, with a 2 bit counter per entry to perform the prediction. Each
table is indexed using a different hash function, in order to obtain three different sub-
predictions, which are combined to form the final prediction.

4.4.1 Mechanism Accuracy

Figure 4.7 presents the accuracy results for our mechanism applied on L1, L2 and
LLC. The figure is divided into correct prediction, correct overflow, over prediction, under
prediction, and train. Each percentage corresponds to the fraction of evicted sub-blocks
that fall into the corresponding category. A correct prediction occurs if a sub-block is
evicted with its usage counter and overflow bit (in the metadata) equal to zero. This means
that the sub-block was accessed exactly as many times as we predicted. Correct overflow
occurs when a sub-block is evicted with its usage counter at zero but the overflow bit is set.
Over prediction happens when a sub-block is evicted with its usage counter greater than
zero. This implies that the sub-block was accessed fewer times than what we predicted.
Under prediction occurs when a request is made to a sub-block that is powered off (that
is, a sub-block miss). We keep track of such sub-blocks, and upon eviction, count them as
an under predicted. Train means that no information about cache line usage was available
in the PHT (that is, PHT miss). In this case, all 8 sub-blocks within the line are classified
under this category. To generate complete statistics, we force an eviction of all the cache
lines at the end of the execution.

These results show that our mechanism achieves a good coverage of 61% correct
predictions on average. Note that the percentage of sub-blocks that are classified as correct
overflow reduces for the LLC to the L1. This is because the L1 receives the most sub-
block accesses and serves as a filter for the next level caches. Therefore, it is unlikely for
sub-blocks in the LLC to receive enough accesses during training to have their overflow
bits ever set. The opposite is true for over predictions. Recall that our mechanism corrects

73

Figure 4.7: DSBP: Mechanism accuracy results.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
as

ta
r

bz
ip

2
gc

c
go

bm
k

h2
64

re
f

hm
m

er
lib

qu
an

tu
m

m
cf

om
ne

tp
p

pe
rlb

en
ch

sj
en

g
xa

la
nc

bm
k

Av
er

ag
e

bw
av

es
ca

ct
us

AD
M

ca
lc

ul
ix

de
al

II
ga

m
es

s
G

em
sF

D
TD

gr
om

ac
s

lb
m

le
sl

ie
3d m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

Av
er

ag
e

ap
pl

u.
M

ap
si

.M
fm

a3
d.

M
ga

lg
el

.M
m

gr
id

.M
sw

im
.M

w
up

w
is

e.
M

Av
er

ag
e

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
Av

er
ag

e
Av

er
ag

e

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

Ev
ic

te
d

Su
b-

bl
oc

ks

Train Over Prediction Correct Overflow Correct Prediction Under prediction

(a) L1 cache.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
er

lib
qu

an
tu

m
m

cf
om

ne
tp

p
pe

rlb
en

ch
sj

en
g

xa
la

nc
bm

k
Av

er
ag

e
bw

av
es

ca
ct

us
AD

M
ca

lc
ul

ix
de

al
II

ga
m

es
s

G
em

sF
D

TD
gr

om
ac

s
lb

m
le

sl
ie

3d m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

Av
er

ag
e

ap
pl

u.
M

ap
si

.M
fm

a3
d.

M
ga

lg
el

.M
m

gr
id

.M
sw

im
.M

w
up

w
is

e.
M

Av
er

ag
e

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
Av

er
ag

e
Av

er
ag

e

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

Ev
ic

te
d

Su
b-

bl
oc

ks

Train Over Prediction Correct Overflow Correct Prediction Under prediction

(b) L2 cache.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
er

lib
qu

an
tu

m
m

cf
om

ne
tp

p
pe

rlb
en

ch
sj

en
g

xa
la

nc
bm

k
Av

er
ag

e
bw

av
es

ca
ct

us
AD

M
ca

lc
ul

ix
de

al
II

ga
m

es
s

G
em

sF
D

TD
gr

om
ac

s
lb

m
le

sl
ie

3d m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

Av
er

ag
e

ap
pl

u.
M

ap
si

.M
fm

a3
d.

M
ga

lg
el

.M
m

gr
id

.M
sw

im
.M

w
up

w
ise

.M
Av

er
ag

e
bt

.A
cg

.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
Av

er
ag

e
Av

er
ag

e

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

Ev
ic

te
d

Su
b-

bl
oc

ks

Train Over Prediction Correct Overflow Correct Prediction Under prediction

(c) LLC cache.

over prediction by updating the PHT only when the line containing the over predicted sub-
block(s) is evicted. Since evictions are much less frequent for the L2 and LLC than the L1,
it takes longer for the L2 and LLC to adapt to a new usage pattern, resulting in a greater
percentage of over predictions. The under predictions account for 10% of the sub-blocks
evicted on average, this avoids high performance degradation due to sub-block misses.

4.4.2 Energy Savings

Figure 4.8 presents total energy consumption for each predictor. The results are shown
applying each mechanism in all the cache levels. DSBP achieves energy savings of 36%
on average considering all the cache levels, it outperforms the previous proposal in terms

74

Figure 4.8: DSBP: Total energy consumption of the cache sub-system.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
e

r
lib

q
ua

n
tu

m
m

cf
om

ne
tp

p
pe

rlb
e

nc
h

sj
e

ng
xa

la
nc

bm
k

G
eo

M
ea

n
bw

av
es

ca
ct

us
A

D
M

ca
lc

u
lix

de
al

II
ga

m
es

s
G

em
sF

D
T

D
gr

om
ac

s
lb

m
le

sl
ie

3d
m

ilc
na

m
d

po
vr

ay
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
ze

us
m

p
G

eo
M

ea
n

ap
pl

u.
M

ap
si

.M
fm

a3
d

.M
ga

lg
el

.M
m

g
rid

.M
sw

im
.M

w
u

pw
is

e
.M

G
eo

M
ea

n
bt

.A
cg

.A
ft.

A
is

.A
lu

.A
m

g
.A

sp
.A

G
eo

M
ea

n
G

eo
M

ea
n

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

E
ne

rg
y

C
on

su
m

pt
io

n

DSBP-L1-L2-LLC SKEWED-L1-L2-LLC

of energy savings. It improves by 12% even the best result obtained with SKEWED.
DSBP has higher gains because 1) it powers off data stored in the cache at the sub-block
level, and 2) it does so with relatively few updates to the PHT.

Table 4.1 presents the results for the DSBP and SKEWED mechanisms when the pre-
dictors are applied to each cache level in isolation (if applicable), and also when applied
to multiple levels, also comparing with the oracle mechanisms applied on the L1 cache.
Notice that the table shows the energy consumption considering the overall cache system.

It is possible to see that both mechanisms obtain the best results when applied in all
the cache levels. Comparing DSBP L1 to the oracle dead sub-block predictor L1, we can
observe that our mechanism could achieve 84% of the energy savings achievable with a
perfect mechanism. Comparing SKEWED with the oracle dead line predictor L1, we see
that this related work outperformed its oracle, this is because SKEWED improved the re-
placement policy and performs early write-back, what changes the operations performed
inside the cache, leading to a different critical path of the application execution.

4.4.3 Performance Impact

As shown in the previous section, successfully predicting dead sub-blocks can signif-
icantly reduce cache energy consumption. However, incorrect predictions may introduce
a negative impact on cache performance and actually increase energy consumption due to
extra cache sub-block misses. Figure 4.9 shows the total number of extra cache misses
normalized to the number of cache misses from the baseline cache architecture.

The result bars shown in Figure 4.9 present the percentage of extra sub-block misses
caused by under predictions. Cache line misses are accesses where no matching tag entry
was found in the cache (that is, the entire line is not present in the cache). Sub-block
misses occur when the requested tag is present in the cache, but the requested sub-block
is not available. Note that these sub-block misses only happened because the mechanism
incorrectly identified a sub-block as dead and powered it off prematurely.

Figure 4.9 shows that DSBP increased on average the number of cache line misses due
to sub-block misses by 10%, 19% and 12% for the L1, L2 and LLC respectively. However,
a part of these extra cache misses are offset by the improved cache line replacement policy,
preserving the level of performance that the baseline provides while significantly reducing
cache energy.

Figure 4.10 shows a comparison of normalized execution time for the simulated mech-
anisms. The execution time correlates well with the number of misses in the last level

75

Table 4.1: DSBP: Total energy consumption of the cache sub-system.

L1 L1
-L

2

L1
-L

2-
LL

C

L1 L2 LL
C

L1
-L

2

L1
-L

2-
LL

C

L1
 L

in
e

U
sa

ge
L1

 S
ub

-
B

lo
ck

U
sa

ge

astar 76% 68% 63% 85% 93% 93% 78% 70% 86% 58%
bzip2 80% 73% 56% 85% 94% 84% 79% 62% 86% 63%
gcc 76% 68% 59% 84% 93% 90% 77% 68% 85% 65%
gobmk 80% 72% 52% 85% 93% 80% 78% 58% 86% 66%
h264ref 81% 76% 63% 90% 95% 88% 85% 73% 90% 71%
hmmer 88% 83% 73% 92% 96% 89% 88% 77% 92% 79%
libquantum 59% 50% 43% 76% 90% 76% 67% 47% 82% 56%
mcf 61% 51% 39% 80% 91% 86% 71% 61% 81% 58%
omnetpp 71% 63% 63% 87% 93% 99% 80% 78% 86% 58%
perlbench 79% 73% 57% 88% 94% 85% 82% 66% 88% 57%
sjeng 79% 71% 52% 85% 93% 80% 78% 58% 87% 67%
xalancbmk 76% 71% 62% 89% 95% 88% 83% 76% 89% 66%
GeoMean 75% 68% 56% 85% 93% 86% 79% 65% 86% 63%
bwaves 78% 72% 60% 89% 95% 86% 84% 75% 90% 72%
cactusADM 82% 77% 70% 89% 95% 93% 84% 79% 90% 79%
calculix 80% 72% 58% 84% 93% 82% 76% 58% 86% 74%
dealII 77% 72% 55% 88% 95% 84% 82% 66% 89% 68%
gamess 79% 74% 59% 90% 95% 85% 85% 70% 90% 65%
GemsFDTD 72% 66% 63% 87% 95% 89% 82% 75% 89% 61%
gromacs 82% 76% 59% 87% 94% 85% 81% 66% 88% 71%
lbm 61% 56% 51% 88% 98% 96% 84% 82% 89% 60%
leslie3d 79% 74% 71% 88% 96% 96% 83% 80% 90% 73%
milc 72% 65% 53% 87% 94% 84% 81% 68% 89% 65%
namd 86% 81% 66% 90% 95% 85% 84% 70% 91% 61%
povray 77% 71% 52% 88% 94% 83% 82% 65% 88% 60%
soplex 73% 66% 60% 85% 95% 87% 80% 75% 87% 53%
sphinx3 75% 70% 61% 88% 95% 92% 83% 75% 89% 63%
tonto 84% 79% 64% 89% 95% 85% 84% 70% 90% 76%
wrf 81% 75% 70% 88% 95% 94% 83% 77% 89% 70%
zeusmp 79% 73% 65% 86% 94% 92% 80% 77% 88% 69%
GeoMean 77% 71% 61% 88% 95% 88% 82% 72% 89% 67%
applu.M 78% 76% 70% 92% 98% 90% 88% 81% 95% 65%
apsi.M 88% 88% 86% 101% 99% 100% 100% 98% 100% 77%
fma3d.M 58% 56% 49% 90% 98% 85% 88% 77% 93% 52%
galgel.M 93% 92% 87% 99% 99% 95% 98% 93% 97% 85%
mgrid.M 90% 90% 89% 99% 100% 101% 99% 99% 99% 76%
swim.M 75% 75% 71% 94% 99% 98% 94% 93% 97% 66%
wupwise.M 80% 78% 72% 95% 97% 88% 93% 87% 96% 73%
GeoMean 80% 78% 74% 96% 99% 94% 94% 89% 97% 70%
bt.A 91% 91% 90% 100% 100% 99% 100% 100% 99% 79%
cg.A 62% 63% 61% 98% 100% 95% 98% 97% 96% 43%
ft.A 93% 92% 92% 92% 100% 99% 92% 90% 99% 80%
is.A 81% 83% 85% 101% 100% 97% 101% 102% 99% 57%
lu.A 79% 79% 79% 100% 99% 99% 99% 99% 98% 63%
mg.A 87% 87% 86% 100% 100% 102% 100% 100% 99% 78%
sp.A 79% 79% 79% 99% 100% 99% 99% 99% 99% 63%
GeoMean 81% 82% 81% 99% 100% 99% 98% 98% 98% 65%

* GeoMean 78% 73% 64% 90% 96% 90% 86% 76% 91% 66%

DSBP SKEWED ORACLE

SP
EC

 O
M

P2
00

1
N

AS
-N

PB
SP

EC
-C

PU
20

06
 -

C
IN

T
SP

EC
-C

PU
20

06
 -

C
FP

cache since these misses are the most costly in terms of latency. Sub-block extra misses
introduced by the L1 and L2 predictors can be serviced by the last level cache with a
minimal impact on execution time.

As mentioned before, DSBP has a negligible impact on system performance (equal to
2.25% on average). This is because the additional sub-block misses DSBP may cause are
largely offset by the improved replacement policy DSBP offers. Our mechanism impacted
the performance less than the evaluated related work.

76

Figure 4.9: DSBP: Normalized extra cache misses.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
as

ta
r

bz
ip

2
gc

c
go

bm
k

h2
64

re
f

hm
m

e
r

lib
q

ua
n

tu
m

m
cf

om
ne

tp
p

pe
rlb

e
nc

h
sj

e
ng

xa
la

nc
bm

k
A

ve
ra

ge
bw

av
es

ca
ct

us
A

D
M

ca
lc

u
lix

de
al

II
ga

m
es

s
G

em
sF

D
T

D
gr

om
ac

s
lb

m
le

sl
ie

3d
m

ilc
na

m
d

po
vr

ay
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
ze

us
m

p
A

ve
ra

ge
ap

pl
u.

M
ap

si
.M

fm
a3

d
.M

ga
lg

el
.M

m
g

rid
.M

sw
im

.M
w

u
pw

is
e

.M
A

ve
ra

ge
bt

.A
cg

.A ft.
A

is
.A

lu
.A

m
g

.A
sp

.A
A

ve
ra

ge
A

ve
ra

ge

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

E
xt

ra
 L

in
e

M
is

se
s

L1 L2 LLC

Figure 4.10: DSBP: Normalized execution time.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%
150%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
e

r
lib

q
ua

n
tu

m
m

cf
om

ne
tp

p
pe

rlb
e

nc
h

sj
e

ng
xa

la
nc

bm
k

G
eo

M
ea

n
bw

av
es

ca
ct

us
A

D
M

ca
lc

u
lix

de
al

II
ga

m
es

s
G

em
sF

D
T

D
gr

om
ac

s
lb

m
le

sl
ie

3d
m

ilc
na

m
d

po
vr

ay
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
ze

us
m

p
G

eo
M

ea
n

ap
pl

u.
M

ap
si

.M
fm

a3
d

.M
ga

lg
el

.M
m

g
rid

.M
sw

im
.M

w
u

pw
is

e
.M

G
eo

M
ea

n
bt

.A
cg

.A ft.
A

is
.A

lu
.A

m
g

.A
sp

.A
G

eo
M

ea
n

G
eo

M
ea

n

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

E
xe

cu
tio

n
T

im
e

DSBP-L1-L2-LLC SKEWED-L1-L2-LLC

4.5 Design Space Exploration

This section presents a parameter sensitivity exploration for our DSBP mechanism.
We study the effect of varying the usage counter size, the PHT associativity, and the
PHT size of our mechanism. To reduce the number of experiments, we evaluate each
parameter separately. First, the usage counter size is varied while fixing the PHT size
and associativity at 512 entries and 8-way respectively (the average size and associativity
we evaluate). Once the best usage counter size is identified, we fix its size, and vary
PHT associativity while keeping the PHT size with 512 entries. Lastly, we vary PHT
size, keeping the usage counter size and PHT associativity constant at their previously
identified best performing values.

Figure 4.11 shows the results for the parameter sensitivity study. The results are pre-
sented in terms of energy consumption and execution time normalized to the baseline
cache architecture executing all the benchmarks. For these experiments, DSBP was used
only in the L1 cache memory, reducing thus the interference between the predictions in
multiple cache levels.

First, we analyze the effect of varying the usage counter size. A larger counter size
increases the potential to save energy by turning off sub-blocks. For example, with 4-bit
counters, DSBP can predict that a sub-block will be touched exactly 15 times and then
turn it off after it receives 15 accesses. However, with fewer bits per counter, the sub-
block’s overflow bit would be set and therefore the sub-block would never be turned off.

77

Figure 4.11: DSBP: PHT design space exploration.
10

0.
30

%

10
0.

32
%

10
0.

34
%

10
0.

32
%

10
0.

33
%

10
0.

20
%

10
0.

22
%

10
0.

34
%

10
0.

18
%

10
0.

14
%

10
0.

20
%

10
0.

22
%

10
0.

34
%

10
0.

18
%

10
0.

14
%

79
.8

1%

78
.7

0%

77
.6

3%

77
.2

9%

77
.6

9%

79
.8

1%

78
.7

0%

77
.6

3%

77
.2

9%

77
.6

9%

79
.4

4%

78
.5

1%

77
.6

3%

77
.1

5%

76
.9

2%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

1
bit

2
bits

3
bits

4
bits

5
bits

2
ways

4
ways

8
ways

16
ways

32
ways

128
entries

256
entries

512
entries

1024
entries

2048
entries

Usage Counter Size PHT Associativity PHT Size

Execution Time Energy Consumption

On the other hand, increasing the usage counter size increases the energy overhead of the
cache metadata. From the cache miss perspective, with smaller counters, the overflow bit
is more likely to be set. As such, DSBP’s replacement policy will not be able to identify
lines as dead and therefore will not be as effective in reducing line misses compared to
larger counter sizes. For the same reason, the number of sub-block misses increases as
usage counter size increases. Overall, the total number of misses does not vary much.
The results show that using 2 bits per usage counter balances these trade-offs well and
achieves the best results in terms of energy reduction and performance.

Next, we evaluate the associativity of the PHT. A large number of ways reduces the
conflicts inside the table. However, it also increases PHT energy consumption. Our results
show the best results are obtained using an 8-way set-associative PHT.

Finally, we analyze the effect of varying the number of entries in the PHT. Increasing
the number of entries in the PHT allows it to store more usage patterns and therefore fewer
patterns will have to be re-learned. This again provides more opportunities to save energy
by turning off dead sub-blocks. However, a larger PHT also consumes more energy each
time it is accessed. We find a PHT size of 512 entries is best in terms of energy reduction
and performance.

In summary, the sensitivity studies shows that DSBP does not require large PHTs or
a large number of bits in the usage counter to provide benefits. Moderately sized Pattern
History Tables provide good results since PC and offset are used to index the table as
explained in Section 4.2. Furthermore, as shown in Section 4.1, less than 10% of the
sub-blocks receive more than 3 accesses before their eviction, which justifies our result
that 2-bit usage counters work best in terms of energy savings and performance.

4.6 Summary

To our knowledge, DSBP is the first proposal to exploit dead cache line prediction at
the sub-block granularity. DSBP is used to reduce energy consumption in the cache sub-
system by loading into the cache only those sub-blocks predicted to be useful, and turning
off active sub-blocks as they are predicted dead. In addition, the LRU replacement policy
is improved by prioritizing dead lines for eviction. This modification reduces the number
of dead lines that remain inside the cache which leads to better utilization of cache space.

Our evaluations found that DSBP reduces energy consumption of the cache hierarchy
by 36% on average compared to the baseline (without any dead line predictor in any

78

cache level), and by 12% compared to a technique that turns off dead lines as predicted
by a state-of-the-art predictors similar to those present in the LTP (LAI; FALSAFI, 2000;
LAI; FIDE; FALSAFI, 2001), SDP (KHAN et al., 2010) and LWP (WANG; KHAN;
JIMÉNEZ, 2012a).

79

5 DEAD LINE AND EARLY WRITE-BACK PREDICTOR
(DEWP)

Several prediction mechanisms to keep only useful information in the cache have been
proposed (ABELLA et al., 2005; WANG; KHAN; JIMÉNEZ, 2012a). However, previous
approaches do not take into account that modified or dirty cache lines remain turned on
for long periods of time, wasting energy while they could be evicted earlier. The gains can
be increased even for dirty cache lines, by performing an early write-back to the memory
before turning off the line. In this way, energy consumption, as well as pressure on the
memory controller, can be reduced. Lee et al. (LEE; TYSON; FARRENS, 2000) proposed
to early write-back dirty lines at the LRU position, but their proposal loses opportunities
for energy savings by not evicting the line when the last write operation occurs. Using a
perfect mechanism, we show that turning off invalid lines and dead lines can save 65% of
energy from the LLC on average (see Section 5.1).

This chapter presents the Dead Line and Early Write-Back Predictor (DEWP) mech-
anism (ALVES et al., 2013), which consists of a last read/write predictor operating at the
cache line granularity. The last read prediction aims to save energy by turning off dead
or invalid cache lines. The last write prediction performs early write-backs of dirty cache
lines to the lower memory level, since these lines will not be modified anymore. Both last
read and last write predictions detect whenever a line receives its last access, prioritizing
those lines for early eviction.

The last read predictor uses the access history to predict when a cache line becomes
dead and can be turned off. The line is considered dead whenever the cache line receives
its last read before it gets evicted or invalidated.

The last write predictor allows dirty cache lines to be early written back when it detects
the last write operation, reducing the pressure on the memory controller between reads
and writes during bursts of requests. Furthermore, performing the early write-back of
dirty lines also enables those lines to be turned off whenever a last read is predicted.

Both predictors reduce cache pollution, prioritizing the eviction of dead lines. All the
cache lines that would normally be evicted from the cache memory by the replacement
policy are considered dead since their last access. By early evicting these lines, other
cache lines that are still alive can stay longer inside the cache.

The main contributions of this Dead Line and Early Write-Back Predictor (DEWP)
mechanism are:

Last read predictor: We turn-off cache lines after they receive the last read before the
line gets evicted. This translates into 25% of cache energy savings.

80

Last write predictor: Our mechanism can write-back the dirty cache lines after they
receive the last write (before they are evicted). Therefore, we increase the time window
to write-back the cache line to memory and reduce the pressure in the memory controller.

Last access predictor: Combining both prediction results, our mechanism detects the
last access to a cache line, prioritizing it for early eviction, thus, improving the cache
utilization. The predictor achieves 73% of correct predictions with 14% of false positives
on average for all the cache levels.

5.1 Motivation

This section presents motivation results in order to evaluate the possible gains in terms
of performance and energy consumption when using DEWP. Our mechanism aims to
early write-back lines after its last update in order to reduce the memory pressure, also
reduce the cache pollution, increasing the virtual cache size. The final goal is to reduce
the static energy consumption by turning off the cache lines after their last access.

5.1.1 Sensitivity to Early Write-Back

Dirty cache lines remain in the cache until they are evicted by another line request.
However, they can be sent to write-back earlier when the last write operation is de-
tected (WANG; KHAN; JIMÉNEZ, 2012a). When predicting the last write operation,
a dirty cache line is available for write-back earlier. Thus, the time window to write it
back to memory becomes longer, creating an opportunity to reduce pressure to the mem-
ory controller. Additionally, by using a last write predictor, dirty lines can be evicted
earlier, thereby increasing the potential cache capacity.

Figure 5.1: Potential of speedup for a perfect early write-back predictor.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
e

r
lib

q
ua

n
tu

m
m

cf
om

ne
tp

p
pe

rlb
e

nc
h

sj
e

ng
xa

la
nc

bm
k

G
eo

M
ea

n
bw

av
es

ca
ct

us
A

D
M

ca
lc

u
lix

de
al

II
ga

m
es

s
G

em
sF

D
T

D
gr

om
ac

s
lb

m
le

sl
ie

3d
m

ilc
na

m
d

po
vr

ay
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
ze

us
m

p
G

eo
M

ea
n

ap
pl

u.
M

ap
si

.M
fm

a3
d

.M
ga

lg
el

.M
m

g
rid

.M
sw

im
.M

w
u

pw
is

e
.M

G
eo

M
ea

n
bt

.A
cg

.A ft.
A

is
.A

lu
.A

m
g

.A
sp

.A
G

eo
M

ea
n

G
eo

M
ea

n

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

E
xe

cu
tio

n
T

im
e

In order to show the potential benefit of a perfect last write predictor, Figure 5.1 shows
the performance improvement of a system with instant LLC write-back to memory nor-
malized to a conventional CMP with write-back. This shows the potential of performing
write-back operations without interfering with read requests in the memory controller.
Since most data accesses tend to occur in bursts (WANG; KHAN; JIMÉNEZ, 2012a),
reducing memory pressure during those bursts is a key for memory performance.

Figure 5.1 shows an average 4% performance improvement for single threaded bench-
marks (SPEC-CPU2006) and 21% for multi-threaded benchmarks (SPEC-OMP2001 and
NAS-NPB). As expected, multi-threaded applications present higher performance gains
due to their higher memory pressure.

81

Figure 5.2: Memory requests and write-back operations over time for libquantum.

0
20
40
60
80

100
120
140
160
180
200
220
240

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

N
um

be
r o

f O
pe

ra
tio

ns

Execution Cycles (Millions)

Read Request Write-Back

Figure 5.3: Memory requests and write-back operations over time for gcc.

0

20

40

60

80

100

120

140

160

180

200

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

N
um

be
r o

f O
pe

ra
tio

ns

Execution Cycles (Millions)

Read Request Write-Back

Figures 5.2 and 5.3 show the concentration of write-back operations on the main mem-
ory controller during the application execution for two benchmarks libquantum and gcc
from SPEC-CPU2006. Each dot shows the number of memory operations on the memory
controller (read requests and write-backs) for 10,000 cycles.

For instance, we can observe bursts of read requests from cycle 90 M to cycle 110 M
for libquantum, where the number of memory operations spikes multiple times from less
than 50 operations to 200 operations per 10,000 cycles. In the same period, the write-
backs also increase from almost 0 to 80 operations per 10,000 cycles.

We can observe that libquantum achieves more bursts of operations compared to gcc.
This difference reflects the potential of each application to benefit from the early write-
back, libquantum achieved 27% of performance improvement while gcc achieved only
3%.

5.1.2 Potential for Energy Savings in LLC

The LLC static energy usage can account for more than 90% of the total energy con-
sumption of the LLC (LI et al., 2013) (see also Chapter 1). Figure 5.4 shows the maximum
theoretical energy savings in the LLC, considering that cache lines could be turned off af-
ter their last access or whenever the cache line becomes invalid. For this experiment, we

82

consider a perfect oracle mechanism without any overhead in terms of energy consump-
tion.

Figure 5.4: Potential for LLC energy savings for an oracle line usage predictor.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
er

lib
qu

an
tu

m
m

cf
om

ne
tp

p
pe

rlb
en

ch
sj

en
g

xa
la

nc
bm

k
G

eo
M

ea
n

bw
av

es
ca

ct
us

AD
M

ca
lc

ul
ix

de
al

II
ga

m
es

s
G

em
sF

D
TD

gr
om

ac
s

lb
m

le
sl

ie
3d m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

G
eo

M
ea

n
ap

pl
u.

M
ap

si
.M

fm
a3

d.
M

ga
lg

el
.M

m
gr

id
.M

sw
im

.M
w

up
w

is
e.

M
G

eo
M

ea
n

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
G

eo
M

ea
n

G
eo

M
ea

n

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

LL
C

 E
ne

rg
y

C
on

su
m

pt
io

n

Figure 5.4 shows an average of 65% LLC energy reduction for all benchmarks eval-
uated. The results show that benchmarks with higher energy savings are those which
have the least amount of accesses per cache line on average (see Section 4.1). These
benchmarks have a low data reuse ratio and therefore offer higher opportunities for en-
ergy savings. For instance, the sphinx3 benchmark has a high cache line reuse ratio, with
more than 50% of the cache lines accessed more than 16 times before the line gets evicted.
Therefore, this benchmark shows small energy savings with a perfect mechanism.

On average, more than 90% of the LLC lines of the evaluated benchmarks receive
only one access before the line gets evicted (ALVES et al., 2012), which shows the high
potential for energy savings for all the benchmarks, since a large part of the LLC lines are
dead after the first access (dead on arrival).

5.1.3 Overall Potential Benefits

This section has shown the potential benefits of a perfect early write-back predic-
tor in terms of performance and energy consumption. We showed average performance
improvements of 10% and energy savings of 65% for all benchmark suites. All the exper-
iments above show the potential benefits of the mechanism proposed in this chapter.

5.2 The Dead Line and Early Write-Back Predictor (DEWP)

Dead Line and Early Write-Back Predictor (DEWP) is a predictor to detect last read
and write accesses to cache lines. DEWP uses recent access information stored in an
Access History Table (AHT) to predict usage patterns. The combination of traditional
gated VDD circuit techniques (POWELL et al., 2000) and DEWP allows to power off
cache lines once they are predicted dead, therefore saving static energy.

5.2.1 Overview of the Mechanism

Figure 5.5 shows for a set of cache lines the structures required to build DEWP. These
structures are: 1) Cache line metadata which adds information for every cache line. 2)
An Access History Table (AHT) that stores the prediction information. The cache line
metadata guides the cache line predictions. Each metadata line consists of the following
fields:

83

Figure 5.5: DEWP: Mechanism architecture including cache metadata and AHT.

AHT
Pointer

…

Access History Table

PC Offset

……

…

Cache Line Metadata

Train
Read

Counter

…

Read
Overflow

…

Write
Counter

…

Write
Overflow

…

Read
Counter

…

Read
Overflow

…

Write
Counter

…
Write

Overflow

……

Pointer

Data Sub-Blocks

…

StatusTag

……

Data Cache

• A Train flag to indicate if accesses to the cache line should update the pattern in the
AHT.

• A Read Counter to store the number of read accesses the cache line is predicted to
receive before it becomes dead.

• A Read Overflow bit to indicate if the predicted number of read accesses exceeds
the maximum value the Read Usage counter can hold. If set, the cache line remains
powered on until the line is evicted.

• A Write Counter to store the number of write accesses the cache line is predicted to
receive before it gets evicted.

• A Write Overflow bit to indicate if the predicted number of write accesses exceeds
the maximum value the Write Counter can hold. If set, the cache line will not be
sent to early write-back.

• An AHT Pointer linking a cache line to its respective entry in the AHT.

The AHT is indexed by the program counter (PC) of the memory instruction that
caused the cache miss and the requested cache line offset (byte within the line) of the
address. The PC+offset combination has been shown to provide high accuracy and high
coverage of patterns even with moderately sized AHTs (CHEN et al., 2004; KUMAR;
WILKERSON, 1998; PUJARA; AGGARWAL, 2008). Each entry in the AHT consists of
a Pointer flag, which indicates that a cache line has a pointer to that specific AHT entry, as
well the read and write counters and their respective overflow bits, which have the same
semantics as in the cache line metadata.

5.2.2 Mechanism Operations

The main operations performed by DEWP are triggered by the following cache oper-
ations:

84

Cache Line Miss: We search for an entry matching the PC and offset of the instruction
that caused the miss. On an AHT hit, the mechanism copies the AHT’s read/write counters
and overflow bits into the cache metadata and resets the train flag. In the case of an AHT
miss, a new entry is created. The train flag is set, and all usage counters and overflow bits
are reset in the cache metadata. The Access History Table (AHT) resets the read/write
counters and overflow bits and evicts the LRU entry to make room for the new pattern
(AHT line). An AHT pointer is created linking the cache metadata and the new entry.
Because the train flag is set, future accesses to this line update the counters only in the
AHT. In order to avoid multiple lines updating the same AHT entry, the Pointer flag is
used to inform if another cache line is already linked to that entry. In this case, the new
link is not created.

Tag Hit and Data Cache Line On: If the train flag is disabled, the read counter in the
metadata is decremented and the cache line is turned off if its read counter and overflow
bit are zero. The AHT will only be updated when the train flag is enabled. The AHT to
be updated is determined by the pointer in the metadata.

Tag Hit and Data Cache Line Off: The requested cache line is brought into the cache
and its read overflow bit is set. If the cache metadata has a valid pointer to an AHT entry,
the train flag is enabled and the mechanism increments the corresponding usage counter
in the AHT entry.

Cache Line Eviction: If the read/write counters in the metadata is non-zero (indicat-
ing that the cache line was accessed less than the predicted number of times), the usage
counter in the AHT entry is updated by decrementing the counter by the non-zero value.
Also, if the cache line contains a valid link to an AHT pointer, the pointer flag must be
disabled in the corresponding AHT.

Cache Line Invalidation: If the write counter is zero, it means that the last write was
mispredicted. In this case, similar to the tag hit and data turned off case, the write overflow
bit is set. If the cache metadata has a valid pointer to an AHT entry, the train flag is
enabled, so future writes increment the write counter. Moreover, the cache line is turned
off until it receives valid data.

Cache Line write-back: Similar to what happens during a tag hit and data turned on
case, the write counter is decremented and the cache line is sent to early eviction in the
case its write counter and overflow bit are zero. The AHT is only updated when the train
flag is enabled. The AHT to be updated is determined by the pointer in the metadata. If
the cache line was turned off, it is turned on again.

The proposed mechanism does not modify the coherence protocol at all. The protocol
states are kept untouched even when the cache line is turned off. The tag store is always
kept turned on.

Although DEWP is proposed to be used in the LLC, it can also be used at any cache
level. In order to predict prefetched cache lines, DEWP requires small modifications into
the prefetch structures to store the instruction address and the memory address which
triggered the prefetcher as explained in Section 4.2.3.

5.2.3 Improving the Cache Replacement Policy

We also use our mechanism to improve the traditional LRU cache replacement policy
by prioritizing lines that are turned off. Evicting dead lines early before they are at the
LRU position can reduce the cache miss ratio by letting the alive lines stay longer in the

85

cache (ALVES et al., 2012). Although we use DEWP with the LRU replacement policy,
other policies could also be easily modified to take advantage of our mechanism.

5.3 Methodology

The baseline configuration for the processor is based on the Intel Sandy Bridge as
shown in Table 3.6. The single-threaded applications from SPEC-CPU2006 and multi-
threaded (8 threads) applications from SPEC-OMP2001 and NAS-NPB suites were used
as workloads to evaluate DEWP. All the results are normalized to a baseline system with-
out any predictor.

In order to increase the static energy efficiency of the cache memories, we turn off
the data array part of the cache line using gated VDD circuit techniques, as in (POWELL
et al., 2000). Gated VDD techniques use a transistor to gate the supply voltage (VDD) of
the cache SRAM cells.

Gated VDD techniques require an extra latency (1 cycle) to turn on and off the cache
line. The latency to turn off the cache line does not impact the performance, it only
reduces the energy savings slightly. When turning on the cache line, it is important to
note that such latency would appear only during read misses and when receiving a cache
line write-back. However, during read misses, the high latency imposed by the main
memory hides all the latency to turn the cache line on. On the other hand, cache line
write-backs do not represent a critical path for the program execution and only cause a
stall when all the write-back buffers are full, which occurs for less than 0.01% of cache
accesses for all benchmarks that we evaluated.

In order to model the static energy savings using the DEWP predictor, we model both
the baseline cache architecture and our proposed mechanism with CACTI 6.5++ (MU-
RALIMANOHAR; BALASUBRAMONIAN; JOUPPI, 2008) which is available inside
McPAT version 1.0 (LI et al., 2009, 2013). We model tag and data power consumption.
We also modeled the AHT table as a cache memory of the same size.

Since our proposed mechanism requires extra metadata, the cache lines were also
modeled with the extra bits necessary. We also consider that the metadata and the tag array
are always turned on, because they are used by DEWP during the Cache Line Eviction
operation to fix possible mispredictions. The additional energy consumption of the AHTs
is also modeled and added together with the overall energy consumption.

5.4 Evaluation

For our mechanism, experimental evaluation showed that using 2 bits in the read and
write counter covers more than 98% of the LLC lines. This means that those lines receive
less than 4 accesses before their eviction. In our experiments, we used 512 entries per
AHT which proved to be enough to generate accurate results. To maintain the metadata
information, 16 bits per cache line were added, which represents an overhead of 3.00% of
the total cache size, assuming a tag size of 32 bits.

For the AHT, using only 16 bits to store the least significant part of the PC demon-
strated to be enough to obtain accurate results. Moreover, since most of the accesses are
aligned inside the cache line in sub-blocks of 8 bytes, only 3 bits are necessary to main-
tain the sub-block accessed inside the cache line (instead of using the full offset). The
total size of the AHT used in our experiments is 1.6 KB per cache bank, which represents
5.10% of the L1, 0.65% of the L2 and less than 0.15% of the total LLC size. Each AHT is

86

organized as an 8 way set-associative cache in order to reduce the conflicts and increase
the accuracy of the predictions.

In order to evaluate our proposed mechanism, we compare it with the SKEWED
mechanism, explained in Section 2.2.6. We implemented SKEWED using three tables
with 8192 entries each, with a 2 bit counter per entry to perform the prediction. Each
table is indexed using a different hash function, in order to obtain three different sub-
predictions, which are combined to form the final prediction.

5.4.1 Mechanism Accuracy

To analyze the accuracy of our mechanism, every time a line is evicted from the cache,
we classify the line as: correct prediction, correct overflow, over prediction, under predic-
tion, and train. To generate complete statistics, we force an eviction of all the cache lines
at the end of the execution.

A correct prediction occurs if a line is evicted with its usage counters (read and write)
and overflow bits (in the metadata) equal to zero. This means that the line was correctly
turned off/written back. Correct overflow occurs when a line is evicted with its usage
counters at zero but at least one of the overflow bits is set. Over prediction happens when
a line is evicted with at least one usage counter greater than zero. This implies that the
line was accessed fewer times than what we predicted. Under prediction occurs when a
request is made to a line that is powered off or when a write arrives to a line already early
written back. Train means that no information about cache line usage was available in the
AHT (that is, AHT miss). In this case, line is classified under this category.

Notice that under predictions can hurt the performance, by early evicting or turning
off alive lines and thus generating extra cache misses for those lines that have a clean copy
of the data, and also generate extra write-backs for dirty lines.

Figure 5.6 presents the accuracy results for our mechanism applied on L1, L2 and
LLC, each percentage corresponds to the fraction of evicted cache lines that fall into
the corresponding category. It shows that DEWP requires an average of 9% of cache
line invalidations to train the mechanism. For 73% of the invalidations, DEWP correctly
predicted the line usage. DEWP overpredicts in 4% of the invalidations, and underpredicts
in 14%.

5.4.2 Energy Savings

The cache energy efficiency is increased by using our mechanism to turn off dead and
invalid lines. The results in Figure 5.7 are shown in terms of overall energy savings for the
cache memories, normalized to the baseline. DEWP achieves on average a 25% energy
savings compared to the baseline. Our mechanism outperforms the related work by 4% on
average. As expected (see Figure 5.4) higher gains were obtained for the single-threaded
applications.

Table 5.1 presents the results for the DEWP and SKEWED mechanisms when the
predictors are applied to each cache level in isolation, and also when applied to multiple
levels, also comparing with the oracle line usage mechanisms applied on the L1 and LLC
cache. Notice that the table shows the energy consumption considering the overall cache
system. DEWP achieved energy savings close to the oracle mechanism for L1 and LLC,
while achieving better results than SKEWED.

87

Figure 5.6: DEWP: Mechanism accuracy results.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
as

ta
r

bz
ip

2
gc

c
go

bm
k

h2
64

re
f

hm
m

er
lib

qu
an

tu
m

m
cf

om
ne

tp
p

pe
rlb

en
ch

sj
en

g
xa

la
nc

bm
k

Av
er

ag
e

bw
av

es
ca

ct
us

AD
M

ca
lc

ul
ix

de
al

II
ga

m
es

s
G

em
sF

D
TD

gr
om

ac
s

lb
m

le
sl

ie
3d m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

Av
er

ag
e

ap
pl

u.
M

ap
si

.M
fm

a3
d.

M
ga

lg
el

.M
m

gr
id

.M
sw

im
.M

w
up

w
is

e.
M

Av
er

ag
e

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
Av

er
ag

e
Av

er
ag

e

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

Ev
ic

te
d

C
ac

he
 L

in
es

Train Over Prediction Correct Overflow Correct Prediction Under prediction

(a) L1 cache.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
er

lib
qu

an
tu

m
m

cf
om

ne
tp

p
pe

rlb
en

ch
sj

en
g

xa
la

nc
bm

k
Av

er
ag

e
bw

av
es

ca
ct

us
AD

M
ca

lc
ul

ix
de

al
II

ga
m

es
s

G
em

sF
D

TD
gr

om
ac

s
lb

m
le

sl
ie

3d m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

Av
er

ag
e

ap
pl

u.
M

ap
si

.M
fm

a3
d.

M
ga

lg
el

.M
m

gr
id

.M
sw

im
.M

w
up

w
is

e.
M

Av
er

ag
e

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
Av

er
ag

e
Av

er
ag

e

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

Ev
ic

te
d

C
ac

he
 L

in
es

Train Over Prediction Correct Overflow Correct Prediction Under prediction

(b) L2 cache.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
er

lib
qu

an
tu

m
m

cf
om

ne
tp

p
pe

rlb
en

ch
sj

en
g

xa
la

nc
bm

k
Av

er
ag

e
bw

av
es

ca
ct

us
AD

M
ca

lc
ul

ix
de

al
II

ga
m

es
s

G
em

sF
D

TD
gr

om
ac

s
lb

m
le

sl
ie

3d m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

Av
er

ag
e

ap
pl

u.
M

ap
si.

M
fm

a3
d.

M
ga

lg
el

.M
m

gr
id

.M
sw

im
.M

w
up

w
is

e.
M

Av
er

ag
e

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g.

A
sp

.A
Av

er
ag

e
Av

er
ag

e

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

Ev
ic

te
d

C
ac

he
 L

in
es

Train Over Prediction Correct Overflow Correct Prediction Under prediction

(c) LLC cache.

5.4.3 Performance Impact

Our mechanism can influence the execution time of an application in different ways.
DEWP can increase the performance with early evictions of dead lines, enabling more
effective space in the cache memory, while early write-backs of last written lines can
potentially reduce the memory controller contention. On the other hand, our mechanism
can hurt the performance by causing extra cache misses because of underpredictions.

As shown in the previous section, successfully predicting dead cache lines can signif-
icantly reduce cache energy consumption. However, incorrect predictions may introduce
a negative impact on cache performance and actually increase energy consumption due

88

Figure 5.7: DEWP: Total energy consumption of the cache sub-system.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
e

r
lib

q
ua

n
tu

m
m

cf
om

ne
tp

p
pe

rlb
e

nc
h

sj
e

ng
xa

la
nc

bm
k

G
eo

M
ea

n
bw

av
es

ca
ct

us
A

D
M

ca
lc

u
lix

de
al

II
ga

m
es

s
G

em
sF

D
T

D
gr

om
ac

s
lb

m
le

sl
ie

3d
m

ilc
na

m
d

po
vr

ay
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
ze

us
m

p
G

eo
M

ea
n

ap
pl

u.
M

ap
si

.M
fm

a3
d

.M
ga

lg
el

.M
m

g
rid

.M
sw

im
.M

w
u

pw
is

e
.M

G
eo

M
ea

n
bt

.A
cg

.A ft.
A

is
.A

lu
.A

m
g

.A
sp

.A
G

eo
M

ea
n

G
eo

M
ea

n

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

E
ne

rg
y

C
on

su
m

pt
io

n

DEWP-L1-L2-LLC SKEWED-L1-L2-LLC

Figure 5.8: DEWP: Normalized extra cache misses.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
e

r
lib

q
ua

n
tu

m
m

cf
om

ne
tp

p
pe

rlb
e

nc
h

sj
e

ng
xa

la
nc

bm
k

A
ve

ra
ge

bw
av

es
ca

ct
us

A
D

M
ca

lc
u

lix
de

al
II

ga
m

es
s

G
em

sF
D

T
D

gr
om

ac
s

lb
m

le
sl

ie
3d

m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

A
ve

ra
ge

ap
pl

u.
M

ap
si

.M
fm

a3
d

.M
ga

lg
el

.M
m

g
rid

.M
sw

im
.M

w
u

pw
is

e
.M

A
ve

ra
ge

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g

.A
sp

.A
A

ve
ra

ge
A

ve
ra

ge

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

E
xt

ra
 L

in
e

M
is

se
s

L1 L2 LLC

to extra cache line misses. Figure 5.8 shows the total number of extra cache misses
normalized to the number of cache misses from the baseline cache architecture.

Figure 5.9: DEWP: Normalized execution time.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%
150%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
e

r
lib

q
ua

n
tu

m
m

cf
om

ne
tp

p
pe

rlb
e

nc
h

sj
e

ng
xa

la
nc

bm
k

G
eo

M
ea

n
bw

av
es

ca
ct

us
A

D
M

ca
lc

u
lix

de
al

II
ga

m
es

s
G

em
sF

D
T

D
gr

om
ac

s
lb

m
le

sl
ie

3d
m

ilc
na

m
d

po
vr

ay
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
ze

us
m

p
G

eo
M

ea
n

ap
pl

u.
M

ap
si

.M
fm

a3
d

.M
ga

lg
el

.M
m

g
rid

.M
sw

im
.M

w
u

pw
is

e
.M

G
eo

M
ea

n
bt

.A
cg

.A
ft.

A
is

.A
lu

.A
m

g
.A

sp
.A

G
eo

M
ea

n
G

eo
M

ea
n

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

E
xe

cu
tio

n
T

im
e

DEWP-L1-L2-LLC SKEWED-L1-L2-LLC

Figure 5.9 shows the execution time of our mechanism normalized to the baseline. We
can observe that in most of the cases, the performance gains correlate with the sensitivity
study presented in Section 5.1 and the prediction accuracy results. However, some bench-
marks, such as libquatum and is.A, had a performance degradation, because our predictor
failed to recognize some cache access patterns.

89

Table 5.1: DEWP: Total energy consumption of the cache sub-system.

L1 L2 LL
C

L1
-L

2

L1
-L

2-
LL

C

L1 L2 LL
C

L1
-L

2

L1
-L

2-
LL

C

L1
 L

in
e

U
sa

ge

LL
C

 L
in

e
U

sa
ge

astar 83% 92% 92% 75% 67% 85% 93% 93% 78% 70% 86% 87%
bzip2 83% 93% 83% 76% 58% 85% 94% 84% 79% 62% 86% 82%
gcc 82% 92% 88% 74% 63% 84% 93% 90% 77% 68% 85% 85%
gobmk 82% 92% 80% 75% 54% 85% 93% 80% 78% 58% 86% 78%
h264ref 88% 95% 87% 83% 70% 90% 95% 88% 85% 73% 90% 86%
hmmer 89% 95% 89% 85% 74% 92% 96% 89% 88% 77% 92% 89%
libquantum 78% 93% 93% 70% 77% 76% 90% 76% 67% 47% 82% 85%
mcf 76% 90% 84% 65% 52% 80% 91% 86% 71% 61% 81% 81%
omnetpp 83% 92% 99% 76% 74% 87% 93% 99% 80% 78% 86% 91%
perlbench 85% 94% 84% 79% 62% 88% 94% 85% 82% 66% 88% 83%
sjeng 83% 92% 79% 75% 55% 85% 93% 80% 78% 58% 87% 78%
xalancbmk 86% 94% 89% 80% 71% 89% 95% 88% 83% 76% 89% 89%
GeoMean 83% 93% 87% 76% 64% 85% 93% 86% 79% 65% 86% 84%
bwaves 90% 94% 86% 86% 73% 89% 95% 86% 84% 75% 90% 88%
cactusADM 89% 95% 93% 83% 76% 89% 95% 93% 84% 79% 90% 90%
calculix 81% 92% 81% 73% 58% 84% 93% 82% 76% 58% 86% 81%
dealII 86% 94% 83% 80% 63% 88% 95% 84% 82% 66% 89% 83%
gamess 88% 95% 85% 83% 68% 90% 95% 85% 85% 70% 90% 85%
GemsFDTD 86% 94% 87% 80% 71% 87% 95% 89% 82% 75% 89% 90%
gromacs 85% 94% 83% 79% 63% 87% 94% 85% 81% 66% 88% 82%
lbm 85% 94% 89% 79% 77% 88% 98% 96% 84% 82% 89% 93%
leslie3d 88% 95% 92% 83% 79% 88% 96% 96% 83% 80% 90% 91%
milc 85% 94% 81% 79% 66% 87% 94% 84% 81% 68% 89% 89%
namd 88% 95% 85% 82% 68% 90% 95% 85% 84% 70% 91% 85%
povray 86% 94% 82% 80% 61% 88% 94% 83% 82% 65% 88% 81%
soplex 84% 95% 84% 78% 75% 85% 95% 87% 80% 75% 87% 84%
sphinx3 87% 95% 91% 81% 72% 88% 95% 92% 83% 75% 89% 89%
tonto 87% 94% 85% 82% 67% 89% 95% 85% 84% 70% 90% 84%
wrf 87% 95% 92% 82% 75% 88% 95% 94% 83% 77% 89% 91%
zeusmp 85% 93% 88% 78% 71% 86% 94% 92% 80% 77% 88% 89%
GeoMean 86% 94% 86% 80% 69% 88% 95% 88% 82% 72% 89% 87%
applu.M 97% 98% 90% 96% 92% 92% 98% 90% 88% 81% 95% 94%
apsi.M 100% 99% 97% 99% 98% 101% 99% 100% 100% 98% 100% 100%
fma3d.M 92% 97% 83% 89% 77% 90% 98% 85% 88% 77% 93% 92%
galgel.M 99% 99% 95% 98% 93% 99% 99% 95% 98% 93% 97% 95%
mgrid.M 99% 100% 98% 99% 99% 99% 100% 101% 99% 99% 99% 98%
swim.M 98% 99% 95% 97% 95% 94% 99% 98% 94% 93% 97% 96%
wupwise.M 98% 99% 88% 97% 93% 95% 97% 88% 93% 87% 96% 94%
GeoMean 98% 99% 92% 96% 92% 96% 99% 94% 94% 89% 97% 96%
bt.A 100% 100% 98% 99% 98% 100% 100% 99% 100% 100% 99% 98%
cg.A 97% 100% 99% 97% 96% 98% 100% 95% 98% 97% 96% 94%
ft.A 99% 100% 98% 99% 98% 92% 100% 99% 92% 90% 99% 100%
is.A 100% 100% 98% 100% 100% 101% 100% 97% 101% 102% 99% 97%
lu.A 100% 99% 99% 99% 99% 100% 99% 99% 99% 99% 98% 99%
mg.A 99% 100% 98% 100% 100% 100% 100% 102% 100% 100% 99% 98%
sp.A 99% 100% 98% 99% 98% 99% 100% 99% 99% 99% 99% 98%
GeoMean 99% 100% 98% 99% 99% 99% 100% 99% 98% 98% 98% 98%

* GeoMean 89% 95% 89% 84% 75% 90% 96% 90% 86% 76% 91% 89%

DEWP SKEWED ORACLE
SP

EC
-O

M
P2

00
1

N
AS

-N
PB

SP
EC

-C
PU

20
06

 -
C

IN
T

SP
EC

-C
PU

20
06

 -
C

FP

On average, the performance was harmed by less than 4%, while saving on average
25% of total cache energy.

5.5 Design Space Exploration

This section presents a parameter sensitivity exploration for our DEWP mechanism.
We study the effect of varying the LLC size when using our mechanism. For these exper-
iments, DEWP was only enabled on the LLC.

Figure 5.10 shows the results presented in terms of energy consumption and execution
time for each LLC size normalized to the same LLC sized baseline without our mecha-
nism.

90

Figure 5.10: DEWP: Impact of varying the LLC size on energy and performance.

98
.2

3%

98
.4

9%

99
.0

2%

10
0.

64
%

10
1.

03
%

96
.8

2%

93
.9

4%

89
.3

0%

81
.7

5%

68
.5

7%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

4 MB LLC 8 MB LLC 16 MB LLC 32 MB LLC 64 MB LLC

Execution Time Energy Consumption

This evaluation with different LLC sizes shows that our mechanism when applied to
small caches tends to produce lower gains in terms of energy consumption, and some per-
formance improvement. This is because smaller caches tend to consume more dynamic
energy, due to an increased amount of accesses. However, for these smaller caches, our
mechanism benefits in terms of performance, by the early write-back and early eviction
of the cache lines, after their last update or last access.

When our mechanism is applied to a bigger cache, it enables the cache to consume less
energy, however, in terms of performance the under predictions can hurt the performance.
Moreover, when DEWP is applied in a system using 64 MB LLC, it can keep the same
energy consumption as the system with 16 MB LLC, due to its beneficial static energy
savings.

Although our mechanisms have a small train phase for each new pattern, the number
of instructions between a system context-switch could influence the mechanism behavior.
If the context-switch happens before the mechanism makes use of the trained patterns,
the gains might be compromised. Figure 5.11 presents the average number of cycles
between the OS context switch for SPEC-CPU2006, SPEC-OMP2001 and NAS-NPB
suites executing on a real Intel Sandy Bridge machine.

We can observe that on average after every 1,090 million instructions happens a con-
text switch. Our traces for SPEC-CPU2006 have 200 million instructions and 140 million
instructions on average for the parallel benchmarks. It means that our mechanisms DSBP
and DEWP were evaluated using a tough scenario, considering that inside a real machine,
our mechanism would have more time to make use and obtain the gains from the trained
patterns. However, even in this situation, our mechanisms could achieve high energy
savings with a low performance degradation.

5.6 Summary

In this chapter, we introduced the DEWP mechanism to optimize the energy efficiency
by keeping only alive data in the cache memories. Our mechanism achieves this by pre-
dicting access patterns of the cache lines. Using this information, DEWP is able to turn
off the cache lines as soon as their data becomes dead, to write-back early dirty cache
lines after their last write operation happens and also to reduce cache pollution by prior-
itizing the eviction of completely dead cache lines. DEWP works independently of the
cache replacement algorithm and it does not modify the cache coherence protocol.

91

Figure 5.11: Average number of cycles between the OS context-switch.

0

500

1000

1500

2000

2500

3000

3500

4000
as

ta
r

bz
ip

2
gc

c
go

bm
k

h2
64

re
f

hm
m

e
r

lib
q

ua
n

tu
m

m
cf

om
ne

tp
p

pe
rlb

e
nc

h
sj

e
ng

xa
la

nc
bm

k
G

eo
M

ea
n

bw
av

es
ca

ct
us

A
D

M
ca

lc
u

lix
de

al
II

ga
m

es
s

G
em

sF
D

T
D

gr
om

ac
s

lb
m

le
sl

ie
3d

m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

G
eo

M
ea

n
ap

pl
u

ap
si

fm
a3

d
ga

lg
el

m
g

rid
sw

im
w

u
pw

is
e

G
eo

M
ea

n bt cg ft is lu
m

g sp
G

eo
M

ea
n

G
eo

M
ea

n

SPEC-CPU2006 - CINT SPEC-CPU2006 - CFP SPEC-OMP2001 NAS-NPB *

M
ill

io
n

of
 In

st
ru

ct
io

ns

The DEWP mechanism requires a low storage size overhead to achieve accurate pre-
dictions (73% correct predictions and 14% of underpredictions). DEWP achieves a 25%
energy reduction on average compared to the baseline. The execution time was increased
by 4% on average for single-threaded and multi-threaded applications. DEWP achieves
close to 100% of the potential savings that a perfect (oracle) mechanism would achieve.

92

93

6 COMBINING DSBP AND DEWP

In the previous chapters, DSBP and DEWP were used separately in all the cache lev-
els. This chapter presents the evaluation results for the integration of our two mechanisms
DSBP and DEWP, executing together in a system. This integrated mechanism will be
called MIXED.

6.1 Introduction

In order to choose the best integration between the predictors, we first consider the
results presented in Section 1.2. It is possible to see that the three major sources of energy
consumption inside the cache sub-system are the dynamic (45%) and static (17%) energy
from the L1 data cache and the static energy from the LLC (19%). It means that DSBP,
which saves static and dynamic energy, is suitable for the L1 cache, while the DEWP
mechanism would reduce the main energy consumption from the LLC.

The second aspect to be considered is presented in Section 4.1, in which we can ob-
serve that cache levels closer to the processor (L1 and L2) tend to access less sub-blocks
before the line is evicted. It means that DSBP has more potential to save energy on L1
and L2 caches because it works on the sub-block granularity. The cache lines in the LLC
tend to be used completely, which is an access behavior that is suitable for DEWP. For
these reasons, MIXED implements the DSBP mechanism on the L1 and L2 cache levels,
while DEWP is used on the LLC.

6.2 Evaluation

The baseline configuration for the processor is based on the Intel Sandy Bridge as
shown in Table 3.6. The single-threaded applications from SPEC-CPU2006 and multi-
threaded (8 threads) applications from SPEC-OMP2001 and NAS-NPB suites were used
as workloads to evaluate MIXED.

In order to evaluate our proposed mechanism, we compare it with the SKEWED
mechanism, explained in Section 2.2.6. We implemented SKEWED using three tables
with 8192 entries each, with a 2 bit counter per entry to perform the prediction. Each
table is indexed using a different hash function, in order to obtain three different sub-
predictions, which are combined to form the final prediction.

A similar energy modeling methodology as presented in Sections 4.3 and 5.3 was used
to evaluate our combination of the DSBP and DEWP mechanisms.

94

Figure 6.1: MIXED: Total energy consumption of the cache sub-system.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
e

r
lib

q
ua

n
tu

m
m

cf
om

ne
tp

p
pe

rlb
e

nc
h

sj
e

ng
xa

la
nc

bm
k

G
eo

M
ea

n
bw

av
es

ca
ct

us
A

D
M

ca
lc

u
lix

de
al

II
ga

m
es

s
G

em
sF

D
T

D
gr

om
ac

s
lb

m
le

sl
ie

3d
m

ilc
na

m
d

po
vr

ay
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
ze

us
m

p
G

eo
M

ea
n

ap
pl

u.
M

ap
si

.M
fm

a3
d

.M
ga

lg
el

.M
m

g
rid

.M
sw

im
.M

w
u

pw
is

e
.M

G
eo

M
ea

n
bt

.A
cg

.A ft.
A

is
.A

lu
.A

m
g

.A
sp

.A
G

eo
M

ea
n

G
eo

M
ea

n

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

E
ne

rg
y

C
on

su
m

pt
io

n

MIXED-L1-L2-LLC SKEWED-L1-L2-LLC

6.2.1 Energy Savings

The cache energy efficiency is increased by using our two mechanisms DSBP and
DEWP together. The results in Figure 6.1 are shown in terms of energy consumption for
the cache memory sub-system, normalized to the baseline. MIXED achieves on average
37% of energy savings compared to the baseline, outperforming the related work by 13%.

Table 6.1 presents the results for the MIXED, DSBP, DEWP and SKEWED mech-
anisms when the predictors are applied to all the cache levels, also comparing with the
oracle mechanisms applied on the L1 and LLC. Notice that the table shows the energy
consumption considering the overall cache system.

6.2.2 Performance Impact

Our mechanism can influence the execution time of an application in different ways.
MIXED can increase the performance with early evictions of dead lines, enabling more
effective space in the cache memory, while early write-backs of last written lines can
potentially reduce the memory controller contention. On the other hand, our mechanism
can hurt the performance by causing extra cache misses because of under predictions.

Figure 6.2: MIXED: Normalized cache misses.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
e

r
lib

q
ua

n
tu

m
m

cf
om

ne
tp

p
pe

rlb
e

nc
h

sj
e

ng
xa

la
nc

bm
k

A
ve

ra
ge

bw
av

es
ca

ct
us

A
D

M
ca

lc
u

lix
de

al
II

ga
m

es
s

G
em

sF
D

T
D

gr
om

ac
s

lb
m

le
sl

ie
3d

m
ilc

na
m

d
po

vr
ay

so
pl

ex
sp

hi
nx

3
to

nt
o

w
rf

ze
us

m
p

A
ve

ra
ge

ap
pl

u.
M

ap
si

.M
fm

a3
d

.M
ga

lg
el

.M
m

g
rid

.M
sw

im
.M

w
u

pw
is

e
.M

A
ve

ra
ge

bt
.A

cg
.A ft.
A

is
.A

lu
.A

m
g

.A
sp

.A
A

ve
ra

ge
A

ve
ra

ge

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

E
xt

ra
 L

in
e

M
is

se
s

L1 L2 LLC

As shown in the previous section, successfully predicting dead cache lines can signif-
icantly reduce cache energy consumption. However, incorrect predictions may introduce
a negative impact on cache performance and actually increase energy consumption due to

95

Table 6.1: MIXED: Total energy consumption of the cache sub-system.

M
IX

E
D

L
1-

L
2-

L
L

C

D
E

W
P

L
1-

L
2-

L
L

C

D
S

B
P

L
1-

L
2-

L
L

C

S
K

E
W

E
D

L
1-

L
2-

L
L

C

L
1

O
ra

cl
e

L
in

e
U

sa
g

e

L
L

C
 O

ra
cl

e
L

in
e

U
sa

g
e

L
1

O
ra

cl
e

S
u

b
-b

lo
ck

 U
sa

g
e

astar 59% 67% 63% 70% 86% 87% 58%
bzip2 56% 58% 56% 62% 86% 82% 63%
gcc 58% 63% 59% 68% 85% 85% 65%
gobmk 52% 54% 52% 58% 86% 78% 66%
h264ref 63% 70% 63% 73% 90% 86% 71%
hmmer 73% 74% 73% 77% 92% 89% 79%
libquantum 44% 77% 43% 47% 82% 85% 56%
mcf 38% 52% 39% 61% 81% 81% 58%
omnetpp 61% 74% 63% 78% 86% 91% 58%
perlbench 56% 62% 57% 66% 88% 83% 57%
sjeng 51% 55% 52% 58% 87% 78% 67%
xalancbmk 62% 71% 62% 76% 89% 89% 66%
GeoMean 55% 64% 56% 65% 86% 84% 63%
bwaves 61% 73% 60% 75% 90% 88% 72%
cactusADM 70% 76% 70% 79% 90% 90% 79%
calculix 57% 58% 58% 58% 86% 81% 74%
dealII 55% 63% 55% 66% 89% 83% 68%
gamess 59% 68% 59% 70% 90% 85% 65%
GemsFDTD 58% 71% 63% 75% 89% 90% 61%
gromacs 59% 63% 59% 66% 88% 82% 71%
lbm 50% 77% 51% 82% 89% 93% 60%
leslie3d 69% 79% 71% 80% 90% 91% 73%
milc 52% 66% 53% 68% 89% 89% 65%
namd 66% 68% 66% 70% 91% 85% 61%
povray 52% 61% 52% 65% 88% 81% 60%
soplex 59% 75% 60% 75% 87% 84% 53%
sphinx3 60% 72% 61% 75% 89% 89% 63%
tonto 63% 67% 64% 70% 90% 84% 76%
wrf 68% 75% 70% 77% 89% 91% 70%
zeusmp 65% 71% 65% 77% 88% 89% 69%
GeoMean 60% 69% 61% 72% 89% 87% 67%
applu.M 69% 92% 70% 81% 95% 94% 65%
apsi.M 86% 98% 86% 98% 100% 100% 77%
fma3d.M 44% 77% 49% 77% 93% 92% 52%
galgel.M 87% 93% 87% 93% 97% 95% 85%
mgrid.M 89% 99% 89% 99% 99% 98% 76%
swim.M 71% 95% 71% 93% 97% 96% 66%
wupwise.M 73% 93% 72% 87% 96% 94% 73%
GeoMean 72% 92% 74% 89% 97% 96% 70%
bt.A 90% 98% 90% 100% 99% 98% 79%
cg.A 62% 96% 61% 97% 96% 94% 43%
ft.A 91% 98% 92% 90% 99% 100% 80%
is.A 86% 100% 85% 102% 99% 97% 57%
lu.A 79% 99% 79% 99% 98% 99% 63%
mg.A 86% 100% 86% 100% 99% 98% 78%
sp.A 78% 98% 79% 99% 99% 98% 63%
GeoMean 81% 99% 81% 98% 98% 98% 65%

* GeoMean 63% 75% 64% 76% 91% 89% 66%

S
P

E
C

 O
M

P
20

01
N

A
S

-N
P

B
S

P
E

C
-C

P
U

20
06

 -
 C

IN
T

S
P

E
C

-C
P

U
20

06
 -

 C
F

P

extra cache sub-block misses. Figure 6.2 shows the total number of extra cache misses
normalized to the number of cache misses from the baseline cache architecture.

Figure 6.3 shows the execution time of our mechanism normalized to the baseline. On
average, the performance was degraded by less than 2%, while saving on average 37% of
cache energy.

96

Figure 6.3: MIXED: Normalized execution time.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%
120%
130%
140%
150%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
e

r
lib

q
ua

n
tu

m
m

cf
om

ne
tp

p
pe

rlb
e

nc
h

sj
e

ng
xa

la
nc

bm
k

G
eo

M
ea

n
bw

av
es

ca
ct

us
A

D
M

ca
lc

u
lix

de
al

II
ga

m
es

s
G

em
sF

D
T

D
gr

om
ac

s
lb

m
le

sl
ie

3d
m

ilc
na

m
d

po
vr

ay
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
ze

us
m

p
G

eo
M

ea
n

ap
pl

u.
M

ap
si

.M
fm

a3
d

.M
ga

lg
el

.M
m

g
rid

.M
sw

im
.M

w
u

pw
is

e
.M

G
eo

M
ea

n
bt

.A
cg

.A
ft.

A
is

.A
lu

.A
m

g
.A

sp
.A

G
eo

M
ea

n
G

eo
M

ea
n

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

E
xe

cu
tio

n
T

im
e

MIXED-L1-L2-LLC SKEWED-L1-L2-LLC

6.3 Summary

Results combining both proposals that aim to reduce energy consumption by pre-
dicting the cache line usage pattern showed that maximum gains can be obtained when
applying both mechanisms together in a system.

Combining DSBP and DEWP can outperform in terms of energy savings the DSBP
or DEWP separately by 1% and 12% (percentage points) respectively. However, this
combination impacts on the execution time by 1.77%, which represents a lower overhead
than DSBP (2.25%) and DEWP (3.65%).

97

7 CONCLUSIONS AND FUTURE WORK

Energy consumption has become an important factor in multi-core designs. Thus,
mechanisms that enable energy savings while maintaining the performance are essential
for keeping the power budget and an efficient operation.

Considering that cache memories consume a great portion of energy inside the chip,
this thesis proposed two mechanisms, Dead Sub-Block Predictor (DSBP) and Dead Line
and Early Write-Back Predictor (DEWP), to increase the energy efficiency of cache mem-
ories.

To our knowledge, the DSBP mechanism is the first proposal to exploit dead cache
line prediction at the sub-block granularity. DSBP is used to reduce energy consumption
in the cache sub-system by loading into the cache only those sub-blocks predicted to be
useful, and turning off active sub-blocks when they become dead. In addition, the LRU
replacement policy is improved by prioritizing dead lines for eviction. This modifica-
tion reduces the number of dead lines that are kept in the cache, which leads to a better
utilization of the cache space.

DSBP results in terms of energy consumption show significant improvements on all
cache levels, with average savings of 22%, 27% and 36% when applied to the L1, L1-L2
and L1-L2-LLC respectively, compared to the baseline.

We introduced the DEWP mechanism to optimize the energy efficiency and perfor-
mance of last level caches by reducing cache pollution and memory pressure. Our mech-
anism achieves this by predicting access patterns of the cache lines. Using this infor-
mation, DEWP is able to turn off the cache lines as soon as their data becomes dead,
to write-back early dirty cache lines after their last write operation happens and also to
reduce cache pollution by prioritizing the eviction of completely dead cache lines.

DEWP achieves energy savings on all cache levels, with average savings of 11%, 16%
and 25% when applied to the L1, L1-L2 and L1-L2-LLC respectively, compared to the
baseline.

Additionally, integrating DSBP and DEWP, using DSBP on the L1 and L2 and DEWP
on the LLC, produces 37% of energy savings for all the cache levels.

7.1 Future Work

Multiple future work opportunities can be explored, in order to reduce the overhead
and improve the mechanism accuracy, enabling higher energy savings.

Enabling the power gating on the sub-block or cache line level can impact the design
of cache memories by requiring a higher number of power lines. Moreover, the power
gating operation can also generate some peak energy when turning on the cache lines.

98

These impacts can be evaluated in order to propose ways to reduce this impact in terms
of area and energy consumption.

The prediction accuracy for the prefetched lines can be improved by including an extra
bit in the cache line to indicate that a particular line was prefetched. Thus, mispredictions
caused by unnecessary prefetches would not modify the prediction pattern, increasing the
accuracy of our mechanisms.

Turning off sub-blocks inside the cache line can help reduce the heat from the cache
memory sub-system, which in turn reduces static energy (LIU et al., 2007). However, the
heat reduction benefits of our mechanism are not modeled in this work.

Dead-on-arrival lines can be filtered with bypassing algorithms using the information
available from our predictor. Also, our mechanism can be used to design prefetchers
that bring into the cache only those sub-blocks that are predicted to be useful, thereby
decreasing the bandwidth demand of systems that employ aggressive prefetching.

Mechanisms, such as the one presented by Kim and Gratz (KIM; GRATZ, 2010),
could be used together with DSBP to reduce the energy consumption on networks-on-chip
by transferring only the useful data between caches. In addition, off-chip mechanisms as
presented by Yoon et al. (YOON; JEONG; EREZ, 2011) can also be adopted to reduce
the overall off-chip communication during accesses to the main memory, fetching only the
sub-blocks predicted to be useful. This evaluation of on-chip and off-chip traffic could
show the benefits of our mechanism for the interconnection system.

7.2 Published Papers

The list with published papers since 2010 (second year as PhD student) are present
below:

1. CRUZ, E. H. M., DIENER, M., ALVES, M. A. Z., NAVAUX, P. O. A. Dynamic
thread mapping of shared memory applications by exploiting cache coherence
protocols. Journal of Parallel and Distributed Computing (JPDC), 2014

2. 1 ALVES, M. A. Z., VILLAVIEJA, C., DIENER, M., NAVAUX, P. O. A. Energy
Efficient Last Level Caches via Last Read/Write Prediction. Int. Symp. on Com-
puter Architecture and High Performance Computing (SBAC-PAD), 2013, Porto de
Galinhas, PE.

3. MOREIRA, F. B., ALVES, M. A. Z., DIENER, M., NAVAUX, P. O. A. Influência
das Características de Processadores e Aplicações no Nível de Blocos Básicos.
Symp. on Computing Systems (WSCAD-SSC), 2013, Porto de Galinhas, PE.

4. 2 ALVES, M. A. Z., KHUBAIB, EBRAHIMI, E., NARASIMAN, V., VILLAVIEJA,
C., NAVAUX, P. O. A., PATT, Y. N. Energy Savings via Dead Sub-Block Predic-
tion. Int. Symp. on Computer Architecture and High Performance Computing
(SBAC-PAD), 2012, New York, United States.

5. CRUZ, E. H. M., ALVES, M. A. Z., CARISSIMI, A. S., NAVAUX, P. O. A.,
RIBEIRO, C. P., MEHAUT, J. Using Memory Access Traces to Map Threads and
Data on Hierarchical Multi-core Platforms. Workshop on Advances in Parallel

1Represents the one of the most important publications related to this thesis mechanism DEWP.
2Represents the one of the most important publications related to this thesis mechanism DSBP.

99

and Distributed Computing Models. (IPDPS-APDCM), 2011, Anchorage, United
States.

6. MOREIRA, F. B., MOLINA DA CRUZ, E. H., ALVES, M. A. Z., NAVAUX, P.
O. A. Scratchpad Memories for Parallel Applications in Multi-core Architectures.
(Best paper award) Symp. on Computing Systems (WSCAD-SSC), 2011, Vitória,
ES.

7. FREITAS, H. C., ALVES, M. A. Z., SCHNORR, L. M., NAVAUX, P. O. A. Impact
of Parallel Workloads on NoC Architecture Design. Euromicro Int. Conference on
Parallel, Distributed and Network-Based Computing. 2010, Pisa, Italy. p. 551-555.

8. RUTZIG, M. B., MADRUGA, F. L., ALVES, M. A. Z., FREITAS, H. C., BECK
FILHO, A. C. S., MAILLARD, N., NAVAUX, P. O. A., CARRO, L. TLP and ILP
exploitation through a Reconfigurable Multiprocessor System. IEEE Int. Parallel
And Distributed Processing Symp. (IPDPS), 2010, Atlanta, United States, p. 1-8.

9. DIENER, M., MADRUGA, F. L., RODRIGUES, E. R., ALVES, M. A. Z., SCHNEI-
DER, J., NAVAUX, P. O. A., HEIß, H. Evaluating Thread Placement Based on
Memory Access Patterns for Shared Cache Multi-core Processors. Int. Symp. On
Advances Of High Performance Computing And Networking (AHPCN), 2010 Mel-
bourne, Australia.

10. MOR, S. D. K., ALVES, M. A. Z., LIMA, J. V. F., MAILLARD, N., NAVAUX,
P. O. A. Eficiência Energética em Computação de Alto Desempenho: Uma Abor-
dagem em Arquitetura e Programação para Green Computing. Seminário Inte-
grado de Software e Hardware (SEMISH), 2010, Belo Horizonte, MG.

11. ALVES, M. A. Z., CERA, M. C., LIMA, J. V. F., MAILLARD, N., NAVAUX,
P. O. A. Enhancing Energy Efficiency using Efficient Parallel Programming Tech-
niques. Latin-American Conference on High Performance Computing (CLCAR),
2010, Gramado, RS.

12. ALVES, M. A. Z., NAVAUX, P. O. A. Intermediary Cache Memory Level for Data
Exchange and Interactions of Parallel Scientific Applications. Latin-American Con-
ference on High Performance Computing (CLCAR), 2010, Gramado, RS.

13. CRUZ, E. H. M., ALVES, M. A. Z., NAVAUX, P. O. A. Process Mapping Based
on Memory Access Traces. Symp. on Computing Systems (WSCAD-SCC), 2010,
Petrópolis, RJ, p. 72-79

100

101

REFERENCES

ABELLA, J. et al. IATAC: a smart predictor to turn-off l 2 cache lines. ACM Transac-
tions on Architecture and Code Optimization (TACO), [S.l.], v.2, n.1, p.55–77, 2005.

AGARWAL, V. et al. Clock rate versus IPC: the end of the road for conventional microar-
chitectures. ACM SIGARCH Computer Architecture News, [S.l.], v.28, n.2, p.248–
259, 2000.

ALVES, M. et al. Energy Savings via Dead Sub-Block Prediction. In: IEEE INT. SYMP.
ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING.
Proceedings. . . IEEE, 2012. p.51–58. (SBAC-PAD’12).

ALVES, M. et al. Energy Efficient Last Level Caches via Last Read/Write Prediction. In:
IEEE INT. SYMP. ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE
COMPUTING. Proceedings. . . IEEE, 2013. p.73–80. (SBAC-PAD’13).

ARGOLLO, E. et al. COTSon: infrastructure for full system simulation. ACM SIGOPS
Operating Systems Review, [S.l.], v.43, n.1, p.52–61, 2009.

AUSTIN, T.; LARSON, E.; ERNST, D. SimpleScalar: an infrastructure for computer
system modeling. IEEE Micro, [S.l.], v.35, n.2, p.59–67, 2002.

BAER, J.-L.; CHEN, T.-F. An effective on-chip preloading scheme to reduce data access
penalty. In: ACM/IEEE CONF. ON SUPERCOMPUTING. Proceedings. . . ACM, 1991.
p.176–186. (SC’91).

BAILEY, D. H. et al. The nas parallel benchmarks. [S.l.]: The International Journal of
Supercomputer Applications, 1991.

BELLARD, F. QEMU, a Fast and Portable Dynamic Translator. In: USENIX ANNUAL
TECHNICAL CONFERENCE, FREENIX TRACK. Anais. . . [S.l.: s.n.], 2005. p.41–46.

BERTOZZI, D. et al. NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip. IEEE Transactions on Parallel and Distributed Systems, [S.l.], v.16,
n.2, p.113–129, 2005.

BINKERT, N. et al. The M5 simulator: modeling networked systems. IEEE Micro, [S.l.],
v.26, n.4, p.52–60, 2006.

BINKERT, N. et al. The gem5 simulator. ACM SIGARCH Computer Architecture
News, [S.l.], v.39, n.2, p.1–7, 2011.

102

BJERREGAARD, T.; MAHADEVAN, S. A survey of research and practices of network-
on-chip. ACM Computing Surveys (CSUR), [S.l.], v.38, n.1, p.1, 2006.

BOJAN, T. et al. Functional coverage measurements and results in post-Silicon valida-
tion of Core 2 duo family. In: INT. HIGH LEVEL DESIGN VALIDATION AND TEST
WORKSHOP. Anais. . . IEEE, 2007. p.145–150. (HLVDT’07).

BORKAR, S. Design challenges of technology scaling. IEEE Micro, [S.l.], v.19, n.4,
p.23–29, 1999.

BUTKO, A. et al. Accuracy evaluation of GEM5 simulator system. In: RECONFIG-
URABLE COMMUNICATION-CENTRIC SYSTEMS-ON-CHIP (RECOSOC), 2012
7TH INTERNATIONAL WORKSHOP ON. Anais. . . [S.l.: s.n.], 2012. p.1–7.

CHEN, C. F. et al. Accurate and complexity-effective spatial pattern prediction. In: IEEE
INT. SYMP. ON HIGH PERFORMANCE COMPUTER ARCHITECTURE. Proceed-
ings. . . IEEE, 2004. p.276–287. (HPCA’04).

DESIKAN, R.; BURGER, D.; KECKLER, S. Measuring experimental error in micro-
processor simulation. In: IEEE/ACM INT. SYMP. ON COMPUTER ARCHITECTURE.
Proceedings. . . IEEE, 2001. p.266–277. (ISCA’01).

DOWECK, J. White Paper Inside Intel R� Core R� Microarchitecture and Smart Memory
Access. Intel Corporation, [S.l.], 2006.

FLEMING, P. J.; WALLACE, J. J. How Not to Lie with Statistics: the correct way to
summarize benchmark results. Commun. ACM, New York, NY, USA, v.29, n.3, p.218–
221, Mar. 1986.

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture: a quantitative ap-
proach. 4th.ed. USA: Elsevier, 2007.

HENNING, J. L. SPEC CPU2006 benchmark descriptions. ACM SIGARCH Computer
Architecture News, [S.l.], v.34, n.4, p.1–17, 2006.

HUANG, M. et al. L1 data cache decomposition for energy efficiency. In: ACM INT.
SYMP. ON LOW POWER ELECTRONICS AND DESIGN. Proceedings. . . [S.l.: s.n.],
2001. p.10–15. (ISPLED’01).

IBM. System/370 model 155 theory of operation/diagrams manual v. 5: buffer control
unit. Poughkeepsie, N.Y.: IBM System Products Division, 1974.

INTEL. Intel Performance Counter Monitor - A better way to measure CPU utiliza-
tion. 2012.

INTEL. Intel 64 and IA-32 Architectures Software Developer’s Manual. 2013.
n.September.

JAIN, R. The art of computer systems performance analysis: techniques for experi-
mental design, measurement, simulation, and modeling. USA: J. Wiley, 1991.

JOUPPI, N. P. Improving direct-mapped cache performance by the addition of a small
fully-associative cache and prefetch buffers. In: ACM SIGARCH COMPUTER ARCHI-
TECTURE NEWS. Proceedings. . . ACM, 1990. n.3a, p.364–373. (SIGARCH’90, v.18).

103

KAXIRAS, S.; HU, Z.; MARTONOSI, M. Cache decay: exploiting generational behavior
to reduce cache leakage power. In: IEEE/ACM INT. SYMP. ON COMPUTER ARCHI-
TECTURE. Proceedings. . . IEEE, 2001. p.240–251. (ISCA’01).

KHAN, S. et al. Using dead blocks as a virtual victim cache. In: IEEE/ACM INT. CONF.
ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES. Proceed-
ings. . . ACM, 2010. p.489–500. (PACT’10).

KHARBUTLI, M.; SOLIHIN, Y. Counter-based cache replacement and bypassing algo-
rithms. IEEE Transactions on Computers (TC), [S.l.], v.57, n.4, p.433–447, 2008.

KIM, C.; BURGER, D.; KECKLER, S. Q. An adaptive, non-uniform cache structure for
wire-delay dominated on-chip-caches. In: INT. CONF. ON ARCHITECTURAL SUP-
PORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS. Pro-
ceedings. . . IEEE, 2002. p.211–222.

KIM, C.; BURGER, D.; KECKLER, S. W. Non-Uniform Cache Architetures for Wire-
Delay Dominated On-Chip Caches. IEEE Computer, [S.l.], 2003.

KIM, H.; GRATZ, P. V. Leveraging Unused Cache Block Words to Reduce Power in
CMP Interconnect. IEEE Computer Architecture Letters (CAL), [S.l.], v.9, n.1, p.33–
36, 2010.

KUMAR, S.; WILKERSON, C. Exploiting spatial locality in data caches using spa-
tial footprints. In: ACM SIGARCH COMPUTER ARCHITECTURE NEWS. Proceed-
ings. . . ACM, 1998. v.26, p.357–368.

LAI, A.-C.; FALSAFI, B. Selective, accurate, and timely self-invalidation using last-
touch prediction. In: IEEE/ACM INT. SYMP. ON COMPUTER ARCHITECTURE. Pro-
ceedings. . . IEEE, 2000. p.139–148. (ISCA’00).

LAI, A.-C.; FIDE, C.; FALSAFI, B. Dead-block prediction & dead-block correlating
prefetchers. In: IEEE/ACM INT. SYMP. ON COMPUTER ARCHITECTURE. Proceed-
ings. . . IEEE, 2001. p.144–154. (ISCA’01).

LEE, H.; TYSON, G.; FARRENS, M. Eager writeback-a technique for improving band-
width utilization. In: IEEE/ACM INT. SYMP. ON MICROARCHITECTURE. Proceed-
ings. . . IEEE, 2000. p.11–21. (MICRO’00).

LI, S. et al. McPAT: an integrated power, area, and timing modeling framework for multi-
core and manycore architectures. In: IEEE/ACM INT. SYMP. ON MICROARCHITEC-
TURE. Proceedings. . . IEEE, 2009. p.469–480. (MICRO’09).

LI, S. et al. The McPAT Framework for Multicore and Manycore Architectures: simul-
taneously modeling power, area, and timing. ACM Transactions on Architecture and
Code Optimization (TACO), [S.l.], v.10, n.1, p.5, 2013.

LINDNER, M. A. libconfig - C/C++ configuration file library. Available at:
http://www.hyperrealm.com/libconfig/. Accessed on: 14-January-2013.

Linux Kernel Developers. Performance analysis tools for Linux. Available at:
https://perf.wiki.kernel.org. Accessed on: 14-January-2013.

104

LIU, Y. et al. Accurate temperature-dependent integrated circuit leakage power estima-
tion is easy. In: EDA CONF. ON DESIGN, AUTOMATION AND TEST IN EUROPE.
Proceedings. . . EDA Consortium, 2007. p.1526–1531. (DATE’07).

MAGNUSSON, P. et al. Simics: a full system simulation platform. IEEE Micro, [S.l.],
v.35, n.2, p.50–58, Feb 2002.

MARTY, M. et al. General Execution-driven Multiprocessor Simulator. In: ISCA TUTO-
RIAL. Proceedings. . . IEEE, 2005. (ISCA’05).

MURALIMANOHAR, N.; BALASUBRAMONIAN, R.; JOUPPI, N. Architecting ef-
ficient interconnects for large caches with CACTI 6.0. IEEE Micro, [S.l.], v.28, n.1,
p.69–79, 2008.

OLUKOTUN, K. et al. The Case for a Single-Chip Multiprocessor. In: IEEE INT. SYMP.
ON ARCHITECTURAL SUPPORT FOR PROGRAMMING LANGUAGES AND OP-
ERATING SYSTEMS. Proceedings. . . IEEE, 1996. p.2–11. (ASPLOS’96).

PATEL, A. et al. MARSSx86: a full system simulator for x86 cpus. In: DESIGN AU-
TOMATION CONFERENCE. Proceedings. . . ACM, 2011. p.261–305. (DAC’11).

PATIL, H. et al. Pinpointing Representative Portions of Large Intel R� Itanium R� Programs
with Dynamic Instrumentation. In: IEEE/ACM INT. SYMP. ON MICROARCHITEC-
TURE. Proceedings. . . IEEE, 2004. p.81–92. (MICRO’04).

POWELL, M. et al. Gated-VDD: a circuit technique to reduce leakage in deep-submicron
cache memories. In: ACM INT. SYMP. ON LOW POWER ELECTRONICS AND DE-
SIGN. Proceedings. . . ACM, 2000. p.90–95. (ISPLED’00).

PUJARA, P.; AGGARWAL, A. Cache noise prediction. IEEE Transactions on Comput-
ers (TC), [S.l.], v.57, n.10, p.1372–1386, 2008.

RENAU, J. et al. SESC simulator. Available at: http://sesc.sourceforge.net. Accessed on:
10-January-2013.

SAITO, H. et al. Large system performance of SPEC OMP2001 benchmarks. In: INT.
SYMP. ON HIGH PERFORMANCE COMPUTING. Anais. . . [S.l.: s.n.], 2006. p.370–
379. (ISHPC’06).

Semiconductor Industry Association. Model for assessment of CMOS technologies and
roadmaps (MASTAR). Semiconductor Industry Association, [S.l.], 2007.

SHERWOOD, T. et al. Automatically characterizing large scale program behavior. In:
ACM SIGARCH COMPUTER ARCHITECTURE NEWS. Proceedings. . . ACM, 2002.
n.5, p.45–57. (SIGARCH’02, v.30).

SHERWOOD, T.; PERELMAN, E.; CALDER, B. Basic block distribution analysis to
find periodic behavior and simulation points in applications. In: PARALLEL ARCHI-
TECTURES AND COMPILATION TECHNIQUES, 2001. PROCEEDINGS. 2001 IN-
TERNATIONAL CONFERENCE ON. Anais. . . [S.l.: s.n.], 2001. p.3–14.

SMITH, J. E.; SOHI, G. S. The Microarchitecture of Superscalar Processors. IEEE Mi-
cro, [S.l.], v.83, n.12, p.1609–1624, 1995.

105

STUECHELI, J. et al. The virtual write queue: coordinating dram and last-level cache
policies. In: IEEE/ACM INT. SYMP. ON COMPUTER ARCHITECTURE. Proceed-
ings. . . IEEE, 2010. p.72–82. (ISCA’10).

UBAL, R. et al. Multi2Sim: a simulation framework to evaluate multicore-multithread
processors. In: IEEE 19TH INTERNATIONAL SYMPOSIUM ON COMPUTER AR-
CHITECTURE AND HIGH PERFORMANCE COMPUTING, PAGE (S). Anais. . .
[S.l.: s.n.], 2007. p.62–68.

UBAL, R. et al. Multi2Sim: a simulation framework for cpu-gpu computing. In: INT.
CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECH-
NIQUES. Proceedings. . . [S.l.: s.n.], 2012. p.335–344.

UNGERER, T.; ROBIC, B.; SILC, J. Multithreaded Processors. The Computer Journal,
[S.l.], v.45, n.3, p.320–348, 2002.

WANG, Z.; KHAN, S. M.; JIMÉNEZ, D. A. Improving writeback efficiency with decou-
pled last-write prediction. In: IEEE/ACM INT. SYMP. ON COMPUTER ARCHITEC-
TURE. Proceedings. . . IEEE, 2012. p.309–320. (ISCA’12).

WANG, Z.; KHAN, S. M.; JIMÉNEZ, D. A. Rank idle time prediction driven
last-level cache writeback. In: ACM SIGPLAN WORKSHOP ON MEMORY SYS-
TEMS PERFORMANCE AND CORRECTNESS. Proceedings. . . ACM, 2012. p.21–29.
(MSPC’12).

WEAVER, V.; MCKEE, S. Are cycle accurate simulations a waste of time. In: WORK-
SHOP ON DUPLICATING, DECONSTRUCTING, AND DEBUNKING. Proceed-
ings. . . [S.l.: s.n.], 2008. p.40–53.

YEH, T.-Y.; PATT, Y. N. Two-level adaptive training branch prediction. In: IEEE/ACM
INT. SYMP. ON MICROARCHITECTURE. Proceedings. . . [S.l.: s.n.], 1991. p.51–61.
(MICRO’91).

YEH, T.-Y.; PATT, Y. N. Alternative implementations of two-level adaptive branch pre-
diction. In: ACM SIGARCH COMPUTER ARCHITECTURE NEWS. Proceedings. . .
[S.l.: s.n.], 1992. n.2, p.124–134. (SIGARCH’92, v.20).

YOON, D. H.; JEONG, M. K.; EREZ, M. Adaptive granularity memory systems: a trade-
off between storage efficiency and throughput. In: IEEE/ACM INT. SYMP. ON COM-
PUTER ARCHITECTURE. Proceedings. . . IEEE, 2011. p.295–306. (ISCA’11).

YOURST, M. PTLsim: a cycle accurate full system x86-64 microarchitectural simula-
tor. In: IEEE INT. SYMP. ON PERFORMANCE ANALYSIS OF SYSTEMS & SOFT-
WARE. Proceedings. . . IEEE, 2007. p.23–34. (ISPASS’07).

YUFFE, M. et al. A fully integrated multi-CPU, GPU and memory controller 32nm pro-
cessor. In: INT. SOLID-STATE CIRCUITS CONFERENCE DIGEST OF TECHNICAL
PAPERS. Anais. . . IEEE, 2011. p.264–266. (ISSCC’11).

106

107

APPENDIX A ADDITIONAL VALIDATION RESULTS

This appendix presents the absolute numbers comparing the real machine execu-
tion and the simulation of SPEC-CPU2006, SPEC-OMP2001 and NAS-NPB benchmark
suites.

A.1 SPEC-CPU2006 Results

Table A.1: SPEC-CPU2006 results for the Core 2 Duo machine and SiNUCA.
Real Sim Diff Real Sim Real Sim

astar 0.79 0.49 38% 3.63% 5.83% - 20
bzip2 1.13 0.77 32% 7.93% 13.49% 19 16
gcc 0.71 0.60 16% 2.69% 5.34% 92 14
gobmk 0.99 0.84 15% 10.69% 10.70% 16 11
h264ref 1.79 1.40 22% 1.63% 2.97% 10 4
hmmer 1.88 1.52 19% 0.60% 0.58% 6 12
libquantum 1.07 0.42 61% 3.06% 2.60% 77 24
mcf 0.22 0.14 39% 5.97% 6.13% 258 137
omnetpp 0.81 0.39 52% 3.82% 2.96% - 35
perlbench 1.13 1.02 10% 3.77% 2.80% 26 14
sjeng 1.28 1.07 17% 6.00% 6.65% 5 2
xalancbmk 0.81 0.93 15% 3.31% 1.42% - 31
GeoMean 0.94 0.68 24% 3.57% 3.82% 26 16
bwaves 1.51 1.04 31% 4.33% 5.55% 14 35
cactusADM 0.58 0.67 16% 1.10% 1.81% 40 20
calculix 1.79 1.01 44% 1.93% 7.58% 6 5
dealII 0.77 1.15 48% 3.62% 3.00% - 11
gamess 1.40 1.53 9% 1.74% 2.15% 8 3
GemsFDTD 0.69 0.66 4% 0.67% 0.27% 34 51
gromacs 0.84 1.11 31% 4.86% 4.83% 24 9
lbm 0.59 0.51 14% 0.87% 0.45% 42 53
leslie3d 0.84 0.67 20% 0.20% 1.54% 95 63
milc 0.63 0.65 3% 0.22% 0.00% 99 22
namd 0.82 1.96 138% 3.46% 0.20% - 1
povray 0.84 1.13 34% 3.46% 4.32% - 23
soplex 0.81 0.56 31% 3.54% 4.11% - 30
sphinx3 1.04 1.01 3% 2.66% 4.09% 15 16
tonto 1.02 1.53 49% 1.44% 1.76% 31 5
wrf 1.01 0.91 10% 0.72% 2.48% 23 24
zeusmp 0.94 0.96 2% 0.73% 1.54% 33 13
GeoMean 0.90 0.94 16% 1.46% 1.31% 27 14
GeoMean 0.92 0.82 19% 2.11% 2.04% 26 15
StDev 27%

*

IPC Branch Miss L1 DATA MPKI

SP
EC

-C
PU

20
06

 -
C

IN
T

SP
EC

-C
PU

20
06

 -
C

FP

108

Table A.2: SPEC-CPU2006 results for the Sandy Bridge machine and SiNUCA.

Real Sim Diff Real Sim Real Sim
astar 0.85 0.84 1% 8.21% 5.42% 46 22
bzip2 1.34 0.89 33% 7.05% 13.50% 18 17
gcc 1.27 0.79 38% 0.78% 4.96% 49 19
gobmk 1.17 0.86 26% 7.70% 10.35% 9 12
h264ref 2.38 1.55 35% 1.35% 2.72% 5 7
hmmer 1.92 1.54 20% 0.45% 0.59% 10 13
libquantum 1.86 0.70 62% 0.19% 2.11% 33 90
mcf 0.32 0.33 5% 5.16% 5.96% 201 201
omnetpp 0.73 0.81 12% 1.51% 2.99% 50 40
perlbench 1.34 1.06 21% 2.56% 2.60% 18 16
sjeng 1.47 1.14 23% 3.96% 6.37% 4 2
xalancbmk 1.52 1.24 19% 0.49% 1.34% 33 64
GeoMean 1.21 0.92 17% 1.85% 3.62% 22 22
bwaves 2.09 1.41 33% 1.48% 5.40% 16 35
cactusADM 1.04 1.03 1% 1.00% 1.76% 33 18
calculix 1.91 1.11 42% 1.51% 7.62% 7 6
dealII 1.94 1.13 42% 1.07% 2.95% 18 20
gamess 2.07 1.59 23% 1.12% 1.95% 7 4
GemsFDTD 1.17 1.11 5% 0.60% 0.27% 55 55
gromacs 1.29 1.09 15% 3.76% 4.87% 15 12
lbm 1.41 1.44 2% 0.28% 0.45% 96 71
leslie3d 1.49 1.44 4% 1.21% 1.54% 55 109
milc 0.87 1.28 46% 0.08% 0.00% 36 60
namd 1.81 1.94 7% 3.44% 0.19% 12 1
povray 1.75 1.08 38% 1.65% 3.81% 24 30
soplex 1.24 0.97 22% 2.68% 3.84% 36 73
sphinx3 1.91 2.10 10% 2.24% 4.03% 19 22
tonto 1.74 1.55 11% 0.56% 1.71% 18 11
wrf 1.48 1.55 5% 0.45% 2.47% 25 37
zeusmp 1.30 1.29 1% 0.64% 1.41% 39 14
GeoMean 1.51 1.33 10% 0.99% 1.27% 24 20
GeoMean 1.38 1.14 12% 1.29% 1.96% 23 21
StDev 16%

*

IPC Branch Miss L1 DATA MPKI

SP
EC

-C
PU

20
06

 -
C

IN
T

SP
EC

-C
PU

20
06

 -
C

FP

109

A.2 SPEC-OMP2001 Results

Table A.3: SPEC-OMP2001 results for the Core 2 Duo machine and SiNUCA.
Real Sim Diff Real Sim Real Sim Real Sim Diff

applu.M 0.88 0.29 67% 0.00 0.00 73.92 86.82 1.00 1.00 0%
apsi.M 1.12 0.94 16% 0.01 0.01 25.08 5.63 1.00 1.00 0%
fma3d.M 0.64 0.15 77% 0.01 0.00 12.98 125.93 1.00 1.00 0%
galgel.M 1.44 1.16 20% 0.00 0.01 73.27 20.38 1.00 1.00 0%
mgrid.M 0.90 0.94 5% 0.00 0.01 11.01 18.85 1.00 1.00 0%
swim.M 0.74 0.52 29% 0.00 0.00 56.21 51.73 1.00 1.00 0%
wupwise.M 1.96 0.47 76% 0.01 0.00 16.44 28.35 1.00 1.00 0%
GeoMean 1.02 0.52 29% 0.00 0.00 29.16 32.04 1.00 1.00 0%
StDev 31% 0%
applu.M 0.59 0.20 66% 0.00 0.00 75.65 165.36 1.34 1.39 4%
apsi.M 1.05 0.91 14% 0.01 0.01 25.83 10.68 1.88 1.93 3%
fma3d.M 0.58 0.10 83% 0.01 0.00 13.94 244.41 1.78 1.36 24%
galgel.M 1.04 0.89 15% 0.00 0.01 87.62 48.45 1.42 1.53 7%
mgrid.M 0.81 0.75 7% 0.00 0.01 14.39 36.46 1.82 1.61 11%
swim.M 0.37 0.33 12% 0.00 0.00 72.26 103.90 1.00 1.25 25%
wupwise.M 1.78 0.42 76% 0.01 0.00 17.49 53.84 1.81 1.82 0%
GeoMean 0.79 0.40 26% 0.00 0.00 33.09 63.72 1.55 1.54 6%
StDev 34% 10%

2
Th

re
ad

s
Average IPC Branch Miss L1 DATA MPKI Speedup

1
Th

re
ad

Table A.4: SPEC-OMP2001 results for the Sandy Bridge machine and SiNUCA.

Real Sim Diff Real Sim Real Sim Real Sim Diff
applu.M 1.40 0.78 44% 0.00 0.00 43.57 301.62 1.00 1.00 0%
apsi.M 1.53 1.09 29% 0.00 0.01 19.68 12.30 1.00 1.00 0%
fma3d.M 0.96 0.40 58% 0.01 0.00 10.68 221.38 1.00 1.00 0%
galgel.M 1.95 2.10 8% 0.00 0.01 29.67 51.74 1.00 1.00 0%
mgrid.M 1.35 1.20 11% 0.01 0.01 20.36 28.34 1.00 1.00 0%
swim.M 1.26 1.16 8% 0.00 0.00 64.57 110.90 1.00 1.00 0%
wupwise.M 2.49 0.89 64% 0.00 0.00 5.25 166.81 1.00 1.00 0%
GeoMean 1.50 0.98 23% 0.00 0.00 21.12 80.70 1.00 1.00 0%
StDev 24% 0%
applu.M 1.10 0.66 40% 0.00 0.00 43.54 295.52 1.57 1.69 8%
apsi.M 1.48 1.08 27% 0.00 0.01 19.54 12.26 1.93 1.99 3%
fma3d.M 0.87 0.33 62% 0.01 0.00 10.53 219.40 1.81 1.63 10%
galgel.M 1.88 1.62 14% 0.00 0.01 28.47 51.40 1.91 1.54 19%
mgrid.M 1.30 1.17 10% 0.01 0.01 20.33 28.40 1.92 1.95 1%
swim.M 0.68 0.94 38% 0.00 0.00 64.39 108.82 1.07 1.63 51%
wupwise.M 2.36 0.66 72% 0.00 0.00 5.26 161.37 1.89 1.49 21%
GeoMean 1.28 0.83 31% 0.00 0.00 20.92 79.67 1.70 1.69 10%
StDev 23% 17%
applu.M 0.63 0.48 23% 0.00 0.00 43.52 291.94 1.79 2.51 40%
apsi.M 1.31 1.07 19% 0.00 0.01 19.94 12.32 3.42 3.93 15%
fma3d.M 0.73 0.24 67% 0.01 0.00 10.26 217.66 3.03 2.40 21%
galgel.M 1.58 1.10 30% 0.00 0.01 25.92 50.74 3.16 2.09 34%
mgrid.M 1.14 1.12 2% 0.01 0.01 20.30 28.55 3.39 3.74 10%
swim.M 0.34 0.81 141% 0.00 0.00 64.07 107.58 1.06 2.81 165%
wupwise.M 2.09 0.64 69% 0.00 0.00 5.24 164.48 3.35 2.85 15%
GeoMean 0.96 0.70 28% 0.00 0.00 20.60 79.50 2.55 2.84 27%
StDev 47% 55%
applu.M 0.33 0.31 4% 0.00 0.00 42.46 288.66 1.84 3.27 78%
apsi.M 1.05 1.04 0% 0.00 0.01 19.91 11.95 5.46 7.75 42%
fma3d.M 0.55 0.15 73% 0.01 0.00 9.70 215.34 4.55 2.97 35%
galgel.M 0.67 0.72 6% 0.00 0.01 21.74 51.28 2.62 2.46 6%
mgrid.M 0.59 0.89 50% 0.00 0.01 20.28 30.15 3.45 5.88 70%
swim.M 0.17 0.47 175% 0.00 0.00 61.29 107.42 1.04 3.27 215%
wupwise.M 1.63 0.47 71% 0.00 0.00 5.22 163.32 5.22 4.20 20%
GeoMean 0.57 0.49 17% 0.00 0.00 19.71 79.55 3.01 3.95 41%
StDev 62% 70%

8
Th

re
ad

s

Average IPC Branch Miss L1 DATA MPKI Speedup

1
Th

re
ad

2
Th

re
ad

s

4
Th

re
ad

s

110

A.3 NAS-NPB Results

Table A.5: NAS-NPB results for the Core 2 Duo machine and SiNUCA.
Real Sim Diff Real Sim Real Sim Real Sim Diff

bt.A 1.63 1.03 37% 0.00 0.02 28.46 27.96 1.00 1.00 0%
cg.A 1.57 0.84 46% 0.01 0.01 121.01 129.95 1.00 1.00 0%
ft.A 1.53 1.25 18% 0.00 0.03 148.41 87.31 1.00 1.00 0%
is.A 0.70 1.58 127% 0.00 0.00 28.22 20.52 1.00 1.00 0%
lu.A 0.90 0.65 28% 0.00 0.01 55.66 55.00 1.00 1.00 0%
mg.A 1.41 0.89 37% 0.00 0.01 35.74 20.28 1.00 1.00 0%
sp.A 1.24 0.81 35% 0.00 0.01 46.79 36.67 1.00 1.00 0%
GeoMean 1.23 0.97 39% 0.00 0.01 54.02 42.87 1.00 1.00 0%
StDev 36% 0%
bt.A 1.44 0.98 32% 0.00 0.02 30.54 55.69 1.76 1.90 8%
cg.A 1.14 0.48 58% 0.01 0.01 125.92 227.65 1.44 1.13 21%
ft.A 1.21 1.15 5% 0.00 0.03 147.86 165.43 1.59 1.84 16%
is.A 0.65 1.27 96% 0.00 0.00 30.55 37.33 1.89 1.61 15%
lu.A 0.67 0.51 24% 0.00 0.01 58.02 102.25 1.48 1.49 1%
mg.A 0.92 0.60 35% 0.00 0.01 64.41 41.70 1.33 1.36 2%
sp.A 0.82 0.61 26% 0.00 0.01 57.51 71.88 1.33 1.52 14%
GeoMean 0.94 0.75 30% 0.00 0.01 62.52 81.55 1.53 1.53 7%
StDev 29% 8%

2
Th

re
ad

s
Average IPC Branch Miss L1 DATA MPKI Speedup

1
Th

re
ad

Table A.6: NAS-NPB results for the Sandy Bridge machine and SiNUCA.

Real Sim Diff Real Sim Real Sim Real Sim Diff
bt.A 2.16 1.27 41% 0.00 0.02 28.81 35.20 1.00 1.00 0%
cg.A 1.89 1.54 19% 0.01 0.01 71.23 216.59 1.00 1.00 0%
ft.A 2.33 1.96 16% 0.00 0.03 54.02 153.26 1.00 1.00 0%
is.A 0.82 1.94 135% 0.00 0.00 35.87 22.76 1.00 1.00 0%
lu.A 1.69 1.57 7% 0.01 0.01 33.83 55.69 1.00 1.00 0%
mg.A 2.29 1.40 39% 0.00 0.01 28.08 29.53 1.00 1.00 0%
sp.A 1.76 1.45 18% 0.00 0.01 43.57 58.96 1.00 1.00 0%
GeoMean 1.77 1.57 26% 0.00 0.01 40.03 59.30 1.00 1.00 0%
StDev 44% 0%
bt.A 2.11 1.26 40% 0.00 0.02 28.83 35.08 1.95 1.98 2%
cg.A 2.11 1.45 31% 0.01 0.01 70.94 216.31 2.22 1.89 15%
ft.A 2.13 1.93 9% 0.00 0.03 53.84 153.17 1.82 1.97 8%
is.A 0.79 1.62 105% 0.00 0.00 36.90 26.42 1.92 1.67 13%
lu.A 1.63 1.47 9% 0.01 0.01 33.77 53.77 1.93 1.80 6%
mg.A 1.97 1.30 34% 0.00 0.01 27.92 31.28 1.71 1.86 8%
sp.A 1.60 1.33 17% 0.00 0.01 43.57 59.57 1.81 1.83 1%
GeoMean 1.68 1.47 25% 0.00 0.01 40.11 60.81 1.90 1.86 6%
StDev 33% 5%
bt.A 1.89 1.20 37% 0.00 0.02 27.92 35.11 3.49 3.77 8%
cg.A 1.78 1.11 38% 0.01 0.01 70.49 217.95 3.74 2.89 23%
ft.A 1.82 1.78 2% 0.00 0.03 53.58 153.61 3.11 3.63 17%
is.A 0.77 1.64 113% 0.00 0.00 36.78 24.36 3.73 3.38 9%
lu.A 1.47 1.28 13% 0.01 0.00 32.57 51.14 3.44 2.96 14%
mg.A 1.17 1.24 6% 0.00 0.01 27.54 34.27 2.04 3.54 74%
sp.A 1.16 1.21 4% 0.00 0.01 42.18 59.87 2.60 3.33 28%
GeoMean 1.38 1.33 14% 0.00 0.01 39.37 60.61 3.10 3.34 19%
StDev 39% 23%
bt.A 1.59 1.00 37% 0.00 0.02 27.85 35.08 5.84 6.28 7%
cg.A 1.08 0.78 28% 0.01 0.01 69.62 218.73 4.48 4.05 10%
ft.A 1.29 1.37 6% 0.00 0.03 53.01 154.30 4.41 5.60 27%
is.A 0.63 1.36 116% 0.00 0.00 36.07 25.40 6.07 5.61 8%
lu.A 1.24 1.13 9% 0.00 0.00 32.23 45.74 5.79 4.68 19%
mg.A 0.51 0.83 62% 0.00 0.01 26.71 49.54 1.77 4.74 167%
sp.A 0.71 0.93 31% 0.00 0.01 41.69 60.90 3.15 5.13 63%
GeoMean 0.94 1.03 28% 0.00 0.00 38.83 63.47 4.19 5.11 23%
StDev 38% 58%

8
Th

re
ad

s

Average IPC Branch Miss L1 DATA MPKI Speedup

1
Th

re
ad

2
Th

re
ad

s
4

Th
re

ad
s

111

APPENDIX B RESUMO EXPANDIDO EM PORTUGUÊS

O projeto de processadores energeticamente eficientes, começa com um design efi-
ciente de todos os componentes que possuem alto consumo de energia. Embora as memórias
cache sejam fundamentais para se atingir alto desempenho computacional, estas memórias
consomem uma significativa fração da energia total do chip (LI et al., 2009).

Figure B.1: Divisão do consumo de energia para o processador Sandy Bridge, executando
os conjuntos de aplicações SPEC-CPU2006, SPEC-OMP2001 e NAS-NPB.

Cores
50%

I-L1
5%

D-L1
27%

L2
3%

LLC
8%

Buses
3%

Mem. Ctrl.
4%

(a) Consumo total de energia no chip.

I-L1 Dynamic
7%

I-L1 Static
4%

D-L1
Dynamic

45%

D-L1
Static
17%

L2
Dynamic

1%

L2 Static
6%

LLC
Dynamic

1%

LLC Static
19%

(b) Consumo de energia da memória cache.

A Figura B.1 mostra o consumo de energia para o processador Intel Xeon (microar-
quitetura Sandy Bridge (YUFFE et al., 2011)). O consumo médio de potência corre-
sponde a 37 W. Podemos observar que 43% do consumo de energia dentro do chip é
gasta pelas memórias cache, enquanto cada núcleo de processamento (8 núcleos ao total)
é responsável por 6% da energia gasta pelo chip (50% no total).

Devido ao crescimento no consumo energético das memórias cache e o limite máx-
imo de consumo de potência pelo chip, mecanismos para melhorar a eficiência destas
memórias estão se tornando mais importantes. Dentro do subsistema de memória cache,
as principais fontes de consumo de energia estão relacionadas com a energia dinâmica
e estática da cache L1, e a energia estática da Last-Level Cache (LLC), o que pode ser
explicado pelo número elevado de operações na cache L1 e pela grande área ocupada pela
LLC.

Para os processadores atuais com um tamanho de linha de cache fixo, a ineficiência
energética pode ocorrer em dois níveis: 1) no nível da linha de cache, onde uma linha

112

é mantida ligada (ativa) por muito mais tempo do que o necessário, e 2) no nível de
sub-bloco, quando partes de uma linha de cache que não serão usadas são trazidas para
a cache, e também quando sub-blocos vivos (isto é, ainda serão acessados) tornam-se
mortos (ou seja, não serão mais acessados) depois de alguns acessos, mas são mantidos
ativos até a linha ser removida da memória cache.

Além do impacto no consumo de energia, ao manter linhas que não serão mais us-
adas (linhas mortas) dentro da cache, aumenta-se a poluição da cache e a contenção no
controlador de memória. A poluição da cache aumenta quando a política de substituição
toma decisões erradas, removendo linhas vivas em vez de linhas já mortas. Esta poluição
também pode aumentar o número de faltas de dados na cache, gerando assim impacto
negativo sobre o desempenho do sistema. O problema de contenção no controlador de
memória acontece quando a cache mantém linhas modificadas que já receberam a úl-
tima escrita (não serão mais modificadas). Ao fazer isso, estas linhas sofrerão write-back
para o próximo nível de memória apenas quando a linha for removida da cache. No en-
tanto, considerando que os acessos a memória ocorrerem em rajadas (WANG; KHAN;
JIMÉNEZ, 2012a), as operações de write-back podem aumentar a pressão na memória
nos momentos em que um grande conjunto de dados está sendo solicitados em um curto
espaço de tempo (rajadas de acessos).

O objetivo principal desta tese é introduzir mecanismos que possibilitem o aumento
da eficiência energética das memórias cache. Este objetivo será alcançado através dos
seguintes passos:

• Propomos o Dead Sub-Block Predictor (DSBP) para prever em tempo de execução a
utilização da linha de cache em granularidade de sub-blocos. Este mecanismo será
usado para armazenar apenas o sub-blocos úteis dentro da linha de cache, desli-
gando os sub-blocos ao se tornarem mortos.

• Propomos o Dead Line and Early Write-Back Predictor (DEWP) para detectar
quando uma linha de cache recebe a sua última leitura e última escrita. Este pred-
itor será utilizado para adiantar o write-back de linhas modificadas para assim que
elas recebem sua última escrita, desligando também as linhas assim que receberem
sua última leitura.

• Para avaliar os novos mecanismos propostos, desenvolvemos o Simulator of Non-
Uniform Cache Architectures (SiNUCA), um novo simulador com precisão de ci-
clos, orientado a traço de execução, composto pelos principais componentes: pro-
cessador, memórias cache, interconexões e sistema de memória. Este simulador
é capaz de simular sistemas multi-core, com multi-banked cache e interconexões
Network-on-Chip (NoC). Este simulador é validado comparando com uma máquina
real em termos de desempenho e consumo de energia.

O objetivo geral desta tese é a concepção de mecanismos que permitam a economia
de energia na memória cache, mantendo o desempenho do sistema no mesmo nível. Os
custos adicionais de tais mecanismos também serão avaliados, a fim de mostrar seus bene-
fícios e possíveis desvantagens.

B.1 Simulator of Non-Uniform Cache Architecture (SiNUCA)

O simulador SiNUCA foi desenvolvido e validado em termos de desempenho e en-
ergia. Alimentado por traços de execução e com precisão de ciclos, o simulador é capaz

113

de executar aplicações single-threaded e multi-threaded com alto nível de detalhes de
todos os componentes do pipeline. Além disso, foi proposto um grande conjunto de mi-
crobenchmarks a fim de correlacionar os resultados do simulador (desempenho e outras
estatísticas), com dados reais de duas plataformas x86.

O SiNUCA tem as seguintes características principais:

Alta precisão: O SiNUCA implementa componentes de arquitetura com um elevado grau
precisão, não apenas no pipeline de execução, mas também na hierarquia de memória e
interconexão. O simulador também modela com precisão arquiteturas paralelas, tais como
sistemas multi-core e sistemas multi-processados. A implementação foi feita utilizando
informações disponíveis publicamente. Para as informações não disponíveis, microbench-
marks foram utilizados para observar o comportamento dos componentes de uma máquina
real.

O SiNUCA foi validado com aplicações single-threaded e multi-threaded de nossos
microbenchmarks e também de cargas de trabalho comerciais. Os resultados da simulação
foram comparados com as estatísticas obtidas de máquinas reais.

Modelo energético: O consumo de energia está se tornando cada vez mais importante
para arquiteturas de processadores. No entanto, a maioria dos simuladores atuais não
modelam o consumo de energia, apenas o desempenho. Para avaliar o consumo de en-
ergia, integramos a ferramenta Multi-core Power, Area, and Timing (McPAT) (LI et al.,
2009, 2013), que utiliza as estatísticas geradas pelo SiNUCA. Estes resultados foram val-
idados utilizando contadores de hardware de energia existentes na máquina real.

Suporte a técnicas emergentes: O SiNUCA é capaz de modelar várias tecnologias de
ponta, como Non-Uniform Cache Architecture (NUCA), Non-Uniform Memory Access
(NUMA), NoC e controladores de memória Double Data Rate (DDR) 3. Além das técni-
cas tradicionais, tais como prefetchers de cache, preditores de desvio e outros. O suporte
para novas tecnologias é importante para a simulação de novo sistemas com precisão.

Flexibilidade: Outra característica importante para apoiar a pesquisa em arquitetura de
computadores é a facilidade de implementação ou extensão de funcionalidades no simu-
lador. Este aspecto é fornecido pelo SiNUCA com uma arquitetura modular, escrita em
C++, que fornece um acesso direto aos detalhes de funcionamento de todos os compo-
nentes simulados. Outros simuladores são limitados por metalinguagens que não expõem
todas as funcionalidades da microarquitetura, tornando-se mais difícil para modelar novos
mecanismos ou modificar os já existentes.

A validação do simulador mostrou uma diferença média no desempenho de 12%
usando os microbenchmarks single-threaded e 26% para os multi-threaded ao simular
uma máquina Core 2 Duo. Uma diferença média no desempenho de 6% para single-
threaded e 29% para cargas de trabalho multi-threaded, quando simulando uma arquite-
tura Sandy Bridge.

Considerando a modelagem de energia usando McPAT utilizando as estatísticas de
execução fornecidas pelo SiNUCA, obtemos uma diferença média de 18% para os mi-
crobenchmarks single-threaded e 46% para multi-threaded ao modelar a arquitetura Sandy Bridge.

Os resultados referentes ao desempenho do simulador mostram que o SiNUCA per-
mite arquitetos de computador avaliarem novas técnicas em um tempo razoável, simu-
lando em média 270 kHz, equivalente a 250 Kilo Instructions per Second (KIPS).

114

B.2 Dead Sub-Block Predictor (DSBP)

Propomos o DSBP (ALVES et al., 2012) para melhorar a eficiência energética das
memórias cache. O DSBP usa o histórico recente para prever quais sub-blocos serão úteis
e quantos acessos cada sub-bloco receberá antes que se torne morto. O principal obje-
tivo do DSBP é reduzir o consumo de energia estática e dinâmica, trazendo apenas os
sub-blocos úteis para o cache, e também desligando os sub-blocos ativo após o número
previsto de acessos. O DSBP também é usado para melhorar a política de substituição
de cache existente, priorizando linhas mortas (isto é, quando todos os sub-blocos estão
desligados) para serem removidas. Os resultados mostram que esta política compensa
efetivamente a falta de dados adicional que o DSBP pode causar durante previsões er-
rôneas de uso de uma linha de cache.

As principais contribuições do mecanismo DSBP são:

Preditor de uso de sub-blocos: Um mecanismo é apresentado para prever e alocar apenas
os sub-blocos úteis de cada linha de cache. Ao contrário de trabalhos anteriores, que
requerem um acesso a tabela de previsão após cada acesso a linha de cache, o acesso a
estrutura preditora é feita apenas quando o mecanismo está aprendendo um novo padrão
ou quando uma nova linha de dados está sendo trazida para dentro da cache. Em média,
o nosso mecanismo acessa sua estrutura interna em apenas 60% dos acessos a memória
cache.

Preditor de sub-blocos mortos: Nosso mecanismo também prevê quando cada sub-
bloco dentro de uma linha de cache se tornará morto. Para o nosso conhecimento, este
é o primeiro preditor de uso que atua em um nível de sub-blocos, desligando sub-blocos
mortos e economizando em média 36% de energia, em comparação com uma cache tradi-
cional.

Remoção adiantada: Nosso mecanismo melhora o algoritmo de substituição linhas da
cache. O preditor de sub-blocos fornece informações para o algoritmo de substituição,
marcando linhas mortas como possíveis vítimas para serem removidas.

Figure B.2: DSBP: Consumo de energia total para o subsistema de memória cache.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
e

r
lib

q
ua

n
tu

m
m

cf
om

ne
tp

p
pe

rlb
e

nc
h

sj
e

ng
xa

la
nc

bm
k

G
eo

M
ea

n
bw

av
es

ca
ct

us
A

D
M

ca
lc

u
lix

de
al

II
ga

m
es

s
G

em
sF

D
T

D
gr

om
ac

s
lb

m
le

sl
ie

3d
m

ilc
na

m
d

po
vr

ay
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
ze

us
m

p
G

eo
M

ea
n

ap
pl

u.
M

ap
si

.M
fm

a3
d

.M
ga

lg
el

.M
m

g
rid

.M
sw

im
.M

w
u

pw
is

e
.M

G
eo

M
ea

n
bt

.A
cg

.A
ft.

A
is

.A
lu

.A
m

g
.A

sp
.A

G
eo

M
ea

n
G

eo
M

ea
n

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

E
ne

rg
y

C
on

su
m

pt
io

n

DSBP-L1-L2-LLC SKEWED-L1-L2-LLC

Nosso mecanismo que prevê quais sub-blocos serão úteis e quando cada sub-bloco se
tornará morto aumenta a eficiência energética das memórias cache. A Figura B.2 apre-
senta o consumo total de energia para cada preditor avaliado. Os resultados são mostrados
aplicando cada mecanismo em todos os níveis de memória cache. O DSBP atinge uma

115

economia média de energia de 36% para todos os níveis de memória cache, superando em
27% os melhores resultados do trabalho correlato SKEWED.

Em geral, o DSBP requer um baixo tamanho de armazenamento para alcançar pre-
visões precisas (61% previsões corretas e 10% dos previsões subestimadas). O DSBP
consegue uma redução média no consumo de energia de 36%, em comparação com a ar-
quitetura base. O tempo de execução foi aumentado em 2,25% em média para aplicações
single-threaded e multi-threaded. O DSBP alcança 64% do potencial de economia que
um mecanismo perfeito (oráculo) é capaz de alcançar.

B.3 Dead Line and Early Write-Back Predictor (DEWP)

O mecanismo proposto DEWP (ALVES et al., 2013) é composto por um preditor de
última leitura/escrita que trabalha na granularidade de linha de cache. O preditor de última
leitura que visa economizar energia desligando linhas de cache mortas ou inválidas. O
preditor de última escrita que visa adiantar as operações de write-back em linhas de cache
modificadas, uma vez que estas linhas não serão mais modificadas. Utilizando ambos
preditores de última leitura e última escrita o mecanismo é capaz de detectar quando uma
linha recebe o seu último acesso, priorizando essas linhas para serem removidas da cache.

O preditor de última leitura usa o histórico de acessos para prever quando uma linha
de cache se tornará morta, podendo assim ser desligada. A linha de cache é considerada
morta sempre que ela receber a sua última leitura antes de ser removida ou invalidada.

A previsão de última escrita permite adiantar o write-back das linhas de cache mod-
ificadas, reduzindo a pressão sobre o controlador de memória entre leituras e escritas
durante rajadas de acessos. Além disso, a realização adiantada do write-back também
permite que essas linhas possam ser desligadas quando a última leitura for prevista.

Ambos preditores reduzem a poluição da cache, priorizando a remoção de linhas mor-
tas. Todas as linhas de cache que normalmente seriam expulsas da memória cache pela
política de substituição são considerados mortas desde seu último acesso. Ao expulsar
estas linhas, outras linhas de cache que ainda estão vivas podem permanecer por mais
tempo dentro da memória cache.

As principais contribuições do mecanismo DEWP são:

Preditor de última leitura: Capaz de desligar linhas de cache depois de receberem a
última leitura antes que sejam removidas da cache. Isto se traduz em 25% de economia
de energia da cache.

Preditor de última escrita: Nosso mecanismo pode adiantar as operações de write-back
de linhas modificadas depois de receberem a última escrita. Aumentando a janela de
tempo para o write-back das linhas de cache, reduzindo assim a pressão no controlador
de memória.

Preditor de último acesso: Combinando os resultados das duas previsões, o nosso mecan-
ismo detecta o último acesso para cada linha, priorizando as linhas mortas para serem
removidas da cache, melhorando assim a utilização da cache. O preditor atinge 73% de
previsões de corretas com 14 % de falsos positivos em média para toda os níveis de cache.

A eficiência energética é aumentada usando nosso mecanismo que desliga linhas de
cache mortas ou invalidas. Os resultados da Figura B.3 apresenta o consumo total de
energia para cada preditor avaliado. Os resultados são obtidos ao aplicar cada mecanismo
em todos os níveis de memória cache. O DEWP atinge uma economia média de energia

116

Figure B.3: DEWP: Consumo de energia total para o subsistema de memória cache.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%
110%

as
ta

r
bz

ip
2

gc
c

go
bm

k
h2

64
re

f
hm

m
e

r
lib

q
ua

n
tu

m
m

cf
om

ne
tp

p
pe

rlb
e

nc
h

sj
e

ng
xa

la
nc

bm
k

G
eo

M
ea

n
bw

av
es

ca
ct

us
A

D
M

ca
lc

u
lix

de
al

II
ga

m
es

s
G

em
sF

D
T

D
gr

om
ac

s
lb

m
le

sl
ie

3d
m

ilc
na

m
d

po
vr

ay
so

pl
ex

sp
hi

nx
3

to
nt

o
w

rf
ze

us
m

p
G

eo
M

ea
n

ap
pl

u.
M

ap
si

.M
fm

a3
d

.M
ga

lg
el

.M
m

g
rid

.M
sw

im
.M

w
u

pw
is

e
.M

G
eo

M
ea

n
bt

.A
cg

.A ft.
A

is
.A

lu
.A

m
g

.A
sp

.A
G

eo
M

ea
n

G
eo

M
ea

n

SPEC-CPU2006 CINT SPEC-CPU2006 CFP SPEC-OMP2001 NAS-NPB *

E
ne

rg
y

C
on

su
m

pt
io

n

DEWP-L1-L2-LLC SKEWED-L1-L2-LLC

de 25% para todos os níveis de memória cache, superando em 4% os melhores resultados
do trabalho correlato SKEWED.

Em geral, o DEWP requer pequenas tabelas para alcançar previsões precisas (73%
previsões corretas e 14% de previsões subestimadas). O DEWP consegue atingir uma
economia média de energia de 25%, em comparação com a arquitetura base. O tempo
de execução foi aumentado em 3,75% em média para aplicações single-threaded e multi-
threaded. O DEWP alcança próximo de 100% do potencial de economia que um mecan-
ismo perfeito (oráculo) é capaz de alcançar.

B.4 Combinando os mecanismos DSBP e DEWP

Os resultados combinando as duas propostas que visam reduzir o consumo de energia
através da previsão do padrão de uso da linha de cache, mostrou que os ganhos máximos
podem ser obtidos ao aplicar os dois mecanismos acoplados em um sistema.

Combinando o DSBP nos níveis L1 e L2 e o DEWP na LLC pode-se superar em ter-
mos de economia de energia o DSBP ou o DEWP separadamente por 1% e 12% (pontos
percentuais), respectivamente. Além disso, esta combinação gera um menor impacto so-
bre o tempo de execução, com acréscimo médio de 1,77%, o que representa um sobrecusto
menor do que o DSBP (2,25%) e o DEWP (3,65%).

B.5 Conclusões

O consumo de energia tem se tornado um fator importante em projetos multi-core.
Assim, mecanismos que permitam a economia de energia, mantendo o desempenho em
um mesmo nível são essenciais para manter o consumo de energia e uma operação efi-
ciente. Considerando que as memórias cache consomem uma grande parcela de energia
dentro dos chips, esta tese apresenta dois mecanismos, o DSBP e o DEWP, capazes de
aumentar a eficiência energética das memórias cache.

O mecanismo DSBP trabalhando em granularidade de sub-blocos de dados atinge
36% de economia de energia em média, o que equivale a 15% do consumo total do chip.
Em granularidade de linha de memória cache, o mecanismo DEWP atinge 25% de econo-
mia de energia em média, o que equivale a 10% do consumo total do chip. A implemen-
tação mista fornece os melhores ganhos energéticos, economizando 37% em média, o que
equivale a 16% do consumo total do chip.

