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describes scattered waves, with at least one wave having negative time delay signalizing

the underlying nonlocality. The superfield formulation of the model is used to compute

the corresponding effective action in the one- and two-loop approximations. In the case

of time/space noncommutativity, unitarity is violated in the relativistic regime. However,

this does not preclude the existence of a unitary low energy limit.
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1. Introduction

Non-commutative (NC) field theories present many unusual properties. Thus, it is not

surprising that many studies have been devoted to understand the new aspects of these

theories (see [1, 2] for recent reviews). Their non-local character gives rise to a mixing of

ultraviolet (UV) and infrared (IR) divergences which usually spoils the renormalizability of

the model [3]. This peculiar property has been investigated in the context of scalar [4, 5, 6],

gauge [7]–[15] and supersymmetric [16]–[20] theories. When the noncommutativity involves

the time coordinate the theory violates causality and unitarity, as has been discussed

in [21, 22]. In particular, it was shown that the scattering of localized quanta in NC field

theory in 1 + 1 dimensions can be pictured as realized by rods moving in space-time. All

these effects are consequences of the non-local structure induced by the noncommutativity

and are so subtle that a deep understanding is highly desirable. On the other hand,

in higher dimensions, the lack of renormalizability induced by UV/IR mixing is quite

worrisome. Even if one has succeeded in controlling the renormalization problem it still

remains to make sure that the aforementioned non-local effects persist in renormalizable

NC field theories [23, 24, 25]. The only 4D renormalizable NC field theory known at present

is the Wess-Zumino model [18]. Hence, we have at our disposal an appropriate model for

studying the non-local effects produced by the noncommutativity. As we will show the

main features of nonlocality are still present in the NC Wess-Zumino model.

To study the non-local effects we consider the NC Wess-Zumino model and determine

the non-relativistic potentials mediating the fermion-fermion and boson-boson scattering

along the lines of [26, 27]. In the case of space/space noncommutativity we find that the

potential for boson-boson scattering receives no NC contribution. The fermion-fermion

potential, however, has a NC correction which leads to the interpretation that, in a non-

relativistic scattering, fermionic quanta behave like rods oriented perpendicular to their

respective momenta and having lengths proportional to the momenta strength. This ex-

tends to higher dimensions the picture that was found in [21] for lower dimensions. In
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the time/space NC case we find that both, boson-boson and fermion-fermion potentials re-

ceive NC velocity dependent corrections leading to ordering ambiguities. These potentials

can be made hermitean by an appropriate ordering choice for products of non-commuting

operators. It follows afterwards that both bosons and fermions can be viewed as rods

oriented along the direction of the momenta. The rod length, however, is constant and

proportional to the NC parameter. We also find the scattered waves and show the exis-

tence of advanced waves which is a further manifestation of nonlocality. Finally, we use

the superfield formalism to compute, within the relativistic regime, the one- and two-loop

non-planar corrections to the effective action. In the case of time/space NC we find that

the just mentioned contributions violate the unitarity constraints.

The plan of this work is as follows. We start in section 2 by presenting the formula-

tion of the NC WZ model in terms of field components. In section 2.1 we calculate the

tree approximations of the fermion-fermion and boson-boson elastic scattering amplitudes,

in the low energy limit. In 2.2, the effective quantum mechanical potentials mediating

the fermion-fermion and boson-boson interactions are determined. We discuss, then, the

existence of an effective hermitean hamiltonian acting as generator of the low energy dy-

namics. Afterwards, we construct and stress the relevant features of the scattering states

in the cases of space/space and time/space noncommutativity. In section 3 by taking ad-

vantage of the formulation of the model in terms of superfields we calculate the one- and

two-loop contributions to the effective action. In the case of time/space noncommutativity

this effective action also exhibits unitarity violation.

2. Tree level analysis

The lagrangian density describing the dynamics of the NC WZ model is [18]

L =
1

2

[

A(−∂2)A+B(−∂2)B + ψ(i 6∂ −m)ψ + F 2 +G2
]

+

+mFA+mGB + g(F ? A ? A− F ? B ? B +G ? A ? B +

+ G ? B ? A− ψ ? ψ ? A− ψ ? iγ5ψ ? B) , (2.1)

where A is a scalar field, B is a pseudo scalar field, ψ is a Majorana spinor field and F and

G are, respectively, scalar and pseudoscalar auxiliary fields. It was obtained by extending

the WZ model to a NC space. In the NC model there are neither quadratic nor linear

divergences. As a consequence, the IR/UV mixing gives rise only to integrable logarithmic

infrared divergences [18, 28]. The Moyal (?) product obeys the rule [29]
∫

dxφ1(x) ? φ2(x) ? · · · ? φn(x) =

∫

∏ d4ki
(2π)4

(2π)4δ(4)(k1 + k2 + · · ·+ kn)×

× φ̃1(k1)φ̃2(k2) · · · φ̃n(kn) exp



i
∑

i<j

ki ∧ kj



 , (2.2)

where φ̃i is the Fourier transform of the field φi, the index i being used to distinguish

different fields. We use the notation a ∧ b = 1/2aµbνΘµν . For the Feynman rules arising

from (2.1) we refer the reader to ref. [18].
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Figure 1: Lowest order graphs contributing to the scattering of two Majorana fermions.

2.1 Tree level scattering

We first concentrate on the elastic scattering of two Majorana fermions. We shall designate

by p1, p2 (p
′
1, p
′
2) and by ε1, ε2 (ε

′
1, ε
′
2) the four momenta and z-spin components of the incom-

ing (outgoing) particles, respectively. The Feynman graphs contributing to this process, in

the lowest order of perturbation theory, are those depicted in figure 11 while the associated

amplitude is given by R = −i(2π)4δ(4)(p′1 + p′2 − p1 − p2)T , where T = Ta + Tb + Tc and

Ta = K cos(p′1 ∧ p1) cos(p
′
2 ∧ p2)

(Fa − F
5
a )

Da
, (2.3a)

Tb = −K cos(p′1 ∧ p2) cos(p
′
2 ∧ p1)

(Fb − F
5
b )

Db
, (2.3b)

Tc = K cos(p′1 ∧ p
′
2) cos(p1 ∧ p2)

(Fc − F
5
c )

Dc
. (2.3c)

1In these diagrams the arrows indicate the flow of fermion number rather than momentum flow.
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The correspondence between the sets of graphs a, b, c, in figure 1, and the partial ampli-

tudes Ta, Tb, Tc is self explanatory. Furthermore,

Fa ≡
[

ū(~p ′1, ε
′
1)u(~p1, ε1)

] [

ū(~p ′2, ε
′
2)u(~p2, ε2)

]

, (2.4a)

F 5a ≡
[

ū(~p ′1, ε
′
1)γ

5u(~p1, ε1)
] [

ū(~p ′2, ε
′
2)γ

5u(~p2, ε2)
]

, (2.4b)

Da ≡
(

p′1 − p1
)2
− m2 + iε , (2.4c)

Fb ≡
[

ū(~p ′1, ε
′
1)u(~p2, ε2)

] [

ū(~p ′2, ε
′
2)u(~p1, ε1)

]

, (2.4d)

F 5b ≡
[

ū(~p ′1, ε
′
1)γ

5u(~p2, ε2)
] [

ū(~p ′2, ε
′
2)γ

5u(~p1, ε1)
]

, (2.4e)

Db ≡
(

p′1 − p2
)2
− m2 + iε , (2.4f)

Fc ≡
[

ū(~p ′1, ε
′
1)v(~p

′
2, ε
′
2)
]

[v̄(~p2, ε2)u(~p1, ε1)] , (2.4g)

F 5c ≡
[

ū(~p ′1, ε
′
1)γ

5v(~p ′2, ε
′
2)
] [

v̄(~p2, ε2)γ
5u(~p1, ε1)

]

, (2.4h)

Dc ≡ (p1 + p2)
2 − m2 + iε , (2.4i)

K =
1

π2
g2

(2π)4
m2

√

ω(~p ′1)ω(~p
′
2)ω(~p1)ω(~p2)

, (2.5)

and ω(~p) ≡
√

~p 2 +m2. Here, the u’s and the v’s are, respectively, complete sets of pos-

itive and negative energy solutions of the free Dirac equation. Besides orthogonality and

completeness conditions they also obey

C ūT (~p, ε) = v(~p, ε) , (2.6a)

C v̄T (~p, ε) = u(~p, ε) , (2.6b)

where C ≡ iγ2γ0 is the charge conjugation matrix and ūT (v̄T ) denotes the transpose of ū

(v̄). Explicit expressions for these solutions can be found in ref. [30].

Now, Majorana particles and antiparticles are identical and, unlike the case for Dirac

fermions, all diagrams in figure 1 contribute to the elastic scattering amplitude of two

Majorana quanta. Then, before going further on, we must verify that the spin-statistics

connection is at work. As expected, Ta + Tb undergoes an overall change of sign when

the quantum numbers of the particles in the outgoing (or in the incoming) channel are

exchanged (see eqs. (2.3) and (2.4)). As for Tc, we notice that

ū(p, ε)v(p′, ε′) = − ū(p′, ε′)v(p, ε) , (2.7a)

ū(p, ε)γ5v(p′, ε′) = − ū(p′, ε′)γ5v(p, ε) , (2.7b)

are just direct consequences of eq. (2.6). Thus, Tc, alone, also changes sign under the ex-

change of the outgoing (or incoming) particles and, therefore, Ta+Tb+Tc is antisymmetric.

The main purpose in this paper is to disentangle the relevant features of the low energy

regime of the NC WZ model. Since noncommutativity breaks Lorentz invariance, we must

carry out this task in an specific frame of reference that we choose to be the center of

mass (CM) frame. Here, the two body kinematics becomes simpler because one has that

p1 = (ω, ~p), p2 = (ω,−~p), p′1 = (ω, ~p ′), p′2 = (ω,−~p ′), |~p ′| = |~p |, and ω = ω(~p). This

facilitates the calculation of all terms of the form
[

m

πω(~p)

]2
(

F − F 5
)

D
, (2.8)
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Figure 2: Lowest order graphs contributing to the scattering of two A-quanta.

in eqs. (2.3). By disregarding all contributions of order (|~p |/m)2 and higher, and after

some algebra one arrives at

TL
a = −

1

(2π)4

( g

πm

)2
δε′

1
ε1 δε′2ε2

[

1

2
cos
(

mΘ0jk
j
)

+
1

2
cos
(

piΘijk
j
)

]

, (2.9a)

TL
b =

1

(2π)4

( g

πm

)2
δε′

1
ε2 δε′2ε1

[

1

2
cos
(

mΘ0jk
′ j
)

+
1

2
cos
(

piΘijk
′ j
)

]

, (2.9b)

TL
c =

1

3(2π)4

( g

πm

)2 {

δε′
1
ε1 δε′2ε2 cos

(

mΘ0jp
j
)

cos
[

mΘ0j
(

pj − kj
)]

−

− δε′
1
ε2 δε′2ε1 cos

(

mΘ0jp
j
)

cos
[

mΘ0j
(

pj − k′ j
)]

}

, (2.9c)

where kj ≡ pj − p′ j (k′ j ≡ pj + p′ j) denotes the momentum transferred in the direct

(exchange) scattering while the superscript L signalizes that the above expressions only

hold true for the low energy regime. It is worth mentioning that the dominant contributions

to TL
a and TL

b are made by those diagrams in figures 1a and 1b not containing the vertices

iγ5, while, on the other hand, the dominant contribution to T L
c comes from the diagram

in figure 1c with vertices iγ5. Clearly, TL
a + TL

b + TL
c is antisymmetric under the exchange

ε′1 ↔ ε′2, ~p
′ → −~p ′ (kj ↔ k′ j), as it must be. Also notice that, in the CM frame of reference,

only the cosine factors introduced by the time/space noncommutativity are present in T L
c .

We look next for the elastic scattering amplitude involving two A-field quanta. The di-

agrams contributing to this process, in the lowest order of perturbation theory, are depicted

in figure 2. The corresponding (symmetric) amplitude, already written in the CM frame of

reference, can be cast as R̄ = −i(2π)4δ(4)(p′1+p
′
2−p1−p2) T̄ , where T̄ = T̄a+ T̄b+ T̄c and

T̄a =
g2

(2π)4

(

1

2πω(~p)

)2 [1

2
cos
(

mΘ0jk
j
)

+
1

2
cos
(

piΘijk
j
)

]

1

D̄ a
, (2.10a)

T̄b =
g2

(2π)4

(

1

2πω(~p)

)2 [1

2
cos
(

mΘ0jk
′ j
)

+
1

2
cos
(

piΘijk
′ j
)

]

1

D̄ b
, (2.10b)

T̄c =
g2

2(2π)4

(

1

2πω(~p)

)2
{

cos
(

mΘ0jp
j
)

cos
[

mΘ0j
(

pj − kj
)]

+

+ cos
(

mΘ0jp
j
)

cos
[

mΘ0j
(

pj − k′ j
)]} 1

D̄ c
. (2.10c)

As far as the low energy limit is concerned, the main difference between the fermionic and

bosonic scattering processes rests, roughly speaking, on the structure of the propagators
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mediating the interaction. Indeed, the propagators involved in the fermionic amplitude are

those of the fields A and B, namely [18],

∆AA(p) = ∆BB(p) = iD−1(p) =
i

p2 −m2 + iε
, (2.11)

which, in all the three cases (a, b, and c), yield a non-vanishing contribution at low energies

(see eqs. (2.4c), (2.4f) and (2.4i)). On the other hand, the propagator involved in the bosonic

amplitude is that of the F -field, i.e. [18],

∆FF = i D̄−1(p) = i
p2

p2 −m2 + iε
, (2.12)

which in turns implies that

D̄−1a =
2 |~p/m|2 (1− cos θ)

1 + 2 |~p/m|2 (1− cos θ)
= O

(

∣

∣

∣

∣

~p

m

∣

∣

∣

∣

2
)

, (2.13a)

D̄−1b =
2 |~p/m|2 (1 + cos θ)

1 + 2 |~p/m|2 (1 + cos θ)
= O

(

∣

∣

∣

∣

~p

m

∣

∣

∣

∣

2
)

, (2.13b)

D̄−1c =
4 + 4 |~p/m|2

3 + 4 |~p/m|2
=

4

3

[

1 +O

(

∣

∣

∣

∣

~p

m

∣

∣

∣

∣

2
)]

. (2.13c)

Therefore, at the limit where all the contributions of order (|~p |/m)2 become neglectable,

the amplitudes T̄a and T̄b vanish whereas T̄c survives and is found to read

T̄L
c =

1

6(2π)4

( g

πm

)2
cos
(

mΘ0jp
j
)

×

×
{

cos
[

mΘ0j
(

pj − kj
)]

+ cos
[

mΘ0j
(

pj − k′ j
)]}

. (2.14)

2.2 The effective quantum mechanical potential

We shall next start thinking of the amplitudes in eqs. (2.9) and (2.14) as of scattering

amplitudes deriving from a set of potentials. These potentials are defined as the Fourier

transforms (FT), with respect to the transferred momentum (~k), of the respective direct

scattering amplitudes. This is due to the fact that the use, in non-relativistic quantum

mechanics, of antisymmetric wave functions for fermions and of symmetric wave functions

for bosons automatically takes care of the contributions due to exchange scattering [26].

Whenever the amplitudes depend only on ~k the corresponding FT will be local, depending

only on a relative coordinate ~r. However, if, as it happens here, the amplitudes depend not

only on ~k but also on the initial momentum of the scattered particle (~p), the FT will be a

function of both ~r and ~p. As the momentum and position operators do not commute the

construction of potential operators from these FT may be jeopardized by ordering problems.

In that situation, we will proceed as follows: in the FT of the amplitudes we promote the

relative coordinate and momentum to non-commuting canonical conjugated variables and

then solve possible ordering ambiguities by requiring hermiticity of the resulting expression.

A posteriori, we shall verify that this is in fact an effective potential in the sense that its

momentum space matrix elements correctly reproduce the scattering amplitudes that we

had at the very start of this construction.

– 6 –
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We are, therefore, led to introduce

δε′
1
ε1 δε′2ε2 M

F (~k, ~p) ≡ TL
a (~k, ~p) + TL

c,dir(
~k, ~p) (2.15)

and

MB(~k, ~p) ≡ T̄L
c,dir(

~k, ~p) , (2.16)

in terms of which the desired FT (V F and V B) are given by

V F,B(~r, ~p) = (2π)3
∫

d3kMF,B(~k, ~p) ei
~k·~r . (2.17)

In the equations above, the superscripts F and B identify, respectively, the fermionic and

bosonic amplitudes and Fourier transforms. Also, the subscript dir specifies that only

the direct pieces of the amplitudes T L
c and T̄L

c enter in the calculation of the respective

M. Once V F,B(~r, ~p) have been found one has to look for their corresponding quantum

operators, V̂ F,B (~R, ~P ), by performing the replacements ~r → ~R, ~p→ ~P , where ~R and ~P are

the Cartesian position and momentum operators obeying, by assumption, the canonical

commutation relations [Rj, Rl] = [P j, P l] = 0 and [Rj , P l] = i δjl. By putting all this

together one is led to the hermitean forms

V̂ F (~R, ~P ) = −
( g

m

)2
∫

d3k

(2π)3

(

eik
lRl eik

lΘljP
j

+ eik
lRl e−ik

lΘljP
j
)

−

−
2

3

( g

m

)2 [

δ(3)
(

~R+m~Θ
)

+ δ(3)
(

~R−m~Θ
)]

+

+
1

3

( g

m

)2 [

δ(3)
(

~R−m~Θ
)

e−2im
~Θ· ~P + e2im

~Θ· ~P δ(3)
(

~R−m~Θ
)]

, (2.18)

V̂ B(~R, ~P ) =
1

6

( g

m

)2 [

δ(3)
(

~R+m~Θ
)

+ δ(3)
(

~R−m~Θ
)]

+

+
1

6

( g

m

)2 [

δ(3)
(

~R−m~Θ
)

e−2im
~Θ· ~P + e2im

~Θ· ~P δ(3)
(

~R−m~Θ
)]

, (2.19)

where ~Θ ≡ {Θ0j , j = 1, 2, 3}. Notice that the magnetic components of Θµν , namely Θij,

only contribute to V̂ F and that such contribution is free of ordering ambiguities, since
[

klRl , kmΘmjP
j
]

= i kl km Θmj δ
lj = 0 , (2.20)

in view of the antisymmetry of Θmj . On the other hand, the contributions to V̂ F and

V̂ B originating in the electric components of Θµν , namely Θ0j, are afflicted by ordering

ambiguities. The relevant point is that there exist a preferred ordering that makes V̂ F and

V̂ B both hermitean, for arbitrary Θµν . Equivalent forms to those presented in eqs. (2.18)

and (2.19) can be obtained by using

δ(3)
(

~R−m~Θ
)

exp
(

−2im~Θ · ~P
)

= exp
(

−2im~Θ · ~P
)

δ(3)
(

~R+m~Θ
)

. (2.21)

We shall shortly verify that the matrix elements of the operators (2.18) and (2.19)

agree with the original scattering amplitudes. Before that, however, we want to make

some observations about physical aspects of these operators.
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We will consider, separately, the cases of space/space (Θ0j = 0) and time/space (Θij =

0) noncommutativity. Hence, we first set Θ0j = 0 in eqs. (2.18) and (2.19). As can be seen,

the potential V̂ B, mediating the interaction of two A quanta, remains as in the commutative

case, i.e. proportional to a delta function of the relative distance between them. The same

conclusion applies, of course, to the elastic scattering of two B quanta. In short, taking

the non-relativistic limit also implies in wiping out all the modifications induced by the

space/space noncommutativity on the bosonic scattering amplitudes. On the contrary,

Majorana fermions are sensitive to the presence of space/space noncommutativity. Indeed,

from eq. (2.18) follows that V̂ F can be split into planar (V̂ F
P ) and non-planar (V̂ F

NP) parts

depending on whether or not they depend on Θij, i.e.

V̂ F (~R, ~P ) = V̂ F
P (~R, ~P ) + V̂ F

NP(~R, ~P ) , (2.22)

with

V̂ F
P (~R) = −

2

3

( g

m

)2
δ(3)(~R) , (2.23a)

V̂ F
NP(~R, ~P ) = −

( g

m

)2
∫

d3k

(2π)3

[

exp
(

iklRl
)

exp
(

iklΘljP
j
)

+

+ exp
(

iklRl
)

exp
(

−iklΘljP
j
)]

. (2.23b)

For further use in the Schrödinger equation, we shall be needing the position representa-

tion of V̂ F (~R, ~P ). From (2.23a) one easily sees that 〈~r |V̂ F
P |~r

′〉 = −2/3 (g/m)2 δ(3)(~r) δ(3)

(~r − ~r ′). On the other hand, for the computation of 〈~r |V̂ F
NP|~r

′〉 it will prove convenient to

introduce the realization of Θij in terms of the magnetic field ~B, i.e.

Θij = −εijkB
k , (2.24)

where εijk is the fully antisymmetric Levi-Civita tensor (ε123 = +1). After straightforward

calculations one arrives at

〈~r |V̂ F
NP|~r

′〉 = −
2

(2π)2

( g

m

)2 1

B2
δ(1)(~r‖) δ

(1)(~r‖ − ~r
′
‖) cos

[

(~r⊥ × ~r
′
⊥) ·

~B

B2

]

. (2.25)

Here, ~r‖ (~r⊥) denotes the component of ~r parallel (perpendicular) to ~B, i.e. ~r‖ = (~r· ~B) ~B/B2

(~r⊥ = −(~r × ~B)× ~B/B2). We remark that the momentum space matrix element

〈~p ′|V̂ F
NP|~p〉 =

∫

d3r

∫

d3r′〈~p ′|~r〉〈~r |V̂ F
NP|~r

′〉〈~r ′|~p〉

= −
1

(2π)3

( g

mB

)2
∫

d2r⊥ exp
(

−i~p ′⊥ · ~r⊥
)

×

×

{

δ(2)

[

~p⊥ −

(

~r⊥ ×
~B

B2

)]

+ δ(2)

[

~p⊥ +

(

~r⊥ ×
~B

B2

)]}

= −
1

4π3

( g

m

)2
cos
[

(

~p⊥ × ~p ′⊥
)

· ~B
]

(2.26)

agrees with the last term in (2.9a), as it should. We also observe that the interaction only
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takes place at ~r⊥ = ± ~B× ~p⊥. This implies that ~r⊥ must also be orthogonal to ~p⊥. Hence,

in the case of space/space noncommutativity fermions may be pictured as rods oriented

perpendicular to the direction of the incoming momentum. Furthermore, the right-hand

side of this last equation vanishes if either ~p⊥ × ~p ′⊥ = 0, or (~p⊥ × ~p ′⊥) ·
~B = 0, or ~p = ~p‖,

or ~p ′ = ~p ′‖.

In the Born approximation, the fermion-fermion elastic scattering amplitude (f F (~p ′,

~p)) can be computed at once, since fF (~p ′, ~p) = −4π2m〈~p ′|V̂ F |~p〉. In turns, the corre-

sponding outgoing scattering state (Φ
F (+)
~p (~r)) is found to behave asymptotically (r →∞)

as follows

e−iEtΦ
F (+)
~p (~r) ∼

(

1

2π

)3/2
[

e−i(Et−~p·~r) +
e−i(Et−pr)

r
fF (~p ′, ~p)

]

∼

(

1

2π

)3/2
{

e−i(Et−~p·~r ) +
g2

3πm

e−i(Et−pr)

r
+ (2.27)

+
g2

2πm

[

e−i[Et−(~p⊥×~p ′⊥)· ~B−pr]

r
+
e−i[Et+(~p⊥×~p ′⊥)· ~B−pr]

r

]}

,

where E = ~p2/2m is the energy of the incoming particle. The right-hand side of eq. (2.27)

contains three scattered waves. The one induced by the planar part of the potential (V̂ F
P )

presents no time delay. The other two originate in the non-planar part of the potential

(V̂ F
NP) and exhibit time delays of opposite signs and proportional to (~p⊥ × ~p ′⊥) ·

~B. For

instance, for ~B and ~p along the positive Cartesian semiaxis x1 and x3, respectively, one has

that (~p⊥ × ~p ′⊥) ·
~B = −2mEB sin θ sinφ, were, θ and φ are the scattering and azimuthal

angles, respectively. The φ-dependence reflects the breaking of rotational invariance.

We set next Θij = 0, in eqs. (2.18) and (2.19), and turn into analyzing the case of

time/space noncommutativity. The effective potentials are now

ˆ̃V
F
(~R, ~P ) = −

2

3

( g

m

)2 [

δ(3)
(

~R+m~Θ
)

+ δ(3)
(

~R−m~Θ
)]

+

+
1

3

( g

m

)2 [

δ(3)
(

~R−m~Θ
)

e−2im
~Θ· ~P + e2im

~Θ· ~P δ(3)
(

~R−m~Θ
)]

, (2.28)

ˆ̃V
B
(~R, ~P ) =

1

6

( g

m

)2 [

δ(3)
(

~R+m~Θ
)

+ δ(3)
(

~R−m~Θ
)]

+

+
1

6

( g

m

)2 [

δ(3)
(

~R−m~Θ
)

e−i2m
~Θ· ~P + ei2m

~Θ· ~P δ(3)
(

~R−m~Θ
)]

, (2.29)

where the slight change in notation (V̂ → ˆ̃V ) is for avoiding confusion with the previous

case. As before, we look first for the fermionic and bosonic elastic scattering amplitudes

and then construct the asymptotic expressions for the corresponding scattering states.

Analogously to (2.26) and (2.27) we find that

〈~p ′| ˆ̃V
F

NP|~p〉 = −
1

12π3

( g

m

)2 {

2 cos
[

m~Θ ·
(

~p− ~p ′
)

]

− cos
[

m~Θ ·
(

~p+ ~p ′
)

]}

(2.30)
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and

e−iEt Φ̃
F (+)
~p (~r) =

(

1

2π

)3/2 {

e−i(Et−~p·~r) + (2.31)

+
g2

3mπr

[

e−i[Et−m~Θ·(~p−~p ′)−pr] + e−i[Et+m~Θ·(~p−~p ′)−pr]
]

−

−
g2

6mπr

[

e−i[Et−m~Θ·(~p+~p ′)−pr] + e−i[Et+m~Θ·(~p+~p ′)−pr]
]

}

.

in accordance with the calculations of the section 2. As for the bosons, the potential in

eq. (2.29) leads to

〈~p ′| ˆ̃V
B

NP|~p〉 =
1

24π3

( g

m

)2 {

cos
[

m~Θ ·
(

~p− ~p ′
)

]

+ cos
[

m~Θ ·
(

~p+ ~p ′
)

]}

(2.32)

and

e−iEt Φ̃
B(+)
~p (~r) =

(

1

2π

)3/2
{

e−i(Et−~p·~r) −

−
g2

12mπr

[

e−i[Et−m~Θ·(~p−~p ′)−pr] + e−i[Et+m~Θ·(~p−~p ′)−pr] +

+ e−i[Et−m~Θ·(~p+~p ′)−pr] + e−i[Et+m~Θ·(~p+~p ′)−pr]
]}

. (2.33)

We stress that, presently, the interaction only takes place at ~r = ±(~p − ~p ′)/m2 and

~r = ±(~p + ~p ′)/m2 (see eqs. (2.30) and (2.32)). As consequence, particles in the forward

and backward directions behave as rigid rods oriented along the direction of the incoming

momentum ~p. Furthermore, each scattering state (see eqs. (2.31) and (2.33)) describes four

scattered waves. Two of these waves are advanced, in the sense that the corresponding

time delay is negative, analogously to what was found in [21].

3. One- and two-loop corrections

Our study of the low energy limit of the non-commutative WZ model ends here. The main

conclusion is that the quantum mechanics originating in this limit is always unitary. This is

not in conflict with the existence of scattered advanced waves. Of course, this picture may

change if loop contributions are taken into account. To see whether that really happens we

shall employ the superfield approach, which is more appropriate for calculations involving

higher orders in perturbation theory.2 This formulation has already been used to find the

leading contributions to the effective action in one- and two-loop orders in the case of the

commutative WZ model [31, 32].

The superfield action for the NC WZ model is [28]

S =

∫

d8z Φ̄Φ−

[∫

d6z

(

1

2
mΦ2 +

g

3!
Φ ∗ Φ ∗ Φ

)

+ h.c.

]

. (3.1)

Here, Φ is a chiral superfield (for its component expansion see, for instance, ref. [31]).

2See for instance ref. [31].
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Moreover, the Moyal product for superfields is defined as in eq. (2.2). Notice that the

noncommutativity does not involve the Grassmann coordinates. The propagators look as

follows [28, 31]

〈Φ(z1)Φ̄(z2)〉 =
−1

2 +m2
δ(8)(z1 − z2) , (3.2a)

〈Φ(z1)Φ(z2)〉 =
m

42

D2

2 +m2
δ(8)(z1 − z2) , (3.2b)

where the D factors are associated with vertices just by the same rules as in the com-

mutative case. A chiral vertex, with n external lines, carries (2 − n) factors (−1/4)D̄2.

In a similar way, an antichiral vertex carries (2 − n) factors (−1/4)D2. Furthermore, in

momentum representation, any vertex also includes the factor cos(p1 ∧ p2), where p1 and

p2 are two out of the three incoming momenta [28]. Just for comparison purposes we

mention that the low energy direct scattering amplitudes associated with the supergraphs

whose corresponding fermion component graphs are those given in figures 1a, and 1c read,

respectively,

T S
a =

( g

m

)2
(

i

π2

)

1

(2π)4

∫

d4θ Φ(m, ~p, θ) Φ̄(m,−~p, θ)×

×Φ(m, ~p ′, θ) Φ̄(m,−~p ′, θ)

[

1

2
cos
(

mΘ0jk
j
)

+
1

2
cos
(

piΘijk
j
)

]

, (3.3a)

T S
c = −

1

3

( g

m

)2
(

i

π2

)

1

(2π)4

∫

d4θΦ(m, ~p, θ)Φ(m,−~p, θ)×

× Φ̄(m, ~p ′, θ) Φ̄(m,−~p ′, θ) cos
(

mΘ0jp
j
)

cos
[

mΘ0j
(

pj − kj
)]

, (3.3b)

where T S stands for superamplitudes. One can convince oneself that the effective potential

arising from the amplitudes in eq. (3.3) reproduces those given in eqs. (2.18) and (2.19).

This is quite natural because in the low energy regime the fermionic sector receives only

contributions from the above mentioned supergraphs. As for the low energy regime of the

bosonic sector of interest (A+A→ A+A and B+B → B+B), the only contributions are

those from supergraphs containing D factors, which are responsible for the modifications

of the propagator (see eqs. (2.11) and (2.12)).

Let us focus on the one-loop leading non-planar contribution (Γ
(1)
NP) to the effective

lagrangian density, which is similar to that in the non-commutative φ3 scalar field theory.

It can be shown that up to lowest order in g

Γ
(1)
NP =

g2

4

1

16π2

∫ 1

0
dx

∫

dα

α
eiα[x(1−x)p

2−m2]+i p◦p
4α
−αεΦ(−p, θ)Φ̄(p, θ) . (3.4)

Here, p2 = p20 − p21 − p22 − p23 is the square of the norm of the Minkowskian four-vector p,

while p ◦ p ≡ pµ(Θ2)µνp
ν . Then, by means of an analysis similar to the one carried out

in [22] for the case of the two-point function in the non-commutative scalar φ3 theory, we

arrive to the conclusion that the unitarity constraint is violated whenever p ◦ p < 0. Since

p ◦ p < 0 demands Θ0j 6= 0 [22], we conclude that time/space noncommutativity leads to

a violation of unitarity.
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Finally, we mention that the two-loop contribution to the non-planar Kälherian effec-

tive potential (Φ = constant) has already been found to read [33]

K
(2)
NP =

1

16π2

∫ ∞

0

dα

α

∫ 1

0
dx

∫ ∞

0
dz e−i(α+z)|m+gΦ|

2

×

×

∫

d4k

(2π)4
ei[αx(1−x)+z]k

2+i k◦k
4α . (3.5)

For time/space noncommutativity, this potential develops an imaginary part and therefore

leads to a violation of unitarity.

To summarize, for the NCWZ model, unitarity is indeed violated within the relativistic

regime. However, this does not preclude the existence of a unitary low energy regime.
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