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ABSTRACT

In this thesis we are concerned about the reverse engineering of gene regulatory
networks from post-genomic data, a major challenge in Bioinformatics research.
Gene regulatory networks are intricate biological circuits responsible for govern-
ing the expression levels (activity) of genes, thereby playing an important role in
the control of many cellular processes, including cell differentiation, cell cycle and
metabolism. Unveiling the structure of these networks is crucial to gain a systems-
level understanding of organisms development and behavior, and eventually shed
light on the mechanisms of diseases caused by the deregulation of these cellular pro-
cesses. Due to the increasing availability of high-throughput experimental data and
the large dimension and complexity of biological systems, computational methods
have been essential tools in enabling this investigation. Nonetheless, their perfor-
mance is much deteriorated by important computational and biological challenges
posed by the scenario. In particular, the noisy and sparse features of biological
data turn the network inference into a challenging combinatorial optimization prob-
lem, to which current methods fail in respect to the accuracy and robustness of
predictions. This thesis aims at investigating the use of ensemble learning tech-
niques as means to overcome current limitations and enhance the inference process
by exploiting the diversity among multiple inferred models. To this end, we develop
computational methods both to generate diverse network predictions and to combine
multiple predictions into an ensemble solution, and apply this approach to a number
of scenarios with different sources of diversity in order to understand its potential in
this specific context. We show that the proposed solutions are competitive with tra-
ditional algorithms in the field and improve our capacity to accurately reconstruct
gene regulatory networks. Results obtained for the inference of transcriptional and
post-transcriptional regulatory networks, two adjacent and complementary layers
of the overall gene regulatory network, evidence the efficiency and robustness of
our approach, encouraging the consolidation of ensemble systems as a promising
methodology to decipher the structure of gene regulatory networks.

Keywords: Bioinformatics, machine learning, gene regulatory networks, reverse
engineering, ensemble learning.





RESUMO

Explorando técnicas de ensemble learning para otimizar a engenharia
reversa de redes regulatórias genéticas

Nesta tese estamos especificamente interessados no problema de engenharia re-
versa de redes regulatórias genéticas a partir de dados de pós-genômicos, um grande
desafio na área de Bioinformática. Redes regulatórias genéticas são complexos cir-
cuitos biológicos responsáveis pela regulação do nível de expressão dos genes, desem-
penhando assim um papel fundamental no controle de inúmeros processos celulares,
incluindo diferenciação celular, ciclo celular e metabolismo. Decifrar a estrutura
destas redes é crucial para possibilitar uma maior compreensão à nível de sistema
do desenvolvimento e comportamento dos organismos, e eventualmente esclarecer
os mecanismos de doenças causados pela desregulação dos processos acima mencio-
nados. Devido ao expressivo aumento da disponibilidade de dados experimentais de
larga escala e da grande dimensão e complexidade dos sistemas biológicos, métodos
computacionais têm sido ferramentas essenciais para viabilizar esta investigação. No
entanto, seu desempenho ainda é bastante deteriorado por importantes desafios com-
putacionais e biológicos impostos pelo cenário. Em particular, o ruído e esparsidade
inerentes aos dados biológicos torna este problema de inferência de redes um difícil
problema de otimização combinatória, para o qual métodos computacionais dispo-
níveis falham em relação à exatidão e robustez das predições. Esta tese tem como
objetivo investigar o uso de técnicas de ensemble learning como forma de superar as
limitações existentes e otimizar o processo de inferência, explorando a diversidade
entre um conjunto de modelos. Com este intuito, desenvolvemos métodos computa-
cionais tanto para gerar redes diversificadas, como para combinar estas predições em
uma solução única (solução ensemble), e aplicamos esta abordagem a uma série de
cenários com diferentes fontes de diversidade a fim de compreender o seu potencial
neste contexto específico. Mostramos que as soluções propostas são competitivas
com algoritmos tradicionais deste campo de pesquisa e que melhoram nossa capa-
cidade de reconstruir com precisão as redes regulatórias genéticas. Os resultados
obtidos para a inferência de redes de regulação transcricional e pós-transcricional,
duas camadas adjacentes e complementares que compõem a rede de regulação glo-
bal, tornam evidente a eficiência e robustez da nossa abordagem, encorajando a
consolidação de ensemble learning como uma metodologia promissora para decifrar
a estrutura de redes regulatórias genéticas.

Palavras-chave: bioinformática, aprendizado de máquina, redes regulatórias gené-
ticas, engenharia reversa, aprendizado ensemble.
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1 INTRODUCTION

1.1 Context

In the past years, the field of genomics research has witnessed an important
revolution prompted by the conclusion of the first human genome sequence draft
in 2001 (LANDER et al., 2001). This major scientific milestone, accomplished by
the Human Genome Project (HGP), was the first attempt to map and understand
the genetic material on a large scale. Since then, significant technical improvements
coupled with the shrinking cost of sequencing technologies have allowed the complete
sequencing of large populations of individuals (The 1000 Genomes Consortium, 2012)
and many others organisms’ genome, including model organisms such as fruit fly
(Drosophila melanogaster) and worm (Caenorhabditis elegans), thereby generating
an unprecedented amount of genomics data.

The deluge of data emerging from genome-scale sequencing projects is doubtless
a valuable resource to drive remarkable advances in biomedical research and rev-
olutionize clinical medicine, opening new horizons such as personalized medicine.
However, is required more than knowledge about the genetic and physical maps of
the human genome in order to apply these findings for the development of health-
care. It is essential to translate sequence into function, characterizing the expression
profiles, functional role and interactions within the organism of the biologically ac-
tive parts of the genome, e.g., genes and regulatory elements. Ultimately, one wishes
to understand how these factors are altered in pathological conditions and leverage
this information to advance the way diseases are diagnosed, treated and prevented
(BARABÁSI; GULBAHCE; LOSCALZO, 2011).

It is widely known, however, that genes do not act isolated or independent of each
other, but rather in concert, connected through a number of intricate, multilayered
regulatory mechanisms collectively referred to as the gene regulatory network (GRN)
(JACOB; MONOD, 1961; CHUANG; HOFREE; IDEKER, 2010). As we will discuss in
Chapter 2, the binding of regulatory factors to regulatory regions of their target
genes, which in turn can act as regulators for other genes, defines complex and subtle
circuits of information flow responsible for the control of gene expression. Moreover,
as a complex system, the GRN as a whole exhibits emergent behaviors that are not
obvious or predictable from the properties of its components (AHN et al., 2006). These
observations suggest that the study of organisms behavior based on a reductionist
approach, i.e., a gene-by-gene basis, is inappropriate, and should rather be examined
at a systems-level, considering the network of mutual interactions between genes.

Hence, in this thesis we are concerned about the problem of elucidating the
structure of organisms’ regulatory networks from experimental biological data de-
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scribing their behavior, a major challenge in the field of Bioinformatics known as
reverse engineering of GRNs (HARTEMINK, 2005). Despite the increasing availabil-
ity of genomics data and the recognized importance of GRNs in the understanding
of organisms functioning and diseases mechanisms, the number of functionally rele-
vant interactions between genes remains largely unknown (BARABÁSI; GULBAHCE;
LOSCALZO, 2011). The reverse engineering process aims at changing this reality by
i) finding the precise way with which genetic elements, i.e., genes or genes’ prod-
ucts, interact upon available data and ii) creating a network model based on this
information to assist in the study of how these interactions yield and support the
functioning and behavior of the biological system under investigation.

Traditionally, GRNs are represented as graph models, in which nodes denote
genetic elements (e.g., genes, proteins, RNAs) and the edges describe the regulatory
interactions between these elements. Note that this qualitative representation im-
plies a large simplification of the real, multilayered GRN, as shown in Figure 1.1,
since the action of proteins and RNAs is very often abstracted by the adoption
of a gene-based notation, which corresponds to a projection of all interactions to
the DNA level, i.e., the ‘genes space’ (BRAZHNIK; FUENTE; MENDES, 2002). While
GRNs representation is a straightforward process, the inference of GRNs structure,
i.e., the graph edges, is a hard combinatorial optimization problem in which the
use of computational methods have played a crucial role. In particular, machine
learning (ML) algorithms have been essential tools in overcoming biological and
computational limitations posed by the scenario and enabling the extraction of new
knowledge from the massive data sets.

From the biological perspective, despite the increasing amount of data being gen-
erated, biological data is often noisy and sparse, i.e., it comprises many more genes
than measurements (the so-called curse of dimensionality), which compromise the
statistical power of network inference methods (PE’ER; HACOHEN, 2011). Moreover,
some regulatory interactions might not be characterized in the experimental data
given that it is not possible to observe all relevant input factors affecting an output,
and that the active parts of the network vary under different experimental condi-
tions (WERHLI; HUSMEIER, 2008). From a computational point of view, inferring
GRNs structure consists in searching for the best explained combination of regu-
lators based on the available data (SHMULEVICH et al., 2002). On the one hand,
exhaustive search is impractical given that the number of possible sets of regulators
per node grows very rapidly1 as a result of combinatorial considerations (HECKER
et al., 2009), turning infeasible the evaluation of all candidate solutions. On the
other hand, the use of heuristic methods is impaired by the fact that many topolo-
gies are equally consistent with the data due to the noisy and sparse features of
biological data (JUST, 2007), leading to several different suboptimal solutions and,
consequently, a large uncertainty about the best network structure.

Therefore, reverse engineering of GRNs is a logical but challenging step towards
a systemic and holistic understanding of gene expression regulation and its malfunc-
tion under adverse situations. Albeit computational methods have been primarily
responsible for driving advances in the field and the number of available methods
grows at an explosive rate, the aforementioned challenges still implicate their lack

1Even for a small network of N = 20 nodes, assuming the number of possible combinations per
node to be equal to 2N − 1, there are more than 106 possible sets of regulators to be assessed for
each node.
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Figure 1.1: Graphical representation of a gene regulatory network. (a) A hypo-
thetical example of the multilayered regulatory machinery that underlies organisms
functioning. The genetic elements are organized in three levels, DNA, RNA and
protein levels, while the regulatory interactions are distributed in the transcrip-
tional layer, the post-transcriptional layer and the translational layer. Note that
regulatory interactions might occur both intra and inter-level, increasing the level of
complexity of the system. (b) A simplified representation of a GRN is usually given
as a graph model, in which the regulatory layers are no longer distinguishable and
the type of interactions covered by the model depends on the available data, the
experiment goal and the biological knowledge. It is a common practice to abstract
the action of proteins and RNAs, and project all interactions to the DNA level, i.e.,
the ‘genes space’. Adapted from Marbach (2009).

of robustness, low precision and poor statistical power (HACHE; LEHRACH; HERWIG,
2009; FOGELBERG; PALADE, 2009).

1.2 Motivation

In the last decade, there has been a myriad of attempts to identify interactions
involved in the primary mechanism of gene expression regulation, namely regula-
tion of transcription2, promoted by the binding of special proteins (the so-called
transcription factors) into the regulatory regions of their target genes (COOPER,
2000). During transcription, these regulators control which genes, and the rate with
which they are transcribed into RNA molecules, thus acting in the interface between
the DNA level and the RNA level (see Figure 1.1). More recently, the character-
ization of regulatory mechanisms driven by RNA molecules in the upper layer, at
the post-transcriptional level, has also emerged as an important goal due to the
growing body of evidence of their participation on the development of cancer and
other diseases (LIU et al., 2011). Although in the real scenario a large interplay is
found among these mechanisms, composing a multilayered and highly coordinated
regulatory machinery (see Figure 1.1), in practice, these goals have typically been
addressed separately given the large complexity inherent to their respective layers
of regulation.

In spite of the intense efforts in addressing this problem, reverse engineering

2In short, transcription is the process by which a particular segment of DNA is transcribed into
a RNA molecule. We discuss this biological process in more details in Chapter 2.
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GRNs remains an open problem in the field of Bioinformatics due to its unde-
termined nature and the biological and computational challenges intrinsic to the
scenario. Comparative studies show that despite the success of current solutions
in revealing some unknown interactions, they still lack precision and robustness to
efficiently deal with real-world problems, reinforcing the need for further research
in this area (HACHE; LEHRACH; HERWIG, 2009). It was observed that methods pro-
posed so far are not able to fully reconstruct the network for any of the data sets
tested and that no method is inherently superior to any other (MARBACH et al.,
2012) – an instantiation of the No Free Lunch theorem (WOLPERT, 1996). In fact,
different methods applied to the same data set generate fundamentally distinct sets
of predicted interactions, with very low overlap among them but with similar degree
of overlap with external validation data (DE SMET; MARCHAL, 2010).

As De Smet and Marchal (2010) point, the specific assumptions and simplifi-
cations adopted to deal with underdetermination seem to influence methods’ pre-
dictions. Nonetheless, the systematic errors observed in predictions are also closely
related to the nature of the algorithm adopted: some algorithms are very robust in
identifying a certain type of interaction, while consistently failing for interactions of
other natures (MARBACH et al., 2010). This observation introduces both challenges
and opportunities in the field. While the wide variation in performance makes the
choice of the inference method difficult, it is also a strong indicative that disparate
predictions among algorithms can be due to an inherent complementarity among
their predictive power rather than their failure in revealing some biologically rele-
vant interactions. Hence, it is reasonable to think that the combination of different
strategies in the inference process could lead to a better coverage of regulatory in-
teractions and, consequently, to more precise predictions about the GRN structure.

Indeed, in the past years there has been a growing interest in integrative and
ensemble-based approaches for reverse engineering GRNs. This recent trend aims at
enriching the inference process by taking into account a wealth of biological evidence
and inference methods to enhance the reverse engineering process (WANG et al., 2006;
RUAN et al., 2009; DE SMET; MARCHAL, 2010; MARBACH; MATTIUSSI; FLOREANO,
2009a; MARBACH et al., 2012; GLASS et al., 2013). In particular, ensemble learning
methods consist in (i) generating an ensemble of diverse candidate solutions – either
by optimization based on different biological data, distinct ML algorithms, non-
deterministic optimization methods, incorporation of diverse prior knowledge, or
even a combination of these – and (ii) combining the candidate solutions into a
single model, the ensemble-based output.

A strong motivation for this approach comes from the theory of the wisdom of
crowds, which observes that the knowledge that emerges from a collective decision
is often more accurate than the performance that would be achieved by any of
its members, even expert ones (SUROWIECKI, 2005). Performance improvements
introduced by this phenomenon have been observed in a wide range of tasks whose
scenario is characterized by qualities that tend to make a crowd smart, that is,
diversity, decentralization and independence of the individual parts, as well as an
appropriate way of summarizing people’s opinions into one collective verdict. In
pattern recognition tasks, for instance, ensemble learning has been stablished as a
powerful ML paradigm, with great potential to improve the accuracy and robustness
of classification results by means of combining several individual classifiers given that
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their predictions are accurate3 and diverse (HANSEN; SALAMON, 1990; DIETTERICH,
2000). However, in what concerns the inference of GRNs, the application of the
theory of the wisdom of crowds is still in its infancy.

While the observation of potential complementarity among the outcome of dis-
tinct algorithms has already been discussed in literature, the focus of previous works
has been in assessing and comparing the performance of distinct inference methods
with the primary goal of providing a guideline on the use of ML methods to address
this Bioinformatics challenge, rather than developing an ensemble-based framework
to optimize predictions (HACHE; LEHRACH; HERWIG, 2009; FOGELBERG; PALADE,
2009; ALTAY; EMMERT-STREIB, 2010; MARBACH et al., 2010, 2012). Among these,
the work by Marbach et al. (2012) stands out for its deep analysis of a comprehen-
sive set of reverse engineering methods, characterizing their respective weaknesses
and strengths for different biological problems and providing important insight into
the potential of integrating predictions from multiple inference methods to advance
the state of the art of GRNs reconstruction.

Nonetheless, it is still necessary to perform a broad assessment of different strate-
gies and techniques for building the ensembles in this particular application and
formalize a solution built on top of ensemble learning. For instance, it is important
to investigate the extent to which results can be improved under different types of
ensembles and how the performance of the ensemble is affected by factors such as
noise in data, heterogeneity or homogeneity of the ensemble, different degrees of
agreement among its members and the use of more sophisticated aggregation meth-
ods. After all, reverse engineering of GRNs is a research area characterized by a wide
diversity of data types as well as by an extensive and varied collection of methods
proposed, not to mention the inherent uncertainty that hinders the identification of
a single accurate network, thus naturally providing numerous fronts for the use of
ensembles. What is still not clear is the most appropriate way to take advantage of
this intrinsic diversity, specially for higher eukaryotic organisms.

1.3 Aims and scope

In this context, the aim of this thesis is to investigate the use of ensemble learning
as means to improve the reverse engineering of GRNs. The opportunities and chal-
lenges identified in the current state of the art of GRNs inference methods provide
the primary motivation to study the viability and potential of ensemble learning
techniques as a simple, yet elegant method to optimize the accuracy, robustness
and biological quality of reconstructed networks. As previously noted, the prob-
lem of unveiling regulatory interactions from post-genomic data naturally supplies
a palette of diverse elements to be explored in the inference process. For instance,
diverse but equally good approximate solutions can be found with the use of distinct
biological data types, assorted reverse engineering algorithms or several runs of non-
deterministic optimization methods in the inference process, since it is widely known
that none of these are able to generate comprehensive predictions about the network
structure on their own. By combining and exploiting the complementary informa-
tion of an ensemble of diverse approximate solutions, we have a great potential of
advancing inference results (DIETTERICH, 2000; MARBACH et al., 2012).

3For this discussion, we assume accurate classifiers to be any classifier that performs better than
a random guessing (an error lower than 0.5) in a binary classification task with balanced classes.
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One could thus ask what is the most efficient strategy for building the ensem-
bles in order to better leverage this inherent diversity and maximize the perfor-
mance gain. In this thesis, we report a number of experiments and methods that
tackle this specific question. More precisely, we estimate and discuss the gain in-
troduced by ensemble-based approaches that employ different sources of diversity
in two closely related problems: (i) unraveling the structure of transcriptional reg-
ulatory networks (TRN) and (ii) predicting targets of microRNAs, which are im-
portant post-transcriptional regulators. Despite their fundamental biological differ-
ences, transcriptional and post-transcriptional regulatory mechanisms are gears of
the same machinery and, therefore, of equivalent relevance for the comprehension of
gene expression regulation (see Chapter 2 for more details).

To pursue our goal, we frame our problem as an ensemble learning problem and
follow the traditional methodology for building ensemble systems, which is centered
around diversity induction. Given that diversity is deemed to be a key factor for the
success of ensemble systems, the generation of diverse solutions is usually the core
concern in their design (HANSEN; SALAMON, 1990). According to Kuncheva (2004),
diversity can be introduced in several levels in the design of ensemble systems, as we
discuss in depth in Chapter 3, including the data level and the learner (algorithm)
level. Here we implement and compare different strategies for building an ensemble
of hypothesis about the GRNs structure that encompass diversity mainly in these
two levels, profiting from the wide range of data sets and inference methods already
characterized in the biological problems addressed in this work. Specifically, we
explore explicit and implicit sources of diversity provided by the use of different
biological evidence or reverse engineering methods and by the application of heuristic
search or stochastic optimization methods, respectively.

As we will further discuss in Chapter 4, the problems outlined in this thesis
involve a lot of explicit diversity, motivating the development of integrative and
ensemble-based approaches. For instance, their scenario presents opportunities such
as an amazing source of data of different biological nature (see Chapter 2 for more
details) and a plethora of ML methods already proposed. As has been noted, di-
verse algorithms may recover some disparate regulatory interactions when applied
to the same data due to their particular bias, which may grant different generaliza-
tion ability for distinct algorithms. Similarly, assorted types of biological data, or
even several measurements of genes expression levels with temporal variation among
them, may yield a distinct set of predicted interactions. Although the issue of dis-
similarities among predictions has been initially attributed to the lack of robustness
of inference methods, more recently, it has been recognized as a consequence of the
scenario and, even more important, as an opportunity to enhance results (MARBACH
et al., 2012; DE SMET; MARCHAL, 2010; GLASS et al., 2013). Hence, we leverage the
available range of information by means of ensemble learning techniques in order to
evaluate the potential to improve the coverage and accuracy of the inferred networks.

Additionally, given the complexity and the large dimension of the solutions space,
heuristic search and stochastic optimization methods are commonly applied to deal
with this underdetermined problem. These optimization methods very often provide
suboptimal solutions that can differ, for instance, according to their initial config-
uration or among multiple runs due to the randomness involved in the generation
of their trajectory through the solutions space. Therefore, although the same algo-
rithm is used as base learners in the ensemble system, its stochastic nature causes
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variation among the individual solutions, which we refer to as implicit diversity
given that it is not directly expressed in the design of the ensemble. This lead us
to believe that exploring a set of suboptimal solutions provided by multiple runs of
the algorithm or by population-based algorithms such as Genetic Algorithms may
yield solutions closer to the target GRN - an hypothesis that we investigate with
the solution herein proposed.

Common to these different approaches for inducing diversity within an ensemble
system is the need to define strategies to combine all candidate solutions composing
the ensemble into a single, consensus model. Hence, we also investigate how to
properly profit from diverse solutions, proposing new methods based on social choice
theory to combine elements in the ensemble in order to potentiate the effect of
synergy among them. This is a very important issue regarding the performance
of ensemble systems and, as pointed by Marbach, Mattiussi and Floreano (2009b),
in situations where we are provided with a set of plausible solutions it is still not
completely understood how to compose a single, and hopefully more efficient solution
from this range of information.

In what concerns the innovations introduced by the current thesis, its contribu-
tions span the fields of bioinformatics and computer science. Primarily, this thesis
advances the state of the art concerning the reverse engineering of GRNs by pro-
moting a better understanding about under what circumstances and conditions it is
worth designing ensemble systems rather than resorting to traditional reverse engi-
neering methods and what are the estimated performance gains introduced by this
approach. We perform this study by evaluating the performance of three differ-
ent types of ensemble systems, each of which explores distinct sources of diversity
brought by the scenario, thus providing a comprehensive insight about the advan-
tages and limitations of ensemble learning in this specific context. Moreover, the
proposed ensemble-based inference methods are very promising to the field in the
sense that they show great potential to overcome limitations posed by the scenario
and achieve more accurate and biologically plausible networks than traditional ap-
proaches.

The intuitions and novel methods derived from this work also contribute to
the development of the field of ensemble learning and shall be broadly applicable in
other domains. In particular, the combination methods based on social choice theory
herein proposed are shown to be efficient and robust not only in standard ensemble
learning applications, but also under situations where knowledge extraction based
on popular ML and data mining algorithms is seriously affected by noise or shortage
of data.

The next sections outline the publications resulted from this thesis and describe
the organization of the current document.

1.4 Publications

The work herein described has appeared in a number of papers. The results
presented in Chapter 6 regarding an inference approach for TRNs based on structure
optimization by multiple runs of a stochastic optimization method, namely a Genetic
Algorithm, were published in the following vehicles:

• M. R. Mendoza and A. L. C. Bazzan. Evolving Random Boolean Net-
works with Genetic Algorithms for Regulatory Networks Reconstruction. In:
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Proceedings of the 13th Annual Genetic and Evolutionary Computation Con-
ference, GECCO 2011, ACM, 2011, p. 291–298.

• M. R. Mendoza, F. M. Lopes and A. L. C. Bazzan. Reverse engineering of
GRNs: an evolutionary approach based on the Tsallis entropy. In: Proceed-
ings of the 14th Annual Genetic and Evoluationary Computation Conference,
GECCO 2012, ACM, 2012, p. 185–192.

• M. R. Mendoza, A. V. Werhli and A. L. C. Bazzan. An Epsilon-Greedy
Mutation Operator Based on Prior Knowledge for GA Convergence and Accu-
racy Improvement: An Application to Networks Inference. In: Proceedings of
the 2012 Brazilian Symposium on Neural Networks, SBRN 2012, IEEE, 2012,
p. 67–72.

A comparative study of several combination methods to deal with an ensemble of
solutions, performed during the investigation of the hypothesis of this work related
to the potential of ensemble-based approaches, was discussed in the following paper:

• M. R. Mendoza and A. L. C. Bazzan. On the Ensemble Prediction of
Gene Regulatory Networks: A Comparative Study. In: Proceedings of the
2012 Brazilian Symposium on Neural Networks, SBRN 2012, IEEE, 2012, p.
55–60.

The results related to the prediction of post-transcriptional regulatory interac-
tions by miRNAs using an ensemble-based approach (described in Appendix A) were
published in the Brazilian Symposium on Bioinformatics and an extended version
appeared in the journal PLoS ONE :

• M. R. Mendoza, G. C. da Fonseca, G. L. de Morais, R. Alves, A. L. C.
Bazzan and R. Margis. RFMirTarget: a random forest classifier for Human
miRNA target gene prediction. In: Proceedings of the 7th Brazilian Symposium
on Bioinformatics, BSB 2012, Lecture Notes in Computer Science, v. 7409,
Springer, 2012, p. 97–108.

• M. R. Mendoza, G. C. da Fonseca, G. L. de Morais, R. Alves, A. L. C.
Bazzan and R. Margis. RFMirTarget: Predicting Human MicroRNA Target
Genes with a Random Forest Classifier. PLoS ONE, v. 8, n. 7, p. e70153,
jul. 2013.

In addition, this Ph.D. project was selected for participation in the Eighteenth
AAAI/SIGART Doctoral Consortium of the Twenty-Seventh AAAI Conference on
Artificial Intelligence (AAAI 2013). A paper describing the goals and approach
proposed by this thesis appeared in the proceedings of this conference:

• M. R. Mendoza and A. L. C. Bazzan. Wisdom of crowds in bioinformatics:
what can we learn (and gain) from ensemble predictions? In: Proceedings of
the Twenty-Seventh AAAI Conference on Artificial Intelligence, AAAI 2013,
AAAI, 2013, p. 1678–1679.



33

1.4.1 Papers submitted

The results of this thesis are also reported in papers in preparation or under
review, that have not been published before the writing of this document.

• M. R. Mendoza and A. L. C. Bazzan. Inference of regulatory networks based
on an evolutionary approach: a roadmap for genetic algorithms application.
Book chapter submitted to Methods in Molecular Biology series.

• M. R. Mendoza and A. L. C. Bazzan. Social choice in distributed classifica-
tion tasks: dealing with vertically partitioned data. Research article submitted
to Information Sciences.

• S. Feizi*, G. Quon*, M. R. Mendoza, M. Médard and M. Kellis. Spectral
network algorithms reveal conserved human, fly and worm regulatory path-
ways. Research article in preparation, title might change.

1.5 Thesis outline

This thesis is divided in eight chapters, besides the introduction (Chapter 1),
organized as follows:

Chapter 2 provides a biological background that is relevant for a better under-
standing of our research problem and the motivations that drive this work.
We review key biological concepts involved in the processes of gene expression
and gene regulation, in particular transcriptional and post-transcriptional reg-
ulatory mechanisms, and discuss the theory and properties of GRNs. In addi-
tion, we also outline common types of biological data sets applied for GRNs
inference.

Chapter 3 reviews the ensemble learning paradigm, including concepts, motivation
and principles of design. We discuss standard strategies for inducing diversity
within the ensemble system and for building a single consensus solution from
the set of hypotheses raised by the ensemble. Moreover, we present new com-
bination methods proposed in the scope of this work, which are inspired by
the social choice theory.

Chapter 4 revises the related literature, outlining current computational approaches
for the biological problems addressed in this thesis and presenting further mo-
tivation for the research approach proposed.

Chapter 5 details our general and specific goals and presents the methodology
followed for building and comparing the ensemble systems proposed in the
current thesis. In addition, we discuss the evaluation criteria adopted to assess
the performance of inferred networks.

Chapter 6 discusses the first case study of the application of ensemble learning for
the inference of transcriptional regulatory networks, which aims at exploring
diversity raised by independent runs of a stochastic optimization method, more
precisely, by a genetic algorithm, to reconstruct the networks structure from
gene expression data. We provide details related to the implementation and
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functioning of the GA-based inference method proposed in this thesis, describe
the design of the ensemble system and last, discuss and compare the results of
both approaches in applications with real and synthetic gene expression data.

Chapter 7 also tackles the problem of inferring transcriptional regulatory net-
works, but considers a case study in which multiple data types related to the
target network are available. To this end, we build an ensemble system that
explores diversity in the data level, leveraging two types of biological evidence
for gene regulation, i.e., physical and functional evidence, to reconstruct regu-
latory networks for human, fly and worm. We assess and compare the quality
and biological plausibility of individual and ensemble networks, discussing the
benefits of ensemble approaches in this specific scenario and the potential of
ensemble networks in providing new biological insights about the functional
conservation among these organisms.

Chapter 8 moves towards the problem of post-transcriptional regulation and deals
with the task of predicting miRNAs target genes using a compendium of com-
putational methods. In this case study, we build an ensemble system with
diversity in the learner level induced by the simultaneous use of an assorted
set of ML algorithms, and propose new combination methods inspired by the
social choice theory to integrate the information recovered by heterogeneous
learners. We perform experiments with real data concerning human miRNAs
and discuss the applicability and efficiency of the system in scenarios with
complete and partial knowledge about the training data.

Chapter 9 concludes this thesis, discussing the results and outlining directions for
future research.



35

D
iv

er
si

ty
 in

da
ta

 le
ve

l
D

iv
er

si
ty

 in
 

le
ar

ne
r 

le
ve

l

Section 4.2Section 4.1

Proposed approach: 
ensemble learning

Transcriptional 
regulatory networks

Post-transcriptional 
regulatory networks

Gene regulatory networks Ensemble learning

Chapter 2 Chapter 3

Introduction

Chapter 1

Related Works

Literature Review

Goals and methodology

Chapter 5

Conclusion and future work

Chapter 9

Chapter 6 Chapter 8

Chapter 7

Chapter 4 Chapter 4
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2 BASICS OF GENE REGULATORY NETWORKS

This chapter reviews key biological concepts involved in the processes of gene
expression and gene regulation. The intention is to provide reader with necessary
background on the problem addressed in this thesis, thus enabling a better under-
standing of the role of GRNs in living organisms and the benefits of being able to
infer their structure from experimental data. For the sake of simplicity, many tech-
nical details are left aside. We discuss these topics in a brief and simplified fashion,
providing solely the essential knowledge for the understanding of this work. The
biological processes discussed in this chapter are in fact much more complex – not
to mention that some details are still not completely understood – and plenty of
excellent textbooks and articles covering these topics are available in literature. We
refer reader to Brown (2002) and Alberts et al. (2002) for an in-depth explanation
about the biological issues discussed in this chapter. The last section addresses a
key factor involved in the general process of reverse engineering GRNs from post-
genomic data: the input dataset. Nowadays, there is a great variety of biological
data available – we concentrate on types of data that are of particular interest in
the current work.

2.1 Introduction

Every single organism in nature is made of a genome, a genetic material that
carries all the biological instructions for constructing and maintaining life. Specifi-
cally, these instructions are codified in the DNA (deoxyribonucleic acid), a polymeric
molecule composed of two chains of monomeric subunits called nucleotides (BROWN,
2002). Chemically, the DNA is a very simple molecule. The backbone of each nu-
cleotide consists of three components, as shown in Figure 2.1(a): a deoxyribose
sugar, which is a pentose, a phosphate group attached to the 5’-carbon of the pen-
tose, and a nitrogenous base attached to the 1’-carbon of the pentose. There are
four distinct nitrogenous bases: cytosine (C), thymine (T), adenine (A) and guanine
(G). Cytosine and thymine are double carbon-nitrogen ring compounds classified as
purines, while adenine and guanine are single-ring compounds known as pyrimidines
(BALL; HILL; SCOTT, 2011). The sequence form by these four characters defines the
language of DNA and is the information recovered by sequencing technologies.

In 1953, James Watson and Francis Crick elucidated the three-dimensional struc-
ture of DNA, proposing the double-helix model (Figure 2.1(b)). According to the
Watson-Crick model (WATSON; CRICK, 1953), the two individual DNA strands are
wrapped around each other in a helix shape – a structure that arises from the
chemical and structural features of the two DNA polynucleotide chains. The sugar-
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(a) Primary structure (b) Secondary structure

Figure 2.1: Primary and secondary structures of DNA. Reproduced from Ball, Hill
and Scott (2011).

phosphate backbone is located on the outside of the molecule, exposed to the aqueous
environment, while the nitrogenous bases compose the internal part of the duplex.
Moreover, pairs of bases of opposite strands form hydrogen bonds between each
other according to a restrict rule: A only pairs with T, while C only pairs with
G. This process, referred to as complementary base-pairing, is a crucial feature for
some cellular events as will be further discussed.

The high stability of the double-helix model is guaranteed by two main chemical
interactions, the hydrogen bonds among the complementary base-pairing and the
hydrophobic interactions involved in the base-stacking between adjacent base pairs
(BROWN, 2002). The chemical structure of nitrogenous bases, which comprises a
ceto and an amino group, allows the formation of hydrogen bonds between the pair
of bases, so that a C – G pair has three hydrogen bonds, while an A – T pair has two
hydrogen bonds. Therefore, DNA molecules with more C – G pairs are more stable
as they require a higher temperature to disassociate. Moreover, this complementary
base-pairing enables a more energetically favorable arrangement among the bases,
increasing the molecule stability (BALL; HILL; SCOTT, 2011). Another important
characteristic of the double-helix model is the antiparallel alignment of DNA strands:
one strand has direction 3′ → 5′ while the other is disposed in direction 5′ → 3′, a
feature that also influences in the formation of the hydrogen bonds.

In what follows we discuss the processes that mediate the translation of the
genetic material into functional elements, such as RNA and proteins, which define
the central dogma of molecular biology.

2.2 The central dogma of molecular biology

Regardless the cellular complexity, all organisms’ life depends on the cells’ ability
to save, transfer and translate the genetic instructions encoded in the DNA, which
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Figure 2.2: The central dogma of molecular biology is composed of three processes
responsible for the perpetuation and interpretation of genetic information encoded
in DNA: (i) replication, in which new copies of DNA are made; (ii) transcription, in
which RNA is produced from a segment of DNA; and (iii) translation, in which the
information in protein-coding RNA is translated into a protein sequence.

defines the structure and function of all livings things. Specifically, a DNA strand
is composed of thousands of functional portions called genes. The core of the gene
is the coding region, which contains the necessary and sufficient information for
the production of two other key classes of polymers through the process of gene
expression: RNA and proteins (ALBERTS et al., 2002; BROWN, 2002).

RNA (ribonucleic acid) is a polymer chemically and structurally similar to DNA,
differing from the latter in two main aspects: RNA is composed of a ribose sugar
instead of a pentose, so that the nucleotides in RNA are ribonucleotides, and it
contains the nitrogenous base uracil (U) in the place of a thymine (BALL; HILL;
SCOTT, 2011). Some viruses use RNA rather than DNA as their genetic material,
and all organisms rely on messenger RNA (mRNA) to carry the genetic information
that directs the synthesis of proteins. Nonetheless, mRNAs account for only a small
percentage of the human genome, and the vast majority of transcripts are non-coding
RNA (ncRNA) – functional RNA molecules that are not translated into a protein
but that still play an important role in the correct functioning of organisms.

Proteins are the final products of coding DNA and constitute the main functional
elements of organisms. They are made of special monomers called amino acids, which
are bonded together by peptide bonds, and play a crucial role for the development
and survival of organisms (BALL; HILL; SCOTT, 2011). Briefly, proteins are on duty
of vital functions such as catalyze chemical reactions, as enzymes; defend organism,
as antibodies; provide structural support, as fibrous proteins such as actin, collagen
and elastin; and, perhaps their most relevant function, activate or deactivate the
expression of a specific set of genes, as transcription factors (TFs) (COOPER, 2000;
ALBERTS et al., 2002).

The mechanisms by which the genetic material is perpetuated through genera-
tions and interpreted to allow the synthesis of the aforementioned vital molecules
are the basis of the Central Dogma of Molecular Biology, which consists of three
main steps: replication, transcription and translation (see Figure 2.2).

2.2.1 DNA replication

For an organism to grow and reproduce, it is essential that the cells have the
ability to divide, allowing an increase in cellular complexity and the transmission of
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the organisms’ phenotypes to their offspring. The division process, however, requires
the DNA to be duplicated inside the cell so that it can be split between the two
daughter cells and generate two identical copies of the original DNA. The mechanism
of DNA copy is known as replication.

When Watson and Crick suggested the double-helix model for DNA structure, in
1953, they made one of the most famous statements in molecular biology: "It has not
escaped our notice that the specific pairing we have postulated immediately suggests
a possible copying mechanism for the genetic material" (WATSON; CRICK, 1953). In
fact, the structure of DNA comprising two long nucleotide strands connected by the
principle of complementary base-pairing is the key feature of the replication process.
Replication starts at particular points of DNA, known as replication origins, which
are targeted by special enzymes responsible for breaking up the hydrogen bonds
between the bases and unwinding a short segment of DNA (COOPER, 2000). With
the two strands of DNA separated, each individual strand acts as a template for
the synthesis of a complementary DNA chain. Special proteins known as DNA
polymerases synthesize the new DNA by adding complementary free nucleotides that
match the sequence in the template strand, following the previously mentioned rule:
A only pairs with T, while C only pairs with G. Since one strand of the new DNA
comes from the parent cell, replication is widely referred to as a semi-conservative
process (ALBERTS et al., 2002).

2.2.2 Transcription

The genetic information stored in DNA is only useful to direct the growth and
functioning of an organism once it is expressed, i.e., when the functional product
it codes for is being produced. The first step towards gene expression is given by
the transcription process. Transcription is the mechanism by which RNA molecules
are synthesized based on the information contained in a double-helix DNA molecule
(COOPER, 2000).

RNA synthesis is initiated at the transcription start site (TSS), which is located
at the upstream boundary of the gene’s coding region. Adjacent to the TSS, a pro-
moter region contains specific DNA sequences that provide a secure initial binding
site for RNA polymerases, the enzymes in charge of transcription (ALBERTS et al.,
2002). In addition, promoters are also targeted by TFs in order to activate or re-
press the transcription. Therefore, the special sequences comprised by the TSS, the
promoter and the transcription termination site are known as the gene’s regulatory
region.

When the promoter is recognized by an RNA polymerase, the two strands of
the double-helix DNA unwind at specific sites along the DNA molecule, similarly
to the initial phase of DNA replication (MASTON; EVANS; GREEN, 2006). Once
the DNA strands are separated, the 3′ → 5′ strand of DNA is used as template
for RNA synthesis. Ribonucleotides are added one after another to the growing 3′

end of the RNA transcript following the complementary base-pairing rules and the
DNA template sequence. The RNA molecule produced is therefore antiparallel and
complementary to the template strand. Moreover, it is identical to the corresponding
coding strand of the DNA (the strand in 5′ → 3′ direction in the parental DNA
molecule), except that uracil bases replaces thymine bases.

The RNA synthesis stops when a terminator is identified by the RNA polymerase.
At this point, the RNA transcript is released and the RNA polymerase is responsible
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for wrapping the parental DNA chains around each other in the helix shape. The
produced RNA transcript is referred to as the primary transcript and is posteriorly
processed to constitute a biologically active RNA, specially in eukaryotes. The
RNA processing often involves modification (insertion/deletion) of some nitrogenous
bases, changes in the chemical structure and splicing, in which non-protein-coding
RNA regions (introns) are eliminated and protein-coding regions (exons) are joined
to yield the mature RNA (MASTON; EVANS; GREEN, 2006).

There are many different types of RNA, all of them produced and post-processed
as described above (LODISH et al., 2008). When the gene transcribed into RNA en-
codes a protein (protein-coding RNA), the transcript generated consists of mRNA,
which is further processed via translation to produce the corresponding protein. Still,
as previously discussed, ncRNAs also play an important role within the cell, being
the most prominent examples ribosomal RNA (rRNA) and transfer RNA (tRNA),
both of which are involved in the process of translation. Transfer RNAs transport
a specific amino acid to a growing polypeptide chain at the ribosomal site of pro-
tein synthesis during translation. Ribosomal RNAs are the primary constituent of
ribosomes, the protein-manufacturing organelles of cells that exist in the cytoplasm.

Until the early 1990s, other classes of RNA apart from mRNA, tRNA and rRNA
were essentially unknown. It was largely believed that RNA molecules that didn’t
fit in any of these classes were derived from "junk DNA". Nonetheless, an enormous
number of others ncRNAs were later found to play a much more significant role
than previously thought. For instance, various post-transcriptional mechanisms of
gene expression regulation are the result of small ncRNAs called small interfering
RNAs (siRNAs) and microRNAs (miRNAs). The effects of these small ncRNAs
on gene expression regulation are generally inhibitory, causing the so-called gene
silencing. MicroRNAs are of particular interest to this thesis and have been deeply
investigated in the last decade or so given the evidence of their participation in the
development of cancer and other diseases (LIU et al., 2011).

2.2.3 Translation

The final result of gene expression is the proteome, the collection of proteins
synthesized by a cell that specifies the nature of the biochemical reactions that the
cell is able to carry out (BROWN, 2002). The instruction for building a protein is
carried in the nucleotides sequence of the mature mRNA. Each three consecutive
nucleotides, called codon, code a specific amino acid. The translation of a codon,
which involves the decoding of its genetic code into an amino acid, occurs at the
ribosomes (COOPER, 2000).

Before the initiation of translation, amino acids need to be covalently bonded to
the correct tRNA, i.e., the one carrying the complementary sequence of the codon by
which the amino acid is produced (LODISH et al., 2008). Next, the tRNA carrying the
complementary nucleotides to the codon to be translated, known as the anticodon,
binds to the ribosome close to the growing extremity of the polypeptide chain and
interacts with the mRNA through complementary base-pairing between codon and
anticodon. Once the new amino acid is incorporated in the end of the chain through
a peptide bond, the ribosome moves right in order to allow the next tRNA bringing
a new amino acid to correctly attach to the mRNA at its complementary position.
This process is continuously repeated until a special codon, called stop codon, is
reached. At this point, the polypeptide chain is released from the ribosome into the
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cell cytoplasm.
In prokaryotes, transcription and translation are coupled: the translation be-

gins while the mRNA is still being synthesized, and both processes happen at the
cytoplasm. In contrast, in eukaryotes, transcription and translation are spatially
and temporally separated: transcription occurs in a membrane-bound nucleus and
translation takes place in the cytoplasm (BROWN, 2002).

2.3 Regulation of gene expression

Every cell comprised in an organism, with very few exceptions, carries the exactly
same set of genetic instructions, i.e., the same DNA (BROWN, 2002). Then how is
it possible the generation of so many different types of tissues and so many distinct
traits from cells that are identical to each other? The answer to the observed
variation is the regulation of gene expression. Regulation of gene expression, or
simply gene regulation, is the process by which cells regulate the exact moment and
rate with which the information encoded in their genes is turned into functional
gene products (ALBERTS et al., 2009, Chapter 8).

In Section 2.2 we presented the steps involved in the pathway by which genes
are expressed and specify the content of the proteome, namely, transcription and
translation. According to Brown (2002), this biochemical signature is not entirely
constant: even the simplest unicellular organisms are able to alter their proteomes
to cope with changes in the environment. In procaryotes, the control of the rate of
transcriptional initiation is the predominant site for gene regulation. In contrast,
gene regulation in eukaryotes is much more complex and can be achieved in a wide
range of ways as a result of several molecules’ activity, from proteins to ncRNA.
Although most gene control occurs during transcription, gene expression can still
be regulated by events that occur later, or even by physical factors such as the
accessibility of DNA. In what follows we discuss mechanisms of transcriptional and
post-transcriptional regulation, which are of special interest in this thesis. We refer
the reader back to Figure 1.1 to remind how these mechanisms are interrelated
within organisms.

2.3.1 Transcriptional regulation

In both procaryotes and eukaryotes organisms, regulation of transcription initi-
ation plays a major role in gene expression (COOPER, 2000). As has been noted,
the mRNA necessary for proteins synthesis is produced by means of transcription,
thereby enabling translation to take place. Therefore, when transcription is occur-
ring, translation is often also in motion and gene expression is consequentially "on".
Conversely, when transcription is stopped, the translation is interrupted and the
gene expression is turned off. For this reason, many experimental techniques, e.g.
DNA microarrays, measure the level of transcripts within the cell as a proxy for
gene expression (HACHE; LEHRACH; HERWIG, 2009).

The primary regulators of transcription initiation are sequence-specific TFs,
which recognize a specific pattern in DNA, i.e., a motif, to which it binds in order to
activate transcription (ALBERTS et al., 2009, Chapter 8).. The binding sites of TFs
may occur either near the gene, in the promoter regulatory region itself, or in distal
places, called enhancers, located many thousands of bases upstream or downstream
from a TSS. It is important to note that TFs, as special proteins, are themselves
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Figure 2.3: Transcriptional regulation of gene expression is activated primarily by
the action of transcription factors. In this example, TF1 is the final product of
gene X1 and regulates the transcription of gene X2.The effectiveness of transcription
process depends on many factors, including TFs availability and accessibility of their
binding sites.

synthesized by other genes. Therefore, the deregulation of the activity of their cod-
ing genes may trigger a signaling cascade that will further influence the expression
of their target genes. Furthermore, genes may also be co-regulated by multiple TFs,
which when combined to the set of transcriptional regulatory elements like pro-
moters and enhancers, confers an intricate combinatorial control of their particular
expression pattern (MASTON; EVANS; GREEN, 2006).

Transcriptional regulation involves a number of distinct mechanisms that func-
tion together or independently to promote cellular activity. For instance, the tran-
scription process depends not only on the availability of regulators (TFs), but also
on the accessibility of TF binding sites (motifs) and the effective binding between
regulators and regulatory regions by sequence recognition (MASTON; EVANS; GREEN,
2006). In general, it is assumed that if the expression levels of two genes are highly
correlated, it is very likely that these two genes are connected in the TRN, in the
sense that the expression of one of these genes is probably controlled by the other
within the organism dynamics. However, expression-based correlation provides only
a hint about the connectivity of genes, since changes in the gene expression levels
may be in fact caused by a shared connection among them, i.e., by an indirect regu-
lation. Moreover, interferences at the post-transcriptional or translational level can
still prevent the synthesis of proteins even after mRNA has been produced (HECKER
et al., 2009).

2.3.2 Post-transcriptional regulation

Gene expression in eukaryotes can also be regulated at the RNA level in sev-
eral different ways (LODISH et al., 2008). For instance, during the post-processing of
primary RNA transcripts, the RNA sequence is shortened by a process called RNA
splicing, in which the exons are joined together after the removal of introns. The
primary transcript can be spliced in several different ways, thereby generating dis-
tinct polypeptide chains. This editing process allows genes to be expressed in new
ways and distinct proteins to be produced from the same gene. After splicing the
mature mRNA is exported from the nucleus into the cytoplasm where it is ready for
translation. At this stage, several regulators can bind to the RNA through sequence
specificity and interfere in gene expression (ALBERTS et al., 2002).

The most prominent post-transcriptional regulatory mechanisms are gene silenc-
ing and mRNA degradation caused mainly by small ncRNAs. MicroRNAs, for
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instance, control the expression of specific genes typically by base pairing to the 3’
untranslated regions (30UTRs) of target mRNAs to mediate its repression, either
by transcript degradation or translational inhibition (BARTEL, 2004). In the first
case, the RNA transcript suffers a cleavage and is subsequently destroyed by the
cell after being recognized as an abnormal transcript, thus preventing it from being
used as a translation template. In the second case, miRNAs bind to the regulatory
regions of mRNAs that have sufficient complementarity to its sequence and block
their translation into proteins, thus causing gene silencing. Likewise, siRNAs also
down-regulate gene expression by cutting mRNAs in the middle of their binding
region.

2.4 Gene regulatory networks

As previously discussed, biological systems are complex organisms composed of a
large number of entities, such as DNA, RNA and proteins. These functional elements
coexist in a highly interactive scenario characterized by the processes comprised in
the Central Dogma (see Section 2.2) and by the regulatory mechanisms described
above, which together support the development and functioning of organisms and
the expression of their specific traits. The manner by which these components are
interconnected and relate to each other, enabling an orchestrated work that is crucial
for cellular growth and sustainability, defines the structure of GRNs.

In a more formal definition, GRNs are high-level conceptual representations of
the mutual influence between genes that compose an organism (FUENTE; BRAZH-
NIK; MENDES, 2001). Their main goal is to capture the dependencies between these
molecular entities, representing gene–gene interactions, as well as indirect gene reg-
ulation via protein, metabolites and ncRNAs (BANSAL et al., 2007; HECKER et al.,
2009). The usual graphical formalism is a direct graph, in which nodes denote genes
or genes products, and a connection from node A to node B suggests that A exerts
some type of regulation over B.

It is important to note that the graph representation of GRNs implies a large
simplification of the real network, as previously shown in Figure 1.1. While the pro-
cesses of transcription, translation and gene regulation occur in a joint way within
the organism, in a structure that resembles a multilayered system, the graph rep-
resentation commonly used is unable to capture such details and structure. Graph
models provide a simplified version of the GRN, in which very often the action of
proteins and RNAs is abstracted and all the interactions are mapped to their cor-
responding coding genes, i.e., to the DNA level, or the model is concentrated in
describing the interactions in a specific layer of the system. For instance, network
inference based on gene expression measured by microarray technology consists of
nodes representing transcripts connected by virtue of their expression profile simi-
larity across multiple conditions. In other words, it recover the transcriptional layer
of GRNs.

Despite the intrinsic simplification, GRNs provide a valuable tool to understand
the relationship between genes within a cell and how they respond to intra and
extracellular stimulus. This knowledge is extremely useful to shed light on control
principles underlying organisms metabolism, as well as causal consequences of pro-
cesses at the molecular level on the physiology of organisms. Practical utilities of
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Figure 2.4: Common motifs in GRNs are (a) auto-regulation, (b) feed-forward tri-
angle, (c) cascade and (d) convergence. Reproduced from Fogelberg and Palade
(2009).

GRNs include (i) the identification of functional modules1 within organisms, (ii)
the prediction of network response to external perturbation, as well as of genes di-
rectly affected by the perturbation, through in silico study of network dynamics, (iii)
investigation of mechanisms of complex diseases, (iv) targets prioritization in the
development of new drugs and treatments and (v) enable new paradigms in clinical
medicine such as personalized medicine (FUENTE; BRAZHNIK; MENDES, 2001).

Although many details about GRNs’ structure are still unclear, it is well es-
tablished that GRNs are not just random directed graphs. Instead, they carry
important macro-characteristics that can be used as biological plausible assump-
tions and constraints to support the reverse engineering process. Some important
macro-characteristics of GRNs are:

• Sparseness: GRNs have a sparse topology, i.e, each gene is regulated by only
a small number of other genes (ARNONE; DAVIDSON, 1997). Nevertheless,
some genes, so-called master regulators, are able to control the expression of
hundreds of genes. Therefore, sparseness stands for limited regulatory inputs.

• Connectivity: the structure of GRNs appears to be neither random nor
rigidly hierarchical, but scale free (JEONG et al., 2000). The probability dis-
tribution for nodes out-degree (number of targets) follows a power-law distri-
bution, which means that most of genes regulate few others, while few genes
regulate a high number of genes in the network. Scale-free networks have,
therefore, their topology dominated by a few highly connected nodes, so-called
hubs, which link the rest of the less connected nodes to the system.

• Modularity: it is well known that genes share functionalities and that genes
with common function must act together within the organism (MACNEIL; WAL-
HOUT, 2011). Therefore, GRNs present a modular structure. Modules are
highly interconnected regions of the network that point to shared functional-
ity between the genes involved.

• Motifs: GRNs contain subgraphs called motifs, which are much more frequent
in GRNs’ structure than in a randomly generated graph. Common motifs are
auto-regulation, feed-forward triangle, cascade and convergence, depicted in
Figure 2.4. Because they occur very frequently in GRNs topologies, it is very
likely that these motifs have provided selective advantages during evolution
(MACNEIL; WALHOUT, 2011).

1In GRNs context, a functional module is a subset of genes that regulate each other with
multiple interactions but have few regulatory relations to other genes outside the subset.
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2.5 Biological data for network inference

2.5.1 Physical vs. functional evidence

Before we introduce the types of biological data often used in the study of gene
expression regulation, it is important to emphasize the different biological perspec-
tives that one can follow when reconstructing GRNs, which are determined by the
type of biological evidence used in the reverse engineering process. Basically, GRNs
can depict either physical or functional regulatory interactions (GADNER; FAITH,
2005). Physical regulatory networks are those in which the edges represent a true
physical interaction, i.e., a molecular interaction, between a gene or gene product
and its target. However, this interaction might not necessarily lead to changes in
gene expression profiles.

A very common goal towards the modeling of physical regulatory interactions is
to identify proteins responsible for transcriptional regulation, i.e., the TFs, as well
as the specific regulatory motifs to which they bind in order to promote regulation
(HECKER et al., 2009). In this case, models are very often reconstructed based on the
analysis of experimental data on TFs’ binding profiles provided by chromatin im-
munoprecipitation (ChIP) assays, and on predictions about regulatory motifs made
upon sequence-based DNA binding models. More recently, the formulation of regu-
latory interaction maps that depict the physical association between miRNAs and
their target transcripts based on the analysis of their alignment profile and thermo-
dynamics has become another prominent example of physical regulatory networks
(BRENNECKE et al., 2005).

In contrast, functional regulatory networks represent regulatory interactions be-
tween molecular entities that cause functional changes in the gene expression profile,
without the guarantee of providing a physical explanation of this effect (HECKER et
al., 2009). The regulation mechanism depicted is thus simplified to any interaction
between RNA transcripts in which changes in the expression profile of the regulator
can explain the changes observed in the expression of its targets. Because these
interactions do not imply a true molecular interaction, changes in the expression
profile can be caused not only by direct interactions, but also by indirect regulatory
interactions such as signaling cascade.

Nonetheless, it is important to note that both models have important appli-
cations and that the choice of the type of modeling, based on either physical or
functional interactions, is closely related to the type of data available and the bi-
ological question under investigation. Moreover, it is worth to stress that these
models capture different aspects regarding gene expression regulation, in the sense
that they can become even more useful resources when jointly used in the study of
a GRN of interest.

2.5.2 Types of biological data

Advances in sequencing and gene expression measuring technologies are the main
trigger for the development of current genomics research (HECKER et al., 2009).
Nowadays, there are a plethora of biological datasets being produced, which describe
the regulation of gene expression from multiple angles. In what follows, we review
some available types of data, concentrating on those useful for the current work.
A short summary is shown in Table 2.1. The diversity of biological data is indeed
much richer than what is described in this section and other reviews can be found
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in literature. See, for instance, Hecker et al. (2009) and Zhang, Li and Nie (2010).

Table 2.1: Summary of the types of biological data used in the current work.

Data Source Information Type of
Evidence

Genome DNA sequencing nucleotide sequence Physical

Transcriptome Microarray or
RNA-Seq

catalog of transcripts
and their quantity

Functional

Interactome ChIP-on-ChIp
or ChIP-Seq

interactions such as
Protein-DNA and

RNA-RNA
Physical

Functional
Annotation

Databases like
GO and KEGG

functional
interpretation of

genes
Functional

2.5.2.1 Genome

A genome is the complete set of genetic information in an organism, providing
all the instructions the organism requires to function. Therefore, genome sequence
data is supportive for the reconstruction of GRNs because they carry the instruc-
tions for the transcription of DNA into RNA, which is the main control mechanism
of gene expression (HECKER et al., 2009). As previously discussed, transcription
is mainly regulated by TFs, which bind to specific DNA sites through sequence
specificity, i.e., according to the base-pairing complementarity rules, thereby initi-
ating or repressing the transcription process. Moreover, RNA interference caused
by post-transcriptional regulatory factor is also promoted by sequence complemen-
tarity. Therefore, the analysis of sequence data covers mainly the determination of
organisms’ DNA sequence through high-throughput sequencing technologies and the
investigation of TFs binding sites and small ncRNAs sequences, with the ultimate
goal of detecting (physical) interactions that have a potential correlation with modi-
fications in gene expression patterns. Genome sequences may be found in databases
like Ensembl (FLICEK et al., 2011) for human, mouse, other vertebrate and eukary-
ote genomes, as well as in specialized databases like Flybase for D. melanogaster
(CROSBY et al., 2007) and Wormbase for C. elegans (HARRIS et al., 2010).

2.5.2.2 Transcriptome

The transcriptome is the collection of RNA molecules, and their quantity, pro-
duced by an organism at a specific developmental stage or physiological condition
(WANG; GERSTEIN; SNYDER, 2009). Transcriptomics technologies aim at catalogu-
ing all types of transcripts, including mRNAs, non-coding RNAs and small RNAs,
and quantify their expression levels and changes in expression patterns during de-
velopment and across different conditions (MASTON; EVANS; GREEN, 2006). As has
been noted in Chapter 2, mRNAs are the initial products of gene expression. Hence,
a quantitative measurement of the concentration of mRNAs in the cell can be used
to determine the moment and place genes are turned on or off in various types of
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cells and tissues and compare their variation between different states at the genome
scale, thus being an useful proxy of gene expression. Transcriptomics technologies
include microarrays and RNA-Seq. While microarrays have been the most popular
technology so far given the more affordable price, RNA-Seq is a more recent but un-
der active development technology that offers several key advantages over existing
technologies, including a much higher accuracy and better sensitivity in the quan-
tification of gene expression levels. Well-known databases to query gene expression
data are ArrayExpress (RUSTICI et al., 2013) and Gene Expression Omnibus (EDGAR;
DOMRACHEV; LASH, 2002).

2.5.2.3 Interactome

As we have discussed in the previous chapter, cellular life is organized through
complex interaction networks, in which many genes and gene products work to-
gether giving rise to a wide range of functional pathways. The interactome refers to
the collection of molecular interactions among the functional elements of a genome
that characterize an organism (BARABÁSI; GULBAHCE; LOSCALZO, 2011). The most
common type of interactome refers to protein-protein interaction (PPI) networks,
which are out of the scope of this work. Nonetheless, many other molecular inter-
actions are equally vital for organisms functioning - among these, the protein–DNA
interactome, i.e., interactions between transcription factors and their DNA binding
sites, has been extensively studied due to its crucial role in regulating gene expres-
sion. The development of large-scale experiments such as ChIP-on-chip (chromatin
immunoprecipitation combined with microarray technology) and ChIP-Seq (chro-
matin immunoprecipitation combined with massively parallel sequencing) allows to
obtain such TF–DNA interactions. In addition, the recent identification of the role
of small ncRNAs, like miRNAs and siRNAs, in post-transcriptional regulation have
introduced the study of the interactome involving these transcripts interactions.
Specifically, there is an increasing interest in identifying RNA–RNA interactions
that compose the miRNA interactome. Interactome data may be downloaded from
databases such as STRING (FRANCESCHINI et al., 2013), MINT (LICATA et al., 2012),
TRANSFAC (WINGENDER et al., 2000), REDfly (GALLO et al., 2011) and EDGEdb
(BARRASA et al., 2007).

2.5.2.4 Functional annotation

The last type of data relevant for GRNs study in the scope of this work are
gene functional annotations. This information provides functional interpretation
for genes participating in a GRN and has been the focus of projects such as Gene
Ontology (GO) (The Gene Ontology Consortium, 2000) and KEGG (KANEHISA; GOTO,
2000; KANEHISA et al., 2012). The GO project, in particular, provides a controlled
vocabulary of terms arranged in a hierarchical structure to facilitate and standardize
the annotation of genes and genes products in terms of their function and molecular
attributes across a wide range of species. Functional data is extremely useful in the
reverse engineering of GRNs twofold. First, it provides an important source of data
for the biological validation of inferred networks. Second, the semantic similarity of
gene annotations can provide some clues for the relatedness of two genes. In general,
the more annotations two genes share or the more similar their annotations are, the
stronger is the evidence of functional association between both genes, which might
imply a network interaction among them.
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3 ENSEMBLE LEARNING: A REVIEW

This chapter reviews the field of ensemble learning, including its concepts, mo-
tivation and design issues. As part of the latter, we outline some well-known com-
bination methods, as well as new approaches based on the social choice theory that
are proposed within this thesis.

3.1 Introduction

The task of choosing an algorithm is an ubiquitous matter in the field of ML,
mainly because in most applications, there is not enough knowledge to accurately
select an algorithm beforehand with the certainty of making the optimal choice
(POLIKAR, 2006). In ML tasks, efficiency depends on many domain-related issues,
including quality and quantity of available training data, in a way that algorithms’
performance can vary greatly according to the scenario. As a result, no learning
algorithm can be the best in all possible domains (DOMINGOS, 2012). In fact, algo-
rithms tend to have a bias, either explicit or implicit, that cause them to prefer some
generalizations over others (MAIMON; ROKACH, 2010), such that a large performance
variance is observed among multiple algorithms applied to the same application or
even when the same algorithm is compared across distinct domains. This is a general
issue in ML and is known as the No Free Lunch theorem (WOLPERT, 1996).

Originally applied to pattern recognition tasks, ensemble learning systems were
first proposed as a strategy to reduce the variability among a set of models1 (PO-
LIKAR, 2006). By combining diverse learners’ outputs to reach a final decision,
ensemble systems alleviate the above mentioned issue by reducing our likelihood
of making an unfortunate selection and choosing a model with poor performance,
since the lack of a priori information prevents us from knowing which option would
perform best in our problem.

According to Polikar (2006), the premise of this paradigm has its basis on the
way people behave on their daily lives. Whenever faced with a decision-making
problem, people tend to seek the opinion of others who they judge experts in order
to improve their chances of making the correct decision. Queried people, in general,
have a nonzero variability in their past decisions’ accuracy records, such that by
merging the background drawn from diverse life experiences, one is very likely to
avoid buying a poor product, doing risky businesses, deciding for an unnecessary
medical procedure, among others.

1A note about terminology: in this work, we use the terms model, hypothesis, learner and
classifier interchangeably.
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Although the primary motivation for using ensembles of multiple models is to
reduce the risk of choosing a poorly performing one, ensemble learning was shown to
very often improve results upon the performance of a single learner (DIETTERICH,
2000). The basic intuition behind this effect is that assuming that different classifiers
have a particular bias and variance2 introduced by the training data and/or the
embedded algorithm while still holding a minimum overlap among their hits, a
strategic combination of their outputs causes a smoothing effect, averaging out the
error’s variance component while consolidating the bias (POLIKAR, 2006).

One of the pioneer works to propose the combined use of more than one single
classifier was published by Dasarathy and Sheela (1979), in which authors address
pattern recognition problems for which a single type of classifier might not represent
the best choice over the entire problem space. In their paper, Dasarathy and Sheela
suggested to partition the problem space according to the characteristics of the clas-
sifiers components and further define the deployment of the action domain following
a divide-and-conquer approach: a given classifier takes the inputs for which it per-
forms well, delegating new inputs of a particular type to a more appropriate classifier
in the system. Although the ‘ensemble’ designation was not used by the authors to
characterize their system, their idea resembles the foundations of ensemble learning
and is one of the earliest examples of multiple classifier systems.

Perhaps the first occurrence of the use of ‘ensemble’ as a nomenclature for multi-
ple classifiers combination derives from the work by Hansen and Salamon (1990), in
which authors combined a collection of neural networks simultaneously trained upon
the same dataset using basic voting schemes. Given that the parameters optimiza-
tion differs greatly from one run of the algorithm to the next due to the randomness
feature of the training algorithm, different networks form different generalizations
about the training patterns and tend to make errors in distinct subsets of the in-
put space, so that combining these networks has shown to be a good strategy for
boosting classification performance.

Hansen and Salamon’s paper opened the path to parallel application of multiple
classifiers, in contrast to other approaches for using several classifiers in a single pat-
tern recognition problem, such as divide-and-conquer (DASARATHY; SHEELA, 1979)
and sequential methods. Since then, ensemble systems have prospered and a series
of design schemes and combination techniques have emerged, establishing it as a
practical and effective solution in a wide range of applications (HO, 2002).

There are basically three main reasons why the use of ensemble systems can be in
fact better than a single classifier model (DIETTERICH, 2000), which are summarized
in the graphical examples of Figure 3.1:

• Statistical: A learning algorithm can be considered as a search over a space
of hypothesis H in order to identify the most plausible one given the available
data and prior information. In cases where we have enough and well-defined
data, the best hypothesis h∗ can be clearly identified. Nonetheless, without
sufficient data, the learning algorithm can find many different hypothesis that
explain equally well the input data, but are not the optimal solution. This

2The classification error can be decomposed in two components, bias and variance. While the
bias measures the difference between the outcome of our model and the value we are trying to
predict, the variance component measures how much the estimates for a given input fluctuates for
different realizations of the model. There is very often a trade-off relationship between these two
components, so that classifiers with low bias tend to have high variance and vice versa.
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Figure 3.1: Reasons for using ensemble learning. Machine learning algorithms tend
to suffer from statistical, computational and representational issues that may prevent
them from finding the optimal solution h∗ from the space of possible solutions H =
{h1, h2, h3 . . . , hn}. Adapted from Dietterich (2000).

is usually the case with real-world domains, where multiple trained models
provide similar generalization performance for the same problem. If one simply
chooses a single model, one runs the risk of selecting the poorest one, since
the performance obtained on testing and validation data is only an estimate
of its generalization power. Hence, a safer choice would be to use all trained
models by combining their outputs into one single final decision.

• Computational: Many learning algorithms have their basis on local search
techniques, which can easily get stuck on local optima. The output of these
algorithms usually provide an approximate solution for the problem that can
vary between multiple runs given the stochastic nature of many local search
methods. In cases where there is no guarantee that multiple local searches
will converge to the same solution, constructing an ensemble based on several
runs of a local search starting from many different initial points may provide
a better estimate than any of the individual approximations.

• Representational: In some learning problems, it is possible that the space
of algorithms considered does not include the optimal algorithm, hindering
the finding of an optimal hypothesis. For instance, consider the case where
a classification problem can only be solved by nonlinear classifiers and we
restrict our classifier space to linear classifiers. Since the optimal classifier does
not belongs to the selected classifiers space, it is very likely that none of the
classifiers under consideration will ever converge to the theoretically optimal
solution. Nonetheless, an ensemble of linear classifiers can still approximate
the non-linear decision boundary, providing a solution that is possibly better
than any of the single linear classifiers.

For ensemble classifier systems to be truly effective over single classifiers, there
are two necessary and sufficient conditions (HANSEN; SALAMON, 1990): the clas-
sifiers composing the ensemble must be accurate and diverse. Accurate classifiers
are those whose error rates are better than a random guessing, i.e., less than 0.5
in a binary classification task with balanced classes. However, if an ensemble of
accurate classifiers have highly correlated errors, there is no benefit in aggregating
their outputs, since none of them is introducing new information into the system
that could improve performance on misclassified inputs. In situations like this, an
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ensemble system will probably not enhance results over individual models. There-
fore, another crucial factor that influences the success of ensemble systems is the
diversity among the ensemble’s component learners, and there are several ways of
inducing diversity as we will further discuss.

As Surowiecki (2005) discusses, "diversity helps because it actually adds perspec-
tives that would otherwise be absent and because it takes away, or at least weakens,
some of the destructive characteristics of group decision making". Furthermore,
the author states that while in most of the situations the average is mediocrity, in
collective decision making it’s often excellence. This phenomenon is known as the
wisdom of crowds and has been observed in a wide range of situations, highlighting
the remarkable intelligence of groups.

According to Surowiecki (2005), other important criteria for wise crowds besides
diversity are independence and decentralization. Independence avoids the mistake
of different learners from becoming correlated and it increases the chance of diver-
sity among the group. Decentralization, on the other hand, is important because
it encourages independence and specialization, which tend to make learners more
effective and productive, while still allowing them to coordinate their activities to
solve a difficult task. Finally, Surowiecki (2005) stresses the relevance of having an
efficient an appropriate way of summarizing the people’s opinion into one collective
verdict, which reflexes the group decision.

In what follows we discuss details related to the design of ensemble systems,
which is a practical application of the theory of wisdom of crowds. It is important
to stress that in what concerns the parallel application of multiple classifiers, there
are two main strategies one can follow, namely classifier fusion and classifier selection
(KUNCHEVA, 2004). In classifier fusion, each learner has knowledge about the entire
feature space, and the decision about an unlabeled input is given by an explicit
combination of all classifier’s outcomes, applying combiners such as the average
or voting mechanisms like majority voting. Conversely, in classifier selection, each
learner has knowledge about a subset of the feature space and makes his own decision
based on this information, such that when an unlabeled input is presented to the
system, a single and most appropriate, classifier is dynamically selected to make the
classification for the ensemble as a whole. In this thesis proposal we are interested
in classifier fusion and the remainder of this chapter focus in discussing techniques
related to this approach.

3.2 Design of ensemble systems

The design of ensemble systems is based on three pillars, (i) data sampling or
selection, (ii) training of individual classifiers and (iii) combination of the model’
outputs (POLIKAR, 2006). As obvious as it may seem, the combination of several
models is only useful if they disagree in some inputs, i.e., if pillars (i) and (ii) involve
some degree of diversity. Therefore, even though in general no explicit measure
of diversity is used when building the system, it is assumed that diversity is one
of the key factors of successful ensemble classifier systems (HANSEN; SALAMON,
1990; KUNCHEVA; WHITAKER, 2003), making it the core concern in the design of
ensembles.

The next section discusses several strategies that can be adopted to induce diver-
sity within the system. For this discussion towards the design of ensemble classifier
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Figure 3.2: Four-level taxonomy for building ensemble classifier systems. Adapted
from Kuncheva (2004).

systems, we will follow a four level taxonomy proposed by Kuncheva (2004), de-
picted in Figure 3.2, which groups the common approaches to build ensembles of
diverse models. Specifically, diversity can be introduced within the data level, the
feature level or the learner level.

Equally important, an ensemble system must anticipate an efficient way of sum-
marizing classifiers’ decisions into one single output, which corresponds to the com-
biner level. We discuss common combination methods applied in literature, as well
as new approaches proposed by this thesis, in Section 3.2.2.

3.2.1 Diversity induction

The most popular strategy to build ensemble systems and achieve diversity is
perhaps the use of different training datasets to train individual models (Level D of
Figure 3.2). In this case, the learning algorithm is run multiple times, each of which
with a different partition of the training examples, so that for each model produced a
different generalization is achieved. This strategy is specially well suited for unstable
learning algorithms – algorithms whose output undergoes major changes in response
to modifications in the input data (DIETTERICH, 2000). Despite the existence of sev-
eral approaches for manipulating training data, the most common ways of inducing
diversity in the data level are still the bagging and boosting methodologies.

Bagging (BREIMAN, 1996), a short for bootstrap aggregating, is a method to
form replicate data sets from an original training set by randomly drawing, with
replacement, a sample of training examples from the complete data set. Each boot-
strap replicate is expected to have on average 63.2% of the original data points.
Thus, several classifiers are trained with slightly different training data sets, thereby
building models with different generalizations for the same problem.

Boosting (FREUND; SCHAPIRE, 1996), on the other hand, does not explicitly
partition the original training data, but it runs several rounds of a learning algorithm
using a different distribution of weights assigned to the training examples, which
reflects the importance of each example in the performance of the algorithm, so
that on each round the training process will focus on the mistakes of the previous
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models. This is achieved by updating the weights at the end of each round, such
that incorrectly classified examples have their weights increased, whereas correctly
classified example have their weights decreased. Therefore, multiple runs of the
learning algorithm will rely on potentially different subsets of the training data that
are defined according to the weights assigned to the training examples.

Manipulating the input features is also a straightforward way of generating mul-
tiple diverse models (Level C of Figure 3.2). In this case, the learners in the ensemble
are trained on different subsets of the features, either disjoint or overlapping. There
are a number of strategies that can be followed for feature division aiming at build-
ing ensemble systems, from random selection to heuristic search techniques such as
genetic algorithms and tabu search (HO, 2002). It is also possible that for some ap-
plications, a natural grouping of the features already exists. Ho (1995), for instance,
proposed to repeatedly train decision trees using at each run a random partition of
the feature space.

Other non random approaches consist in selecting features based on the concept
of favorite class, in which classifiers are trained upon the subset of features that
hold a higher correlation with their respective favorite class (OZA; TUMER, 2001).
Assuming that each classifier has a different favorite class, their models will be
diverse in what concerns the adopted features set. Chapter 7 of Kuncheva (2004)
revises a collection of approaches, both random and not random, for feature selection
in ensemble systems.

The third approach that can be explored in the design of ensemble systems refers
to implementation details regarding the learner level (Level B of Figure 3.2). Under
this perspective, diversity can be induced twofold. First, different base learners can
be applied and combined into a single system, benefiting from the fact that distinct
learning algorithms naturally provide different generalizations for the same problem.
This is a very common and usually successful approach, given that classification
errors are very likely to be uncorrelated for algorithms holding different biases.

Second, the ensemble system can be built upon multiple independent runs of the
same non-deterministic algorithm. Many learning algorithms rely on randomness
to generate their trajectory in the hypothesis space, such that solutions can differ
among multiple runs. This is the case, for instance, for algorithms such as neural
networks and random forest, as well as stochastic optimization methods like genetic
algorithms and simulated annealing. If the solution provided by each learner occu-
pies a different point in the hypothesis space, either caused by variation in the type of
learner or variation in the trajectory followed by learners of stochastic nature, then
the combination of these solutions provide diverse, and probably complementary,
information about the same problem that is very likely to enhance the performance
of the system.

3.2.2 Combination methods

The design of ensemble systems can also concentrate in the combination level
(Level A of Figure 3.2) by implementing mechanisms for aggregating all learners’
output into one single, consensus decision. According to Kuncheva (2004), this can
be performed in either one of two ways: optimizing the combiner method for a
fixed, pre-selected set of base learners (decision optimization) or creating diverse
base learners assuming a fixed combiner method (coverage optimization). In this
work we focus in the first approach, in which we have a diverse collection of models



55

and we aim at devising and applying combinations methods that can efficiently
benefit from this feature.

Given the wide range of approaches that can be followed in the design of ensemble
systems, the output of individual models as well as the output of the ensemble as a
whole can take a variety of forms. For instance, they can output a single class label
for each input example, the estimated probabilities for all possible class labels, a list
of input examples ranked in order of the predicted probabilities for a particular class
label, among others (KUNCHEVA, 2004). When writing this section, we have under
consideration methods that provide a probability, also called support or confidence
score, as part of their output. This information can be used either to build a rank of
predictions concerning a specific class label or to extract a decision about the most
probable class of a certain input example. Nonetheless, the combination methods
presented in this section, in their core philosophy, can be adapted and applied to
several formulations of inference methods and ensemble systems.

Before we proceed, it is important to note that the problem of interest in this
thesis, namely the reverse engineering of GRNs, may be framed as a binary classi-
fication task, in which candidate network interactions should be classified either as
being ’present’ or ’absent’ in the true target network. Under this formulation, prob-
abilities refer to the likelihood that a given interaction exists in the target network,
as computed by the reverse engineering method. For some combination methods,
we will use this problem formulation to better explain the embedded aggregation
strategy.

In what follows we review some combination methods. We start by outlining
popular methods based on the classifier fusion approach and in the sequence we
present new combiners proposed in this thesis that are based on the theory of social
choice. For this discussion we will adopt the notation by Kuncheva (2004), with mi-
nor changes. We assume an ensemble E = {L1, L2, . . . , LN} of N learners, deciding
collectively the class label of input examples among the set Ω = {ω1, . . . , ωK} of pos-
sible classes. Each learner Li produces a K-dimensional vector s = [si,1, . . . , si,K ]T as
output, where si,j represents the support for the hypothesis that the input example
belongs to class ωj, given by continuous values in the interval [0, 1]. In addition,
each learner also outputs a class label for each input example, which corresponds
to the class with highest support or probability according to its individual classifier
model. Hence, we assume that each learner also provides a K-dimensional binary
vector d = [di,1, . . . , di,K ]T ∈ {0, 1}K , with i = 1, . . . , |E|, where di,j = 1 if learner Li
labels the input example in class ωj, and 0 otherwise.

3.2.2.1 Majority vote

Perhaps the most intuitive strategy for decision making among a group of indi-
viduals are voting mechanisms. Among these, majority vote is a very straightforward
way to extract a consensus from an ensemble system (KUNCHEVA, 2004). In this
case, each learner in the ensemble casts a vote for the class of a given input according
to its individual decision, and the most popular class, i.e., the one with the majority
of the votes, is chosen as the ensemble decision.

For binary classification tasks, this process is known as simple majority and the
class label that receives 50% + 1 of the votes is chosen as the popular decision. For
problems that involve more than two classes, the process is known as plurality and
the ensemble decides for the class label ωk that receives the largest number of votes
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among all possible class labels. In other words, if the sum of votes assigned by the
N learners for the class ωk, i.e.,

∑N
i=1 di,k, is the maximum among all possible K

classes, ωk is selected as the ensemble decision as described in the following equation
(KUNCHEVA, 2004):

N∑
i=1

di,k =
K

max
j=1

N∑
i=1

di,j (3.1)

3.2.2.2 Weighted majority vote

In real-word applications, it is very likely that the ensemble system is composed
of learners with different accuracy levels. In this case, it is reasonable to give the
more competent learners more power in the final decision. This is similar the way
that shareholders in corporations vote, in which each voter has a different amount
of influence in the final outcome. In this case, the ensemble outcome is defined as:

N∑
i=1

widi,k =
K

max
j=1

N∑
i=1

widi,j (3.2)

in which wi is the weight assigned for learner Li.
In weighted majority voting, the ensemble decision is thus the class label whose

sum of weights assigned for the members that vote for it is the maximum among all
possible labels. For convenience, it is very common to normalize the weights so that∑K

i=1wi = 1. The learners’ weight can be defined either upon prior information or
based on their performance for an independent test set.

3.2.2.3 Algebraic combination

Algebraic combiners can also be applied to compute the ensemble decision among
learners that produce a confidence score as part of their outcome. In this case, the
total support µk for a class ωk is obtained as a simple algebraic function of the
confidence scores produced by individual learners:

µk = F [si,k, . . . , sN,k] (3.3)

The function F can be any mathematical function. Some frequently used func-
tions are (i) the mean, in which the support for class µk is the average of all classifiers’
confidence scores concerning the plausibility of class µk; (ii) the weighted average, in
which the weight of each learner in the decision process, similarly to weighted ma-
jority vote; (iii) the product rule, in which the ensemble system choose the whose
product of confidence scores among all learners is the highest; (iv) the maximum
or median rule, in which the function simply take the maximum or median value
among all confidence scores returned for class ωk, among others.

3.2.2.4 Naïve Bayes combination

Assuming conditional independence among the learners, that is, classifiers are
mutually independent given a class label, the Bayes’ rule can be applied as a com-
bination method. Consider di the class label predicted by the learner Li for a given
input example x. According to our problem formulation, di corresponds to the ele-
ment in the vector [di,1, . . . , di,K ]T ∈ {0, 1}K that equals 1. Also, considerP (di) the
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probability that Li labels x as di ∈ Ω. The ensemble-based support for a class ωk
can be thus calculated as follows:

µk(x) = P (ωk)
N∏
i=1

P (di|ωk) (3.4)

3.2.2.5 Social choice functions

Social choice functions (SCFs) derive from the social choice theory and deal with
the problem of aggregating the preferences or opinions of a group of individuals into
a single collective decision. Preferences refer to a linear ordering over a finite set
of O alternatives in the scenario. We adopt the usual notation and use o �i o′ to
capture strict preference of learner Li, i.e., learner Li prefers outcome o to outcome
o′. In the context of this thesis, alternatives correspond to the possible interactions
of a GRN, and preferences about the alternatives are defined in terms of their
corresponding probability of being present in the target network as computed by
the reverse engineering method, i.e., the support for the ’present’ class. Hence, each
learner in the system is assumed to provide as output a list of predicted regulatory
interactions, ordered in a descending fashion based on their respective probabilities.

When in possession of all learners’ preferences, the combiner defines the pref-
erence profile LN as a tuple containing the orderings over the set of alternatives
provided by the N learners, and apply over this tuple a SCF. The goal of a SCF is
to systematically transform individual preferences into a social decision, producing
a final preference ordering that best reflects the preferences of all learners in the
ensemble system. Therefore, the SCF can be interpreted as a mapping function
f : LN 7→ LE , where LE is the social choice regarding the ordering over all possible
alternatives. Although in literature the term SCF is often used specifically for the
case where a single outcome (alternative) is selected from a set of preferences, in the
current work we use this term in a broader sense.

In what follows we review three SCFs that we apply as combiner in the ensemble
systems proposed in this thesis. While Borda count is a well-known combination
method in ensemble learning, the use of the Footrule function and the Copeland
function have not been explored for this purpose yet, thus being a novelty presented
in the current thesis.

Borda count

In Borda count, voters rank candidates in order of preference, and the winner of
the election is the candidate with the best average rank (BORDA, 1781).

In the context of our application, learners order the alternatives based on their
estimated probability for the ‘present’ class and the combiner aggregates this in-
formation in a two-step process. First, the combiner assigns a score Bi(o) for each
alternative o ∈ O, which equals the number of instances ranked below o in the pref-
erence of learner Li. Second, the combiner computes the total Borda score B(o),
defined as follows:

B(o) =
1

N

N∑
i=1

Bi(o), (3.5)

Hence, learners’ preferences are combined into a single total ordering, the social
choice ordering, by averaging the Borda scores assigned to each possible alternative
across all learners.
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Figure 3.3: Example of ensemble decision by Borda count method.

In the example depicted in Figure 3.3, the combiner aggregates learners’ pref-
erences by computing and averaging the instances’ Borda scores (step B). Finally,
the social choice regarding the class of input examples is obtained by applying a
probability threshold over the preference ordering defined by the consensus scores.
For instance, in the example of Figure 3.3, the instances with average consensus
scores, i.e., Borda scores, higher than 0.5 are classified as belonging to the positive
class (step C).

Copeland function

In Copeland function, the score of each alternative o ∈ O is computed as the
number of victories minus the number of losses in pairwise competitions with every
other element of O (COPELAND, 1951). Wins and losses are defined in terms of
the position that each alternative occupies in the voters’ ranking: the winner is the
alternative that is given a higher rank by the majority of voters.

Here, the winner in one-to-one contests is the alternative, or interaction, that
has the highest probability for the ’present’ class in the majority of leaners’ models.
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Suppose we are comparing two possible alternatives from set O, op and oq, in a
pairwise competition. Let

cp,q =

{
1, if op � oq
0, otherwise.

The Copeland score for each alternative op ∈ O, used to produce the social choice
ordering, is given by:

C(p) =
∑
p 6=q

cp,q (3.6)

The social choice by Copeland function aims at identifying the alternatives with
the greatest number of net wins. The philosophy under this method is that if a
simple majority win is good for an outcome, then the more the better.

Footrule function

The footrule function is a good approximation of the Kemeny optimal aggrega-
tion (KEMENY, 1959) and is related to the median of the values in a position vector.
Given the preference profile LN containing the orderings from all learners in the
system, if the median positions of alternatives o ∈ O among the N orderings form
a permutation, then this permutation is a Footrule optimal aggregation.

In the context of reverse engineering GRNs, the footrule function is a very intu-
itive metric to compare ordered lists with learners’ predictions. It works by summing
the absolute difference between the positions of all unique elements in set O, com-
paring preferences in a pairwise manner. Thus, the smaller the value of the metric,
the more similar the preferences among two learners.

Let rLi(o) be the position occupied by element o in the preference ordering re-
turned by learner Li. Similarly, let δ denote any other arbitrary ordering comprised
in the preferences profile LN . Considering both preferences as a total ordering over
the set of alternatives O, the footrule distance between the preference of Li and δ
is defined as:

F (Li, δ) =
∑
o∈O

|rδ(o)− rLi(o)| (3.7)

It can be shown that a permutation minimizing the total footrule distance be-
tween two preferences is given by a minimum cost perfect matching in a bipartite
graph G(U, V ) (DWORK et al., 2001). The graph G is assumed to be balanced in the
sense that sets U and V have the same cardinality. Hence, the first set denotes the
elements o ∈ O to be ordered, while the second set denotes the m possible positions
in the preference ordering. Here, we apply the Hungarian algorithm to solve this
assignment problem in polynomial time, using the implementation provided by the
clue R Package (HORNIK, 2005, 2013) in the solve_LSAP() function.
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4 RELATED WORKS

In this chapter, we review the state of the art concerning the computational
inference of mechanisms involved in gene expression regulation. Specifically, we
cover two related problems: reconstruction of transcriptional regulatory networks
and prediction of target genes of miRNAs, which are important post-transcriptional
regulators. We start by discussing the two steps involved in the inference of tran-
scriptional regulatory networks, namely, the definition of the modeling framework
and the application of a search algorithm to reconstruct the model. Next, we give
an overview of recent efforts towards the prediction of miRNAs targets. For both
problems addressed, we discuss the challenges involved and limitations of currently
available methods.

4.1 Inference of transcriptional regulatory networks

This section reviews the two steps involved in the inference of transcriptional
regulatory networks, namely, the definition of the modeling framework and the ap-
plication of a search algorithm to reconstruct the model. Due to the populariza-
tion of experimental techniques such as microarray and the consequent increasing
availability of gene expression data, most of the works addressing the problem of
reverse engineering GRNs have focused in the transcriptional regulation layer. In
fact, the number of computational methods aimed at reconstructing transcriptional
regulatory networks from genome-wide expression data is rapidly increasing and the
inferred models have been extremely useful in generating hypotheses to assist in wet-
laboratory experiments (DE SMET; MARCHAL, 2010). Nonetheless, as we will discuss,
all the biological and computational challenges intrinsically involved in the scenario
still prevent us from fully and accurately recovering the transcriptional regulatory
network’s structure from post-genomic data, reinforcing the need for research in the
field.

4.1.1 Graph-based modeling frameworks

The first step in the reverse engineering process is the decision about the model-
ing framework used for network representation. In a general way, modeling frame-
works can be either continuous or discrete, deterministic or stochastic, static or
dynamic, as observed by Hache, Lehrach and Herwig (2009). A plethora of com-
putational and statistical methods have been already applied in the inference of
transcriptional regulatory networks, which adopt a number of different model ar-
chitectures that range from fine-scale modeling by differential equations (CHEN; HE;
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Figure 4.1: Example of graph-based GRN modeling frameworks for a hypothetical
network composed of three genes.

CHURCH, 1999; D’HAESELEER et al., 1999) to coarse-grained schemes as Boolean net-
works (KAUFFMAN, 1969; LIANG; FUHRMAN; SOMOGYI, 1998; SHMULEVICH et al.,
2002), Bayesian networks (FRIEDMAN et al., 2000) or association networks (BUTTE;
KOHANE, 2000; SCHÄFER; STRIMMER, 2005). In this work we are interested in
coarse-grained modeling frameworks.

Although the underlying principle of the vast majority of the coarse-grained ap-
proaches is a simple graph, different model architectures have different degrees of
simplification and also reflect distinct assumptions about the underlying molecular
mechanisms (HECKER et al., 2009). Thus, the choice of the modeling formalism is
closely related to the type and quantity of data available, as well as to application-
specific factors such as the system under study and the biological questions to be ad-
dressed. Nonetheless, it is important to emphasize that the simplifications assumed
by the modeling formalisms do not hinder their use in practical applications; indeed,
GRNs have been proven to be very useful in the field of genetics research (BARABÁSI;
GULBAHCE; LOSCALZO, 2011; CHO; KIM; PRZYTYCKA, 2012; MADHAMSHETTIWAR
et al., 2012; AMAR; SAFER; SHAMIR, 2013), especially in generating or refining hy-
pothesis to drive further experimental research (PETRICKA; BENFEY, 2011).

In what follows we give a brief overview of three modeling formalisms commonly
used in literature, namely, Boolean networks, Bayesian networks and association
networks. While Boolean networks are our particular choice for networks represen-
tation, Bayesian networks and association networks have been explored in a wide
range of computational inference methods and are therefore relevant for a better
understanding of the state of art of related to the problem addressed in the current
work. Despite the differences among these modeling formalisms, as we will further
discuss, they all belong to the group of qualitative network models, which means
that they do not yield any quantitative prediction of genes expression in the sys-
tem, but rather concentrate in discovering the wiring pattern underlying the GRNs’
structure (FILKOV, 2005).

4.1.1.1 Boolean networks

Boolean networks are discrete dynamical networks proposed as models for GRNs
representation in the pioneering work by Stuart Kauffman (KAUFFMAN, 1969). The
assumption underlying Boolean networks is that genes can be discriminated in either
one of two states: active or inactive. Thus, the use of Boolean networks requires a
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pre-processing step, in which continuous gene expression signals need to be trans-
formed to binary data (HECKER et al., 2009). This way, the dynamics of the network
is described by Boolean functions – the state of each gene is determined by the states
of its neighborhood genes using logical transition rules.

Under the Boolean modeling framework, a GRN is described by a directed graph,
G(V, F ), in which V = {v1, v2, . . . , vn} is the set of nodes representing the genes
composing the network, and F = {f1, f2, . . . , fn} is the set of Boolean transition
functions denoting the interactions among genes and their respective expression
rules. Each node vi, i = 1, . . . , n, is a Boolean device that stands for the state of gene
i: vi = 1 denotes that gene i is expressed (active), while vi = 0 means that it is not
expressed (inactive) (LÄHDESMÄKI; SHMULEVICH; YLI-HARJA, 2003). The network
state at time t is thus given by a n-dimensional vector s(t) = [v1(t), . . . , vn(t)]. Since
each node is a Boolean device, the system has a finite state space of size 2n, even
for extremely large networks – a clear benefit of Boolean networks as a modeling
framework for GRNs.

Regarding the system dynamics, the state of gene vi is defined by a Boolean
function fi ∈ F as well as K other genes, known as its regulatory factors or predic-
tors. The variable K is typically held constant across all genes, albeit it can also be
varied, yielding K = {K1, K2, . . . , Kn}. Given the state of gene vi’s predictors at
time t, vki(t) with k = 1, . . . , Ki, the function fi is a logical circuit that generates
the network states s(t + 1) by mapping vi(t + 1) = fi(vki(t)). In other words, fi
specifies the state of the regulated gene vi for each possible combination of values
of its Ki predictors. If Ki is the number of predictors of a given gene vi, then the
number of possible states for the set of Ki predictors is 2Ki . Furthermore, for each of
these combinations, as the state of gene vi defined by its Boolean function must also
be either 1 or 0, the total number of Boolean functions over Ki predictors is 22Ki .
When Ki = 2, some of these functions are well-known (AND, OR, XOR, NAND,
etc.), but in the general case functions have no obvious semantics.

To illustrate the dynamics of a Boolean network, as well as the regulation pro-
cess by means of Boolean functions, we suppose genes A, B and C, depicted in
Figure 4.2, have their expression determined by the Boolean functions OR, OR and
NAND. Also, according to the network wiring, the predictors set for nodes A, B and
C are, respectively, {B, C}, {A, C} and {A, B}. Given this information, Table 4.1
summarizes the expression rules for each of the genes involved in the example net-
work. Genes A and B will be expressed whenever one of its predictors is expressed.
Likewise, the expression of gene C is repressed when both of its predictors are ex-
pressed.

Figure 4.2: Example of Boolean network composed of N = 3 interacting genes, each
of which regulated by two others (K = 2). Double line nodes represent expressed
genes (state 1), while single dashed line nodes denote not expressed ones (state 0).
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By applying this rules synchronously, computing the expression of a gene vi at
time t based on its predictors state at the previous time step and the corresponding
Boolean function fi, one obtains the state transition table as shown in Table 4.2. For
the sake of simplicity, this table shows a 2-step simulation for the network dynamics
defined in Table 4.1, determining all the 2N = 23 possible states at a given time t,
and its successor steps t + 1 and t + 2. In addition, this table allow us to build a
state transition diagram of the network, which appears in Figure 4.3.

An important thing to note about the Boolean networks dynamics is that as
the Boolean functions are deterministic, the transitions between the network states
are also deterministic. Therefore, given the finite state space feature, the networks
always fall into periodic behavior. This means that if a network in state A proceeds
to state B, this behavior will be repeated whenever the system is in state A. In
Figure 4.3 we can clear observe this deterministic behavior: the network will always
transition from state 000 to 001, as well as from 100 to 011, just to mention some
examples. Moreover, this network has one attractor, namely state 110. Once this
state has been reached, network will not be able to move from state 110 unless a
perturbation occurs, i.e., a state of a gene is randomly flipped at a time step.

The challenge of reverse engineering a Boolean network is to infer the underlying
topology and find a Boolean function for each gene in the network such that the
observed (discretized) gene expression data is correctly explained by the model.
Although a wide range of learning algorithms can be applied in the inference of
Boolean networks’ structure, including heuristic search and stochastic optimization
methods, two problem formulations are usually followed, namely the Consistency
Problem and the Best-Fit Extension Problem.

Table 4.1: Example of Boolean functions for a hypothetical network of three nodes
(OR) (OR) (NAND)

B C A A C B A B C
0 0 0 0 0 0 0 0 1
0 1 1 0 1 1 0 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 0

Table 4.2: Example of state transition table for a hypothetical network of three
nodes. We consider the Boolean functions described in Table 4.1.

t t+1 t+2

B C A A C B A B C
0 0 0 0 0 1 1 1 1
0 0 1 1 1 1 1 1 0
0 1 0 1 0 1 1 1 1
0 1 1 1 1 1 1 1 0
1 0 0 0 1 1 1 1 1
1 0 1 1 1 1 1 1 0
1 1 0 1 1 0 1 1 0
1 1 1 1 1 0 1 1 0
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Figure 4.3: Example of a state transition diagram for a Boolean network of three
nodes. The state transition of the network is deterministic, eventually leading to a
state cycle.

In the Consistency Problem one is concerned in identifying a network consistent
with the observations in the given gene expression profile or determine if this network
exists at all. In other words, it aims at finding a Boolean function f from a class
of functions C such that f is a perfect Boolean classifier, i.e. it correctly separates
the given binary examples in two disjoint sets. However, as expression patterns
exhibits uncertainty, and real GRNs comprise many other elements besides genes,
e.g proteins or RNAs, one may argue that the simple Consistency Problem may not
be used to accurately infer the network structure from experimental data. In this
case, it may seen more reasonable to conduct a search for Boolean functions that
minimize the number of misclassification with respect to the input data. This is
the approach followed by the Best-Fit Extension Problem, which entails a search
towards functions that cause as few misclassifications as possible.

The main advantage in using Boolean networks for the reverse engineering of
GRNs is the small number of parameters involved in the model, thus making it
computationally simpler than other approaches and also a strict example of Oc-
cam’s Razor in the definition of the representation scheme (BORNHOLDT, 2005). As
consequence, Boolean networks are especially suitable for problems involving large
scale networks. On the other hand, the binary property of nodes in Boolean net-
works is a strong abstraction since gene expression can assume values in a much
broader range than a binary set of states. This limitation might cause loss of in-
formation and interfere in the quality of GRN reconstruction. Moreover, Boolean
networks are inherently deterministic, which goes against the stochasticity observed
in real biological systems (MCADAMS; ARKIN, 1999). The assumption of only one
logical rule per node may lead to incorrect conclusions when inference is based on
gene expression data, as the latter are typically noisy and the number of samples is
usually much smaller than the number of parameters to be inferred. An extension of
Boolean networks called probabilistic Boolean networks has been proposed to relax
the determinism and allow the identification of a set of functions per gene, each of
which is associated to an occurrence probability (SHMULEVICH et al., 2002).

Despite their simplicity, Boolean networks are able to capture much of the com-
plex dynamics of GRNs and allow the extraction of meaningful biological informa-
tion (LÄHDESMÄKI; SHMULEVICH; YLI-HARJA, 2003). When the interest lies in the
qualitative features of the network, the Boolean formalism is indeed a suitable and
efficient tool for GRNs representation. For further information about Boolean net-
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works and examples of applications in biology, genomics and other complex systems,
we refer reader to (KAUFFMAN, 1993).

4.1.1.2 Association networks

Perhaps the simplest graph-based modeling formalism used in the representation
of GRNs are association networks, first proposed by Butte and Kohane (2000).
Association networks are undirected static models – they describe the hypothetical
structure of a GRN, i.e., its wiring pattern, but not the dynamics. Despite being
static models, association networks can be applied for the analysis of both static
and time series data with the assumption that measurements of gene expression at
different time steps are independent (HACHE; LEHRACH; HERWIG, 2009).

The prediction of network interactions is based on a pairwise similarity measure,
or correlation coefficient, computed from gene expression levels. It is assumed that a
nonzero correlation implies a biological relationship between two genes. In general,
genes are predicted to interact if their correlation coefficient is above some threshold,
so that the higher the threshold, the sparser is the inferred GRN (HECKER et al.,
2009). Commonly used similarity measures are the Pearson correlation coefficient
(STUART et al., 2003) and mutual information (MI) (BUTTE; KOHANE, 2000; BASSO
et al., 2005; MARGOLIN et al., 2006).

In the context of MI, the inference strategy aims at generalizing the pairwise
correlation coefficient to measure the degree of independence between two variables.
Thus, for each pair of nodes i and j, the mutual information MIij is computed as:

MIij = Hi +Hj −Hij (4.1)

where Hx is the entropy of an arbitrary discrete variable x:

Hx = −
∑
k=1

p(xk)log(p(xk)) (4.2)

In Equation 4.2, p(xk) = Prob(x = xk) is the probability of each discrete state
(value) of the variable x. It is assumed that a non-zero MI indicates the existence of a
relationship among nodes (BUTTE; KOHANE, 2000). However, it is important to note
that this criterion does not imply a direct causal interaction between these nodes in
the real network, but rather that they have a statistical dependence among them, i.e.,
they are not randomly associated to each other. A common approach for networks
inference based on information-theoretic methods is to compute the pairwise MI
and apply a threshold such that only those nodes that were linked to others with
a MI higher than the threshold are included in the model (BUTTE; KOHANE, 2000;
MARGOLIN et al., 2006). Since MI is symmetric, this strategy generates an undirected
graph G.

4.1.1.3 Bayesian networks

In Bayesian networks (BNs), the assumption is that gene expression levels can
be described by random variables that follow probability distributions (HECKER et
al., 2009). While each node in the network is a random variable V = V1, . . . , Vn
that denote the expression of a gene, the edges in the network represent the direct
influence among genes by means of conditional dependence relations. The graphical
structure of BNs is given by a directed acyclic graph (DAG) and is characterized
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by a family of conditional probability distributions F and their parameters q, which
together specify a unique joint distribution for each variable in the set of interest.
When a directed edge exists from node A to node B in graph G, A is called the
parent of B and B is said child of A.

Due to the acyclic property of BNs, the joint distribution of nodes may be
decomposed in simpler conditional independence assumptions following the Markov
assumption: "Each variable Vi is conditionally independent of its non-descendants,
given its parents in G". Therefore, by applying the chain rule of probabilities as
well as properties of conditional independence, the joint distribution can be written
in the product form:

P (V1, . . . , VN) =
N∏
i=1

P (Vi|PaG(Vi)) (4.3)

where PaG(Vi) is the set of parents of Vi in graph G, i.e., its predictors.

One of the first seminal papers to propose a reverse engineering approach based
on BNs aimed to uncover the transcriptional regulatory circuits in S. cerevisiae from
gene expression profiles (FRIEDMAN et al., 2000). The main idea was to examine sta-
tistical properties of dependence and conditional independence in the data applying
well known algorithms for learning Bayesian networks structure based on variations
in genes expression levels. There are three essential parts for learning a BN from
data, iteratively repeated in most of the learning approaches: (i) model selection,
(ii) parameter fitting and (iii) model evaluation. Among these, model selection is the
critical step (BANSAL et al., 2007). It aims at finding the DAG that best describes the
gene expression data D, i.e., the one that provides the best combination of predic-
tors for each gene, among all possible graph structures. As discussed in Chapter 1,
exhaustive search is unfeasible given that the number of consistent DAGs grows
super-exponentially with the number of genes in the network, making it an NP-hard
problem. Therefore, heuristics are needed to efficiently learn BNs (HECKER et al.,
2009). We refer reader to Heckerman (1995) for a detailed coverage of methods for
learning BNs.

4.1.2 Computational inference techniques

Once the modeling formalism is defined, a learning algorithm is applied to fit
the model to the provided experimental data. Hence, the choice of the learning
algorithm cannot be independent on the modeling formalism defined; in fact, it is
closely related to the choice of the modeling framework. In general, the network
reconstruction process encompasses two main tasks: (i) learn the network structure
(structure optimization) and (ii) estimate its parameters (parameter optimization)
(HECKER et al., 2009). The structure optimization regards the problem of finding
the network topology, i.e., the combination of regulatory factors for each gene, that
best explains the expression patterns observed in the data. Parameter optimization
concentrates in identifying the model parameters, e.g., the probability distributions
in BNs or the logic transition functions in Boolean networks, once the best structure
has been identified.
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Nonetheless, differently from the inference of metabolic networks1 in which the
goal is to uncover the dynamic behavior of a cell thus making strictly necessary to
estimate the model parameters, in GRNs inference there are relatively few parame-
ters involved in the expression of a single gene, being the main determinants of its
activity its regulatory factors. Therefore, the decisive problem in the reconstruction
of GRNs is the structure optimization task (HECKER et al., 2009), which will thus
be the focus of our discussion.

Structure optimization is usually performed through an explicit comparison among
a set of different network topologies in terms of a scoring function2. For small net-
works, explicit structure optimization by means of a brute-force strategy that tests
all possible network topologies may be feasible under the application of biologi-
cal constraints, for instance, limiting the number of predictors per gene to force a
sparse network topology. In fact, this approach has been applied in the early ef-
forts towards the inference of Boolean networks (AKUTSU; MIYANO; KUHURA, 1999).
Nonetheless, current real-world problems deal mainly with networks comprising hun-
dreds of genes, and as previously discussed, network inference in these cases is an
undetermined problem. First, fitting a model to experimental biological data is a
hard task because of the limited amount of available data and data uncertainties.
Second, data sparseness is an issue given that many networks with different con-
nectivities may have a similar score. This is specially true for the case of Boolean
networks and Bayesian networks.

Hence, in general, learning algorithms adopt heuristics to solve the network
structure, obtaining a good, but not necessarily optimal solution in acceptable run
time. A simple strategy used in the inference of Boolean and Bayesian networks is
heuristic search, e.g., hill-climbing and best first search, in which the algorithm starts
from an initial topology and iteratively add or remove interactions by first proposing
a new network structure, usually by varying the interactions, and then evaluating
the quality of the new topology with regard to the data in terms of a pre-defined
scoring function. In this sense, the search can either start from a simple model
and sequentially add new significant interactions until a stop criterion (forward
selection), or start from a dense, fully connected model and repeatedly remove the
least significant interactions until the stop criterion (backward elimination) – always
taking into account the information embedded in the scoring function to decide
about expanding or pruning the model. The scoring function is thus responsible for
guiding the heuristic search towards more plausible solutions.

Liang, Fuhrman and Somogyi (1998), for instance, proposed the REVEAL algo-
rithm to learn the structure of Boolean networks based on an incremental procedure.
Instead of considering all the network nodes as potential predictors, which is too
computationally expensive, the algorithm applies a forward selection algorithm that
subsequently evaluates all combinations of regulators comprised by K = 1, 2, 3, . . .
genes based on a score defined in terms of MI. An information-theoretic approach
was also applied in the inference of association networks by the ARACNE algorithm

1Metabolic networks describe the collection of chemical reactions within a cell, which determine
its functions in the organism. These networks occupy the layer above the protein level, as shown
in the graphical scheme of the multilayered structure of GRNs provided in Chapter 1.

2We remark that methods that perform an implicit structure optimization by extending the
scoring function to include a model complexity penalization factor are also available in literature
– usually in the form of regression-based methods with regularization techniques – although they
are not as popular as explicit structure optimization methods.
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(BASSO et al., 2005; MARGOLIN et al., 2006), in which a weight equal to the MI is as-
sign to each pair of genes and all the edges with weight lower than a given threshold
are removed. Next, the algorithm applies a pruning step based on data processing
inequality that removes the edge with lower MI in each triplet of fully connected
genes.

Friedman et al. (2000) have proposed a heuristic algorithm to learn the struc-
ture of BNs from gene expression data that reduces the search space by adopting
the notion that variables with strong dependency should be located near to each
other in the network. Hence, authors select a set of most promising candidate pre-
dictors for each gene based on its strength of dependency with other genes, i.e.,
its mutual information, and restrict the proposal of new models’ structure to this
subset of interactions. Nonetheless, these approaches were effective in networks
with only few dozen to a hundred genes and, in the case of ARACNE, only recover
an undirected network. Moreover, heuristic methods based on forward selection or
backward elimination have the strong limitation that the actions are irreversible: in
backward elimination, interactions eliminated will not be considered again, whereas
in forward selection, interactions will remain in the model even if they come to lose
significance.

As has been noted by Ljung (1999), an appropriate modeling framework does
not guarantee the effectiveness of the reverse engineering process by itself; it must
be combined with efficient search or learning algorithms so that the relevant knowl-
edge can be discovered. Therefore, more sophisticated heuristic methods have been
applied to more efficiently explore the solutions space. Among them, stochastic op-
timization methods such as evolutionary algorithms, e.g., genetic algorithms (GA),
simulated annealing (SA) and Markov Chain Monte Carlo (MCMC) have been re-
currently used for GRNs reconstruction. These methods aim at addressing the fact
that when the model encompasses a large number of variables, e.g., genes, stepwise
procedures are often very unstable as the derived model is sensitive to the chosen
path (e.g. forward selection and backward elimination) (GIUDICI; CASTELO, 2003).
For this end, the search procedure embedded by these algorithms is subject to ran-
domness in the choice of the search direction while the algorithm iterates towards a
solution.

Despite the differences among the aforementioned methods, their basic heuristic
functioning is quite similar: at each move, the algorithm proposes a new state
s′ in the neighborhood of the current state s and then probabilistically decides
between moving the system to state s′ or staying in state s. New states may be
proposed either by randomly modifying the current solution, i.e., adding, removing
or reversing a randomly selected interaction, or by combining two different solutions,
as it is the case in GA. The stochasticity in both the proposal and the decision about
accepting new states causes these methods to be less sensitive to modeling errors
and enable them to scape local maxima and eventually approach a global optimum.

Furthermore, MCMC also touches another major issue in the task of reverse
engineering: the large number of network structures consistent with the input data
due to its sparsity and uncertainty impairs the selection of a single model. When
the set of plausible models is large, as it is the case, it is advisable to report findings
from more than one model (GIUDICI; CASTELO, 2003). For instance, one can take a
weighted average of the results, with weights reflecting the relevance of each model.
Nonetheless, a full comparison of the scores associated to all competing models is
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impractical given that one cannot enumerate all possible structures; so it is to take
the average among all plausible models. In this situation, it is more appropriated to
sample networks from the distribution of interest and take the average among these
samples to obtain a single output model. This approach is exactly the proposal
of MCMC, which was first applied to BNs learning by Madigan and York (1995)
and further tested in the context of GRNs inference by Friedman and Koller (2003),
among others.

Several approaches for GRNs inference based on stochastic optimization methods
can be found in literature. In particular, GAs have attracted researchers’ attention
due to their ability to cope with a large solutions space and their implicit parallelism.
A recurrent representation is the codification of candidate solutions as weight matri-
ces, as in association networks. Candidate solutions are commonly evaluated based
on the comparison of gene expression patterns among the inferred networks and the
target network, with the goal of minimizing the difference between their dynamics
(CUMISKEY; LEVINE; ARMSTRONG, 2003; MAMAKOU et al., 2005). Some approaches
propose to bias the search towards simpler model structure, for instance, by adopting
Minimum Description Length principle as in Mamakou et al. (2005). Others sug-
gest the application of a backpropagation local search and a parallelization of the
GA to optimize the accuracy and time of networks inference (CUMISKEY; LEVINE;
ARMSTRONG, 2003). Although these methods have helped in the identification of
networks with several dozen genes to significant accuracy, the large set of parameters
to be inferred limits their application to realistic problems.

Bayesian networks were also used in combination with GA, with a number of dif-
ferent schemes for solutions encoding already applied. For instance, BNs’ structure
can be codified as jagged arrays comprising the topological order and the relation-
ship among genes, given that BNs are acyclic graphs. In Davidson (2010), solutions
are evaluated based on metric scoring functions implemented by Weka3, namely the
Akaike Information Criterion (AIC) score and the Minimum Description Length
(MDL) score. Results were not very satisfactory, however: the correct topological
ordering of nodes was correctly predicted by the algorithm, but the set of relation-
ships between nodes could not be completely reconstructed.

In another work by Tavakolkhah and Rahmati (2009), BNs are represented by a
binary quadratic matrix of size n×n, where n is the number of genes involved in the
network and an indexmij is equal to 1 if gene j is a child of gene i (and thus regulated
by i), or 0 otherwise. The scoring function is defined by combining an evaluation
in terms of the Bayesian information criterion (BIC) score and a comparison with a
PPI network downloaded from the Database of Interacting Proteins. In this sense,
the higher the BIC score and the larger the match between interactions in the
inferred network and in the PPI network, the better will be the score attached to a
candidate network. Moreover, authors apply a pre-processing step in which genes are
classified into smaller sets with a proposed GO-based clustering algorithm, breaking
the network inference task into smaller problems. Results of tests with 98 genes from
the yeast cell cycle suggest improvements regarding previous approaches, but the
network representation is a strong limitation for its application to larger networks.

Although GRNs may be easily codified into discrete models, most works based on
evolutionary algorithms proposed so far have adopted continuous modeling frame-

3Weka is a collection of machine learning algorithms for data mining tasks, available at http:
//www.cs.waikato.ac.nz/ml/weka.
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works. S-Systems, a very common approach, has provided satisfactory reconstruc-
tion of small and middle-sized GRNs when combined with evolutionary algorithms
(ANDO; IBA, 2003; KIKUCHI et al., 2003; SPIETH et al., 2004; NOMAN; IBA, 2005).
For further information about different types of evolutionary algorithms for reverse
engineering GRNs using S-Systems and other continuous approaches for network
representation, see Sîrbu, Ruskin and Crane (2010).

Likewise, the application of MCMC has led to satisfactory results in the recon-
struction of GRNs, being particularly prominent among approaches that adopt the
BN formalism as the representation scheme. Friedman and Koller (2003) compared
the traditional MCMC and an order based MCMC proposed by them in a subset of
250 genes of S. cerevisiae. Their approach is based on a computationally tractable
expression for the posterior of the data given a known order over network variables
and a MCMC sampling algorithm over orders rather than over network structures.
The advantage in sampling from variable orders is that the space of orders is much
smaller than the space of network structures and its distribution is potentially less
peaked than the posterior probability associated to network structures, allowing
faster mixing. Nonetheless, it is important to mention that simulations were run
based on seeds provided by a heuristic search procedure proposed by Friedman,
Nachman and Peér (1999), which may speed algorithm convergence.

Although gene expression data from DNA microarray experiments are widely
used in the field of reverse engineering GRNs, the reconstruction of the network
structure from gene expression data alone is inherently limited as the information
content of such data is impaired by technical and biological factors (HECKER et al.,
2009). Werhli and Husmeier (2007) investigated the application of a framework that
incorporates prior knowledge in the inference process by relying on the MCMC al-
gorithm to simultaneously sample networks and weights associated with the sources
of prior knowledge from the posterior distribution of BNs. To integrate biological
prior knowledge into the inference process, authors define a function that measures
the agreement between a binary adjacency matrix obtained from the inferred net-
works and the biological prior knowledge matrix extracted from the KEGG database
(KANEHISA; GOTO, 2000; KANEHISA et al., 2012). Experiments with the integration
of KEGG pathways with quantitative measures of protein concentrations related to
the RAF pathway, which is involved in the regulation of cellular proliferation in
human immune system cells, have stressed the efficiency of this method to generate
more accurate models.

Heuristic search and stochastic optimization methods have enabled an important
improvement in the inference of GRNs, because they alleviate major limitations im-
posed by the scenario. Nonetheless, they still present shortcomings that prevent
them from fully and accurately solving this reverse engineering problem. In partic-
ular, convergence time is an inherent problem of stochastic optimization methods.
According to Altekar et al. (2004), a properly implemented MCMC would eventu-
ally be able to cross deep valleys in the posterior distribution, i.e., scape from local
minima. Nonetheless, this may take a prohibitive amount of time, causing some
high posterior probability samples to go unexplored in the analysis and affecting
the algorithm’s convergence. The reason is that even small perturbations to the
structure, like a removal of a single edge, can cause a severe reduction in the model
score (FRIEDMAN; KOLLER, 2003), generating a posterior distribution characterized
by many peaks and valleys.
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Similarly, GA is very sensitive to the definition of the scoring function, referred
to as the fitness function, as well as to the values of the parameters involved in
the algorithm. Depending on the these factors and the problem tackled, GAs may
suffer from premature convergence and yield solutions coding local optima or even
other arbitrary points rather than the global optimum (ROCHA; NEVES, 1999). This
may occur for a number of reasons, including the loss of genetic diversity within
the population of solutions encoded by GAs and the shape of fitness landscape
that characterizes the problem, which may turn difficult an ascent towards a global
optimum once a local optima has been reached.

Finally, it is important to note that heuristic and stochastic optimization meth-
ods provide approximate results that vary from one run to another due to the ran-
domness involved in the algorithm. This makes very common their application by
means of repeated runs in order to collect a set of good approximate solutions. In
addition, techniques such as MCMC and GAs naturally provide a pool of plausible
solutions. Yet, while presenting an interesting resource for problem solving, this
also raises another issue, since it is still not completely understood how to draw or
select one efficient solution from this range of information (MARBACH; MATTIUSSI;
FLOREANO, 2009b).

4.1.3 Integrative and ensemble approaches

The first efforts towards ensemble-based approaches for reverse engineering GRNs
were triggered by the evidence that network inference methods based on expression
data alone are at best incomplete and generally fail in distinguishing between direct
and indirect regulatory interactions (MARBACH et al., 2010; ALTAY; EMMERT-STREIB,
2010). This observation prompted the development of more sophisticated methods
that incorporate prior knowledge, biological plausible assumptions and alternative
datasets to support the reverse engineering process (HECKER et al., 2009). In gen-
eral, this is accomplished in two steps. First, a template is built from the additional
information available, yielding a hypothesis of the real underlying structure. Sec-
ond, an inference technique as discussed in the previous section is applied to the
data, reconstructing a GRN model consistent with both the gene expression data
and the template information. A BN formalism is specially suitable to incorporate
prior knowledge, since it allows the definition of prior probabilities over the network
structure. Nonetheless, an integrative learning strategy can be realized with any of
the modeling formalisms described in Section 4.1.2 by appropriately setting a model
scoring function that takes into account the prior knowledge or the higher range of
datasets available.

Bayesian networks were used in an integrative learning strategy proposed by
Hartemink et al. (2002), in which TF-DNA interactions detected by ChIP analysis
were incorporated in the inference process of a small network of 32 selected yeast
genes. When genomic location data suggests that particular interactions should be
present, the algorithm modifies the prior probability associated to the model so that
inferred structures lacking these suggested interactions have zero weight. Nonethe-
less, ChIP data is also susceptible to noise and, in some cases, physical interaction
does not imply regulation, such that attaching zero weight to models that do not
comprise interactions from the genomic location data is a hard constraint. A modi-
fication that assigns small weights to structures lacking the TF-DNA interactions is
possible, but it adds the extra complication that these weights need to be specified
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a priori and there is not a clear way on how to perform this.
Imoto et al. (2003) also explored a data integration scheme with a BN formalism,

integrating biological knowledge from the Yeast Proteome Database in the form of
a prior distribution over network structures to favor biologically relevant structures
during the inference process. The fitness of each model is evaluated based on two
criteria, its consistency with microarray data and how well it reflects the biological
prior knowledge, which is encoded via an energy function. The interesting point
about this work is that the algorithm automatically optimizes the balance between
the use of biological prior knowledge and microarray data to estimate the underlying
GRN structure, succeeding in finding a more accurate topology for a network of
36 yeast genes. The framework proposed has found a variety of applications, for
instance, GRNs were inferred from a combination of gene expression data with
evolutionary information (TAMADA et al., 2005), TFs binding motifs in promoter
sequences (TAMADA et al., 2003) and biological pathways from the KEGG database
(IMOTO et al., 2006). Nonetheless, Imoto et al. (2003) perform the selection of the
network structure based on the maximization of the joint posterior distribution with
a heuristic greedy optimization algorithm, which is an improper strategy to follow
when the scenario is characterized by a diffuse posterior distribution and several
different models may equally explain the data, as it is the case for GRNs inference.
Werhli and Husmeier (2007) extended the approach of Imoto et al. (2003) to address
the limitation of their inference technique, applying a MCMC to sample network
structures from the posterior distribution.

Wang et al. (2006) proposed a framework based on linear programming to infer
multiple networks from a variety of microarray datasets derived from different bio-
logical experiments, each dataset yielding a single network solution. The network
inference task is formulated as an optimization problem in which a scoring function
defined in terms of forced matching among networks and a sparsity term ensures that
the framework finds the most consistent or common substructure with respect to all
the used datasets, in addition to selecting the network with the minimal interactions.
This approach was tested with a small network of 10 TFs related to heat-shock re-
sponse in yeast, as well as with a set of few hundred genes from Arabidopsis thaliana,
recovering biologically plausible interactions. Nonetheless, this framework is only
suitable for dealing with microarray data, being therefore susceptible to limitations
posed by this type of data – in particular, it cannot differentiate between direct and
indirect regulation. Moreover, their method ensures the derivation of the simplest
consistent model, which may ignore plausible interactions inferred from some of the
datasets but not included in the invariant and sparse network given the imperfect
matching.

Diverse sources of biological information were systematically integrated by Glass
et al. (2013) using a message passing approach. Authors incorporate in their frame-
work information regarding PPI, gene expression and TF binding motifs data and
promote information flow between multiple data-types in a biologically informed
way. The primary goal is to find an agreement between different data types by us-
ing the information from each to iteratively refine predictions in the others. Authors
tested their algorithm to build condition-specific regulatory networks in yeast, pre-
dicting higher quality networks and correctly identifying subnetworks that reflect
biological responses to specific cellular conditions. Nonetheless, the algorithm’s
convergence of the message passing iterations requires the setup of an annealing
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parameter, whose values may (negatively) affect the result of the final GRN.
In general, integrative methods have been shown to perform more accurately

in the reconstruction of GRNs than those using any individual data type alone
(HECKER et al., 2009; DE SMET; MARCHAL, 2010). Following this direction, a re-
cent trend is the investigation of the effects of integrating information contained
within an ensemble of plausible networks over the quality of inferred GRNs. This
approach differentiate from the previous one in that several different models are
simultaneously inferred – either by optimization based on different biological data,
non-deterministic optimization methods, incorporation of diverse prior knowledge,
or even a combination of these – and then somehow combined into a single model.
Voting mechanisms have mostly been used for the purpose of combining the set of
plausible networks.

In Marbach, Mattiussi and Floreano (2009a), for instance, authors constructed
an ensemble of good scoring networks by repeatedly running a biomimetic evolu-
tionary reverse engineering method (MARBACH; MATTIUSSI; FLOREANO, 2009b) and
later combined the set of plausible networks by applying voting mechanisms over the
network structure. They have shown that for a small network of five genes, ensem-
bles are able to make accurate predictions despited the noisy data, the undetermined
nature of the problem and the potential correlation between errors carried by dif-
ferent networks. Although the example networks adopted by authors are far from
real-world problems, their results encourage a further investigation of this approach
in the field of reverse engineering.

Ruan et al. (2009) followed a similar approach, learning multiple decision trees,
one for each experimental condition available in the gene expression assays used as
training data. As decision tree learning algorithms typically adopt greedy splitting
heuristics, they are not guaranteed to find the optimal tree and, moreover, the struc-
ture of the final decision tree is highly dependent on the successive choices regarding
node splitting (MURTHY, 1997). Therefore, their framework provide many alterna-
tive transcriptional regulatory models that can then be compared and combined.
The individual trees composing the ensemble are combined by a simple weighted
voting scheme, where the weight is the probability of the prediction made by a tree.
Statistical evaluation and biological validation indicate that the results obtained bu
Ruan et al. (2009) are robust and reliable. Nonetheless, their framework has some
limitations, including (i) their inference method do not specify whether the contri-
bution of a TF to a regulatory rule is inductively or repressively and (ii) it may
miss biologically significant rules that do not show statistical significance according
to their method, i.e., rules that only regulate a few genes.

Different biological data types were explored in Marbach et al. (2012) to simul-
taneously infer a compendia of regulatory networks, both physical and functional,
for fruit fly. Authors infer networks from gene expression data, TF binding profiles,
evolutionarily conserved motifs and chromatin marks, combining these networks by
means of unsupervised (average of interactions weights across all networks) and
supervised (regression-based approach) methods. They observe that the network
inferred from the combination of all data sets is indeed more accurate and reliable
than networks inferred individually for each data set. According to their analy-
sis, functional and physical evidences show little overlap among their predictions;
rather, they are largely complementary. Among all data sets, authors have found
the physical information to be the most informative for network inference.
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On the other hand, Gupta et al. (2011) proposed to integrate different inference
methods in the same reverse engineering procedure. GRNs are inferred separately
from time course and gene knock-out experiments using ODE and correlation-based
network inference methods, and further integrated using multi-objective optimiza-
tion. However, the ensemble approach adopted by authors is extremely naïve and
consists in a simple and direct combination of weights and signs derived from the two
networks inferred for each of the data types. The final network built for each data
type, i.e., time course and gene knock-out experiments, is obtained by combining
the interaction weights extracted from the network inferred from simple differential
gene-expression analysis with the interaction signs (excitatory or inhibitory regula-
tion) generated from the correlation-based network.

Another investigation based on community predictions was held by Marbach
et al. (2012), in which the results for the transcriptional network inference chal-
lenge from DREAM5, the fifth annual set of DREAM4 systems biology challenges,
were systematically compared and combined. Authors examined the observed vari-
ation among methods’ performance by analyzing the predicted interactions through
principal component analysis (PCA), revealing that methods belonging to the same
category of inference approach have an intrinsic bias towards predicting similar inter-
actions and network motifs. Their analysis strongly suggests that network inference
methods have complementary advantages and limitations under different contexts.
Thus, Marbach and colleagues integrated the predictions provided by the partici-
pants of the DREAM5 using voting mechanisms and found that the ensemble-based
predictions are consistently as good or better than the individual predictions for in
silico and prokaryotic (E. coli) data sets – a practical example of the phenomenon of
wisdom of crowds. However, inferring GRNs in higher eukaryotic organisms remains
a challenge, even via ensemble-based methods.

The work by Marbach et al. (2012) provided relevant and the most concrete
evidence so far for the efficiency of a new paradigm for network inference, namely
ensemble-based methods. Nonetheless, their study concentrates on the discussion
of this new methodology, using for such investigation an isolated application involv-
ing submissions of the DREAM5 network inference challenge, rather than on the
formalization of a framework or applicable tool built on top of this approach. More-
over, network inference by DREAM5 participants is based solely on gene expression
data, which is the data type provided by the challenge along with a description of
putative TFs and microarray experiment features. Thus, despite the aforementioned
advances, the effective joint extraction of information from diverse data types and
inference approaches aiming at building accurate genome-wide regulatory models re-
mains a challenge, especially in higher eukaryotic organisms (MARBACH et al., 2012;
GLASS et al., 2013). As De Smet and Marchal (2010) put about the inference of
TRNs:

"At this stage, only tentative steps have been taken to improve
on TRN reconstruction through ensemble methods. Much more
work is needed to assess whether ensemble solutions will succeed
in simultaneously increasing precision and recall of the predicted
interactions.".

4DREAM is the Dialogue for Reverse Engineering Assessments and Methods, which aims at
understanding the advantages and limitations of different inference methods to enable their effective
application in real-world problems.
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4.2 Prediction of post-transcriptional regulatory interactions
by microRNAs

MicroRNAs are small non-coding RNAs of approximately 22 nucleotides (nt)
in length that act as an important post-transcriptional mechanism of gene expres-
sion regulation. MicroRNAs mediate gene regulation mainly by deactivating target
mRNAs through sequence specificity binding that leads either to their translational
repression or degradation, thus effectively reducing the expression of a gene (BAR-
TEL, 2004). In both animals and plants, miRNAs are formed after a longer primary
transcript (pri-miRNA) by two sequential cleavages, mediated, respectively, by a
nuclear and a cytoplasmic Ribonuclease III enzyme. These processing steps yield a
60−70 nt miRNA precursor (pre-miRNA) with a stem-loop hairpin structure and
next, after the latter is exported to the cytoplasm, a structure of two single RNA
strands that corresponds to the mature miRNA, namely the miRNA:miRNA* du-
plex.

Due to miRNAs participation in important metabolic processes, such as devel-
opmental timing, growth, apoptosis, cell proliferation, defense against viruses (LEE;
FEINBAUM; AMBROST, 1993; LU et al., 2008; CHEN, 2005), and more recently charac-
terized in tumorigenesis, either as tumor suppressors or oncogenes (LIU et al., 2011),
great efforts have been dedicated to the identification of miRNAs genes and tar-
gets. Despite the advances in deep sequencing approaches, the use of computational
tools is still important for the analysis and interpretation of data, among which ML
algorithms have been prominent.

In what concerns the identification of novel miRNA genes, for instance, this
approach consists in using known positive and negative examples from literature
to train a classifier that correctly distinguishes real pre-miRNAs from pseudo pre-
miRNAs based on a set of descriptive features extracted from the examples. Recent
research indicates that pre-miRNAs have important features about their primary
sequence and secondary structure that can be effectively used to construct a classifier
(HAN, 2011). Among the most commonly applied ML algorithms, one may highlight
the use of support vector machine (SVM) (XUE et al., 2005; BATUWITA; PALADE,
2009), random forest (JIANG et al., 2007) and naïve Bayes (YOUSEF et al., 2006)
classifiers.

Following this direction, ML-based methods can help in the prediction of miRNA
targets, generating hypotheses regarding miRNA function and potential miRNA:target
interactions. However, this is considered to be a more difficult problem, mostly be-
cause (i) it is hard to distinguish true miRNA-mRNAs hybrids given that the small
length of miRNAs generates millions of possible miRNA-gene combinations and (ii)
there is still very limited knowledge about the basic mechanisms of microRNA tar-
get recognition (STURM et al., 2010). Primarily, the interaction between a miRNA
and its target occurs though canonical base pairing (A–U, G–C), as shown in Fig-
ure 4.4. Nonetheless, while in plants miRNAs bind their targets with (near) perfect
complementarity and mostly in their open reading frames5 (ZHANG, 2007), in an-
imals, miRNAs sequences have a partial complementarity to their targets and the
hybridization may occur in either 3’ untranslated region (3’ UTRs, predominantly)
or 5’UTR (LYTLE; YARIO; STEITZ, 2007).

5An open reading frame is a portion of DNA, comprised within protein-coding genes, that is
delimited by a start and stop codon and encodes a protein or polyptide.
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Figure 4.4: Schematic representation of miRNA-target alignment showing some
structural features generally used for target prediction by ML tools. The seed re-
gion, comprising six to eight nucleotides in the 5’ end, is shown in grey. Nucleotides
matches are shown by colons, whereas G:U wobble pairs are represented by dots.
An example of an alignment gap is also given.

Furthermore animals miRNAs contain a region named seed, comprising six to
eight nucleotides in the 5’ end, that plays an important role in the correct recog-
nition between the miRNA and its target, presenting (almost) strict pairing with
the mRNA. In some cases, however, the 3’ out-seed segment of the miRNA-mRNA
alignment can compensate imperfect base pairing in the seed region (BRENNECKE
et al., 2005).

The wide variation in the standard hybridization between miRNAs and their
targets in animals has turned this problem into a challenge in the field and moti-
vated the development of several computational methods. Furthermore, a strong
motivation comes from the fact that up to 30% of mammalian genes are estimated
to be regulated by miRNAs (LEWIS et al., 2003). Computational predictions suggest
that a single miRNA can target hundreds of different mRNAs and that a single
mRNA may also be regulated by multiple miRNAs (SHALGI et al., 2007), thus cre-
ating a complex regulatory network with widespread impact in the expression of
protein-coding genes. In what follows we review the state of the art concerning the
computational prediction of miRNAs targets, as well as remaining challenges.

4.2.1 Computational identification of microRNA targets

Before we review state-of-the-art computational tools for the prediction of miRNA
targets, it is important to stress that the performance of computational analysis is
restrained by several technical and biological issues (MAZIÉRE; ENRIGHT, 2007).
First, ranking and scoring miRNAs targets is difficult and misleading because se-
quence analysis tools are usually designed for longer sequences (> 20− 23 nt), with
long stretches of matches and fewer gaps. Second, the correct characterization of
the 3’UTR regions of transcripts is essential for miRNA target prediction since they
contain binding sites for miRNAs; nonetheless, 3’UTRs is still poorly characterized
for many mammals and about 30% of human genes lack definite 3’UTR boundaries.
Third, many computational approaches rely on filtering steps based on evolution-
ary conservation of 3’UTRs among multiple species to reduce the number of false
positives, but some miRNAs may not have conserved targets in the scope of the
currently available genomes for evolutionary close organisms. Forth and last, most
assumptions adopted by computational methods to differentiate pseudo targets from
real targets are drawn from experimentally verified miRNAs targets examples, which
does not necessarily imply that all miRNAs follow the same patterns.
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Nonetheless, computational methods have played a major role in the identifica-
tion of miRNA targets, generating reliable and testable predictions to guide wet-lab
experiments, which collaborated to the discovery of novel targets, and so far it is the
only option for systematic genome-wide reconstruction of the interactions involved
in micRNA mediated target binding (STURM et al., 2010).

The first efforts towards the prediction of miRNA targets adopted criteria of
identification based mainly on three miRNAs properties (LI et al., 2010): (i) the
miRNA sequence is complementary to the 3’UTR of the target mRNA, specially
in the seed region, (ii) the RNA-RNA duplex has a favorable thermodynamics, i.e.,
it has a higher negative folding free energy, and (ii) mature miRNAs, binding sites
of miRNA to mRNA, and miRNA:mRNA duplex all are highly conserved across
species, in particular among evolutionary close organisms. Among these, miRanda
(ENRIGHT et al., 2003), TargetScan (LEWIS et al., 2003) and PicTar (KREK et al.,
2005) are specially popular complementarity-based tools, whose functioning con-
sists in identifying potential targets by scoring the aligned sequences based on their
complementarity level and analyzing their seed region (in the case of animals), and
later applying several filtering steps based on the evaluation of the thermodynamics,
binding site structure and evolutionary conservation. However, such tools are prone
to produce many false positive interactions and are usually better suitable for plants
miRNAs, which differently from animals miRNAs, show near to perfect complemen-
tarity when binding to their targets. In addition, miRanda and TargetScan lack
a strong statistical background model to evaluate the significance of each detected
hit, whereas PicTar fails in predicting targets with non-conservative binding sites
(MAZIÉRE; ENRIGHT, 2007; BARBATO et al., 2009).

Despite the good dissemination of the aforementioned tools, ML-based methods
have had the best results so far in terms of specificity and sensitivity in the pre-
diction of miRNA targets (MITRA; BANDYOPADHYAY, 2011). This approach aims
at building a statistical model that fits a set of pre-defined features describing the
miRNA-target association for a number of positive and negative examples collected
from literature, and that can be further used to classify new potential associations
into real miRNA targets or pseudo targets – thus following a classification approach.
In general, ML tools take as input the nucleotide sequences of miRNA and either
the complete transcript sequence or the 3’UTR sequence of their candidate targets.
Common features categories are seed complementarity, thermodynamics (minimum
free energy of the secondary structure) stability, presence of multiple target sites and
evolutionary conservation among species (BARTEL, 2004; LHAKHANG; CHAUDHRY,
2011).

Given the differences between the miRNA-target association in plants and ani-
mals, the designed tools are usually organism- or kingdom-specific, with some excep-
tions being able to handle both plants and animals examples. As previously noted,
the identification of miRNA targets in plants is relatively straightforward because of
the near perfect complementarity between plant miRNAs and their targets. There-
fore, we focus this review in ML methods for the prediction of miRNA targets in
animals, which is a more challenging problem and still not completely solved.

Among the ML algorithms already applied to the prediction of miRNA targets,
SVM is by far the most popular one and has been already combined to a number
of feature sets and distinct training strategies to improve prediction (KIM et al.,
2006; WANG; EL NAQA, 2008; BANDYOPADHYAY; MITRA, 2009; LIU; LIU; ZHANG,
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2010; STURM et al., 2010). One of the first proposed ML tools for miRNA target
prediction built on top of SVM was miTarget (KIM et al., 2006). The classifier
was trained with 41 descriptive features, including structural, thermodynamic and
position-based features, obtained from 152 positives and 83 negatives examples of
miRNA-target associations in several organisms, extracted from the RNA secondary
structure prediction results produced by the RNAfold program in the Vienna RNA
Package (HOFACKER, 2003). Moreover, authors inferred negative 163 examples from
human miRNAs in order to complement the examples extracted from literature and
produce a more balanced training set. While thermodynamic and structural features
were already used by non-ML methods, position-based features were introduced
by Kim et al. (2006) to describe more accurately the pairing mechanism between
miRNAs and their targets, thereby increasing the specificity of the tool. Differently
from non-ML tools, miTarget do not consider information about the conservation
of seed motifs among species to avoid the loss of sensitivity; on the other hand, the
false positive rate is increased.

SVM was also applied in the design of mirTarget (WANG; EL NAQA, 2008) and
SVMicrO (LIU et al., 2010), whose feature sets are composed by 131 and 143 features,
respectively, and include conservation criteria in combination with seed match and
free energy of the miRNA-mRNA secondary structure. Wang and El Naqa (2008)
adopt microarray data set to guide the selection of target prediction features and
the definition of training examples, yielding the identification of 454 downregulated
genes (positive samples) and 1017 normal genes (negative samples). A drawback on
this approach is that some real targets may be excluded from the analysis if their
regulation is exerted at the protein level. SVMicrO (LIU et al., 2008), on the other
hand, is trained with 896 experimentally verified positive examples obtained from
miRecords database (XIAO et al., 2009) and 3542 negative examples extracted from
the same microarray data used by Wang and El Naqa (2008), but defining non-
targets as up-regulated genes whose expression levels are greater than 1.2 fold with
significant p-value. Both methods presented relatively good performance, specially
for the negative class. Nonetheless, the approach used to define negative examples
created a class imbalance in favor of the negative class, preventing a good sensitivity.

TargetMiner (BANDYOPADHYAY; MITRA, 2009) and MultiMiTar (MITRA; BANDY-
OPADHYAY, 2011) also implement SVM-based classifiers, but differentiate from the
previous tools in that they adopt a systematic identification of non-target mRNAs
to produce more reliable and plausible negative training dataset. Potential negative
examples were detected applying several target prediction algorithms to a set of
miRNA-mRNA pairs and selecting those instances predicted as target. As this pre-
diction is based on features drawn from sequence or structural interactions between
miRNA and mRNA, it contains many false positives, especially for tissue-specific
miRNA. Thus, expression profiling data of a miRNA and its predicted target was
used to measure tissue specificity for both of them, and those miRNA-mRNA pairs
that are significantly overexpressed in one or a few specific tissue types are chosen
as potential negative examples. Next, these potential non-targets are filtered using
another independent expression profiling data set and the final set of negative ex-
amples is analyzed in terms of thermodynamic stability and seed site conservation.
TargetMiner and MultiMitar are both trained upon the same dataset of 289 biolog-
ically validated positive examples extracted from miRecords database (XIAO et al.,
2009) and 289 systematically identified tissue-specific negative examples. MultiM-
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iTar improves on TargetMiner in the sense that it combines the SVM classifier to
a multiobjective metaheuristic based feature selection technique, yielding the most
balanced performance (specificity vs. sensitivity) when compared to other state-of-
the-art tools.

Other ML algorithms were also applied to this task. Yousef et al. (2007) pro-
posed NBmiRTar, a naïve Bayes classifier based on 57 sequence and miRNA:mRNA
duplex structure features that reprocesses miRanda (ENRIGHT et al., 2003) output
producing filtered and reduced predictions. Positive examples were obtained from
TarBase (SETHUPATHY; CORDA; HATZIGEORGIOU, 2006) and consist of a collection
of 225 confirmed miRNA targets for several eukaryotics, including human and mouse.
Negative examples include 38 confirmed false target predictions from TarBase and
thousands of artificially generated miRNA-target pairs. Although good sensitivity
and specificity were observed in an evaluation based on cross-validation, NBMirTar
was not tested with an independent test set and its performance is very likely to
be negatively affected in this scenario due to the use of artificial negative training
examples.

TargetSpy (STURM et al., 2010), on the other hand, relies in a learning scheme
based on MultiBoost (WEBB, 2000) with decision stumps as base learners that incor-
porates knowledge about multiple sequence and structure features. Nonetheless, the
tool has the flexibility of generating predictions that are also consistent with seed
matching and conservation requirements by post-filtering results. Training data was
composed by retrieving 3’UTR sequences from the UCSC Genome Database [27]
and miRNA sequences from miRBase for human, mouse, chicken and fly, and using
previously published methods to obtain target site predictions. In addition, authors
adopt a set of argonaute (Ago) - mRNA binding sites identified by an experimental
technique that isolates RNA by cross-linking with immunoprecipitation in high-
throughput sequencing experiments (CLIP-Seq) and provided physical evidence of
miRNa-mRNA interaction maps, using it to divide the set of miRNA-target pre-
dictions into positive and negative examples. Despite relaxing rules related to the
requirement of seed match and sequence conservation, the careful selection of train-
ing examples causes a substantial improvement of TargetSpy results in relation to
previous methods. Moreover, results are enhanced and comparable to state-of-the-
art algorithms when these criteria are adopted, although this may imply a higher
false positive rate.

As one may note, there is a plethora of computational methods that tackles
the problem of predicting miRNA target genes. The main differences among these
tools concerns the set of features and the data set applied in the training process,
which has often been the focus of their development. Despite the relative success of
the aforementioned examples, ML tools face some intrinsic problems in the task of
miRNA target prediction.

First, the efficiency of ML classifiers depends on the availability of an appropri-
ate set of positive and negative miRNA-target examples for the training process.
While experimentally verified positive examples can be easily obtained from spe-
cialized databases, such as TarBase (SETHUPATHY; CORDA; HATZIGEORGIOU, 2006;
PAPADOPOULOS et al., 2009), these algorithms lack a suitable gold standard for the
negative class because the systemic identification of non-target mRNAs is still not
properly addressed (MITRA; BANDYOPADHYAY, 2011). This causes an important
class imbalance that may degrade the performance of many algorithms, including
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the popular SVM.
Second, to overcome the limitation regarding the negative examples, many tools

are compelled to artificially generate negative examples or adopt approaches for se-
lecting pseudo miRNA targets from the analysis of cross-platform data, which yields
extremely biased training data sets. For instance, as Bandyopadhyay and Mitra
(2009) discuss, negative examples generated randomly based on some biologically
motivated criteria may contain real cases by chance or cases that are unrealisti-
cally different from true miRNA targets and therefore easily distinguishable by the
classifier. The results is a good cross-validation performance on this synthetic train-
ing data set, but poor performance on real, independent test data set. Although
more difficult than the identification of positive examples, the systematic discovery
and validation of negative examples is a critical factor to enhance accuracy of ML
approaches, as shown by Sturm et al. (2010) and Mitra and Bandyopadhyay (2011).

Third, notwithstanding the existence of a probabilistic model to provide more
reliable predictions, ML algorithms are also based on biologically motivated rules and
constraints used since the first generation of computational methods. For instance,
good seed matching is one of the most common requirements adopted. While this
increases the detection of miRNA-target examples presenting this feature, it limits
our ability to identify biologically relevant microRNA target sites that do not fulfil
these requirements (STURM et al., 2010). Moreover, it may also detect potential
targets that despite the complementarity in the seed region do not contain any
functional role in the physiological context. As Sturm et al. (2010) puts, "our current
knowledge about microRNA target sites is almost exclusively drawn from a handful
of experiments exploring the targeting of a minority of the most highly expressed
microRNAs". Moreover, the authors mention that these experiments may have a
strong bias towards computational prediction approaches used to identify the initial
pool of candidates. Nonetheless, overcoming this drawback is beyond the capability
of ML tools, as it requires the generation of more unbiased experimental data and
its systematic application in conjunction with ML classifiers.

Forth, despite the good performance of methods proposed so far, the relative
importance of each feature is still unclear. New approaches usually concentrate
in proposing new features to complement the set of features already discussed in
literature rather than performing a systematic analysis of their importance to the
correct classification of miRNA targets. The use of more features is very often an
ineffective strategy because a correct generalization becomes exponentially harder as
the dimensionality, i.e., the number of features, of the examples grows (DOMINGOS,
2012). In fact, current methods have been shown to be robust and useful in the
prediction of miRNA targets, but they are not sensitive to redundant or irrelevant
features, which can significantly reduce the performance of classifiers (XIAO et al.,
2009). Hence, identification of discriminatory features is a challenging issue for the
enhancement of methods’ performance.

Therefore, effective prediction of miRNA-mRNA interactions remains a chal-
lenge, specially in animal systems, due to the complexity involved in miRNA-target
interactions and the limited knowledge about the rules governing these processes
(WITKOS; KOSCIANSKA; KRZYZOSIAK, 2011). Most methods developed for the iden-
tification of miRNA targets still have a false positive rate greater than 0.3, i.e.,
their specificity is often lower than 70% (ZHENG et al., 2013). Morever, Sethupathy,
Megraw and Hatzigeorgiou (2006) analyzed and compare the performance of five
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miRNA targets prediction programs, as well as combinations of these, and showed
that an intersection among the five tools yields the highest specificity but the low-
est sensitivity, whereas the union of all the tools achieves the highest sensitivity by
the lowest specificity. The development of highly accurate algorithms, with both
low false positive rates and low false negative rates, is still a necessary and crucial
step towards a better understanding of the role of miRNAs in signaling pathways,
specially those associated to diseases.

4.2.2 Ensemble-based prediction methods

Due to the drawbacks discussed in the previous section, and because different
miRNA target prediction algorithms can provide distinct results with very small
overlap, it is a common practice in miRNA target investigation to rely on the si-
multaneous use of multiple tools to generate more reliable predictions (BARBATO et
al., 2009; ZHENG et al., 2013). This opens a direct application for ensemble systems
as a suitable framework to combine the output of multiple tools in order to enhance
the prediction of miRNA targets. Surprisingly, despite already noted the fact that
different target prediction programs produce different results and have high false
positive rates (YANG et al., 2011), very few records were found in literature exploring
the aspect of ensemble systems in the prediction of miRNA targets.

One example of ensemble-based resource is StarBase (sRNA target Base) (YANG
et al., 2011), a database developed to facilitate the exploration of miRNA-target
interaction maps from CLIP-Seq and degradome sequencing data by combining them
with predicted miRNA-target interactions processed from five miRNA prediction
softwares: miRanda (ENRIGHT et al., 2003), TargetScan (LEWIS et al., 2003), PicTar
(KREK et al., 2005), PITA (KERTESZ et al., 2007), and RNA22 (MIRANDA et al.,
2006). In order to increase the accuracy of predictions by reducing the false positive
rate, only predicted miRNA-target interactions that overlap with CLIP-Seq data are
listed by starBase analysis. Yet, this condition also imposes a significant restriction
to its application since it can only be used in analysis related to the few organisms
covered by the database.

Regarding ensemble-based prediction systems, Yan et al. (2007) proposed a clas-
sifier for miRNA target prediction consisting of several SVM classifiers created with
the meta-algorithm Adaboost. Specifically, 10 SVM classifiers were combined and a
set of 48 features refined with feature selection strategies were used for classification.
Besides the commonly used properties about the seed and miRNA-target structure,
authors also consider the mRNA folding information, defining features related to
the local secondary structure of the target sites in mRNAs. Moreover, predictions
by miRanda (ENRIGHT et al., 2003) are incorporated at the proposed framework as
an input for the ensemble classifier. Although the ensemble of SVM classifier is
shown to enhance results upon a single SVM, a strong drawback of this work is that
the architecture of the ensemble is poorly described, for instance, authors do not
provide details about the combination scheme adopted to build the ensemble and
merge all the individual predictions. Moreover, solely 48 positive and 16 negative
miRNA-target examples were used for training: an extremely restrict sample that
very likely do not reflect properties of the complete set of real miRNA targets.

The use of ensemble approaches for miRNA target prediction is certainly a
promising approach to follow giving the observations regarding the performance
of currently available methods and the methodology adopted by researchers in the
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investigation of novel miRNA regulated transcripts. According to Yan et al. (2007),
ensemble approaches could help alleviate issues related to class imbalance, a pre-
dominant drawback in the prediction of miRNA targets. However, during our lit-
erature review, only one computational solution effectively using ensemble systems
was found (the one proposed by Yan et al. (2007)). In contrast, there are plenty
of ensemble-based methods regarding the companion problem of predicting novel
miRNAs genes. One possible reason for this clear difference is that the problem of
identifying miRNA target genes is much more recent than the problem of predict-
ing miRNAs genes; in fact, the former is a clear consequence of the development
of the latter. Moreover, this shortage can also be related to the fact that most of
the recent works have focused in enhancing results of previously published methods
by improving the quality of training data and features set, as observed during our
literature review. Few efforts have been concentrated in optimizing the machine
learning algorithm or framework itself.

As Yang et al. (2010) discuss, "the accumulating evidence suggests that the en-
semble method is one of the most promising solutions to many biological problems".
The use of ensemble methods has been a recent growing trend in several distinct
problems of bioinformatics due to their unique advantages in dealing with small
sample size, complex data structures and high-dimensionality, and their great po-
tential in improving the prediction performance. Example of practical applications
are the classification of gene expression data, identification of gene-gene interactions
and prediction of regulatory elements from DNA and protein sequences Yang et al.
(2010). Therefore, it is our expectation that ensemble methods will also be flexi-
ble and efficient approaches to address current limitations and challenges faced by
miRNA target prediction methods.
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5 GOALS AND METHODOLOGY

In this chapter we present our general and specific goals, as well as the method-
ology and evaluation criteria adopted in the current study.

5.1 Goals

As outlined in Chapter 1 and later corroborated by the literature review of
Chapter 4, the reverse engineering of GRNs is an open and challenging problem in
bioinformatics. While a variety of data exists and experimental technologies are in
fast and continuing development, living organisms are complex systems and as so,
they are hard to understand due the large number of interacting parts and their
emergent behavior, whose causes and effects are not obviously related. Therefore,
despite the unprecedented volume of genomics data being generated, a large portion
of the system’s structure, i.e., the functionally relevant interactions that yield the
observed behavior, remains unknown.

This thesis falls within the interdisciplinary field of Bioinformatics and addresses
this specific research problem: optimizing the reverse engineering of GRNs. Our gen-
eral goal is to investigate the use of ensemble learning techniques as means to enhance
the inference process, evaluating and comparing different strategies for building the
ensembles in order to understand their potential in this specific context. To this
end, we tackle two problems related to gene expression regulation: (i) discovering
the structure of TRNs and (ii) predicting the targets of post-transcriptional regula-
tion by microRNAs.

Although integrative approaches are the current trend in the field and some
promising ensemble-based solutions have been proposed for both problems addressed
(YAN et al., 2007; MARBACH; MATTIUSSI; FLOREANO, 2009a; RUAN et al., 2009; YANG
et al., 2011; MARBACH et al., 2012; GLASS et al., 2013), their effects and potential to
enhance results are still not completely understood, specially for higher eukaryotic
organisms (DE SMET; MARCHAL, 2010; MARBACH et al., 2012). In particular, it
remains a challenge to effectively extract information from diverse data types and
distinct inference methods either because (i) it is still not obvious how to compose
an ensemble system to explore these features and (ii) it is not straightforward to
combine the information carried by a set of plausible hypothesis into one single
solution.

Different from previous works, here we perform a broader evaluation of the im-
pact of ensemble learning in the solutions for network inference, exploring several
ensemble systems built on top of different strategies to induce diversity. In addition,
we tackle the second issue related to this approach and investigate new mechanisms
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to combine the information carried by the ensemble.
The proposed approach is grounded in three main hypotheses:

Hypothesis 1 Ensemble systems can provide a unique framework to treat the three
main problems identified in the state of the art of GRNs reverse engineering
methods, namely (i) sparse and noisy data, (ii) lack of robustness of current
methods and (iii) large uncertainty about the most plausible network structure
among all candidate solutions.

Hypothesis 2 The application of ensemble learning to reverse engineering GRNs
can generate more accurate and biologically plausible models in contrast to
current GRNs inference methods given that the diversity inherent to the sce-
nario is correctly managed and efficiently leveraged in our favor.

Hypothesis 3 Carefully designed ensemble systems, employing more sophisticated
combination methods, can deliver even greater performance gains in relation
to traditional methods and standard ensemble-based approaches.

As we have discussed in previous chapters, the reverse engineering of GRNs poses
an important challenge that is a particularly appealing feature for the application of
ensemble learning: the large diversity among candidate solutions, which derive from
properties related to the nature of data and methods adopted, impairs the definition
of the best network structure. On the one hand, none of the genome-wide data are
comprehensive on their own because different types of data provide a partial and
different view of the process of gene expression regulation (MARBACH et al., 2012;
GLASS et al., 2013). On the other hand, it is known that different ML algorithms are
likely to provide a distinct generalization for the same data set (HACHE; LEHRACH;
HERWIG, 2009; DE SMET; MARCHAL, 2010). These are common explicit sources of
diversity observed in the scenario approached.

Moreover, due to the typical sparseness of biological data sets, different network
topologies may equally explain the relationships embedded on data and hence receive
similar scores during the inference process (JUST, 2007). In situations like this,
the scores distribution is characterized by a diffuse distribution and the problem
is thus undetermined by the available data, as shown in Figure 5.1. Under this
scenario, multiple runs of heuristic and stochastic approaches are likely to reach
different approximations for the problem given the randomness involved in their
search trajectory. This is referred to as an implicit source of diversity found in the
problem of reverse engineering GRNs.

The issues outlined above generate a large uncertainty about the best network
structure. For this reason, it is a common practice to use more than one algorithm,
or multiple runs of a stochastic algorithm, in order to make more reliable predic-
tions and overcome the instability of current inference algorithms (BARBATO et al.,
2009; ZHENG et al., 2013). Nonetheless, this approach tend to yield a set of diverse
plausible hypotheses about the network structure rather than a single candidate
solution. Given that none of the hypotheses raised by network inference methods
are optimal, but approximate solutions instead, it is reasonable to assume that the
combination of these hypotheses may enhance results given that they are to some
extent complementary in their predictions. The solution proposed in the current
work follows this direction.
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Figure 5.1: Scores distribution for the hypothesis space of a GRN inference prob-
lem. The horizontal axis represents the hypothesis space, encompassing all possible
solutions for the problem, whereas the vertical axis denote their corresponding score
according to some pre-defined scoring function. (a) In an ideal scenario, the data is
comprehensive and sufficient, allowing the identification of the unique, global opti-
mum. (b) In the problems addressed in this thesis, due to the typical sparseness and
noise related to biological data, the scores distribution is diffuse: there are many
network topologies that equally explain the data.

Specific goals of this thesis are:

• Propose new inference methods to optimize the reverse engineering of GRNs,
addressing the layers of transcriptional regulation and post-transcriptional reg-
ulation.

• Evaluate and compare the efficiency of ensemble-based approaches that employ
different sources of diversity, estimating the performance gain in contrast to
traditional approaches.

• Propose new combination methods to merge several hypotheses into a single
network model.

• Investigate the robustness of ensemble-based solutions to noise and sparseness
in data, which are typical issues in bioinformatics problems, as well as to
weaker inference methods.

5.2 Methodology

We have discussed in Chapter 3 the importance of diversity in the success of
ensemble systems. In particular, as Surowiecki (2005) puts, the diversity is the
property responsible for bringing different pieces of information into the scenario
where a group of people is acting collectively to make a decision. Furthermore,
diversity helps in weakening some of the destructive characteristics of individual
decisions: by combining multiple algorithms with uncorrelated errors, one has a
great chance of reducing the variance component of the error and smoothing the
bias-variance tradeoff (POLIKAR, 2006). Therefore, diversity is very often the core
concern in the design of ensemble systems (HANSEN; SALAMON, 1990).

In this thesis, we address the problem of inferring GRNs by following the tradi-
tional methodology in ensemble learning, which consists in generating and combining
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a set of diverse solutions for the same task. However, instead of adopting strategies
to induce diversity within the system according to the common approaches as sum-
marized in the taxonomy proposed by Kuncheva (2004) (see Figure 3.2), we propose
to build ensemble systems that explore the sources of diversity already present in
the scenario covered.

According to our discussion in the previous section, there are two types of diver-
sity that are especially prominent in this context, namely the diversity introduced
by particularities related to the data and to the algorithms adopted in the inference
process. These correspond, respectively, to the data level and the learnel level of
the taxonomy for building ensemble systems (KUNCHEVA, 2004). We are specifi-
cally interested in assessing the extent to which leveraging the diversity raised by
domain-specific issues in these two levels can enhance inference results upon tra-
ditional approaches when properly explored. To this end, we adopt an approach
that aims at comparing the performance of individual-based and ensemble-based
methods based on standard ML metrics (see Section 5.3 for more details) in three
different directions, motivated by the limitations and opportunities identified in the
scenario:

• Multiple runs vs. single run of a stochastic optimization method

• Multiple data types vs. single data type

• Multiple algorithms vs. single algorithm

A summary of the ensemble architectures that we explore in this thesis is given
in Figure 5.2. The comparisons highlighted above correspond, respectively, to the
implementation and evaluation of the ensemble systems depicted in panels A, B
and C, and will be addressed separately in the next three chapters. We note that
while diversity in the data level is explored in a single direction (Figure 5.2-B),
diversity in the learner level is implemented twofold, specifically by taking advantage
of both implicit and explicit sources of diversity introduced by the use of stochastic
optimization methods (Figure 5.2-A) and distinct ML algorithms (Figure 5.2-C),
respectively. It is important to stress that some strategies for inducing diversity may
concurrently imply diversity in another level of the ensemble as well. For instance,
diversity induced by different data types may also require the use of distinct analysis
methods in the learner level of the ensemble system.

In what concerns the computational methods embedded in the learners com-
posing each of the proposed ensemble systems of Figure 5.2, we remark that they
differ according to the specific biological problem addressed. Here, we follow the
usual methodology adopted in the field and we frame the problem of (i) inferring
the structure of TRNs and (ii) discovering the target genes of miRNAs to ellucidate
mechanisms of post-transcriptional regulation as a search task and a classification
task, respectively (we refer reader to Chapter 4 for a general review about the related
state of the art).

Basically, the problem of recovering interactions involved in a TRN is a structure
optimization problem. The usual approach in literature is to perform a search for
the best network structure through an explicit comparison among several candidate
models in terms of a pre-defined scoring function. Hence, in this specific scenario
learners will implement a search algorithm, usually based on heuristics or stochastic
optimization, to recover a plausible network model from the biological data.
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Figure 5.2: Ensemble system architectures implemented in this thesis. The proposed
solutions encompass diversity mainly in two levels of the taxonomy for building en-
semble systems, the data level and the learner level. Specifically, we build ensemble
learning systems that aim at enhancing the inference of GRNs by leveraging the di-
versity introduced from (a) multiple independent runs of a stochastic optimization
method, (b) use of different sources of biological evidence and (c) parallel application
of distinct machine learning algorithms.

In contrast, the detection of miRNAs targets is mostly based on rules related, for
instance, to their sequence structure and thermodynamics, or to their hybridization
profile with a target mRNA. Nonetheless, these properties are extremely subtle and,
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even more important, they are defined based on our current knowledge regarding
these mechanisms, which is still very limited. Therefore, ML approaches have been
extensively used to address this problem, differing from traditional rule-based al-
gorithms in the sense that the rules are not manually created, but they are "fit"
or "learned" from the available examples using well-known classification algorithms
(LINDOW; GORODKIN, 2007). Hence, in this case learners implement a classification
algorithm which aims at extracting the descriptive rules and training a classification
model for the identification of true miRNA-target interactions. Therefore, the use of
ensemble learning is independent not only on the type of diversity explored by the
ensemble system, but also on the type of task executed by learners, being applicable
in a wide range of domains.

Finally, as combination methods for the ensemble systems herein proposed, we
adopt some of the approaches discussed in Chapter 3. In particular, we apply
simple combiners such as plurality voting, as well as more sophisticated social choice
functions, namely Borda count, Copeland function and Footrule function. We stress
that some of the combiners based on social choice theory, i.e., Copeland and Footrule
functions, have not been used for this purpose yet and hence are contributions of
this thesis to the field of ensemble learning.

The methods and algorithms applied in this thesis were implemented, mainly, in
Matlab and R programming languages. Unless otherwise noted, algorithms used in
the experiments refer to our own implementation. Results were collected from simu-
lations run in a personal computer, with few exceptions. In particular, experiments
related to the ensemble system exploring diversity in the data level (description and
results in Chapter 7) were run in the cluster of the Broad Institute of MIT and
Harvard1 due to the large volume of data sets and the size of the GRNs studied in
this set of experiments.

Details regarding the specific data sets, algorithms and their respective param-
eters applied in the construction of the ensemble systems will be given with the
description and discussion of each architecture explored in this thesis (Figure 5.2).
More precisely, the next three chapters discuss three case studies, each of which
explores a distinct type of diversity in the design of the ensemble system, namely
diversity generated (i) from multiple independent runs of a genetic algorithm (Chap-
ter 6), (ii) from distinct types of biological data (Chapter 7) and (iii) from the simul-
taneous use of several machine learning algorithms (Chapter 8). For each of these
case studies, we explicitly divide the description of the proposed ensemble system
in sections devoted to implementation details regarding the data level, the learner
level and the combination method.

5.3 Evaluation criteria

Despite the particularities of the biological problems addressed in the current
work, such as the general computational approach used for such task, both prob-
lems consist in identifying regulatory interactions among genetic elements from a
given biological evidence. Regardless if the regulation is of transcriptional or post-
transcriptional nature, what we obtain from the reverse engineering method is a set
of predicted interactions, which correspond to the edges of a GRN.

1This investigation was carried during the one-year sandwich PhD at the MIT Computational
Biology Group, under the guidance of Professor Manolis Kellis.
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Figure 5.3: Confusion matrix. This matrix quantifies the number of true posi-
tives, false positives, true negatives and false negatives interactions predicted by our
method, which are employed for performance assessment.

In this thesis, we evaluate our predictions following a binary classification ap-
proach, in which edges are predicted to be present or absent in the target network
with a given probability. By comparing the structures of the predicted networks and
of the gold standard (target) network, we create a confusion matrix as shown in Fig-
ure 5.3. This matrix quantifies the inferred correct interactions (true positives, TP),
incorrect interactions (false positives, FP), correct non-interactions (true negatives,
TN) and incorrect non-interactions (false negatives, FN).

Based on the confusion matrix, several standard performance metrics in ML
may be computed. In this thesis we apply the accuracy (ACC), precision (PRE),
specificity (SPE), sensitivity (SEN) and Matthew’s correlation coefficient (MCC) to
evaluate our results, defined as follows:

ACC =
TP + TN

TP + TN + FP + FN
(5.1)

PRE =
TP

TP + FP
(5.2)

SPE =
TN

TN + FP
× 100% (5.3)

SEN =
TP

TP + FN
× 100% (5.4)

MCC =
TP × TN − FP × FN√

(TP + FP )× (TN + FN)× (TP + FN)× (TN + FP )
(5.5)

The accuracy metric reports the degree to which information on the inferred
model matches the target network. Precision reflects the relevant proportion, i.e.,
the present interactions, of the total predicted edges and is useful to find how sim-
ilar the inferred networks are among each other. Sensitivity (true positive rate)
and specificity (true negative rate) relate to the method’s ability to identify the
positive and negative results, respectively. In this context, sensitivity measures the
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Figure 5.4: Examples of ROC curves. (a) In an ideal scenario, the TPR grows
without the increase of the FPR, which means that all TP predictions are ranked
higher than FP predictions by the proposed method. (b) In contrast, when the
number of TP and FP increases simultaneously, at similar rates, the method has
a performance equivalent to a random classifier. (c) A more realistic example, in
which we still observe the increase of FP predictions as the TPR rise, however, at a
slower rate.

proportion of present edges correctly identified as such, whereas specificity measures
the proportion of absent edges correctly identified as such. Finally, MCC is a more
general and balanced measure to represent the confusion matrix, providing a fair
assessment even for tasks that present the class imbalance problem.

Complementarily, we also plot and analyze the ROC (Receiver operating char-
acteristic) curve, in which the true positive rate (TPR, sensitivity) is plotted in
function of the false positive rate (FPR, 100-specificity) for the prediction about
the network structure. ROC curve analysis allows a visualization of prediction per-
formance and indicates the trade-off between sensitivity and specificity. Given a
ranked list of predicted edges, ordered by the weight or probability attached by our
reverse engineering method, the TPR and FPR are computed across several cutoffs
in the list of predicted interactions, as follows:

TPR(k) =
TP (k)

P
(5.6)

FPR(k) =
FP (k)

N
(5.7)

in which P and N are the number of positives and negatives edges in the gold
standard network, respectively, TP (k) is the number of true positive edges predicted
among the top k interactions in the ranked list and FP (k) is the number of false
positives edges predicted among the top k interactions in the ranked list. The cutoff
k is varied in fixed intervals, with upper limit equal to the number of predictions in
the list.

In an ideal case, all the TP predictions are on the first half of the ranked list and
the curve behavior is such that the plot rises to (0,1) and then continues straight
to the right with all the TN predictions, as shown in Figure 5.4-a. In contrast, a
random classification would be on the diagonal of the plot, in which the number of
TP and FP grows simultaneously, at similar rates (Figure 5.4-b). However, in a real
scenario these situations are either hard to reach or undesirable. In general, one is
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interested in finding ROC curves whose TPR grows faster the FPR, generating a
curve that stands somewhere between the random classifier and the perfect classifier
(Figure 5.4-c).

Furthermore, the area under the ROC curve gives us the AUC score, which is
also a measure of goodness for predictions. The AUC score is interpreted as the
probability that the proposed method is able to rank a randomly chosen positive
instance higher than a randomly chosen negative one (BRADLEY, 1997). Thus, a
higher AUC score means a better classification result and a more accurate classifier.
For scenarios in which results are assessed and compared by means of ROC curves,
we also compute the respective AUC scores.

Several of the methods implemented in this thesis rely on stochastic procedures,
which may generate different results among multiple runs. In addition, for some
scenarios we implement a cross-validation evaluation to minimize the effect of bias.
In both situations, we perform a statistical analysis over the results and report the
average and the standard deviation over multiple independent runs. Also, when-
ever explicit comparisons are made, we apply standard statistical tests to test for
significance at the 5% level of significance (unless otherwise specified).

Finally, whenever possible, we also assess the performance of our methods us-
ing a variety of independent biological datasets collected from literature or public
databases. For instance, we collect independent data sets about microRNAs targets
from starBase, as well as information about functional annotation of genes from
Gene Ontology (The Gene Ontology Consortium, 2000) to evaluate the robustness of
our methods and the biological plausibility of reconstructed networks. Fine details
about the biological data types applied and how they are used for performance as-
sessment will be given in the discussion of the results of the respective scenarios in
which they are used.
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6 CASE STUDY I: DIVERSITY RAISED BY
STOCHASTIC OPTIMIZATION METHODS

In this chapter we discuss the architecture and results of an ensemble-based
solution for TRNs inference that has on the core of its system diversity induced in
the learner level by multiple runs of a stochastic optimization method, namely, by
a genetic algorithm. This approach is illustrated in Figure 5.2, panel A.

6.1 Introduction

As reviewed in Chapter 4, a plethora of statistical and computational methods
have been applied in the last years to reconstruct GRNs from experimental data,
with a special focus in TRNs. Stochastic optimization methods have been largely
used in this context due to the underdetermined nature of the problem; among these,
GAs have been a prominent option.

Originally proposed by Holland (1975), GA is a population-based search algo-
rithm inspired by the phenomena of genetic evolution and natural selection. The
idea underlying a GA is to perform a heuristic search over the solutions space, simul-
taneously and probabilistically evolving a population of candidate solutions through
the iterative application of the genetic operators of selection, crossover and muta-
tion. As observed in nature, evolutionary processes promote genetic changes in the
gene pool of a population from one generation to the next, giving rise to a great di-
versity of species (GOLDBERG, 1989). According to Darwin’s theory of evolution by
natural selection, the "fitter" the individual, the greater the chance it has of being
selected and reproduce to create a new generation, thereby gradually increasing the
proportion of its genes in the population gene pool.

Due to their outstanding performance on real, hard problems characterized by a
large and complex search space, GAs have received great attention from the scientific
community in optimization tasks (GOLDBERG, 1989). In contrast to simple heuris-
tic methods based on stepwise procedures, GAs’ actions are not irreversible and,
hence, the derived model is not sensitive to the chosen path (GIUDICI; CASTELO,
2003). The randomness and the interaction between parallel searches involved in
their search trajectory allow GAs to recover from previous actions that lose sig-
nificance as the algorithm evolves, thus enabling them to scape local maxima and
eventually approach a global optimum.

In fact, several reverse engineering approaches for GRNs were developed on top
of GAs coupled with a number of distinct representation schemes, such as differential
equations (ANDO; IBA, 2003), Bayesian networks (TAVAKOLKHAH; RAHMATI, 2009;
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DAVIDSON, 2010) and association networks (CUMISKEY; LEVINE; ARMSTRONG, 2003;
MAMAKOU et al., 2005).

Among methods employing association networks, a recurrent codification of can-
didate solutions, i.e., network topologies, are weight matrices, in which each non-zero
element of the matrix denotes the existence of a regulation among two genes whose
intensity and nature is given by the corresponding value. Moreover, network topolo-
gies generated by a GA search are usually evaluated against the test data through a
comparison among the gene expression patterns produced by the inferred networks
and the target network with the goal of minimizing the difference between their
dynamics (CUMISKEY; LEVINE; ARMSTRONG, 2003; MAMAKOU et al., 2005). Given
that GAs provide good, but not necessarily optimal estimates of the true GRN
structure, other heuristic and local search techniques may be coupled or combined
with GAs to enhance results. For instance, it is possible to bias the search towards
simpler model structures by applying heuristics such as the Minimum Description
Length (MAMAKOU et al., 2005) or combine the GA with local search schemes to
refine results (CUMISKEY; LEVINE; ARMSTRONG, 2003).

On the other hand, network inference by GAs based on a Bayesian network
formalism usually call on well-known metric scoring functions, widely applied in
Bayesian network learning, as criteria to evaluate candidate solutions. The AIC and
MDL scores have been applied in Davidson (2010), whereas Tavakolkhah and Rah-
mati (2009) adopt the BIC score to evaluate the goodness of inferred networks. In
what concerns solutions representation, although the codification of network topol-
ogy based on quadratic weight matrices is commonly used, some properties of BNs,
like their acyclic structure, motivate more efficient codification schemes. As an ex-
ample, Davidson (2010) codifies candidate solutions into a GA individual as jagged
arrays comprising the topological order and the relationship among genes.

Despite their satisfactory performance in small and medium-sized networks, the
aforementioned methods still present important drawbacks that prevent their ap-
plication or impair their performance in real-world problems involving large GRNs.
A common limitation is the large number of parameters to be optimized or the
inefficient representation scheme that becomes unfeasible when the number of vari-
ables surpasses the dimension of a few hundreds of genes (CUMISKEY; LEVINE; ARM-
STRONG, 2003). Moreover, previous inference approaches based on GAs suffer from
issues like bad scalability, low accuracy and high vulnerability to false positives
(SÎRBU; RUSKIN; CRANE, 2010). Thus, improvements in the area are still necessary
and ensemble-based methodologies have not been properly explored in this context.

The use of ensemble learning is motivated by the fact that due to the underdeter-
mination of the reverse engineering problem we are tackling in this thesis, it is very
likely that several different networks are consistent with the available experimental
data (DE SMET; MARCHAL, 2010). As a result, the fitness function will lead us to
a region of the solutions space with equally good approximations to our problem
instead of to a single optimal solution. Furthermore, given the randomness involved
in the GA’s search trajectory, it is possible that multiple independent runs of the
algorithm reach different approximate solutions. In other words, we may obtain a
set of plausible hypotheses about the network structure by repeatedly running the
algorithm. This is especially true for the cases where domain-specific issues impair
the definition of an exact fitness function.

Differently from previous approaches, in this work we aim at taking advantage
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Figure 6.1: Structure of an ensemble system for TRNs inference that explores di-
versity in the learner level induced by multiple runs of GAs.

of the inherent diversity provided by GAs by means of an ensemble system built on
top of multiple runs of this non-deterministic algorithm, as depicted in Figure 6.1.
Since there is no guarantee that multiple GAs will converge to the same solution –
and they probably will not – constructing an ensemble system based on several runs
of a GA may provide a better estimate than any of the individual approximations.

We organize this chapter in three sections that discuss each of the levels involved
in the design of the proposed ensemble system, namely the data level, the learner
and the combiner, and two sections that present results and conclusions related to
this case study.

6.2 Data level

6.2.1 RAF signaling pathway

The first data set we use in the test of the proposed approach is related to the
regulatory network of the RAF protein signaling pathway. More specifically, we are
interest in recovering the interactions among a set of eleven genes involved in this
GRN. RAF is a family of serine/threonine kinases whose members are key intermedi-
ates in the RAS pathway, a critical signal transduction cascade involved in regulating
cellular proliferation, differentiation, survival and oncogenic. Thus, a deregulation
of RAF signaling pathway may lead to carcinogenesis (WERHLI; GRZEGORCZYK;
HUSMEIER, 2006).

The relevance of the RAF signaling pathway has motivated extensive studies
towards its network structure and regulation activity, leading to a currently accepted
network structure, i.e., the gold standard, depicted in Figure 6.2. This information
is crucial for the accomplishment of an important step in the reverse engineering
process, which is method assessment.

The gene expression profiles used as input data to our ensemble-based method
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Figure 6.2: The gold standard structure of the RAF signaling pathway.

derive from intracellular multicolor flow cytometry experiments held by Sachs et al.
(2005). Flow cytometry can be used to quantitatively measure a given protein’s ex-
pression level. Data were collected after a series of stimulatory cues and inhibitory
interventions targeting specific proteins in the RAF pathway. In total, 5400 data
points were generated, from which 1200 are observational and 4200 are interven-
tional. In Werhli and Husmeier (2008), the original data was randomly sampled to
smaller data sets so that they would be more representative of microarray experi-
ments, which do not provide such abundance of data. In this process, five data sets
of 100 measurements each were originated from the observational data.

Discretization of the reduced observational data sets into binary values was per-
formed based on the median. The two smallest and largest values for the expression
level of each gene were considered outliers and thus discarded. Assuming that mea-
surements are disposed in a r × c matrix, where rows r contain the expression of
genes across all experiments and columns c refer to the gene expression levels at
specific experimental conditions, the median value for each row, e.g., gene, is com-
puted. The upper 50 percentile was treated as expressed genes (1) and the lower
50 percentile as unexpressed genes (0). Is important to mention that the term gene
is generically used to denote all interacting nodes in the network, albeit they may
actually refer to genes’ products, such as proteins.

6.2.2 Artificial gene networks

Despite the increasing availability of large-scale gene expression patterns, the
reverse engineering of TRNs still suffers from an important limitation: the difficulty
to evaluate results due to the restricted knowledge about the biological systems
that generated the data sets. Therefore, the use of artificial networks and simulated
expression signals is a common practice to assess algorithms performance.

Here we follow this direction and we resort to an Artificial Gene Network (AGN)
validation and simulation model (LOPES; CESAR-JR; COSTA, 2008, 2011) to build an
artificial set of 100-node networks adopting the Boolean network approach, and to
simulate temporal expression data. In order to verify the sensitivity of the method
to distinct network topology classes, we generate AGNs using two theoretical mod-
els of complex networks, corresponding to the uniformly-random Erdös-Rényi (ER,
(ERDÖS; RÉNYI, 1959)) and the scale-free Barabási-Albert (BA,(BARABÁSI; ALBERT,
1999)) models, as described in Lopes, Cesar-Jr and Costa (2008). The latter is cur-
rently known to be the most plausible model to describe real gene networks (ALBERT,
2005).

Following the upper limit of stability for Boolean networks discussed in Kauffman
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(1969), we set the upper bound of nodes’ average connectivity to 〈k〉 = 3. Also, we
consider two distinct approaches for the Boolean modeling: a deterministic (RBN)
and a probabilistic (PBN) one. While the first approach considers a single Boolean
function per gene to generate network dynamics, the former relax the deterministic
rigidity by allowing each gene to have more than one Boolean function, each of
which associated to a particular usage probability (SHMULEVICH et al., 2002). This
probabilistic class of Boolean model offers a more flexible and powerful modeling
framework at the cost of a greater inference difficulty.

For each possible configuration of network topology (ER or BA) and network
class (deterministic or probabilistic), we generate a network with 100 genes, and
simulate 10 temporal expression signals of length 30, each of which starts from a
randomly chosen initial state (LOPES; OLIVEIRA; CESAR, 2011). The dynamics of
the AGN is obtained by applying the Boolean transition functions to the network’s
initial state. Next, we concatenate these signals generating a single time series of
size 300, which is used for network inference.

6.3 Learner level: network inference by genetic algorithms

In this chapter, we are interested in the problem of unveiling the transcriptional
regulatory interactions among a set of genes based on gene expression data. To this
end, we design a GA to explore the solutions space and find the most consistent
network topologies according to the supplied biological information.

Optimization through GA is done by evolving a solution from some initial state,
usually a randomly generated one, guided by a pre-defined fitness function. Each
state is composed of a population of individuals that encode a potential solution
through a string of finite symbols, known as chromosome or genome. In our case,
each individual encodes a candidate network topology. The goal is thus to optimize
the score of these individuals as measured by the fitness function through sequential
probabilistic modifications in their genome. The definition of both the individu-
als representation and the fitness function are crucial steps in the design of a GA
solution. Roughly, once these details have been defined, the evolution of a popula-
tion follows multiple evolutionary cycles formed by the sequential execution of the
following steps:

1. Selection: individuals from the existing population are selected to breed a new
generation through a fitness-based process. Typically, fitter solutions are more
likely to be selected, according to the theory of "survival of the fittest";

2. Crossover: the genome of a pair of selected individuals are recombined with a
given probability, producing one or two offspring;

3. Mutation: the genotype of the offspring undergoes random change, increasing
the variability among individuals;

4. Replacement: the generated offspring replaces their parents, yielding the next
generation.

In what follows, we discuss each of the steps involved in the GA evolutionary
cycle, starting by the definition of individuals representation and the evaluation
function, providing domain-specific details regarding its application in the current
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Figure 6.3: Network representation and codification adopted in the GA-based infer-
ence method. (a) A hypothetical 5-node network topology and (b) its corresponding
representation as a GA individual. In this example, nodes have a maximum in-degree
of 2 (Kmax = 2) and predictors are denoted by non-zero node IDs. Since we focus
in the task of structure learning, we do not encode the nodes’ Boolean functions in
candidate solutions, but solely the network topology.

thesis. Although several libraries and packages are available for performing opti-
mization based on GAs, here we work with our own implementation of a GA for
networks inference developed with the MATLAB programming language.

6.3.1 Representation

While the vast majority of solutions for GRNs inference based on GAs adopt a
continuous modeling formalism (SÎRBU; RUSKIN; CRANE, 2010), in the current work
we focus in coarse-grained modeling approaches and represent the GRNs as Boolean
networks: genes are Boolean devices whose expression is regulated by a Boolean
function and a set of predictors (see Chapter 4 for more details). However, we
are not interested in recovering the whole set of transitional functions, but solely
the network topology. Thus, each GA individual is codified as an integer string
containing the full network wiring specification of a candidate solution1. An example
of a 5-node network and its corresponding representation as a GA individual is given
in Figure 6.3.

The string length is given by N × Kmax digits, in which N is the number of
nodes in the network and Kmax is an user-configurable upper bound limit for the
cardinality of the nodes’ predictor set. This string is randomly initialized for each
individual of the initial population. Each digit of the integer string contains either
a zero or a non-zero value: while a non-zero value refers to the unique ID of a
node’s predictor, a zero value is used to allow a cardinality lower than Kmax, i.e.,
Ki < Kmax.

6.3.2 Fitness function I: inconsistency ratio

To estimate the goodness of each individual in the population and perform a
guided search through the solution space, a fitness function must be defined, which
is completely problem-dependent. In this work we propose and compare two fit-
ness functions, the first one inspired by the so-called Consistency Problem (see

1We remark that the first experiments with the proposed GA solution were run using a binary
codification of the network wiring, in which predictors’ ID where represented by their binary value.
However, an integer codification was later adopted in order to reduce the length of GAs’ individuals
and, thus, memory requirements.
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Table 6.1: Example of discretized gene expression data.

Input xi1 1 0 1 0 0 1 0 0 1 1
xi2 0 0 1 1 0 0 1 0 0 1

Output xi 0 1 0 1 1 1 1 0 0 0

Table 6.2: Example of inconsistency ratio analysis for the data in Table 6.1.
k Input wk(0) wk(1) min(wk(0), wk(1))
1 (0,0) 1 2 1
2 (0,1) 0 2 0
3 (1,0) 2 1 1
4 (1,1) 2 0 0

IRi =
1 + 0 + 1 + 0

10
= 0.2

Section 4.1.1) and the second one based on information theory. In this section we
review the first approach proposed.

Following the principles of the Consistency Problem, which aims at identifying a
network consistent with the observations in the available gene expression profile or
determine if this network exists at all, we propose a fitness function that evaluates
GA individuals based on a so-called inconsistency ratio (IR). The IRi for each gene
is computed based on the gene expression data according to the following equation:

IRi = w−1
2Ki∑
k=1

min(wk(0), wk(1)) (6.1)

in which w represents the weight of each measurement, and variables wk(0) and wk(1)
denote the total weight of measurements whose output value is 0 and 1, respectively,
for each k = 1, . . . , 2Ki possible input combination of a node i. For situations in
which we can not estimate the measurements’ weight, we assume w to be equal
across all measurements. Once the IR for each node is calculated, the network
inconsistency (IRn) is determined by the sum of all nodes’ IR. It is important to
note that due to the temporal relation established among inputs and outputs, the
predictors’ states are observed at time t whereas the target node’s state is observed
at time t+ 1, therefore assuming a time series as input.

Inconsistencies are related to the number of mismatches found in the gene ex-
pression profiles in respect to the structure of networks generated by the GA. Given
that we adopt a representation based on Boolean networks, which in their original
formulation by Kauffman (1969) are deterministic models, we expect the model to
generate the same output (a gene’s state) every time a specific combination of inputs
(its predictors’ state) is observed in the provided genes expression profile, otherwise,
an inconsistency exists.

The goal of the GA is thus to minimize the network inconsistency regarding
the input expression profiles, evaluating individuals based on the following fitness
function:

φ =
1

1 +
IRN

N × 0.5
+
NP

N2

(6.2)
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in which N × 0.5 refers to the maximum inconsistency value that may be carried by
a network. In order to bias our search towards sparser networks, which are known
to be GRNs’ representative, we include a penalty factor in the fitness function. This
factor is computed as the number of inferred interactions in the model (NP ) divided
by the maximum number of possible connections, i.e., N2.

As an example, observe the data in Table 6.1. Inputs (0, 0) and (1, 0) produce,
respectively, outputs 1 and 0 for most of the experimental conditions. Therefore,
whenever the output for these inputs are 0 and 1, these are considered inconsistent
values. The inconsistency ratio for this specific node and this particular data is
equal to 2/10 = 0.2, as shown in Table 6.2.

6.3.3 Fitness function II: Tsallis entropy

Criterion functions that evaluate a subset of predictors and their suitability to
predict a target gene based on information theory (e.g., entropy and MI) have been
frequently applied in GRNs inference (LIANG; FUHRMAN; SOMOGYI, 1998; MAR-
GOLIN et al., 2006). In the context of information theory, Shannon’s entropy (SHAN-
NON, 1948) has been considered a suitable similarity measure for GRNs inference
from expression data. In general, when an entropy measure is adopted, the inference
algorithm consists in calculating from the available data the conditional entropy of
a fixed target gene, i.e., the gene entropy conditioned to the state of potential pre-
dictors, as well as the probability of the potential predictors, and applying the mean
conditional entropy as the criterion function to be minimized (LOPES; MARTINS-JR;
CESAR-JR, 2008).

Following this direction, C. Tsallis proposed a new entropy form in 1988, which
became known as (generalized) Tsallis entropy, defined as follows:

Hq(X) = k
(1−

∑
x∈X P (x)q)

q − 1
, (6.3)

in which k is a positive constant (which defines the size and scale), x is a possible
configuration of the random variable X, P (x) is the probability of x and q ∈ R is
the entropic parameter.

The entropic parameter q characterizes the degree of nonextensivity of the sys-
tem, which in the limit q → 1 recovers the Shannon entropy. The entropy is said
to be extensive when the entropy of a complete system composed of N indepen-
dent subsystems is given by the sum of the entropy of its subsystems. Therefore,
the entropic form of Hq is not additive for any q 6= 1, and the connection between
the entropic parameter q and the nonextensivity of the entropy is given by the rule
(TSALLIS, 2001):

Hq(A+B) = Hq(A) +Hq(B) + (1− q)×Hq(A)×Hq(B), (6.4)

in which A e B are two independent systems, i.e., P (A,B) = P (A)× P (B). Equa-
tion 6.4 generates the expression "nonextensive entropy". Some properties can be
observed in this equation such as nonnegativity for Hq ≥ 0, superextensivity (su-
peradditivity) for q < 1, extensivity (additivity) for q = 1 and subextensivity (sub-
additivity) for q > 1.

This new functional form of entropy allows the generalization of Boltzmann’s
statistical mechanics, which has been successful in presenting the properties of the
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statistical physics theory (TSALLIS, 2004). Its use becomes important in systems
with long-range interactions and correlation, a particular feature of nonextensive
systems. In order to investigate the possibility of non-extensiveness of GRNs, Lopes,
Oliveira and Cesar (2011) proposed a criterion function for the inference of GRNs
based on the Tsallis entropy, which produced better results in relation to the Shannon
entropy.

Here, we also apply a criterion function based on the Tsallis entropy as the fitness
function for the proposed GA. This criterion is defined as

Sq(vi | g) =
α(m− n)

αm+ d
Sq(vi) +

n∑
g=1

rg + α

αm+ d

1−
∑

vi
P (vi|g)q

q − 1
, (6.5)

where vi is a gene from the target GRN, g is a set of candidate predictors, α > 0 is
the penalty weight, m is the number of possible instances (states) of the gene group
g, n is the number of observed instances, d is the total number of samples in the
data set, rg is the number of each observed instance of g and q ∈ R is the entropic
parameter of the Tsallis entropy. The penalty factor is used to weight the non-
observed cases, since due to the length of the time series or the system dynamics,
some instances of m may not be observed in the available data.

The goal of the fitness function is to find the set of predictors g that minimizes the
conditional entropy Sq(vi | g) in the above equation. In the context of this thesis,
the search for the best possible set of predictors is performed by the GA. Given
a candidate set of predictors g encoded in a particular GA individual, the lower
its entropy as computed by Equation 6.5, the higher will be the fitness associated
to this individual and, consequently, its probability of surviving through the next
generations.

6.3.4 Selection

Selection is the GA operator responsible for simulating the process of natural
selection. It works by choosing individuals from the current population such that
individuals with a better adapted phenotype have more chance to leave offspring in
the next generation, thereby increasing the proportion of their genes in the popu-
lation gene pool over time. In the current work, we implement the roulette wheel
selection, in which the fitness value is used to associate a probability of selection to
each individual genome. In addition, we also apply an elitist strategy in order to
retain the genome of the E best individuals in the population unaltered in the next
generation. Elitism helps in promoting convergence by guaranteeing that a small
group among the fittest individuals will always survive to the next generation.

6.3.5 Crossover and mutation

In the context of exploring with GAs the solutions space composed of candidate
network structures, the operations of crossover and mutation are performed over the
network wiring. As the number of nodes in the network is known and constant (it
corresponds to the number of genes covered by the input data), the heuristic search
must find the optimal connections between these nodes. This is achieved by varying
the connections between the network’s nodes and looking for the combination that
maximizes the fitness function.

As selection, crossover is also a stochastic operator in the sense that the recom-
bination of genomes is performed with a given probability. In the scope of this
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work, we implement two variants of crossover, one-point and two-point crossover.
In one-point crossover, the genetic material between a randomly selected node and
the rightmost digit of the string is swapped between two individuals. In contrast,
in two-point crossover a pair of GA individuals exchange between themselves all
the genetic material comprised between two randomly selected nodes in the interval
[1, N ], where N is the number of nodes in the network.

Suppose we have two individuals of length 10 comprising a network of N =
5 nodes and Kmax = 2, similar to the representation shown in Figure 6.3(b):
0545120300 and 2534102340. If the random choice of the one-point crossover op-
erator is to start the crossover on point 3, all connections regarding nodes 3 to N
will be exchanged between the pair of mates to generate the offspring, which in this
example will be 0545102340 and 2534120300.

Similarly, if we apply a two-point crossover to this same example and the random
choice of the operator is to swap the genetic material between nodes 3 and 4, all
the connections regarding nodes 3 and 4 will be exchanged between the two GA
individuals to generate the offspring, which in this example will be 0545102300 and
2534120340.

With respect to the mutation operator, the offspring may suffer eventual changes
in their genetic material with some usually low probability Pmut. In short, the net-
work topology is varied by changing each digit of the integer string to a new random
value with a small probability (Pmut). This operator may either remove (replace a
non-zero digit by a zero digit) a node’s connection, decreasing network complexity,
or simply change (make a random swap between digits) a node’s predictor. The role
of this operator is to restore lost or unexplored genetic material into population and
prevent the premature convergence of the GA to suboptimal solutions (SRINIVAS;
PATNAIK, 1994). Moreover, mutation helps in maintaining the diversity among the
population and allows the GA to explore solutions out of the scope of the initial
population. interest, for instance, edges removal.

6.3.6 Epsilon-greedy mutation operator

In the current work, we also propose a new epsilon-greedy mutation operator to
replace the traditional GA random mutation, comparing it to the latter approach.
Our goal is to balance among changes in the chromosomes made by a traditional
blind, random mutation operator and changes proposed based on some available
prior knowledge by means of an epsilon-greedy strategy. The epsilon-greedy ap-
proach has been frequently used to achieve a trade-off between exploration and
exploitation in other scenarios (VERMOREL; MOHRI, 2005) – a phenomenon that we
intend to reproduce in the context of networks inference via GA.

In the last decades, a wide range of enhancements have been investigated for GAs,
most of them concentrated on more effective crossover operators (DEEP; THAKUR,
2007). However, mutation also plays a substantial role in improving GA perfor-
mance, thus motivating recent efforts towards the design of new mutation operators.
Within this context, recent works (DEEP; THAKUR, 2007; ADLER, 1993; SRINIVAS;
PATNAIK, 1994; SASAKI; DE GARIS, 2003) have proposed distinct strategies to ei-
ther compute the mutation probability or to accept a mutation proposal, some of
which are based on optimization mechanisms such as simulated annealing (SA) and
softmax. In Adler (1993), for instance, SA was combined with GA in order to dy-
namically change the probability of accepting some inferior solutions: after mutation
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occurs, the generated solution is evaluated and SA is applied to decide whether to
accept it or to keep the previous solution.

In contrast, in Sasaki and de Garis (2003) authors proposed to apply softmax
to compute the mutation probability of each bit, replacing the traditional blind,
random mutation. In this approach, the top and bottom n solutions are taken as
positive and negative examples, respectively, and the Boltzmann probability distri-
bution is used to determine the probability of each bit to assume value 0 or 1 in the
next generation according to these extreme examples. It has been shown that the
softmax mutation operator causes a faster evolution than the traditional approach,
allowing the control of the evolutionary speed by means of the parameter used as
base in the probability formula. Furthermore, in Srinivas and Patnaik (1994), the
mutation probability was dynamically adapted according to individuals’ fitness: an
exponential decrease was applied such that high-fitness solutions are protected, while
solutions with subaverage fitness are disrupted.

However, to our knowledge, none of the improvements proposed so far have
employed prior knowledge to compute mutation probabilities nor applied an epsilon-
greedy strategy to control the rate with which the use of prior knowledge is alternated
with random operations. The epsilon-greedy approach is broadly used in learning
and optimization problems, such as the multi-armed bandit problem, to achieve a
trade-off between exploration and exploitation and thus improve results accuracy. In
short, this method chooses a random option with ε-frequency, and otherwise chooses
the best available option. Although extremely simple, the epsilon-greedy strategy
tends to be hard to beat and significantly better than other optimization methods
(VERMOREL; MOHRI, 2005).

In the scope of this study, we use the MI among genes (see definition in Equa-
tion 4.1) as the source of prior knowledge, albeit any other method, as well as prior
knowledge gathered from literature, may be used instead. Differently from previous
works, we adopt MI as a prior information concerning the target network and use
it to support the inference process and improve convergence. The normalized MI
matrix obtained from the data is thus interpreted as a degree of belief regarding
a relationship among nodes i and j: the higher the value of MIij, the more likely
the nodes i and j are connected in the target network, and hence the greater the
probability that our model will englobe interactions i → j or i ← j. We compute
the MI matrix using the FastPairMI2 software by Qiu, Gentles and Plevritis (2009).

It is important to note that the MI matrix may contain erroneous information,
since the same is extracted from a data set that is inherently noisy. In addition, as
this matrix is symmetric, many connections may be inferred when the undirected
graph is transformed into a directed one: a high MIij value will enforce both i→ j
and i ← j connections. Having said that, it is important that the method to be
combined with MI uses this prior information solely as a support for its search,
rather than as the gold standard. Applying random searches by means of GA over
a network somehow based on MI has the benefit of guiding the exploration of the
search space without restricting the stochastic nature of GA.

The basic functioning of the proposed epsilon-greedy mutation operator is de-
scribed in Algorithm 1. Our operator works with two probabilities: Pmut and Pprior.
The trade-off between exploration and exploitation is controlled by Pprior = 1 − ε,
which is the probability of using prior knowledge when performing a mutation.

2Available at http://icbp.stanford.edu/software/FastPairMI/
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Algorithm 1 The epsilon-greedy mutation operator
1: for each individual in population do
2: if random ≤ Pmut then
3: randomly choose a pair of nodes i and j;
4: extract the belief MIij from MI matrix;
5: if random ≤ Pprior then
6: mutate interaction (i, j) by exploiting prior knowledge MIij ;
7: else
8: mutate interaction (i, j) by randomly exploring search space;
9: end if
10: end if
11: end for
12: Pprior = Pprior ×∆;

When ε = 0, Pprior will be equal to 1 and thus our mutation operator will follow
an exploitative policy (Algorithm 1, line 6). In this case, the probability of per-
forming a mutation over a randomly selected interaction will be determined by the
prior knowledge. In the current work we use a normalized MI matrix as the prior
information such that the higher the belief MIij attached to a interaction between
genes i and j (MIij � 0.5), the more likely this interaction will be added to our
model during a mutation. Conversely, the smaller this belief (MIij � 0.5), the
more probable a mutation will remove this interaction. In contrast, when ε = 1,
Pprior = 0 and hence our operator reproduces the traditional GA blind, random
mutation (Algorithm 1, line 8).

Simulations start with ε = 0, thus allowing GA to be highly exploitative during
the first generations. This means that the networks encoded by early GA popula-
tions will be very close to the network structure inferred by a MI-based approach.
The probability Pprior is then gradually decreased throughout generations by a mul-
tiplicative factor ∆ (Algorithm 1, line 12), the annealing, whose value is the pa-
rameter that controls convergence speed. As Pprior decreases, more random searches
will be performed over the MI-based initial networks. The inferior limit for Pprior is
zero, which refers to the case where ε = 1 and hence, that GA will follow a purely
explorative approach.

6.4 Combiner level

As already noted, GA is a stochastic optimization method (GOLDBERG, 1989)
and multiple runs of the algorithm may yield distinct results, particularly when
applied to complex problems whose score distribution is diffuse (see Figure 5.1).
This issue raises an important question: how to compose the algorithm’s final answer
when we are interested in obtaining a single network model from the set of plausible
hypotheses to represent the target TRN?

In our approach, multiple runs of the proposed GA are used to explore the
solutions space regarding the same input data, each of which provide a population
of candidate network structures. Given the population-based nature of GA search,
our ensemble-based inference method encompasses two combination points, the first
one among individuals of the last generation of a single run (F1), and the second
among predictions drawn by multiple runs of a GA (F2).
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In cases where the best individual in the population is clearly defined, a simple
algebraic combiner based on the maximum rule can be applied, such that the solution
that maximizes the fitness function is chosen as the final decision of a single GA run.
Nonetheless, in some situations diversity can exist even among multiple solutions
of the same population if the data is too sparse and too noisy so that it can not
be explained by a single network structure. In other words, the fitness associated
to GA individuals may be characterized by a multimodal distribution. Under this
situation, one possible approach is to merge the information carried by the best
individuals in the last generation by means of voting schemes, naïve Bayes, among
others, to compose the final GA solution.

Although diversity may be characterized in a population of a single GA, multiple
runs of GAs have a greater potential of providing diverse and complementary so-
lutions. Therefore, our ensemble system anticipate a second combination step, i.e.,
F2, which is applied over multiple runs of our search algorithm.

To investigate the potential of diversity in this specific scenario, we adopt the fol-
lowing approach: first, we let the best individuals of the final generation to perform
a simple majority voting on the network structure, generating a consensus prediction
for each GA run. We apply the combination method described in Equation 3.1, in
which the decision regarding the presence or absence of a certain interaction in the
predicted network will be based on the class overrepresented among all candidate
solutions. In the sequence, all consensus networks are combined into a single final
network based on a second round of majority vote, generating the ensemble output.
Although extremely elementary, majority voting is a very well known combination
method in the field of ensemble learning and provides a good insight about the ro-
bustness of ensemble approaches in contrast to a single application of GA to the
problem of inferring TRNs.

6.5 Results

The results described in this section were obtained for the data sets presented
in Section 6.2. We run simulations with the following parameters configuration
(unless differently specified). The maximum in-degree per node, Kmax, is varied be-
tween 2 and 3, based on the knowledge that biological GRNs are sparsely connected
(ARNONE; DAVIDSON, 1997). The GA population is composed of 50 individuals,
who undergo mutations with probability Pmut = 0.001 and crossover with probabil-
ity Pcross = 1.0 through 1000 generations. During selection, an elite of 4 individuals
is conserved from one generation to the next. The ensemble system is built on top of
30 independent runs of the GA. Results evaluations is based on performance metrics
such as accuracy and precision, as well as by means of ROC curves comparison, as
explained in Section 5.3.

6.5.1 RAF signalling pathway

We start by describing the results related to the RAF signalling pathway, a real
biological network composed of eleven genes (see Section 6.2.1 for details about
data). The gold standard structure for this network is depicted in Figure 6.2.

Simulations were run with slight changes in the parameters configuration de-
scribed above. The mutation probability was initiated with a value of 0.1 and
gradually decreased until it reaches the value 0.001. As this operator refers to point
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(b) Kmax = 3

Figure 6.4: Fitness convergence for simulations without the application of the
penalty factor in the fitness function.

mutations, i.e., mutations probabilistically applied to each digit of the string, the
first generations of simulations are characterized by intense changes in the initial
random network structures. Moreover, we apply two-point crossover with probabil-
ity Pcross = 1 to recombine individuals when forming new generations.

The fitness function applied in these experiments is the one described in Equa-
tion 6.2, based on the minimization of the inconsistency ratio. We compare two
variants of this fitness function, either including or not the penalty factor (i.e., the
term NP

N2 in the denominator), to evaluate the impact of biasing the search towards
sparser structures over the method’s performance. In addition, we compare several
thresholds of minimum percentage of votes applied in the majority voting combina-
tion method: 50% (simple majority), 70% (super majority) and 95%, as well as a
minimum threshold of 10%.

Figure 6.4 shows the convergence of the fitness values forKmax = 2 andKmax = 3
for simulations without the penalty factor. In both cases, we plot the means and
the respective standard deviations after 30 GA simulations for the average and the
best fitness values among individuals in a population, across all generations. We
observe that the increase of fitness values tend to stagnate after 500 simulations for
both scenarios. Furthermore, the standard deviations for the best fitness values are
constantly higher than the standard deviations for the average fitness values, which
suggests large variability among the goodness (and consequently the topology) of the
best solutions across simulations. Similar behaviors and conclusions were observed
for simulations applying the penalty factor in the fitness function.

Results in terms of accuracy and precision are summarized in Figure 6.5. Fig-
ures 6.5(a) and Figures 6.5(b) refer to simulations with Kmax = 2, without and with
the penalty factor, respectively. Similarly, Figures 6.5(c) and Figures 6.5(d) refer
to simulations with Kmax = 3, without and with the penalty factor, respectively.
These metrics are drawn from the consensus networks provided by each run of the
GA, i.e., after the application of the F1 combiner (see Figure 6.1). As one can
observe, results concerning accuracy are quite satisfactory for all voting thresholds
tested. The proposed approach is able to reconstruct the RAF signaling pathway
with an average accuracy of 0.75, which is a remarkable score given that inference is
based solely in discretized, noisy experimental data, and does not relies on any prior
knowledge regarding the gold standard network structure. In general, the higher the
voting threshold the more accurate the results given that only interactions with a
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Figure 6.5: Accuracy and precision over 30 runs of the GA for distinct thresholds
of voting thresholds.

stronger support, and thus more likely to be true positive interactions, are included
in the predicted model.

Unlike accuracy, precision values are low. The average precision obtained for
the 30 consensus networks across all scenarios tested is 0.28. According to Hache,
Lehrach and Herwig (2009), GRNs reverse engineering methods generally have a
deficiency regarding precision, which in their comparative study across multiple
inference methods was always lower than 0.3. Here, we formulate two possible
reasons for our finding. First, the fact that consensus networks contain a high
occurence of false positives certainly influences the precision metric, according to
its equation. Additionally, we understand that this may be a consequence of the
stochastic nature of GA, which aiming at a better exploration of the search space,
may direct its search trajectory to different regions of the search space between
multiple runs, or even among individuals of the population. Precision measures
the relevant proportion of the total predicted edges; but in the meantime, it also
reflects the degree to which repeated measurements under unchanged conditions
show similar results. Therefore, when GA is applied to a data set characterized
by noise and sparseness, and consequently by a diffuse scores distribution, multiple
runs or different individuals in the population may find multiple consistent network
structures that despite their good overlap with the gold standard structure, may
have poor overlap among them, leading to low precision values.
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Figure 6.6: Diversity among networks recovered by multiple independent runs of the
GA in simulations without the penalty factor. Each plot represent the adjacency
matrix of a single run, obtained upon a super majority voting, i.e., a 70% threshold,
among the individuals in the last GA generation.

To illustrate this situation, we plot the adjacency matrices for 30 simulations,
applying the fitness function without the penalty factor and the super majority
voting (i.e., a 70% threshold) to build the consensus network for each run, that is,
as the F1 combiner. The intention is to show how independent runs of the algorithm
recover different parts of the network. These plots are given in Figure 6.6(a) and
Figure 6.6(b) for Kmax = 2 and Kmax = 3, respectively.

In fact, we verify that consensus networks, when combined by F2 into a sin-
gle ensemble prediction, are able to predict around 85%-90% of the gold standard
structure despite the fact that consensus networks alone have on average a relatively
small number of TP interactions. For instance, for Kmax = 2, networks built after
a single GA run have on average 3.5 TP interactions, with a standard deviation
of 1.1. This number increases for Kmax = 3, in which 4 TP interactions are in-
ferred per consensus network on average, with a standard deviation of 1.5. These
are obviously incomplete predictions about the target network, as the gold standard
structure comprises 20 interactions among the 11 genes (see Figure 6.2).

(a) Kmax = 2 (b) Kmax = 3

Figure 6.7: Ensemble-based inference results for the RAF signalling pathway, for
simulations run with Kmax = 2 and Kmax = 3. Edges drawn in gray dotted line
were not inferred by our method.
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On the other hand, when the 30 consensus networks are combined in each of
the cases by the F2 combiner, our ensemble-based method correctly predicts 17
and 18 edges, respectively, out of 20 edges composing the gold standard structure.
These results are shown in Figures 6.7(a) and 6.7(b), for Kmax = 2 and Kmax =
3, respectively, and refer to simulations run with penalization of dense network
structures. The score associated to each edge reflects the probability of occurrence
of a given interaction as computed by our method and can be used to extract testable
hypotheses about gene regulatory interactions within this signaling pathway. The
gray dotted lines denote interactions that were not inferred by the proposed method.
Also, edges whose scored are greater than 0.1 are highlighted with the corresponding
numbers written in boldface.

Finally, we assess the overall performance of the inferred networks represented
in Figure 6.6 by plotting the average ROC curves across all independent runs of the
GA. The average ROC curve is computed by averaging the true positive rates for
fixed values of false positives. Results are compared in Figure 6.8. These plots show
the average ROC curves overlaid by boxplots, which specify the median, maximum
and minimum values, as well as the upper and lower quartiles. The dots outside
the box represent (suspected) outliers, while the dots inside the boxplots are the
average values used to plot the average ROC curves.
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Figure 6.8: Average ROC curves for the consensus networks inferred from the RAF
signaling data. Simulations are run without the inclusion of the penalty factor in the
fitness function and the consensus network are obtained applying a 70% threshold
for the majority voting combination method.

We observe that in both cases the behavior of the average ROC curves is close
to a random classifier. As already discussed in the analysis of precision, inferred
networks have a high occurence of false positive interactions, which impairs the
specificity of the method. Nonetheless, the analysis of the boxplots suggests that
in some runs the ROC curves achieve a better performance, corroborating the fact
that results may present a meaningful variation among multiple runs of the proposed
stochastic optimization method. The average AUC scores over 30 independent runs,
adopting the super majority voting as the combiner (a 70% threshold) are 0.578 and
0.585 for Kmax = 2 and Kmax = 3 respectively. We perform a Mann-Whitney U
test to compare the AUC scores obtained for both scenarios and we find that there
is not statistical significance among the results. Similar conclusions were raised for
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simulations applying the fitness function with the penalty factor and for different
voting thresholds.

The data set regarding gene expression profiles of the RAF signaling pathway is
noisy and statistically insufficient to discover the network structure. In fact, each run
of the GA seems to stochastically explore a subset of the solutions space, revealing
part of the structure of the target network. When considered alone, single GA runs
are weak predictors, as would be many other heuristic approaches in this context
given the complexity inherent to the scenario. Nonetheless, as we have shown in
this section, this issue raises an interesting opportunity: it brings diversity to the
scenario, which is a strong motivation for the use of ensemble learning.

6.5.2 Artificial gene networks

In order to test the sensitivity of our ensemble-based inference method to larger
networks and to different network topologies, we run simulations using as input data
the synthetic gene expression profiles described in Section 6.2.23. We apply point
mutations with probability Pmut = 0.001. In order to allow some GA individuals
to have their network complexity decreased and hence to explore in a controlled
fashion sparser topologies within the search space, which are known to be GRNs’
representative (HUSMEIER, 2003), the mutation operator performs a removal change
in 10% of the mutations.

Moreover, selection employs the Tsallis-based fitness function to evaluate indi-
viduals and the offspring is generated using on one-point crossover. In what concerns
the parameters from Tsallis entropy, defined in Equation 6.5, we used α = 1 and
q = 2.5. The choice of the q value is due to the good reconstruction accuracy
attached to this configuration in the previous work by Lopes, Oliveira and Cesar
(2011).

The main results in terms of the average AUC scores are summarized in Ta-
ble 6.3. These values are computed based on the consensus networks obtained for
30 independent runs of the GA. In order to build the consensus networks, F1 takes
the form of a simple majority voting (i.e., a 50% threshold) among individuals of
the last GA generation.

Again, as observed for the inference of the RAF signaling pathway, scores of
consensus networks are not very remarkable and our GA inference method performs
only slightly better than a random predictive system for the scenarios tested. There-
fore, network inference based on a single GA run is very likely to provide incomplete
and weak predictions regarding the network structure.

Table 6.3: Average AUC scores for 100-nodes artificial gene networks computed
across 30 independent runs of the proposed GA-based inference method.

Model
RBN PBN

Kmax = 2 Kmax = 3 Kmax = 2 Kmax = 3
avg std avg std avg std avg std

ER 0.520 0.0097 0.524 0.0080 0.513 0.0087 0.524 0.0114
BA 0.519 0.0085 0.525 0.0082 0.515 0.0078 0.518 0.0106

3The results discussed in this section are part of a collaborative work with Prof. Dr. Fabrício
M. Lopes, from Universidade Tecnológica Federal do Paraná (UTFPR).
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Figure 6.9: Ensemble-based inference results for artificial gene networks. We plot the
ROC curves and compute the corresponding AUC scores for different combinations
of network topology, class and Kmax value. Graphs on the top line (a to d) show the
results for ensemble networks obtained for simulations with the ER model, while the
graphs on the bottom line (e to h) depict the performance of the ensemble networks
inferred in simulations with the BA model.

Nonetheless, the application of F2 combiner yields an improvement in the per-
formance of the ensemble prediction upon the performance of consensus solutions,
as shown in the ROC curves of Figure 6.9. These graphs bare the benefits of com-
bining multiple different predictions into a single ensemble solution following the
theory of the wisdom of crowds: the AUC scores of the prediction by the ensemble
system are higher than the average AUC scores for single GA predictions in every
case tested. The proposed ensemble system reached up to 27% of enhancement over
consensus solutions, despite the fact that the latter present a performance very close
to a random inference method. This finding is an indicative that consensus solutions
are very likely to have uncorrelated prediction errors, thus providing complementary
information in the inference process.

Regarding the topology class, a comparison of results through 95% confidence
intervals suggests that there is no statistically significant difference in the method’s
performance in terms of the AUC score when comparing predictions for the ER
and the BA models. On average, the proposed method has achieved very similar
scores for both topologies, which let us conclude that the method’s success does not
depend on the network topology. Moreover, in general, simulations run with the
probabilistic model (PBN) have performed slightly poorer than those involving the
deterministic ones (RBN). However, the observed difference is also not statistically
significant at the 0.05 significance level. This corroborates the idea that the reverse
engineering of probabilistic models is harder due to the larger set of parameters to
be inferred.

In order to compare the performance of the Tsallis fitness function (Equation 6.5)
with the fitness function based on the inconsistency ratio (IR) (Equation 6.2), we
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Table 6.4: Comparison between network inference by means of Tsallis entropy and
through an inconsistency ratio fitness function for a 50-node AGN.

Fitness Function Similarity
Kmax = 2 Kmax = 3

Tsallis entropy 0.5451 0.5962
Inconsistency Ratio 0.3512 0.5178

followed the methodology described in Section 6.2.2 to generate an artificial 50-node
probabilistic network and simulate its expression signal. Since previous results have
shown that our method’s performance is not dependent on the network topology,
we perform this comparison solely the Barabási-Albert network model.

Table 6.4 shows the analysis of results by means of the similarity measure between
inferred consensus networks and target GRNs. The similarity between two networks
is defined as similarity(N1, N2) =

√
TPR× TNR, in which TPR = TP

TP+FN
and

TNR = TN
TN+FP

. The superior performance of the Tsallis-based fitness function is
clear: for a maximum connectivity of two (Kmax = 2), the similarity measure is up
to 50% higher than the results obtained with the IR fitness function – 0.5451, against
0.3512 for the latter. This is explained by the good balance between false positive
and true positive interactions recovered by the Tsallis entropy when a maximum
set of two predictors per gene is allowed. An improvement was also observed for
Kmax = 3, although not in such a large scale: the similarity measure for networks
obtained with the Tsallis entropy is equal to 0.5962, while the use of the IR fitness
function yielded a consensus network with similarity rate equal to 0.5178.

An analysis based on the AUC scores confirms the higher robustness of the fitness
function based on Tsallis entropy in relation to the minimization of an inconsistency
ratio. For both Kmax = 2 and Kmax = 3, The Tsallis entropy outperforms the IR
fitness function, as shown in Figure 6.10. Additionally, both methods achieved a
better score for networks inferred with Kmax = 3 in contrast to simulations with
Kmax = 2. This is explained by the fact that a higher maximum connectivity in-
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Figure 6.10: Inference accuracy in terms of ROC curves and AUC scores for the
two fitness functions compared: Tsallis entropy and Inconsistency Ratio (IR). The
improvement achieved with the Tsallis criterion function is clear: for both values of
Kmax it has outperformed the inference by the minimization of the IR.
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creases the chance of recovering the whole set of true positive connections. However,
this also makes the algorithm more vulnerable to false positive interactions, which
in turn increases the need for more powerful criterion functions and GA operators.
This balance between power and robustness has been better achieved by the Tsallis
entropy: the evaluation of candidate solutions using the fitness function of Equa-
tion 6.5 not only recovers more interactions from the target network, but also causes
a significant reduction of false positive rates.

6.5.3 Epsilon-greedy mutation operator

The last set of experiments run with the proposed GA-based inference method
aims at investigating the effect of a new epsilon-greedy mutation operator, presented
in Section 6.3.6, over the accuracy of networks predicted by our method. To this
end, we run simulations for an artificial deterministic target network generated using
the the methodology described in Section 6.2.2. Again, we assess and compare the
performance of our method for a single type of network, namely, a 50-node network
generated according to the Barabási-Albert network model.

In what concerns the GA parameters, we evaluate individuals using the fitness
function based on the minimization of the inconsistency ratio (Equation 6.2). The
probability of attempting a mutation Pmut was varied between 0.1 and 0.5 in steps
of 0.1. We test and analyze the effects of the proposed epsilon-greedy mutation
operator applying the annealing factors ∆ = {0.9, 0.99, 0.999} to gradually decrease
Pprior. We compare these results with the two extreme situations, i.e., a purely
exploitative (ε = 0, no decay) and a purely explorative (ε = 1, no decay) GA algo-
rithm, in which the latter mimics the traditional blind, random GA mutation. For
each of these scenarios, we perform 30 simulations and build a consensus prediction
for each independent run and an ensemble network from all runs by means of a
simple majority voting, as shown in the system architecture depicted in Figure 6.1.

The decision about attempting a mutation over an individual follows the tradi-
tional approach: a probability Pmut is applied to decide whether the GA will propose
to mutate the genetic material of a candidate solution. However, the actual occur-
rence of a mutation depends on other factors, such as the belief associated with the
interaction to be mutated in the case of using prior knowledge, or if the operations
proposed are free of redundancy and valid from the viewpoint of network syntax,
i.e., they satisfy some constraints like the maximum connectivity allowed for each
node.

Table 6.5: Effective mutation rates for GAs applying the epsilon-greedy mutation
operator.

Pmut
0.1 0.2 0.3 0.4 0.5

ε = 0, no decay 0.32% 0.61% 0.91% 1.17% 1.49%
ε = 1, no decay 3.47% 5.81% 8.05% 9.61% 11.39%

The effective mutation rates for simulations with no Pprior decay appear in Ta-
ble 6.5. We may notice that albeit Pmut is configured with relatively large values
considering traditional GA setups, the number of actual mutations performed is
lower due to the set of conditions that must be satisfied in order to a mutation in
fact occur. When a decay rate ∆ is applied, the effective mutation rates range from
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Figure 6.11: Average fitness values for simulations run with a GA implementing the
epsilon-greedy mutation operator, adopting Pmut = 0.3. Similar behavior was found
for other values of Pmut.

the values observed in the extreme cases, i.e, ε = 0 and ε = 1, being very close to
the latter when ∆ = 0.9.

Results comparison in terms of the average fitness among the different scenarios
tested is shown in Fig. 6.11. The graphs behavior evidences the better results
obtained when prior knowledge is applied (ε = 0), especially for no decay and
decay rate ∆ = 0.999: the average fitness after 1000 generations is higher than
values for the traditional GA. Furthermore, the use of prior knowledge combined
to low decay rates seems to originate populations with greater internal variability.
This improvement comes at a cost though: the convergence speed for these cases
is slightly slower than for the remainder. As this tendency was observed for all
mutation rates, we give here solely the results for Pmut = 0.3. A trade-off between
performance and speed can be achieve by tuning the method’s parameters, such as
the decay rate ∆.

Furthermore, we compare results based on the AUC score computed for the
inferred networks (Table 6.6). The highest scores for each Pmut value are emphasized
in boldface style. Except for Pmut = 0.4, in which the purely random exploration
approach (ε = 1) has yielded the best results, the epsilon greedy mutation operator
has introduced improvements up to 11% higher than the traditional GA, providing
the most accurate inference in most of the scenarios.

To stress even more the benefits of combining GA and MI via our epsilon-greedy
mutation operator, we assessed the network inferred solely from the MI matrix using
an standard approach (see Section 4.1.1.2) and found an AUC score of 0.5345. The
respective AUC scores for the coupling scheme and for the traditional GA are 0.7133
(best case, i.e., ∆=0.9) and 0.6414.

Therefore, the coupling scheme between GA and MI embedded in the proposed
epsilon-greedy mutation operator outperforms both methods when individually ap-
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Table 6.6: Results in terms of the AUC scores computed for the final ensemble
networks built after 30 simulations.

ε = 1 ε = 0
Pmut no decay no decay ∆ = 0.999 ∆ = 0.99 ∆ = 0.9
0.1 0.6567 0.5848 0.6474 0.6738 0.6624
0.2 0.6667 0.6047 0.6793 0.7034 0.6764
0.3 0.6414 0.5964 0.6487 0.6979 0.7133
0.4 0.6726 0.5823 0.6482 0.6538 0.6200
0.5 0.6568 0.5542 0.6955 0.6847 0.6925

plied, as shown in Fig. 6.12. Again, only the Pmut = 0.3 case is considered as this
behavior is general. However, there is no consensus regarding the best annealing
value (∆), since enhancements were observed for all Pprior decay rates tested.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Tr
ue

po
si

tiv
e

ra
te

False positive rate

MIGA + MI

GA

Figure 6.12: Comparison between the performance of ensemble networks inferred by
a GA adopting the epsilon-greedy mutation operator, by a traditional GA and by
simple MI-based approach. Here we show the results for Pmut = 0.3. We observe that
the proposed coupling scheme between GA and MI by means of the epsilon-greedy
mutation operator outperforms both methods when individually applied.

6.6 Conclusion

We have shown in three practical applications of the proposed ensemble learning
system that the reverse engineering of TRNs can be enhanced to some extent if
one considers the diversity inherent to heuristic search and stochastic optimization
methods as a tool in the inference process. As our results suggest, the predictions
about the network structure provided by our GA-based inference method suffers
from the complexity of the scenario: although better than random predictions, the
inferred networks still lack informative power. Moreover, for both real and synthetic
data, network structures reconstructed by our GA vary among multiples runs of our
algorithm, but still present a reasonable overlap with the gold standard structures.
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This is probably due to the diffuse shape of the scores distribution related to our
application, in which multiple network topologies equally explain the data and,
therefore, receive similar fitness values. Under this situation, the definition of an
exact fitness function is impractical and the GA search tend to lead us to a region
of the solutions space with more plausible hypotheses instead of to a single optimal
solution. We emphasize that similar behavior would be expected for multiple runs of
other heuristic search methods, which does not means improperness of the proposed
reverse engineering method, but rather corroborates the fact that we are dealing
with a complex and underdetermined problem and different strategies need to be
developed in order to overcome these limitations.

As discussed in this chapter, the unstability related to the GA search encourages
the use of ensemble learning in order to integrate the information contained within
the set of plausible hypotheses raised by independent runs of our inference method
into a single solution. We provided several evidences of the diversity among solutions
reached by multiple independent runs and how it can be leveraged in our favor to
improve reverse engineering results. By adopting an ensemble learning strategy to
combine individual solutions, we observed that more TP interactions were recovered
in every case tested and that the fold change increase in performance was up to 1.27
(this value was computed for the inference of the artificial 100-node ER network
adopting Kmax = 2), even when combination is performed by simple methods such
as majority vote.

Nonetheless, the accuracy of individual solutions is as important as diversity for
the successs of ensemble learning, as discussed in Chapter 3. To this end, we also
dedicated efforts to improve the inference performance of our GA-based inference
method. First, we implemented and compared two different fitness functions in
the GA search, showing that the use of Tsallis entropy (Equation 6.5) to evaluate
individual solutions leads to better results than the approach based on the incon-
sistency ratio (Equation 6.2). For this comparison, we observed a fold change of
1.26 for Kmax = 2 and 1.21 for Kmax = 3 between their performances. In general,
the Tsallis-based fitness function seems to proportionate a better balance between
inference power and robustness, being less vulnerable to false positives.

Furthermore, we proposed a new GA mutation operator that applies prior knowl-
edge for the decisions about mutating individuals’ genotype. Improving the perfor-
mance of GAs has been a concern in the field and it is well known that mutation
plays a substantial role in the search process, introducing variability within the
population. Here we investigated the effects of using an epsilon-greedy strategy to
balance between mutations by a traditional random mutation operator and muta-
tions decided upon available prior knowledge. The proposed epsilon-greedy mutation
operator introduced a performance gain of 11% in relation to our GA method im-
plemented with the inconsistency ratio fitness function and of 33% in relation to a
MI-based inference approach, which we adopt as prior knowledge in our simulations.

To the best of our knowledge, none of the improvements proposed so far have
employed prior knowledge to compute mutation probabilities nor applied an epsilon-
greedy strategy to control the rate with which the use of prior knowledge is alter-
nated with random operations. Hence, our approach contributes both to the field of
Bioinformatics, by investigating new methods and strategies to enhance the reverse
engineering of GRNs, and to the field of Artificial Intelligence, by proposing a new
mutation operator that leads to interesting improvements over the traditional GA.
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7 CASE STUDY II: DIVERSITY IN DATA

This chapter presents an ensemble learning system built with the purpose of
leveraging the diversity among multiple biological data types, including functional
and physical evidence, to optimize the inference of TRNs. In other words, we propose
an ensemble system to explore diversity in the data level, whose architecture follows
the schema in Figure 5.2, panel B.

7.1 Introduction

In the previous chapter we discussed a solution based on ensemble learning to
infer more accurate TRNs by exploring diversity in the learner level, more precisely,
diversity among multiple approximate solutions provided by independent runs of a
genetic algorithm. The inference process was based on gene expression levels, which
is by far the most common type of biological evidence available for network inference
and, consequently, the most explored in literature.

However, network inference methods based exclusively on expression profiles usu-
ally yield TRNs with high false positive rates, since they tend to have trouble in
differing between direct and indirect regulatory interactions. Recalling from Chap-
ter 2, gene expression level is a functional type of evidence for gene expression
regulation, which does not necessarily imply physical association among genes. For
instance, consider that gene A regulates gene B, which in turn is the regulator of
gene C. One can see that changes in the expression level of gene A will reflect in the
expression levels of gene C by means of gene B, although A and C are not directly
or physically connected in the system. If one observes solely the changes in the
expression levels, however, it seems that A is a direct regulator of the expression of
gene C. This is the main flaw related to network inference based on expression pro-
files and the reason why alternative biological evidence started to be incorporated
in the reverse engineering process.

The integration of multiple biological data sets has been successfully explored
in other research problems in Bioinformatics (KATO; TSUDA; ASAI, 2005; SCHADT et
al., 2005) and is a recent but promising approach in the inference of GRNs (WANG
et al., 2006; HECKER et al., 2009; GLASS et al., 2013). For instance, this strategy has
enabled a more accurate reconstruction of the yeast pathway based on genotypic,
expression, TF binding sites and PPI data (ZHU et al., 2008). A number of method-
ologies to employ data from diverse sources in the reverse engineering process have
been proposed, including the application of a simple average or regression-based
classifiers to combine the interaction weights of multiple networks (MARBACH et al.,
2012), the adoption of a message passing interface to share attributes across net-
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Figure 7.1: Structure of an ensemble system for TRNs inference based on diversity
in data. Our method allows the integration of multiple lines of biological evidence
aiming at the reconstruction of more accurate and reliable TRNs. Networks are
inferred for each data set separately and then merged by a combination method into
a single, ensemble prediction.

works (GLASS et al., 2013) and the use of predictions based on independent data
set as a priori knowledge in the network inference algorithm (WERHLI; HUSMEIER,
2007). In general, these efforts have led to improvements over traditional reverse
engineering approaches. Nonetheless, the effective extraction of information from
different sources of biological data in order to recover target–regulator relationships
and more accurately reconstruct genome-wide networks remains a challenge in the
field, especially for organisms such as human and mouse (GLASS et al., 2013).

The ensemble system proposed in this work follows the aforementioned direction,
exploiting genome-wide TF binding profiles, conserved sequence motif instances and
gene expression levels for multiple cell types for the reconstruction of TRNs. The
structure we describe and discuss in this chapter is depicted in Figure 7.1, and is
applied to infer TRNs for human, fly (D. Melanogaster) and worm (C. elegans). We
remark, however, that in the current thesis we do not tackle the problem of identi-
fying and predicting potential TFs and conserved motifs based on experimental and
computational techniques. Rather, we use resources comprising this information
that are publicly available or shared by personal communication and focus our in-
terest on the extraction of interactions among these elements based on an ensemble
of networks inferred from comprehensive biological evidence.

7.2 Data level

The data sets employed in this case study have been primarily collected by the
ENCODE and modENCODE consortia. The ENCODE (for Encyclopedia of DNA
Elements) Project (The ENCODE Project Consortium et al., 2011) is an international
consortium funded by the National Human Genome Research Institute (NHGRI)
that aims at reuniting research groups with different backgrounds around the world
in a collective effort to build a comprehensive list of structural and functional ele-
ments in the human genome. This catalogue will include elements that act at the
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protein and RNA levels, as well as regulatory elements that control cells and circum-
stances in which a gene is active, and is intended to be the most complete functional
and structural mapping of the human genome built so far.

Similarly, the modENCODE Consortium (CELNIKER et al., 2009; The modEN-
CODE Project Consortium et al., 2010; GERSTEIN et al., 2010) pursues the same goal
for model organisms such as worm and fly. Together, these consortia are generating
an unprecedented amount of data for human, fly and worm, which is an extremely
valuable resource for TRNs inference and can greatly facilitate our study and un-
derstanding of regulatory circuitries within these organisms.

In this work, we build TRNs based on three distinct evidences for gene expression
regulation, namely, gene expression profiles, evolutionarily conserved motifs and TF
binding profiles. While gene expression data provides functional evidence for gene
regulation, the two latter provide physical evidence for TF – DNA association. For
a more detailed explanation on the content and biological meaning of different types
of biological data, we refer reader back to Section 2.5.

In what follows, we review the main properties of input data sets. All the
numbers related to genes and TFs covered by the input data are summarized in
Tables 7.1 and 7.2, respectively. These numbers refer to genes and TFs that are
correctly mapped to Entrez Gene IDs (MAGLOTT et al., 2005), the standard IDs
that we use throughout our analysis in order to enable the combination of multiple
networks, inferred from cross-platform data.

Gene expression profiles were generated by RNA-Seq and include time-course
measurements for several experimental factors, different developmental stages,
different cell lines and tissue-specific profiling. The number of experimental
conditions covered by our data sets are 94 for humans, 112 for fly and 73 for
worm.

Conserved motif instances were collected from the literature and are based on
a phylogenetic framework for identification of functional motifs proposed by
Kheradpour et al. (2007). One consequence of the short nature of most meta-
zoan motifs (5-15 bp) is that they frequently match the genome just by chance.
Therefore, many motifs predicted by computational approaches may have no
regulatory effect or may not even be bound in vivo. An alternative approach to
identify motif instances is to use phylogenetic footprinting, since evolutionary
conservation might be an indication of a functional instance. Following this
direction, this input data set consists of motif instances and their respective
genomic coordinates, with conservation scores associated to each motif, which
is computed as 1-FDR (false discovery rate) using the phylogenetic framework
by Kheradpour et al. (2007). Scores range from 0 (nonconserved instances)
to 0.9 (highly conserved instances), and are used during network inference to
estimate the weights of TF–gene interactions.

TF binding occupancy profiles were obtained by ChIP-seq assays in a range of
tissue and cell-line samples. As already noted, the first action of a TF during
gene expression regulation is to bind DNA segments, therefore, the occupancy
profiles of TFs are an important evidence of their role in the regulation of
particular genes. ChIP-seq allows the binding sites of TFs to be identified
across entire genomes, since it reflects regions of the genome with increased
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sequence read density of TFs. For each of the enriched regions, the genomic
coordinates and height of TF binding peaks are obtained based on protocols of
the ENCODE and modENCODE Projects. The higher the height of a given
TF peak, the greater is the evidence of its binding occupancy in a specific site.

In addition to the data sets described above, we also use genome annotations
for each of the species, specifically to obtain their genes’ TSS genomic coordinates.
We adopt the genome annotations from ENCODE and modENCODE for human
and worm, respectively, and the FlyBase genome annotation (FB5.48) for fly. This
information is used along with the conserved motif instances and TF binding occu-
pancy profiles in order to identify the target genes controlled by the TFs covered
by these data sets. Furthermore, we gather potential TF lists collected from lit-
erature (REECE-HOYES et al., 2005) and provided by personal communication1,2 to
complement the set of TFs comprised in the above data sets.

Table 7.1: Number of genes covered by input data.
Human Fly Worm

Gene Expression data 19,088 12,897 19,277
TSS annotation 15,560 13,420 14,074

Table 7.2: Number of TFs covered by input data.
Human Fly Worm

Conserved motifs 485 221 30
TF binding profiles 165 51 88

List of potential regulators 2,757 675 905

The overlap among the distinct data types in terms of the number of TFs (evo-
lutionarily conserved motifs, ChIP-Seq binding peaks and the lists of potential reg-
ulators) is shown in Figure 7.2. During network inference, the set of regulators is
defined by taking the union of these data sets. Similarly, gene expression data and
TSS annotations show an overlap of 15,389 genes for human, 12,666 genes for fly
and 14,056 genes for worm. The total number of nodes in inferred networks is given
by the union among all TFs and genes covered by the corresponding data sets.

Finally, we remark that although motifs refer to DNA regions, the conserved
motifs data set is pre-processed in order to map motifs IDs to TFs IDs that are known
to be their canonical binders. Hence, for both TF binding profiles and conserved
motif data sets, our network inference system recovers TF – gene interactions and
builds TRNs upon this information.

7.3 Learner level: reconstruction of feature-specific networks

In this case study, we derive feature-specific networks from each input data set
described in the previous section. More precisely, we build functional regulatory
networks from the gene expression profiles and physical regulatory networks from the

1P. Shah and K. White, University of Chicago, 2012
2FANTOM5 Consortium, 2013



123

2203

34

364

0

78

0

87

ChIP Motifs

Potential TFs list

(a) Human

ChIP Motifs

Potential TFs list

441

11

185

2

24

0

25

(b) Fly

795

2

23

1

82

0

5

ChIP Motifs

Potential TFs list

(c) Worm

Figure 7.2: Overlap among distinct data types adopted in the inference of feature-
specific networks in terms of the number of TFs

conserved motifs and binding occupancy profiles of TFs. Each network is composed
of TF – target gene interactions with assigned weights, which range from 0 to 1 (0
denotes absence of interaction).

It is important to note that interactions weights may have different meanings
for distinct feature-specific networks. For instance, while in functional regulatory
networks they may denote the strength of the correlation between the expression
profiles of a TF and a candidate target gene, in physical regulatory networks they
may represent the likelihood of a binding event given evolutionary and sequence-
based evidence. Together, these networks may provide a more comprehensive picture
about the transcriptional regulation of gene expression. In what follows we described
the methods used to infer feature-specific networks.

7.3.1 Functional regulatory networks

Functional regulatory networks are reconstructed from gene expression data us-
ing two unsupervised methods from literature that are among the top performing
reverse engineering algorithms in the DREAM5 challenge (MARBACH et al., 2012),
namely CLR (FAITH et al., 2007) and GENIE3 (HUYNH-THU et al., 2010). Here we use
their original implementation in Matlab, adopting the default parameters suggested
by their respective authors.

CLR, for Context Likelihood of Relatedness (FAITH et al., 2007), reconstructs
expression networks based on relevance networks. However, differently from other
inference methods that follow this class of network representation, CLR applies a
correction step that aims at eliminating false correlations and indirect influences.
This is accomplished by comparing the MI scores computed for all possible pairs of
genes against the empirical distribution of all MI scores within their network con-
text, defined by the set of other pairs that contain either the same regulator or the
same target gene (i.e., the "background" distribution). Given the background dis-
tribution, the significance of each pair’s MI score is estimated by a modified z-score
and, finally, those pairs of genes with MI value significantly above the background
distribution (higher z-scores) are prioritized in the ranking of interactions. CLR pa-
rameters, namely the number of bins (for gene expression discretization) and splines
(for B-spline smoothing) used in MI estimation, were configured with default values
of 10 and 3, respectively.

The second expression-based inference method, GENIE3 (HUYNH-THU et al.,
2010), is a tree-based ensemble method that decomposes the network inference prob-



124

lem in n feature selection subproblems, where n denotes the number of genes in the
network. For each gene, GENIE3 identifies potential regulators by performing a re-
gression analysis using the random forest algorithm (BREIMAN, 2001) for regression
trees over the expression profiles of the target gene and its candidate regulators (in
general, all other genes but the target gene are considered as candidate regulators).
This procedure yields a ranking of regulators, from the most relevant to the least
relevant for predicting the target gene’s expression, for each of the n genes. Once
the regulators ranking have been determined for all genes, rankings are aggregated
into a single global ranking of all regulatory interactions in the network, upon which
the network is reconstructed. GENIE3 algorithm was run using the following pa-
rameters: an ensemble of 500 trees is built for each subproblem, i.e., each gene, and
the number of randomly selected variables at each node of a tree is defined as the
square root of the number of all possible regulators (for the general case, n− 1).

The input for both methods described above is a gene × condition matrix of
expression values and the standard output is an undirected network. Nonetheless,
using our lists of potential TFs, we constrain the search for regulators to the TFs
comprised in these lists and remove outgoing edges from target genes, thereby gen-
erating directed networks. By supplying this additional information, CLR computes
the MI scores only between pairs of (potential) TFs and genes, while GENIE3 grows
tree nodes by random selecting t variables from the potential TFs list, where t is the
square root of the number of TFs. This process not only decreases the complexity
of the networks, but also improve their accuracy, since many implausible regulatory
interactions exert by non-regulators (i.e., non-TF genes) are eliminated from the
network.

7.3.2 Physical regulatory networks

We use the evolutionary conserved motif instances and the TF binding occupancy
profiles to build two physical regulatory networks, the motif network and the binding
network, respectively. The proposed inference algorithm is based on a search for
overlaps among features, more specifically, between TF motifs or ChIP-Seq binding
peaks and the TSS of candidate target genes. Here, we adopt tools comprised in the
BEDTools suite (QUINLAN; HALL, 2010) for comparison of genomic features, along
with in-house scripts in Perl and R programming languages, to develop a pipeline
for data processing and analysis.

Features overlaps are computed based on the comparison of genomic features’ co-
ordinates. The algorithm employs the intersectBed() function from BEDTools to
screen for intersections between TF motifs or ChIP-Seq binding peaks and a region
around the TSS of target genes defined by a window of w bp upstream and down-
stream, as shown in Figure 7.3. The window size is the main parameter of the algo-
rithm. For both motif networks and binding networks, the window size is defined as
1kb upstream/downstream for both worm and fly, and 5kbp upstream/downstream
for human.

An interaction between a TF and a gene is defined whenever a feature related
to this TF (conserved motifs for motif networks and ChIP-Seq binding peaks for
binding networks) occurs close to the TSS region of the candidate target gene, with
a minimum overlap of 25% in relation to the feature length. The interaction weights
in the motif network are given by the evolutionary conservation score of overlapping
motifs, whereas in the binding network weights are defined in terms of the height of
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Figure 7.3: Steps involved in the inference algorithm for physical regulatory net-
works. (a) An interaction between a TF and a target gene is defined whenever a
feature related to this TF occurs nearby the TSS region of the target gene, with a
minimum overlap of 25% in relation to the feature length (in this case, s1, s2 and
s3). For motif networks, features are evolutionarily conserved motif instances; for
binding networks, features are ChIP-Seq binding peaks. (b – c) When two or more
features have overlap between themselves, we consider solely the maximum score
and merge them in a single feature (in this case, s1 and s2 are combined into v2).
(d) The interaction weight is then defined as the sum of the scores of features within
the window of size w around the target gene’s TSS.

intersecting binding peaks.
However, because a single gene can be intersected by several motif instances or

binding peaks of the same TF, interactions weights for each of the motif and binding
networks are defined following a two-step analysis. First, once features have been
mapped to the reference genome, all features related to the same TF that present
an overlap among themselves are merged in a single instance with score defined as
the maximum score among these overlapping features (Figure 7.3a and Figure 7.3b).
Next, if a candidate target gene has several motif instances or binding peaks of the
same TF (with no overlap among them) occurring within its window size, we sum
up their scores yielding the final interaction weight (Figure 7.3c and Figure 7.3d).
This two-step procedure is performed for the reconstruction of both motif networks
and binding networks, followed by a weight normalization step for the latter.

7.4 Combiner level

Previous works have already discussed the distinct coverage and informative
power associated to different biological data types. According to Marbach et al.
(2012), who combined several types of functional and physical evidence to infer
an integrative regulatory networks for fly, evolutionarily conserved motifs are the
most informative data set, followed by TF binding profiles (ChIP), chromatin marks
and expression data. Although TF binding occupancy profiles, in theory, provide
the more precise information across these data sets, they usually comprise a small
number of high confidence interactions given that the number of experiments that
can be carried out is typically very small. On the other hand, motif networks tend to
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Table 7.3: Properties of ensemble networks inferred with our ensemble system.

Nodes TFs Edges Edges (for
5% density)

Median
in-degree

Median
out-degree

Human 19,221 2,757 18,709,816 2,649,615 132 253
Fly 13,642 688 3,148,533 469,285 29 290

Worm 19,296 908 5,160,222 876,039 43 640

be less precise but comprise a larger volume of physical evidence, yielding a higher
coverage of the target regulatory network. Finally, expression-based networks show
the best coverage among these data sets at the cost of a sharp increase in the
number of false positive edges, therefore being the least informative data set for
network inference.

In the current work, we propose an ensemble-based inference method to recon-
struct TRNs from a compendia of biological data in which the combiner F1 (Fig-
ure 7.1) takes the form of a well-established combination method, namely Borda
count (BORDA, 1781), described in Chapter 33. In Marbach et al. (2012), Borda
count was applied in the integration of multiple expression-based regulatory net-
works inferred from the same gene expression profile but using distinct reverse en-
gineering methods. Nonetheless, to the best of our knowledge, this combination
method has not been tested for ensemble-based inference upon multiple lines of ev-
idence, in which predictions may differ, for instance, in relation to their coverage or
to the meaning and magnitude of the weights associated to interactions.

In the scope of this work, each feature-specific network is first transformed into a
descending list of predicted interactions and then combined into an ensemble network
by computing their average Borda scores, as defined in Equation 3.5. Missing edges
in input networks receive a weight equal to zero, so that they do not contribute
at all to the ensemble-based prediction. Since expression-based networks are the
least reliable among our feature-specific network, we opt for applying the ensemble
combiner in two steps. First, we create a single, ensemble-based expression network
by combining the two individual predictions from CLR and GENIE3 into a single
consensus network; this aims at increasing the reliability of the expression-based
network. Next, we combine the consensus expression-based network, the conserved
motifs network and the binding network into an ensemble-based prediction, which
corresponds to the final output of our reverse engineering method.

7.5 Results

The topological properties of the final ensemble networks predicted by our en-
semble system for human, fly and worm are shown in Table 7.34. The total number
of nodes in the network comprise both the sets of TFs and target genes. However,
to specify how many of these nodes are regulators, we also include the number of
TFs in the network. Table 7.3 specifies the total number of edges for both complete

3In this investigation we apply a Java implementation of Borda count that is optimized for long
predictions lists, courtesy of Dr. Daniel Marbach.

4The results discussed in this chapter were collected during my Sandwich PhD at the MIT
Computational Biology Group and are part of a joint work with Soheil Feizi, Dr. Gerald Quon
and Prof. Dr. Manolis Kellis.
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Figure 7.4: Correlation among interactions recovered by different feature-specific
networks.

ensemble networks and filtered ensemble networks, in which the latter are obtained
by applying a threshold of 5% over networks density5.

As we observe in Figure 7.4, weak correlations are found among different types
of networks, except between the two functional networks. This is due to the fact
that CLR and GENIE3 networks are inferred from the same data and they are
both very densely connected. In contrast, motifs and binding networks are sparse
and according to what this plot suggests, they tend to recover a different set of
interactions, thus showing a low correlation between each other and with functional
networks. The low correlation among feature-specific networks is a clear motivation
for the use of ensemble learning in this scenario.

To validate the inferred networks, both feature-specific and ensemble, we use
known interactions from TRANSFAC (WINGENDER et al., 2000), REDfly (GALLO et
al., 2011) and EDGEdb (BARRASA et al., 2007) as human, fly and worm benchmarks,
respectively. The size of these networks in terms of the number of genes, TFs and
edges is shown in Table 7.4. We apply a biological constraint of network sparseness
over the inferred networks, evaluating their accuracy for a maximum density of 5%
and 10%, i.e., considering only their top 5% and 10% interactions, respectively. Note
that for this validation, TFs and genes that are not part of the benchmark networks
are removed from the inferred networks.

Table 7.4: Properties of benchmark networks.
Database TFs Genes Edges

Human TRANSFAC 222 337 544
Fly REDfly 131 163 415

Worm EDGEdb 227 109 585

For each network, we plot the ROC curve and compute the corresponding AUC
score as explained in Chapter 5. The AUC scores are transformed into p-values by
simulating a null distribution for a large number of random networks fitting into a
stretched exponential distribution (MARBACH et al., 2012). We report the negative
log10 of this value as a score. Hence, a high score corresponds to low (significant)

5Network density describes the portion of the potential connections in a network that are actual
connections. In our case, the number of possible connections is given by nTFs × nGenes.
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p-values. Next, we compute an overall score for each type of network, both feature-
specific and ensemble, by averaging the score across all three organisms, as follows:

AUCscore =
1

3

3∑
i=1

−log10pROCi
(7.1)

The ROC curves for feature-specific and ensemble networks (thresholded to 10%
density) are shown in Figure 7.5. Gray lines refer to feature-specific networks,
whereas the red ticker line refer to the ensemble-based prediction. Because binding
networks are generally sparse but relatively accurate, their curves tend to show a
fast increase of the number of TP interactions in the very beginning (i.e., for small
FP rates), followed by an equivalent growth in the TPR and FPR, which brings the
curves closer to the diagonal of the graph. Hence, to facilitate the visualization of
results, we plot partial ROC curves thresholded for a maximum value of 0.5 for both
TPR and FPR. Nonetheless, we remark that results concerning the AUC scores are
computed taking as basis the area under the complete ROC curves.

The analysis of the ROC curves suggests that ensemble networks tend to perform
better than feature-specific networks. This observation is particularly evident for re-
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Figure 7.5: ROC curves for feature-specific networks (gray lines) and ensemble net-
works (thicker red lines) inferred by our ensemble system.
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sults related to fly regulatory networks (Figure 7.5(b)). For human (Figure 7.5(a)),
the motif network seems to outperform the ensemble network because the TPR
increases faster for the former within the range of FPR shown in the plot. Nonethe-
less, as we will discuss later, the overall performance of Borda count is still superior
because the TPR continues increasing for higher FPR, whereas it stagnates for the
motif network.

For worm (Figure 7.5(a)), the ROC curves concerning the CLR functional regu-
latory network and the ensemble network have similar behavior for the region shown.
As one may note, worm is a very particular case, because none of the feature-specific
networks has a remarkable performance. These results are related to the quality and
coverage of data sets used for network inference. For instance, physical networks,
which tend to be very informative for network inference, are very sparse for this
specific scenario.

The actual AUC scores for the ensemble networks are 0.585, 0.650 and 0.520 for
human, fly and worm, respectively. In order to assess the statistical significance of
these results, we perform a Fisher’s exact, in which contigency tables are created
by comparing the structure of the ensemble and the gold standard networks. Based
on the statistical analysis, we found significant p-values for fly and human ensemble
networks. In other words, the amount of TP interactions recovered by our ensemble
learning method in these two cases is higher than the number of TP interactions we
would expect to recover by chance. The computed p-values are p = 3.09× 10−05 for
human, p = 5.70× 10−16 for fly and p = 0.091 for worm.

Figure 7.6 shows the transformed AUC scores (log10 of the corresponding p-
values), as well as the overall scores (Equation 7.1) for our inferred networks. We
evaluate networks thresholded to 5% and 10% density. These graphs make very clear
the better performance of our ensemble networks in contrast to feature-specific net-
works for every organism, with better scores achieved for networks with 5% density.
In this case, the improvements in relation to the best-performing feature-specific
network in human, fly and worm are 46%, 40% and 29%, respectively. For the
evaluation based on 10% density, despite the chances of increasing the number of
false positive predictions and hence dropping performance, our ensemble networks
reaches an average improvement of 63% over the best feature-specific network.

We also observe that the ChIP binding network has a poor performance for fly,
while the motif network reaches a low score for worm. This is due to the fact that
these data sets have a low coverage for these particular organisms (see numbers in
Table 7.2), resulting in very sparse physical regulatory networks. This result was
antecipated by the behavior observed for ROC curves of Figure 7.5. Nonetheless,
these data issues do not impair the performance of ensemble networks, given that
the other data sets have an important contribution in network reconstruction and
overcome this limitation.

To shed light on the contribution of each feature-specific network to the ensemble
network, we evaluate the overlap among their predictions for several different cutoffs
of network density. These results are shown in Figure 7.7 for (a) human, (b) fly
and (c) worm. This analysis suggest that physical regulatory networks, specially
conserved motif networks, provide the greatest support for the top predictions (in
terms of edges weights) in the human ensemble network. For 1% density networks,
around 90% of inferred edges have evidence from the motif network or ChIP binding
network. Under this situation, expression networks play a role in re-ordering physical
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Figure 7.6: Performance evaluation of feature-specific and ensemble networks in-
ferred by our ensemble system using known interactions from TRANSFAC, REDfly
and EDGEdb databases.

edges by providing additional evidence for their occurrence.
For fly and worm, edges support is more equally distributed among all data sets,

mostly because physical association data sets are sparse for these organisms. We
observe that the ChIP binding network has a very low overlap with the top weighted
edges in the fly ensemble network, so that the physical support is mainly provided
by the conserved motifs instances. Conversely, for worm, the motif network is the
main responsible for the physical evidence of regulatory interactions among the top
weighted edges in the ensemble network. In both cases, expression networks are
crucial for the consistency and accuracy of ensemble networks. These observations
corroborate the results depicted in Figure 7.6.

In order to assess the biological plausibility of inferred networks, and compare
feature-specific networks to ensemble networks in terms of their biological content,
we quantify the co-occurrence of functional annotations from Gene Ontology for
genes connected in our networks. GO terms were downloaded from the Gene Ontol-
ogy website6 and filtered to keep only the terms under the biological process branch.
In other words, we focus our analysis in the similarity between two connected genes
regarding their participation in common events or molecular functions.

To this end, we build GO similarity networks, placing an edge between every pair
of gene that share more than 50% of their GO annotations. For this comparison,
we adopt the criteria Jaccard index > 0.5, where Jaccard index is defined as the
size of the intersection divided by the size of the union of two sets. The reasoning
underlying this evaluation is that it is assumed that genes interconnected in TRNs

6http://www.geneontology.org/GO.downloads.shtml
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Figure 7.7: Edges overlap among ensemble networks and feature-specific networks.
For human, physical regulatory networks provide support for most of the top
weighted interactions predicted and expression networks are used basically to re-
order the predictions. In contrast, for fly and worm, expression networks play an
important role given that physical evidence is very sparse and thus have a lower
coverage.

are very likely to share similar biological functions within the organism (MACNEIL;
WALHOUT, 2011).

Evaluation of the fraction of interacting genes with similar GO annotations for
feature-specific and ensemble networks is shown in Figure 7.8. Here, we consider
the complete structure for physical regulatory networks because of their intrinsic
sparseness, and the top 5% edges (5% density threshold) for functional regulatory
networks. Given that expression-based networks are usually densely connected, even
filtered ones, they have a greater chance of presenting higher GO similarity among
interacting genes, which is indeed the case. On the other hand, physical regulatory
networks are sparse and hence achieve lower fractions of genes with GO annotation
similarities. Interestingly, the inferred ensemble networks not only keep with the
performance of expression networks, but actually improves it, which reflects the ad-
vantage of using ensemble systems to combine information from multiple lines of bio-
logical evidence. We further evaluate biological properties and biological consistency
of networks by performing a centrality-based analysis (see Appendix B), observing
important evidence of functional and structural conservation between these organ-
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Figure 7.8: Biological validation of inferred feature-specific and ensemble networks
using GO data. The TRN network inferred by our ensemble learning method has a
higher fraction of interacting genes sharing GO annotations in contrast to all feature-
specific networks, for every case tested. This indicates the biological plausibility of
the reconstructed TRNs, since it is expected that connected genes exert similar
biological functions.

isms (i.e., human and fly, and human and worm), which may introduce valuable
knowledge to investigate human biology.

7.6 Conclusion

In this chapter we discussed an ensemble system to infer TRNs based on multi-
ple types of biological evidence, i.e., diversity in the data level of the system. The
results presented here evaluate, both biologically and in terms of standard ML met-
rics, ensemble networks reconstructed from a compendia of data generated by the
ENCODE and modENCODE consortia. More precisely, we combine information
carried by gene expression profiles, evolutionarily conserved motifs and TF binding
occupancy profiles using an ensemble learning method to infer regulatory networks
for human, fly and worm.

In summary, we found that ensemble networks are very accurate, showing an ex-
pressive and statistically significant overlap with known regulatory interactions from
benchmark data. A comparison between ensemble networks and feature-specific
networks in terms of their AUC scores pointed a performance gain for the three
organisms studied. The quality of the final networks built with our ensemble sys-
tem is superior than all feature-specific networks reconstructed. This suggests that
Borda count can also deal with the problem of combining several networks inferred
from distinct lines of biological evidence, in which predictions may have a different
coverage, biological meaning or weights’ magnitude, in addition to its suitability to
combine multiple networks inferred from the same data set as performed in the work
by Marbach et al. (2012).
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According to our results, different biological data sets may be highly comple-
mentary to each other and should be reunited in the inference process whenever
feasible. Different feature-specific networks (i.e., the individual networks) not only
bring new and assorted information into the reverse engineering of GRNs, but also
play an important role reinforcing relevant edges from distinct biological evidences
and consequently, improving the overall accuracy of inferred networks. In particu-
lar, we observed that physical regulatory networks tend to be very informative and
useful for ensemble-based network inference, corroborating the study of Marbach et
al. (2012). This is particularly true for human ensemble networks, which show a
high overlap with physical regulatory networks and whose interactions weights seem
to be re-ordered upon the use of functional evidence (i.e., gene expression data).
On the other hand, when physical regulatory evidence is scarce, the use of gene
expression data is crucial to guarantee a good coverage of the ensemble TRN, as it
is the case for fly and especially worm.

Moreover, our findings point that ensemble networks also carry more biologically
plausible content and structure. Using GO annotations of biological process to vali-
date both feature-specific and ensemble networks, we observed that connected genes
share more similar biological functions in the final ensemble networks reconstructed
by our method. This is an interesting feature according to the modularity property
of biological networks (MACNEIL; WALHOUT, 2011).
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8 CASE STUDY III: DIVERSITY IN ALGORITHMS

So far we have discussed ensemble-based solutions for the problem of unveiling
the structure of TRNs, which, back in Figure 1.1, act in the interface between the
gene level and the RNA level of a GRN. In this chapter, we move towards the post-
transcriptional level of gene expression regulation, which occurs at the RNA level,
and treat the problem of predicting microRNA target genes. Here, we discuss an
inference method based on ensemble learning that classifies candidate miRNA target
genes using a compendium of different algorithms, that is, it explores diversity in the
learner level induced by an assorted set of algorithms. This architecture is shown in
Figure 5.2, panel C.

8.1 Introduction

As has been noted, miRNAs are important non-coding RNAs due to their sta-
blished role in post-transcriptional regulation of gene expression. So far, miRNAs
are known to cause downregulation of gene expression either by mRNA cleavage or
translational repression (BARTEL, 2004; DJURANOVIC; NAHVI; GREEN, 2011). Simi-
larly to the investigation of TFs, target identification is crucial to an understanding
of the biological functions of miRNAs. In addition, there is a growing body of ev-
idence of miRNAs participation in the development of diseases, including cancer
progression (LIU et al., 2011), thus turning the problem of discovering novel miRNA
target genes in an important goal in the field of Bioinformatics.

In Chapter 4 we outlined state-of-the-art methods for the prediction of miRNA
target genes, discussing the relevance of ML algorithms in the field. As Mitra and
Bandyopadhyay (2011) observes, ML-based predictive systems have had the best
and most balanced results so far in terms of specificity and sensitivity. Nonetheless,
several limitations still apply to this scenario and degrade methods performance. In
short, (i) the scenario encompasses a severe class imbalance, given that the iden-
tification of negative examples is still not properly addressed (STURM et al., 2010;
MITRA; BANDYOPADHYAY, 2011), (ii) current methods are relatively robust, but
they are not sensitive to redundant or irrelevant features (XIAO et al., 2009) and (iii)
different inference algorithms provide distinct predictions, which often present an
extremely low overlap among them (SETHUPATHY; CORDA; HATZIGEORGIOU, 2006;
BARBATO et al., 2009). In addition, most methods for miRNAs target identification
still suffer from high false positive rates (ZHENG et al., 2013). Coupled with the
above drawbacks, this issue enforces the need to develop more accurate and reliable
algorithms.

Despite the large evidence of the success of ensemble-based strategies in other
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Figure 8.1: Structure of an ensemble system with diversity in the learner level for
the prediction of post-transcriptional regulation by microRNAs

Bioinformatics problems, as discussed in the paper by Yang et al. (2010), when it
comes to the prediction of miRNA target genes, ensemble algorithms or ensemble
systems have not been properly explored yet in order to alleviate the aforementioned
limitations. Hence, in this chapter we propose the use of ensemble learning in a sys-
tem designed to explore diversity in the learner level, generated by the simultaneous
use of multiple and distinct ML algorithms. This architecture, shown in Figure 8.1,
is motivated by the results achieved with an ensemble classifier system built on top
of random forests, named RFMirTarget, which was also developed in the scope of
this thesis (see Appendix A for a description and analysis of performance).

Specifically, we observed that despite the statistically significant higher accuracy
of RFMirTarget in contrast to other ML algorithms, it still fails to correctly classify
some examples that are properly identified by other (sometimes weaker) methods.
In other words, even if competing methods are not as accurate as RFMirTarget, they
may still contribute to a better performance by providing information on examples
that could not be correctly identified by the proposed ensemble-based tool given
that they are out of its generalization bounds. Thus, in this chapter we investigate
the advantages of predicting miRNAs target genes by means of an ensemble system
that combines the abilities of multiple ML algorithms.

8.2 Data level

We train our ensemble-based predictive system with experimentally verified ex-
amples of human miRNA targets collected by Bandyopadhyay and Mitra (2009)
for the training process of MultiMiTar (MITRA; BANDYOPADHYAY, 2011), a SVM-
based miRNA target predictive system. The data set is composed of 289 biologically
validated positive examples extracted from miRecords database (XIAO et al., 2009)
and 289 systematically identified tissue-specific negative examples. The use of such
negative examples aims at fulfilling a weakness in earlier ML approaches, which
commonly adopt artificial randomly generated sequences as negative examples.

The data set gathered by Bandyopadhyay and Mitra (2009) does not comprises
information about the actual site of alignment between miRNAs and their targets,
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which is a compulsory information for the features extraction step inherent to ML
approaches, but solely the accession ids of their respective sequences. Therefore,
we manually download miRNAs and target sequences from miRBase version 17
(http://www.mirbase.org) and NCBI (http://www.ncbi.nlm.nih.gov) databases, re-
spectively, and run a sequence alignment tool to find the exact alignment site. As
the performance of BLAST1 for miRNA targets search has been discussed to be con-
troversial given the short length of their sequences (DAI; ZHUANG; ZHAO, 2011), we
opt for using the miRanda software (ENRIGHT et al., 2003) to pre-process the data
and obtain the exact miRNA-target binding sites. We apply miRanda in a pairwise
fashion, i.e., for every pair of positive and negative examples of miRNA-target genes
collected from literature, and post-process its output, extracting a set of descriptive
features used to train the model.

MiRanda detects potential microRNA target sites in genomic sequences by run-
ning a score-based algorithm to analyze the complementarity of nucleotides (A:U or
G:C) between aligned sequences. First, a dynamic programming local alignment is
carried out between the query miRNA sequence and the reference sequence. The
scoring matrix allows the occurrence of the non-canonical base-pairing G=U wob-
ble, which is a non Watson-Crick base pairing with important role in the accurate
detection of RNA:RNA duplexes, and is based on the following parameters: +5 for
G≡C, +5 for A=U, +2 for G=U and -3 for all other nucleotides pairing.

The second phase of the algorithm takes alignments that scored above a given
threshold and estimates the thermodynamic stability of their RNA duplexes. Finally,
detected targets with favourable energy property are selected as potential targets.
Target site alignments satisfying both thresholds (score and energy) are given as
miRanda output. Therefore, a benefit in employing miRanda to detect binding sites
between miRNAs and potential targets is that despite the high probability of finding
interaction sites due to some extent to the short length of miRNAs, miRanda filters
this information by means of its thresholds. However, we adopt low threshold values
such that all reference sequences with the minimal requirements to be considered
potential targets are kept by miRanda, leaving the task of refining results for our
tool.

Besides the scoring matrix, four empirical rules are applied for the identification
of the miRNA binding sites, counting from the first position of the 5’ end of the
miRNA: i) no mismatches at positions 2 to 4; ii) fewer than five mismatches between
positions 3-12; iii) at least one mismatch between positions 9 and L-5 (where L is
the length of the complete alignment); and iv) fewer than two mismatches in the
last five positions of the alignment (ENRIGHT et al., 2003). An example of output
provided by miRanda for the miRNA hsa-let-7a and its target HGMA2 is depicted in
Fig. 8.2. To help in the discussion of features definition (next section), we highlight
the seed region of the alignment, composed by nucleotides 2 to 8 to count from
the 5’ end of the miRNA sequence, as well as we numerate nucleotides 1 and 20,
also using as reference the 5’-most position of the miRNA. In this example, we can
observe perfect complementarity in the seed region (binding is denoted by the pipe
symbol).

After running miRanda on the original data set, we obtain 482 positive and 382
negative miRNA-target pairs, which correspond to the training instances used to

1BLAST, Basic Local Alignment Search Tool, is the most commonly used sequence similarity
search tool in Bioinformatics.
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Figure 8.2: Example of miRNA-target alignment predicted by miRanda.

build our inference method. The increase in the number of training instances is due
to both the approach followed in data collection, i.e., download of all variations of
miRNAs sequences regarding pre-miRNA arm of origin or closely mature closely re-
lated, and to the possibility of occurrence of multiple binding sites between the same
pair of miRNA and candidate target sequence. For instance, the pair hsa-miR-1
and NM_017542.3 indicated in the data set by Bandyopadhyay and Mitra as a pos-
itive miRNA-target pair has two possible binding positions according to miRanda
analysis (possible binding positions in the reference sequence are 996 to 1017 and
2992 to 3013). However, we emphasize that albeit our training data set size is dif-
ferent than the one used in Mitra and Bandyopadhyay (2011), they derive from the
original data set used for training MultiMitar.

8.2.1 Features

The negative and positive examples predicted by miRanda consist of the align-
ment between miRNA-mRNA pairs, based on which the classifier features are ex-
tracted. In addition, miRanda provides some alignment properties such as score
and length. The set of 34 descriptive features used to train our predictive system,
summarized in Table 8.1, is divided into five semantic groups as follows:

• Alignment features (2). Score and length of the miRNA-target alignment
as evaluated by miRanda, given by integer values ranging from 140 to 181
(alignment score) and from 7 to 26 (alignment length).

• Thermodynamics features (1). Evaluation of the minimum free energy
(MFE) of the complete miRNA-target alignment computed by RNAduplex
(HOFACKER, 2003), given by numeric values ranging from -13.7 to 22.1.

• Structural features (5). Quantification of the absolute frequency of Watson-
Crick matches (G:C and A:U pairing) and mismatches (G:U wobble pair, gap
and other mismatches) in the complete alignment, given by integer values
ranging from 0 to 20.

• Seed features (6). Evaluation of nucleotides in positions 2-8, to count from
the 5’-most position of the miRNA, in terms of thermodynamics (by RNAdu-
plex) and structural alignment properties.

• Position-based features (20). Evaluation of each base pair from the 5’-most
position of the miRNA up to the 20th position of the alignment, assigning
nominal values to designate the kind of base pairing in each position: a G:C
match, an A:U match, a G:U wobble pair, a gap and a mismatch.
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Table 8.1: Summary of features used for miRNA-target classification
Feature Name Feature Name

1 Alignment’s score 18 Position 10
2 Alignment’s length 19 Position 11
3 Alignment’s minimum free energy 20 Position 12
4 Number of G:C’s in the alignment 21 Position 13
5 Number of A:U’s in the alignment 22 Position 14
6 Number of G:U’s in the alignment 23 Position 15
7 Number of alignment gaps 24 Position 16
8 Number of alignment mismatches 25 Position 17
9 Position 1 26 Position 18
10 Position 2 27 Position 19
11 Position 3 28 Position 20
12 Position 4 29 Seed’s minimum free energy
13 Position 5 30 Number of G:C’s in the seed
14 Position 6 31 Number of A:U’s in the seed
15 Position 7 32 Number of G:U’s in the seed
16 Position 8 33 Number of gaps in the seed
17 Position 9 34 Number of seed mismatches

8.3 Learner level: miRNA target prediction by multiple di-
verse algorithms

In this chapter we are interested in exploring the different prediction bias carried
by distinct ML algorithms as a resource to improve results in the discovery of novel
miRNA target genes. We believe that current issues identified in the scenario of the
problem tackled, such as large class imbalance, high FPR and significant disparity
among distinct classification algorithms (SETHUPATHY; CORDA; HATZIGEORGIOU,
2006; STURM et al., 2010; ZHENG et al., 2013), are strong motivations for the use of
ensemble learning. Moreover, the analysis of the performance of RFMirTarget (see
Appendix A for details) also suggests that this particular Bioinformatics problem
could also benefit from the potential of ensemble systems, as has been reported for
other applications (YANG et al., 2010), given that low performing methods may still
carry exclusive information.

To illustrate how diversity may arise among multiple algorithms, we compare the
class probabilities predicted by six distinct ML classifiers that are trained with the
training data described in section 8.2 for an independent test set. To this end, we
download a collection of 172 experimentally supported human miRNA targets and 33
experimentally confirmed false target predictions from TarBase 5.0 (PAPADOPOULOS
et al., 2009) to serve as the independent test set. Here, we do not go into details
about the functioning and parameters of individual algorithms since our purpose
is simply to show the different classifications that may result from each prediction
method.

We compare the performance of these classifiers for 50 random positive instances
and 30 random negative instances of the testing data set, as shown in Figure 8.3.
For positive examples, a class probability higher than 0.5 yields the correct classi-
fication. Conversely, for negative examples, correct classification is achieved if the
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Figure 8.3: Comparison of class probabilities assigned by different ML algorithms
to independent miRNA-target test examples. While robust methods such as a RF-
based classifier system (RFMirTarget) has the best coverage and performance among
all classifiers, weaker algorithms still can predict examples that do not fit within the
scope of the generalization power better methods.

class probability is equal or lower than 0.5. As one can note, although RFMirTar-
get predictions have a good coverage – and in fact RFMirTarget achieves the best
performance for this independent test set as discussed in details in Appendix A –
some examples misclassified by the proposed RF-based tool are correctly classified
by other methods, even by the weakest ones (KNN and GLM). This disparity may
be even larger for different data sets, raising interesting complementary features
to be explored. If one would somehow take into account other methods’ opinion
to complement the classification by RFMirTarget tool, one could expect enhanced
results by expanding the generalization bounds of the predictive system.

Following this direction, we propose a novel solution for the problem of predicting
miRNAs target genes, which is based on ensemble learning to explore the knowledge
raised by multiple, heterogeneous learners. Learners simultaneously create classifier
models for the input training examples, which will potentially be different given the
implicit bias carried by the ML algorithms embedded by each learner.

An overview of our miRNA target prediction method is depicted in Figure 8.1.
We develop this ensemble system in R programming language and implement the
learner level by considering popular classifiers in the field of Bioinformatics as well
as their availability as R packages. More precisely, the learner level is composed of
five distinct ML algorithms, as follows:

• KNN, the K-nearest neighbor algorithm, an instance-based learning classifier
(AHA; KIBLER; ALBERT, 1991).

• JRip, an implementation of a propositional rule learner, the Repeated Incre-
mental Pruning to Produce Error Reduction – RIPPER (COHEN, 1995);



141

• J48, a Java implementation of the C4.5 algorithm for classification via decision
trees (QUINLAN, 1993);

• NB, naïve Bayes, a probabilistic classifier based on the Bayes theorem (JOHN;
LANGLEY, 1995).

• SVM, for support vector machine, a classifier based on the concept of hyper-
planes (CHANG; LIN, 2011).

These classifiers are available in the packages e1071 (MEYER, 2004) and RWeka
(HORNIK; BUCHTA; ZEILEIS, 2009). Since we are not interested in boosting the
performance of a single classifier, but rather exploring the possible complementarity
among multiple classifiers, we adopt the caret R package to automatically optimize
their respective parameters.

All learners train their classifier models based on the training data described in
section 8.2. Whenever data partitions are created, for instance, random data split
into training and test for cross-validation, all learners use the exactly same set of
examples to build and test their models. It is important to note that the number of
learners in the ensemble system or the specific algorithms that they implement are
extremely flexible properties of the proposed solution.

8.4 Combiner level

Although ensemble systems designed upon diversity in the learner level are not
a new approach in the field of ML, here we concentrate in the design issues related
to the combiner level and propose new combination methods inspired by the social
choice theory with the goal of more efficiently merging the information carried by
different learners and maximizing the synergy expected to arise from this strategy.
Specifically, we combine the results from several heterogeneous learners by using the
SCFs Borda count (Equation 3.5), the Copeland function (Equation 3.6) and the
Footrule function (Equation 3.7), whose functioning was described in Chapter 3.

Briefly recalling the application of SCFs to our problem of interest, once the
classification is over at the learner level, each learner outputs a list of predicted
regulatory interactions ordered in a descending fashion based on their probabilities
for the positive class, which we refer to as their preference. An example for three hy-
pothetical learners is shown in Figure 3.3 (step A). Because learners embed distinct
algorithms, it is very likely that differences exist among their preferences. In other
words, some learners will attach a high probability for some true miRNA-target
examples, while others may fail to recognize it due to their particular prediction
bias.

Learners preferences are collected and later integrated by the combiner F1, which
takes the form of one of the SCFs outlined above. The combiner leverages the
diverse opinions about the class of the input examples (i.e., targets or non-targets)
by merging the output produced by all learners into a single preference ordering
using the corresponding equation to compute new, consensus scores (for a graphical
example, we refer reader back to Figure 3.3).

We remark that while Borda count has been already used as combination method
in ensemble learning, the use of the Footrule function and the Copeland function
for this purpose are proposed in this thesis. We compare the above SCFs against
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the plurality voting (Equation 3.1), which corresponds to the combination method
adopted by the majority of works in the fields of ensemble learning and collabora-
tive learning (MODI; SHEN, 2001; AGOGINO; TUMER, 2006; MARBACH et al., 2012;
SANTANA; CANUTO; ABREU, 2006). For binary classification tasks, as it is the case
in our application, plurality voting replays a simple majority voting.

8.5 Results

We run our ensemble system for the data set and descriptive features presented
in section 8.2, applying two evaluation points: the first one assesses the performance
for individual learners, while the second appraises the predictions made upon the
social choice. For both of them, we perform a 10-fold cross-validation2 in order to
reduce the effect of over-fitting. At the end of cross-validation, we average the ROC
curves and AUC scores computed across all folds to generate a performance measure
for each learner. As explained in Chapter 5, the average ROC curves are obtained
by taking vertical samples of the ROC curves for fixed FP rates and averaging the
corresponding TP rates.

Figure 8.4 shows the average ROC curves for a 10-fold cross-validation evaluation
of our system. Curves a) – e) refer to individual predictions by learners in the
ensemble system, whereas curves f) – i) depict the performance of the ensemble
prediction for different combiners. These plots show the average ROC curves overlaid
by boxplots, which specify the median, maximum and minimum values, as well as
the upper and lower quartiles across all folds.

There results show that our ensemble system is able to keep with the performance
of the individual learners, in some cases even improving it. For instance, Borda count
and Copeland function slightly improved the performance upon decision trees (J48),
which in this scenario performed best. Nonetheless, the interesting thing to note
about these graphs is that the fact that some learners (e.g., KNN) are clearly weaker
than others does not impairs the performance of the ensemble system. In other
words, the ensemble system and the proposed combiners are robust to this situation.
This is important because it proves that ensemble learning has the expected effect
in this specific Bioinformatics application: it reduces our chances of making an
unfortunate selection and choosing a model with poor performance.

A comparison among the performance of individual learners and the proposed
ensemble systems in terms of their average AUC scores (and standard deviations) is
given in Table 8.2 (the first two rows, "complete knowledge"). We observe that JRip
and J48 learners performed particularly well in this task, reaching AUC scores of
0.799 and 0.812, respectively. Moreover, the latter has the smallest variance among
all learners. In contrast, KNN presented a very poor performance, while SVM and
NB reached an AUC score of around 0.7. In what concerns the performance of
the ensemble-based predictions, the three SCFs (Borda, Copeland and Footrule)
applied in this thesis outperform the traditional approach by plurality voting. The
highest average and lowest standard deviation are found for predictions provided by
Copeland function.

2One round of cross-validation involves partitioning the input data set into complementary
subsets, performing the analysis on one subset (the training set), and validating the analysis
on the other subset (the esting set). To reduce variability, multiple rounds of cross-validation are
performed using different partitions (folds), and the validation results are averaged over the rounds.
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Figure 8.4: Average ROC curves for the prediction of miRNAs target genes with
complete knowledge. Curves a) to e) refer to predictions by individual learners,
whereas curves f) to h) evaluate the predictions by our ensemble system when im-
plementing distinct combiners.
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Table 8.2: Means (and standard deviations) for the AUC scores of individual learners
and ensemble classifiers for a 10-fold cross-validation.

Individual learners Ensemble system
JRip J48 KNN SVM NB Plurality Borda Copeland Footrule

Complete 0.799 0.812 0.580 0.716 0.709 0.788 0.821 0.844 0.796
knowledge (0.065) (0.041) (0.069) (0.046) (0.061) (0.049) (0.046) (0.030) (0.053)
Partial 0.681 0.573 0.668 0.635 0.595 0.770 0.742 0.814 0.720

knowledge (0.143) (0.131) (0.172) (0.163) (0.104) (0.106) (0.096) (0.080) (0.081)

Here we can clearly observe that ensemble learning indeed has the advantage of
improving results upon the performance of a single learner, even of strong learners.
All combiners were found to outperform the KNN, SVM and NB learners with
statistical significance (5% significance level) when comparing the distribution of
AUC scores produced by these methods by means of a Mann-Whitney U statistical
test. Moreover, the AUC scores for Borda count and Copeland function are 0.821
and 0.844, respectively, while the best individual learner, J48, has achieved an AUC
score of 0.812 – a difference of 0.032 among scores. Nonetheless, this difference is
not statistically significant at a significance level of 0.05.

Next, we repeat our experiments for a scenario in which learners have a partial
knowledge about the classification features involved in this application. A quite
common assumption in classification tasks is that the data set for model development
is centralized and fully accessible by the classifier (AGOGINO; TUMER, 2006; ZENG
et al., 2012). In this case, there are several well-established classification algorithms
that are able to provide accurate models (JAIN; DUIN; MAO, 2000).

Nonetheless, in many situations data centralization may be impracticable or
undesirable due to context-specific constraints, e.g., storage and computing costs,
communication overhead and privacy or intellectual property concerns, resulting in a
distributed data mining problem (PRODROMIDIS; CHAN; STOLFO, 2000). Examples
of scenarios where these restrictions may arise are biomedical research, fraud detec-
tion in financial organizations and calendar management by software assistants, in
which ethical, legal or privacy issues prevent data sharing, thereby inducing a phys-
ical distribution of data. Under these constraints, classification requires distributed
data analysis, in which local models are built with minimal data communication
among sources and later combined into a composite, global model (KARGUPTA et
al., 1999).

Here we are specifically interested in scenarios in which data distribution im-
plies a partial knowledge about the descriptive features. In this case, referred to as
vertically partitioned data, data sources contain different types of information, i.e.,
different feature sets, related to the same set of instances. This is known to be a crit-
ical issue because conventional classification algorithms are likely to fail in building
an accurate model given that not all features that are relevant for classification are
accessible (MODI; KIM, 2005). Moreover, the combination of local models is not very
straightforward because their performance can present a substantial variation for
different parts of the input space and not every combination strategy can effectively
deal with this situation (TUMER; GHOSH, 2002). Hence, the accurate classification
under distributed, vertically partitioned data remains an open problem in the field
of data mining.

To simulate a scenario of vertical data partitioning, we assume that each feature
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group defined in section 8.2.1 is located in a different site and that each learner has
access to a single data site (and consequently to a single feature group). In each
fold of the cross-validation process, we perform a random distribution of learners
across the data sites such that the number of features available to each learner varies
throughout the multiple folds. This aims at preventing any performance bias due
to favourable combinations between ML algorithms and features groups.

We compare the performance of the individual learners and the ensemble sys-
tems under partial knowledge in Table 8.2 (bottom lines), in which it is also possible
to contrast the behaviour of the system between the scenarios of complete knowl-
edge and partial knowledge. As expected, we observed two situations: (i) the overall
performance of our ensemble system and its individual learners is weaker when com-
plete knowledge is substituted by partial knowledge and (ii) under partial knowledge,
AUC scores have a higher standard deviation.

The weaker performance happens because incomplete knowledge about the de-
scriptive features affects the generalization power of the algorithm. As we discussed,
classification algorithms generally assume that all relevant features are accessible.
Moreover, the dimension and quality of the features set are known to influence in
classification results. Therefore, whenever this set is small or not sufficiently infor-
mative, the accuracy of the system suffers a significant drop.

Moreover, a higher variation in performance is observed due to the explicit or
implicit bias carried by algorithms. According to Domingos (2012), every learner
"must embody some knowledge or assumptions beyond the data it’s given in order
to generalize beyond it". Hence, some algorithms may hold a preference for certain
generalizations over others. As a result, even a good performing algorithm may
return noticeably weaker predictions for particular groups of features. Therefore,
in general, ML algorithms performance is very unstable across multiple folds of a
cross-validation assessment, which potentially reduces the average performance of
the overall process.

The interesting point about these experiments is to observe the potential of
the ensemble effect raised by the proposed inference method. Similar to the re-
sults obtained for complete knowledge, the average AUC scores computed for the
ensemble-based predictions are higher than the performance of individual learners
when classification is performed upon partial knowledge. Whereas for complete
knowledge there is a slight improvement of 0.032 between Copeland’s and J48’s av-
erage AUC scores, for partial knowledge the difference between the best ensemble
(i.e., Copeland function) and the best individual (i.e., JRip) predictions raises to
0.1404 – a four-fold increase between these values.

We performed a Mann-Whitney U statistical test to compare the AUC scores
for Copeland’s and JRip’s predictions and we found that the better performance
observed for Copeland function is statistically significant (p = 0.02). In fact, for
a 5% significance level, we found statistical significance in the differences between
the performance of Copeland function and all individual methods, as well as in
relation to the Footrule function. In contrast, Borda count and Footrule function
solely present statistically significant performance gain when compared to NB and
J48 (p < 0.01), while the AUC scores produced by Plurality voting are significantly
higher than those computed for NB, J48 and SVM (p < 0.05)

More interestingly, in general, considering SCFs as combination methods in an
ensemble system has a very positive effect over the standard deviation, no matter the
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Figure 8.5: Average ROC curves for the prediction of miRNAs target genes with par-
tial knowledge. Curves a) to e) refer to predictions by individual learners, whereas
curves f) to h) evaluate the predictions by our ensemble system when implement-
ing distinct combiners. Even in the case of incomplete or missing data for training
learners’ classifier models, the ensemble system is able to provide better predictions,
reflecting its robustness to deal with adverse classification situations.
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choice of the combiner (compare last line of Table 8.2). This observation suggests
that the classification model devised by the proposed combiners is more robust
than the models built by individual learners, or even by ensemble systems adopting
the traditional plurality voting as the combiner. To help visualization of results,
we provide the average ROC curves for the individual learners and the ensemble
systems obtained under partial knowledge in Figure 8.5. The boxplots over the
average curves allow us to easily observe the difference between standard deviations
of individual learners (curves a – e) and of the ensemble system (curves f – i), the
latter being much lower than the former. Comparing the four combination methods
used in terms of their average ROC curves, we observed that plurality presents the
highest variances and smallest lower quartiles among all methods, especially for low
rates of false positives. The good performance of Copeland and Footrule functions
comes at a cost, though, since they are more computationally demanding than Borda
count and plurality voting.

Finally, we compare the density probability distribution for the AUC scores com-
puted by 10-fold cross validation for the models trained by the set of learners and
by the distinct ensemble systems implemented. As shown in Figure 8.6, the so-
cial choice (ensemble system) tends to generate classifiers with higher predictive
accuracy, indicated by the density distributions shifted to the right in relation to
individual models. This is especially true for the case of features distribution in
vertically partitioned data (Figure 8.6(b)). We performed a Mann-Whitney U test
to compare these values and found statistically significant differences between the
density distributions of AUC scores produced by the ensemble system and the indi-
vidual learners in both cases (p < 0.01 for complete knowledge and p < 8× 105 for
partial knowledge).
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Figure 8.6: Performance comparison between individual learners and ensemble sys-
tems in terms of AUC scores density distributions

While in this specific application data privacy or overhead generated by data
communication are not a concern, the SCFs herein proposed may be used in real
distributed classification tasks in which these requirements apply. We remark that
only high level information about the training data is communicated from learners
to the combiner, specifically the instances ids and their respective class probability,
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which avoids any privacy issue and the transfer costs of disclosing the raw data.
Thus, for real disributed classification tasks, the proposed SCFs represent a very
promising solution to combine the local models into a single global model given
their remarkable performance, robustness and inherent simplicity. For instance,
they do not require offline training or parameters tunning, which is usually the case
for methods applied in the literature related to distributed data mining.

8.6 Conclusion

In this chapter we investigated the performance of an ensemble learning system
designed to explore the complementarity among distinct ML algorithms in the pre-
diction of miRNA target genes. As has been noted in literature, the simple union or
intersection of distinct miRNA target prediction tools may impair classification per-
formance given the large diversity among their predictions, which is caused to some
extent by their subtle methodological differences (SETHUPATHY; CORDA; HATZIGE-
ORGIOU, 2006). Hence, while the use of ensemble-based methods seems to be a
promising approach in this context, the proper strategy to deal with this scenario
and leverage as efficiently as possible the diverse information retrieved by each al-
gorithm, providing a good compromise between the union and intersection of their
predictions, is not clear nor trivial.

Although ensemble systems designed upon diversity in the learner level are not a
new approach in the field of ML, in the current work we concentrated in the design
issues related to the combiner level and proposed new combination methods inspired
by the social choice theory with the goal of more efficiently merging the information
carried by different learners and maximizing the synergy we expect to arise from
their interaction. In the meantime, this solution also advances the state of the art
regarding the Bioinformatics problem under consideration, given that there is still a
lack of efforts in the direction of ensemble methods concerning this application, as
remarked by our literature review of Chapter 4.

Here we made the point that the performance gain raised by ensemble learning in
this scenario is real and significant for a compendia of raw, popular ML algorithms.
A comparison in terms of average ROC curves and AUC scores suggested that the
proposed ensemble system built on top of diversity in the learner level is not only
a straightforward solution for the study of miRNA target genes, but is also very
efficient and robust. Results obtained with the proposed SCFs, namely Borda count,
Copeland function and Footrule function, outperformed individual ML methods
with statistical significance, and in addition were also better than the traditional
combination by plurality voting in most of the scenarios.

More interestingly, even under shortage of information regarding the training
data, either due to distributed or missing data, our ensemble system was able to pro-
vide more reliable predictions, circumventing the limitations posed by this scenario.
The performance gain for a situation in which features are distributed among learn-
ers (i.e., vertically partitioned data) was even more remarkable than for a complete
knowledge about the descriptive features. This efficiency and robustness presented
by the combination methods herein proposed is accompanied by other interesting
advantages: they are extremely simple and of easy implementation, do not require
transfer of large volumes of data, do not assume an offline training process or pa-
rameters setup, and preserve data privacy whenever this is a concern. Therefore,
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the results discussed in this chapter contribute to the field of ML twofold: first,
they expand the collection of combination methods used in the application of en-
semble learning, representing efficient and thus a promising solutions to be tested in
other domains; and second, the SCFs applied in the proposed solutions also consist
of a new interesting approach for distributed data mining problems given their ro-
bustness, accuracy and simplicity even under the complicated scenario of vertically
partitioned data.
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9 CONCLUSION AND FUTURE WORK

Central to the proper functioning of living organisms is the cells’ ability to con-
tinuously sense and respond to environmental changes and internal cues (BALAZSI;
OLTVAI, 2005), and the way they accomplish this task is by means of their multi-
layered regulatory networks. GRNs are complex and highly structured networks
whose wiring defines and controls how the various parts of the system, such as
genes and genes’ products, operate and coordinate in order to perform information
processing within cells. As a consequence of this subcellular interconnectivity, the
behavior and phenotypic modifications observed in the system are rarely the effect
of the activity of a single gene, rather, they tend to emerge from the joint activ-
ity among interacting genes (BARABÁSI; GULBAHCE; LOSCALZO, 2011). Therefore,
discovering the components of the system is not enough to understand organisms’
behavior, it is also crucial to discover how these components are interconnected
within the system.

Despite the significant increase in our capacity of producing biological evidence
and experimental data - a result of the remarkable technological advances and the
innumerous genome-scale projects carried in the last decade like the Human Genome
Project (LANDER et al., 2001), the ENCODE (The ENCODE Project Consortium et al.,
2011) and modENCODE (The modENCODE Project Consortium et al., 2010) consortia -
the noise and incompleteness of generated data sets coupled with our partial knowl-
edge about the mechanisms of gene regulation underlying organisms’ functioning still
impair a comprehensive characterization of the systems-level organization of living
organisms. This thesis addressed this specific research question, which is a major
challenge in the field of Bioinformatics, proposing new methods and technologies
to optimize the reverse engineering of GRNs. In particular, we focused our atten-
tion in reconstructing interactions involved in the regulatory networks controlled by
TFs and miRNAs, i.e. transcriptional and post-transcriptional regulatory networks.
In contrast to the vast majority of related works, which continue to propose new
algorithms to improve network inference, here we followed a recent trend in Bioin-
formatics and explored ensemble learning strategies to leverage the wide diversity in
data and methods already available in the literature, motivated by the distinguished
performance of this learning paradigm in machine learning applications.

The main deliverable of this thesis was to perform a comprehensive study of
distinct ensemble system structures applied to the reverse engineering of GRNs, as-
sessing their potential to enhance inference results when exploring different sources
of diversity offered by the scenario. Specifically, we compared the performance of
ensemble-based methods with traditional approaches in three directions: (i) infer-
ence based on multiple runs of a stochastic optimization method in contrast to a
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single run (Chapter 6), (ii) use of multiple lines of biological evidence in contrast to
a single data type (Chapter 7) and (iii) application of multiple ML algorithms in
contrast to a single algorithm (Chapter 8). This choice was highly influenced by the
state of the art related to the problems adressed, in particular, to the limitations and
opportunities identified in their respective scenarios. To the best of our knowledge,
none of the works available in literature investigates and assesses the application of
ensemble learning to the problem of inferring GRNs in the extent we performed in
this thesis. Hence, this work contributes to the field of Bioinformatics by providing
new and comprehensive insights about the advantages and limitations of ensem-
ble learning in this specific context, consolidating it as an efficient and promising
approach to follow.

By building and testing three distinct ensemble systems, each of which exploring
a distinct type of diversity raised by the scenario, we showed that ensemble learning
has a lot to contribute to this field of knowledge. Either when exploring diversity
in the learner level or in the data level, we observed that the ensemble systems’
performance was not as affected as traditional ML approaches by data issues or by
the underdetermination related this to the reverse engineering of GRNs. Hence, re-
garding our Hypothesis 1, we conclude that the proposed ensemble learning strategy
alleviates the main shortcomings related to the scenario, providing the tools to treat
the large uncertainty about the most plausible network structure and to overcome,
at least partially, intrinsic technical and computational issues.

Indeed, for every case study discussed in this thesis we observed important per-
formance gains in relation to non-ensemble methods, enforcing the idea that diversity
may generate complementary models, which in turn have a great potential to en-
hance inference results when properly combined. A summary of the performance
gains is given in Table 9.1, in which we report the average (with standard deviations)
and the maximum fold change values computed. We emphasize that in several of
the comparisons made, we found statistical significance in the results obtained by
the adopted ensemble learning strategy as discussed in their respective chapters. As
our results suggest, the performance of ensemble learning in this scenario is note-
worthy, thus confirming our Hypothesis 2. Specifically, ensemble systems provides a
robust alternative to explore the critical mass of knowledge accumulated by the sci-
entific community regarding the informative power of distinct biological data types
and the predictive power of popular ML methods, with a real potential to advance
our knowledge in contrast to the gain saturation related to traditional approaches
perceived for this research problem.

Table 9.1: Summary of performance gains in terms of fold changes for the three case
studies discussed in this thesis. We report the average (with standard deviations)
and the maximum values computed.

Type of regulation

Transcriptional Post-transcriptional

Level of diversity
Data level 1.10 (0.086) / 1.30 —

Learner level 1.24 (0.023) / 1.33 1.18 (0.132) / 1.45
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Given their efficiency throughout our experiments and comparisons, we conclude
that ensemble approaches should be considered as an option for GRNs inference
whenever the circumstances allow. In particular, we found that when a variety of
data sets related to the target network is available, this resource should be defi-
nitely explored and preferred over other strategies because it introduces a high level
of diversity within the ensemble system and consequently leads to remarkable per-
formance gains. The notion of the high impact of data quality and availability for
the reverse engineering process is not new. In fact, the richness and completude
of information provided by different types of ’omics’ data (e.g. genomic, transcrip-
tomic and proteomic data) is the core motivation for projects like the ENCODE and
modENCODE consortia, which are working towards mapping the largest number of
functional elements for human and model organisms such as fly and worm in order
to promote the reconstruction of GRNs. Nonetheless, it is still not completely clear
how to accurately leverage this range of information for networks reconstruction, in
especial for higher eukaryotic organisms.

Unfortunately, such range of information as the one provided by the ENCODE
and modENCODE consortia is not always available. Under this situation, we exper-
imentally verified the worthiness of building ensemble systems to better explore the
available data by running distinct algorithms or multiple runs of stochastic methods
over a single data type. In general, this should be a straightforward task to perform.
For instance, for classification tasks such as the problem of predicting miRNA tar-
get genes, many algorithms are available as R Packages, Matlab toolboxes, or even
in softwares like Weka (HALL et al., 2009). Similarly, there are many tools and R
packages available for TRNs inference that could be adopted as learners in the de-
sign of the ensemble system. In both cases, the main effort required regards parsing
methods’ output to a standard format. Surprisingly, despite the large availability of
user-friendly implementations of ML algorithms and reverse engineering tools, com-
bining these methods into ensemble systems has not received the proper attention
in the field, particularly for the reconstruction of post-transcriptional regulatory
networks.

We also investigated the impact of implementation details in the performance of
the ensemble systems. In summary, we concluded that dedicating efforts to devise
more sophisticated combination methods during the design of the ensemble system
is beneficial because they provide better means to exploit the synergy raised by
differently biased methods, thus confirming our Hypothesis 3. In the scope of this
work, we proposed two new combination methods inspired by social choice functions,
namely Copeland and Footrule functions, which not only outperformed predictions
by traditional ML algorithms, but also ensemble systems employing the popular
plurality voting as combiner. The better performance was observed when comparing
both the actual accuracy and the robustness among distinct approaches.

An interesting application of the proposed combination methods is for composing
global models in distributed data mining applications, in which physical distribu-
tion of data implies the requirement of distributed data analysis and, consequently,
training of local models. This is not a trivial task, especially when there are other
concerns involved such as data privacy. Combining local models by means of SCFs
has proved useful and efficient in this context, being able to deal even with the more
challenging scenario of vertically partitioned data, in which none of the learners has
a complete knowledge about the features relevant for classification.
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In addition to the broad investigation regarding the potential of ensemble learn-
ing techniques to enhance GRNs inference, this thesis introduced a number of new
methods and technologies that attend our general goal of optimizing the reverse
engineering of GRNs. As already noted, these novelties span the fields of bioinfor-
matics and computer science, especially machine learning. In summary, the main
contributions of this thesis are:

• Several instantiations of the proposed inference strategy were provided. Specif-
ically, we built ensemble systems to infer GRNs exploring diverse models ob-
tained upon distinct biological evidence, assorted ML algorithms or indepen-
dent runs of a stochastic optimization method. These instantiations are suit-
able for application to distinct problems and data sets.

• A new network inference method based on Genetic Algorithms, which explores
gene expression data to reconstruct TRNs’ structure. In contrast to related
works, this solution proposes new representation and codification schemes for
GRNs using the Boolean network formalism and introduces new fitness func-
tions to evaluate candidate networks.

• A GA mutation operator that introduces the novelty of exploiting prior knowl-
edge using an epsilon-greedy strategy when deciding about mutations. We
showed that the use of our epsilon-greedy mutation operator leads to enhance-
ments over the traditional GA and we expect that similar results can be found
for other domains in which informative prior knowledge is available.

• New combination methods for the design of the ensemble system, inspired by
the social choice theory. According to our empirical evaluation, the proposed
combiners perform better than individual ML algorithms, even the top per-
forming ones, and than the traditional pluraliy voting, introducing accuracy
and robustness to the GRNs inference process.

• Insights about the application of the SCFs presented as combination methods
in this thesis to address the problem of distributed classification tasks, an open
problem in the field of data mining. We demonstrate their suitability and good
performance to deal with the challenging scenario of vertically partitioned
data, being able to combine local models with an excelent trade-off between
data communication and accuracy. Also, whenever privacy is a concern, our
solution is able to reach remarkable performance by transferring solely high-
level information about the data.

• A computational method to predict miRNAs target genes built on top of ran-
dom forests, named RFMirTarget. We show that this ensemble-based algo-
rithm, which was not explored in this specific context before, outperforms
several well-known classifiers with statistical significance, and that its perfor-
mance is not impaired by the class imbalance problem or features correlation,
being able to recover a large portion of true miRNA-target pairs deposited in
specialized public databases.

• Comprehensive regulatory networks built for human, fly and worm using a
compendium of data types from the ENCODE and modENCODE consortia.
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We show that inferred networks have a significant overlap with known interac-
tion from bechmark data sets and significant enrichment for GO annotation,
suggesting that they are highly accurate. These networks introduce inter-
esting insights about the functional and structural conservation among these
organisms, which reinforces their applicability to investigate human biology.
In addition, these networks can be further leveraged in research projects fo-
cused in the biological domain. For instance, they are a valuable resource to
introduce network-based knowledge in diseases study, with the goal of better
understanding regulatory pathway related to these pathological conditions.

We conclude this discussion with an statement from the book The Wisdom of
Crowds by Surowiecki (2005), which says "With most things, the average is medi-
ocrity. With decision making, it’s often excellence". Here we presented a large body
of evidence that this is exactly the case for the reverse engineering of GRNs when
a set of hypotheses is combined within an ensemble system – the aggregation of
multiple diverse models leads to more accurate and biologically plausible results.
Our results encourage the application of ensemble systems to decipher the structure
of GRNs, consolidating ensemble learning as a promising methodology to follow
until there is a technology to produce more thorough and accurate experimental
data, or while we are unable to more efficiently leverage the available data using the
repertoire of standard ML algorithms in their raw form.

However, the great flexibility involved in the application of this learning paradigm
in terms of the many ways of generating a collection of models with complementary
information and combining ensemble members - which is yet to be fully explored in
the field of ML - obviously provides many other fronts for its use in the problem under
consideration. Indeed, the possibilities are too broad to be adressed and assessed
in a single study. Hence, we consider our results motivating first steps towards the
formalization of a new paradigm for GRNs inference and we are confident that this
technology will prosper and that its benefits will become even more expressive and
understandable as its application in this research question matures.

9.1 Future work

As suggestions for future works, we outline the following directions:

• Investigate other social choice functions and ML techniques to apply as the
combiner in the design of ensemble systems, testing and comparing their per-
formance with the ensemble-based system implemented in this thesis.

• Extend the application of the ensemble systems herein described, evaluating
their performance for distinct biological problems and data sets.

• Apply the proposed combination methods in other scenarios, assessing its per-
formance for general machine learning applications.

• Implement the proposed epsilon-greedy mutation operator with other sources
of prior knowledge, comparing the improvements introduced under distinct
scenarios. For instance, one could apply information about PPI, TF-DNA
interactions from ChIP-Seq experiments, known interactions collected from
specialized databases, networks inferred with counterpart methods, among
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others, also investigating its behavior and robustness to distinct levels of noise
contained within the prior information.

• The computational prediction of miRNAs target genes provides putative bind-
ing sites between miRNAs and their targets. Although a single miRNA can
interact with a gene at multiple sites, experimental support is usually given
by miRNA–target gene interactions as opposed to miRNA–target site inter-
actions. Hence, the information extracted from the ensemble system built on
top of multiple algorithms (discussed in Chapter 8) provides a list of poten-
tial miRNA–target gene interactions thatcan be used in conjunction with our
solutions for TRNs inference in order to produce a more reliable description
of GRNs strucutre. It would be thus very interesting to combine transcrip-
tional and post-transcriptional regulatory interactions into a single network
by means of an ensemble system, and apply it to investigate the interplay
between miRNAs and TFs in a regulatory network – a question that remains
unearthed in the field of biology.

• Build an ensemble system to simultaneously explore diversity in the data and
learner levels in order to assess the effects of a higher degree of diverseness
within the system over inference results. In particular, it could be interesting
to incorporate information regarding gene expression data of miRNAs and can-
didate targets into the ensemble system used to predict miRNA target genes in
Chapter 8. This knowledge could boost inference results given that sequence
complementarity does not necessarily leads to functional changes, i.e., changes
in the expression profiles. In addition, this would require non-standard strate-
gies at the combiner level given that the outputs semantics would differ in
contrast to an ensemble system in which all learners run classification algo-
rithms

• Expand the amount of data sets, as well as incorporate different types of
data, into the ensemble system discussed in Chapter 7, which infer regulatory
networks exploring diversity in the data level. For instance, in our study we do
not take into account the DNA chromatin structure, which is known to play
a role in the regulation of the transcription process by making the regulatory
regions of genes accessible or inaccessible to TFs. Another interesting direction
is to include PPIs given the large availability and the good consolidation of
this type of information for networks inference.

• Instantiate an ensemble system built on top of state-of-the-art softwares for
miRNA target prediction that employs more sophisticated combiners as the
SCFs presented in this work. Previous works have concluded that neither the
union nor the intersection of predictions provided by different tools provide a
suitable classification performance. We deem interesting to investigate what
results and conclusions are drawn from the use SCFs in this scenario, assessing
their impact on the combination of predictions drawn upon tools that adopt
different methodological procedures.
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APPENDIX A RFMIRTARGET: A RANDOM
FOREST CLASSIFIER TO PREDICT MICRORNA
TARGET GENES

In this appendix we describe and report results of a computational approach de-
veloped to predict miRNA target genes, named RFMirTarget, that has on the core
of its architecture a random forest (RF) ML algorithm. Random forest (BREIMAN,
2001) is by itself an ensemble method that alleviates many of the drawbacks faced
by classification algorithms in complex and high-dimensional domains by generat-
ing and combining multiple decision tree models, each of which with a different
feature and data subset. This is similar to the structure depicted in the panel A of
Figure 5.2 in the sense that the randomized selection of features and data yields a
distinct decision tree for each tree grown. Xiao et al. (2009) previously applied this
algorithm to carry a systematic analysis of features importance in the classification
of miRNAs targets, whereas here our goal is to deeply explore the predictive power
of the RF algorithm and perform a comprehensive comparison with other popular
non-ensemble methods in the field.

A.1 Introduction

Random forest is a well-known ensemble approach for classification tasks pro-
posed by Breiman (2001). Its basis comes from the combination of tree-structured
classifiers with the randomness and robustness provided by bagging and random
feature selection. Several decision trees are trained with random bootstrap samples
from the original data set (∼ 2/3 of data), each of which grown from a random
subset of features, and afterwards, results are combined into a single prediction: for
classification tasks, by means of voting; for regression tasks, by averaging all trees
results. This approach is shown in Figure A.1. The fact that the predicted class
represents the mode of the classes output by individual trees gives robustness to this
ensemble classifier in relation to a single tree classifier.

Here we train our model with the data and features described in Chapter 8, which
were used in the design of an ensemble system built on top of diversity among learn-
ers. A summary of the descriptive feature may be found in Table 8.1. Hence, data
preparation also employs the miRanda tool to predict the aligment between miR-
NAs and candidate targets. The structure of the proposed ensemble-based method
is shown in Figure A.1. Note that this structure is similar to the ensemble system
composed of multiple instances of a genetic algorithm in the learner level (Figure 5.2
panel A), in the sense that they both explore implicit diversity cause by stochas-
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Figure A.1: Structure of an ensemble system based on random forests to predict
microRNA target genes.

tic methods or randomized algorithms, with the difference that here the combiner
based on majority voting is embedded in the learner level. Performance evaluation
is carried following the criteria explained in Chapter 5.3.

A.2 Performance of RFMirTarget

We start the discussion on the results by presenting the performance of a RF
classifier trained with the total set of features (Table 8.1)1. To train this RF model,
as well as further tree-based models presented in this appendix, we adopt the stan-
dard number of trees suggested by the randomForest R package, namely 500 trees.
Previous studies have shown that performance gain is very subtle when doubling or
highly increasing the number of trees in the forest, and that the mean and median
AUC scores tend to converge asymptotically, thus not justifying the use of very large
forests (OSHIRO; PEREZ; BARANAUSKAS, 2012). We experimentally verify this, also
observing an stabilization of error rates around 350 trees (Figure A.2). Yet, exper-
iments have shown that there is still a performance gain when adopting 500 trees,
thus strengthening our choice regarding the number of trees to be used.

On the other hand, random forests are known to be sensitive to the number of
variables (mtry) randomly sampled as candidates for splitting at each node during
the tree growing process. Thus, we adopt the caret R package (KUHN, 2013) to
optimize this parameter and perform comparison across models. Resampling is
performed to give a better estimative of the error, and based on this estimative
we opted for selecting the mtry values associated to the simplest model within one
standard error of the empirically optimal model, with the purpose of avoiding any
overfitting that might be caused by the best performing tuning parameter.

The confusion matrix for the optimized model, averaged over five repetitions of
10-fold cross-validation, is shown in Table A.1. Our classifier has an average er-
ror rate of 11.8% for the positive class (Target) and 14.1% for the negative class
(Non-Target), with standard deviations of 0.60% and 0.79% respectively. The lower
efficiency concerning the negative class results in part from the class imbalance
problem. In such cases, standard classifiers tend to produce a high predictive ac-

1The results discussed in this appendix derived from a joint work with Guilherme Fonseca, Dr.
Guilherme Loss-Morais and Prof. Dr. Rogerio Margis from Centro de Biotecnologia (UFRGS),
and Dr. Ronnie Alves from Instituto Tecnológico Vale Desenvolvimento Sustentável.
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Figure A.2: Error rates for RFMirTarget trained with the total set of features.

curacy for the majority class and a weaker performance for the minority class. As
we will further discuss, the ensemble approach adopted by RF seems to minimize
the difference in classification error between the minority class and the majority
class. We evaluate the confusion matrix, obtaining the following performance metrics
(with standard deviations in parenthesis): ACC: 87.20 (0.434), SEN: 88.17 (0.604),
SPE: 85.84 (0.790 and MCC: 0.737 (0.008).

Table A.1: Classification performance of RFMirTarget
Real

Non-Target Target

Predicted
Non-Target 293.6 (2.70) 57 (2.91)
Target 48.4 (2.70) 425 (2.91)

We compare the results for the 34-features RF model against the performance
obtained by RF models trained separately with each of the features categories de-
fined (see Section 8.2.1 for details). One can observe in Table A.2 that, in general,
classification based on individual features categories yield very poor classification re-
sults as most of them do not have enough generalization power. However, seed and
position-based features (categories four and five, respectively) achieve remarkably
high and consistent performance in the repeated 10-fold cross-validation process. As
previously discussed, the importance of base complementarity in the seed region is
a well known factor for miRNA target recognition in Humans. On the other hand,
it is also known that additional 3’ pairing increases miRNA functionality and that a
single point mutation in the miRNA-mRNA interaction can compromise miRNA’s
functioning depending on its position (BRENNECKE et al., 2005; DOENCH; SHARP,
2004). Thus, position-based features capture the overall quality of the miRNA-
target alignment, which in terms of classification perform as well as seed specific
positions. In contrast, classification based solely on the minimum free energy of
the duplex formation (category two) might include many non-functional target sites
(BRENNECKE et al., 2005), justifying the high false positive rate.
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Table A.2: RFMirTarget classification results on different feature subsets
Feature set ACC (std) SPE (std) SEN (std) MCC (std)
Cat 1: Alignment (2) 59.34 (0.549) 39.64 (1.066) 73.31 (0.946) 0.136 (0.011)
Cat 2: Thermodynamic (1) 59.39 (1.156) 45.38 (2.211) 69.33 (1.051) 0.150 (0.025)
Cat 3: Structural (5) 67.57 (0.632) 45.38 (0.562) 83.31 (1.074) 0.313 (0.013)
Cat 4: Seed (6) 84.78 (0.407) 82.98 (0.811) 86.05 (0.537) 0.687 (0.008)
Cat 5: Position-based (20) 87.62 (0.462) 84.67 (1.124) 89.70 (0.314) 0.744 (0.009)
Total (34) 87.20 (0.434) 85.84 (0.790) 88.17 (0.604) 0.737 (0.008)

Next, we perform a feature relevance estimation assessing the average decrease
in the nodes’ impurity measured by the Gini index during the construction of the
decision trees ensemble. This step aims at identifying irrelevant features that may
mislead the algorithm and increase the generalization error (DOMINGOS, 2012). Even
though RF naturally provide an estimative of feature relevance computed during the
course of training, the algorithm lacks a feature selection process: each of its nodes
is split based on the optimal choice among a random subset of features. As each
decision tree in the ensemble may be regarded as an independent learner trained
upon a distinct set of features, the information gain computed during the learning
process is not just a good estimation of the individual feature performance, but
also of features’ ability in a variety of possible feature subsets (ROGERS; GUNN,
2006). Thus, by estimating the features relevance one can perform a feature selection
process to improve the model’s overall performance.

The features ranking in a decreasing order of relevance, measured by the average
decrease in the Gini index, is given in Table A.3. Our analysis corroborates previ-
ous studies in the area (MAZIÉRE; ENRIGHT, 2007; LHAKHANG; CHAUDHRY, 2011;
OBAD et al., 2011): nucleotides surrounding the seed sequence are indeed important
for target recognition. Obad and colleagues (OBAD et al., 2011), for instance, dis-
cuss a method for antagonizing miRNA function via seed-targeting. They observed
the importance of targeting the miRNA seed and suggest that this region is more
accessible for miRNA inhibition.

The analysis of the top ranked features in Table A.3 is consistent with the bio-
logical knowledge about the relevance of the pairing of the miRNA 5’ region to the
mRNA, as it comprises basically properties related to the seed region. Most of the
features in the top ten group consist of structural and position-based features regard-
ing nucleotides 2–8, which form the seed region. Furthermore, the seed MFE and
number of G:C pairings in the seed region, which correspond to the first and third
top features respectively, are known to be important determinants of miRNA-target
interaction activity (DOENCH; SHARP, 2004).

A consistency is also found for the relevance order concerning Watson-Crick
matches, i.e., G:C and A:U, and G:U wobble pairs in the seed region. The highest
impact of G:C pairings for target recognition among these is biologically plausible
because they are bound by three hydrogen bonds, which makes RNA with high
GC-content much more stable than RNA with low GC-content. Thus, G:C pairings
in both seed region and total alignment are rated high in the features relevance
rank. In contrast, A:U pairings are bond by two hydrogen bonds, justifying the
lower stability and position in the features ranking. What was interesting, tough,
is that our feature analysis was able to detect the relevance of wobble pairs to
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miRNA target recognition, which are the most common and highly conserved non-
Watson-Crick base pairs in RNA (CRICK, 1966). It was recently found that the
thermodynamic stability of a wobble base pair is comparable to that of a Watson-
Crick base pair and that they are highly detrimental to miRNA function despite its
favourable contribution to RNA:RNA duplexes (DOENCH; SHARP, 2004).

Table A.3: Features importance
Rank Feature name Mean decrease Gini index
1 MFE of seed region 73.382
2 Position 2 25.282
3 G:C’s in seed region 23.232
4 MFE of complete alignment 20.210
5 Position 4 18.036
6 A:U’s in complete alignment 14.937
7 Alignment score 14.894
8 G:U’s in seed region 14.12
9 A:U’s in seed region 13.23
10 Position 7 12.702
11 Position 6 12.104
12 G:C’s in complete alignment 11.028
13 Position 15 10.043
14 Alignment length 9.954
15 Position 13 9.702
16 Mismatches in complete alignment 9.672
17 Position 3 8.644
18 Position 16 8.576
19 Position 5 8.249
20 Position 8 7.709
21 Position 9 7.667
22 G:U’s in complete alignment 7.297
23 Position 1 6.625
24 Position 10 6.114
25 Position 14 6.024
26 Position 11 5.978
27 Position 20 5.770
28 Position 18 5.348
29 Position 17 5.045
30 Position 12 5.027
31 Gaps in complete alignment 4.895
32 Position 19 4.087
33 Mismatches in seed region 2.939
34 Gaps in seed region 0.000

Ranking given according to features importance computed in the course of training. The decrease
in nodes impurity, measured by the Gini index, is computed as the average among all trees.
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A.3 Performance of RFMirTarget based on the top ranked
features

Based on the features ranking of Table A.3, we perform a restricted forward
feature selection: we assess features impact to the model’s predictive accuracy in an
incremental fashion and further apply the results for a feature selection process. The
first step consists in training several RF models, starting from a single-feature model,
and adding each feature at a time from the most relevant to the least relevant. For
each of the classifiers generated, we assess their performance computing its accuracy,
MCC, specificity and sensitivity for the OOB data. We remind reader that the OOB
data is the portion of data not used to grow the decision trees, thus providing an
unbiased estimative of performance and overfitting.

Results for the restricted forward feature selection are shown in Fig. A.3. A peak
in the performance can be clearly identified for the model trained upon the set of top
12 features when considering accuracy and MCC scores. Also, one can observe that
the use of all 34 features in our training set helps to maintain a model with good
sensitivity. On the other hand, it also causes an increase in the generalization error
for the negative class, thus impairing the model’s specificity. According to Fig. A.3,
the best balance between specificity and sensitivity is achieved by the model trained
with the 12 most relevant features.

Grounded on this observation, we apply a feature selection step by removing the
most irrelevant features from the data. Feature selection is known for improving the
performance of learning models by enhancing both the generalization capability and
the model interpretability. Thus, we repeat the RF training process for a subset of

Figure A.3: Performance of the RF model evaluated by means of a restricted forward
feature selection. The best and most balanced performance in terms of sensitivity
and specificity is achieved by the model trained based on the subset of top 12
features.
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Table A.4: Feature selection improves RFMirTarget performance
Real

Non-Target Target

Predicted
Non-Target 306.6 (2.30) 50.8 (3.63)
Target 35.4 (2.30) 431.2 (3.63)

features defined by features 1 – 12 in Table A.3 (the top 12), optimizing the number
of variables to choose from in each node split by means of the caret R package.

The results for the top 12 features model are summarized in the confusion matrix
of Table A.4. Again, these results represent the mean (and standard deviation)
computed over five repetitions of 10-fold cross-validation. We observe the robustness
of the top 12 features model with respect to the previous model: classification error
rates decrease to 10.53% (standard deviation 0.75%) for positive examples and to
10.35% (standard deviation 0.67%) for negative examples, yielding a better and more
balanced performance. Moreover, the model’s average specificity and sensitivity are
89.64% and 89.46%, respectively. The better balance between prediction errors for
the positive and negative classes is also reflected in the higher MCC, which increased
from 0.737 to 0.786. This increase corresponds to about 6% of performance gain
over the 34-features RF model, thus evidencing the benefits of performing a feature
selection step when training ML classifiers.

A.4 Comparison with other classifiers

In order to perform a more thorough evaluation of our top 12 RF classifier,
we compare it against several popular classifiers in the ML field trained with the
same set of features, some of which were already applied to the problem of predict-
ing miRNA target genes: i) J48, an open source Java implementation of the C4.5
algorithm for building decision trees; ii) Naïve Bayes (NB), a statistical classifier
used in the development of NBMirTar (YOUSEF et al., 2007)); iii) k-nearest neigh-
bors (KNN), an instance-based learner; iv) SVM, a classifier used as basis in most
of the current available ML-based methods for the prediction of miRNAs targets,
e.g., miTarget (KIM et al., 2006), TargetMiner (BANDYOPADHYAY; MITRA, 2009) and
MultiMiTar (MITRA; BANDYOPADHYAY, 2011)); and v) GLM, a generalized linear
model. For such comparison, we use the caret R package and perform a repeated
10-fold cross-validation, averaging results over five repetitions. In addition, as differ-
ent classifiers require different levels of parameter tuning, we also adopt the caret
package interface for training functions in order to optimize particular parameters
of each of the counterpart classifiers.

Results for this comparative analysis are shown in Fig. A.4. The average AUC
scores, computed as the mean of the area under the ROC curves over all repetitions
of cross-validation, is around 0.96 for RF model, in contrast to 0.89 for the second
best performing classifier, J48 (Fig. A.4-A). This represents a performance gain of
almost 8%, which is shown to be a significant increase based on the analysis of 95%
confidence intervals of average AUC scores (Fig. A.4-B). In fact, 95% confidence
intervals reveal the statistically significant performance superiority of RF model in
relation to all other classifiers.
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Figure A.4: Comparison of our random forest model against several popular classi-
fiers based on repeated cross-validation. We compare the top 12 features RF model
with five others popular classifiers trained with the same features set: J48, K-nearest
neighbours (KNN), SVM, Naïve Bayes (NB) and a generalised linear model (GLM).
These plots show A) the average AUC score, B) 95% confidence intervals for av-
erage AUC scores, C) density distributions and D) results of a t-test over pairwise
differences in average AUC scores across all classifiers.

Moreover, densities plot of AUC scores based on the resamples depict the robust-
ness of RF model. The proposed model has its density distribution shifted to the
right of x-axis (highest scores) (Fig. A.4-C), with a much more narrow shape when
compared to counterpart methods, meaning a better and more consistent perfor-
mance. Finally, we perform a pairwise t-test comparing the RF model against each
of its counterpart methods in terms of difference in average AUC scores (Fig. A.4-
D). The statistical test produced very small p-values (p < 2.2× 10−16) for all of
the carried comparisons, indicating that the performance of the RF is significantly
superior in relation to the remainder algorithms. Therefore, the outcome of the
classifiers comparison supports the better performance of the RF algorithm in con-
trast to commonly applied ML methods, as well as the good potential of our tool in
predicting new miRNAs target genes. One reason for such improvement might be
associated to the robustness of the RF algorithm to the class imbalance problem,
which usually impairs the performance of competing classifiers such as SVM.
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A.5 Evaluation on completely independent test data

To further assess the predictive power of the proposed RF classifier and strengthen
our comparative analysis, we download a collection of 172 experimentally supported
human miRNA targets and 33 experimentally confirmed false target predictions
from the TarBase 5.0 (PAPADOPOULOS et al., 2009) to serve as an independent test
data set. The performance of RFMirTarget is compared to the counterpart methods
outlined in the previous section for both the complete set of features and the subset
of top 12 features (see Table 8.1).

Results in terms of ROC curves and AUC scores are shown in Fig. A.5. Panels
A and C depict the performance for models trained with all features, while panels
B and D show the results for the top 12 features models. Furthermore, ROC curves
for all classifiers considered are shown in top panels, whereas the computed AUC
scores are compared in the bottom panels. These plots show that the RF and J48
models present the best performance when considering the complete set of features,
as their ROC curves have the greatest distance from the dashed diagonal line, which
represents the performance of a random classifier (Fig. A.5A and Fig. A.5B). In
contrast, KNN and GLM perform as poor as a random classifier.

However, when focusing the training process solely in the most relevant features,
i.e., the top 12 set, SVM and KNN show an important boost in their predictive
accuracy. In fact, SVM outperforms the RF classifier for the top 12 features models,
obtaining higher true positive rates for false positive rates in the approximate range
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Figure A.5: Comparative performance of RFMirTarget for a completely independent
test data set. We test the proposed RF model with a collection of experimentally
verified positive and negative examples downloaded from TarBase 5.0, comparing it
against some counterpart methods. Panels A and C refer to models trained with
the complete set of features, whereas panels B and D present results for the training
process based on the subset of top 12 features.
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of 0.2 to 0.6. A comparison in terms of the AUC scores (Fig. A.5C and Fig. A.5D)
summarise these results in a more straightforward fashion. We observe that both
RF models outperform all other classifiers but the SVM model trained on the set
of most relevant features. In addition, one can clearly notice the changes in the
classifiers performance ranking when switching from the total set of features to the
subset of top 12 features: KNN and SVM, in particular, rank higher in the latter.

To assess the statistical significance of the AUC scores shown in Fig. A.5, we
perform a permutation test. Given the original labels (classes) of the test data
set, we permute its values to obtain a randomized version of the labels and then
reevaluate the prediction accuracy for each of the models compared. We repeat this
process 2000 times and compute a p-value, which represents the fraction of random-
ized samples in which the classifier performs better than in the original data, and
indicates how likely the observed accuracy, e.g. the computed AUC scores, would
be obtained by chance. Very low p-values (p < 1× 10−4) are obtained for both RF
models, giving additional evidence for the good performance and robustness of our
proposed classifier, even when considering an independent test set. In addition, J48
has p-values p = 4× 10−3 and p = 3× 10−3 for the 34 features and top 12 features
models, respectively, while SVM only shows statistical significant performance for
the top 12 features version (p < 1× 10−4). All the remainder models do not pass
the statistical significance test (p < 1× 10−2).

Next, we compare our RF classifier against other target prediction algorithms,
miRanda and TargetSpy. While miRanda predicts targets mostly upon sequence
complementarity miRNA-target duplex thermodynamics, TargetSpy is a ML ap-
proach that applies feature selection and a learning scheme based on boosting with
decision stumps as base learner. For TargetSpy, we run two versions of the algo-
rithm, one with seed match requirement (TargetSpy seed sens) and the other without
seed match requirement (TargetSpy no-seed sens), both using the sensibility as the
threshold score (STURM et al., 2010). Based on the confusion matrix built from each
of these methods predictions for the independent test data set, we compute their
specificity and sensitivity. Results are shown in Fig. A.6, which plots the false pos-
itive rate versus the true positive rate for several methods, including our RF model
and a SVM model trained with our set of descriptive features.

Two things to be noted about Fig. A.6 is how far points are from the dashed
diagonal line, which denotes a totally random method without any predictive power,
and in which quadrant points are situated. Ideally, one would expect methods whose
points are located in the top left quadrant of the plot, meaning high sensitivity and
high specificity, and far away from the diagonal line. However, in the comparison
carried here, none of the algorithms achieved such desirable performance. Our RF
classifier, in particular the top 12 features RF model, is shown to have a sensitivity
higher than miRanda and TargetSpy, and is also plotted further away from the
diagonal line in relation to other methods.

Although SVM reaches a sensitivity very close to our model’s, it has a lower
specificity, degrading its overall performance. In fact, in what concerns the speci-
ficity, the proposed RF models perform weaker than the two variations of TargetSpy,
which achieves very low false positive rates. On the other hand, TargetSpy also has
the lowest true positive rate among all algorithms: only about 37% to 45% of true
targets are correctly identified. Therefore, the proposed RF models are reliable in
the sense of identifying a higher number of true positive targets, due to its out-
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Figure A.6: Comparison of false positive and true positive rates for several distinct
prediction methods based on an independent test set.

standing sensitivity, but at the cost of increased false positive rates. Under the best
of circumstances, one wishes a classifier with a perfect balance between sensitivity
and specificity. However, in most cases accuracy is still constrained by the trade-off
between true positives and false positives, and the decision of which classifier to ap-
ply depends on the specific application and to which extent the occurrence of false
positives are tolerated (TOUW et al., 2012).

A.6 Estimating the prediction accuracy on CLIP-Seq data

To conclude our comparison using independent data, we gather two new data sets
from the starBase platform2 (YANG et al., 2011) regarding CLIP-Seq (cross-linking
immunoprecipitation-high-throughput sequencing) data containing true miRNA-target
interactions and test the accuracy of our method in the identification of positive in-
stances, i.e., its sensitivity. In general, real and pseudo miRNA-target interactions
available in databases such as TarBase are based on bioinformatics predictions, and
most of the softwares used to predict miRNA-target interaction sites have high false
positive rates. Due to both the short length of miRNAs and to the imperfect base-
pairing, many possible miRNA-target interaction sites can be identified throughout
the transcriptome for a single miRNA, but just a few of these are indeed func-
tional. In order to determine biologically relevant miRNA-target interaction sites,
the high-throughput sequencing of RNA isolated by cross-linking immunoprecipita-
tion of Argonaute (Ago) protein has been used (CHI et al., 2009; ZISOULIS et al., 2010;
HAFNER et al., 2010). This approach restricts the number of possible miRNA binding
sites to those that are found physically bound to an Ago protein, thus they are more

2http://starbase.sysu.edu.cn
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likely to be functional. Several studies show that the application of this method has
significantly reduced the rate of false positive predictions of miRNA-target interac-
tion sites (YANG et al., 2011; CHI et al., 2009; ZISOULIS et al., 2010; HAFNER et al.,
2010), thus representing a high-quality and reliable data to test the performance of
computational approaches.

Using the tool target site intersection of the starBase platform, we search for
miRNA-target interactions involving any of the human miRNAs available at star-
Base that are simultaneously predicted by at least four softwares (TargetScan, Pic-
Tar, RNA22 and PITA). Moreover, we adopt the most restrict value for the mini-
mum number of reads (1000 reads) and require a biological complexity (BC) equal
or higher than 2. In this analysis, 385 miRNA-target pairs are found. To avoid
overfitting, if more than one miRNA with the same predicted target site is found for
a given gene, we randomly select one of the possible miRNAs and exclude the others
from the data set. Further, we divide the data in two different data sets: (i) one
containing the miRNA-target pairs that were not predicted by miRanda (38 pairs)
and (ii) one containing miRNA-target pairs predicted by the four aforementioned
softwares and also by miRanda (170 pairs).

Results for the CLIP-seq data are shown in Table A.5 and compare the sensitivity
for the six in-house trained classifiers, as well as the predictions by the TargetSpy
software. For the latter, we adopt the sensitivity as the threshold and run both
variants of the algorithm, with and without the seed requirement. All instances
for which the predicted probability is higher than 0.5 are classified as Targets (the
true positive instances). Similarly to what we observe in tests with the TarBase
data, TargetSpy achieves very low sensitivity levels for both data sets. In its best
performance (run with no seed requirement for data set #2), TargetSpy recovers
only about 53% of the positive examples. This finding confirms that despite the low
false positive rates returned by TargetSpy in the tests with the TarBase data, this
tool is not very efficient in the identification of real miRNAs target genes.

In contrast, classifiers trained with our defined set of features achieve much higher
accuracy. Except for the GLM classifier, which fails in this test, most of classifiers
predictive accuracies outperform TargetSpy, especially when feature selection is ap-
plied (top 12 features). Moreover, as opposed to what one would expect, there is no
bias in the performance regarding the data set built upon evidence from miRanda
(data set #2), as in some cases classifiers perform better for interactions that were
not predicted by miRanda than those that are supported by miRanda. Our RF
classifier trained with the complete set of features presents a sensitivity that ranges
from 70.4% to 72.5%. In this scenario, the only classifier that outperforms our tool
is the KNN, which correctly classifies 75.6% of the instances from data set #2.

One interesting observation regarding values in Table A.5 refers to the impact of
feature selection over results. We observe that RF, SVM and J48 especially benefit
from a feature selection process. The proposed RF model succeeds in identifying up
to 77% of instances with a low complex model, trained over 12 features, presenting
a performance gain of 9.94% for data set #1 and 4.27% for data set #2. The J48
classifier, which builds a single decision tree, has a much higher improvement in
performance, increasing its sensitivity in 40.49% and 26.79% for data set #1 and
data set #2, respectively. Moreover, the sensitivity achieved by SVM after feature
selection is surprisingly high. The classifier correctly identifies about 90% of the
true miRNA-target interactions for both data sets, highlighting the importance of
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Table A.5: Comparison of methods’ sensitivity for tests performed with the CLIP-
Seq data

Method Features/Setup Data set #1 Data set #2
RF complete set 0.704 0.725

top 12 0.774 0.756
SVM complete set 0.464 0.549

top 12 0.901 0.891
NB complete set 0.591 0.657

top 12 0.633 0.689
KNN complete set 0.661 0.756

top 12 0.675 0.633
J48 complete set 0.521 0.586

top 12 0.732 0.743
GLM complete set 0.000 0.027

top 12 0.000 0.018
TargetSpy seed 0.421 0.339

no-seed 0.459 0.529

Data set #1 refers to interactions predicted by all softwares except miRanda (38 pairs).
Data set #2 comprises interactions predicted by all softwares, including miRanda (170 pairs).
Both TargetSpy tests were performed using the sensitivity as the threshold.

feature selection in the SVM’s learning convergence and generalization performance.
In contrast, RF is very robust to these factors and able to perform satisfactorily well
with much less setup efforts.

Despite the higher predictive accuracy provided by SVM over RF, the analysis of
the raw class probabilities assigned by both methods reveals that SVM tends to pro-
duce lower probabilities for both data sets tested, conversely to what is observed for
RF, which in general has a distribution skewed towards high probabilities (Fig. A.7).
We compare the mean and median between both methods and conclude that regard-
less the scenario in terms of CLIP-seq data set tested and number of features used for
training, RF always produce probabilities with higher mean and median. For data
set #1, the mean (median) are 0.600 (0.608) for the RF model and 0.483 (0.477)
for the SVM model, and after feature selection values increase to 0.631 (0.660) for
the RF model and 0.576 (0.570) for the SVM model. For tests with data set #2,
the mean (median) for the 34-features models are 0.590 (0.594) for RF and 0.530
(0.523) for the SVM, while the values for the 12-features models are 0.609 (0.636) for
RF and 0.576 (0.571) for SVM. We compare the probabilities vectors between both
methods and find a statistical significant difference (p < 1× 10−4, Mann-Whitney
U test) for every possible scenario described above, confirming the observation that
probabilities assigned by our RF model tend to be higher, as one wishes in order to
increase the chances of a satisfactory predictive accuracy. In fact, we test the effects
of changing the classification threshold to 0.6 and we observe that the proposed RF
model conserves a good performance, still correctly classifying around 60% of the
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instances for both data sets. On the other hand, the performance of the SVM classi-
fier drastically drops, recovering only 30% and 22% of the instances for data sets #1
and #2, respectively, in the best scenario, i.e., under feature selection. Therefore,
the proposed model is shown to be more reliable and robust for the prediction of
miRNAs target genes when compared to other well-known ML algorithm, as well as
to popular tools such as TargetSpy.

Figure A.7: Density distributions of the class probabilities predicted by RF and
SVM models for the CLIP-Seq data. Panels A and C refer to the tests with data set
#1, while panels B and D refer to results related to data set #2. Moreover, the top
panels (A and B) are for models trained with the complete set of feature, whereas
bottom panels (C and D) are for models trained with the top 12 features.

A.7 Conclusion

In this appendix we discussed a ML approach based on ensemble of decision trees
predictions, named RFMirTarget, to address the problem of prediction miRNAs tar-
get genes. The choice of the algorithm is motivated by its outstanding performance
in other classification problems, including the prediction of novel miRNAs (JIANG et
al., 2007). Nonetheless, few other applications proposed so far for the identification
of miRNAs targets have explored this ensemble classification approach. Our exper-
iments have shown that RF indeed performs well in this classification task, being a
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promising computational approach for miRNA-target prediction. After carrying a
thorough analysis of our RF model predictive accuracy, comparing it against several
popular classifiers trained with the same data by means of repeated cross-validation,
we concluded that RFMirTarget performance is robust and superior to competing
methods with statistical significance, with the benefit of requiring much less setup
efforts to reach satisfactory performance levels.The comparative study performed in
this work also adds to the field in the sense of providing guidance in the choice of
the algorithm when it comes to prediction of miRNAs target genes. To the best of
our knowledge, a fair and comprehensive comparison of ML algorithms applied to
this specific task has been poorly addressed in literature.

Moreover, the analysis of features relevance has shown good consistency with
important biological properties for miRNA-target alignment stability and also cor-
roborates previous studies in the field that discuss, for instance, the importance of
seed region in miRNA-target recognition (MAZIÉRE; ENRIGHT, 2007; LHAKHANG;
CHAUDHRY, 2011). In addition, a restricted forward feature selection suggests that
the model built upon the subset of top 12 features presents the most balanced classi-
fication results in terms of specificity and sensitivity. Results achieved after feature
selection are robust and very satisfactory for the majority of the classifiers tested.
This shows that the good performance achieved by RFMirTarget is not only due to
the classifier chosen, but also to the set of features defined.

Finally, we compared our method’s performance with other tools for miRNA-
target prediction, namely TargetSpy and miRanda, as well as counterpart ML al-
gorithms, using completely independent test data sets downloaded from TarBase
(PAPADOPOULOS et al., 2009) and starBase (YANG et al., 2011) platforms. We ob-
served a good overall performance associated with a very small p-value computed
based on a label permutation test, suggesting that the performance is not random,
but rather statistical significant. In general, RFMirTarget presents the best sen-
sitivity among the tools tested, with a very reliable performance when compared
to other methods. Therefore, a direct application of our tool would be to refine
results from miRanda, which is used in our method. However, we emphasize that
any other software that provides the predicted sites of alignment between a miRNA
and its candidate targets could be use in the place of miRanda, e.g. TargetSpy
(STURM et al., 2010), TargetScan (LEWIS et al., 2003), PicTar (KREK et al., 2005),
PITA (KERTESZ et al., 2007), among others.

Despite the great potential of our tool in identifying true positive miRNA-targets,
evaluation based on the TarBase independent test data suggests that it still needs
improvement regarding its specificity. The challenge of predicting miRNA target
genes is far from being completely solved. Although a plethora of methods have
been proposed, most of them have limited performance and take into account sev-
eral biological premises such as high complementarity between miRNA and mRNA
as an evidence for functional targetting and the idea of one miRNA to one mRNA
interaction, which may not be the actual case (PETER, 2010). Although RFMirTar-
get presents a promising strategy for Human miRNA target prediction and a reliable
source to reduce the set of hypothesis to be experimentally tested, as its counter-
part methods, is still not able to effectively handle the previously mentioned issues,
a situation that could be of significant computational and biological importance to
pursue in near future.
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APPENDIX B CENTRALITY-BASED ANALYSIS
OF ENSEMBLE REGULATORY NETWORKS FOR
HUMAN, FLY AND WORM

In this appendix we describe further biological analysis of the ensemble regulatory
networks described in Chapter 7. Specifically, we perform a centrality-based analysis
of the inferred networks to identify genes that may play a crucial role in the structure
and functioning of these networks, and compare these findings across species to
investigate the degree of structural and functional conservation between human, fly
and worm1.

B.1 Introduction

To further investigate the properties of the ensemble networks inferred for human,
fly and worm, and how they compare across organisms, we perform an investigation
of networks functionality through the analysis of their structure (COSTA et al., 2007).
Networks analysis based on node centrality measures can lead to new insights about
the relevance of genes in terms of how central it is for network structure and func-
tioning. Therefore, comparative analysis of gene centrality measures across species
can shed light on how evolution has preserved or changed regulatory patterns and
functions across distal species.

Here, we compute node degree and betweenness centralities for genes in the
network, and identify two types of central genes of each of the species using the
ensemble networks predicted by our framework (Chapter 7), namely, hubs and bot-
tlenecks. Hubs are defined in terms of the node degree centrality, which relates to
the number of other genes that are directly connected to a given gene, i.e., its first
neighbors.Therefore, hubs are closely related to the modular design of networks. On
the other hand, the betweenness centrality captures the fraction of shortest paths
between all pairs of genes in the network that pass through a given gene, estimating
the relevance of a gene to network information flow. In contrast to hubs, which
are generally intramodule central genes, bottlenecks tend to be intermodule key
components.

We define as bottlenecks (hubs) the strict set of genes that stand three standard
deviations above the network average betweenness (degree) score. Based on this
criterion, the number of bottlenecks identified for human, fly and worm are 142, 142
and 146, respectively, while the number of hubs identified for each of these species

1These results have been collected in a collaborative work with Soheil Feizi, Dr. Gerald Quon
and Prof. Dr. Manolis Kellis during my Sandwich PhD at the MIT Computational Biology Group.
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are 425, 183 and 329, respectively.
To compare centrality-based analysis across species and investigate functional

conservation of network properties, we adopt homologs annotations and evolution-
ary distance between homologs genes pairs using data from the ENCODE and mod-
ENCODE consortia. Based on gene trees and families, the evolutionary distance
is computed in terms of the substitution rates of the genes families, which was
determined by splitting gene trees into subtrees containing only descendants of a
single common ancestor within or after the root of the species tree (i.e. proper gene
families). This was achieved by reconciling each gene tree to the species tree using
maximum parsimony reconciliation (MPR) and then removing any duplication nodes
predating the species tree root (pre-root duplications). Each resulting subtree was
then rerooted and reconciled repeatedly using MPR until all pre-root duplications
were removed. Substitution rates were computed solely for gene families containing
at least one gene in human, fly and worm, by finding the distance (total branch
length) between all pairs of human-fly, human-worm, and fly-worm genes, selecting
the largest and smallest distance for each pair of species, then averaging the results2.

B.2 Results

First, we compared the ratio of conserved genes (i.e., genes with homologs) for
central genes and for TFs in the three species. We found that hubs and bottlenecks
tend to be significantly more conserved than transcription factors. Bottlenecks that
have homologs in other species consist of 82.76% (p < 10−6), 77.77% (p < 10−4)
and 53.33% (p < 10−3) of genes in human, fly, and worm, respectively (Figure B.1).
Similarly, we found that hubs with homologs pairs in other species consist of 80.50%
(p < 10−10), 84.90% (p < 10−5) and 55.47% (p < 10−4) of genes in human, fly, and
worm, respectively. P-values are computed based on Fisher’s exact test. For this
analysis, human homologs refer to the combination of homologs genes in fly and
worm, while homologs in fly and worm are defined solely in relation to human.
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Figure B.1: Ratio of conserved genes for TFs, bottlenecks and hubs.

2Data sets regarding homologs genes pairs and evolutionary distance were obtained from per-
sonal communication with Yi-Chieh Wu and Mukul S. Bansal, 2012.
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Furthermore, we observed that not only central genes are highly conserved across
species, but they also tend to have conserved centrality properties, as shown in
Figure B.2. In other words, homologs genes of human bottlenecks (hubs) in fly and
worm tend to play a central role as bottlenecks (hubs) in these organisms as well,
which suggests that in evolution, central genes have kept their central regulatory
roles. The fold change of the fraction of human bottlenecks that have homologs
with conserved centrality computed in relation to all genes with betweenness scores
above mean is around 2.5 for human-fly comparison and around 3.2 for human-worm
comparison. For hubs, the fold change value for both comparisons is around 8.0.
Our analysis also suggests that the frequency of homologs bottlenecks and hubs with
conserved centrality is higher for homologs genes pairs that have closer evolutionary
distance, which is computed in terms of the total branch length in gene trees, as
discussed above ( Figure B.3).
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Figure B.2: Fraction of (a) human bottlenecks and (b) human hubs whose homologs
play the same role in fly or worm network topology.

We compared the distribution of substitution rates for all genes against the
families that contain at least one bottleneck gene or one hub gene and observed that
hubs and bottlenecks family have a significantly higher average substitution rate,
which is an indicative that these groups of genes evolve more rapidly than overall
genes (Figure B.4). Mean (median) rates for the three groups, i.e., all families,
bottlenecks families and hubs families, are 3.23 (2.84), 4.21 (3.98) and 4.20 (4.08).
(Mann-Whitney all vs. hubs, U = 1.83 × 106, p = 2.2 × 10−16, one tailed; Mann-
Whitney all vs. bottlenecks, U = 1.58×106, p = 2.2×10−16, one tailed; nall = 4057,
nhub = 166, nbnk = 144).

Hubs and bottlenecks identified for each specie also showed strong enrichment
for GO terms (categories with sizes between 50 and 1000 under the biology process
branch), with a significant increase (p < 10−14) in the ratio of central genes that have
GO annotation when compared to non-bottlenecks and non-hubs genes for all three
species (Figure B.5). Moreover, we found that homologs bottlenecks and homologs
hubs tend to share more GO annotations than overall homologs genes for both
human-fly and human-worm comparison (Figure B.6). The distribution of Jaccard
similarity coefficients computed based on the GO annotations differed significantly
between all homologs and bottlenecks or hubs homologs (Human-fly: Mann-Whitney
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all vs. bottlenecks, U = 2.18 × 105,p = 1.3 × 10−8; Mann-Whitney all vs. hubs,
U = 3.17 × 106, p = 1.92 × 10−10; nall = 4057, nhub = 111, nbnk = 74, one tailed.
Human-worm: Mann-Whitney all vs. bottlenecks, U = 1.0 × 105, p = 5.84 × 10−6;
Mann-Whitney all vs. hubs, U = 1.80×106, p = 1.15×10−6; nall = 3301, nhub = 90,
nbnk = 47, one tailed). Mean (median) for Jaccard similarity coefficients are 0.06
(0.02), 0.12 (0.12) and 0.11 (0.09) for human-fly overall homologs, bottlenecks and
hubs. For human-worm comparison, values are 0.03 (0.00), 0.06 (0.04) and 0.05
(0.02), for all homologs, bottlenecks and hubs, respectively.
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Figure B.3: Cumulative frequency distribution for bottlenecks and hubs whose ho-
mologs have conserved centrality suggests that homologs genes pairs with closer
evolutionary distance are more likely to show conservation of bottleneck or hub
roles across species.
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Next, we identified the GO terms that are significantly more annotated for bot-
tlenecks and hubs than for overall genes across all species, and we found that both
groups of central genes play an important role in biological processes like (regulation
of) transcription of RNA polymerase II promoter and negative regulation of cellular
metabolic process in the three organisms compared. Moreover, hubs act especially in
cell development and positive regulation of metabolic process, while bottlenecks are
significantly involved in the regulation of macromolecule biosynthetic process and
cellular DNA-dependent transcription (Figure B.7). P-values are computed based
on Fisher’s exact test.

Finally, we compared the human-fly and human-worm network topologies to
investigate whether topological properties are conserved across species. Despite
the absence of strong correlation for properties like node degree (human-fly 0.185;
human-worm 0.148) and node betweenness (human-fly 0.019; human-worm 0.065)
computed based on all homologs genes, we observed that correlation of node de-
gree is particularly strong and significant (p < 0.05) for certain biological processes.
Flies and worms have a large morphological and evolutionary distance from hu-
mans, which might justify the lack of correlation when comparing the complete
network. Nonetheless, genes involved in more primitive biological processes share
commonalities regarding topological properties, especially between human and fly
(Figure B.8). For instance, there is a strong conservation of nodes degree for ho-
mologs involved in organ development and regulation of metabolic and multicellular
organismal processes between human and worm. Similarly, the human and fly com-
parison points that homologs genes acting in biological processes such as anatomical
structure development, growth, and response to endogenous or hormone stimulus
hold very similar node degree properties.
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relation of node degree, indicating a potential conservation of topological properties.

B.3 Conclusion

The analysis within this appendix has raised evidence of the functional conserva-
tion across distal species in terms of regulatory networks properties. The organisms
discussed here, fly and worm, are important model organisms, therefore having the
knowledge that they share significant similarities with humans not only in terms of
sequence conservation, but also about in the way genes are structured and organized
in their respective systems is definitely useful for the study of human biology. An in-
teresting and promising application of this knowledge is to identify disease pathways
and assess their conservation across these species.

In summary, our main findings are:
•Bottlenecks and hubs have significantly more homologs.

•Homologs bottlenecks and homologs hubs share more GO terms than overall
homologs (with statistically significant difference).

•There are some GO terms significantly more annotated for bottlenecks and
hubs across all three species.
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APPENDIX C RESUMO ESTENDIDO

Esta tese se enquadra no campo interdisciplinar da Bioinformática e aborda o
problema de otimização da engenharia reversa de redes regulatórias genéticas. Nosso
objetivo geral é investigar o uso de ensemble learning como uma ferramenta para
aprimorar o processo de inferência, avaliando e comparando diferentes estratégias
para construir os ensembles de forma a entender o seu potencial neste contexto
específico. Para tanto, nós focamos em dois problemas relacionados à regulação da
expressão gênica: (i) descoberta da estrutura de redes de regulação transcricional e
(ii) predição de alvos de miRNAs, os quais exercem regulação pós-transcricional.

Embora abordagens integrativas sejam a atual tendência e alguns esforços na
direção de métodos baseado em ensembles já existam no cenário abordado (YAN
et al., 2007; MARBACH; MATTIUSSI; FLOREANO, 2009a; RUAN et al., 2009; YANG et
al., 2011; MARBACH et al., 2012; GLASS et al., 2013), os seus efeitos e potencial para
melhorar os resultados ainda não são completamente compreendidos, especialmente
para organismos eucarióticos mais complexos como humanos (DE SMET; MARCHAL,
2010; MARBACH et al., 2012). Em particular, permanece um desafio: extrair infor-
mações de diferentes tipos de dados biológicos ou métodos de inferência diversos
dado que (i) ainda não é óbvio como compor um sistema ensemble para explorar
estes recursos de forma eficiente e (ii) a tarefa de combinar informações contidas em
um conjunto de hipóteses plausíveis em uma solução única não é trivial.

Diferente dos trabalhos anteriores, nesta tese realizamos uma ampla avaliação
do impacto de ensemble learning sobre as soluções obtidas na inferência das re-
des, explorando vários sistemas ensembles construídos sobre diferentes estratégias
para induzir a diversidade. Além disso, também abordamos a segunda questão rela-
cionada com esta abordagem e investigamos novos mecanismos para combinar as
informações contidos em um ensemble.

A abordagem proposta baseia-se em três hipóteses principais:

Hipótese 1Sistemas ensemble podem fornecer um framework único para tratar os
três principais problemas identificados no estado da arte da engenharia reversa
de redes regulatórias genéticas, especificamente (i) dados esparsos e ruidosos,
(ii) falta de robustez dos métodos atuais e (iii) grande incerteza em relação à
estrutura da rede mais plausível dado o conjunto de soluções candidatas.

Hipótese 2A aplicação de ensemble learning para inferir redes regulatórias genéti-
cas pode gerar modelos mais precisos e biologicamente plausíveis em contraste
com os métodos atuais uma vez que a diversidade inerente ao cenário é corre-
tamente gerida e eficientemente explorada em nosso favor.
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Hipótese 3Sistemas ensemble cuidadosamente projetados, empregando métodos de
combinação mais sofisticados, podem fornecer ganhos de desempenho ainda
maiores em relação aos métodos tradicionais e abordagens baseadas em en-
sembles projetadas seguindo metodologia padrão.

A engenharia reversa de redes regulatórias genéticas apresenta um desafio impor-
tante que é uma característica particularmente atraente para a aplicação de ensemble
learning : a grande diversidade entre as soluções candidatas, que derivam de pro-
priedades relacionadas com a natureza dos dados e dos métodos adotados, prejudica
a definição da melhor estrutura de rede. Por um lado, nenhum dos dados em escala
genômica são abrangentes por conta própria, pois diferentes tipos de dados fornecem
uma visão parcial e distinta do processo de regulação da expressão gênica (MARBACH
et al., 2012; GLASS et al., 2013). Por outro lado, sabe-se que diferentes algoritmos
de aprendizagem de máquina tendem a fornecer diferentes generalizações para um
mesmo conjunto de dados em função de seu viés preditivo (HACHE; LEHRACH; HER-
WIG, 2009; DE SMET; MARCHAL, 2010). Estes são fontes explícitas de diversidade
comumente observadas no cenário abordado .

Além disso, devido à típica escassez dos conjuntos de dados biológicos, diferentes
topologias de rede podem explicar igualmente bem as informações contidas nos dados
e, consequentemente, receber scores semelhantes durante o processo de inferência
(JUST, 2007). Em situações como esta, a distribuição dos scores é caracterizada por
uma distribuição difusa e o problema é, assim, indeterminado em função dos dados
disponíveis. Sob este cenário, várias execuções de abordagens heurísticas e métodos
estocásticos são suscetíveis de atingir diferentes aproximações para o problema dada
a aleatoriedade envolvida na trajetória de busca (HECKER et al., 2009). Isto pode
ser referido como uma fonte de diversidade implícita encontrada no problema de
engenharia reversa de redes regulatórias genéticas.

As questões descritas acima geram uma grande incerteza a respeito da melhor
estrutura de rede. Por este motivo, é uma prática bastante comum aplicar mais
de um algoritmo, ou várias execuções de um algoritmo estocástico, a fim de obter
predições mais confiáveis e superar a falta de robustez dos métodos de inferência
atuais (BARBATO et al., 2009; ZHENG et al., 2013). No entanto, esta abordagem tende
a produzir um conjunto de hipóteses plausíveis sobre a estrutura da rede, as quais são
usualmente diferentes entre si. Dado que nenhuma das hipóteses levantadas pelos
métodos de inferência rede é uma solução ótima, mas sim aproximada, é razoável
supor que a combinação dessas hipóteses pode melhorar os resultados dado que elas
possuam um determinado grau de complementaridade em suas predições. A solução
proposta no presente trabalho segue nesta direção.

Os objetivos específicos deste tese são:

•Propor novos métodos de inferência para otimizar a engenharia reversa de
redes regulatórias genéticas, atacando ambos os problemas de regulação tran-
scricional por fatores de transcrição (transcription factors, TFs) e de regulação
pós-transcricional por miRNAs.

•Avaliar e comparar a eficiência de abordagens baseadas em ensembles que
utilizam diferentes fontes de diversidade, estimando o ganho de desempenho
em contraste com as abordagens tradicionais.
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•Propor novos métodos de combinação para agregar o conhecimento contido
em um conjunto (ensemble) de hipóteses em um modelo único de rede.

•Investigar a robustez de soluções baseadas em ensemble ao ruído e escassez de
dados, os quais são problemas típicos na área da Bioinformática, bem como a
métodos de inferência mais fracos.

A importância da diversidade para o sucesso de sistemas ensemble já é bastante
consolidada (DIETTERICH, 2000; POLIKAR, 2006). Em particular, como Surowiecki
(2005) afirma, a diversidade é a propriedade responsável por trazer diferentes peças
de informação ao cenário em que um grupo de pessoas está agindo coletivamente
para tomar uma decisão. Além disso, a diversidade contribui para enfraquecer algu-
mas das características destrutivas de decisões individuais: através da combinação
de vários algoritmos com erros não correlacionados, tem-se uma grande chance de
suavizar o equilíbrio entre o viés e a variância do sistema (POLIKAR, 2006). Por-
tanto, a diversidade é, na maioria dos casos, a preocupação central na concepção de
sistemas ensemble (HANSEN; SALAMON, 1990).

Nesta tese, abordamos o problema de inferir redes regulatórias genéticas seguindo
a metodologia tradicional no campo de ensemble learning, a qual consiste em gerar e
combinar um conjunto de soluções diversas para uma mesma tarefa. No entanto, ao
invés de adotar estratégias para induzir a diversidade dentro do sistema de acordo
com abordagens padrões, propomos a construção de sistemas ensemble que exploram
as fontes de diversidade já presentes no cenário abordado.

De acordo com a discussão acima, existem dois tipos de diversidade que são
especialmente importantes neste contexto, isto é, a diversidade introduzida por par-
ticularidades relacionadas com os dados e particularidades associadas aos algorit-
mos adotados no processo de inferência. Estes correspondem, respectivamente, ao
data level e ao learner level da taxonomia para a construção de sistemas ensem-
ble ilustrada na Figure C.1, proposta por Kuncheva (2004). Neste trabalho estamos
particularmente interessados em avaliar em que medida o aproveitamento da diversi-
dade levantada por questões específicas de domínio nestes dois níveis pode melhorar

Combiner

h1

Features X

Data D

L1 L2 Ln-1 Ln

x1 x2 xn-1 xn

...

...

A. Combination Level

B. Learner Level

C. Feature Level

D. Data Level

h1 h2 hnhn-1
...

Figure C.1: Taxonomia para projeto de sistemas ensemble, apontando os principais
níveis em que a diversidade pode ser induzida. Adaptado de Kuncheva (2004).
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os resultados de inferência em relação a métodos tradicionais. Para tanto, adota-
mos uma abordagem que tem como objetivo comparar o desempenho de métodos
individuais (ou seja, métodos de inferência tradicionais) e métodos baseados em en-
semble em três direções, motivados pelas limitações e oportunidades identificadas
no cenário:

•Várias execuções vs. uma única execução de um método de otimização es-
tocástica

•Vários tipos de dados biológicos vs. um único tipo

•Vários algoritmos vs. um único algoritmo

As arquiteturas de sistemas ensemble exploradas nesta tese são mostradas na
Figura C.2. As comparações destacadas acima correspondem, respectivamente, à
implementação e avaliação dos sistemas com arquiteturas representadas nos painéis
A, B e C. É importante salientar que enquanto a diversidade no nível de dados (data
level) é explorado em uma única direção (Figura C.2-B), a diversidade no nível de
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Output
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Figure C.2: Arquiteturas de sistemas ensembles implementadas no presente tra-
balho. As soluções propostas englobam diversidade principalmente a nível de dados
e a nível de aprendiz (learner).
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algoritmo (learner level) é implementado de duas formas tendo como base as fontes
implícitas e explícitas de diversidade oriundas do uso de métodos de otimização
estocástica (Figura C.2-A) e de diferentes algoritmos de aprendizagem de máquina
(Figura C.2-C).

No que diz respeito aos métodos computacionais embutidos no nível de algoritmo
que compõe cada um dos sistemas ensemble propostos, observamos que eles diferem
de acordo com o problema biológico específico abordado. Seguimos a metodologia
usual adotada no campo da Bioinformática e tratamos o problema da (i) inferir
a estrutura de redes de regulação transcricional e (ii) descobrir os genes alvo de
miRNAs para elucidar mecanismos de regulação pós-transcricional como uma tarefa
de busca e uma tarefa de classificação, respectivamente.

Basicamente, o problema de inferir interações envolvidas em redes de regulação
transcricional é um problema de otimização de estrutura. A abordagem usual na
literatura é a realização de uma busca para encontrar a melhor estrutura de rede
por meio de uma comparação explícita entre diversos modelos, utilizando para tanto
uma função de avaliação previamente definida. Assim, neste cenário o learner level
implementa algoritmos de busca baseados em heurística ou otimização estocástica
para recuperar um modelo de rede plausível a partir dos dados biológicos.

Em contraste, a detecção de alvos de miRNAs se baseia principalmente em regras
relacionadas, por exemplo, com a sua sequência de nucleotídeos ou termodinâmica,
bem como com o seu perfil de hibridização com o mRNA alvo. No entanto, essas
propriedades são extremamente sutis e, ainda mais importante, eles são definidas
com base em nosso conhecimento atual em relação a estes mecanismos, o qual ainda
é muito limitado. Portanto, aprendizagem de máquina tem sido amplamente uti-
lizados para tratar este problema, diferindo dos algoritmos baseados em regras no
sentido de que as regras não são criadas manualmente, mas são aprendidas a partir
dos exemplos disponíveis usando para tanto algoritmos de classificação bem consol-
idados (LINDOW; GORODKIN, 2007). Assim, neste caso o learner level é implemen-
tado com base em algoritmos de classificação que visam extrair as regras descritivas
da interação entre miRNA e alvo e treinar um modelo de classificação para a iden-
tificação de verdadeiros alvos de miRNA. Portanto, o uso de ensemble learning é
independente não só do tipo de diversidade explorado pelo sistema ensemble, mas
também do tipo de tarefa executada pelos algoritmos, sendo assim aplicável a uma
ampla gama de domínios.

Por fim, como métodos de combinação para os sistemas ensemble aqui propostos,
adotamos combinadores simples, como votação majoritária, assim como métodos
mais sofisticados inspirados pela teoria de escolha social, mais especificamente, Borda
count, Copeland function e Footrule function. Ressaltamos que os dois últimos
combinadores baseados na teoria da escolha social não foram utilizados para este
propósito anteriormente e, portanto, são contribuições desta tese para a área de
ensemble learning.

C.1 Resultados

C.1.1 Estudo de caso I: diversidade gerada por métodos de otimização
estocástica

No primeiro estudo de caso, foi proposta uma solução baseada em algoritmos
genéticos para inferência de redes de regulação transcricional a partir de dados de
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expressão gênica. O objetivo consiste em reconstruir as referidas redes biológi-
cas, modelando-as como redes Booleanas aleatórias (KAUFFMAN, 1969) e explo-
rando o espaço de soluções através de busca heurística guiada por uma função de
fitness, sem adição de conhecimento a priori de qualquer natureza. Uma rede
Booleana aleatória é um grafo direcionado G(V, F ) composto por um conjunto
de nós V = {v1, v2, . . . , vn} e um conjunto de funções Booleanas de transições
F = {f1, f2, . . . , fn}. Cada nó da rede vi, i = 1, . . . , n, é um dispositivo Booleano
que representa o estado da variável i: no contexto de redes regulatórias, vi = 1
denota que o gene i está expresso, enquanto vi = 0 significa que o mesmo não está
expresso. Estes estados são determinados pela função Booleana fi ∈ F , a qual rep-
resenta as regras de regulação entre os genes, e por Ki entradas, que denotam os
fatores reguladores, ou preditores, de um determinado gene. Aqui utilizamos uma
conectividade máxima de K = 2 e K = 3 para todos os nós da rede. A vantagem
em se utilizar redes Booleanas para o modelagem de redes regulatórias está no seu
formalismo e inferência simples, mas capazes de reproduzir a dinâmica de uma rede
biológica e de fornecer informações qualitativas a respeito das interações existentes
entre os genes (SHMULEVICH; DOUGHERTY, 2010).

Na solução proposta, cada indivíduo da população que compõe o algoritmo
genético codifica a estrutura de rede de uma possível solução, isto é, o conjunto com-
pleto de interações entre os genes. Esta população de soluções candidatas é evoluída
em paralelo por um número pré-determinado de gerações, aplicando-se os operadores
genéticos de recombinação e mutação. O conjunto de soluções foi avaliado de acordo
com duas funções de fitness. A primeira, baseada no grau de inconsistência, visa
minimizar a inconsistência das redes candidatas em relação ao padrão de expressão
gênica dos dados de entrada. Esta inconsistência é medida avaliando-se o número
de mismatches encontrados no perfil de expressão gênica alvo em relação à conec-
tividade das estruturas indicadas pelas soluções providas pelo algoritmo genético.
A segunda função de fitness testada visa minimizar a entropia condicional média
dada pela entropia de Tsallis, a qual generaliza a tradicional entropia de Shannon.
Entropia de Tsallis (TSALLIS, 2004) mostrou-se mais adequada para lidar com sis-
temas não extensivos que possam apresentar memória e interações de longo alcance,
incluindo redes de regulação (LOPES; OLIVEIRA; CESAR, 2011).

Visto que algoritmos genéticos produzem por definição um conjunto de soluções
candidatas e devidamente avaliadas, um importante ponto neste estudo está na
metodologia adotada para produzir uma única solução. Neste trabalho optou-se
por instanciar múltiplos algoritmos genéticos para compor o learner level de um
sistema ensemble e posteriormente combinar as soluções individuais em uma única
solução ensemble, seguindo a teoria de wisdom of crowds (SUROWIECKI, 2005). A
estratégia aplicada foi a de majority voting, com limiares de 10%, 50%, 70% e 95%, e
os resultados foram motivadores para dados relacionados com uma rede real de onze
genes, conhecida como via de sinalização RAF(SACHS et al., 2005), utilizando-se 30
instanciações do algoritmo.

Em suma, observou-se que existe uma grande diversidade entre as soluções re-
tornadas por diferentes execuções do nosso método de inferência (Figura C.3), o
que implica em baixa precisão do método (média de 0.28), mas que em termos de
acurácia os resultados são satisfatórios (média de 0.78), principalmente para um
limitar mais restrito na votação majoritária. As curvas ROC médias são mostradas
na Figura C.5, sobrepostas por boxplots que mostram a mediana, os valores máx-
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imos e mínimos e os quartis superior e inferior calculados para 30 execuções do
algoritmo genéticos. É possível observar que embora a curva ROC média tenha um
desempenho ligeiramente superior que um método preditivo aleatório, 0.578 para
Kmax = 2 e 0.585 para Kmax = 3, a análise dos boxplots demonstra a superioridade
obtida em algumas das simulações, corroborando a hipótese de que os resultados
podem apresentar significativa variação entre múltiplas execuções do método de
otimização empregado.

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Run 7 Run 8 Run 9 Run 10 Run 11 Run 12

Run 13 Run 14 Run 15 Run 16 Run 17 Run 18

Run 19 Run 20 Run 21 Run 22 Run 23 Run 24

Run 25 Run 26 Run 27 Run 28 Run 29 Run 30

(a) Kmax = 2
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Run 7 Run 8 Run 9 Run 10 Run 11 Run 12
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Run 19 Run 20 Run 21 Run 22 Run 23 Run 24

Run 25 Run 26 Run 27 Run 28 Run 29 Run 30

(b) Kmax = 3

Figure C.3: Diversidade entre redes inferidas por múltiplas execuções independentes
do método de inferência proposto, baseado em algoritmos genéticos, para a via de
sinalização RAF. Cada quadrado individual, identificado pelo número da simulação,
representa a matriz de adjacência da solução consenso reconstruída pela respectiva
simulação. Redes consensos foram geradas aplicando-se votação majoritária com
um limiar de 70% dos votos.
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Figure C.4: Curvas ROC médias para o conjunto de 30 redes consenso obtidas
através de múltiplas execuções independentes do método de inferência proposto
quando aplicado à via de sinalização RAF. Redes consensos foram geradas aplicando-
se votação majoritária com um limiar de 70% dos votos.

A complementaridade entre as diversas soluções consenso coletadas por múlti-
plas execuções do algoritmo genético mostrou-se bastante vantajosa: ao se combinar
o conjunto de soluções consenso em uma única solução ensemble, a maioria das in-
terações da rede real foram devidamente inferidas, o que representa um número sig-
nificativamente maior que o número de arestas verdadeiras positivas inferidas pelas
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soluções individuais. A Figura C.5 mostra a probabilidade calculada pelo método
proposto para as interações contidas na estrutura padrão ouro da rede alvo. É pos-
sível notar que das 20 interações existentes, nosso método baseado em ensembles é
capaz de inferir corretamente 17 interações para Kmax = 2 e 18 para Kmax = 3.
Não foi constatada uma diferença estatisticamente significativa para o desempenho
do método variando-se o parâmetro Kmax.

(a) Kmax = 2 (b) Kmax = 3

Figure C.5: Resultado da inferência baseada em ensemble para a via de sinaliza-
ção RAF em termos da probabilidade atribuída à cada aresta. Arestas em linha
cinza pontilhada representam os falsos negativos, isto é, interações que não foram
corretamente preditas pelo método proposto

A inferência de redes artificiais de maior escala (100 genes), geradas com base em
diferentes topologias, i.e., aleatória (ER) e livres de escala (BA), e dinâmica deter-
minística ou probabilística (LOPES; OLIVEIRA; CESAR, 2011), também foi abordada
com o sistema ensemble proposto. Novamente foi observado que os scores asso-
ciados às redes consenso, obtidas de uma única simulação do algoritmo genético,
não são muito expressivos, apresentando desempenho muito próximo a um sistema
de inferência aleatório (Tabela C.1). Em contrapartida, a aplicação de um combi-
nador baseado em votação majoritária resultou em melhor desempenho do método
(Figure C.6), em algumas situações alcançando 27% de melhoria sobre soluções con-
senso. Foi constatado que o método de inferência proposto não é sensível ao tipo de
topologia da rede e que a adoção de um formalismo probabilístico na definição das
redes e de suas funções Booleanas não compromete o seu desempenho.

Table C.1: AUC scores médios para rede artificiais de 100 nós, calculados para 30
execuções independentes do método de inferência baseado em algoritmos genéticos.

Model
RBN PBN

Kmax = 2 Kmax = 3 Kmax = 2 Kmax = 3
avg std avg std avg std avg std

ER 0.520 0.0097 0.524 0.0080 0.513 0.0087 0.524 0.0114
BA 0.519 0.0085 0.525 0.0082 0.515 0.0078 0.518 0.0106

Ainda, verificou-se que a função de fitness baseada na entropia de Tsallis fornece
soluções mais precisas, sendo menos suscetível aos falsos positivos do que a função
de fitness que minimiza o grau de inconsistência das redes. Aplicando-se ambas as
funções de fitness na inferência de uma mesma rede, observamos melhorias de até
21% em termos do score AUC (calculado como a área sob a curva ROC) introduzidas
pelo uso da entropia se Tsallis. Para Kmax = 2, os scores calculados foram 0.5306
para a avaliação com base no grau de inconsistência e 0.6693 para a entropia de



207

T
ru

e 
po

si
tiv

e 
ra

te
T

ru
e 

po
si

tiv
e 

ra
te

False positive rate

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0

1

0.5

0
10.50 10.50

10.5010.50

10.50

10.50

False positive rate False positive rate False positive rate

10.50

10.50

1

0.5

0

1

0.5

0

(a) (b) (c) (d)

(e) (f) (g) (h)

Kmax = 2 Kmax = 3 Kmax = 2 Kmax = 3

RBN PBN

ER

BA

AUC: 0.664 AUC: 0.658 AUC: 0.634 AUC: 0.640

AUC: 0.659 AUC: 0.651 AUC: 0.652 AUC: 0.628

Figure C.6: Curvas ROC para as redes obtidas com o sistema ensemble. Gráficos
na linha superior (a–d) mostram os resultados para as redes com topologia aleatória
(ER), enquanto que os gráficos na linha inferior referem-se aos resultados para redes
com topologia livre de escala (BA). São comparados também os resultados para
redes com dinâmica determinística (RBN) e probabilística (PBN)

Tsallis. Similarmente, para Kmax = 3, os scores para a função de fitness baseada
no grau de inconsistência e baseada na entropia de Tsallis foram, respectivamente,
0.5980 e 0.7258.

Visando expandir e aprimorar o método de inferência propriamente dito, a úl-
tima etapa deste estudo de caso consistiu no desenvolvimento de um novo operador
de mutação para o algoritmo genético, o qual explora o uso de conhecimento a
priori para o cálculo das probabilidades de mutação. O objetivo está em fortale-
cer as chances de ocorrência daquelas mutações cujas alterações deixariam a rede
codificada mais próxima da rede real em termos de sua estrutura.

Para tanto, aplicou-se o conceito de informação mútua (MI) sobre a série de
expressão temporal obtendo-se uma matriz de crença M . Cada elemento Mij indica
a crença obtida do conhecimento prévio à respeito da existência de uma interação
entre os genes i e j, de forma que quanto maior o valor de Mij, maior a evidência de
que os mesmos possuam uma relação na rede real. Assim, no operador de mutação
proposto, quanto maior a crença Mij (Mij � 0.5) mais provável será a inclusão
de uma conexão entre i e j durante a mutação. Contrariamente, quanto menor o
valor de Mij (Mij � 0.5), maior será a probabilidade desta conexão ser removida
do modelo inferido pelo operador de mutação.

No entanto, a matriz M não contém a verdade absoluta a respeito da rede alvo;
ela contém inúmero falsos negativos e falsos positivos que fazem com que a rede
inferida somente com base na matriz de MI M possua uma baixa acurácia. A
avaliação da curva ROC para a rede inferida com base em MI retornou um score
AUC de 0.5345. Neste contexto, seria interessante utilizar esta matriz somente como
um guia para a convergência do algoritmo genético. Portanto, a fim de balancear
entre o uso de conhecimento prévio e a exploração por meio de mutações aleatórias
característica do algoritmo genético, aplicou-se a estratégia de epsilon-greedy. Esta
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abordagem visa escolher uma opção aleatória com uma dada frequência ε e selecionar
a melhor opção disponível no restante dos casos.

O operador de mutação proposto é implementado seguindo-se esta filosofia: com
probabilidade Pprior = 1 − ε as mutações são efetuadas com base no conhecimento
a priori, enquanto que nos demais casos a mutação segue o operador de mutação
tradicional do algoritmo genético, isto é, é realizada de forma aleatória. O termo
Pprior é inicialmente alto, de forma que nas primeiras iterações o algoritmo genético
tende a realizar bastante aproveitamento da informações disponível. Posteriormente,
o valor de Pprior é gradativamente decrescido por um fator multiplicativo ∆, a fim
de aumentar a probabilidade de exploração no decorrer das gerações. O valor de ∆ é
o parâmetro a ser configurado para controle da velocidade de evolução do algoritmo
genético.

Algorithm 2 Operador de mutação epsilon-greedy
1: for para cada indivíduo da população do
2: if random ≤ Pmut then
3: escolha aleatoriamente um par de nós i e j da rede;
4: extraia o conhecimento Mij da matriz de informação mútua
5: if random ≤ Pprior then
6: mutar o link (i, j) utilizando-se o conhecimento à priori Mij ;
7: else
8: mutar o link (i, j) explorando aleatoriamente o espaço de busca;
9: end if
10: end if
11: end for
12: Pprior = Pprior ×∆;

Os resultados mostram que utilizar conhecimento à priori, ponderando-se o seu
uso através da aplicação de uma estratégia epsilon-greedy é uma abordagem com bas-
tante potencial. A convergência foi mais rápida para os casos em que conhecimento
prévio foi aplicado, atingindo-se ao final da simulação soluções com fitness mais
alto. Adicionalmente, observou-se scores AUC superiores quando esta abordagem
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Figure C.7: Comparação do desempenho obtido para o algoritmo genético imple-
mentado com o operador de mutação epsilon-greedy em relação ao algoritmo genético
tradicional e à uma rede inferida através da matriz de MI, para o caso de Pmut = 0.3.
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é comparada com um algoritmo genético tradicional e com um modelo inferido so-
mente com base na matriz de MI, como mostra a Figura C.7 para o caso particular
de Pmut = 0.3 (salientamos que o mesmo comportamento foi observado para outros
valores de Pmut). O cálculo do score AUC foi realizado em relação à rede ensemble
final, obtida a partir da última geração de múltiplas execuções do algoritmo genético,
seguindo as etapas anteriores deste estudo.

C.1.2 Estudo de caso II: diversidade a nível de dados

Neste estudo de caso, aplicamos um sistema ensemble para inferência de redes
de regulação transcricional utilizando como evidência para o processo de engenharia
reversa diferentes tipos de dados biológicos. Sabe-se que a inferência de redes reg-
ulatórias a partir de um único conjunto de dados será capaz de captar somente o
estado e as interações da rede que estavam ativas no momento em que foi realizado
o experimento biológico. Isto é, esta predição será incompleta dado que os organis-
mos são seres dinâmicos e que diferentes técnicas experimentais fornecem diferentes
perspectivas a respeito do processo de regulação gênica.

Como dados de entrada, foram utilizados três tipos de evidência: perfis de ex-
pressão gênica gerados por tecnologias de RNA-Seq, informações sobre conservação
evolucionária de sítios de ligação (motifs) de fatores de transcrição (TFs) computa-
dos com base em um framework proposto por Kheradpour et al. (2007) e perfis
de ligação de TFs obtidos com uma plataforma ChIP-Seq. Enquanto os dados de
expressão gênica são uma evidencia funcional para interações de regulação, isto é,
eles não sugerem uma ligação física entre um regulador e seu alvo mas sim a co-
expressão dos mesmos, os dados de conservação de motifs e de ChIP-Seq refletem
uma interação física entre regulador e alvo, o que por sua vez não necessariamente
acarreta mudança nos níveis de expressão. Estes dados foram gerados pelos consór-
cios ENCODE (Encyclopedia Of DNA Elements) (The ENCODE Project Consortium et
al., 2011) e modENCODE (The modENCODE Project Consortium et al., 2010), os quais
visam criar a maior coletânea de anotações de elementos funcionais já realizadas
para humanos (H. sapiens) e organismos modelos, respectivamente. Dentre os or-
ganismos modelos, foram utilizados dados da mosca da fruta (D. melanogaster) e
de verme (C. elegans).

A inferência de redes com base em dados de expressão gênica (i.e., redes fun-
cionais) foi realizada utilizando-se métodos computacionais bem conhecidos na lit-
eratura, mais especificamente, os algoritmos CLR (FAITH et al., 2007) e GENIE3
(HUYNH-THU et al., 2010). Para os dados de conservação de motifs e perfis de ligação
de fatores de transcrição, foram implementadas estratégias baseadas na análise de
overlap entre features utilizando-se ferramentas disponibilizadas pelo pacote BED-
Tools (QUINLAN; HALL, 2010). Neste contexto, features referem-se a um trecho
situado entre duas coordenadas (posição do nucleotídeo) que define a região da se-
quência genética em que estas evidências são identificadas. Estas heurísticas são
utilizadas para definir regras que caracterizam uma interação regulatória entre TFs
e genes alvos.

Para implementação do combinador neste sistema ensemble, foi adotado o método
Borda count (BORDA, 1781), o qual já havia sido aplicado para integração de múlti-
plas redes inferidas a partir do mesmo conjunto de dados (MARBACH et al., 2012).
No entanto, o caso de múltiplas redes inferidas a partir de dados distintos ainda
não foi abordado na literatura através deste método de combinação. Este é um
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cenário mais complexo tendo em vista que as predições a respeito da estrutura da
rede alvo podem possuir diferente semântica e cobertura, ou ainda pesos associados
às interações preditas que diferem em sua magnitude ou significado biológico.

As propriedades das redes ensemble inferidas pelo nosso sistema são apresen-
tadas na Tabela C.2. O número de nós contempla ambos genes e TFs, e o número
de arestas é fornecido para a rede completa e para uma rede filtrada para uma densi-
dade máxima de 5%, seguindo a noção de esparsidade de redes biológicas (ARNONE;
DAVIDSON, 1997). A Figura C.8 evidencia a baixa correlação entre as redes indi-
viduais para cada organismo, exceto para comparação entre redes funcionais, cor-
roborando a necessidade de estratégias para explorar diferentes linhas de evidência
biológica afim de aprimorar a qualidade das redes regulatórias genéticas inferidas
através de métodos computacionais.
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CLR GENIE3 Motif ChIP
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Figure C.8: Correlação entre as interações inferidas por diferentes tipos de redes
regulatórias.

A validação das redes inferidas foi realizada utilizando-se interações conheci-
das para humanos, D. melanogaster e C. elegans, depositadas nos bancos de dados
TRANSFAC (WINGENDER et al., 2000), REDfly (GALLO et al., 2011) e EDGEdb
(BARRASA et al., 2007), respectivamente. Observou-se uma significativa sobreposição
da estrutura das redes ensemble em relação aos dados de benchmark para os três
organismos estudados, sugerindo a alta acurácia das redes inferidas e a eficiência do
sistema ensemble proposto. De fato, o desempenho das redes ensemble foi superior
ao desempenho obtido para todas as redes individuais, nos três organismos estu-
dados (Figura C.9). Constatou-se também que o número de interações verdadeiras
positivas e verdadeiras negativas inferidas pelo nosso sistema ensemble para H. sapi-
ens e C. elegans possui significância estatística (nível de significância de 0.05) de
acordo com um teste exato de Fisher.

Uma análise da sobreposição entre redes individuais e redes ensemble indica que
as redes inferidas a partir de dados de evidência física, i.e., motifs conservados e

Table C.2: Propriedades das redes ensemble inferidas com o sistema proposto.

Nós TFs Arestas
Arestas (para
densidade de

5%)

Grau de conexão
médio

H. sapiens 19,221 2,757 18,709,816 2,649,615 275.7
D. melanogaster 13,642 688 3,148,533 469,285 68.8

C. elegans 19,296 908 5,160,222 876,039 90.8
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Figure C.9: Avaliação do desempenho do sistema ensemble construído sobre diver-
sidade nos dados. As redes individuais e redes ensemble (filtradas para densidades
de 5% e 10%) inferidas pelo nosso sistema são comparadas em termos do log10 do
p-value calculado para os respectivos AUC scores.

perfis de ligação de TFs, fornecem um grande suporte à rede ensemble de humanos.
Considerando-se apenas 1% das interações inferidas, isto é, aquelas com pesos asso-
ciados mais altos, em torno de 90% possui sobreposição com os dados de evidência
física. Neste cenário, as redes de expressão (redes funcionais) são utilizadas no intu-
ito de reordenar o conjunto de interações preditas e reforçar a evidência observada
nos dados de motifs e ChIP-Seq. Para D. melanogaster e C. elegans a situação é dis-
tinta: os dados de evidência física são extremamente esparsos e as redes funcionais
são cruciais para garantir uma cobertura satisfatória da rede ensemble.

Por fim, verificou-se também que as redes ensemble possuem uma maior plausibil-
idade biológica em termos do número de funções biológicas compartilhadas por genes
interligados. De acordo com a característica de modularidade das redes biológicas
(MACNEIL; WALHOUT, 2011), espera-se que genes que exerçam funções biológicas em
comum no organismo atuem juntos, estando assim próximos em termos de sua local-
ização na estrutura de rede, formando módulos funcionais. Observamos para os três
organismos estudados, que as redes ensemble inferidas pelo nosso sistema ensemble
possuem uma maior co-ocorrência de anotações funcionais entre genes interligados
em relação às redes individuais. A co-ocorrência foi quantificada através do índice
de Jaccard, utilizando-se um limiar de 50%, isto é, uma intersecção de pelo menos
50% entre os processos biológicos anotados para que os genes sejam considerados
funcionalmente similares. Estes resultados reforçam a acurácia das redes inferidas
e a sua aplicabilidade para o estudo de doenças e de um melhor entendimento da
biologia humana.
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C.1.3 Estudo de caso III: diversidade a nível de algoritmos

MicroRNAs (miRNAs) são uma classe de pequenos (∼21−24nt) RNAs não cod-
ificantes que desempenham um importante papel na regulação da expressão gênica.
Em plantas e animais, miRNAs atuam como repressores pós-transcricional através
da clivagem do RNAmensageiro (mRNA) ou na repressão do mecanismo de tradução,
no qual a informação contida no mRNA é decodificada para a síntese de proteínas.
A descoberta de novos miRNAs, bem como de seus alvos, é portanto uma impor-
tante informação para o estudo da expressão gênica e pode ajudar a enriquecer os
modelos de regulação inferidos através das tradicionais abordagens computacionais
e estatísticas.

Neste estudo de caso, abordou-se o problema de predição de alvos de miRNAs
através da aplicação de um sistema ensemble explorando a diversidade a nível de
algoritmos. Em razão do distinto viés de predição, diferentes algoritmos de apren-
dizagem de máquina tendem a fornecer diferentes generalizações para um mesmo
problema, o que gera certa disparidade entre os resultados (DOMINGOS, 2012). Para
este problema específico, foi observado que a sobreposição entre predições forneci-
das por diferentes métodos é bastante pequena (SETHUPATHY; CORDA; HATZIGEOR-
GIOU, 2006) e que nem a união ou a intersecção destas informações provê resultados
satisfatórios. Apesar da vasta gama de ferramentas já proposta na literatura, em
sua maioria baseadas em aprendizagem de máquina, existe uma carência clara de es-
tratégias ensemble para lidar com esse cenário e aproveitar este leque de informações
introduzido pelo uso de diferentes tecnologias.

Portanto, foi proposto um sistema ensemble utilizando cinco algoritmos no learner
level, cuja escolha é motivada pela literatura relacionada e pela disponibilidade
destes algoritmos em pacotes do software R. Os dados de treinamento consistem
de 482 exemplos positivos biologicamente validados e 382 exemplos negativos de
pares miRNA-alvo, coletados por Bandyopadhyay and Mitra (2009). A partir deste
conjunto de treinamento, fez-se a predição do alinhamento entre as sequências do
miRNA e respectivos alvos utilizando a ferramenta miRanda (ENRIGHT et al., 2003),
e em seguida extraiu-se 34 atributos que descrevem propriedades do alinhamento
resultante. Estes atributos se dividem basicamente em cinco grupos semânticos:
(i) características gerais do alinhamento calculadas pelo miRanda, como score e
tamanho (2 atributos); (ii) características de termodinâmica calculada com o pro-
grama RNAduplex (HOFACKER, 2003) (1 atributo); (iii) características estruturais,
como número de paramentos G–C e A–U, assim como número de mismatches entre
nucleotídeos (5 atributos); (iii) características dos pareamentos na região do seed,
composta pelos nucleotídeos 2 à 8, os quais são especialmente importantes para
o reconhecimento de alvos verdadeiros em humanos (6 atributos); e por fim (iii)
características do pareamento para cada posição do alinhamento (20 atributos).

A principal motivação para a implementação deste sistema vem da análise dos
resultados de um sistema de predição baseado em random forests (RFMirTarget,
veja o Apêndice A para a descrição da ferramenta), também desenvolvido no escopo
desta tese. Observou-se que para instâncias de um conjunto de teste independente,
apesar do desempenho claramente superior do método proposto, algoritmos de poder
preditivo mais baixo são capazes de acertar a predição para alguns exemplos que não
são corretamente identificados pelo nosso método. Portanto, considerar o conjunto
de predições fornecidas por distintos algoritmos em uma estratégia ensemble poderia
introduzir ganhos, expandindo o poder de generalização do sistema de predição.
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Table C.3: Média e desvio padrão para os scores AUC calculados para predições
individuais e predições ensemble com base em uma validação cruzada 10-fold

Algoritmos (learners) Sistema ensemble
JRip J48 KNN SVM NB PLU BOR COP FOO

Conhecimento 0.799 0.812 0.580 0.716 0.709 0.788 0.821 0.844 0.796
completo (0.065) (0.041) (0.069) (0.046) (0.061) (0.049) (0.046) (0.030) (0.053)

Conhecimento 0.681 0.573 0.668 0.635 0.595 0.770 0.742 0.814 0.720
parcial (0.143) (0.131) (0.172) (0.163) (0.104) (0.106) (0.096) (0.080) (0.081)

Seguindo esta direção, o sistema ensemble proposto combina as predições obti-
das por classificadores popularmente utilizados em aplicações no ramo da Bioinfor-
mática, como support vector machine (SVM), k-nearest neighbors (KNN), árvores
de decisão (J48), naïve Bayes (NB) e um classificador com base em extração de
regras (JRip). Como combinadores, foram propostos novos métodos baseados na
teoria de escolha social. Especificamente, implementou-se as funções Borda count
(BOR), Copeland (COP) e Footrule (FOO), as quais apesar das suas diferenças fun-
damentais, atuam de forma similar, realizando uma combinação de rankings com
base em uma heurística pré-definida. Borda count foi previamente utilizado para
combinar predições de interações regulatórias de outra natureza(MARBACH et al.,
2012), enquanto as funções de escolha social Copeland e Footrule foram propostas
no presente trabalho como novos método de combinação em ensembles. Compara-
mos estes resultados com o método da pluralidade (PLU), tradicional na área de
ensemble learning.

Os resultados obtidos pelo sistema proposto estão resumidos na Tabela C.3. Fo-
cando primeiramente na comparação para conhecimento completo (linhas superiores
da tabela), observamos que nossa abordagem é capaz de manter o bom desempenho
apresentado pelos classificadores, melhorando-os em alguns casos. Por exemplo, os
métodos de Borda e de Copeland demonstram desempenho tão bom quanto o al-
goritmo J48, que neste cenário apresentou a melhor performance. É interessante
observar que o fato de alguns algoritmos, como o KNN, apresentarem visivelmente
um baixo poder preditivo não prejudica o desempenho geral do sistema ensemble.
Adicionalmente, as três funções de escolha social aplicadas na implementação do
sistema superam o tradicional método da pluralidade. Todos os combinadores com-
parados apresentaram um desempenho significativamente melhor em relação aos
algoritmos KNN, SVM e NB segundo teste estatístico Mann-Whitney com nível de
significância de 0.05.

Adicionalmente, o sistema ensemble proposto mostrou-se adequado para lidar
com tarefas de mineração de dados distribuídos nas quais a centralização de dados
é impraticável ou indesejável. Nestes cenários, a mineração de dados requer uma
análise distribuída dos mesmos, gerando modelos de classificação locais que devem
ser posteriormente combinados em um modelo de classificação global. Neste tra-
balho, propomos a aplicação do nosso sistema ensemble para a construção do mod-
elo global em um cenário no qual os atributos estão fisicamente distribuídos. Este
é o cenário mais desafiador em tarefas de classificação distribuída, tendo em vista
que o desempenho de um classificador está fortemente relacionado com a qualidade
e quantidade dos dados de treinamento empregados, e que normalmente assume-se
completa disponibilidade de todos os atributos relevantes para classificação. Em
situações em que isto não ocorre, métodos de classificação tradicionais tendem a
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falhar ou apresentar pior desempenho.
Para simular um cenário em que a distribuição de dados implica um conheci-

mento parcial a respeito dos atributos, assumimos que cada grupo de atributos está
localizado em uma fonte distinta e que cada algoritmo embutido no sistema tem
acesso apenas a uma fonte de dados (e consequentemente, a apenas um grupo de
atributos). Para minimizar os efeitos de qualquer viés associado a combinações fa-
voráveis entre algoritmo e conjunto de atributos, realizamos uma validação cruzada
em que a cada fold os grupos de atributos são aleatoriamente distribuídos entre os
algoritmos.

Os resultados foram bastante positivos e, como esperado, observou-se duas al-
terações em relação ao cenário com conhecimento completo: (i) de forma geral,
o desempenho dos algoritmos individuais e do sistema ensemble decaiu, compro-
vando o efeito negativo de conhecimento incompleto sobre o poder de predição e
(ii) considerando-se conhecimento parcial, o desvio padrão do desempenho médio é
maior, o que decorre do fato de que os algoritmos possuem um viés implícito que
provoca melhor generalização para alguns grupos de atributos do que para outros, tal
que existe uma grande variação no seus respectivos desempenhos entre os diferentes
folds (e distribuição dos grupos de atributos) na validação cruzada.

O benefício introduzido pelo uso de um sistema ensemble neste cenário foi obser-
vado de duas formas, no aumento do score AUC médio e na redução do desvio padrão
comparando-se predições ensemble com predições individuais. Foi constatada sig-
nificância estatística para o melhor desempenho do método Copeland em relação
a todos os métodos individuais e também em contraste com a função de Footrule
(nível de significância de 0.05, teste de Mann-Whitney). Já os combinadores Borda
e Footrule apresentam um ganho estatisticamente significativo em relação ao algo-
ritmos NB e J48. Por fim, comparando-se a distribuições dos scores AUC produzi-
dos por algoritmos individuais e pelo sistema ensemble, verificou-se uma diferença
estatisticamente significativa entre o comportamento destas distribuições, sendo a
distribuição relacionada às predições pelo sistema ensemble deslocada para a direita
do eixo x (maiores valores de AUC sores). Este deslocamento foi mais significativo
para o cenário de conhecimento parcial (p < 0.01 para conhecimento completo e
p < 8× 105 para conhecimento parcial, utilizando-se um teste estatístico de Mann-
Whitney).

C.2 Conclusão

Essencial para o bom funcionamento dos organismos vivos é a capacidade das
células de sentir e responder às mudanças ambientais e sinais internos (BALAZSI;
OLTVAI, 2005), e a forma com que elas realizam esta tarefa é por meio de suas redes
de regulação multi-camadas. Redes regulatórias genéticas são redes complexas e al-
tamente estruturadas, cujas conexões definem e controlam como as várias partes do
sistema, tais como genes e seus produtos funcionais, operam e se coordenam a fim
de realizar o processamento de informações dentro das células. Como consequência
desta interatividade celular, as modificações genotípicas e comportamentais obser-
vadas no sistema raramente são o efeito da atividade de um único gene, em vez disso,
eles tendem a resultar da atividade conjunta entre genes que interagem no sistema
(BARABÁSI; GULBAHCE; LOSCALZO, 2011). Portanto, descobrir os componentes do
sistema não é suficiente para entender o comportamento dos organismos, também é
crucial descobrir como esses componentes estão interligados dentro do sistema.
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Apesar do significativo aumento em nossa capacidade de gerar evidências biológ-
icas e dados experimentais - o que resulta dos importantes avanços tecnológicos e dos
inúmeros projetos em escala genômica realizados na última década, como o projeto
do genoma humano (LANDER et al., 2001) e os consórcios ENCODE (The ENCODE
Project Consortium et al., 2011) e modENCODE (The modENCODE Project Consortium
et al., 2010) - o ruído e a incompletude de conjuntos de dados gerados, aliados ao
nosso conhecimento parcial sobre os mecanismos de regulação gênica subjacentes ao
funcionamento dos organismos, prejudica uma caracterização abrangente da organi-
zação destes organismos vivos à nível de sistema. Esta tese abordou esta questão es-
pecífica de pesquisa, a qual é um grande desafio na área de Bioinformática, propondo
novos métodos e tecnologias para otimizar a engenharia reversa de redes regulatórias
genéticas. Em particular, nós nos concentramos na reconstrução das interações en-
volvidas nas redes de regulação controladas por TFs e miRNAs, ou seja, redes de
regulação transcricional e pós-transcricional. Em contraste com a grande maioria
dos trabalhos relacionados, que continuam a propor novos algoritmos para melho-
rar a inferência de rede, aqui seguimos uma tendência recente em Bioinformática e
exploramos estratégias de ensemble learning para aproveitar a ampla diversidade de
dados e métodos já disponíveis na literatura, motivados pelo notável desempenho
deste paradigma de aprendizagem em aplicações de aprendizagem de máquina.

O principal produto final desta tese foi realizar um estudo abrangente sobre a
aplicação de diferentes sistemas ensemble para a engenharia reversa de redes regu-
latórias genéticas, avaliando o seu potencial para melhorar os resultados de inferência
ao explorar diferentes fontes de diversidade oferecidos pelo cenário. Especificamente,
comparamos o desempenho de abordagens ensemble com abordagens tradicionais em
três direções: (i) inferência baseada em várias execuções de um método de otimização
estocástica em contraste com uma única execução (Capítulo 6), (ii) uso de múltiplas
linhas de evidência biológica em contraste com um único tipo de dado biológico
(Capítulo 6) e (iii) aplicação de vários algoritmos de aprendizagem de máquina em
contraste com um único algoritmo (Capítulo 6). A escolha foi fortemente influenci-
ada pelo estado da arte relacionado com os problemas abordados, em particular, com
as limitações e as oportunidades identificadas nos respectivos cenários. De acordo
com o nosso conhecimento e revisão da literatura, nenhum dos trabalhos anteriores
investiga e avalia a aplicação de ensemble learning ao problema de inferência de re-
des regulatórias genéticas na extensão com que foi realizado nesta tese. Assim, este
trabalho contribui para a área da Bioinformática, fornecendo conhecimentos novos
e bastante abrangentes a respeito das vantagens e limitações do uso de ensemble
learning neste contexto específico, consolidando-o como uma abordagem eficiente e
promissora a se seguir.

Ao construir e testar os sistemas ensemble representados na Figura C.2, con-
statamos que técnicas de ensemble learning tem muito a contribuir para este campo
do conhecimento. Tanto quando se explora a diversidade no nível de algoritmos ou
no nível dos dados, observou-se que o desempenho dos sistemas ensemble não foi
tão afetado como métodos tradicionais de aprendizagem de máquina por problemas
relacionados a qualidade dos dados dados ou pela indeterminação relacionada a este
problema de pesquisa. Assim, em relação à nossa Hipótese 1, podemos concluir que
a estratégia proposta, baseada em ensemble learning, alivia as principais deficiên-
cias associadas ao cenário, fornecendo as ferramentas para tratar a grande incerteza
sobre a estrutura de rede mais plausível e de superar, pelo menos parcialmente,
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limitações técnicas e computacionais.
De fato, para cada estudo de caso discutido nesta tese, observamos importantes

ganhos de desempenho em relação a métodos tradicionais, reforçando a idéia de que
a diversidade pode gerar modelos complementares, que por sua vez, têm um grande
potencial para melhorar os resultados de inferência quando devidamente combina-
dos. Um resumo dos ganhos de desempenho é dado na Tabela C.4, no qual são
relatadas as médias (e desvio padrão ) e os valores máximos da melhoria observada
em termos do fold change de desempenho. Salientamos que em várias dos compara-
ções feitas, foi observada significância estatística entre os resultados obtidos com o
uso de ensembles. Como os nossos resultados sugerem, o desempenho de sistemas
ensemble neste cenário é expressivo e relevante, confirmando assim a nossa Hipótese
2. Especificamente, os sistemas ensemble nos fornecem uma alternativa robusta
para explorar a massa crítica de conhecimento acumulado pela comunidade cien-
tífica quanto ao poder informativo de distintos tipos de dados biológicos distintos
e do poder preditivo de algoritmos de aprendizagem de máquina populares, com
verdadeiro potencial para expandir o nosso conhecimento em contraste com a sat-
uração no ganho de desempenho observada para métodos de inferência tradicionais
nos problemas de pesquisa abordados.

Table C.4: Resumo dos ganhos de desempenho (em termos do fold change) para os
estudos de caso discutidos nesta tese. São relatados os valores médios (com desvio
padrão) e máximos.

Tipo de regulação

Transcricional Pós-transcricional

Diversidade
Nível de dados 1.10 (0.086) / 1.30 —

Nível de algoritmo 1.24 (0.023) / 1.33 1.18 (0.132) / 1.45

Dada a sua eficiência ao longo de nossos experimentos e comparações, podemos
concluir que as abordagens ensemble devem ser consideradas como uma opção para
a inferência de redes regulatórias genéticas sempre que as circunstâncias o permi-
tam. Em particular, verificou-se que quando uma variedade de conjuntos de dados
relacionados com a rede de destino está disponível, este recurso pode ser explorada
com prioridade sobre outras estratégias, pois introduz um alto nível de diversidade
dentro do sistema ensemble e, consequentemente, produz notáveis ganhos de desem-
penho. A noção do alto impacto da qualidade e disponibilidade de dados para o
processo de engenharia reversa não é algo novo. De fato, a riqueza e a completude
das informações fornecidas pelos diferentes tipos de dados genômicos é a principal
motivação para projetos como o ENCODE e modENCODE. No entanto , ainda não
é bem compreendido como aproveitar com precisão essa gama de informação para as
redes de reconstrução, em especial ao lidar com organismos eucarióticos superiores.

Infelizmente, essa gama de informações como a fornecida pelos consórcios EN-
CODE e modENCODE nem sempre está disponível. Nesta situação, verificamos
experimentalmente o benefício de se construir sistemas ensemble para melhor ex-
plorar os dados disponíveis, executando algoritmos distintos ou várias execuções de
métodos estocásticos sobre um único tipo de dados. Em geral, esta deve ser uma
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tarefa trivial de se executar. Por exemplo, para tarefas de classificação, como o
problema da predição de alvos de miRNAs, muitos algoritmos estão disponíveis em
pacotes do R, toolbox para Matlab ou até mesmo implementados em softwares como
o Weka (HALL et al., 2009). Da mesma forma, existem muitas ferramentas e pacotes
de R disponíveis para inferência de redes de regulação transcricional que poderiam
ser adotados para implementação do nível de algoritmo (learner level no sistema
ensemble). Em ambos os casos, o principal esforço exigido se refere à adaptação
da saída dos diferentes métodos para um formato padrão, a fim de possibilitar sua
combinação. Surpreendentemente, apesar da grande disponibilidade de implemen-
tações de algoritmos de aprendizagem de máquina de fácil aplicação, bem como de
inúmeras ferramentas de engenharia reversa, a estratégia de combinar estes méto-
dos por meio de sistemas ensemble ainda não recebeu a devida atenção na área de
inferência de redes regulatórias, especialmente para o problema de reconstruir redes
de regulação pós-transcricional.

Também investigamos o impacto de detalhes de implementação no desempenho
dos sistemas ensemble. Em resumo, podemos concluir que dedicar esforços para
conceber métodos de combinação mais sofisticados durante o projeto do sistema en-
semble é vantajoso dado que eles fornecem melhores meios para explorar a sinergia
entre diferentes métodos, confirmando assim a nossa Hipótese 3. No âmbito deste
trabalho, propusemos dois novos métodos de combinação inspirados em funções
de escolha social,Copeland function e Footrule function, que não só superam as
predições geradas por algoritmos tradicionais, mas também apresentam melhor de-
sempenho que sistemas ensemble adotando o popular método da pluralidade como
combinador. O melhor desempenho foi observado tanto em termos da acurácia,
como da robustez.

Uma aplicação interessante dos métodos de combinação aqui propostos é a com-
posição de modelos globais em aplicações de mineração de dados distribuídos, em
que a distribuição física dos dados implica a exigência de uma análise distribuída
de dados e, consequentemente, o treinamento de modelos locais. Esta não é uma
tarefa trivial, especialmente quando há outras preocupações envolvidas como a pri-
vacidade dos dados. O uso de funções de escolha social para agregar modelos locais
revelou-se útil e eficiente nesse contexto, sendo capaz de lidar até mesmo com o
cenário mais desafiador de dados verticalmente particionado, em que nenhum dos
algoritmos tem um conhecimento completo sobre os atributos (features) relevantes
para a classificação.

Além da ampla investigação sobre o potencial de técnicas de ensemble learning
para melhorar a inferência de redes regulatórias, esta tese introduziu uma série
de novos métodos e tecnologias que atendem o nosso objetivo geral de otimizar o
processo de inferência. Estas novidades abrangem os domínios da Bioinformática
e ciências da computação, especialmente a área de aprendizagem de máquina. Em
resumo, as principais contribuições desta tese são:

•Foram fornecidas diversas instanciações do método proposto. Especificamente,
nós construímos sistemas ensemble para inferir redes regulatórias genéticas
explorando vários modelos distintos obtidos com base em diferentes evidên-
cias biológicas, algoritmos de aprendizagem de máquina variados e inúmeras
execuções de um método de otimização estocástica. Estas instâncias são ade-
quadas para aplicação a outros problemas específicos ou conjuntos de dados.
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•Um novo método de inferência de rede baseado em algoritmos genéticos, que
explora dados de expressão gênica para reconstruir a estrutura de redes de
regulação transcricional. Em contraste com os trabalhos relacionados, esta
solução propõe novos esquemas de representação e de codificação para redes
regulatórias genéticas usando o formalismo de redes Booleana, e introduz novas
funções de avaliação para comparar e selecionar as soluções candidatas.

•Um operador de mutação para algoritmos genéticos que introduz a novidade
de aproveitar conhecimento prévio ao aplicar mutações usando uma estraté-
gia epsilon-greedy. Nós mostramos que o uso do nosso operador de mutação
epsilon-greedy leva a melhorias em contraste com um algoritmo genético tradi-
cional, e esperamos que resultados semelhantes possam ser encontrados em
outros domínios em que exista conhecimento prévio informativo sob o prob-
lema em consideração.

•Novos métodos de combinação para o projeto de sistemas ensemble, inspirados
pela teoria da escolha social. De acordo com nossa avaliação empírica, os sis-
temas ensemble implementados com os combinadores propostos possuem mel-
hor desempenho que algoritmos de aprendizagem de máquina, mesmo aqueles
que possuem alto desempenho, bem como em relação ao método da plural-
idade, introduzindo precisão e robustez ao processo de inferência de redes
regulatórias genéticas.

•Resultados sobre a aplicação das funções de escolha social propostas como
métodos de combinação nesta tese para resolver o problema de tarefas de
classificação distribuída, um problema em aberto na área de mineração de
dados. Nós demonstramos a sua adequação e bom desempenho para lidar
com o cenário desafiador de dados verticalmente particionados, sendo capazes
de combinar modelos locais com um excelente trade-off entre a comunicação
de dados e precisão do modelo global. Além disso, sempre que a privacidade
é uma preocupação, a nossa solução é capaz de atingir desempenho notável
transferindo apenas informações de alto nível sobre os dados originais.

•Um método computacional para predição de genes alvos de miRNAs imple-
mentado com base em random forests, chamado RFMirTarget. Mostramos que
este algoritmo baseado em um ensemble de árvores de decisão, o qual ainda
não havia sido explorado neste contexto, supera vários classificadores conheci-
dos com significância estatística, e que seu desempenho não é prejudicado pelo
problema do desequilíbrio de classes, sendo capaz de recuperar grande parte
das instâncias verdadeiras de pares de miRNA e gene alvo depositados em
bancos de dados públicos especializados.

•Redes de regulação transcricional bastante abrangentes foram construídas para
humano, mosca da fruta e verme, usando uma coletânea de dados gerados pe-
los consórcios ENCODE e modENCODE. Mostramos que as redes inferidas
têm uma significativa sobreposição com interações verdadeiras contidas em da-
dos de benchmark, bem como significativo enriquecimento para anotações fun-
cionais extraídas do Gene Ontology, sugerindo que elas são altamente precisas
e biologicamente plausíveis. Estas redes introduzem conhecimento relevante
a respeito da conservação estrutural e funcional entre estes organismos, o que
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reforça a sua aplicabilidade para investigar a biologia humana. Além disso, as
redes inferidas são um recurso valioso para introduzir conhecimento baseado
em rede no estudo de doenças, melhorando nosso entendimento a respeito das
vias de regulação relacionados a estas condições patológicas.

Concluímos esta discussão com uma declaração do livro The Wisdom of Crowds
de Surowiecki (2005), que afirma "With most things, the average is mediocrity.
With decision making, it’s often excellence" ("Na maioria das coisas, a média é
mediocridade. Em tomada de decisões, muitas vezes é excelência."). Neste tese,
apresentamos um conjunto de evidências de que esse é exatamente o caso para a
engenharia reversa de redes regulatórias genéticas quando um conjunto de hipóteses
é combinado dentro de um sistema ensemble - a agregação de múltiplos e diversos
modelos leva a resultados mais precisos e biologicamente plausíveis. Nossos resul-
tados encorajam a aplicação de sistemas ensemble para decifrar a estrutura das
redes regulatórias genéticas, consolidando o paradigma de ensemble learning como
uma metodologia promissora para seguir, ao menos até que exista uma tecnologia
adequada para produzir dados experimentais mais abrangentes e precisos, ou en-
quanto não formos capazes de explorar de forma mais eficiente os dados disponíveis
recorrendo ao repertório padrão de algoritmos de aprendizagem de máquina em sua
forma bruta.

No entanto, a grande flexibilidade envolvida na aplicação deste paradigma de
aprendizagem em termos das inúmeras formas de gerar uma coleção de modelos
com informações complementares e de combinar os membros do ensemble - o que
ainda está para ser totalmente explorado na área de aprendizagem de máquina -
obviamente fornece muitos outros caminhos para sua utilização no problema em
consideração. De fato, as possibilidades são muito amplas para serem abordadas e
avaliadas em um único estudo. Por isso, consideramos nossos resultados primeiros
passos bastante motivadores em direção à formalização de um novo paradigma de
inferência para redes regulatórias genéticas, e estamos confiantes de que esta tec-
nologia vai prosperar e que seus benefícios se tornarão ainda mais expressivos e
compreensíveis à medida que sua aplicação para solução deste problema de pesquisa
for amadurecendo.


