

CATALISADORES HÍBRIDOS SUPORTADOS Aplicação em polimerização de α-olefinas

Adriana Steinmetz*, Marcelo Priebe Gil

Universidade Federal do Rio Grande do Sul, IQ, Av. Bento Gonçalves, 9500, Porto Alegre, Brasil, 91540-160 *adriana.steinmetz@ufrgs.br

INTRODUÇÃO

A heterogeneização de catalisadores em sílica tem sido alvo de intensa pesquisa devido às propriedades concedidas aos polímeros obtidos. Paralelamente, tem-se aumentado as pesquisas em tornos dos catalisadores não-metalocênicos, dentre os quais damos enfoque especial ao ligante tris(pirazolil)borato (Tp).

OBJETIVO

Desenvolver, caracterizar e avaliar catalisadores híbridos suportados à base de tris(pirazolil)borato de titânio(IV) na polimerização de etileno com distribuição de peso molecular mais larga.

MATERIAIS E MÉTODOS

Sílica quimicamente modificada com MAO permite impregnar uma maior quantidade de espécies catalíticas na superfície.

 $\begin{array}{c} \text{SiOH + MAO} \\ \end{array} \begin{array}{c} \text{Si-O-Al} \\ \text{O-Al-} \\ \text{O-Al-} \\ \text{Me} \\ \end{array}$ $\begin{array}{c} \text{Me} \\ \text{O-Al-} \\ \text{Me} \\ \end{array}$ $\begin{array}{c} \text{Me} \\ \text{Al-Me} \\ \end{array}$ $\begin{array}{c} \text{Al-Me} \\ \text{L.Zr^*Me} \end{array}$

Figura 1- Impregnação do MAO na superfície da sílica ativada

As espécies catalíticas utilizadas nas reações de polimerização envolvem um metaloceno (Cp_2ZrCl_2) e dois não metalocênicos (3- rac-[et(η^5 Ind) $_2$ TiCl $_2$] e { Tp^{Ms^*} }TiCl $_3$).

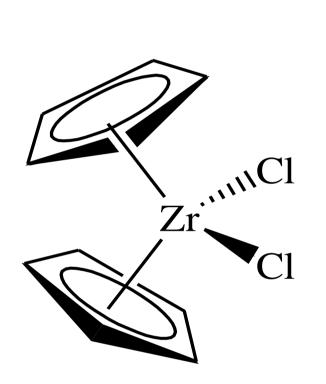


Figura 2- Cp₂ZrCl₂

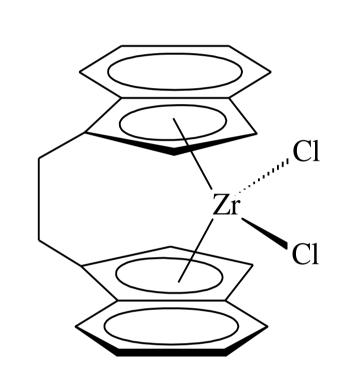


Figura 3- rac-[et(η⁵Ind)₂TiCl₂]

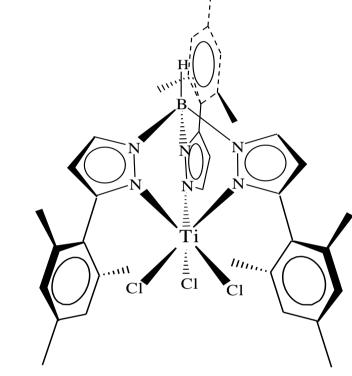


Figura 4 - {Tp^{Ms*}}TiCl₃

As reações de polimerização do PE foram realizadas em um reator Parr modelo 4843 equipado com agitação mecânica e controlador interno de temperatura, com alimentação contínua de etileno. O reator foi seco em um forno a 120°C por 12h antes de cada reação de polimerização e resfriado sob vácuo.

RESULTADOS E DISCUSSÕES

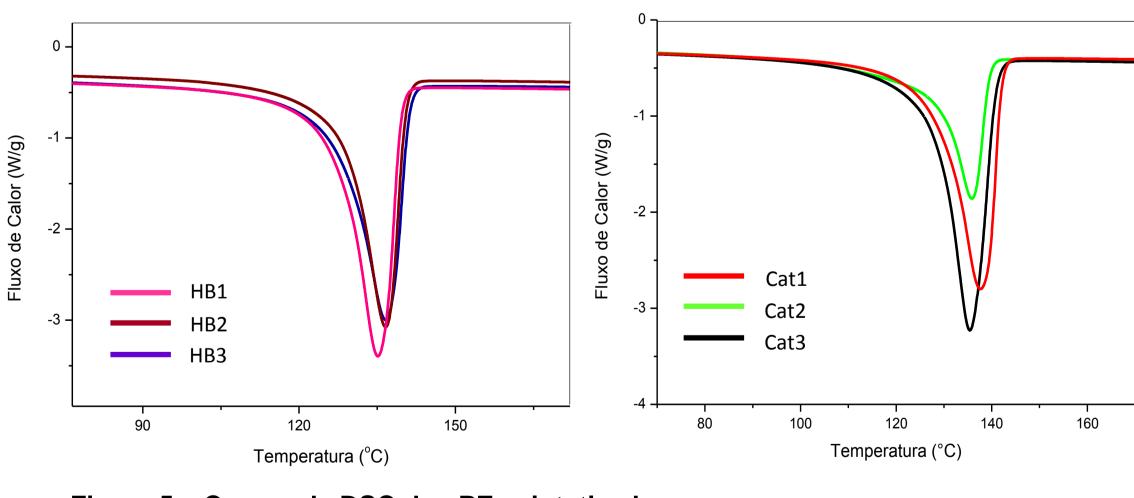


Figura 5 – Curvas de DSC dos PEs sintetizados.

Tabela 1 – Atividade na polimerização do PE e propriedades térmicas dos PEs sintetizados.

Código	Complexos	Atividade*	Tm (°C)	ΔH (J/g)	<i>X</i> c (%)
HB1	Cp ₂ ZrCl ₂ /Tp ^{Ms*} TiCl ₃	1.424,48	135,15	154,9	53
HB2	Et(Ind) ₂ ZrCl ₂ /Tp ^{Ms*} TiCl ₃	1.242,19	136,59	148,4	51
HB3	Cp ₂ ZrCl ₂ +Tp ^{Ms*} TiCl ₃	569,43	136,6	169,7	58
CAT1	Cp ₂ ZrCl ₂	3.572,79	137,69	137,8	47
CAT2	Tp ^{Ms*} TiCl ₃	103,68	135,85	81,71	28
CAT3	Et(Ind) ₂ ZrCl ₂	306,35	135,43	167,2	57

*Kg_{pol}/mol_M.h.atm

CONCLUSÕES

Os sistemas híbridos, a partir da combinação de catalisadores metalocênicos e não-metalocênicos, mostraram-se ativos na polimerização de etileno, sendo que a atividade catalítica demonstrou ser dependente da natureza do catalisador, além das condições de polimerização. Estudos em andamento visam uma compreensão mais aprofundada das propriedades dos polímeros resultantes.

AGRADECIMENTOS

