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“You’ll never get to Heaven if you’re scared of gettin’ high.”

— KYLIE MINOGUE (RED BLOODED WOMAN)
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ABSTRACT

Online systems such as Facebook, Twitter, Digg, and BitTorrent communities (among

various others) offer a lightweight process for obtaining identities (e.g., confirming a valid

e-mail address; the actual requirements may vary depending on the system), so that users

can easily join them. Such convenience comes with a price, however: with minimum

effort, an attacker can obtain a horde of fake accounts (Sybil attack), and use them to

either perform malicious activities (that might harm legitimate users) or obtain unfair

benefits.

It is extremely challenging (if not impossible) to devise a single identity management

solution at the same time able to support a variety of end-users using heterogeneous de-

vices, and suitable for a multitude of environments (e.g., large-scale distributed systems,

Internet-of-Things, and Future Internet). As a consequence, the research community has

focused on the design of system-specific identity management solutions, in scenarios hav-

ing a well-defined set of purposes, requirements, and constraints.

In this thesis, we approach the issue of fake accounts in large-scale, distributed sys-

tems. More specifically, we target systems based on the peer-to-peer paradigm and that

can accommodate lightweight, long-term identity management schemes (e.g., file shar-

ing and live streaming networks, collaborative intrusion detection systems, among oth-

ers); lightweight because users should obtain identities without being required to provide

“proof of identity” (e.g., passport) and/or pay taxes; and long-term because users should

be able to maintain their identities (e.g., through renewal) for an indefinite period.

Our main objective is to propose a framework for adaptively pricing identity

requests as an approach to limit Sybil attacks. The key idea is to estimate a trust score

for identity requests, calculated as a as function of the number of identities already granted

in a given period, and considering their source of origin. Our approach relies on proof

of work, and uses cryptographic puzzles as a resource to restrain attackers. In this thesis,

we also concentrate on reshaping traditional puzzles, in order to make them “green” and

“useful”. The results obtained through simulation and experimentation have shown the

feasibility of using green and useful puzzles for identity management. More importantly,

they have shown that profiling identity requests based on their source of origin constitutes

a promising approach to tackle the dissemination of fake accounts.

Keywords: Identity management, peer-to-peer systems, Sybil attack, fake accounts, col-

lusion attacks, proof of work.



RESUMO

Gerenciamento Adaptativo de Identidades em

Sistemas Distribuı́dos de Larga Escala

Sistemas online como Facebook, Twitter, Digg, e comunidades BitTorrent (entre vários

outros) oferecem um processo leve para a obtenção de identidades (por exemplo, confir-

mar um endereço de e-mail válido; os requisitos podem variar dependendo do sistema),

de modo que os usuários possam cadastrar-se facilmente nos mesmos. Tal conveniência

vem com um preço, no entanto: com um pequeno esforço, um atacante pode obter uma

grande quantidade de contas falsas (ataque Sybil), e utilizá-las para executar atividades

maliciosas (que possam prejudicar os usuários legı́timos) ou obter vantagens indevidas.

É extremamente desafiador (senão impossı́vel) desenvolver uma única solução de ge-

renciamento de identidades que seja ao mesmo tempo capaz de oferecer suporte a uma

variedade de usuários usando dispositivos heterogêneos e adequada para uma diversidade

de ambientes (por exemplo, sistemas distribuı́dos de larga escala, Internet das Coisas, e

Internet do Futuro). Como consequência, a comunidade de pesquisa tem focado no pro-

jeto de soluções de gerenciamento de identidades customizadas, em cenários com um

conjunto bem definido de propósitos, requisitos e limitações.

Nesta tese, abordamos o problema de contas falsas em sistemas distribuı́dos de larga

escala. Mais especificamente, nos concentramos em sistemas baseados no paradigma par-

a-par e que podem acomodar esquemas de gerenciamento de identidades leves e de longo

prazo (ex., sistemas de compartilhamento de arquivos e de live streaming, sistemas de

detecção de intrusão colaborativos, entre outros); leves porque os usuários devem obter

identidades sem precisar fornecer “provas de identidade” (ex., passaporte) e/ou pagar

taxas; e longo prazo porque os usuários devem ser capazes de manter suas identidades

(ex., através de renovação) por um perı́odo indefinido.

Nosso principal objetivo é propor um arcabouço para precificar adaptativamente

as solicitações de identidades como uma abordagem para conter ataques Sybil. A

idéia chave é estimar um grau de confiança para as solicitações de identidades, calculada

como função do número de identidades já concedidas em um dado perı́odo, considerando

a origem dessas solicitações. Nossa abordagem baseia-se em prova de trabalho e usa

desafios criptográficos como um recurso para conter atacantes. Nesta tese, nós também

concentramos esforços na reformulação dos desafios tradicionais, de modo a torná-los

“verdes” e “úteis”. Os resultados obtidos via simulação e experimentação mostraram a

viabilidade técnica de usar desafios verdes e úteis para o gerenciamento de identidades.

Mais importante, eles mostraram que caracterizar as solicitações de identidades com base

na origem das mesmas constitui uma abordagem promissora para lidar com a redução

substancial da disseminação de contas falsas.

Palavras-chave: gerenciamento de identidades, sistemas par-a-par, ataque Sybil, contas

falsas, ataques em conluio, prova de trabalho.
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1 INTRODUCTION

Identity and access management infrastructures play an important role in the digi-

tal era, enabling networked systems to determine who has access to them, what rights

and permissions one has to managed resources, when and how these resources can be

accessed, among others (TRACY, 2008). These infrastructures support a variety of func-

tions, such as identity lifecycle management (e.g., creation, update, and revocation of

identities), authentication, and access control, among others (HANSEN; SCHWARTZ;

COOPER, 2008). In this thesis, we concentrate on identity lifecycle management.

In an ideal scenario, each person should possess one identity in a given system. De-

pending on the system nature (e.g., peer-to-peer networks, ad-hoc wireless mesh net-

works, and collaborative intrusion detection systems), this relationship could be inter-

preted as “one device, one identity”. The reality is far from such an ideal scenario,

however. Online systems such as Facebook, Twitter, Digg, and BitTorrent communities

(among various others) offer a lightweight process for creating identities1 (e.g., confirm-

ing a valid e-mail address; the actual requirements may vary depending on the system),

so that users can easily join them. Such convenience comes with a price: with minimum

effort, an attacker can obtain a horde of fake accounts2 (Sybil attack (DOUCEUR, 2002)),

and use them to either perform malicious activities (that might harm legitimate users) or

obtain unfair benefits. The corruptive power of counterfeit identities is widely known,

being the object of several studies in the literature (JETTER; DINGER; HARTENSTEIN,

2010). With regard to media coverage, Facebook Inc. recently announced that the pro-

portion of duplicate accounts had risen to 5% in the last quarter of 2012, and that the

proportion of fake accounts in the system was 7.6% (EDWARDS, 2013). Google Inc. did

not provide concrete numbers on YouTube fake accounts; however, the company stripped

around two billion fake views from videos published by Universal Music and Sony using

their YouTube accounts (GAYLE, 2012). It is worth mentioning that YouTube implements

a reward policy, in which users whose videos are frequently viewed receive a fraction of

the revenue with advertisement.

It is extremely challenging (if not impossible) to devise a single identity management

solution at the same time able to support a variety of end-users using heterogeneous de-

vices, and suitable for a multitude of environments (e.g., large-scale distributed systems,

Internet-of-Things (ATZORI; IERA; MORABITO, 2010), and Future Internet (LAM-

PROPOULOS; DENAZIS, 2011)). As a consequence, the research community has fo-

1In this thesis, the terms “account” and “identity” are used interchangeably to refer to an informational

abstraction capable of distinguishing users in a given system.
2We use the terms “fake account”, “sybil identity”, “sybil”, and “counterfeit identity” interchangeably

to refer to those identities created and controlled by an attacker, and which are used with the purpose of

harming the system and/or the users in it.



20

cused on the design of system-specific identity management solutions in scenarios having

a well-defined set of purposes, requirements, and constraints.

1.1 Problem definition and scope

In this thesis, we approach the issue of fake accounts in large-scale, distributed sys-

tems. More specifically, we target those based on the peer-to-peer paradigm and that

can leverage lightweight, long-term identity management schemes (DANEZIS; MITTAL,

2009) (e.g., file sharing and live streaming networks, collaborative intrusion detection

systems, online social networks, among others); lightweight because users should obtain

identities without being required to provide “proof of identity” (e.g., passport) and/or

pay taxes; and long-term because users should be able to maintain their identities (e.g.,

through renewal) for an indefinite period.

In the scope of the systems mentioned earlier, strategies such as social networks

(JETTER; DINGER; HARTENSTEIN, 2010; CAO et al., 2012) and proof of work (e.g.,

computational puzzles) (BORISOV, 2006; ROWAIHY et al., 2007) have been suggested

as promising directions to limit the spread of fake accounts. In spite of the potentiali-

ties, important questions remain. A number of investigations (MOHAISEN; YUN; KIM,

2010; YANG et al., 2011) have shown that some of the key assumptions on which social

network-based schemes rely (e.g., social graphs are fast mixing, and Sybils form tight-

knit communities) are invalid. More importantly, the use of social networks for identity

verification might violate users’ privacy. This is a very sensitive issue, specially in a mo-

ment when there is a growing concern about online privacy (ANGWIN; SINGER-VINE,

2012).

Puzzle-based schemes, in turn, inherently preserve the users’ privacy (since no per-

sonal information is required to obtain identities), and therefore represent an interesting

approach to limit Sybils. Existing schemes focus on the users’ computing power, and use

cryptographic puzzles of fixed complexity to limit the spread of Sybils (BORISOV, 2006;

ROWAIHY et al., 2007). However, existing proposals are limited as they do not distin-

guish between requests from legitimate users and those originated by attackers. Ideally,

requests from malicious users would be assigned much higher costs than those originated

by legitimate users. If so, for some arbitrary hardware capacity at the hands of an at-

tacker, the number of identities he could obtain would be much smaller than in existing

approaches. The challenge to this approach, however, is to identify and separate mali-

cious from legitimate requests. The key observation, which we explore in this thesis, is

that malicious users tend to recur much more frequently than normal ones.

1.2 Objectives

Our main objective is to propose a framework for adaptively pricing identity re-

quests as an approach to limit Sybil attacks, in the context of large scale distributed

systems. We base our framework on the hypothesis that “one can separate presum-

ably legitimate identity requests from those potentially malicious by observing their

source of origin and users’ identity request patterns3”.

3In the context of this thesis, “a source requests identities” means in fact “user(s), from a certain source,

request(s) identities”. Source may refer to a user’s workstation, a local network, an Autonomous System

(AS), etc. (identified by an IP address or prefix). In substitution or as a complement, source may be

associated with a network coordinate provided by a system such as Vivaldi (DABEK et al., 2004) and
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Based on the hypothesis above, the key idea is therefore to estimate a trust score of the

source from which identity requests depart, calculated as a proportion of the number of

identities already granted to (the) user(s) associated to that source, in regard to the average

of identities granted to users associated to other sources. The higher the frequency (the)

user(s) associated to a source obtain(s) identities, the lower the trust score of that source

and, consequently, the higher the price that must be paid per identity requested. Note that

exploring this hypothesis to design such a framework basically requires us answering the

following research questions:

• How effective would a mechanism based on the hypothesis that one can filter po-

tentially malicious requests be in detecting them?

• What is the overhead that such a mechanism would cause to legitimate users?

• Would an attacker, being aware of the inner-working of the mechanism, be able to

subvert it? If so, under which conditions?

Building on top of the concept of trust score, in this thesis we take advantage of proof

of work strategies to propose the notion of adaptive puzzles. The goal is to adaptively

adjust the complexity of puzzles assigned to those users requesting identities, based on

the measured value of trust score. Therefore, those requests likely to be involved in a Sybil

attack will be assigned puzzles having higher complexity, whereas presumably legitimates

will be assigned less complex ones. In this thesis, we focus on the users’ computing

power and use cryptographic puzzles, as seen in previous approaches (BORISOV, 2006;

ROWAIHY et al., 2007). In order to decrease energy-consumption caused by puzzle-

solving, and make a useful usage of the processing cycles dedicated for that task, in this

thesis we discuss a promising direction for reshaping puzzles, taking advantage of waiting

time and lessons learned from massive distributed computing (AHN et al., 2008). In the

end, we come up with a design for lightweight, long-term identity management that makes

puzzles green and useful.

In order to answer the research questions posed earlier and assess the effectiveness of

our design, we evaluated our framework by means of simulation and also through exper-

iments using PlanetLab. The results obtained show that potential attackers must dedicate

a larger amount of resources to control a certain fraction of the identities in the system.

The results also show that presumably legitimate users are minimally affected (being as-

signed easier-to-solve puzzles). In the various stages of this research, our framework was

evaluated considering a fixed set of real traces of identity requests, and also synthetically-

generated ones, always focusing on reproducing real environments.

1.3 Contributions

As mentioned earlier, we propose a framework for lightweight, long-term identity

management in large-scale distributed systems. Our framework, illustrated in Figure 1.1,

is composed of a number of building blocks, described next.

The notion of sources of identity requests, frequency of identity requests, and network

recurrence rate are important pieces for building the concept of trust score – the most

fundamental contribution of this thesis (MAUCH et al., 2010; CORDEIRO et al., 2011).

Veracity (SHERR; BLAZE; LOO, 2009). The concept of source is further detailed in Chapter 4.
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Figure 1.1: Illustration of the proposed framework.

It is important to mention these pieces are abstract notions; i.e., the concept of trust score

is agnostic on how these notions are instantiated in a real deployment.

Taking advantage of the concept of trust scores, we make a second contribution in this

thesis: the use of adaptive puzzles – a solution to make it expensive for potential attackers

the process of obtaining a single identity, without penalizing presumably legitimate users

(CORDEIRO et al., 2012).

A third contribution of this thesis is the reshaping of traditional puzzles to make them

green (in terms of energy required to solve the puzzles) and useful (by taking advantage of

lessons learned from massive distributed computing) (CORDEIRO et al., 2012, 2013). In

the end, the framework becomes an enabler of the lightweight scheme for long-term iden-

tity management, in which legitimate users are less penalized for obtaining/controlling

identities than attackers (CORDEIRO et al., 2013).

It is important to mention that the use of the “green” and “useful” modules are not

mandatory in the framework, which could be instantiated solely with traditional, adaptive

puzzles. This provides flexibility in scenarios where high efficiency in limiting the dis-

semination of counterfeit identities is more important than instantiating a green and useful

solution for identity management.

In order to assess the validity of our hypothesis, we carried out an extensive analysis

considering various traces of identity requests. Some of these traces had inaccuracies,

mainly because of the methodology considered to capture them. A fourth contribution of

this thesis is therefore a methodology to improve the quality of these traces (CORDEIRO

et al., 2014). Our methodology can be used for making these traces suitable not only for

the analysis considered in this thesis, but also for any evaluation (e.g., simulation) that

takes as input traces of real-world user workloads.
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1.4 Organization

The remainder of the thesis is organized as follows. In Chapter 2 we review the liter-

ature on mechanisms for identity management in large-scale distributed systems, and we

present a taxonomy for a comprehensive understanding of their underlying concepts and

assumptions. In Chapter 3 we present a generic methodology for improving the accuracy

of traces of users’ usage sessions in large-scale distributed systems. In this chapter we

also describe the set of experiments carried out to assess the validity of our hypothesis,

and our major findings. The analysis described in this chapter is based both on traces

processed with our methodology, and also ones available from public repositories. In

Chapter 4 we provide an overview of the conceptual framework for identity management

that forms the basis of our proposal, and we discuss the possible strategies an attacker can

use to subvert our solution.

In Chapter 5 we introduce the concept of trust score, detailing how it is derived from

the sources’ frequency of identity requests. Its feasibility and robustness is evaluated by

means of simulation, considering real traces of identity requests collected from a Bit-

Torrent file sharing community. In Chapter 6 we describe how the values of trust score

computed for a source are translated into puzzles of adaptive complexity and assigned to

users requesting identities. Finally, in Chapter 7 we summarize the contributions and our

key findings, and we present prospective directions for future research.



24

2 RELATED WORK

The Sybil attack (DOUCEUR, 2002) has been the subject of various research inves-

tigations reported in the literature. Several authors have (i) studied and quantified the

benefits an attacker can obtain by launching it, (ii) investigated other attacks that can be

deployed using fake accounts, and (iii) proposed solutions to prevent and/or detect the

existence of fake accounts in various large-scale distributed systems. In this chapter we

review some of the most prominent investigations.

Organization. The remainder of this chapter is organized as follows. We first de-

scribe, in Section 2.1, the Sybil attack and related ones. Then, in Section 2.2, we intro-

duce a taxonomy for categorizing the proposals that form the state-of-the-art in the field.

The taxonomy is followed, in Sections 2.3 and 2.4, by a brief survey of the literature for

the most prominent solutions to tackle this attack. Finally, in Section 2.5, we close the

chapter with a summary.

2.1 Identity management: vulnerabilities and attacks

The concern on mitigating the existence of fake accounts in online systems is not new

(FIEGE; FIAT; SHAMIR, 1987; ELLISON, 1996). In spite of the research efforts carried

out to this end, there is no proposal in the literature that enables a local entity to verify,

in a fully-distributed system and without direct and/or physical knowledge of the remote

entities it communicates to, if different identities in fact belong to distinct entities.

In 2002, Douceur (DOUCEUR, 2002) coined the term “Sybil attack”1 to designate

the creation of fake accounts in online systems2. In order to enable an attacker to create

various identities and thus launch such attack, it is necessary that the identity management

mechanism in place allows the creation of identities without asserting their authenticity

(e.g., through verification of personal documents). The corruptive power of counterfeit

identities is widely known, being the object of several studies in the literature. The inter-

ested reader may refer to the work of Jetter et al. (JETTER; DINGER; HARTENSTEIN,

2010) for a detailed, quantitative analysis of the Sybil attack.

The idea behind launching a Sybil attack is that an adversary can control the majority

(or a large fraction) of the identities in the system. The benefit of possessing several coun-

1The term Sybil was suggested by Brian Zill from Microsoft Research, after the 1973 book “Sybil”

(SCHREIBER, 1974). The book discusses the treatment of Sybil Dorsett (a pseudonym for Shirley Mason)

for dissociative identity disorder, then referred to as multiple personality disorder. It was eventually discov-

ered that much of the story portrayed in the book was fabricated, and even the actual diagnosis of Shirley

Mason is subject of dispute (CBC BOOKS, 2011).
2Prior to that publication, “pseudo spoofing” was the most common term used in the literature to refer

to the act of creating counterfeit identities in a distributed system (ORAM, 2001).
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terfeit identities varies according to the nature of the system. In Facebook and YouTube,

for example, fake accounts can be used to spoof friendships (therefore making someone

look “popular”), likes (and thus promote people, fan-pages, videos, or advertisements),

page hits, or video views. In peer-to-peer systems, possessing fake accounts increases the

chance that an attacker intermediate the communication among any peers. An attacker

possessing several identities may also subvert polling algorithms, thus manipulating the

reputation of peers and contents shared in the network, among others. In addition, a Sybil

attack may serve as basis for launching other attacks such as Eclipse, White-washing,

Free-riding, Collusion, and Pollution. Next we will discuss each of them in more detail.

2.1.1 Eclipse

The Eclipse attack (SINGH et al., 2006) consists in dividing a peer-to-peer-based

distributed system in an arbitrary number of segments. The goal is to enable the attacker

to intermediate the communication between peers from different segments. Therefore, the

attacker will be able to omit messages sent from/to peers in eclipsed segments. He will

be also able to provide, intentionally, faulty answers to requests in both application and

overlay levels. In the former case, by returning false information as a response to searches,

in an attempt to censor the access to certain resources. In the latter, by providing bogus

routing information, in order to partition the network. In addition, attackers can launch

an Eclipse attack in other to perform other malicious activities such as traffic analysis, in

those systems that aim to provide anonymity (GASPARY; BARCELLOS, 2006).

 

Sybil nodes 

Honest users 

Eclipsed 
regions 

Figure 2.1: Illustration of a peer-to-peer network under an Eclipse attack.

Figure 2.1 illustrates a peer-to-peer network under Eclipse attack. In the left part of

the figure the network is shown as it is perceived by the legitimate users, which are not

aware that several of the identities they communicate with are controlled by a single en-

tity. In the right part it is illustrated the actual view of the network, partitioned into two

segments. In this setting, every communication between peers from each of the parti-

tions will be intermediated (and possibly modified) by the entity controlling these fake

accounts. The natural path for an attacker to obtain identities in order to create these fake

peers is launching a Sybil attack beforehand.

Eclipse attacks are particularly harmful in structured peer-to-peer networks such as

Pastry (DRUSCHEL; ROWSTRON, 2001), CAN (RATNASAMY et al., 2001), and Chord

(STOICA et al., 2001), since that in this type of networks the identifier of each peer is as-

signed according to their position in the overlay. These aspects have been the subject of
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investigation (TIMPANARO et al., 2011), in which the robustness of BitTorrent Mainline

DHT against Eclipse attacks has been evaluated. From a set of experiments the authors

have found that a relatively small number of counterfeit identities (20) were sufficient to

launch a successful Eclipse attack in the network.

2.1.2 Free-riding

Free-riding is a violation to the principle of collaboration among the participants of

peer-to-peer networks, especially to file sharing ones. It consists in one taking advantage

of the network resources without providing one’s own resources in exchange. The users

that adopt such selfish behavior are called free-riders. In contrast to Eclipse, whose mo-

tivation is often clear, there are several reasons why a user would free-ride the system

(ENGLE; KHAN, 2006):

• the intent of decreasing upload bandwidth consumption; this is the case when this

resource is limited, or when charges per amount of data transmitted/received apply;

• the concern of sharing illegal contents (in the case of file sharing networks); a num-

ber of countries (e.g., United States and Switzerland) have specific legislation on

this matter. In these countries, sharing copyrighted contents that have restrictions

on copying and distribution for example constitutes violation to copyright laws;

• some people tend to abuse of certain resources if no form of payment is required

for their usage; this behavior, whose explanation is related to “the tragedy of the

commons” (HARDIN, 1968), is extremely harmful to those peer-to-peer networks

which rely on collaboration to function as expected.

In those large-scale distributed systems that offer incentives for peers to contribute

with their own resources, the creation of counterfeit identities can play an important role

so that attackers can obtain more benefits without contributing to the network. For ex-

ample, Pontes et al. (PONTES; BRASILEIRO; ANDRADE, 2007) described that an

attacker, possessing a small number of identities (100 identities in a system having over

than 50,000 peers, according to an experiment), can obtain higher download rates in Bit-

Torrent file sharing communities, thus harming other users. In a more recent publication,

Karakaya et al. (KARAKAYA; KORPEOGLU; ULUSOY, 2009) performed an exten-

sive description of the potential of counterfeit identities to augment the harmful power of

free-riders in a variety of large-scale distributed systems.

2.1.3 White-washing

The white-washing attack, first described in a survey about trust and reputation sys-

tems (JØSANG; ISMAIL; BOYD, 2007), consists in taking advantage of the neutral rep-

utation that newcomers have to launch other attacks in the network, such as Free-riding.

In order to understand the motivation for this attack, it is important to have in mind

the basic operation of peer-to-peer reputation systems (such as EigenTrust (KAMVAR;

SCHLOSSER; GARCIA-MOLINA, 2003) and DHTrust (XUE et al., 2012)). According

to Jøsang et al. (JØSANG; ISMAIL; BOYD, 2007), the basic idea of reputation systems

is to enable peers to evaluate each other, for example, after completing a transaction. The

aggregation of these evaluations is then used to estimate a trust or reputation score of

each participant. One may then consider each others’ trust score in his/her decision of
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taking part in future transactions with them. Peers having lower reputation scores can be

penalized by not having their transactions completed in the system.

In those systems that adopt reputation mechanisms, a user that free-rides potentially

gets lower reputation. In a given moment, his/her reputation will not allow him to continue

completing transaction with other peers. This situation then motivates him to leave the

system, discard his/her own identity, and create a new one – which will have a higher

reputation compared to the previous one. Since the reputation is associated to the identity

the user possesses, a free-rider that repeatedly joins the system with a new identity will

get rid of his/her lower reputation (FELDMAN et al., 2006), and thus continue being able

to establish transactions with other peers. Note that white-washing brings advantages

for an attacker only if creating identities is simple and cheap, and the effort required to

regenerate his/her reputation in the system is relatively small.

2.1.4 Collusion

A collusion attack (MARTI; GARCIA-MOLINA, 2006) consists in multiple entities

acting together to achieve specific goal, often malicious. For example, they may provide

similar feedback about a given resource or entity in order to subvert reputation algorithms.

According to Marti and Garcia-Molina (MARTI; GARCIA-MOLINA, 2006), investiga-

tions that target this issue consider that a group of colluding entities acts as a single entity,

with each entity aware of each others’ behavior and intentions.

A single attacker can take advantage of counterfeit identities to launch a collusion

attack against the system. In this case, the attacker defines the role of each fake entity

considering his/her major goal. In addition to promoting people and/or advertisements,

colluding attacks may serve as basis for disseminating polluted content to users in a file-

sharing network. The pollution attack and its relationship with collusion attacks are de-

scribed in the following section.

2.1.5 Pollution

In the content pollution attack, a malicious user publishes a large number of de-

coys (same or similar meta-data), so that queries of a given content return predominantly

fake/corrupted copies (e.g., a blank media file or executable infected with virus) (LIANG

et al., 2005). Another attack is meta-data pollution, which consists of publishing a file

with misleading meta-data, inducing users to download files that do not correspond to the

desired content. A third kind of attack, known as index poisoning (LIANG; NAOUMOV;

ROSS, 2006), consists in creating many bogus records that associate titles with identifiers

of inexistent copies and/or false IP addresses/port numbers. Various studies have looked

at the extension of these attacks in Gnutella, KaZaa, BitTorrent, and in live streaming

systems (KUMAR et al., 2006; LEE et al., 2006; SANTOS et al., 2011; LIN et al., 2010).

In those systems that aim to tackle the dissemination of polluted content using reputa-

tion schemes (WALSH; SIRER, 2006; COSTA; ALMEIDA, 2007; VIEIRA et al., 2013;

SANTOS et al., 2013), counterfeit identities have been widely used to collude by increas-

ing the reputation of polluted contents in detriment of non-polluted versions. This is done,

for example, by providing false testimonies about the legitimacy of a given version. This

can also be done in combination with other attacks, such as Eclipse.

This attack (and also the previously discussed ones) relies on poor identity manage-

ment in order to take place. In fact, Wallach (WALLACH, 2003) argued that a secure

design for peer to peer networks requires the solution of three problems: securely assign-

ing identities to users, securely maintaining the routing tables, and securely forwarding
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messages; without an adequate solution for the first problem, the later two cannot be

properly approached. In the following section we discuss some of the most prominent

solutions proposed to date to deal with this problem.

2.2 Taxonomy of solutions

In the paper that describes the Sybil attack (DOUCEUR, 2002) Douceur proved that,

in the absence of a logically centralized entity, an unknown entity can always present him-

self to other entities in the system using more than one identity, unless under conditions

and assumptions that are unfeasible for large-scale distributed systems. Since then, inves-

tigations on this subject have focused on limiting the dissemination of fake accounts and

also on mitigating their potential harm. We propose a taxonomy to organize these propos-

als, which is based on the broader categorization introduced by Danezis et al. (DANEZIS;

MITTAL, 2009), namely weak and strong identity-based management schemes.
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Figure 2.2: Taxonomy of Sybil-defense solutions.

In our taxonomy, depicted in Figure 2.2, existing solutions are grouped according to

the mechanism employed for identity management or user authentication. Each of the

groups are described in detail in the following sections.

2.3 Strong-based identity schemes

In this category, users may only obtain identities certified by trusted third-parties. Its

main advantage is the difficulty imposed to users that attempt to create and control several

identities, or take control of someone else’s identity. Next we describe the most prominent

sub-categories in this class: certification authorities and trusted computing.

2.3.1 Certification authorities

The certificate-based authentication schemes use external entities to provide identifi-

cation services, typically Certification Authorities (CA) such as VeriSignTM , ThawteTM ,

and Comodo CATM . In this scheme, each user must obtain an identity from a given

trusted entity prior to joining the system; that entity will be held responsible for ensuring

the authenticity of the users’ identities in the system. Therefore, it becomes implicit that

all users should agree with that trusted entity. The requirements for creating new identities
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may be diverse, ranging from the provisioning of personal information such as passport

number, to the payment of taxes.

This scheme brings several interesting advantages to large-scale distributed systems.

The most important one is that users cannot spoof and/or steal identities (assuming that the

certification authority is not compromised). Without being able to create new identities,

Sybil and white-washing attacks are virtually eliminated, given the difficulties imposed

by the identity creation/certification process. Another advantage of this scheme is that it

ensures users are in fact communicating with those they actually intend to.

This scheme might also present some drawbacks, depending on the system nature.

First, the certification authority must be accepted for all users in the system. This aspect

becomes more relevant for those certification authorities deployed for serving some spe-

cific system, or when users are unwilling to trust their personal information or pay taxes to

obtain identities from unknown or obscure certification authorities. Well-known, online

payment companies (e.g., PayPal) could provide authentication services, thereby solving

this problem. In this case, an identity could be obtained by proving the possession of

an account in such companies, which in turn authenticate users by validating their credit

cards. Apart from the discussion on whether this is acceptable, we argue here that users

should have options for authenticating himself/herself that do not require or rely on their

personal, sensitive information.

Second, in those systems in which users are free to choose their certification authori-

ties, a communication problem may arise when two users that wish to complete a trans-

action do not trust on each other’s chosen certification authorities. Third, it might be

unfeasible to deploy a dedicated certification authority for serving a specific system.

The proposals that fit in this category (CASTRO et al., 2002; ABERER; DATTA;

HAUSWIRTH, 2005; MORSELLI et al., 2006) attempt to minimize some of the side-

effects of using certification authorities. For example, Aberer et al. (ABERER; DATTA;

HAUSWIRTH, 2005) and Morselli et al. (MORSELLI et al., 2006) have focused on de-

centralized public-key infrastructures (PKI) and web of trust to provide an authentication

service to users. However, these solutions are vulnerable to selfish behavior, i.e., they rely

on the contribution of a certain fraction of peers to operate as expected.

2.3.2 Trusted computing

Trusted computing is a relatively new platform, in which commodity hardware (e.g.,

computers) comes with Trusted Platform Module (TPM) – a secure crypto-processor

that can store cryptographic keys that protect information (TRUSTED COMPUTING

GROUP, 2013), and that is certified by the hardware vendor. This platform serves for

attesting that the overall hardware and software in a given device have certain properties.

It can be used, for example, to attest that users are running a certain software version, or

for verification of remote computation in a grid computing scenario (to prevent that an

attacker forges computation results).

The use of trusted computing could theoretically enable the assertion “one device –

one identity” (discussed in the introduction), thus solving many security and privacy is-

sues related to identity management in large-scale distributed systems. TrInc (LEVIN

et al., 2009) is a first step towards this end – a small, trusted component designed to

combat equivocation in large-scale distributed systems, by providing means for commod-

ity hardware to provide unique, once-in-a-lifetime, verifiable attestations (for example,

about the user’s identity). The solutions based on trusted computing, however, might not

be widely available, since participating devices must be equipped with a TPM.
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2.4 Weak-based identity schemes

This category comprises mechanisms in which identities are not created with strong

authentication guarantees (i.e., the identities do not serve for the purpose of authenticating

the user/device using it). In this case, although it is not possible to avoid the existence of

Sybil identities, it is possible to limit their amount to an “acceptable level”. Such mech-

anisms may be useful, for instance, for applications that can tolerate a certain fraction of

counterfeit identities.

The solutions in this category may be further classified according to the strategy em-

ployed to enforce authenticity: social networks (JETTER; DINGER; HARTENSTEIN,

2010; CAO et al., 2012), trust and reputation (JØSANG; ISMAIL; BOYD, 2007), black-

listing (LIANG; NAOUMOV; ROSS, 2005), and proof of work (BORISOV, 2006; ROWAIHY

et al., 2007). Next we discuss each of them.

2.4.1 Blacklisting

There are a number of investigations that have proposed IP blacklisting as an strat-

egy to prevent pollution and fake accounts in large-scale, distributed systems (LIANG;

NAOUMOV; ROSS, 2005). The idea is simple: once a region within the Internet is found

to be associated with nasty activities, these regions (typically a subnet address/submask)

are recorded in a list and prevented from gaining access to the system. This is similar to

the strategy adopted by organizations such as The SpamHaus Project (SpamHaus, 2013)

to reduce the amount of spam messages sent across the Internet.

In spite of the potentialities of using blacklisting as a mean to limit Sybil attacks,

there are a number of technical limitations. The most important is that the maintenance

of these blacklists must be supervised by a human operator (in order to prevent legitimate

subnets from being regarded as suspicious). They also rely on algorithms that are prone

to misidentification of corrupt subnets. More importantly, spoofing IP addresses is a well

known technique, which severely hampers the effectiveness of this approach.

In the realm of pollution in large-scale, distributed systems, Liang et al. (LIANG;

NAOUMOV; ROSS, 2005) proposed the creation of a blacklist based on the evaluation

of title meta-data collected in a P2P network. The list is comprised of IP ranges la-

beled as polluters, and built according to the density of corrupted files made available.

The success of the approach depends on the frequent download of meta-data, potentially

leading to substantial overhead. In a continuation of the previous investigation (LIANG;

NAOUMOV; ROSS, 2006), a blacklist is created by a global system to keep track of

sub-network reputation. In both investigations, there are limitations in characterizing a

sub-network as polluter based on the high density of polluted versions. Furthermore,

many participants of P2P networks are connected to the Internet via Network Address

Translation in Internet Service Providers.

2.4.2 Social networks

The use of social networks as a resource to detect and/or limit the occurrence of coun-

terfeit identities has gained significant attention from the research community, with sev-

eral prominent solutions reported in the literature (YU et al., 2006, 2008; DANEZIS;

MITTAL, 2009; TRAN et al., 2011; CAO et al., 2012). These mechanisms explore the

concept of social networks to limit the spread of counterfeit identities in the system, also

estimating an upper bound for the number of counterfeit identities that are “accepted”.

Yu et al. (YU et al., 2006) proposed a mechanism to limit the negative influence of
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counterfeit identities by taking advantage of the real world relationships between users.

Based on the assumption that social networks are “fast-mixing” (i.e., that users form

a dense network of relationships), clusters of counterfeit identities can be detected and

eliminated through a mechanism of random walks in the social graph. In a subsequent re-

search, Yu et al. (YU et al., 2008) improved the performance of the proposed mechanism,

by decreasing the number of counterfeit identities that are accepted as being legitimate.

One of the most recent research initiatives in the field is SybilRank (CAO et al., 2012).

Also relying on the assumption that social networks are fast mixing, Cao et al. proposed

an approach to rank nodes in a social graph. The ranking is done according to the degree-

normalized probability of a short random walk of starting and landing in a non-Sybil

node. The lower-ranking nodes in this scheme are regarded as potentially fake with high

probability, and can thus be banned from the network for example.

In spite of the potentialities, social networks have some important drawbacks. The

use of social networks as a mean to tackle Sybils might violate user anonymity; as previ-

ously mentioned in this thesis, this is an extremely sensitive issue, specially in a moment

when there is a growing concern and discussion about privacy issues in social networks

(ANGWIN; SINGER-VINE, 2012). More importantly, Mohaisen et al. (MOHAISEN;

YUN; KIM, 2010) and Yang et al. (YANG et al., 2011) have recently shown that most

social networks are not fast-mixing and that Sybils do not aggregate themselves in a dense

network of relationships (this is also an important finding from Cao et al. (CAO et al.,

2012)). These findings invalidate one of the key assumptions upon which social network-

based solutions relied on.

2.4.3 Trust and reputation

Trust and reputation systems also have been studied and used to detect suspicious

identities as being counterfeit (JØSANG; ISMAIL; BOYD, 2007; JØSANG, 2012). The

actual goal is not limiting the dissemination of counterfeit identities in the network, but

detecting them once they behave suspiciously. According to Jøsang (JØSANG, 2012),

there are two major challenges in this field: (i) design systems that are able to derive

accurate values of trust score to the participating entities, and (ii) ensure that the computed

values of trust score will reflect future behavior of these entities.

E-commerce companies such as eBay and Amazon.com also implement reputation

indexes based on users’ transaction history. In the distributed systems realm, proposed

solutions have been vulnerable to white-washing attacks, except when strategies to make

identity assignment a non-trivial task are adopted (e.g., closed BitTorrent communities

such as BitSoup (BITSOUP.ORG, 2010)).

2.4.4 Proof of work

In the paper that describes the Sybil attack (DOUCEUR, 2002), Douceur demon-

strated that a robust and scalable solution for peer authentication in P2P networks requires

a certain degree of centralization (for example, by employing certification authorities).

Since then, and considering the severe constraints imposed by the use of certification au-

thorities, an intermediate category of proposals that has attracted attention in recent years

is to condition identity granting/renewal to the previous resolution of computational puz-

zles. Puzzles are typically assigned to users (and their solution, verified) by a bootstrap

service, and aim to decrease attackers’ capabilities of creating counterfeit identities.

Approaches based on computational puzzles have presented satisfactory results when

using challenges created and/or verified in a distributed fashion. Borisov (BORISOV,
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2006), for example, has shown the technical feasibility of using puzzles generated peri-

odically and distributedly, by proposing a mechanism in which peers that participate in

the puzzle generation process are able to validate its solution. Rowaihy et al. (ROWAIHY

et al., 2007), in turn, have proposed a mechanism based on multiple puzzle generation

entities. It requires that, prior to obtaining identities, users contact one of these entities

and solve a series of puzzles.

Despite the advances in computational puzzle-based identity management, existing

mechanisms do not address the issue of adjusting puzzle complexity. More specifically,

when assigning puzzles of equal computational complexity to any user, it becomes very

hard to choose a complexity that effectively reduces the assignment of identities to ma-

licious users, without severely compromising legitimate ones. On one extreme, puzzles

having higher complexity penalize legitimate users (who often have less powerful hard-

ware). On the other extreme, puzzles having lower complexity may favor potential attack-

ers (which are generally equipped with high performance computing hardware). There-

fore, the use of a uniform complexity for puzzles may benefit attackers at the expense of

legitimate users.

2.5 Summary

Online systems have been a frequent target of attacks that aim to create a large number

of counterfeit identities. These identities can be used for a variety of purposes, such

as promoting or raising the reputation of advertisements and contents, obtaining unfair

advantages in the system, and/or causing nasty activities that might harm other users.

The lack of a proper identity management system may ultimately cause the failure of the

system and compel the users to abandon it.

As mentioned earlier in this chapter, there is no solution that can virtually elimi-

nate counterfeit identities in the absence of a central certification authority (DOUCEUR,

2002). The solutions proposed to limit Sybils in online systems have thus focused on

the design of mechanisms that can bring the proportion of fake accounts in the system

to an acceptable level, each having their own set of requirements and constraints. For

example, the mechanisms based on online social networks require that the users in the

system personally know each other. The proposed solutions also vary in complexity, de-

gree of authentication, overhead (to legitimate users), robustness, and security (to identity

owners).

Table 2.1: Summary of proposals and their attributes.

Solution Type of identity scheme Users’ collaboration Enforcement of legitimacy Knowledge of other users

Certification authorities Strong-based Solution-specific Before identity request Solution-specific

Trusted computing Strong-based Not required Before identity request Not required

Blacklisting Weak-based Solution-specific Before identity request Not required

Social networks Weak-based Not required After identity request Required

Trust and reputation Weak-based Required After identity request Not required

Proof of work Weak-based Solution-specific Before identity request Not required

Table 2.1 provides a brief summary of the proposed solutions analyzed in this sec-

tion. The solutions are classified in this table considering (i) type of identity scheme
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(DANEZIS; MITTAL, 2009), (ii) need for users’ collaboration to be effective, (iii) mo-

ment in which identity authenticity is enforced (before or after the identity is created and

assigned to the user), and (iv) requirement for users know each other. With regards to

users’ collaboration, for example, it forms the basis of some solutions (e.g., trust and rep-

utation), whereas in other cases it may depend on the design of the solution. For proof

of work, some implementations use collaborative, distributed creation and verification of

puzzle solution, whereas others use central creation and verification of puzzle solution.

One of the concerns that has driven the research reported in this thesis is that users

should not need to reveal any information to the system in order to obtain identities, and

that their privacy should be respected to its full extent (for example, no behavioral or ac-

cess pattern analysis should be done to identity fake accounts – as it occurs in reputation

systems). Therefore, we focus on the class of proof of work strategies as a prospective so-

lution to limit the dissemination of Sybils. It is important to highlight that our framework

(similarly to others based solely on computational puzzles (BORISOV, 2006; ROWAIHY

et al., 2007)) falls in the category of weak identity-based mechanisms. As a consequence,

created identities do not fit for the purpose of strongly authenticating users. In the follow-

ing chapters, we describe our approach to tackle the issue of fake accounts.
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3 PROFILE OF IDENTITY REQUEST PATTERNS

In the previous chapter we presented a survey of the most prominent solutions to

address the issue of fake accounts in large-scale distributed systems. In this thesis, we

approach this issue considering a perspective that users’ privacy should not be violated;

to this end, we explored an aspect largely neglected in previous investigations: the patterns

of users’ identity requests. In this chapter we discuss the results of an analysis of traces of

identity requests, and present insights that can help us in the design of a solution that can

separate presumably legitimate requests from those potentially malicious. It is important

to mention that we used BitTorrent traces from a public repository maintained by the

Technische Universiteit Delf P2P Trace Archive (ZHANG et al., 2012), and also traces

we collected from some BitTorrent file sharing communities. In this chapter we also

discuss the methodology we used to capture and process the traces we collected1.

Organization. The remainder of this chapter is organized as follows. In Section 3.1

we present the approach we used for collecting traces. In Section 3.2 we discuss the

methodology for processing the collected traces and making them suitable for our evalua-

tion. In Section 3.3 we discuss our insights with the analysis of the studied traces. Finally,

in Section 3.4, we close the chapter with a summary.

3.1 Collecting traces

As previously mentioned, we used BitTorrent traces from a public repository – main-

tained by the Technische Universiteit Delf P2P Trace Archive (ZHANG et al., 2012) – in

our evaluation. In spite of the variety of traces available, most of them were collected in

2009 or earlier. For this reason, we dedicated some effort for obtaining more recent ones.

For the sake of consistency, we focused on a BitTorrent file-sharing community.

There has been substantial research on approaches for obtaining traces based on the

capture of users’ usage information (e.g. arrival and departure, and duration of online

sessions) (POUWELSE et al., 2005; YOSHIDA; NAKAO, 2011a; HOÃŸFELD et al.,

2011). In summary, these approaches can be mapped into three basic strategies: (i) ob-

taining users’ behavior information directly from the system database (GUO et al., 2007),

(ii) running add-ons on each user (Alexa Internet, Inc., 2012), and (iii) taking periodic

“snapshots” of users in the system, and building a trace from these snapshots (HOÃŸFELD

et al., 2011). The third strategy has attracted significant attention from the community,

mainly because of its simplicity, popularity (YOSHIDA; NAKAO, 2011b; CUEVAS et al.,

1Part of the concent of this chapter is based on the following submission: Cordeiro, W., Mansilha, R.,

Santos, F., Gaspary, L., Barcellos, M., Montresor, A.: Were You There? Bridging the Gap to Unveil Users’

Online Sessions in Networked, Distributed Systems. In: 33rd Conference on Computer Communications

(INFOCOM 2014), 2014, Toronto, Canada (submitted), 2014.



35

2010; BLOND et al., 2010; ZHANG et al., 2010) and, more importantly, the autonomy

it provides for one to collect data (i.e. without requiring privileged access to any entities

in the system). For these reasons, in this thesis we also took advantage of this strategy to

perform our trace collection.

3.1.1 Overview

Here we provide a brief overview on the modus operandis of the strategy we use to

collect traces; to this end, we use Figure 3.1 as basis. The target of our trace collection

is some generic distributed system, for example a BitTorrent file sharing community. In

such a system, a number of users (e.g. peers interested in sharing contents) join and leave

at their will. In this context, labels v1..3 represent the users that were seen at least once in

the system; labels s1..14 represent the snapshots taken, at a regular time interval ∆t.
In Figure 3.1, 1 indicates that a given user vi was seen in the system when snapshot st

was taken (i.e., a “positive” snapshot), whereas 0 (“null”) represents the opposite. Build-

ing the trace of users’ online sessions is then a trivial task; in the example from Figure 3.1,

the gray regions form an online session.

 

v1 

v2 

v3 

s1 s2 s3 s4 s5 s6 s7 

1 1 0 0 0 1 1 

1 1 1 1 1 1 1 

0 1 1 1 0 0 0 

0 0 0 0 1 1 

0 0 1 1 1 1 1 

0 0 1 1 0 0 0 

s8 s9 s10 s11 s12 s13 s14 

0 

Figure 3.1: Users seen on each snapshot taken from the monitored system.

Zhang et al. (ZHANG et al., 2011) and Mansilha et al. (MANSILHA et al., 2011)

use a set of instrumented clients (crawlers) to take snapshots from BitTorrent swarms. In

our research, we used a partial instance of the TorrentU framework, which was proposed

by Mansilha et al. (MANSILHA et al., 2011), to take snapshots. Next we describe the

methodology that TorrentU uses to collect traces.

3.1.2 Using TorrentU to collect traces

We used an instance of the TorrentU framework tailored for the purpose of capturing

users’ arrival and departure in large-scale distributed systems. This instance uses a mini-

mal implementation of a BitTorrent client software to collect traces, which is installed in

a set of distributed nodes (crawlers). To materialize our instance, we used a set of Plan-

etLab nodes as crawlers. In this section we first describe, in a higher level of abstraction,

the snapshot captuing process using TorrentU. Then, we dive into the details of the trace

capturing process, using a high level algorithm as basis.

Trace collection deployment overview

Figure 3.2 provides an overview of the collection process. The first step in the setup of

a new monitoring process is the upload of the monitoring scripts and software, from the

master server to the crawlers used in the monitoring process (arrow 1 in Figure 3.2). The

master server also sends to each of the nodes a set of parameters related to the monitoring,

which include: (i) the monitoring start time, (ii) a list of torrents to be monitored, (iii) the

address of the master server, and (iv) the periodicity of snapshots.
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Figure 3.2: Simple schema of the TorrentU deployment.

Once the monitoring starts, each node begin collecting, periodically, a set of online

users from the swarms indicated in the list of torrents given as parameter. To carry out

this process, the node basically acts as a BitTorrent client. The methodology used by

the modified client to obtain peer lists is sending two announce messages to the tracker.

The first message, join announce, is used to join the swarm (arrow 2); in response, the

tracker sends a list of peers already in the swarm (arrow 3). The second message, quit

announce, is sent shortly after to leave the swarm (arrow 4). The reason for sending a quit

announce message is twofold. First, it minimizes any interference to the swarm. By doing

so, for example, the crawler’s IP address will not be sent to other users, since the crawler

itself is not going to download or upload content. Second, it will prevent blacklisting,

since the crawler will not be regarded as subscribed to various trackers. Note that this

process (illustrated through arrows 2 - 4) is repreated periodically, during the period of

the snapshot capture process.

In our TorrentU instance, the node periodically uploads the set of peer lists obtained to

the master server (arrow 5). This is done to protect from transient or permanent PlanetLab

node failures, which may difficult or even make it impossible to retrieved the peer lists

collected so far. Once the monitoring is done, the master server simply sends a signal to

each crawler for gracefully terminating the snapshot collection process (arrow 6).

High level algorithm of the monitoring process

In each crawler, the BitTorrent client is invoked from within a monitoring script. The

monitoring script, in turn, is remotely invoked from the master server, which coordinates

the snapshot capturing process. A partial view of the monitoring script algorithm is pre-

sented in Algorithm 1.

The monitoring starts once the start time expires in each crawler (lines 1-4 in Al-

gorithm 1). To ensure accuracy of collected data, crawlers and master server must be

synchronized so that clock discrepancy among them is at most a couple of seconds; this

setting can be easily achieved using NTP. As previously mentioned, the snapshot collec-

tion process is carried out periodically (i.e., in rounds). Therefore, in this algorithm an

alarm is set (line 3), which will trigger every ∆t units of time to create a thread for exe-

cuting the RUNMONITORING procedure (line 8). For distinguishing each partial snapshot

that will be created by some crawler having identifier Global.crawlerId, we maintain a

variable called snapshotId. Once the monitoring starts, this variable is set to zero (line 2).
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Algorithm 1 Script for taking periodic snapshots

1: on SystemClock.currentTime == InputParam.startTime do

2: snapshotId = 0 ⊲ counter for distinguishing partial snapshots

3: alarmId← setAlarm (InputParam.∆t, RunMonitoring)

4: end on

5: on event == SystemEvent.Interrupt do

6: deleteAlarm (alarmId)

7: end on

8: procedure RUNMONITORING( )

9: snapshotId ++ ⊲ identifies each snapshot file per round

10: logFile← createFile (’snapshotFile ’ + Global.crawlerId + ’ ’ + snapshotId)

11: append (logFile, SystemClock.CurrentTime)

12: for all torrent ∈ InputParam.torrentList do

13: for all tracker ∈ torrent.trackerList do ⊲ on first run, tracker.minInterval is 0

14: tracker.minInterval← tracker.minInterval −InputParam.∆t
15: if tracker.minInterval ≤ 0 then

16: peerList, nextRequest← runBitTorrentClientMod (torrent, tracker)

17: tracker.minInterval← nextRequest ⊲ update tracker.minInterval

18: append (torrent.infoHash + ’ ’ + tracker.address + ’ ’ + peerList, logFile)

19: end if

20: end for

21: end for

22: close (logFile)

23: uploadFile (InputParam.masterServerAddr, logFile)

24: end procedure

The RUNMONITORING procedure implements most of the logic of the monitoring

process. The first step is creating a file to record the snapshot (line 10). The name of

the file will be formed by the concatenation of the crawler identifier and the current snap-

shot index snapshotId. To distinguish the round to which each snapshot file refers to,

snapshotId is incremented on each round (line 9).

The current timestamp (timestamp of the snapshot) is recorded in this file (line 11).

Then, for each torrent in the torrent list given as input for the monitoring process (line 12),

the following steps are taken. First, the torrent is open, to retrieve its tracker list. For

each tracker in that list (line 13), the algorithm checks if that tracker should be queried

(lines 14-19). If so, it launches the modified BitTorrent client to fetch a peer list from it

(lines 16). The algorithm updates tracker.minInterval with the minimum time expected

for a future request nextRequest informed by the tracker (line 17). Finally, the received

peer list (plus the torrent infohash and tracker address) are appended to the file (line 18).

The decision on whether a given tracker should be queried on some round is necessary

because trackers often impose a minimum interval between announces (nextRequest). If

some node makes requests in an interval shorter than the one informed, it may be black-

listed, and thus prevented from obtaining peer lists from that tracker. To illustrate, sup-

pose that a node sent an announce message to some tracker, and in reply it obtained a

peer list and a value of 28 minutes. That value means that the node must wait at least
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28 minutes before contacting the tracker again to send another announce message. Now

suppose that ∆t = 5 minutes. Given that tracker.minInterval has a value of 0 on the

first run, the tracker is queried in the first monitoring round because tracker.minInterval

−∆t ∴ 0 − 5 = −5 ≤ 0 (lines 14-15). After the query is completed, tracker.minInterval

is now equal to 28 (line 17). The tracker will be contacted again only in the sixth round

since the last query, when tracker.minInterval will be equal to -2. Note in this example

that more time is elapsed (30 minutes) than the tracker actually indicated (28 minutes).

However, it is more important to ensure that snapshots are in fact taken in a regular time

basis; in this case, speed is sacrificed for the sake of accuracy.

After the peer lists from trackers of all torrents are obtained, the next step in the

algorithm is to close the file (line 22) and upload it to the master server (line 23, arrow

4 in Figure 3.2)). For the sake of optimization, this file could be uploaded after a certain

number of rounds have been passed, for example.

The monitoring is globally terminated when the master server sends a signal to each of

the PlanetLab crawlers (arrow 5). The arrival of that signal basically triggers the deletion

of the alarm set up for periodically running the RUNMONITORING procedure (lines 5 - 7).

Note that the master server will receive partial snapshots from all crawlers involved in

the snapshot capturing process. Building a complete snapshot from the system at instant

t is then a trivial task. It is done by simply taking those partial snapshots collected from

the various trackers of a given swarm in a same round and adding them together.

3.1.3 Considerations on our deployment for trace collection

There were five major issues that had to be addressed in order to deploy the monitoring

architecture described in Figure 3.2. These issues are discussed next.

High values for nextRequest received from trackers

The period between snapshots ∆t plays an important role in the accuracy of the ob-

tained traces. On one hand, longer periods between snapshots increase the chances that

a join/leave event of a user is missed. On the other hand, shorter periods increase the

overhead caused to the monitored system.

The strategy that trackers use to define a value for nextRequest significantly affects the

regularity required for capturing snapshots. In a set of monitoring experiments we carried

out, for example, nextRequest was often set to 30 minutes. Using ∆t = 30 might result in

a poor trace, where a large fraction of join/leave events are missed. To address this prob-

lem, we divided the set of PlanetLab nodes into N groups, so that ∆t = E[nextRequest]/N,

where E[nextRequest] is the expected value for nextRequest. In this case, group N0

queries the trackers on instant t0 = 0, group Ni on instant ti = i ·∆t and so on. When it

comes the turn of group N0, the expected amount of time E[nextRequest] will have been

already elapsed.

Number of trackers queried per node

Building a snapshot of online users takes some non-negligible amount of time. Among

the aspects that may influence that amount of time are: (i) round-trip time, (ii) available

bandwidth (to transmit peer lists), (iii) CPU power (to build peer lists and handle re-

quests/connections), (iv) number of trackers to be queried, among others. Therefore, it is

important to keep the number of trackers that each node queries down to a minimum, so

that building a single snapshot takes as little time as possible. Otherwise, snapshots might
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mix together users that were not necessarily online in a same instant.

To illustrate, suppose that querying each tracker takes 5 seconds on average (including

the time required to initiate and close a connection following the BitTorrent protocol).

Ideally, each node would query a single tracker. However, considering that each node

will query a number of 6 trackers (from a number of torrents), the total time to build a

snapshot will be 30 seconds.

Synchronization of the system clock of crawlers

The snapshot building process has a high degree of distribution, and partial snapshots

must be taken approximately at the same instant in order to compose a full, accurate

snapshot of the system. Therefore, it is important that each monitoring round starts ap-

proximately at the same time. However, because of process scheduling and other external

factors, the difference of the start times of a given round across crawlers may increase

significantly overtime. In the scope of our research, we used NTP to make sure crawlers

are roughly synchronized. We also used real-time alarms to prevent any round start delays

due to process scheduling overhead.

There are scenarios in which one cannot adjust the system clock and/or take advantage

of real-time alarms. For monitoring practitioners dealing with them, we propose a design

based on a global synchronization server to provide coordination to crawlers. In this

design, as soon as a crawler is ready to take snapshots, it registers itself to the central

server. Upon the start of a new round, that server contacts each registered crawler by

sending a ROUNDSTART message. Although this process is subject to server-crawler

communication latency, it would ensure that the round start offset across crawlers would

not grow overtime.

Transient and permanent crawler failures

TorrentU uses a set of PlanetLab nodes as crawlers for taking snapshots. PlanetLab

nodes have a convenient characteristic of geographic distribution. However, it comes at

the cost of high node instability. Therefore, some nodes may transiently fail during the

monitoring process, whereas others may fail permanently.

There are three candidate strategies to deal with this issue. The first is increasing

crawler redundancy. However, this strategy might not be always suitable in those scenar-

ios in which resource is limited. Given that most of nodes suffer from transient (rather

from permanent) failures, one possible direction is to temporarily replace crawlers.

A second strategy (which we considered in our research) is to use keep-alive messages

to test node availability. The central server would be responsible for periodically sending

those messages and checking whether that node is still available. If some node fails to

reply for a number of consecutive rounds, it is replaced by another backup node.

The strategy discussed above replaces crawlers permanently, and requires a certain

number of rounds in order to ensure that the node actually went permanently offline, i.e.

the fact that the node did not reply to successive keep-alive messages was not due to a

transient communication failure. Most of PlanetLab node failures are transient, and often

these nodes come back online quickly. However, during these transient failures, nodes are

unable to collect peer lists.

In order to deal with such transient failures, we propose as a third strategy the use of

special crawlers, denoted as fire-crawlers. To understand this strategy, consider the design

for ensuring global synchronization of crawlers discussed earlier. Taking advantage of

that design, if some crawler x fails to register as ready for the upcoming round, the server
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Figure 3.3: Set of snapshots from a BitTorrent file sharing community, anonymized,

shown in three resolutions.

would schedule a fire-crawler to take that snapshot instead. In case x suffered from a

transient failure, it would later report to the server that it is ready to capture snapshot. In

this case, the server would then de-allocate the fire-crawler, and send a go message to x
in the following round.

Accuracy of snapshots

Technical limitations prevent that peer lists be able to contain every peer the tracker

is aware of. In other words, only a fraction of peers some tracker is aware of will figure

in each peer list it provides. A naive solution to overcome this problem is to request a

certain number peer lists so that the probability that everyone figures at least once in any

of those lists is maximized.

Note however that there is a minimal interval between announces imposed by track-

ers. Therefore, to increase snapshot accuracy, we must increase the number of crawlers

dedicated to collect them. Figure 3.3 illustrates a trace taken using a varying number of

crawlers: 1, 5, and 50 crawlers. In this figure, the x axis shows the snapshot number,

whereas the y axis depitcs the peer identifier (anonymized). A dot in this plot means that

peer having id y was online when snapshot x was taken. Note in this figure that increasing

the number of crawlers improves trace resolution.

To estimate the number of crawlers required to take more accurate snapshots from

a swarm population of certain size, we take advantage of the methodology proposed by

Hoãÿfeld et al. (HOÃŸFELD et al., 2011). This methodology was formulated based

on a variation of the coupon’s collector problem with samples of size k > 1 (KOBZA;

JACOBSON; VAUGHAN, 2007). In this methodology, an approximation for the number

of required tracker’s responses to obtain a full snapshot of the users’ population in a given

swarm (E[X ]) can be obtained from Equation 3.1.

E[X ] ≈
E[N ] · hN
Lmax · |B|

(3.1)

In the equation above, N is the expected number of users, and hN the N-th harmonic

number. The maximum size of a peer list is denoted by Lmax. Considering for example an

estimate of the swarm population around 4,000 users, Lmax = 200 users (a typical setting

found for most BitTorrent file sharing communities) and |B| = 4 trackers (i.e. 800 users

obtained in each request), we obtain E[X ] ≈ 44 crawlers; for the sake of fault tolerance,

one may further increase the number of crawlers.

This solution might not be applicable when crawlers are a scarce resource. As a

consequence, some peers may fail to appear in snapshots. This failure has serious conse-

quences to the quality of traces. In the next session we discuss this aspect in more detail,
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and present a methodology for correcting traces collected using snapshot-based strategies.

3.2 Improving the accuracy of collected traces

The fact that some users may fail to appear in snapshots may introduce a harmful

noise in the collected traces. To illustrate, consider Figure 3.4; the circles indicate a given

user actually was in the system. Because snapshots s8 and s9 missed user v2, the resulting

trace will report two online sessions for that user, when the user actually joined and left

the system once.

 

v1 

v2 

v3 

s1 s2 s3 s4 s5 s6 s7 

1 1 0 0 0 1 1 

1 1 1 1 1 1 1 

0 1 1 1 0 0 0 

0 0 0 0 1 1 

0 0 1 1 1 1 1 

0 0 1 1 0 0 0 

s8 s9 s10 s11 s12 s13 s14 

0 

Figure 3.4: Users seen on each snapshot taken from the monitored system.

As previously discussed, this issue could be addressed by increasing the number of

crawlers used for taking snapshots. However, there are scenarios in which the number

of crawlers available may be insufficient. For example, according to the methodology

proposed by Zhang et al. (ZHANG et al., 2011), monitoring a BitTorrent ecosystem with

an average of 10,000 users requires around 489 crawlers; for 100,000 users, around 6,045

ones are required. As the target system grows in popularity, it becomes challenging to

ensure the proper operation of these crawlers during the monitoring, not to mention that

over-provisioning cannot ensure that truly accurate snapshots are in fact taken.

To deal with this issue, in the scope of this thesis we came up with a solution for

improving the accuracy of captured traces. For the sake of generality, we focused on the

design of a solution agnostic of system-specific properties or user-dependent, seasonal

behaviors. As a consequence, our solution is not only suitable for applicability to snapshot

sets collected from BitTorrent file sharing communities, but also to traces from distributed

systems in general. In the following sections we describe our solution in detail.

3.2.1 System model and notation

In this section we introduce the system model and snapshot definition we adopt in

the design of our solution for improving the accuracy of traces. We also discuss a set of

assumptions and limitations related to our methodology.

System components and operation

Let G = 〈Vt, Et, B〉 be a finite system comprised of nodes Vt = {v1, . . . vm}, edges

Et ⊆ Vt × Vt, and a set of bootstrap entities B = {b1, . . . bn}. Each node corresponds

to a user online in the system at instant t. Edges in this system indicate awareness of

online presence: an edge from a user vi to vj means vi is aware that vj is online at instant

t. By aware we mean that vi had some recent communication with vj , or that vi learned

this information from some other entity (bootstrap or other user). Each bootstrap entity is

responsible for user admission. We assume that bk is aware of vi in the system at instant

t if and only if bk handled the admission of vi, or vi contacted bk for some other purpose.
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Let e(vi) ⊆ Vt be the set of online users that vi is aware of. Similarly, let e(bk) ⊆ Vt be

the set of online users that bk is aware of.

Fetch Acquaintance List. This operation, launched by vi to bk (or vj), consists in

obtaining a (sub)list L of online users that bk (or vj) is aware of; L(vi, x) denotes the

(sub)list obtained by vi from x (x can be either a bootstrap entity bk ∈ B or a user

vj ∈ Vt). The maximum size of such a list is denoted by Lmax. Observe that vi may

only query some user vj if vi is aware of vj . By definition, L(vi, bk) ⊆ e(bk); similarly,

L(vi, vj) ⊆ e(vj).

Building snapshots

Here we define formally the trace collection process based on snapshot capturing. Let

S be a set of snapshots taken from users in G within some period. A snapshot sj ∈ S is

a list of users seen online in instant tj . Snapshots are taken every ∆t time units, at times

t0, t1, . . . so that tj = t0+ j ·∆t. Let V be set of nodes seen at least once in the system; by

definition, Vt ⊆ V . From S we can build a binary matrix M|V |,|S|, where mi,j represents

the state of user vi in snapshot sj: 1 if vi ∈ sj (“positive snapshot”), or 0 otherwise (“null

snapshot”).

The strategy for capturing users’ usage information we approach here uses a set

V ′ ⊆ V of special users – instrumented clients (or crawlers) – to take snapshots. An

instrumented client vi ∈ V
′ can contact the bootstrap entities or the online users (or both)

to build a (partial) snapshot. A snapshot s is then formed as a union of the lists obtained

by crawlers: s =
⋃

L(vi, x). Note that obtaining L(vi, x) has a non-negligible cost for

vi (e.g. due to bandwidth requirements, network latency, number of fetches allowed per

period, among others).

Model assumptions

• Users Arrival and Departure. We make no assumptions regarding users’ arrival

and departure. It broadens the scope of our methodology to a variety of systems

and scenarios (for example, flash-crowds). However, we assume that at least one

bootstrap entity in the system becomes aware when a user joins the system. This as-

sumption is actually a basic requirement for many systems to function; for example,

a user must know the address of a bootstrap server to join the system.

• Online Session Duration. We consider that the longer a given users’ online ses-

sion already is [in the past], the longer it shall last [in the future] (YAO et al.,

2009; STEINER; EN-NAJJARY; BIERSACK, 2009). This is the case of those

users watching a video streaming, or downloading some large content. We take

advantage of this observation to detect the likeliness that a given online user failed

to appear in some snapshot. Apart from it, we do not assume any distribution for

the duration of online sessions, neither any correlation between them.

• Composition of Acquaintance List. We assume that acquaintance lists are built

randomly, following a uniform distribution. This assumption is related to a vari-

ant of the coupon’s collector problem with random sample sizes (KOBZA; JA-

COBSON; VAUGHAN, 2007), and has been considered in a variety of scenarios

(HOÃŸFELD et al., 2011; ZHANG et al., 2011). Addressing those cases in which

acquaintance lists ared biased (or consider a distribution other than uniform) is en-

visaged as a direction for future research.
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System-specific limitations

• Awareness of Online Users. Ideally, a snapshot taken at time t should be equal to

st ⊆ Vt. However, there may have cases in which snapshots falsely report a user as

being online. The reasons may vary; for example, vi may not disconnect gracefully

(e.g. crash), or bk may fail to receive vi’s “disconnect” message. These cases are

rather uncommon, often occurring due to some system-specific design. Therefore,

we leave this aspect out of scope of this investigation, and envisage it as direction

for future research.

• Amplitude of Acquaintance Lists. Ideally, L = Vt (or st = Vt) at any point in

time t. However, there are a number of system-specific limitations that prevent this

from taking place. For example, constrained devices (e.g. embedded hardware or

sensors) may not have sufficient memory for maintaining a large list of acquain-

tances. Second, some systems limit the acquaintance list size Lmax for the sake of

optimization or network-wide constraints (MANSILHA et al., 2011). It may even

be unfeasible for an entity to build and transmit a full list of acquaintances as |Vt|
reaches the order of thousands or millions.

3.2.2 Formal definition of snapshot failures

In the scope of this work, we use the term failure probability (denoted herein as p) to

refer to the chance that a given user vi ∈ Vt is missing in a snapshot st taken at instant t.
Before introducing the methodology to estimate the failure probability for a given set of

snapshots, we first provide in this section a set of definitions that emphasize the system

properties and constraints involved in the problem.

Definition 1. Let e(bk) be the list of users currently online that bootstrap entity bk is

aware of. We then have
⋃|B|
k=1 e(bk) = Vt and

⋂|B|
k=1 e(bk) ⊆ Vt.

Definition 1 evidences two aspects of our system model. First, as mentioned in the

previous section, bootstrap entities handle user admission, and provide acquaintance lists

upon request. In addition, a bootstrap entity bk becomes automatically aware that vi is

online once vi contacts bk for admission. Therefore, any user in the system is recognized

by at least one bootstrap entity as being online. The second one is similarly trivial. In our

system model, one user may register with multiple bootstrap entities. Therefore, a user in

the system may be recognized by more than one bootstrap entity as being online.

Definition 2. Let e(vi) be the list of users currently online that vi is aware of. We then

have
⋃|Vt|
i=1 e(vi) ⊆ Vt and

⋂|Vt|
i=1 e(vi) ⊆ Vt.

Definition 2 emphasizes one subtle difference between users’ and bootstrap acquain-

tance lists. While bootstrap entities are aware of any user currently online, users may

not be fully aware of each other. For example, one recently admitted user will not be

known by already online ones; this information will be gradually learned by others as

they request novel acquaintance lists from the bootstrap entities.

One important conclusion can be drawn from the definitions above. A better accuracy

in the snapshot building process can only be achieved if the bootstrap entities are used as

central source of information for users currently online.

Definition 3. Let L(vi, bk) be the acquaintance list returned by bk upon request from vi.
We then have L(vi, bk) ⊆ e(bk).
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Definition 4. Let L(vi, vj) be the acquaintance list returned by vj upon request from vi.
We then have L(vi, vj) ⊆ e(vj).

Definitions 3 and 4 evidence a system limitation. Assuming Lmax bounded to an arbi-

trary size (for the sake of optimization or network-wide constraints), it turns out that the

acquaintance list may not have room for every user bk (or vj) is aware of. The implication

of this limitation is described next.

First, recall that gathering users’ usage information has a cost (due to required band-

width, network latency, etc.). Acquaintance lists must be obtained timely, in order to

have a true instantaneous view of the system. Therefore, for building a single snapshot,

each instrumented client send as few list requests as possible. This requirement makes

it imperative taking into account the budget allocated for the snapshot capturing process

(HOÃŸFELD et al., 2011). In this work, we consider such a budget in terms of number

of instrumented clients used.

In this context, the conditions for obtaining a complete snapshot of users’ population

in the system are given by Theorems 1 and 2.

Theorem 1. Let c be the budget required for capturing snapshots fromG, and let L(vi, bk)
be the acquaintance list returned by bk ∈ B upon request from vi ∈ V ′. Considering

that crawler vi makes only one acquaintance list request per snapshot, we then have

st =
⋃c

i=1 L(vi, bi) = Vt ⇐⇒ Lmax → ∞, c ≥ |B|, and each bootstrap entity is

queried at least once.

Proof. A ⇒ B.

Suppose that each user vi ∈ V is regarded as currently online by a single bootstrap entity

bk ∈ B only. We thus have from Definition 1 that
⋃|B|
k=1 e(bk) = Vt and

⋂|B|
k=1 e(bk) = ∅.

From Definition 3, we haveL(vi, bk) ⊆ e(bk). Now consider the restrictions that a crawler

vi ∈ V
′ makes only one acquaintance list request per snapshot. In this case, obtaining a

full snapshot of the system (st = Vt) requires contacting each of the bootstrap entities in

the system, and that L(vi, bk) = e(bk). The condition for L(vi, bk) = e(bk) being true

regardless of the size of a bootstrap acquaintance list is that Lmax → ∞, whereas the

condition for
⋃c

i=1 L(vi, bi) = Vt is that there is at least one crawler for each bootstrap

entity (i.e., c ≥ |B|), and that each bootstrap entity be queried by a crawler at least once.

B ⇒ A.

Suppose that Lmax → ∞. In this case, L(vi, bk) = e(bk). Suppose also that c = |B| and

that each bootstrap entity is queried at least once when building a snapshot set. In this

case, we have
⋃c

i=1 L(vi, bi) = Vt, which also respects the restriction that each crawler

makes only one acquaintance list request per snapshot.

Theorem 2. Let c be the budget required for capturing snapshots fromG, and let L(v′i, vj)
be the acquaintance list returned by vj ∈ Vt upon request from a instrumented client

v′i ∈ V
′. Considering that client v′i makes one acquaintance list request per snapshot, we

then have st =
⋃c

i=1 L(v
′
i, vi) = Vt ⇐⇒

⋃|Vt|
j=1 e(vj) = Vt, Lmax → ∞, c ≥ |Vt \ V

′|,
and each user vi is queried at least once.

Proof. A ⇒ B.

Suppose that each ordinary user vi ∈ V is regarded as online by at least one user vj ∈ V
(i.e., Et = Vt × Vt). This situation may lead to several possible configurations in the

acquaintance graph; it ranges from one in which the graph forms a single cycle, to an-

other one in which just a single user vi is aware of all other users vk in the system, and
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some other user vj is aware of vi as being online. We thus have from Definition 2 that
⋃|Vt|
j=1 e(vj) = Vt and

⋂|Vt|
j=1 e(vj) = ∅. From Definition 4, we have L(vi, vj) ⊆ e(vj). Now

consider the restrictions that a crawler vi ∈ V
′ makes only one acquaintance list request

per snapshot. In this case, obtaining a full snapshot of the system (st = Vt) requires

contacting each of the users in the system, and that L(v′i, vj) = e(vj). The condition for

L(v′i, vj) = e(vj) being true regardless of the size of a user’s acquaintance list is that

Lmax →∞. The condition for
⋃c

i=1 L(v
′
i, vi) = Vt is that (i) there is at least one crawler

for each ordinary user (c ≥ |Vt \ V
′|), (ii) that each ordinary user be queried by a crawler

at least once, and (iii) that every user be regarded as currently online by at least another

user in the system (which results in
⋃|Vt|
j=1 e(vj) = Vt).

B ⇒ A.

Suppose that Lmax →∞. In this case, L(v′i, vi) = e(vi). Suppose also that c ≥ |Vt \ V
′|,

that each ordinary user is queried at least once when building a snapshot set, and that

every user be regarded as currently online by at least another user in the system (i.e.,
⋃|Vt|
j=1 e(vj) = Vt). In this case, querying all ordinary users using the budget we have

and making the union of the peer lists obtained, we obtain a full snapshot of the system

(
⋃c

i=1 L(v
′
i, vi) = Vt). Observe that since we have a crawler for each ordinary user, the

restriction that each crawler makes only one acquaintance list request per snapshot can

thus be respected.

Observe from Theorems 1 and 2 that achieving st = Vt (a complete snapshot) by

querying bootstrap entities only is far more feasible (and likely) than achieving it by

querying ordinary users only. While Theorem 1 states that we just need unbounded Lmax,

Theorem 2 makes it clear that achieving st = Vt requires that everyone be aware of each

other in the system (i.e. Et = Vt × Vt), in addition to unbounded Lmax. It is important

to emphasize that Theorems 1 and 2 consider unbounded Lmax. With Lmax bounded to

some size, we have st =
⋃|V ′|
i=1

⋃|B|
k=1L(vi, bk) ⊆ Vt (if querying bootstrap entities) and

st =
⋃|V ′|
i=1

⋃|Vt|
j=1L(vi, vj) ⊆ Vt (if querying ordinary users).

From the definitions and theorems presented earlier, one simple, straightforward strat-

egy to estimate the probability that a snapshot missed a user would be given by Equa-

tion 3.2.

p = 1−
min(Lmax · |V

′|, |Vt|)

|Vt|
(3.2)

Note however that Equation 3.2 relies on the assumption that it is possible to obtain

(an estimate) for |Vt|. In those more realistic scenarios in which this information cannot be

obtained, the best one can do is checking if |V ′| = |B| and ∀vi ∈ V
′, |L(vi, bk)| < Lmax

(or |L(vi, vj)| < Lmax) is true; in this particular case, and according to Theorem 1, the

snapshot did not miss any online user. In the general case, the average size of lists obtained

to build |st| provide far from sufficient information to estimate p.

3.2.3 Unveiling more accurate users’ sessions from ill-captured snapshots

In this section we describe our solution for correcting ill-captured snapshots and build-

ing traces of users’ online sessions from them. We first provide a discussion on measuring

failure probability for some system, and then elaborate on our methodology to estimate it

from a given set of snapshots.
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Assuming that (i) we have no knowledge of the system structure (e.g. users’ and

bootstrap awareness relationships), and (ii) no significant information can be obtained

from the snapshot capturing process, in this investigation we rely solely on the information

contained in the snapshot set to estimate its average failure probability p. We envisage the

use of system-specific sources of information for estimating p as a prospective direction

for research in the area.

Let Xi be the event that a given user vi is online and present in snapshot sj (mi,j = 1),

Yi be the event vi is not in sj (mi,j = 0) though online, and Zi be the event vi is offline

(mi,j = 0). The probability of a failed snapshot for vi is then given by P (Yi) = p, whereas

the probability of a correct snapshot is P (Xi)+P (Zi) = 1−p. The challenge we address

here is to estimate P (Yi), given that events Yi and Zi are indistinguishable in the snapshot.

Given that a user may fail to appear in a snapshot with probability p, our goal is to

obtain an estimate for p (p̂) and use it to correct the traces. To this end we explore two key

observations, described in the propositions shown next. First, the longer a user has been

in a system, the longer that user is expected to remain there (YAO et al., 2009; STEINER;

EN-NAJJARY; BIERSACK, 2009); consequently, there is a high probability that a user’s

absence in the snapshot following a long session is an event of type Y (rather than Z):

Proposition 1. Let k be a sequence of “positive” snapshots (k ∈ N
∗). The probability

of a false negative null k + 1 one is expected to increase geometrically with k (Bernoulli

process).

Proof. Consider each snapshot a Bernoulli trial. Let failure be a trial in which a given user

is online and in the snapshot (positive sample), and success be a trial in which that same

user is online, but is not in the snapshot (false negative sample). In this case, the prob-

ability of a false negative sample after k consecutive, positive ones follows a Bernoulli

process with a geometric distribution, and it is given by 1 − (1 − p)k+1; by definition,

1− (1− p)k+1 increases geometrically with k.

Second, the longer is a sequence of null samples, it become more likely the user

actually went offline during that period:

Proposition 2. Let k be a sequence of null snapshots (k ∈ N
∗). The probability that all

of them are failed ones decreases exponentially with k.

Proof. Let Yi,j be the event that a given user i is online, but not present in the j-th snap-

shot, and P (Yi,j) = p be the probability of such event. Now assume that users have an

uniformly distributed chance of being selected to compose an acquaintance list L(vi, x).
It then turns out that failure events are statistically independent. Therefore, using the

conditional probability and chain rule, we obtain

P

(

k
⋂

j=1

Yi,j

)

=

k
∏

j=1

P

(

Yi,j

∣

∣

∣

∣

∣

j−1
⋂

l=1

Yi,l

)

∴ pn

, which by definition decreases exponentially with n.

We build on these propositions to obtain p̂ with an error 1−α, with α ∈ (0, 1). In this

context, values of α closer to 0 represent a more conservative approach towards finding

failed snapshots, in which false positives become less likely. Conversely, values closer to

1 represent a more relaxed approach, leading to a higher number of snapshot corrections.
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Focusing on Proposition 1, what values of p allow snapshot k + 1 to be a failed one?

To find them, we make 1− (1−p)k+1 ≥ 1− (1−α). The probability p (for k consecutive

snapshots) that satisfies this inequality is given by Equation 3.3.

p ≥ 1− (1− α)
1

k+1 (3.3)

The implication of Proposition 2 is illustrated in Figure 3.5. The probability that a

given null snapshot be a false negative one, for a given user v, decreases with the number

of preceding null snapshots. Note that this probability can be measured both onwards

(curve 1) and backwards (curve 2). Therefore, checking if v actually went offline restricts

to measuring the probability that snapshot si (median) is a false negative one for her. This

is because si has the lowest failure probability considering both onward and backward

directions simultaneously. Admitting an error 1 − α, a sequence of length k shall be

correct if (1 − p)
k+1
2 ≥ 1 − α. The probability p that satisfies this inequality is given by

Equation 3.4.

 

v 1 0 0 ... 0 ... 0 0 1 0 
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 sti sti+1

 ... stk-1 stk 
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0 

The probability that a sequence of k null 

snapshots occur due to failure decreases 

exponentially as k increases 
 

(1) (2) 

(1) 

(2) 

Figure 3.5: Conditional probability.

p ≤ 1− (1− α)
2

k+1 (3.4)

The failure probability for any sequences of snapshots is then computed through a

weighted sum of the probability for each sequences of length k. In this case, we are

interested in the lowest probability possible for these sequences. Building from Equa-

tions 3.3 and 3.4, we have the non-linear system below:

minimize p̂

subject to p̂ ≥
n
∑

x=1

P [X = x] ·
(

1− (1− α)
1

x+1

)

p̂ ≤
m
∑

y=1

P [Y = y] ·
(

1− (1− α)
2

y+1

)

In the non-linear system above, P [K = k] is the fraction (normalized) of sequences

of length k, n is the length of the longest sequence of positive snapshots, andm the length

of the longest sequence of null ones; these values are derived from the snapshot set under

analysis. The value of p̂ that satisfies the non-linear system above is the failure probability

of the snapshot set being processed. Note that this non-linear system cannot be solved if
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there is no value of p̂ that can satisfy both constraints at the same time. In this case, there

is no sufficient data for obtaining a proper value for p̂.

It is important to emphasize that our methodology does not require calibration or prior

training with ground-truth data in order to be effective. The only requirement is that the

snapshot set submitted as input contain sufficient data so that the non-linear system can be

solved and a failure probability can be estimated. Apart from this aspect, it is important

to determine a value for α that achieve a proper balance between improved accuracy in

the resulting snapshot set and occurrence of false positives. In Section 3.2.4 we present a

sensitivity analysis regarding this input parameter.

Correcting the snapshot set

To improve the accuracy of a snapshot set S, we basically apply Proposition 2, using

the value of p̂ found, to the sequences of null snapshots for a given user vi. To understand

this process, suppose a snapshot set S given as input. Based on the methodology described

in the previous subsection, we propose the steps described in Algorithm 2 to improve S.

The first step in this process is obtaining the tabulated frequencies of sequence lengths

of positive and null snapshots from the input snapshot set S (lines 2 and 3 in Algorithm 2).

To illustrate, from the snapshot set shown in Figure 3.6(a), the frequency of positive

snapshots of length 2 is 4 (pos st.hist [2] = 4), and the frequency of null snapshots of

length 5 is 1 (pos st.hist [5] = 1).

The subsequent steps (lines 4 and 5) consist in obtaining the total number of sequences

of positive and null samples in the snapshot set S. In the example from Figure 3.6(a), these

numbers are pos st.total = 7 and nul st.total = 4 (note that a null sequence of snapshots is

defined as one which is bounded by two positive ones). The longest length of a positive

snapshot and null one are also obtained from the snapshot set S (lines 6 and 7). From the

example of Figure 3.6(a), we have pos st.max len = 7 and nul st.max len = 5.

The next step in Algorithm 2 is to estimate the failure probability for the sequences of

positive ( ˆppos, lines 8-12) and null ( ˆpnul, lines 13-17) snapshots, and then find a solution

to the non-linear system presented in the previous subsection (lines 18-21). Note that if

the non-linear system cannot be solved (because of the constraints to p̂ described in the

previous subsection), then the algorithm returns without modifying the snapshot set given

as input (line 19).

In case the system can be solved, the subsequent step is to determine which is the

longest length len for a sequence of null snapshots so that it can be regarded as a fail-

ure (line 22). Note that the value of len is obtained from an estimated, average failure

probability p̂ computed for the entire snapshot set S. As a result, some false positives

may occur; in the following section we evaluate the proportion of false positives in the

resulting snapshot sets. Then, all the sequences of null snapshots that have length less or

equal to len are turned into positive snapshots (lines 22 - 27).

To illustrate the process above, consider again the snapshot set from Figure 3.6(a).

Assuming that a value of p̂ = 0.26 was obtained using α = 0.95, we have len = 2.

Therefore, only sequences of null snapshots of length 2 or less can be turned into positive

samples in that snapshot set; it means the sequence s8...9 for user v2. As a consequence,

user v2, who had two online sessions in the old snapshot set, will be reported as having just

one online session, beginning in s1 and ending in s14. This new setting in fact corresponds

to reality, according to the scenario illustrated in the beginning of Section 3.2.

Finally, after the false negative samples for a given user v have been identified and

corrected (admitting an error 1− α), the modified snapshot set S is returned (line 28).
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Algorithm 2 Algorithm for correcting snapshot sets

1: procedure CORRECTSNAPSHOTSET(S, α) ⊲ input set and error factor

2: pos st.hist[]← tabulated freq. of sequences of positive snapshots from S
3: nul st.hist[]← tabulated freq. of sequences of null snapshots from S
4: pos st.total← total number of sequences of positive snapshots from S
5: nul st.total← total number of sequences of null snapshots from S
6: pos st.max len← length of the longest sequence of positive snapshots from S
7: nul st.max len← length of the longest sequence of null snapshots from S
8: ˆppos ← 0
9: for i← 1 . . . pos st.max len do

10:

11: ˆppos ← ˆppos +
(

pos st.hist[i] ·
(

1− (1− α)
1

i+1

))

12: end for

13: ˆpnul ← 0
14: for j ← 1 . . . nul st.max len do

15:

16: ˆpnul ← ˆpnul +
(

nul st.hist[j] ·
(

1− (1− α)
2

j+1

))

17: end for

18: if ˆppos > ˆpnul then

19: return null ⊲ failure probability cannot be estimated

20: else

21: p̂← ˆppos

22: len←

⌊

ln(1− α)
ln(p̂)

⌋

23: for all sequences sv,1...n ∈ S of null snapshots for a given user vi do

24: if length (sv,1...n) ≤ len then ⊲ sequence is likely to be a failure

25: turn sv,1...n into a sequence of positive snapshots and replace in S
26: end if

27: end for

28: return S ⊲ modified set of snapshots

29: end if

30: end procedure

3.2.4 Evaluation

In our evaluation, we attempted to answer three research questions. First, how effec-

tive of our methodology is in accurately correcting missing snapshots? Second, what is

the incidence of false positives in the correction process? Finally, what are the scenar-

ios for which snapshot set correction using our methodology is more/less appropriate?

To answer them, we carried out a set of experiments considering scenarios with varying

snapshot sets and parameter setting. Next we discuss the most prominent results achieved.

Ground-truth dataset

We considered snapshot sets taken from various swarms of a BitTorrent file sharing

community2. In summary, we used 50 instrumented clients (|V ′| = 50) for taking a total

2The dataset considered in this evaluation is available for download at http://www.inf.ufrgs.

br/˜wlccordeiro/idmgmt/
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(b) snapshot set captured using 50 crawlers

Figure 3.6: Example of a snapshot set, and real-life set of snapshots from a BitTorrent file

sharing community.

of 2,880 snapshots of the users’ population in the system, in a period of 30 days (starting

on June 15th, 18:00 UTC 2013); the interval between snapshots was 15 minutes. The

average number of users per snapshot in the largest swarm was 3,035, with a maximum of

5,887 and minimum of 1,636 users. The standard deviation was 794.78. That swarm was

maintained by 4 trackers. The number of |V ′| = 50 was obtained after the methodology

proposed by Hoãÿfeld et al. (HOÃŸFELD et al., 2011). A partial view of the snapshot

set for this swarm is provided in Figure 3.6(b).

Evaluation metrics

Recall from Section 3.2.1 that a snapshot st is formed from the union of the partial

snapshots collected by each instrumented client vi ∈ V
′. Therefore, in the remainder of

this section we denote as S|V ′| the snapshot set captured using n = |V ′| instrumented

clients. We also denote as S ′
|V ′|,α the snapshot set corrected using our methodology, us-

ing α = x, and Sgt the snapshot set used as baseline (ground-truth) for measuring the

performance of our methodology. For the sake of evaluation, we define the following

metrics:

• Number of missing positive snapshots (ω). Recall from Section 3.2.1 thatM|V |,|S|

is the binary matrix built from S. Let P (S|V ′|) = {mi,j|mi,j = 1} be the set of

positive snapshots from a snapshot set S|V ′|. Then, we can define the number of

missing positive snapshots as

ω =
∣

∣P (Sgt) \ P (S|V ′|)
∣

∣ (3.5)

In other words, it is the number of positive snapshots from Sgt (ground-truth) that

were initially null in S|V ′|.
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• Number of modified snapshots (φ). This metric accounts for those positive snap-

shots in S ′
|V ′|,α that were initially null in set S|V ′|

φ =
∣

∣P (S ′
|V ′|,α) \ P (S|V ′|)

∣

∣ (3.6)

• Number of accurately corrected snapshots (τ ). This metric indicates the num-

ber of positive snapshots in S ′
|V ′|,α that, initially null in set S|V ′|, match a positive

snapshot in Sgt (ground-truth). Formally, we have

τ =
∣

∣

(

P (Sgt) \ P (S|V ′|)
)

∩ P (S ′
|V ′|,α)

∣

∣ (3.7)

The possible values for this metric range in the interval [0, ω]. The value τ = ω is a

global optimum; it means that all missing snapshots were accurately corrected.

• Number of false positive corrections (ψ). A false positive correction refers to a

snapshot st that was erroneously corrected for some user vi. In other words, vi was

offline when st was taken, but our methodology detected st as being a false null

one. Formally, we have

ψ =
∣

∣P (S ′
|V ′|,α) \ P (Sgt)

∣

∣ (3.8)

The possible values for this metric range in the interval [0, φ]. The value ψ = 0 is a

global optimum; it means that no snapshot correction done was a false positive one.

Effectiveness of our methodology

To assess the effectiveness of our approach, we attempted to recreate the snapshot

set S50 (our ground-truth), taking as input various snapshot sets S|V ′|. For the sake of

illustration, we focus on the results achieved considering a partial view of S50, shown in

Figure 3.3(c). In this evaluation, we adopted α = 0.95.

Table 3.1 shows a summary of the results achieved. In this table, field Set indicates the

snapshot set considered (and number of instrumented clients used to capture it). Fields

ˆppos and ˆpnul indicate the average failure probability for positive and null sequences

of snapshots, respectively. Correct? indicates whether it was possible to correct the

snapshot set in question. Field Length contains the largest length of null snapshots that

were considered for correction. Finally, fields Metric τ/ω and Metric ψ/φ present the results

obtained for each snapshot set.

Accurately corrected snapshots Metric τ/ω. Observe from Table 3.1 that our method-

ology achieved high degree of accuracy in correcting those snapshot sets obtained with

fewer instrumented clients. The ratio of accurately corrected snapshots ranged from 65%

(for S2, i.e. the snapshot set built using 2 crawlers) to 87% (for S10, i.e. the snapshot set

built using 10 crawlers). The highest accuracy measured in our experiments was 90%,

for snapshot set S15. Note that it was not possible to correct S1, since ˆppos > ˆpnul (as

discussed in Section 3.2.3).

Observe also that, in a first moment, the proportion of accurately corrected snapshots

increases to a certain threshold, as the number of crawlers used to build the snapshot

set grows higher. Then, this proportion starts decreasing, as the number of crawlers ap-

proaches the necessary for building a ground-truth dataset. The reason is as follows. In

the first moment, the number of possible corrections is extremely high, since there are
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Table 3.1: Snapshot sets submitted for correction, using α = 0.95.

Set ˆppos ˆpnul Correct? Length
Metric τ/ω Metric ψ/φ

Values Proportion Values Proportion

S1 0.750257 0.656683 No – – – – –

S2 0.720646 0.754073 Yes 9
1461/2242 .6516

31/1492 .0207

S3 0.692409 0.817299 Yes 8
1442/1850 .7794

44/1486 .0296

S4 0.664327 0.835471 Yes 7
1258/1617 .7779

53/1311 .0404

S5 0.643048 0.849721 Yes 6 1107/1433 .7725 53/1160 .0456

S6 0.623862 0.863142 Yes 6
1011/1238 .8166

61/1072 .0569

S7 0.590806 0.868512 Yes 5
871/1023 .8514

64/935 .0684

S8 0.555304 0.875651 Yes 5
717/814 .8808

75/792 .0946

S9 0.543981 0.877639 Yes 4
636/741 .8582

76/712 .1067

S10 0.522767 0.870914 Yes 4
540/618 .8737

80/620 .1290

S15 0.473238 0.858767 Yes 4
324/360 .9000

82/406 .2019

S20 0.449136 0.842509 Yes 3
193/226 .8539

81/274 .2956

S25 0.420627 0.835212 Yes 3
140/159 .8805

83/223 .3721

S30 0.391245 0.814221 Yes 3
70/85 .8235

83/153 .5424

S35 0.337525 0.781824 Yes 2
29/35 .8285

79/108 .7314

S40 0.320752 0.764094 Yes 2
14/17 .8235

79/93 .8494

S45 0.302146 0.752152 Yes 2
3/5 .6000

79/82 .9634

very few crawlers being used for building the snapshot set. However, in various cases

there might have fewer snapshots than necessary to perform most of these corrections. In

the second moment, as the number of crawlers used to build the snapshot set increases,

the opportunities for corrections decreases, thus decreasing the number of snapshots that

our solution accurately corrects.

The main conclusion that can be drawn from the discussion above is that our method-

ology achieved better accuracy precisely for those snapshot sets captured with fewer re-

sources. In other words, it enables one to capture more accurate snapshot sets using sig-

nificantly less resources than the estimated using the methodology proposed by Hoãÿfeld

et al. (HOÃŸFELD et al., 2011).

False positive corrections Metric ψ/φ. One can see from Table 3.1 that the incidence

of false positives is significantly low, in absolute terms. In case of for S10, the occurrence

of false positives accounted for 12%, whereas for S2 the ratio was 2% only. Similarly

to the evaluation of accurately corrected snapshots, note that the ratio of false positives

decreases significantly as the snapshot set resolution decreases. In summary, our method-

ology has shown to be more effective precisely in those scenarios where the snapshot set

was captured with fewer resources.

Snapshot set correction threshold. This is an important aspect to consider when

using our methodology. As shown in Table 3.1, it provided minor improvement to S45,

at the expense of some false positives. Next we discuss an approach for assessing those

scenarios which can better benefit from it.

As discussed in Section 3.2.3, using fewer instrumented clients increases the proba-

bility that some online user is missed. Considering Lmax = 200 and initial swarm pop-

ulation of 4,000 users (from our snapshot set capture process discussed earlier in this
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Table 3.2: Influence of parameter α in the correction of S5.

Set ˆppos ˆpnul Length
Metric τ/ω Metric ψ/φ

Values Proportion Values Proportion

α = 0.10 0.038356 0.077806 0
0/1433 .0000 – –

α = 0.05 0.018886 0.038773 0 0/1433 .0000 – –

α = 0.20 0.079275 0.156736 0
0/1433 .0000 – –

α = 0.30 0.123293 0.237008 0
0/1433 .0000 – –

α = 0.40 0.171157 0.318917 0
0/1433 .0000 – –

α = 0.50 0.223962 0.402891 0
0/1433 .0000 – –

α = 0.60 0.283424 0.489587 0
0/1433 .0000 – –

α = 0.70 0.352509 0.580117 1
383/1433 .2672

8/391 .0204

α = 0.80 0.437208 0.676659 1
383/1433 .2672

8/391 .0204

α = 0.85 0.489514 0.728632 2
656/1433 .4577

17/673 .0252

α = 0.90 0.553874 0.784924 3
856/1433 .5973

27/883 .0305

α = 0.95 0.643048 0.849721 6
1107/1433 .7725

53/1160 .0456

α = 0.99 0.779671 0.922288 18
1333/1433 .9302

144/1477 .0974

section), we can estimate a lower bound for the failure probability using Equation 3.2:

p = 1− min(200·|V ′|,4000)
4000

. For S2 we have p = 0.90, whereas for S45 we have p = 0.0.

One can use Equation 3.2 to asses whether our methodology can (significantly) im-

prove a given snapshot set. In summary, one can simply compare the measured failure

probability ˆppos with the lower bound p. In case p≫ ˆppos, then the snapshot set is more

suitable for correction with our methodology. This is because the probability that S|V ′|

might have missed some online users is higher than our methodology has estimated. As

a result, more accurate results can be achieved during the correction process than would

happen if p≪ ˆppos.

To illustrate, consider S2. From Table 3.1, we have ˆppos ≈ 0.72, smaller than its

lower bound p = 0.90, and thus indicating a candidate for highly accurate correction.

Conversely, consider S45. For this snapshot set we have ˆppos ≈ 0.30, significantly higher

than its lower bound p = 0.0. Therefore, this snapshot set might benefit significantly less

from our methodology (which in fact did, as one can see from Table 3.1).

Sensitivity analysis

Table 3.2 shows the results from a sensitivity analysis of α taking S5 as basis. Observe

that α regulates the conservativeness of our methodology in estimating ˆppos, and thus

defining the length of the sequences of null snapshots that shall be corrected.

Lower values of α lead to more conservative estimates of ˆppos. Therefore, fewer

sequences of null snapshots will become candidate for correction. Note that for α = 0.60
(and lower), the length of sequences of null snapshots that would be corrected is 0. This

is because the probability that a single snapshot has failed (0.28) is smaller than the error

1− α tolerated for not correcting a snapshot (in this case, 1− 0.60 = 0.40).

Conversely, higher values of α make our methodology more effective in accurately

correcting failed snapshots, at the expense of some false positive corrections. For exam-

ple, in case of α = 0.70 (and higher), the measured failure probability (0.35) is higher
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Table 3.3: Summarized statistics of the studied snapshot sets.

Set Min. 1st. Quartile Median Mean Std. Dev. 3rd. Quartile Max.

Number of Sessions per User

S5 1 1 3 10.97 33.88 7 671

S′

5
1 1 2 4.95 13.45 4 303

S50 1 1 2 5.36 14.83 4 552

Duration of Sessions per User (minutes)

S5 15 15 15 28.28 25.49 30 825

S′

5
15 15 45 86.03 156.54 90 6,660

S50 15 15 45 102.9 257.62 105 24,750

than the error allowed (1− 0.70 = 0.30).

In summary, a proper setting for α only takes in consideration the conservativeness

one has for estimating the failure probability of the studied snapshot set. In other words,

defining α only requires that one assesses the desired trade-off between accurate correc-

tions and occurrence of false negatives.

Analysis of trace properties

As part of our evaluation, we analyzed aspects such as users’ recurrence (i.e. number

of arrivals per user) and duration of online sessions in our dataset. In summary, we at-

tempted to answer the following research question: what impact our methodology causes

to the corrected traces? To answer it, we considered a complete view of the snapshot set

studied in the previous section, with resolutions S5 and S50 (ground-truth).

Table 3.3 shows a statistical summary for the snapshot sets considered: S5, S ′
5 (cor-

rected using α = 0.85, for the sake of conservativeness), and S50. Observe that the

corrected snapshot set is more similar to the ground-truth dataset, in contrast to the origi-

nal snapshot set S5. This can be observed, for example, by comparing the average number

of sessions per user (“Mean”) and its standard deviation (“Std. Dev.”).

An interesting aspect to note is that the average number of sessions dropped by a factor

of 2 (approximately), comparing snapshot S5 and S50, and that the average of sessions

increased by a factor of 3.5 (approximately). This observation can be explained by the

fact that correcting a null snapshot (i.e. turning it into a positive one) basically “merges”

two sessions into one. Therefore, the number of sessions is decreased by one, whereas

the duration of the new session becomes the sum of the duration of the merged sessions

plus the length of the correction (which varies from 1 to ⌊ ln(1− α)/ln(p̂)⌋).

Figure 3.7 shows a partial view of the cumulative distribution function for the users’

recurrence and duration of online sessions. Observe that the curves for S ′
5 and the ground-

truth are roughly the same. This evidences that our methodology can provide accurate

corrections, and therefore can deliver more precise snapshot sets, even in scenarios where

a very few amount of resources were used for their collection. The possibility of captur-

ing reasonably accurate snapshot sets using just a few amount of resources represents a

significant improvement over state-of-the-art solutions, which require an extremely high

number of crawlers to capture accurate snapshots sets (HOÃŸFELD et al., 2011; ZHANG

et al., 2011).
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Figure 3.7: Analysis of users’ recurrence (left) and session duration (right).

From a Chi-Square Goodness of Fit test, we observed that the users’ recurrence in the

system followed an exponential distribution. The rate parameter was λS5
= 9.97 (for S5),

λS′
5
= 3.96 (S ′

5), and λS50
= 4.37 (S50). As for the duration of online sessions, it also

followed an exponential distribution, with rates λS5
= 13.3, λS′

5
= 71, and λS50

= 87.9.

Note that the rates for the corrected snapshot set S ′
5 and the ground-truth dataset are

more similar, compared to the original snapshot set S5. In summary, these results provide

important evidence that our methodology is able to correct traces with good accuracy and,

more importantly, without deforming its main properties.

3.3 Assessing our hypothesis

The methodology presented in the previous section was used as a key component to

help assessing the validity of our hypothesis. In addition to the traces of users’ usage

sessions obtained from Technische Universiteit Delf P2P Trace Archive (ZHANG et al.,

2012), we also used traces collected with TorrentU (MANSILHA et al., 2011) and pro-

cessed using the methodology described earlier. In the end, we obtained a vast set of

traces of identity requests having diverse characteristics.

In order to understand the profile of identity requests patterns, in this thesis we explore

three key concepts: time of arrival of identity requests, time between arrivals of identity

requests, and recurrence. The former two are intuitive, being based on concepts largely

explored in the queuing theory realm.

In the context of this thesis, we define recurrence as the number of online sessions

observed for some specific user in the system. An online session, in turn, is defined as the

period of time (of arbitrary duration) between a user arrival and departure in the system.

Note that online sessions have finite duration by definition. It means that any user arrival

in the system will be followed, after some arbitrary time, by a departure event from that

same user. To illustrate, suppose that a user arrived four times during some period of

observation. In this case, there were four online sessions; the recurrence for that user, in

that period of observation, was four.

Based on the concepts above, and supported by an analysis of traces of users’ usage

sessions, we formulated the hypothesis defended in this thesis and, more importantly,

assessed the potentialities of the research direction initially envisaged. In this section we

discuss the results of the analysis carried out.
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Table 3.4: Excerpt of the BitTorrent log file employed in the analysis.

1 2579139627397792460|3111354312011519843|2006-01-01 00:32:49|2006-01-02 18:18:49|0.5981862991410045|LEECHER|no|0.0

2 -1976250767827230296|-3161433101217960484|2006-01-01 00:33:01|2006-01-02 18:19:01|0.21703508372128355|LEECHER|no|0.0

3 -5948056174658895913|2855973049255676852|2006-01-01 00:37:00|2006-01-02 18:18:00|0.1325415990077356|LEECHER|no|0.0

4 -5276874893991588532|-2553693720321829928|2006-01-01 00:38:22|2006-01-02 18:19:22|0.11622309767807151|LEECHER|no|0.0

5 1985783098817489872|-2553693720321829928|2006-01-01 00:38:31|2006-01-02 18:19:31|0.11705653824459557|LEECHER|no|0.0

6 -5948056174658895913|7056542205054267382|2006-01-01 00:44:00|2006-01-02 18:18:00|0.20494416938186288|LEECHER|no|0.0

7 -8035607309117631139|369191114549011734|2006-01-01 00:44:12|2006-01-02 22:54:51|0.16915404929047936|LEECHER|no|32.27539

8 1703653772333122919|-1891502691723097807|2006-01-01 00:46:30|2006-01-02 18:19:30|2.9296278965678595|LEECHER|no|0.0

3.3.1 Characterization of the considered traces

For the sake of clarity and legibility, in this thesis we focus on five of the traces we

obtained both from public repositores and using the snapshot-based approach. Next we

characterize these traces.

Traces from P2P Trace Archive

From the files of users’ participation in torrent swarms analyzed we extracted traces

that rebuild identity requests events in that swarm. The traces we considered were al-

ready anonymized, for the sake of privacy; as a consequence, no location information

(e.g., IP address prefixes) was available. Each line in the log files considered (an excerpt

is illustrated in Table 3.4) represents a session in the swarm, which is identified by the

torrent ID (1st field of the log line, anonymized). The log also reports in each line, among

other information, the user participating in the session (identified by a hash of its IP ad-

dress, in the 2nd field), and the session duration (the difference between the end and begin

timestamps, which are located in the 3rd and 4th fields, respectively).

The methodology employed to extract the trace of identity requests from the informa-

tion contained in this log is described as follows. First, observe that there may exist one

or more overlapping sessions for a given user. These overlapping sessions may indicate

that user participate in multiple swarms during the usage of his/her BitTorrent client. This

is the case, for example, of lines 4 and 5 from the trace excerpt shown in Table 3.4. There

is a high probability that these multiple, overlapping sessions (when associated to a same

IP address) actually refer to a single BitTorrent client used to download (or upload) mul-

tiple files. This is so because BitTorrent clients generate locally an identity when they are

started, and use this same id to join any swarm until the client is terminated. Based on this

assumption, the resulting sequence of identity requests is obtained by merging the over-

lapping sessions associated to a same IP address. To illustrate, lines 4 and 5 in Table 3.4

refer to a single identity request event, performed on 2006-01-01 00:38:22. By employ-

ing this methodology, we processed and generated three distinct traces, whose relevant

characteristics for the evaluation presented hereafter are shown in Table 3.5.

Note that the traces considered were already anonymized. Therefore, it was not pos-

sible to assess that they contained records of a Sybil attacks. For this reason, we assume

that identity requests in these traces are presumably legitimate. It is important to empha-

size that this is a conservative assumption, and therefore it helps us to design a solution

that minimizes any side effects to legitimate users.
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Table 3.5: Characteristics of part of the traces used in our analysis.

Trace 1 Trace 2 Trace 3

First identity request date/time Sun Jan 1 00:00:47 2006 Wed Feb 1 00:00:00 2006 Wed Mar 1 00:01:34 2006

Last identity request date/time Sat Jan 7 20:53:09 2006 Mon Feb 6 14:48:08 2006 Tue Mar 7 23:59:49 2006

Total number of identity requests 203,060 738,587 545,134

Total number of sources of identity requests 44,066 50,512 47,968

Trace duration (hours) 164.87 134.80 167.97

Average number of identity requests per minute 20.52 91.31 54.09

Traces collected using TorrentU

TorrentU was employed to capture two traces of users’ usage sessions from a BitTor-

rent file sharing community. Both traces were captured using an average of 50 crawlers.

One of the traces (referred to as “Trace 4”) was captured following the methodology of

Hoãÿfeld et al. (HOÃŸFELD et al., 2011), described in the previous section. As a conse-

quence, it does not require correction. The other trace (referred to as “Trace 5”) focuses

on larger BitTorrent swarms. Therefore, it was corrected using our snapshot correction

methodology, using α = 0.85; the measured failure probabilities were ˆppos = 0.563326
and ˆpnul = 0.579387, and the correction length was 3. A brief description of the traces is

provided in Table 3.6.

Table 3.6: Characteristics of part of the traces used in our analysis.

Trace 4 Trace 5

First identity request date/time Sat 15 Jun 15:00:00 2013 Wed 09 Oct 21:00:00 2013

Last identity request date/time Sat 22 Jun 15:00:00 2013 Wed 16 Oct 21:00:00 2013

Total number of identity requests 3,315,363 7,426,316

Total number of sources of identity requests 1,320,074 2,194,519

Trace duration (hours) 168 168

Average number of identity requests per minute 328.905 736.737

Number of swarms monitored 60 5

Average number of users per swarm 870.4 5,010

Minimum and maximum number of online users (all swarms) 42,052 and 73,613 14,862 and 57,702

Average number of online users (all swarms) 52,220 25,050

Standard deviation of online users (all swarms) 7,000.794 6,040.359

It is important to emphasize that ethical standards for measurement were considered

when obtaining the traces used in this research. More specifically, the traces have been

anonymized to make it impossible any sort of user identification and/or tracking. We also

assume that these traces contain presumably legitimate activity (with regard to identity

requests) only, since no evaluation of peer identity versus IP address of the user was

carried out.
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3.3.2 Analysis

We start our analysis recalling our hypothesis that “one can separate presumably le-

gitimate identity requests from those potentially malicious by observing their source of

origin and users’ identity request patterns”. Exploring this hypothesis requires the un-

derstanding of users’ identity request behaviors in the context of large-scale distributed

systems.

The literature is rich in investigations analyzing the profile of traffic exchange (amount

of data transferred, download and upload speeds, etc.), swarm sizes, etc. in the traces

available (ZHANG et al., 2012). However, the research community has not considered

another important aspect from these traces, which is directly related to the aforementioned

hypothesis mentioned: the pattern of users’ participation in swarms. In the remainder of

this section we concentrate our analysis on this aspect.

The roadmap of our characterization work basically consisted in evaluating three im-

portant aspects related to users’ participation in swarms: their arrival in the swarm, time

between arrivals, and frequency of arrivals (also referred to as “recurrence” in the remain-

der of this thesis). The goal was to obtain any useful insight that could be used to limit

attackers in their process of obtaining counterfeit identities.
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Figure 3.8: Distribution of users’ arrivals during the period of the traces.

Our investigation began focusing on the users’ arrival distribution, in the period of

each of the traces considered. Figure 3.8 shows a histogram of the users’ arrival distri-

bution. In this histogram, each bin indicates the frequency of arrivals that occurred in a

period of two hours. The bins between two consecutive numbers contain the frequency

of arrivals that occurred in each day, between 00:00 and 23:59; for example, the bins

between 0 and 1 capture the arrivals that occurred during the first day of the trace.

One can see in Figure 3.8(a) (Trace 1) that the BitTorrent community presented a

consistent behavior over the week, apart from a few access peaks (for example by the end

of the 5th day). A higher frequency of arrivals occurred during daytime, in comparison

to past midnight. These observations also hold for Trace 5, illustrated in Figure 3.8(b).

As one can see, there is no visual indication that the users’ arrival in the system follows

a particular distribution. In fact, we used the Chi-Square Goodness of Fit test to identify

the distribution of users’ arrival in the analyzed traces. However, the correspondent p-

values calculated did not allow the acceptance of the null hypothesis for any of the tested

distributions. In summary, no useful insight (for the purposes of the research reported in

this thesis) could be drawn from the traces analyzed.
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Figure 3.9: Distribution of the time between arrivals.

We moved along to an analysis of the time between arrivals of each user in the system.

Recall that the information contained in the trace is limited, as it does not report the

user identity, but the IP address used by the BitTorrent client (which was anonymized

a priori). Therefore, we considered as an inter-arrival time (or time between arrivals)

the period between consecutive arrivals of a same IP address. Note that an arrival of a

same IP address may not necessarily represent the arrival of the same user, e.g. in case of

networks using NAT, or due to Internet Service Providers (ISPs) having a limited number

of IP addresses. In either case, this is a limitation that a candidate design for identity

management should be robust against.

Figure 3.9 shows a histogram of users’ inter-arrival distribution seen for Traces 1 and

5. One can visually see from Figure 3.9(a) that the distribution between inter-arrivals

resembles an exponential one. In the case of Figure 3.9(b), it resembles a power-law.

Regardless of the actual shape of the distribution, one can see that a large fraction of the

arrivals occurred within a short interval from each other, with a very sparse number of

inter-arrivals being extremely longer.

Table 3.7: Statistical summary of the users’ inter-arrivals (in seconds), for each of the

traces considered.

Traces Minimum 1st decile Mean Standard Deviation Median 9th decile Maximum

Trace 1 1 2,820 56,220 66,601.04 34,830 139,336 590,900

Trace 2 1 581.0 16,030 39,690.62 662 53,614 480,300

Trace 3 1 591 22,360 47,874.41 1,656 72,116 588,800

Trace 4 1,800 3,600 26,830 50,443.8 8,100 72,900 604,800

Trace 5 3,600 4,500 20,940 42,589.56 9,000 45,900 603,900

Table 3.7 presents a statistical summary of the inter-arrival times, for each of the

traces considered. One can see that the difference between the minimum and maximum

inter-arrival times is very large for each of the traces. However, as one can confirm in

Figure 3.9, a large fraction of the inter-arrival times was short; the medians (or 5th decile)

for Trace 1 was 34,830 seconds; for Trace 2 it was only 662 seconds. The mean of

inter-arrival times was also relatively short (when compared to the duration of the trace):



60

16,030 (≈4 hours) for Trace 2; and 56,220 seconds (≈16 hours) for Trace 1.

From the analysis briefly described above, one can see a strong indicative that a num-

ber of users left and re-joined the system within relatively short time intervals. Consid-

ering our conservative assumption that users’ activities reported in these traces are legit-

imate (i.e., there was no ongoing Sybil attack), one important conclusion we can draw

is that regardless of the design choice, it should enable users to rejoin the system with a

certain frequency without being penalized.

 0

2k

4k

6k

8k

10k

12k

 0  50  100  150  200  250  300  350

F
re

qu
en

cy

User recurrence

(a) Trace 1

 0

200k

400k

600k

800k

 0  20  40  60  80  100  120  140  160  180  200

F
re

qu
en

cy

User recurrence

(b) Trace 5

Figure 3.10: Distribution of the users’ recurrences.

The last aspect we focused in our analysis was the users’ recurrence in the system.

Because of the limited information available in the traces studied (as previously discussed

in the analysis of inter-arrival times), we considered the frequency in which IP addresses

were seen joining the swarm. Figure 3.10 shows the frequency of users’ recurrence for

Traces 1 and 5. Observe from Figure 3.10(a) that the vast majority of users joined the

system very few times in the period of one week. Observe also that the distributions

of recurrences have the shape of an exponential/power-law; in fact, this observation was

confirmed for the several other traces analyzed in the context of this research.

Table 3.8: Statistical summary of the frequency of recurrences, for each of the traces

considered.

Traces Minimum 1st decile Mean Standard Deviation Mode Median Harmonic Mean 9th decile Maximum

Trace 1 1 1 4.608 4.576889 1 3 2.39177 9 273

Trace 2 1 1 14.62 35.44363 1 5 3.15381 28 521

Trace 3 1 1 11.36 15.44093 1 6 3.23839 29 134

Trace 4 1 1 2.511 4.766563 1 1 1.342308 5 180

Trace 5 1 1 3.384 5.422933 1 2 1.538539 7 82

Table 3.8 presents a statistical summary of the frequency of recurrences. One can see

in this table that the range of recurrences is large in each of the traces. For example, the

minimum and maximum recurrence observed for a single user in Trace 1 was 1 and 273.

However, observe that at least 90% of users joined the system no more than 9 times. In

the case of Trace 2, at least 90% of users joined the system no more than 28 times during

one week; this is similar for Trace 3 (29 times).
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As for the 10% of users that joined the system much more frequently, some interesting

patterns were observed. One of the users, for example, joined the system every 5 minutes

on average. To illustrate, consider the plot shown in Figure 3.11. In this figure we show

the arrivals of five users that had the highest recurrences in Trace 2, throughout the period

of that trace. For the sake of comparison, we also included in this plot the arrival times of

a user having recurrence equals to the median (28). One can clearly see that these users

left and re-joined the swarm several times; in ≈99% of times the inter-arrival occurred

within 5 minutes, for each of them.

Rec. 28
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Rec. 520

Rec. 521
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Figure 3.11: Arrival times of five users with highest recurrences, from Trace 2.

Although it is not possible to draw any conclusions about the nature of these users,

their behavior is consistent with robots that monitor the network to collect statistical in-

formation, or to identify those users that disseminate copyrighted content illegally (MAN-

SILHA et al., 2011). In spite of the users presenting anomalous behavior, an important

conclusion that can be drawn from the analysis described above is that the majority of

users tend to join the swarm in a relatively low frequency during a given period; this is a

key observation we explore in our design for identity management.

3.4 Summary

The analysis of traces of identity requests represented a fundamental building block

for the research reported in this thesis. A number of traces from BitTorrent file sharing

communities, available from a public repository (ZHANG et al., 2012), were considered

in this analysis. However, due to the lack of more recent traces available in that repository,

we also considered collecting traces from a BitTorrent community, using an instance of

the TorrentU framework (MANSILHA et al., 2011). The approach we used for the trace

collection was a snapshot-based one, in which snapshots from the users currently online

in the system are taken at regular time intervals. From these snapshots, we then re-created

the dynamics of users’ usage sessions in the system.

Because snapshots may fail to capture some online users, we also devised a proba-

bilistic-based methodology for snapshot correction. Our methodology has shown to be

effective, achieving a high degree of precision (ranging from 65% to 90% for the eval-

uated scenarios) in snapshot correction, with a low percentage of false positive correc-

tions. More importantly, our methodology generated traces with consistent properties

(e.g. users’ recurrence and duration of online sessions) when compared to the ground-

truth dataset. The importance of these results is underscored by the fact that capturing

accurate traces requires a large fraction of resources (HOÃŸFELD et al., 2011; ZHANG
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et al., 2011). In this context, our methodology represents a significant contribution to the

research community, by enabling one to capture traces with similar degree of accuracy

but using far less resources.

With regard to the analysis of the traces of identity requests (both from the public

repository and also the ones we collected using TorrentU), it enabled us to understand the

profile of users’ access patterns in a representative subset of large-scale distributed sys-

tems. From a detailed analysis of the users’ arrival, time between arrivals, and recurrence,

we have observed that (i) a number of users left and re-joined the system within relatively

short time intervals, with others presenting larger time between arrivals, and (ii) a large

fraction of users appeared in the system in a relatively lower frequency, whereas a small

proportion of them presented some anomalous arrival behavior.

The second observation in special allows us to conclude that the majority of users

tend to access the system in a relatively low frequency during a given period. Assuming

that attackers present a different behavior than legitimate users, requesting a significantly

higher number of identities from a limited number of sources, keeping track of sources

recurrence becomes then a promising approach to limit the dissemination of counterfeit

identities. The findings described above serve as an important foundation for building our

design for identity management, which will be presented in the following chapters.
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4 CONCEPTUAL SOLUTION

The analysis of traces described in the previous chapter has revealed that a large frac-

tion of users tend to join BitTorrent swarms less frequently, and that some users often

re-join the system within shorter time intervals. The natural step in our research is to un-

derstand how these findings can be explored towards the design of a solution for limiting

the spread of fake accounts in large-scale, distributed systems. In this thesis we describe

our solution in an incremental fashion, by first introducing our conceptual design for iden-

tity management. In this chapter we also cover the possible strategies an attacker can use

to subvert our solution, along with their trade-offs1.

Organization. The remainder of this chapter is organized as follows. In Section 4.1

we present the conceptual design that forms the basis for our contributions to the state-of-

the-art. In this section the concept of sources is described in detail, and also the protocol

we consider for a generic identity management process. In Section 4.2 we discuss the

possible strategies an attacker can use to subvert our solution for identity management

and control the number of identities he desires. In Section 4.3 we enumerate a list of

considerations on the conceptual design and attack model. Finally, in Section 4.4 we

close the chapter with a summary.

4.1 Overview of the identity maintenance process

Our solution is built upon the notion that a user has to dedicate a fraction of resources

(processing cycles, memory, storage, time, etc.) to obtain and renew identities in large-

scale distributed systems. The major goal of our solution is to minimize the number

of counterfeit identities that an attacker can obtain and control. The secondary goal is to

reduce as much as possible the fraction of resources demanded to this end. In this context,

our solution makes the following considerations about the target system:

• the amount of resources available to users, although unknown, is finite. Therefore,

it is possible to bound the number of identities a single entity can control by estab-

lishing a “price” for the possession of each identity;

• to control a significant fraction of the identities in the system, an attacker must

launch several requests to the system identity management entity. By tracking these

requests back to their sources of origin, it is possible to assign higher costs to those

coming from sources that have performed a higher number of requests;

1This chapter is based on the following publication: Weverton Luis da Costa Cordeiro, Flávio Roberto

Santos, Marinho Pilla Barcellos, Luciano Paschoal Gaspary. Make it Green and Useful: Reshaping Puzzles

for Identity Management in Large-scale Distributed Systems. In: 13th IFIP/IEEE International Symposium

on Integrated Network Management (IM 2013), Ghent, Belgium.
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• it is often difficult (and in certain circumstances, impossible) to reliably track sources

of requests. With some effort, an attacker may obfuscate the source of his/her re-

quests so that they appear to originate from various, distinct ones. For this reason,

our solution requires that identities be periodically renewed, in order to make it

even more prohibitive for an attacker to accumulate them.

Our solution is suitable for systems with various degrees of centralization (purely

centralized, with a number of distributed servers, and structured networks). Examples

include many P2P networks (e.g., closed BitTorrent communities) and other distributed

computing systems (e.g., for collaborative intrusion detection). It is not suitable, however,

for purely decentralized systems (e.g., P2P networks such as Freenet), where there is no

central service providing any sort of coordination to participating users. In the remainder

of this thesis we discuss how our proposed design exploits the characteristics enumerated

above to limit the number of fake accounts an attacker can control.

To aid the presentation of our solution, we use the following terminology. We call

an entity interested in obtaining an identity a user. The bootstrap service is the entity re-

sponsible for granting/renewing identities to users. From the moment a user has a working

identity, we call it a peer. A source is the location (identified by the bootstrap service)

from which a given user requests his/her identity. The definition of a source accommo-

dates the situation in which both several users and/or several identity requests are associ-

ated to a single location. An attacker is a person interested in controlling a large fraction

of fake accounts in the system. In the remainder of this section we described in detail

the concept of sources of identity requests (Section 4.1.1) and the protocol for identity

management (Section 4.1.2).

4.1.1 Dissecting sources of identity requests

The concept of source of identity requests, fundamental building block upon which our

design is built, is defined as an aggregation of one or more users (either legitimate, mali-

cious, or both), located in a specific portion of the network, from which identity requests

originate. Therefore, the exact meaning of “a source requests and obtains identities” is

“user(s), from a certain source, request(s) and obtain(s) identities”. Figure 4.1 (left) illus-

trates this concept, also highlighting the interactions between sources of identity requests

and the bootstrap service (entity that assigns identities to users interested in joining some

system).

Following a traditional process of identity creation/assignment, when a user becomes

interested in joining the system, it issues an identity request to the bootstrap service (flow 1

in Figure 4.1). In the absence of a mechanism to control the assignment of peer identities,

the bootstrap service replies to that request assigning an identity to the user (flow 2), so

that he/she may use it to join the system (flow 3). In our solution, identity requests are

associated to a source according to user location. In Figure 4.1, a source is represented

as a “cloud”, and the users associated to a given source are located within its respective

cloud. Before granting an identity, the bootstrap service requires the user to accomplish

some task (e.g., solve a puzzle), whose complexity depends on the behavior observed for

that source (as discussed in the following section). To prevent tampering, the messages

exchanged between the user and the bootstrap service, as well as granted identities, must

be digitally signed by the bootstrap service (using its pair of public/private keys).

There are two general strategies that can be used (either combined or separately) to

delineate the portion of the network regarded as a single source. The first one is viewing
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Figure 4.1: Characterization of sources of identity requests (left), and launch of a Sybil

attack onto the system (right).

an IP address, a sub-network, or a combination of non-contiguous sub-networks as a sin-

gle source. The second main strategy considers the use of a network coordinate system

(e.g., Vivaldi (DABEK et al., 2004) and Veracity (SHERR; BLAZE; LOO, 2009)) for

distinguishing requests coming from certain regions, cities, states or even countries. One

could also combine both strategies to distinguish a large number of users behind NAT

(or behind a small number of IP addresses); conversely, it may be useful to use network

coordinates to identify a single attacker using a large number of IP addresses. The combi-

nation of both strategies is out of scope of this thesis, being envisaged as future research

on the topic. However, we present in Chapter 6 an evaluation of the effectiveness of our

solution against a coordinated attack originated from various sources, and also its impact

to various users located in a same source.

The design decision of using IP addresses to materialize the concept of sources is a

well established one, and was first used by Liang et al. (LIANG; NAOUMOV; ROSS,

2005). In that work, sources are defined as an aggregation of various users, located in

specific IP ranges, who upload contents (multimedia files, documents, software, etc.) to

peer-to-peer file sharing networks. Similarly, our concept of sources of identity requests

could be materialized as an aggregation of various users, behind specific IP ranges, who

request identities to the bootstrap service.

Observe also that sources may vary in granularity and composition, regardless of the

strategy used to delineate them. Figure 4.1 (left) shows that the granularity (i.e., number

of users associated to a source) may vary. Such a granularity is strongly influenced by the

effectiveness of the strategy employed (along with their technical limitations) to delineate

sources. It may range from a single user, e.g., a user’s workstation (entity a), to a group

of several users, e.g., a local network (entity b) or an entire autonomous system (entity c).

Figure 4.1 (right) shows, in turn, that sources may be heterogeneous, i.e., may be shared

between legitimate users and attackers. In fact, malicious requests may also originate

from sources to which legitimate users are associated. Our solution performs satisfactorily

regardless of the source granularity and composition, as shown in the analysis presented

in Chapter 6.

4.1.2 Proposed identity life-cycle and supporting protocol

In our design, we assume that identity I contains the following information: I =
〈i, t, v, e, θ, s〉. In this tuple, I〈i〉 is a unique, universal identifier, and I〈t〉 is the last
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time it was processed by the bootstrap (e.g., during a renewal). Element I〈v〉 represents

the validity timestamp. Being T the current time, an identity is valid for contacting the

bootstrap only if I〈v〉 ≤ T (i.e., I〈v〉 has not yet passed); otherwise, the user must obtain

a new identity (which will incur in a comparatively higher cost than in the case of renewal,

as it will be discussed in Chapter 6).

Element I〈e〉 denotes the expiration timestamp (with I〈e〉 ≤ I〈v〉). An identity is

valid for identifying a user in the system only if I〈e〉 ≤ T . Observe that I〈e〉 may have

expired, but the identity can still be valid for renewal; this is true as long as I〈v〉 is not

yet passed. Element I〈θ〉 represents the trust score associated to the identity (it will be

discussed in the following chapter). Finally, I〈s〉 is a digital signature of the identity

(computed by the bootstrap service upon its creation or renewal), and is used to assert its

authenticity. The elements I〈v〉 and I〈e〉 play an important role in defining the current

state of an identity. The set of possible states, along with the transitions between them, is

depicted in Figure 4.2. The conditions that trigger each of the transitions depicted in this

figure are described in the following paragraphs.
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Figure 4.2: Possible states in an identity lifecycle.

We envisage two parameters to be used by the bootstrap service to support the identity

lifecycle management: V and E (with V ≥ E). These parameters are used to update I〈v〉
and I〈e〉 upon creation and renewal of identities, using the current time T as base. When-

ever an identity I is processed (created or renewed), the bootstrap must make I〈t〉 ← T ,

I〈v〉 ← T + V , and I〈e〉 ← T + E.
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u: user 
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Figure 4.3: Proposed extension for an identity management protocol (left), and its respec-

tive state machine (right).

Figure 4.3(a) illustrates a simplified view of the protocol for managing the lifecycle

of identities, and the entities involved. The messages exchanged with this protocol should

be digitally signed, to prevent tampering. It is out of scope of this thesis, however, to
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specify which security techniques or cryptographic algorithms should be used to this end.

Figure 4.3(b), in turn, focuses on the state machine for this protocol. The gray regions in

these figures highlight the extension we propose here considering any traditional, generic

identity management scheme.

The initial state of a user is “no valid identity” (either because the user had never

joined the system, or his/her identity is not valid anymore). Transition A (arrow A in

Figure 4.2) takes place when the user contacts the bootstrap service to request a new

identity. This transition takes place when the user issues a BEGINHANDSHAKE message

(first arrow in the sequence diagram of Figure 4.3(a)), without parameters. The bootstrap

replies with a task to be performed, using message COMPLETETASK (second arrow). In

our protocol, task can be of any type that is commonly understood between the entities

involved (for example, solving some puzzle). Later in Chapter 6 we discuss the type of

tasks we considered in the scope of this thesis.

After completing the task, the user contacts the bootstrap and issues the TASKCOM-

PLETED message (third arrow). This message has an optional parameter, solution, which

essentially depends on the task nature. Once verified that the task was correctly com-

pleted (e.g., by assessing the validity of solution), the bootstrap issues a new identity to

the user, by sending message HANDSHAKECOMPLETED (fourth arrow). At this stage, the

user evolves to the “up to date identity” state, which means he/she has a valid, unexpired

identity. It is important to observe from Figure 4.3(b) that the protocol enables as many

iterations COMPLETETASK, TASKCOMPLETED as the bootstrap see fit. In Chapter 6 we

describe how this aspect is explored in our solution for identity management.

Depending on the system nature, users might be required to renew their identities pe-

riodically, so as to keep contacting each other. We envisage a similar process for identity

renewal, following the same protocol depicted in Figure 4.3(a). The difference in this

case is that the messages exchanged between user and the bootstrap entity now contain

the identity to be renewed (parameter id). Observe that the bootstrap entity is the sole re-

sponsible for assigning tasks to users requesting identities, and validating the task solution

returned in response. This responsibility could be decentralized to some degree; however,

it is important that the entities in charge be trusted (to prevent tampering). Observe also

that task assignment should occur every time some user becomes interested in obtaining

or renewing identities.

In case the user does not renew its identity and I〈e〉 is passed, transitionC (Figure 4.2)

takes place; the identity then becomes no longer valid for joining the system (state “ex-

pired identity”), but it still can be renewed by the bootstrap. If the user renews it before

I〈v〉 is passed (transition D), it becomes valid again for joining the system (state “up to

date identity”). Otherwise, transition B takes place and the identity becomes useless; the

user must then go through the process of obtaining a new identity as if he/she had never

been in the system.

4.2 Attack model

We considered in our research that the attacker will dedicate as much resources as

he possesses to subvert our solution and obtain as much fake accounts as possible. The

evaluation of our solution is then centered on the number of identities the attacker is able

to control over time, given an amount of resources in his/her hands.

Considering the conceptual solution described in the previous section, there are three

basic strategies an attacker can use to obtain fake accounts. The first strategy consists of
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using his/her own workstation to request identities one by one (Section 4.2.1). The second

strategy, in turn, comprises hiring some service for processing the tasks assigned by the

bootstrap entity (Section 4.2.2). Finally, the third strategy encompasses the distribution of

identity requests to zombie workstations around the globe (Section 4.2.3). Each of these

strategies are described in detail next.

4.2.1 Obtaining fake accounts using a single workstation

The use of a single station is a trivial strategy the attacker can use to obtain fake

accounts. In the context of our solution, it corresponds to using a single source. This

strategy can be easily implemented and requires a minimal amount of resources. However,

it is only effective if the identity management in place does not impose any requirement,

such as solving a puzzle. Figure 4.4 illustrates the basic idea behind this strategy.

 

bootstrap 
service 

attacker 
request 

task 

solution 
identity 

request 
process 

Figure 4.4: Attacker using a single workstation to obtain fake accounts.

Although being the cheapest one, observe that the use of a single source with just a

single entity processing the tasks assigned by the bootstrap entity poses a constraint in

the rate in which fake accounts can be obtained. In the following sections we evaluate the

performance of this strategy in terms of measured trust score of the source, and number

of fake accounts obtained over time.

4.2.2 Combining a single workstation with outsourcing of task processing

This strategy represents a more elaborated attack one can launch against our solution.

In this strategy, only one source is used to contact the bootstrap entity and obtain fake

accounts. However, the processing of the assigned tasks is fully outsourced. There are a

number of possibilities to materialize the outsourcing, which also depends on the nature

of the task. Figure 4.5 provides a simple illustration of the idea behind this strategy.

Suppose that the tasks assigned by the bootstrap entity are cryptographic puzzles to

be solved. In this case, the attacker can use a cluster of high-performance computers to

solve them. The higher the number of CPUs in this cluster, the more puzzles the attacker

will be able to solve in parallel. Another possibility is hiring a cloud-based processing

service; Amazon Cloud (AMAZON.COM, 2012) offers a pay-as-you-go service for as

low as US$ 0.06/hour for Standard On-Demand Instances, and US$ 0.145/hour (Medium)

and US$ 0.580/hour (Extra Large) for High-CPU On-Demand Instances service, all of

these in a non-commitment basis. Cheaper prices can be obtained for 1-year and 2-year

commitment contracts.

In case CAPTCHAs are used, the attacker can hire a CAPTCHA-solving service for

as low as US$ 0.5/1,000 (MOTOYAMA et al., 2010). There are various providers that

offer such services, which vary on quality (proportion of CAPTCHAs accurately solved),

speed, and price. Some providers offer this service for as much as US$ 20/1,000, being

able to solve multilingual CAPTCHAs with high precision and speed.
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Figure 4.5: Outsourcing the processing of tasks assigned by the bootstrap entity.

The major advantage of this attack strategy is the increased power available for pro-

cessing tasks (which comes at a cost, one should note). However, simply outsourcing

puzzle resolution may also become ineffective. Recall that our scheme relies on measure-

ment of trust score values for each of the sources from which identity requests depart (this

aspect will be discussed in detail in the following chapter). Therefore, with a multitude of

requests departing from a single source, its value of trust score will become significantly

low. Such a poor value of trust score ultimately results in more complex tasks being

assigned to future identity requests, therefore undermining the extra power the attacker

dedicates for obtaining fake accounts.

4.2.3 Using a fully-fledged botnet to distribute identity requests

This strategy, illustrated in Figure 4.6, is the most effective one against our solution.

One possible deployment is to outsource the identity request (and processing of tasks)

to a botnet. This service is available in the black market, and research shows that the

prices vary depending on the usage purpose and number of infected computers (PRINCE,

2013). Prices can be as high as US$ 535 for a five hours rent. The attacker can also

contract consulting services to build his/her own botnet; prices vary between US$ 350 and

US$ 400 per botnet. The consulting services can also be charged depending on the size of

the desired botnet, with prices around US$ 500 per 1,000 zombie computers. Building a

botnet having zombie workstations from North America, European Union, and Australia

is offered a premium service; it is more expensive than building a botnet having zombie

computers from regions such as Asia and Eastern Europe only.

Quite often the infected computers have low processing power available (either be-

cause they have users’ processes running, or because they have several other malware

installed and concurrently consuming the CPU power). In this case, the attacker can out-

source only the identity request process to the botnet; the processing of tasks could be

outsourced considering the strategy described in the previous section. This aspect re-

sults in a higher deployment cost for the attack, but has the advantage of increasing the

attacker’s power of quickly obtaining fake accounts.
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Figure 4.6: Using a botnet to obtain fake accounts.

4.3 Considerations

In this section we present some considerations regarding the conceptual solution and

attack model discussed in this chapter. We organize this discussion following the same

structure in which this chapter was organized.

Conceptual solution for identity management. It is important to highlight that the

deployment of our conceptual solution in large-scale distributed systems is expected to

require minimal changes to entities that compose the network. Considering for example

its instantiation in a peer-to-peer system such as BitTorrent (COHEN, 2003), we envis-

age the need to slightly modify user agents and trackers so as to include the following

interactions: (i) agent requests an identity to the tracker; (ii) tracker demands from the

requesting agent the completion of a task; (iii) agent replies to the tracker with the solu-

tion to the proposed task; (iv) tracker checks the validity of the solution and, if correct,

issues the identity to the agent. From this moment on, user agent and tracker interact

using the in-place BitTorrent protocol. In this scenario, the most significant modifications

would be restricted to the tracker – in such a way that it keeps information about sources’

recurrence rates, compute their respective trust scores, and defines the complexity of the

task to be accomplished as a function of the current trust score.

With regard to sources of identity requests, note that our design relies on its concept,

not on the strategies that could materialize it – in part due to the limitations of existing

ones. It is to overcome these limitations that we derive a trust score for each source found

in the network, and adjust the cost per request based on that score (which varies upwards

and downwards dynamically, one should observe). In other words, we rely on the sources

trust score because sources themselves cannot be reliably tracked and may change over

time. As research in the field of network geo-location evolves, our design would easily

accommodate and benefit from achieved advances.

Now focusing on verification of identities, observe that our scheme does not require

strict clock synchronization between participating entities. However, users must have

their clock adjusted so that they can assess the validity of identities. Note that this identity

verification is similar to the verification of certificates for those websites using secure

HTTP. It is also important to mention that we attempted to come up with a protocol design

that minimizes any changes to existing identity management schemes. Considering an

actual deployment of our proposal as a protocol extension, the exchange of messages

COMPLETETASK and TASKCOMPLETED should occur before the exchange of messages

that implement the actual identity assignment.

Attack model. The discussion of the required budget to launch an attack against our

solution also involves another important aspect: the profit of the attacker with each iden-
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tity he obtains. As we will show in the following chapters, the attacker has a certain

monetary cost per identity he obtains (which varies according to the scenario). However,

one cannot currently compare these costs with the monetary profit the attacker can ob-

tain with each identity. In this context, we argue that our major contribution is raising

significantly the costs associated to deploying such an attack, making it less profitable or

even not interesting from the attacker’s point of view. More importantly, we argue (based

on the evaluation to be presented in the following chapters) that our solution increases

significantly the cost per counterfeit identity in comparison to existing proposals.

4.4 Summary

In this chapter we discussed two important concepts related to our solution for identity

management in large-scale, distributed systems: the conceptual solution that forms the

basis of our design for identity management, and the possible strategies an attacker can

use to subvert our solution.

As part of our design, in this chapter we also introduced a conceptual solution to

enable the use of adaptive puzzles as a controlling factor to Sybils. We discussed the

lifecycle we envisage for identities and the protocol to support the operations of identity

creation and renewal. The idea is that a bootstrap entity will keep track of the number of

identities assigned to a given source during a specific interval, and define the price to be

paid for that request taking into account the behavior of other sources in that same period.

Observe that our solution does not make attacks impossible. Instead, it increases

the price an attacker has to pay in order to obtain his/her fake accounts. In this chapter

we discussed the three basic strategies the attacker can use towards this end: using a

single station to obtain fake accounts, outsourcing task processing, and using a botnet for

identity requests. Each strategy has its advantages and drawbacks. As we will see later in

this thesis, each of them leads to a different performance in the process of obtaining fake

accounts.
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5 TRUST SCORES FOR IDENTITY MANAGEMENT

The research reported in this thesis is built on the notion that users have to dedicate

a fraction of resources to obtain identities in large-scale distributed systems, as a strat-

egy to protect these systems from the dissemination of fake accounts. As an important

step towards dealing appropriately with presumably legitimate identity requests and those

potentially malicious, in this chapter we propose the concept of trust score. Trust score

is a reputation index that establishes the likeliness a given identity request is part of an

ongoing attack attempting to create fake accounts1. With such an index, those approaches

based on proof of work can balance the price (in terms of fraction of resources) per iden-

tity requested, by using the values of trust score to parameterize the complexity of the

tasks assigned by the bootstrap entity. By doing so, these solutions can finally cause less

burden to presumably legitimate users, and be even more severe with attackers.

The concept of trust score has been evaluated by means of a large set of experiments.

We have used the traces studied in the scope of this thesis (described in Chapter 3) to

reproduce the true dynamics of identity requests. In addition, attacks have been designed

to analyze the robustness of the proposed concept. The results achieved show that our

proposal is able to assign lower values of trust score to those requests that are likely to be

malicious, whereas presumably legitimate ones are largely regarded as trustworthy.

Organization. The remainder of this chapter is organized as follows. In Section 5.1

we present the concept of trust score and the mathematical formulation supporting it. In

Section 5.2 we describe our evaluation and major findings. In Section 5.3 we enumerate

some considerations on the proposed concept. Finally, in Section 5.4 we close the chapter

with a summary.

5.1 The proposed model

In the scope of this thesis, we define trust score (θ) as a reputation index that es-

tablishes the likeliness that some identity request, originated from a certain source, is

presumably legitimate or potentially part of an ongoing attack. The trust score index as-

sumes values in the interval (0, 1): on one extreme, values close to 1 denote a high trust

on the legitimacy of (the) user(s) associated to the i-th source; on the other, values close

to 0 indicate high distrust, i.e., a high probability that there exists an attacker behind that

source, who is launching a Sybil attack.

The computation of the value of trust score for some identity request originated from

1This chapter is based on the following publication: Cordeiro, W., Santos, F., Mauch, G., Barcellos,

M., Gaspary, L.: Securing P2P Systems from Sybil Attacks through Adaptive Identity Management. In:

7th International Conference on Network and Service Management (CNSM 2011), 2011, Paris, France.

Mini-conference Proceedings, 2011.
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a certain source involves solving three main sub-problems, namely: (i) characterize the

behavior of sources (or the behavior of users associated to them); (ii) translating the ob-

served behaviors into values of trust score; and (iii) deal with the dynamics of users’

behavior in the calculation of the trust score. Each of these sub-problems is addressed in

the following sections.

5.1.1 Employing recurrence metrics to characterize behaviors

In order to characterize the behavior of sources of identity requests, it is important

to keep track of the number of identities already granted to the users associated to a

given source. In the context of this work, this number is defined as φi(t) for the i-th
source, at instant t (with φi(t) ∈ N). Based on this information, we formally define the

source recurrence (∆φi(t)) and network recurrence (Φ(t), with Φ(t) ∈ R and Φ(t) ≥ 1)

metrics. The former, given by ∆φi(t) = φi(t) − φi(t − ∆t), represents the number

of identities the bootstrap entity granted to users associated to some specific source i,
in the last ∆t units of time. The latter corresponds to the average number of identities

that sources have obtained from the bootstrap entity in the same period. Observe that

the computation of these metrics is straightforward, as the bootstrap has direct access to

information regarding identity requests.

The network recurrence metric Φ(t) is computed using the simple mean of the values

of sources’ recurrence, according to Equation 5.1. In this equation, n is the number

of currently active sources, i.e., those that have obtained at least one identity within the

interval ∆t. Note that when ∆φk(t) = 0 for some source k, users associated to that source

have not obtained any identity (during ∆t); such a source can be safely ignored.

Φ(t) =











1 , if n = 0

1

n
×

n
∑

i=1

∆φi(t) , if n ≥ 1
(5.1)

With regard to using ∆t as a bound for the portion of identity grants considered when

computing the sources’ (and the network) recurrence metrics, it is important to observe

that the pace in which identities are granted to sources may vary across different times

of the day, month, or year. Thus, at certain times (e.g., on weekends) a larger number of

users might be interested in joining the system and, consequently, more identities might

be granted. Without taking into account the timely patterns of users (and of the network),

legitimate users may be regarded as suspicious if the source(s) to which these are associ-

ated obtain(s) new identities with higher frequency. Conversely, if all identity grants were

considered (since the beginning), it would be easier for an attacker to launch Sybil at-

tacks; this is because the number of identity grants would grow indefinitely, consequently

obfuscating the higher recurrences of suspicious sources at some instant. Therefore, the

time interval ∆t functions as a “sliding window” that addresses the seasonality in the pat-

tern of identity grants. As this window slides forward, older identity grants are gradually

discarded, thus allowing room to newer ones which are more representative of the current

state of the system.

5.1.2 Calculating trust scores from observed behaviors

The Sybil attack is often characterized by the launch of a multitude of fake identity

requests to the system bootstrap entity, so that the attacker controls a significantly large

number of identities in the system. This behavior leads to the increase in the recurrence
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observed for the source(s) associated to the attacker, as illustrated in Figure 4.1 right (in

Section 4.1.1). Conversely, it is expected that the sources associated to legitimate users

obtain fewer identities. Therefore, the underlying idea to filter out presumably legitimate

identity requests from those potentially malicious is to compare the sources recurrence to

the average recurrence of the network.

By comparing the behavior of a given source i (inferred from ∆φi(t)) and the network

behavior (inferred from Φ(t)), we calculate the relationship between source and network

recurrences (ρi(t), with ρi(t) ∈ R). When negative, ρi(t) indicates how many times the

recurrence of the i-th source is lower than the recurrence of the network. For example,

ρ(t) = −1 means that, at instant t, ∆φi(t) is 50% lower than Φ(t) (i.e., Φ(t) is 100%

higher than ∆φi(t)). Likewise, a positive ρi(t) expresses how higher is the recurrence

of the i-th source. For instance, if ρi(t) = 2, then ∆φi(t) is 200% higher than Φ(t).
Equation 5.2 provides the value of ρi(t).

ρi(t) =















1−
Φ(t)

∆φi(t)
, if ∆φi(t) ≤ Φ(t)

∆φi(t)

Φ(t)
− 1 , if ∆φi(t) > Φ(t)

(5.2)

The relationship between the recurrences of the source and the network (ρi(t)) is used

to compute the trust score of the i-th source (θi(t)). This score is calculated at instant t
according to Equation 5.3, and assumes values in the interval (0, 1). As discussed earlier

in this chapter, values close to 1 denote a high trust on the legitimacy of (the) user(s)

associated to the i-th source, whereas values close to 0 indicate high distrust.

In Equation 5.3, the constant 0.5 defines the mean trust score, which is incremented or

decremented by 0.5 (therefore resulting in a trust score that ranges from 0 to 1) depending

on ρi(t). The function arctan(x) is used to map any possible value of ρi(t), in the interval

(−∞,+∞), into a value in the interval (−π
2
,+π

2
). The term π in Equation 5.3 normalizes

the result of the arctan function, to the interval (−0.5, 0.5) (see Property 1 next). The

metric ρi(t) is raised to the power of 3 in order to create an interval around ρi(t) = 0
for which the trust score varies minimally (see Property 2). Finally, the term ρi(t)

3 is

weighted by the current recurrence of the network (Φ(t)) to regulate the conservativeness

of trust scores in face of the current network behavior (see Property 3).

θi(t) = 0.5−
arctan(Φ(t)× ρi(t)

3)

π
(5.3)

Figure 5.1 presents five different configurations that illustrate how the trust score ob-

tained for the i-th source varies as a function of ρi(t). In each of these configurations,

the current recurrence of the network Φ(t) controls how conservative the concept of trust

scores should be regarding the current perception of the recurrence of a source. Note

that the values used in this plot are arbitrarily chosen for the sake of illustration; their

meaning depends on the interval chosen. The plot reveals three important properties that

Equation 5.3 holds. These are enumerated below.

Property 1. The function that maps values of ρi(t) into trust scores is asymptotic in 0 and

1; therefore, for ρi(t) → −∞ or ρi(t) → +∞, there is always a corresponding value of

trust score.

Property 2. The trust score varies minimally for values of ρi(t) close or equal to 0; this

corresponds to a situation in which the i-th source behaves similarly or equals to the

network average Φ(t).
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Figure 5.1: Curves of Equation 5.3 for the calculation of the source trust score, consider-

ing different values of network recurrence (Φ(t)).

Property 3. The computation of trust scores becomes more conservative as the current

network average Φ(t) increases, and less conservative otherwise.

Observe that Property 2 allows a certain degree of tolerance in the evaluation of

source behavior. To illustrate, consider the curve for Φ(t) = 1 shown in Figure 5.1;

variations of ρi(t) lying in the interval [−0.5, 0.5] indicate a source behavior similar to the

pattern observed in the network, and thus have minimal impact. Behaviors that deviate

significantly from this interval, however, will be assigned lower (or higher) trust scores.

Now focusing on Property 3, it enables weighting appropriately the value of ρi(t)
taking into account the current network behavior. To illustrate, consider the case of

ρi(t) = 0.5 in Figure 5.1. Regardless of the current network recurrence, this value of

ρi(t) indicates that the i-th source has obtained 50% more identities than the average of

all sources. Considering as an example the case of Φ(t) = 2, the currently active sources

in the network have requested 2 identities in the interval ∆t on average, whereas the i-
th source has obtained 50% more identities in the same interval, i.e., 3 identities; as a

consequence, a trust score of approximately 0.4 is assigned to subsequent identity re-

quests originating from this source. In the case of Φ(t) = 24, however, the same value of

ρi(t) = 0.5 means that the i-th source obtained 36 identities in the interval ∆t (50% more

than the average of 24 identities requested by the currently active sources). Although

the proportion of identities obtained (in the interval ∆t) in regard to the average of the

network remained the same (50%), the surplus of identities obtained in the latter case

(36 − 24 = 12 identities) was much higher than in the former one (3 − 2 = 1 identity

only); as a consequence, the bootstrap entity becomes more conservative, and establishes

a trust score of 0.1 to future identity requests originating from this source.

5.1.3 Dealing with the dynamics of users’ behavior

Peer autonomy is an important characteristic of peer-to-peer networks and has several

implications. Peers may arbitrarily join and leave the network at any moment, or become

unavailable. In general, such observation holds for most online systems and large-scale

distributed systems (such as Skype, Facebook, Digg, BitTorrent, among others). One

possible effect of such dynamics is the variation in the behavior of both individual sources

and the network as a whole. Next, we discuss how the concept of trust scores deals with

the dynamics of observed behaviors.

The trust score provided by Equation 5.3 is instantaneous (at some time t). This
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variable is limited in the sense it does accommodate fluctuations in the recurrence of a

source (which could originate identity requests in bursts). Thus, a source with historically

lower recurrence should be entitled to demand more identities for some time without

being penalized. To accomplish this, a smoothing factor is used to properly represent the

trust score of a given source in light of its past behavior.

The smoothed trust score, defined as θ′i(t) for the i-th source in instant t, is calculated

as shown in Equation 5.4. The smoothing factor β determines the weight of present

behavior in the calculation of the smoothed trust score, assuming values in the interval

(0, 1]. Thus, values of β close to 0 assign a high weight to the historical behavior of

the source under consideration, and vice-versa. In the special case in which β = 1,

the current trust score (as calculated through Equation 5.3) is fully considered, and the

historical behavior, totally ignored. In Equation 5.4, θ′i(t
′) refers to the last computed

value of smoothed trust score.

θ′i(t) =

{

θi(t) , if θ′i(t) was never computed

β × θi(t) + (1− β)× θ′i(t
′) , otherwise

(5.4)

The smoothing factor β is important to deal adequately with changes in the behavior of

sources of identity requests. In particular, abrupt and/or intentional changes in the source

behavior, caused by (a) user(s) interested in obtaining benefits (such as “betrayers”), are

captured in the trust score of the source associated to that user(s). A “betrayer” is an

attacker that aims to obtain good scores in reputation-based systems and, once obtained,

uses them to harm other peers or obtain unfair advantages. A proper dimensioning of β, in

this context, may prevent an attacker from manipulating trust scores in such a way that the

source in which he/she is located obtains (or recovers) higher values of trust score more

quickly. Since the historical behavior is considered while asserting the present behav-

ior, only those sources whose users present good historical behavior may be considered

trustworthy.

5.2 Evaluation

In order to evaluate the effectiveness of using the trust score model as a resource

to measure the reputation of identity requests, we implemented a bootstrap entity for

use in a simulation environment. In summary, the implemented entity aggregates the

functionalities of management of identity requests from users interested in joining some

system.

In this evaluation, we attempted to answer the first two research questions posed in

the introduction: (i) how effective would a mechanism based on the hypothesis that one

can filter potentially malicious requests be in detecting them? and (ii) what is the over-

head that such a mechanism would cause to legitimate users? To this end, we carried

out experiments considering scenarios with and without attack, using real-world traces

of identity requests. In the remainder of this section we describe the details of the en-

vironment considered in our evaluation (Section 5.2.1), and our major findings (Sec-

tions 5.2.2 and 5.2.3).

It is important to emphasize that we only measure the values of trust scores of identity

requests in this evaluation. In other words, our goal is to evaluate the concept of trust

scores considering a variety of scenarios, with and without attack. The use of measured

values of trust scores as a mean to actively hamper the dissemination of fake accounts is

discussed in the following chapter.
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Table 5.1: Summary of parameters involved in the evaluation of the concept of trust

scores.

Parameter / Variable Taxonomy Description

S Environment-related Parameter Number of (legitimate) sources in the system

Lr Environment-related Parameter Number of identities requested by legitimate users

Lu Environment-related Parameter Number of legitimate users

Mr Environment-related Parameter Number of identities requested by the attacker

Mu Environment-related Parameter Number of sources in hands of the attacker

T Environment-related Parameter Simulation duration (in time units)

β Input Parameter Smoothing factor for the source trust score

∆t Input Parameter Size of the time interval, or “sliding window” (in time units)

5.2.1 Simulation environment

To evaluate the concept of trust scores, we developed a discrete event simulator. In

our simulator, the arrival of an identity request, and also each interaction between the

bootstrap entity and the user that follows it, are regarded as events. The global clock is

used mainly for event dispatch and to keep track of identity grants that should be gradually

discarded (an effect of the sliding window). The simulator also keeps a queue of events,

which is dynamically ordered considering the timestamp in which events will occur in

the simulation. The global clock always evolves to the timestamp of the next event in the

queue. The ending condition in our simulator is the timestamp, in the trace file, of the last

arrival of a legitimate identity request.

The parameters involved in the evaluation, summarized in Table 5.1, are separated

in two classes: Environment-related parameters characterize the large-scale distributed

system under consideration; and Input parameters, those that may be adjusted to regulate

the effectiveness of the concept of trust scores in properly detecting potentially malicious

requests.

For the sake of this evaluation, we considered the set of traces described in Sec-

tion 3.3.1. For assessing the resilience of the concept of trust scores in scenarios in

which there is an ongoing attack, we focused on the first three traces described in that

section. It is important to emphasize that we focus on these traces because they represent

more challenging scenarios for the concept of trust scores. The other traces discussed

in Section 3.3 (Traces 4 and 5) represent scenarios in which presumably legitimate users

deviate significantly less from the average behavior of the network, and thus would be

(i) assigned comparatively higher values of trust score, and (ii) easily isolated from mali-

cious requests. Conversely, in the case of Traces 1, 2, and 3, there is a significant fraction

of users who recur even more frequently to obtain identities than the sources in hands of

the attacker.

In our evaluation, we consider a peer-to-peer network using a weak identity scheme. It

means that users obtain identities upon joining the network. To analyze scenarios in which

the system is under attack, we injected artificially generated malicious identity requests.

In these scenarios, an attacker, provided with some amount of resources, launches his/her

attacks in an attempt to obtain (and thus control) as much identities as possible. For the

sake of this evaluation, we bound the number of fake accounts the attacker requests to 1/3
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of legitimate identities. This number was chosen since it exceeds the proportion of fake

accounts that any Sybil-resilient solution tolerates (YU et al., 2006, 2008).

Three scenarios were evaluated: without attack, with Mu = 1%, and with Mu = 10%
malicious sources. The second scenario (Mu = 1%) corresponds to an attacker with

limited resources to forge various distinct locations from which identity requests depart.

In the third scenario (Mu = 10%), the attacker has a botnet at his/her service and uses it

to launch the attack. When doing so, the attacker is able to increase the speed in which

he/she obtains identities in the system. Further, he/she may also alter the “perception

of normality” in the network: a higher number of malicious sources behaving similarly

in the network tend to change the perception of what is, effectively, the behavior of the

majority of sources. Table 5.2 describes these attack scenarios in more detail.

Table 5.2: Characteristics of the scenarios evaluated for each trace.

Trace 1 Trace 2 Trace 3

Mr 104,606 380,484 280,826

Interval between requests (sec) 5.67 1.27 2.15

Attack scenarios No attack 1% 10% No attack 1% 10% No attack 1% 10%

Mu - 440 4,406 - 505 5,051 - 479 4,796

Requests per source (avg) - 237.74 23.74 - 753.43 75.32 - 586.27 58.55

Interval between requests per source - 41.6 min 6.94 h - 10.7 min 1.78 h - 17.2 min 2.86 h

As a first step in our evaluation, we analyzed the sensitivity of trust scores considering

various parameter setting (Section 5.2.2). Once we assessed a methodology to determine

the most appropriated values for the input parameters, we analyzed the performance of

trust scores considering the traces of identity requests (Section 5.2.3). Next we describe

the results achieved.

5.2.2 Sensitivity analysis

In this section, we evaluate how well the concept of trust scores captures those poten-

tially malicious identity requests considering various distinct parameter settings. More

specifically, we evaluate the values of trust score assigned to identity requests considering

different sizes for the sliding window, and various values for the smoothing factor. For the

sake of clarity, we focus on the results achieved with Trace 1 (described in Section 3.3.1).

Sliding window ∆t

Here we evaluate how the time interval ∆t influences the performance of trust scores

in detecting potentially malicious identity requests using various distinct locations (sources).

For requesting fake accounts, the attacker uses 440 sources (Mu = 440, i.e. 1% of

the number of legitimate sources; see Table 5.2), and uses them to originate his/her

Mr = 104, 606 requests; each of these sources originate around 237 requests only, one

every 41 minutes approximately (164.87 · 60 · 440
104,606

). We consider such a request rate

since it represents the best choice for the attacker – given the design of trust scores (we

prove this aspect formally in the following chapter). Otherwise, some malicious requests

would receive even lower trust scores, should the attacker choose a different balance of

requests per source per unit of time (rather than evenly dividing requests among sources
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Figure 5.2: CCDF of the trust score of requests performed by legitimate users and at-

tacker, using Trace 1 as basis, under different sizes for the sliding window ∆t.

and throughout time). For this analysis, we consider the following values of ∆t: 8, 16,

24, 48, and 96 hours. The smoothing factor is initially set to β = 0.125 (next we provide

an analysis for this parameter).

Figure 5.2(a) shows that malicious requests were significantly affected, being assigned

extremely low values of trust scores for a majority of them, regardless of the values for ∆t
considered. For example, using ∆t = 8 hours only 20.63% of malicious requests were

assigned a value of trust score higher or equal to 0.01; in other words, over than 79.37% of

requests were assigned extremely poor values of trust scores. Only 13.38% of malicious

requests received values of trust score higher or equal to 0.1, and less than 3.79% were

assigned values of trust scores of 0.5 or higher. No malicious requests were assigned

a score higher than 0.6. Such low trust scores may be explained by the recurrence of

each malicious source, which is comparatively higher than the average recurrence of the

network.

Observe also from Figure 5.2(a) that the higher the duration of the sliding window,

the more restrictive the concept of trust scores becomes for the attacker. For example,

an increasing of the sliding window from ∆t = 8 to ∆t = 16 decreases from 11.7% to

7.75% the proportion of requests that were assigned values of trust score of 0.5 or higher.

The reason is that a larger duration for the time interval ∆t makes a higher fraction of the

history of sources to be considered when calculating their recurrences ∆φ(t) (as discussed

in Section 5.1.1). Such an increase in their recurrences has two effects. First, the average

recurrence of the network Φ(t) also increases, and the bootstrap entity becomes more

conservative when computing trust scores to those requests coming from sources having

higher∆φ(t) (see Property 3 in Section 5.1.2). Observe for example in Figure 5.3 that the

average recurrence of the network (curve “Φ(t)”) changes substantially, when comparing

the scenarios using ∆t = 8 and ∆t = 96.

The second effect is that the value of ∆φ(t) for those sources in hands of the attacker,

already high for the case of ∆t = 8, becomes even higher when using ∆t = 96. From

Figure 5.3(a), observe that the average recurrence of malicious sources is approximately

11.6 identities per hour for ∆t = 8 (curve “∆φ(t) malicious”); this number increases to

approximately 138 per hour for ∆t = 96 (curve partially omitted for the sake of legibil-

ity). As a consequence of such an increase in the recurrence of malicious sources, even

lower trust scores are assigned to future requests originating from them. The main con-
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Figure 5.3: Average number of requests per source overtime, considering different dura-

tions for the sliding window.

clusion we can derive from these results is that attacks for creating a bulk of fake accounts

can be easily tracked and largely mitigated.

After evaluating the effectiveness of the concept of trust scores in detecting potentially

malicious identity requests, we now focus on the measured values of trust scores for

those requests originated from (presumably) legitimate sources. From the curves shown

in Figure 5.2(b), it is clear that the measured values were overall significantly high in each

of the scenarios, regardless of the interval ∆t used. The majority of identity requests from

legitimate sources received a value of trust score higher or equal to 0.5 (above 92% in all

cases).

One can clearly see from Figure 5.2(b) that increasing the size of the sliding window

improves substantially the trust score of legitimate requests. This is because the aver-

age recurrence of legitimate users, although increased because of higher sizes of sliding

window, becomes comparatively lower than the average recurrence of the network. This

aspect can be observed comparing the distance between curves “Φ(t)” and “∆φ(t) legiti-

mate” in Figures 5.3(a) and 5.3(b).

The appropriate setting of the sliding window strictly depends on the nature of the

system, and on what is considered a reasonable behavior for users of the application in

question. For an application whose users typically obtain few identities a day (e.g., four

identities – one per login session), the use of ∆t = 48 (or ∆t = 24) is appropriate, since

it will refrain malicious users from attempting to obtain a significantly higher number

of identities than normally expected. The lower an ordinary user is expected to obtain

identities from the bootstrap entity, the higher ∆t should be, and vice-versa. For the

sensitivity analysis of the smoothing factor (presented next), we chose to focus on a value

of ∆t = 48, as it is more representative of the traces used in our evaluation.

Smoothing factor β

Now we focus on the effect that varying values for the smoothing factor β causes to

the identity requests of these sources. We concentrate on the following values of β: 0.125,

0.25, 0.5, 0.75, and 1. For this set of experiments, we use ∆t = 48. The other parameters

remain unchanged.

Figure 5.4 indicates the trust score achieved by requests launched to the bootstrap en-

tity, for each of the considered values of smoothing factor. Focusing on Figure 5.4(a),
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Figure 5.4: Trust score of requests performed by legitimate users and attacker, under

different values for the smooting factor β.

observe that increased values of β makes a larger fraction of malicious requests be as-

signed lower values of trust score. For example, less than 3.8% of malicious requests

received a value of trust score higher or equal to 0.5, when using a smoothing factor of

β = 0.125; this proportion decreased to 2.2% when using a smoothing factor of β = 1.0.

With regard to legitimate users, Figure 5.4(b) evidences that lower values for β decreases

the overhead caused to legitimate requests. In spite of this, the proportion of requests as-

signed with a trust score higher or equal to 0.5 was above 76% in all scenarios, and above

92% in the particular case of β = 0.125.

In principle, the higher the value of β, the more restrictive the concept of trust scores

becomes for both legitimate and malicious requests. To understand this, first recall (from

Section 5.1.3) that higher values of β assign higher weight to the instantaneous trust score

θi(t) (upon the calculation of the smoothed trust score θ′i(t)); conversely, lower values of

β assign higher weight to the historical behavior of θi(t). Recall also that both ∆φi(t)
and Φ(t) may vary significantly through time, either because of newly granted identities

or because of gradual disposals of older grants from the sliding window ∆t, thus making

the instantaneous trust score θi(t) to experience high fluctuations. Therefore, the higher

values of β make the smoothed trust score to reflect even more the fluctuations seen in the

instantaneous trust score, which ultimately results in lower trust scores (and thus puzzles

of higher complexity) being eventually assigned to identity requests. This observation

holds mainly for the case of the attacker, who has a limited set of resources and requests

a proportionally higher number of identities. In contrast, lower values for β reduce this

fluctuation of θ′i(t). Therefore, identity requests are assigned with lower trust scores (and

thus puzzles of higher complexity) only if the source from which they originate main-

tains the discrepant behavior of requesting a higher number of identities (in regard to the

network) for a longer period.

The definition of an appropriate value for β is extremely subjective, and basically rep-

resents a trade-off between tolerance with those presumably legitimate users (or sources

of identity requests) who suddenly make a burst of requests, and conservativeness with

those sources potentially involved with an ongoing attack. In other words, should the

system maintainer decide in favor of tolerance to those presumably legitimate users fac-

ing transient network failures (and thus occasionally making a burst of identity requests),

then using lower values for β is more convenient. Conversely, should the system main-
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tainer decide to be rigorous with potential attackers (regardless of the negative impact to

presumably legitimate users), then higher values for β become more appropriate.

Given the discussion above, we chose a value of β = 0.125 (along with ∆t = 48) for

the analyses that follows, as it makes the concept of trust scores more robust to sources

that continuously request more identities than the network average, whereas allows a le-

gitimate user to request more identities during a transient failure (e.g., unstable network

connectivity) without being penalized for that.

5.2.3 Performance analysis

Having evaluated analyzed the effectiveness of the concept of trust scores under the

influence of various parameter setting, we now focus on its performance in a real life

scenario. In this section we consider the three attack scenarios described in Table 5.2.

The parameters we adopt for the concept of trust scores are ∆t = 48 and β = 0.125,

values chosen according to the sensitivity analysis presented earlier.
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Figure 5.5: Trust score of requests performed by legitimate users and attacker, for each of

the scenarios evaluated with Trace 1.

Figures 5.5, 5.6, and 5.7 show the results obtained for each of the studied scenarios,

for Traces 1, 2, and 3, respectively. Recall that we concentrate on these traces since they

represent a more challenging scenario for the concept of trust scores (since a large fraction

of users recur even more frequently to obtain identities than the sources of the attacker).

Observe from Figure 5.5 that the bootstrap entity assigned significantly lower val-

ues of trust scores to those identity requests coming from malicious sources, whereas

minimally penalizing presumably legitimate ones (in scenarios “Mu = 1%” and “Mu =
10%”). Even in the extreme scenario of “Mu = 10%”, over than 56% of legitimate re-

quests were assigned a value of trust score higher or equal to 0.9; conversely, over than

80% of malicious requests were assigned a value of trust score lower or equal to 0.5.

The effectiveness of the concept of trust scores in properly separating malicious requests

from those presumably legitimate becomes even more evident in the scenario where the

attacker is constrained in resources (“Mu = 1%”).

Observe also that the overhead caused to presumably legitimate requests is minimal.

In the scenario where the attacker uses the most of resources to tamper with the concept

of trust scores, less than 2% of those requests were assigned a value of trust score lower

or equal to 0.1; less than 3% of them received a value lower or equal to 0.2, and less than

5% received a value lower or equal to 0.3.
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Table 5.3: Statistical summary of the results obtained for Trace 1.

Scenarios Min. 1st decile Median Mean Std. Dev. 9th decile Max.

no attack
Leg. 0.0 0.3332 0.5495 0.5928 0.2234766 0.9499 0.9762

Mal. – – – – – – –

Mu = 1%

Leg. 0.0 0.6045 0.9671 0.8694 0.2040771 0.9959 1.0

Mal. 0.0 0.0 0.0 0.05399 0.1386912 0.25206 0.542

Mu = 10%

Leg. 0.0 0.54737 0.9319 0.8386 0.2096832 0.98730 0.9916

Mal. 0.1477 0.1578 0.2423 0.2966 0.1376637 0.5024 0.5406
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Figure 5.6: Trust score of requests performed by legitimate users and attacker, for each of

the scenarios evaluated with Trace 2.

An important aspect to be discussed regarding Figure 5.5 is the percentage of ap-

proximately 25% of requests having trust score lower than 0.5. Even though the sources

contained in the trace are presumably legitimate (i.e., have not launched a Sybil attack),

there are cases in which sources may originate identity requests in a higher frequency than

the network average. In spite of this, less than 5% of legitimate identity requests received

values of trust scores lower or equal to 0.2.

Another important discussion is related to the improvement in the trust score of pre-

sumably legitimate requests, in those scenarios with attack. This phenomenon is observed

because malicious requests increase the average recurrence of the network, thus making

legitimate ones to appear less suspicious. Therefore, as long as malicious requests do not

depart from those sources shared by legitimate users, legitimate requests are not hampered

by the occurrence of attacks. In the following chapter we present an analysis of scenarios

where both legitimate users and attacker share sources of identity requests.

Table 5.3 presents an statistical summary of the results shown in Figure 5.5. Observe

that the mean value of trust score assigned to malicious requests is significantly low (at

most 0.2966, in the scenario where the attacker dedicates more resources). In contrast,

the mean value of trust score assigned to requests of presumably legitimate users was

significantly higher (at least 0.5928, in the scenario without attack).

The results achieved for Traces 2 and 3, depicted in Figures 5.6 and 5.7 (and sum-

marized in Tables 5.4 and 5.5), confirm the positive results achieved. The attacker was
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Table 5.4: Statistical summary of the results obtained for Trace 2.

Scenarios Min. 1st decile Median Mean Std. Dev. 9th decile Max.

no attack
Leg. 0.0 0.0 0.2635 0.4248 0.4262424 0.9994 0.9999

Mal. – – – – – – –

Mu = 1%

Leg. 0.0 0.0 0.3867 0.4616 0.4377551 0.9999 1.0000

Mal. 0.0 0.0 0.0 0.007776 0.05034481 0.0001 0.508600

Mu = 10%

Leg. 0.0 0.0 0.3250 0.4430 0.4312081 0.9997 1.0

Mal. 0.0064 0.0071 0.0245 0.1690 0.2495451 0.59920 0.9296
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Figure 5.7: Trust score of requests performed by legitimate users and attacker, for each of

the scenarios evaluated with Trace 3.

severely penalized in both scenarios, with approximately 73% of malicious requests re-

ceiving a trust score lower or equal to 0.2 for Trace 2, and 72% for Trace 3. The mean

value of trust score the attacker was able to achieved was also significantly low: at most

0.169 for Trace 2, and 0.1494 for Trace 3.

Now focusing on the overhead to presumably legitimate requests, again it was kept

to a minimum. In the scenario without attack, over than 43% of requests received a

value of trust score higher or equal to 0.5 for Trace 2, and over than 51% for Trace 3.

In the presence of attack, the overhead decreases even further. Focusing on scenario

“Mu = 10%”, approximately 30% of requests were assigned a value of trust score higher

or equal to 0.9 for Trace 2, and approximately 40% for Trace 3.

The results achieved with these traces provide important evidence to answer the re-

search questions enumerated earlier in this section. First, the use of trust scores was

effective in filtering malicious requests from presumably legitimate ones: malicious re-

quests were penalized with significantly lower values of trust score, whereas presumably

legitimate ones were assigned significantly higher values. The results also show that the

attacker needs to dedicate a large amount of resources, in terms of distributed sources,

to outsmart the scheme of classification and aggregation of requests per source of origin.

Second, the use of trust scores has minimally penalized legitimate users in those scenarios

without attack, with a small fraction of them receiving lower values of trust score.

Two additional, important conclusions can also be drawn from the results presented
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Table 5.5: Statistical summary of the results obtained for Trace 3.

Scenarios Min. 1st decile Median Mean Std. Dev. 9th decile Max.

no attack
Leg. 0.0 0.01570 0.5000 0.4486 0.319038 0.95480 0.9999

Mal. – – – – – – –

Mu = 1%

Leg. 0.0 0.0389 0.8199 0.6490 0.3783124 0.9997 1.0

Mal. 0.0 0.0 0.0 0.03273 0.111368 0.0377 0.54540

Mu = 10%

Leg. 0.0 0.0319 0.7834 0.6263 0.3817145 0.9992 0.9999

Mal. 0.0095 0.0116 0.0409 0.1494 0.1840468 0.5001 0.5484

earlier. The first is that the concept of trust scores reacts adequately to increases in the

sources recurrences, severely penalizing those sources that request identities in a fre-

quency higher than the network average. Recall for example that in scenario “Mu = 10%”

for Trace 2, each source requests approximately 23 identities; this number increases to ap-

proximately 237 identities in scenario “Mu = 1%” (see Table 5.2). The second conclusion

is that the concept of trust scores forces sources to “behave adequately” – i.e., make use

of the bootstrap entity harmonically in comparison to other sources – in order not to be

penalized with lower values of trust score for each identity requested.

5.3 Considerations

Next we discuss some aspects regarding the adoption of the trust score model in the

wild. With respect to the parameters β and ∆t, updates of their values might be required

to reflect long-term changes in the network behavior (for example, substantial increase in

the number of users or changes in the community profile). In this case, periodic updates

on the parameter values (in the order of months, for example) might be performed by

the community administrator, taking into account his/her own experience, or with support

of heuristics and/or automated mechanisms. It is important to mention, however, that

adjustments of the parameters to adapt the proposed concept to shorter-term changes are

not necessary; this is because of metrics source recurrence and network recurrence rate,

which can capture variations in the behavior of the network that may occur during this

period of time.

Now focusing on the scalability of an actual deployment, observe that multiple boot-

strap entities could be instantiated to distribute the load of identity requests. To this end,

we envisage the same strategies proposed by Rowaihy et al. (ROWAIHY et al., 2007) to

instantiate multiple certification entities in their mechanism based on static puzzles. For

example, the bootstrap entity could be replicated (holding the same public/private key

pair) across multiple hosts. In this scheme, DNS redirection could be used to balance the

load of identity requests among these hosts. Alternatively, a master certification authority

could be designed to certificate multiple bootstrap entities. In this scenario, a technique

based on two random choices (MITZENMACHER; RICHA; SITARAMAN, 2001) could

be used to balance the load of identity requests among them.
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5.4 Summary

The Sybil attack consists on the indiscriminate creation of counterfeit identities by an

attacker. An effective approach to tackle this attack consists in establishing computational

puzzles to be solved prior to granting new identities. Solutions based on this approach

have the potential to slow down the assignment of identities to malicious users, but un-

fortunately may affect normal users as well. Assuming computational puzzles of similar

complexity, attackers having access to high performance computing hardware might be

able to solve them orders of magnitude faster than legitimate users. Consequently, attack-

ers may obtain a larger number of identities. However, simply increasing the complexity

of puzzles would hamper the admission of legitimate peers to the network.

To address this problem, in this chapter we proposed the concept of trust scores as

an approach to price identity requests. The key idea behind this concept is to estimate

a reputation index for each identity request, calculated as a proportion of the number of

identities already granted to (the) user(s) associated to the source from which the request

departed, in regard to the average of identities granted to users associated to other sources.

The higher the frequency (the) user(s) associated to a source obtain(s) identities, the lower

the trust score of that source. The measured trust score can then be used to estimate the

price (e.g., in terms of computing resources) to be paid before granting a request.

The experiments carried out showed that potential attackers, who launched an indis-

criminate number of identity requests, were assigned significantly lower values of trust

scores. Conversely, legitimate users were in general minimally penalized, having received

higher values of trust score. When computing lower trust scores to sources having higher

recurrences, (malicious) users associated to these sources will have to cope with higher

prices per request. In contrast, users associated to presumably legitimate sources (and

that made fewer use of the bootstrap service to request new identities) will pay less per

identity (given the higher values of trust scores determined for the great majority of these

sources in the system).

It is important to emphasize that our concept can be used with any model to price iden-

tity requests. In the scope of the research described in this thesis, we have concentrated on

a proof of work strategy, and adopted computational puzzles to this end. In the following

chapter we discuss how we have combined the concept of trust scores with computational

puzzles in order to come up with a solution that assigns puzzles of adaptive complexity to

users requesting identities.
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6 PRICING REQUESTS WITH ADAPTIVE PUZZLES

Although being effective in protecting large-scale distributed systems from Sybil at-

tacks, traditional puzzle-based defense schemes do not distinguish between identity re-

quests from (presumably) legitimate users and attackers, and thus require both to afford

the same cost per identity requested. In this chapter, we discuss how we can take advan-

tage of the concept of trust score and combine it with proof of work strategies as a strategy

to limit the spread of Sybils1. In contrast to existing proof of work approaches, namely

computational puzzles of fixed complexity, we take advantage of the perceived reputation

of identity requests (computed considering the trust score model described in the previous

chapter) to adaptively determine the complexity of the puzzles users must solve.

There are two other important issues related to computational puzzles that we also ad-

dress in this chapter. First, puzzle-solving incur considerable energy consumption, which

increases proportionally to the system popularity and the interest of attackers in control-

ling counterfeit identities. Second, users waste computing resources when solving puzzles

(i.e., no useful information is actually processed during puzzle resolution). To tackle these

issues, we build on adaptive puzzles and combine them with waiting time to introduce a

green design for lightweight, long-term identity management. Our design minimally pe-

nalizes presumably legitimate users with easier-to-solve puzzles, and reduces energy con-

sumption incurred from puzzle-solving. We also take advantage of lessons learned from

massive distributed computing to come up with a design that makes puzzle-processing

useful – it uses real data processing jobs in replacement to cryptographic puzzles. This is

similar to the philosophy of the ReCAPTCHA project, which aims to keep robots away

from websites and helps digitizing books (AHN et al., 2008).

To assess the effectiveness of adaptive puzzles, we carried out an extensive evaluation

analytically, by means of simulation, and experiments using PlanetLab. We considered

various parameter and environment settings, and scenarios with and without attack, using

synthetic and real traces of identity requests. An in-depth analysis of the results achieved

evidenced that potential attackers have to face comparatively more complex puzzles, and

thus the rate of identity assignment to malicious users is substantially reduced. More

1This chapter is based on the following publications:

• Weverton Luis da Costa Cordeiro, Flávio Roberto Santos, Gustavo Huff Mauch, Marinho Pilla Bar-

cellos, Luciano Paschoal Gaspary. Identity Management based on Adaptive Puzzles to Protect P2P

Systems from Sybil Attacks. Elsevier Computer Networks (COMNET), 2012.

• Weverton Luis da Costa Cordeiro, Flávio Roberto Santos, Marinho Pilla Barcellos, Luciano

Paschoal Gaspary. Make it Green and Useful: Reshaping Puzzles for Identity Management in Large-

scale Distributed Systems. In: 13th IFIP/IEEE International Symposium on Integrated Network

Management (IM 2013), Ghent, Belgium.
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importantly, the results show that the overall energy consumption is comparatively lower

than in existing puzzle-based identity management schemes.

Organization. The remainder of this chapter is organized as follows. In Section 6.1

we introduce the notion of adaptive puzzles, and discuss how the trust score model is used

to materialize it. In Section 6.2 we present our approach for making adaptive puzzles

green and useful. We present the results achieved with simulation and experimentation

using PlanetLab in Section 6.3, and enumerate a list of considerations on the proposed

concept in Section 6.5. In Section 6.4 we evaluate analytically the robustness of adaptive

puzzles against tampering by an attacker, and present the results of an analysis of our

solution scaled to millions of users. Finally, in Section 6.6 we close the chapter with a

summary.

6.1 From trust scores to adaptive puzzles

The idea behind the use of computational puzzles is that legitimate users are able

to prove their good intentions with the system, by compromising a fraction of their re-

sources. In contrast, attackers interested in creating multiple identities are forced to spend

a large fraction of their time processing puzzles and, therefore, consuming resources. This

reduces their power to assume large number of identities.

Puzzles have been used for a long time for identity management in large-scale dis-

tributed systems (CASTRO et al., 2002; BORISOV, 2006; ROWAIHY et al., 2007). How-

ever, existing proposals do not distinguish between requests from legitimate users and

those originated by attackers. Since both are subject to the payment of the same (com-

putational) price for each requested identity, these proposals may lose effectiveness when

the computational resources of attackers outweigh those of legitimate users. If compu-

tational puzzles are of similar complexity, an attacker with access to high performance

computing hardware might be able to solve them orders of magnitude faster than legiti-

mate users. Consequently, an attacker may obtain a larger number of identities. However,

simply increasing the complexity of puzzles would hamper the admission of legitimate

users to the system.

In this thesis, we use the trust score calculated for a source of identity requests to de-

termine the complexity of the puzzles to be solved by users associated to that source. The

mapping between trust and puzzle complexity is given by an abstract function γ : Θ →
N

∗, which depends essentially on the nature of the adopted puzzle; for being effective, the

puzzle must belong to the complexity class NP-complete. In this function, the value of the

trust score θ′i(t) ∈ Θ is mapped to a computational puzzle having exponential complexity,

equivalent to O(2γi (t)).
An example of mapping function for computing γ is given in Equation 6.1; note that

the puzzle complexity is defined based on a maximum possible complexity Γ. The result-

ing value, γi(t), can then be used to assess the difficulty of the puzzle. In this equation,

the constant 1 defines the minimum possible complexity.

γi(t) = ⌊Γ× (1− θ′i(t)) + 1⌋ (6.1)

To illustrate, consider the computational puzzle presented by Douceur in (DOUCEUR,

2002): given a sufficiently high random number y, find two numbers x and z such that the

concatenation x|y|z, after processed by a secure hash function, leads to a number whose γ
least significant bits are 0. The time required to solve the proposed puzzle is proportional

to 2γ−1, and the time to assert the validity of the solution is constant. Any feasible puzzle
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can be employed with our solution. There are examples in the related literature, such as

(DOUCEUR, 2002; BORISOV, 2006; ROWAIHY et al., 2007), so there is no need to

invent a new one.

 

b: bootstrap 

BEGINHANDSHAKE ([id])

COMPLETETASK (puzzle)

TASKCOMPLETED (puzzle, solution, [id]) 

HANDSHAKECOMPLETED (id)

u: user 

Figure 6.1: Instance of the protocol proposed in Chapter 4 for the case of adaptive puzzles.

Figure 6.1 illustrates the message exchange for obtaining identities prior to the resolu-

tion of an adaptive puzzle. As discussed in Chapter 4, the process of requesting an identity

begins when the user issues a BEGINHANDSHAKE message. The bootstrap entity then

replies with a COMPLETETASK message, informing the puzzle that must be solved before

the identity assignment process continues. Once the puzzle is solved, the user replies to

the bootstrap entity with a TASKCOMPLETED message, informing the puzzle solution.

This process is similar for the case of an identity renewal.

For requesting a new identity, we propose that the user solve a puzzle estimated con-

sidering a differentiated, higher value of maximum puzzle complexity, Γ = Γreq. In order

to renew an identity, the user should solve a puzzle considering a lower value of maximum

puzzle complexity, Γ = Γrenew. If the identity has expired by the time the user renews it,

the bootstrap service must use another value of maximum puzzle complexity, Γ = Γreval.
As a general recommendation to encourage users to maintain their identities and renew

them before expiration, Γrenew < Γreval < Γreq.

6.2 Making puzzles green and useful

In the following subsections we describe our proposal for reshaping traditional puz-

zles, in order to make them green and useful but without degrading their effectiveness in

limiting the spread of fake accounts.

6.2.1 Towards green puzzles

The effectiveness of cryptographic puzzles in limiting the spread of fake accounts

comes from the fact that solving them is ultimately a time-consuming task. Assigning

puzzles that take one second to be solved will not stop attackers; in order to keep them

away, it is important to assign puzzles that take longer to be solved (but not extremely

longer, as legitimate users are also affected).

The more time users spend solving puzzles, the more energy is consumed, however.

This problem is aggravated with the increase in popularity of the system (and with the

interest of attackers in creating fake accounts in that system). In the current context of

growing concern with rational usage of the available natural resources, the investigation

for “green puzzles” (which demand less resources, but remain effective in limiting fake

accounts) becomes imperative.
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We propose reducing the average complexity of assigned puzzles, and complement

them with “wait time”. In order to understand the concept, suppose that an effective puz-

zle complexity to keep attackers away should result in a resolution time of five minutes.

In our approach, instead of assigning such puzzle, we assign one that takes one minute; as

a complement, once the user solves the puzzle, we ask him/her to wait four more minutes

to obtain an identity. The trust score is used for estimating both the puzzle complexity

and the wait period, and the procedure for computing this value depends on the process

currently taking place.

 

b: bootstrap 

BEGINHANDSHAKE ([id])

COMPLETETASK (puzzle)

TASKCOMPLETED (puzzle, solution, [id]) 

COMPLETETASK (wait)

u: user 

TASKCOMPLETED (wait, [id]) 

HANDSHAKECOMPLETED (id)

Figure 6.2: Instance of the protocol proposed in Chapter 4 for the case of green and useful

puzzles.

The protocol for identity request/renewal in the case green and useful puzzles are

employed is illustrated in Figure 6.2. Note that, compared to the case of adaptive puzzles,

users now have to interact twice with the bootstrap entity: the first one is for solving a

puzzle, whereas the second one is for obeying the wait time. In this case, the protocol

requires the exchange of a pair of COMPLETETASK and TASKCOMPLETED messages.

Upon request of a new identity, the bootstrap entity sends to the user a COMPLETETASK

message, informing the puzzle to be solved. Once the user solves the puzzle, he/she

replies to the bootstrap entity with a TASKCOMPLETED message. The bootstrap then

estimates the wait time the user must obey prior to obtaining the identity, and afterwards

replies with another COMPLETETASK message (informing the estimated wait time). As

soon as the wait time is over, the user can reply to the bootstrap with a TASKCOMPLETED

message. From this point on, the actual identity assignment can be carried out.

Defining the puzzle complexity

The strategy we envisage for defining the puzzle complexity depends on the process

currently taking place, which can be either an identity request or renewal. Each of these

are described in the detail next.

Identity request process. In this process, we use as input the value of smoothed

trust score θ′i(t) computed considering the model described in Section 5.1 to estimate

the complexity of the puzzle to be solved. The mapping function, defined abstractly as

γ : Θ→ N
∗, depends essentially on the nature of the adopted puzzle. In this function, the

value of the trust score θ′i(t) ∈ Θ is mapped to a computational puzzle having complexity

equivalent to O(2γ).
An example of mapping function for computing γ is given in Equation 6.2; note that
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the puzzle complexity is defined based on a maximum possible complexity Γ. The result-

ing value, γi(t), can then be used to assess the difficulty of the puzzle.

γi(t) = ⌊Γ · (1− θ
′
i(t))⌋ + 1 (6.2)

In an identity request process, the value of γi(t) is estimated considering a differenti-

ated, higher value of maximum puzzle complexity, Γ = Γreq. The value of smoothed trust

score θ′i(t) is saved in the identity, for later use during its renewal.

Identity renewal process. In this process, the value of θ′i(t) used to estimate the puz-

zle complexity is computed based on the trust score saved in the identity, I〈θ〉, according

to Equation 6.4. Once the renewal process is complete, the bootstrap must save θ′i(t) in

the identity (I〈θ〉 ← θ′i(t)), for use during future renewal processes.

θ′i(t) = β · 1 + (1− β) · I〈θ〉 (6.3)

To renew an identity, the user must solve a puzzle considering a lower value of max-

imum puzzle complexity, Γ = Γrenew. If the identity has expired by the time the user

renews it, the bootstrap service must use another value of maximum puzzle complexity,

Γ = Γreval. As a general recommendation to encourage users to maintain their identities

and renew them before expiration, Γrenew < Γreval < Γreq.
It is important to emphasize that Equation 6.4 represents an approach to encourage

users to renew their identities. This incentive comes in the form of increasing, after each

identity renewal, the value of trust score, until it reaches the extreme 1 (situation in which

puzzles having the lowest complexity possible are assigned for identity renewal). Other

equations can be used, given that they provide incentives for renewing identities.

Estimating the wait time

Similarly to the puzzle complexity, the waiting time should increase exponentially

(e.g., proportionally to 2ω, where ω is a wait factor), and be defined as a function of θ′i(t).
The design we consider for computing ω is given in Equation 6.4. In this function, Ω
represents the maximum factor for the waiting time.

ωi(t) = Ω · (1− θ′i(t)) (6.4)

6.2.2 Towards useful puzzles

There are several proposals of cryptographic puzzles in the literature that can be used

with our design to establish a cost for the identity renewal process (DOUCEUR, 2002;

BORISOV, 2006; ROWAIHY et al., 2007). An important characteristic of such puzzles is

that their processing does not result in actual useful information. For example, consider

the one proposed by Douceur (DOUCEUR, 2002): given a high random number y, find

two numbers x and z such that the concatenation x|y|z, after processed by a secure hash

function, leads to a number whose γi(tk) least significant bits are 0. The actual result

of the puzzle is, de facto, useless. We propose a different type of puzzle, which takes

advantage of the users’ processing cycles to compute useful information.

To assign a puzzle to be solved, the bootstrap service replies to any identity request or

renew messages (i) an URL that contains a piece of software that implements the puzzle

(which can be a useful puzzle or a cryptographic one) and (ii) a set J of jobs (where each

job is comprised of a number of input arguments to the downloaded piece of software).

The puzzle complexity is given by |J |.
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An example of puzzle is a software that runs a simulation and generates the results

using plain text. In this context, J contains a number of seeds, chosen by the bootstrap,

that must be used as input to the simulation. Supposing that γi(tk) = 4 (as computed

from Equation 6.1), then |J | = 24 = 16.

6.3 Evaluation

In this section we evaluate the effectiveness and robustness of adaptive puzzles in lim-

iting the dissemination of fake accounts. We initially focus our evaluation on the notion

of adaptive puzzles (Section 6.3.1). Then, we assess the feasibility and effectiveness of

reshaping adaptive puzzles to make them green and useful (Section 6.3.2).

In this evaluation, we focus on the following research questions (the first two already

posed in the introduction): (i) how effective would a mechanism based on the hypothesis

that one can filter potentially malicious requests be in detecting them? (ii) what is the

overhead that such a mechanism would cause to legitimate users? and (iii) what is the

monetary cost of launching the attack (in terms of acquiring the resources necessary for

deploying it)? Next we discuss the evaluation carried out, and our major conclusions.

6.3.1 Adaptive puzzles

We start our evaluation by assessing the effectiveness and potential benefits of using

adaptive puzzles as an approach to limit the dissemination of fake accounts. We first

describe the simulation environment used in the evaluation (simulation parameters, puz-

zle model, evaluation metrics). Then, we focus on sensitivity analysis of our solution,

considering synthetic traces of identity requests. Finally, we present the results achieved

considering real life traces of identity requests. For the sake of evaluation, we define the

following evaluation metrics:

• Proportion of fake accounts created (Pm). This metric indicates the proportion of

fake accounts successfully created by an attacker, compared to a baseline scenario.

The possible values for this metric are in the range [0..1]. The value Pm = 0 is

a global optimum; it means that no fake account was created when the considered

approach (which can be our solution, or any other proposal in the literature) is used.

• Proportion of legitimate accounts created (Pl). This metric indicates the propor-

tion of legitimate accounts successfully created, compared to a baseline scenario.

The possible values for this metric are in the range [0..1]. A value of Pl = 1 is a

global optimum; it means that the considered approach (which can be our solution,

or any other proposal in the literature) has blocked no legitimate request, during the

period of evaluation.

• Proportion of easier puzzles assigned to an attacker (Em). This metric indicates

the proportion of malicious identity requests that were assigned a puzzle of lower

complexity, compared to a baseline scenario. The possible values for this metric are

in the range [0..1]. A value of El = 0 is a global optimum; it means that all puzzles

assigned to the attacker were more complex if compared to the baseline scenario.

• Proportion of easier puzzles assigned to legitimate users (El). This metric in-

dicates the proportion of legitimate identity requests that were assigned a puzzle

of lower complexity, compared to a baseline scenario. The possible values for this
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metric are in the range [0..1]. A value of El = 1 is a global optimum; it means

that legitimate users received easier to solve puzzles if compared to the baseline

scenario.

• Fairness2 in the assignment of puzzles (F ). Recall that the goal of using adaptive

puzzles is ensuring that legitimate are minimally penalized with easier to solve

puzzles per identity requested, whereas comparatively more complex puzzles are

assigned to attackers. This metric measures the fairness of our solution, i.e. the

proportion of puzzles of a certain complexity assigned to legitimate users, compared

to those assigned to an attacker. Formally, we have:

F =
1

n− 1
·
n−1
∑

i=0

i · (mi − li) (6.5)

In this equation, n is the number of classes of complexity of assigned puzzles (being

0 the index of the least complex puzzle, and n − 1 the index of the most complex

one); mi is the proportion of puzzles of complexity of the i-th class assigned to

attackers; and li is the proportion of puzzles of complexity of the i-th class assigned

to legitimate users. The possible values for this metric range in the interval [−1,+1]
(normalized). A value of F = +1 is a global optimum, meaning that our solution

assigned only the most complex puzzles to the attacker, and only the least complex

ones to legitimate users.

Simulation environment

To evaluate the feasibility of using adaptive puzzles in limiting the spread of fake

accounts, we extended the bootstrap entity and the simulation environment for imple-

menting the dynamics of puzzle assignment and resolution. In summary, the extended

entity aggregates the functionalities of managing identity requests from users interested

in joining some generic system, assignment of puzzles for each identity request, valida-

tion of puzzle solutions received, and granting (or denial) of requests (according to the

correctness of received solutions). Similarly to the evaluation presented in the previous

chapter, the scope of our simulation is a peer-to-peer file sharing network (due to trace

availability to use as input for the simulation).

An instance of the bootstrap entity has then been used to carry out several experiments,

using a combination of both realistic traces of identity requests and synthetic ones. The

experiments had the goal of confirming that (i) puzzles proposed to legitimate users

minimally penalize them; (ii) puzzles assigned to potential attackers have comparatively

higher computational complexity; (iii) the proposed solution is robust and resilient even

when there is a large fraction of attackers in the system; and (iv) the number of counterfeit

identities effectively granted by our solution is kept to a minimum, without impacting

significantly the requests originating from legitimate sources.

In order to model the delay caused by solving computational puzzles, we considered

the puzzle presented by Douceur in (DOUCEUR, 2002) and described in Section 6.1.

Further, for the sake of simplicity, we considered that a puzzle having complexity γi(tk)

2Observe that we use the term pricing to refer to the computational effort some entity (legitimate user

or attacker) must dedicate to obtain a single identity. The term fairness, in contrast, is used as an indicative

that our solution imposes to potentially attackers a higher price per identity requested, when compared to

the price per identity request for presumably legitimate users.
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Table 6.1: Summary of parameters involved in the evaluation of the notion of adaptive

puzzles (novel parameters specific for this evaluation are highlighted in gray).

Parameter / Variable Taxonomy Description

S Environment-related Parameter Number of (legitimate) sources in the system

Lr Environment-related Parameter Number of identities requested by legitimate users

Lu Environment-related Parameter Number of legitimate users

Ls Environment-related Parameter Number of legitimate users per source

Mr Environment-related Parameter Number of identities requested by the attacker

Mu Environment-related Parameter Number of sources in hands of the attacker

Mc Environment-related Parameter Number of high-performance workstations the attacker has available

T Environment-related Parameter Simulation duration (in time units)

β Input Parameter Smoothing factor for the source trust score

∆t Input Parameter Size of the time interval, or “sliding window” (in time units)

takes 26+2γi(tk)−1 seconds to be solved in a powerful but standard, off-the-shelf comput-

ing hardware (which has a normalized computing power of 1, for reference); a computer

two times faster takes half of this time to solve the same puzzle.

Sensitivity analysis

In this section we evaluate how well the proposed solution ameliorates the negative

impact of a Sybil attack considering various distinct settings. The parameters involved in

the evaluation are summarized in Table 6.1. Note that the parameter set presented in this

table extends from the set of parameters involved in the evaluation of the concept of trust

scores, shown in Section 5.2.1.

In our analysis, we evaluate the dynamics of identity granting considering (i) different

sizes for the sliding window; (ii) various values for the smoothing factor; (iii) sharing of

legitimate sources with the attacker; (iv) different sizes of sources; (v) increasing com-

puting power of the attacker; and (vi) varying proportions of sources in control of the

attacker. The attack strategies considered in this analysis are based on the discussion

presented earlier in Section 4.2.

The values for the other environment-related parameters are defined as follows. A

number of Lu = 160, 000 legitimate users perform Lr = 320, 000 identity requests to the

bootstrap service, during a period of one week, or 168 hours (T = 604, 800 seconds).

This makes an average of two identities requested per user, during one week.

We assumed an exponential distribution (λcp ≈ 0.003) for the computing power of

users’ workstations, ranging from 0.1 to 2.5 times the computing power of the standard,

off-the-shelf hardware used as reference (an evaluation considering varying distributions

for users’ computing power is provided next). The amount of time required to solve a

puzzle is then obtained by dividing the total number of complexity units (of the assigned

puzzle) by the computing power of the user’s station.

Based on this model, an identity request performed by a user associated to a source

i having θ′i(t) = 0.5 would be assigned a puzzle whose goal is to obtain two numbers x
and z so that the concatenation x|y|z, after processed by a secure hash function, leads to a

number where the ⌊18× (1− 0.5) + 1⌋ = 10 least significant bits are 0 (note that Γ = 18
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in this model). This puzzle has complexity of 26 + 210−1 = 576 units. Considering the

reference computing power, this puzzle takes 576 seconds to be solved; in the case of a

computing device two times faster, the same puzzle takes 288 seconds.

Sharing legitimate sources with an attacker. In this analysis, we compare the per-

formance of our solution when malicious requests depart from sources shared with legit-

imate users, in contrast to a scenario in which the attacker uses his/her own sources to

request identities. In practice, the first scenario could correspond to an attacker behind

networks using NAT, in which other legitimate users can also be found. Conversely, the

second scenario corresponds to an attacker using its own set of valid IP addresses to re-

quest the fake (counterfeit) identities. As the goal of the attacker is controlling 1/3 of the

identities in the system, the total number of counterfeit identities to be requested is set to

82,425 (Mr = 82, 425).

In this analysis, theLu = 160, 000 legitimate users are evenly distributed along 10,000

sources (S = 10, 000); this makes a total 16 legitimate users per source (Ls = 16). The

number of legitimate requests per source follows an exponential distribution, with λr ≈
0.0634 and bounded between 16 (making at least one request per legitimate user) and 128

(making eight requests per user). The first arrival of an identity request of each source

is normally distributed during the simulation period, with µf = 302, 400 (half of the

week) and σf = 100, 800; the time interval between requests of each source ranges from

1 minute to 2 hours, and follows an exponential distribution (with λi ≈ 9.94×10−4). It is

important to highlight that the choice for these distributions (exponential for the number of

requests per source, normal for the first arrival of a user’s request, and exponential for the

time between requests) was based on an analysis of the traces presented in Section 3.3.1.

For requesting the counterfeit identities, the attacker employs 10 high-performance

computers (Mc = 10), each equipped with a hardware 2.5 times faster than the reference

one (the most powerful hardware considered in our evaluation). The attacker controls

10 of the legitimate sources (Mu = 10), and uses them to originate the Mr = 82, 425
identity requests; each of these sources originate around 8,242 malicious requests, one

every 73.3 seconds approximately (604,800
82,425

× 10). In the first scenario (shared sources),

there are S = 10, 000 sources in the system (10 out of them are used for both legitimate

and malicious requests); in the latter scenario (separated sources), there is a total of S =
10, 010 sources. Finally, we adopt the following parameter setting for our solution: ∆t =
48, and β = 0.125. Recall that these values were derived from the sensitivity analysis

described in Section 5.2.
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Figure 6.3: Effectiveness of our solution considering sharing of sources.
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Table 6.2: Characteristics of the sources in each of the evaluated scenarios.

Scenario Number of Sources Distribution of sources size Users per source Distribution of sources requests Requests per source

Ls = 8 S = 20, 000 Fixed 8 Exponential (λ ≈ 0.03168) between 32 and 256

Ls = 16 S = 10, 000 Fixed 16 Exponential (λ ≈ 0.06337) between 16 and 128

Ls = 32 S = 5, 000 Fixed 32 Exponential (λ ≈ 0.12674) between 8 and 64

Ls = Norm. S = 10, 000 Normal (µ = 15, σ = 5) between 1 and 31 Exponential (λ ≈ 0.14787) between 16 and 64

Ls = Exp. S = 10, 000 Exponential (λ ≈ 0.1126) between 1 and 64 Exponential (λ ≈ 0.08872) between 16 and 96

Ls = Unif. S = 10, 000 Uniform between 1 and 31 Exponential (λ ≈ 0.14787) between 16 and 64

Figure 6.3 shows that sharing sources with legitimate users clearly degrades the ef-

fectiveness of the attack. In the scenario in which the attacker uses his/her own sources

(curve “sep. mal”), 742 counterfeit identities are created. This number is reduced in

35.57% (to 478 identities) when the malicious requests depart from sources shared with

legitimate users (curve “shared mal”). Although shared sources also impact the legiti-

mate users associated to them, this impact is restricted, as legitimate users request very

few identities each: only 0.001% of identity requests (4 identities) were not granted when

sources are shared. From the experiment above, only 10 sources (out of 10,000) were

shared. Given that there is an average of 16 legitimate users per source (as discussed in

the sensitivity analysis of the time window ∆t), only 160 users (out of 160,000) – or 320

identity requests (out of 320,000) – were directly affected. Focusing on the trust score of

identity requests, observe from Figure 6.3(b) that the score of legitimate requests remains

virtually unchanged, whereas malicious requests are largely affected (even though a few

requests obtain better values of trust score).

Size of sources (Ls). As discussed in Section 4.1.1, a varying number users may be

associated to a single source of identity requests – therefore resulting in sources of varied

sizes. This is the case of legitimate users behind networks using NAT, when the network

addressing scheme is used to delineate sources; and also the case of users located in a

same geographical location (e.g., same building), when network coordinate systems are

used to distinguish the sources. In order to evaluate the impact of such a situation (various

users behind a same source) on the performance of the proposed solution, we carried out

several experiments considering different sizes of sources, and also different distributions

for sources sizes. Here we discuss the most prominent ones.

For this analysis, we considered six scenarios: three in which the size of sources is

fixed, and other three in which it varies following a given distribution. Table 6.2 presents

in more detail the characteristics of each scenario. For the sake of evaluation, in this eval-

uation (and also in the following ones) malicious requests depart from sources shared with

legitimate users. The choice for an exponential distribution for the number of requests per

source (column “Distribution of sources requests” in Table 6.2) is based on the analysis

of traces presented in Section 3.3.1. For the sake of comparison, we also show results ob-

tained with “no control” (i.e., where no puzzles are assigned prior to granting identities,

and with “static puzzles” (BORISOV, 2006). For the mechanism based on static puzzles,

we consider a complexity of Γ = 9 units; it takes between 3 and 85 minutes to solve,

depending on the computer capacity.

Figure 6.4(a) shows that the higher the average size of sources is, the better for the

attacker. In the scenario “Ls = 8” (8 legitimate users behind each source), the attacker
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Figure 6.4: Effectiveness of the proposed solution under varying source sizes.

was able to obtain 390 identities only. This number increased to 618 (or 58.46%) in

the scenario “Ls = 32”. This is because of the higher average of source recurrences

(∆φi(t), for the i-th source), which in turn increase the network recurrence rate Φ(t);
as a consequence, the sources in hands of the attacker become less suspicious (as the

relationship between source and network recurrence rate ρi(t) decreases), and puzzles of

lower complexity are assigned to requests coming from them. It is important to highlight

that, despite such increase, the attacker remained far from achieving the desired number

of identities (Mr = 82, 425). With regard to the scenarios in which the size of sources

followed a distribution, the results achieved were in general similar to the scenario “Ls =
16”. As for the impact to the requests of legitimate users, again it remained marginal –

as one can see from Figure 6.4(b). These results, although not exhaustive, suggest that

the proposed solution should perform consistently regardless of the arrangement of users

among sources in the system.

Increasing the computing power of the attacker (Mc). In this analysis, we measure

the effectiveness of our solution when the attacker increases the computing power avail-

able to solve the assigned puzzles. The number of sources the attacker uses to request

identities remains the same (Mu = 10). An analysis considering an increasing number

of sources in hands of the attacker is shown next. For the sake of this evaluation, we

consider the same number of sources, distribution of sizes of sources, and distribution of

recurrence of sources considered in the scenario “Ls = Exp.” (from the previous analy-

sis). The choice for this scenario is supported on a recent study by Maier, Schneider, and

Feldmann (MAIER; SCHNEIDER; FELDMANN, 2011), which suggests that the num-

ber of unique end-hosts behind networks using NAT – in residential DSL lines of a major

European ISP – follows an exponential distribution.

The total number of counterfeit identities to be requested is again 82,425 (Mr =
82, 425). For this attack, we consider the availability to the attacker of the following

number of high-performance computers (Mc): 1, 10, 0.5% (with regard to the number

of sources S, i.e., 50 computers), 1% (100 computers), and 5% (500 computers). For

the sake of comparison, we also show results obtained with “no control” (i.e., where no

puzzles are assigned prior to granting identities, and with “static puzzles” (BORISOV,

2006). For the latter, we consider two scenarios: one with puzzles of complexity Γ = 9,

and another with puzzles of Γ = 17 units (which take between 14 and 364 hours to solve).

In both cases, the computing power of the attacker is the highest considered (Mc = 5%
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high-performance computers). The parameter setting for our solution remains ∆t = 48
and β = 0.125.
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Figure 6.5: Legitimate and malicious identity requests granted, considering a varying

computing power of the attacker.

Figure 6.5(a) shows that the more computing power the attacker has, the higher num-

ber of identities it obtains from the system. However, even when 500 high-performance

computers are used (curve “Mc = 5%”), the attacker is not able to repeat the same perfor-

mance as in the “No control” scenario, and only 5,598 counterfeit identities are created

(a reduction of 93.2%). In the scenario in which the attacker is extremely limited in re-

sources (Mc = 1), only 184 identities are created during the period of 168 hours. The

reason for such a poor attack performance is that the recurrence of the sources in hands

of the attacker becomes extremely high. Recall that the attacker controls (in this experi-

ment) onlyMu = 10 sources; consequently, the average number of malicious requests per

source is 82,425
10
≈ 8, 242. On one hand, with a very limited computing power available

(e.g., Mc = 1 high-performance computer), the rate in which the attacker solves the as-

signed puzzles is slower; therefore, the trust score of subsequent malicious requests does

not drop significantly. On the other hand, with a higher computing power available (e.g.,

Mc = 5%, or 500 high-performance computers), puzzles are solved more quickly, in a

first moment. The recurrence of the sources controlled by the attacker then becomes ex-

tremely higher (than the average network recurrence rate). As a consequence, even more

complex puzzles will be assigned to future malicious requests – therefore undermining

the attackers’ ability to keep solving puzzles quickly.

There are two important observations regarding the results shown in Figure 6.5. First,

the gain obtained by the attacker – when our solution is used – increases almost linearly

with the number of high-performance computers employed in the attack. As shown in

Figure 6.5(a), with Mc = 0.5% the attacker is able to obtain 881 identities. This number

increases to 1,369 identities with Mc = 1%, and to 5,778 with Mc = 5%. This behavior

indicates that the attacker, in order to improve the performance of the attack, must dedicate

a directly proportional amount of resources to solve the assigned puzzles. In other words,

higher success rates come at even higher (and increasing) costs for the attacker.

The second observation is that the mechanism based on static puzzles is completely

taken over (i.e., becomes ineffective) when easier-to-solve puzzles are assigned to re-

quests (curve “Static (9)” in Figure 6.5(a)). Conversely, it only presents a similar per-

formance to our solution for the worst-case scenario (Mc = 5%), when an extremely
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difficult puzzle – with 217 complexity units – is used (curve “Static (17)”). Observe from

Figure 6.5(b), however, that such a puzzle imposes a very high cost for legitimate users

as well – and 54,469 legitimate requests are not granted an identity within the period of

168 hours. In the case of the proposed solution, the identity requests of legitimate users

experience a marginal impact, despite the computing power the attacker has available.

This observation highlights the major trade-off involved with the use of static puzzles to

mitigate fake accounts, between effectiveness (in preventing the indiscriminate creation

of counterfeit identities) and flexibility (to legitimate users).

In summary, from the discussion presented above, two main conclusions may be

drawn. First, simply increasing the computing power dedicated for the attack is not suf-

ficient for circumventing the proposed solution, as the higher recurrence of malicious

sources becomes a bottleneck for the success of the attack. And second, the negative

impact that the proposed solution caused to the requests of legitimate users was negligi-

ble, even when the attacker had an extremely high computing power available. Next we

evaluate how increases in the number of malicious sources impact both the number of

counterfeit identities the attacker obtains, and the requests of legitimate users.

Varying proportions of malicious sources (Mu). In this analysis, we evaluate the

performance of the proposed solution in a different scenario: instead of solely increasing

the computing power available (using a high-performance cluster), the attacker controls a

botnet and uses its machines to request identities and process the associated puzzles. The

total number of counterfeit identities to be requested is again 82,425 (Mr = 82, 425). For

this attack, we consider the availability to the attacker of a botnet of high-performance

computers, each associated to its own source, having the following sizes (Mu): 1, 10,

0.5% (with regard to the number of sources S, i.e., 50 zombie machines), 1%, and 5%.

It is important to keep in mind that Mu = 5% is a very extreme case, in which still

makes sense (for the attacker) launching a Sybil attack. Should the attacker have a higher

number of workstations connected to the Internet, he/she would already have outnum-

bered legitimate users connected to the system, and launching a Sybil attack would not be

necessary.

Observe that the main difference of this analysis in contrast to the one described earlier

is that each computer in the botnet has its own source; in the previous analysis, the number

of sources was limited to Mu = 10 regardless of the number of computers used. For

the sake of comparison, we also include the results achieved with static puzzles (for the

scenarios with puzzles of complexity Γ = 9 and Γ = 17).

In the case of Mu = 0.5% (a botnet of 50 zombie machines), around 1,648 malicious

requests originate from each machine/source, i.e., a request every 366 seconds, per source.

Analogously, in the case of Mu = 1%, around 824 requests are performed from each

machine/source in the botnet; a request every 733 seconds, per source. In the extreme

case of Mu = 5%, 164 requests are performed per source, one every 3, 665 seconds (1

hour). Recall that the lower the number of identities requested by a machine and the

higher the interval between requests, the better the trust score of requests coming from

that machine, and consequently the lower the complexity of the puzzle to be solved upon

each request. All other properties of the analysis remain the same.

Figure 6.6(a) shows that the attacker is able to create only 53 counterfeit identities

when using only one machine (curve “Mu = 1”). As the number of zombie machines

used in the attack increases, so increases the number of counterfeit identities created. With

Mu = 10, 494 identities are created. This number increases linearly with the amount of

resources dedicated to the attack (as seen in the previous analysis): 2,760 identities with
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Figure 6.6: Effectiveness of our solution with varying proportions of malicious sources.

50 machines (“Mu = 0.5%”), 5,624 identities with 100 machines (“Mu = 1%”), and

27,209 with 500 machines (“Mu = 5%”). In spite of the increased performance, how-

ever, the attacker does not achieve the same success as in the “No control” scenario. In

the extreme case where 500 zombie machines are used (curve “Mu = 5%”), the attacker

only achieves 33% of its goal during 168 hours. Now focusing on the overhead caused to

legitimate users, Figure 6.6(b) shows that it remained stable and minimal. These results

not only evidence that our solution is able to limit the creation of counterfeit identities, but

also shows its better performance (specially under extreme conditions, for which launch-

ing Sybil attacks still makes sense for the attacker) when compared to the mechanism

based on static puzzles.

Evaluation using real life traces of identity requests

Having evaluated our solution using a synthetically generated trace, and analyzed its

behavior under the influence of various environment and parameter settings, we now focus

on its performance in a real life scenario. For the sake of comparison, we also show results

obtained with static puzzles (BORISOV, 2006) and when control is absent (no control).

Next we cover the settings employed for the evaluation and the results achieved.

Evaluation settings. In this evaluation, we consider the three traces of identity re-

quests characterized in Section 3.3.1. For each of the traces used, three attack scenarios

were evaluated: without attack, with Mu = 1%, and with Mu = 10% malicious sources.

The second scenario (Mu = 1%) corresponds to an attacker with limited computing power

to solving puzzles and possessing various distinct locations from which identity requests

depart. In the third scenario (Mu = 10%), the attacker has a botnet at his/her service

and uses it to launch the attack. Note here that we increased even further the amount

of resources in hands of the attacker, in contrast to the scenario evaluated in the sensi-

tivity analysis of varying proportion of malicious sources. We assume the worst case

scenario for the botnet, in which all zombie machines forming it are equipped with the

most powerful hardware considered in our experiments (i.e., 2.5 times higher than of the

off-the-shelf, reference hardware). Table 6.3 describes these scenarios in more detail.

For the computing power of legitimate users, we analyze cases in which it follows an

Exponential (λcp ≈ 0.003) and Gaussian (µcp = 1.2 and σcp ≈ 0.4). In both cases, it

ranges from 0.1 to 2.5 times the computing power of the reference hardware. We consider

such settings since they reflect the distribution of users’ computing power as reported in
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the literature (NET MARKET SHARE, 2013; CPU BENCHMARK, 2013; ENIGMA @

HOME, 2013). It is important to emphasize that we use a continous distribution in order

to model slight variations in the computing power available at some user’s workstation,

because of processes running in parallel in the host operating system.

Table 6.3: Characteristics of the scenarios evaluated for each trace.

Trace 1 Trace 2 Trace 3

Counterfeit identities requested 104,606 380,484 280,826

Time between requests (sec) 5.67 1.27 2.15

Attack scenarios evaluated No attack 1% 10% No attack 1% 10% No attack 1% 10%

Amount of malicious sources - 440 4,406 - 505 5,051 - 479 4,796

Requests per source (avg) - 237.74 23.74 - 753.43 75.32 - 586.27 58.55

Time between requests per source - 41.6 min 6.94 h - 10.7 min 1.78 h - 17.2 min 2.86 h

Number of attacker’s computers - 100 4,406 - 100 5,051 - 100 4,796

Comp. power per source (avg) - ≈ 0.56 2.5 - ≈ 0.5 2.5 - ≈ 0.52 2.5

The specific parameters of each solution were defined ∆t = 48 and β = 0.125.

The mechanism based on static puzzles (BORISOV, 2006) uses a puzzle with Γ = 9
complexity units, which takes between 5 minutes and 2 hours (approximately) to solve.

Efficacy of our solution and overhead to legitimate users. Figures 6.7, 6.8, and 6.9

show the results obtained for each of the compared solutions, for Traces 1, 2, and 3,

respectively. For the sake of clarity and space constraints, only the results obtained for

the second attack scenario (Mu = 1%) are shown in these figures.

Observe from Figure 6.7(a) that our solution outperforms both static puzzles (BORISOV,

2006) and the absence of control in limiting the creation of counterfeit identities. The pro-

posed solution (curve “adaptive (mal.)” in Figure 6.7(a)) reduced in 84.9% the number of

counterfeit identities granted, in comparison to the “no control” scenario (curve “no con-

trol (mal.)”). This represented an effective gain of 84.89% over the scenario where static

puzzles were used (curve “static (mal.)”); the use of such puzzles reduced marginally the

number of granted counterfeit identities (0.05% only). Such a performance of the static

puzzles is because the time required to solve them (five minutes, in the case of the at-

tacker) was overall smaller than the interval between identity requests. In regard to the

overhead caused to legitimate users, observe from Figure 6.7(a) that the curve “adaptive

(leg.)” (and also “static (leg.)”) overlaps with the curve “no control (leg.)”, thus indicating

that the imposed overhead was negligible.

We now focus on the trust scores assigned by the proposed solution. In Figure 6.7(b),

the close the curves are from x = 1 and y = 1 axes, the higher the proportion of identity

requests that received higher trust scores. Thus, it is clear that a higher proportion of

legitimate identity requests received better trust scores, than malicious requests. Looking

at these results in more detail, one may see that over 43% of legitimate requests were

assigned a value of trust score higher or equal to 0.8. This proportion increases to 87%

if we also consider those requests assigned with a trust score higher or equal to 0.5. This

represents in fact that 87% of identity requests coming from legitimate users were not con-

sidered suspicious, and consequently received puzzles of lower complexity. Conversely,

78% of malicious requests were assigned a value of trust score lower or equal to 0.5.

Observe that the results are marginally affected by the distribution of users’ computing
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Figure 6.7: Legitimate and malicious identities granted, and trust scores assigned (when

the proposed solution is used), for each of the scenarios evaluated with Trace 1, consider-

ing an Exponential and a Gaussian distribution for users’ computing power.

power considered. Comparing for example the number of identities granted to legitimate

users and the attacker (Figures 6.7(a) and 6.7(c)), the difference observed is marginal.

These results evidence that our solution is able to perform satisfactorily regardless of the

environment settings in place.

Table 6.4 presents a summary of the results achieved using Trace 1 as input, for each

scenario evaluated. The table shows, per scenario evaluated, statistics for both legiti-

mate and malicious requests. The statistics include: (i) number of identities granted (field

granted), (ii) proportion of identities granted using as baseline the “no control” scenario

(fields Pl and Pm, respectively), and (iii) number and proportion of legitimate and mali-

cious identity requests that were assigned a puzzle of lower complexity, using the static

puzzles mechanism (BORISOV, 2006) as baseline (fields El and Em, respectively). For

the sake of clarity, the results achieved with our solution are highlighted in gray.

Observe from Table 6.4 that our solution effectively prevented the creation of coun-

terfeit identities across the network, in both scenarios with attack (Mu = 1% and Mu =
10%), whereas imposing a marginal overhead to legitimate requests. In contrast, the

mechanism based on static puzzles did not cause any impact to malicious requests, and the

attacker easily succeeded in obtaining 34% of identities in the network. Even in the worst

case scenario (Mu = 10%), our solution prevented 8.53% of malicious requests from

being granted a (counterfeit) identity. As previously discussed in the sensitivity analysis
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Table 6.4: Results obtained for each of the scenarios evaluated, for Trace 1.

Scenario
Legitimate Requests Malicious Requests

F

granted Pl El (num) El (%) granted Pm
Em
(num)

Em (%)

No attack, Static 202,889 0.99 - - - - - - -

No attack, Adaptive 200,869 0.98 161,064 79,32 - - - - -

1%, Static 202,889 0.99 - - 104,554 0.99 - - 0

1%, Adaptive 201,251 0.99 178,960 88,13 15,796 0.15 5,837 36.72 0.4211

10%, Static 202,889 0.99 - - 104,554 0.99 - - 0

10%, Adaptive 201,545 0.99 186,593 91,89 95,678 0.91 22,694 22.69 0.5817

of varying proportion of malicious sources, note that Mu = 10% is a very extreme case,

in which still makes sense (for the attacker) launching a Sybil attack. Furthermore, the

relative “success” comes at a very high cost to the attacker, who either has to control a

large number of high-performance, zombie workstations in the Internet, or possess a large

number of high-performance computers dedicated to solving puzzles.

Another important metric for measuring the efficiency of our solution, presented in

Table 6.4, is the number of puzzles of lower complexity – than the complexity of those

used for the “static puzzles” mechanism – assigned to identity requests (El and Em). Ide-

ally,El should be as high as possible, and Em as low as possible. Note that the proportion

of legitimate requests that received a puzzle of lower complexity ranged from 79.32%

(no attack scenario) to 91.89% (scenario Mu = 10%). Conversely, the proportion of

malicious requests that received a puzzle of higher complexity ranged from 36.72% to

22.69%. These results evidence that our solution not only prevented the spread of coun-

terfeit identities across the network, but also distinguished satisfactorily between identity

requests originated from correct users and attackers, and dealt with them accordingly.

Finally, observe that our solution achieves a considerable fairness in the assignment

of puzzles to legitimate users and the attacker. For scenario Mc = 1%, the use of adaptive

puzzles achieves a fairness of F = 0.4211, whereas for scenario Mc = 10% the fairness

improves to F = 0.5817.

The results obtained for Trace 2 and Trace 3, depicted in Figures 6.8 and 6.9, con-

firm the positive results our solution achieved, in contrast to existing solutions. In the

case of Trace 2 (Figure 6.8(a)), while the attacker was able to obtain 161,190 counterfeit

identities (over 135 hours) when static puzzles were used, the use of our solution reduced

this number to 15,801 identities; this represents a gain of approximately 90.2% over the

results achieved with static puzzles, and a reduction of 95.84% in the number of coun-

terfeit identities that would be granted (380,483) if no control was imposed. For Trace 3

(Figure 6.9(a)), the effective gain our solution provided was of 95.69%.

In regard to the overhead caused to the requests of legitimate users (cost), although

higher than observed in the case of Trace 1, both were comparatively low. For Trace 2

(Figure 6.8(b)), only 9.47% of the identity requests coming from legitimate users were

not granted (considering the exponential distribution for users’ computing power), during

the period of 135 hours; for Trace 3, the measured overhead was 13.48% in the same

scenario (Figure 6.9(b)).

Now concentrating on the trust scores assigned to requests, Figure 6.8(b) shows that

approximately 40% of legitimate ones were assigned a value of trust score higher or equal
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(d) Trust score of identity requests (Gaussian)

Figure 6.8: Legitimate and malicious identities granted, and trust scores assigned (when

the proposed solution is used), for each of the scenarios evaluated with Trace 2, consider-

ing an Exponential and a Gaussian distribution for users’ computing power.

to 0.6. No malicious request was assigned such a value of trust score, and only 10% of ma-

licious requests were assigned a value of trust score higher or equal to 0.5. Figure 6.9(b),

in turn, shows that approximately 60% of legitimate requests were assigned with a value

of trust score higher or equal to 0.5, whereas approximately 86.19% of malicious ones

were assigned values lower or equal to 0.5.

Tables 6.5 and 6.6 clearly evidence that our solution outperforms the static-puzzle-

based mechanism even in the worst case scenario, for both Trace 2 and Trace 3, respec-

tively. While static puzzles were completely ineffective, our solution allowed the attacker

to control at most 22.41% of identities in the system, in the case of Trace 2, and only

8.02% for Trace 3. Further, our solution assigned puzzles of lower complexity to at least

40% of legitimate requests (over than 50%, in the case of Trace 3); less than 25% of

malicious requests (up to 20% in the worst case scenarios) received such a puzzle. More

importantly, observe in these tables that our solution achieves some considerable fairness,

being as high as F = 0.3629 in the case of Trace 3.

Monetary analysis of the attack. We finally focus on the economic impact our solu-

tion causes to the attacker. In this analysis, we take into account the prices for hiring the

services required to launch each of the attacks considered in this evaluation, as shown in

Section 4.2. It is important to emphasize that the prices considered are the cheapest found

in the specialized literature.
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(b) Trust score of identity requests (Exponential)
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Figure 6.9: Legitimate and malicious identities granted, and trust scores assigned (when

the proposed solution is used), for each of the scenarios evaluated with Trace 3, consider-

ing an Exponential and a Gaussian distribution for users’ computing power.

Table 6.7 provides a brief economic analysis for each of the attack scenarios consid-

ered, when the identity management scheme uses puzzles to control the assignment of

identities. The price per processing unit in the cluster we considered in the analysis is

US$ 0.06/hour, and the price of the botnet is US$ 0.50/zombie computer. Values fields

“cluster” and “botnet” are displayed in units hired. Field “total” contains the budget of

the attack in each scenario considered (displayed in US dollars). Field “US$/id” contains

the cost per identity effectively obtained by the attacker.

In the absence of any protection mechanism (“no control” scenarios), the attack is

costless. This is because no cluster is required to solve puzzles, and no botnet is necessary

to trick the identity management scheme. However, one can see from the “static” and

“adaptive” schemes that the attack poses a significant cost to the attacker (as high as

US$ 50,741 in the case of Trace 3), even in the case commodity services are hired to

deploy it. Our solution makes the attack even more expensive, as the attacker is required

to hire zombie computers to trick the concept of sources of identity requests. Observe

that the increased cost to the attacker comes with the additional benefit that presumably

legitimate users are less harmed by the identity management scheme (in their request for

identities).

An important index to analyze the data shown in Table 6.7 is the total cost of the attack

per identity effectively obtained (field “US$/id”). One can see that our solution increases



106

Table 6.5: Results obtained for each of the scenarios evaluated, for Trace 2.

Scenario
Legitimate Requests Malicious Requests

F

granted Pl El (num) El (%) granted Pm
Em
(num)

Em (%)

No attack, Static 738,443 0.99 - - - - - - -

No attack, Adaptive 674,426 0.91 311,827 42.22 - - - - -

1%, Static 738,443 0.99 - - 161,190 0.42 - - 0

1%, Adaptive 674,544 0.91 313,263 42.41 15,801 0.04 2,190 13.77 0.1029

10%, Static 738,443 0.99 - - 380,252 0.99 - - 0

10%, Adaptive 676,244 0.91 320,520 43.40 195,336 0.51 38,398 19.17 0.1664

Table 6.6: Results obtained for each of the scenarios evaluated, for Trace 3.

Scenario
Legitimate Requests Malicious Requests

F

granted Pl El (num) El (%) granted Pm
Em
(num)

Em (%)

No attack, Static 544,921 0.99 - - - - - - -

No attack, Adaptive 478,694 0.87 286,173 52.50 - - - - -

1%, Static 544,921 0.99 - - 200,804 0.71 - - 0

1%, Adaptive 480,149 0.88 315,409 57.86 8,636 0.03 5,837 23.89 0.1864

10%, Static 544,921 0.99 - - 280,689 0.99 - - 0

10%, Adaptive 484,519 0.88 336,373 61.70 42,228 0.15 22,694 12.09 0.3629

significantly the monetary cost of each counterfeit identity the attacker effectively obtains.

In the case of Trace 3, such an increase was as high as 598% (from US$ 0.1722 per identity

obtained to US$ 1.2015).

There is no precise estimate on the profit the attacker (or third parties) can make

with fake accounts. According to one study by Barracuda Labs, cited by The New York

Times (PERLROTH, 2013), the average price for 1,000 twitter followers ranges around

US$ 18 in the black market; prices can be as low as US$ 11 depending on the reseller

(SCOTT, 2013; LEMOS, 2013). There are also dealers offering a bulk of 100 Gmail

accounts for US$ 10 (DOE, 2013). Observe that in both cases, the minimum expected

value one can obtain with fake accounts (US$ 0.018 per fake follower, or US$ 0.10 per

fake mail account) is by far surpassed by the cost of obtaining a single fake account that

our solution imposes (US$ 1.2015).

In summary, the results shown above not only evidence that adaptive puzzles are a

promising solution for tackling the spread of Sybils, without causing severe restrictions

to legitimate requests. More importantly, our solution showed to be effective in providing

puzzles of higher complexity to malicious requests, and lower complexity to legitimate

ones – therefore making it more costly to the attacker to launch a successful attack. The

potentialities of our solution contrast to what may be achieved assigning puzzles of same

complexity to every request, regardless of their origin. Instead, static puzzles only bring

the difficulty of finding an appropriate puzzle complexity that tackles the ongoing attack

without severely penalizing legitimate users.
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Table 6.7: Economic analysis of the attack, for each of the considered traces.

Scenario
Trace 1 Trace 2 Trace 3

cluster botnet total US$/id cluster botnet total US$/id cluster botnet total US$/id

1%, Static 100 0 989 0.0094 100 0 808 0.0050 100 0 1,008 0.0050

1%, Adaptive 100 440 1,209 0.0765 100 505 1,061 0.0671 100 479 1,247 0.1443

10%, Static 4,406 0 43,585 0.4168 5,051 0 40,852 0.1074 4,796 0 48,343 0.1722

10%, Adaptive 4,406 4,406 45,788 0.4785 5,051 5,051 43,377 0.2220 4,796 4,796 50,741 1.2015

6.3.2 Green and useful puzzles

In this section we present and discuss the results achieved with an evaluation of the

notion of green and useful adaptive puzzles. Our evaluation comprises both simulation

and experimentation in the PlanetLab environment. For the sake of this evaluation, we

define the additional evaluation metrics:

• Proportion of energy savings (D). This metric indicates the ratio of energy savings

provided by our solution, when compared to a baseline scenario. Formally, we have

D = 1−
min(savings (baseline), savings (solution))

savings (baseline)
(6.6)

In the equation above, savings (solution) is the total energy consumption caused

by our solution, and savings (baseline) is the energy consumption observed for the

mechanism regarded as baseline. Possible values for this metric range in the interval

[0..1). A value of D ≈ 1 is a global optimum; it means our solution provided the

highest savings possible, when compared to the baseline scenario.

• Proportion of useful puzzles (U). This metric indicates the ratio of assigned puz-

zles that were real world production jobs, compared to the total number of puzzles

assigned by another mechanism regarded a baseline. Note that test jobs (i.e. those

issued to assert that the attacker is not tampering by faking job results) are not

considered by this metric. Formally, we have

U =
min(r ·

∑n

i=0 |Ji|,
∑m

j=0 γj)
∑m

j=0 γj
(6.7)

In the equation above, r is the ratio of test jobs issue per puzzle assigned (recall

that the result of part of the jobs sent as puzzles are known in advance, to difficult

tampering); n is the total number of puzzles issued by our solution, and |J |i is

the complexity of the i-th puzzle; m is the total number of puzzles issued by the

baseline solution, and γi is the complexity of the j-th puzzle. Possible values for

this metric range in the interval [0..1]. A value of U = 1 is a global optimum; it

means our solution provided the highest possible reuse of puzzles, when compared

to the baseline mechanism.
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Simulation

With this evaluation, besides assessing the impact of our solution to legitimate users

and attackers (and also the monetary costs involved), we focus on an additional research

question: what are the potential energy savings that the use of green puzzles can provide?

To answer these questions, we have evaluated scenarios with and without attack, consid-

ering the following solutions: without control, based on static puzzles (as proposed by

Rowaihy et al. (ROWAIHY et al., 2007)), and our solution. To evaluate them through

simulation, the following aspects had to be observed: (i) the behavior of legitimate users,

(ii) their computing power, (iii) the complexity of puzzles, and (iv) the goal of the attacker

(strategies and resources available). Each of these aspects is discussed next.

Characteristics of the simulation environment. The simulation has duration of 168

hours. In this period, 160,000 users (from 10,000 distinct sources) arrive 320,000 times

in the system. The number of users behind a given source follows an exponential distri-

bution, and varies between 1 and 16. The choice for this distribution is supported on a

recent study by Maier, Schneider, and Feldmann (MAIER; SCHNEIDER; FELDMANN,

2011), which suggests that the number of unique end-hosts behind networks using NAT

– in residential DSL lines of a major European ISP – follows an exponential distribution.

The arrival per source is exponentially distributed, bounded between 16 and 64.

The first arrival of each user is normally distributed throughout the simulation; the

time between arrivals follows an exponential distribution, bounded between one minute

and two hours; the user recurrence is uniformly distributed, between 1 and 2 recurrences

at most per user; finally, the computing power of legitimate users is normalized and ex-

ponentially distributed, bounded between 0.1 and 2.5 times the capacity of a standard,

off-the-shelf hardware used as reference.

To model the delay incurred from puzzle-solving, we consider that a puzzle of com-

plexity γi(tk) takes 26 + 2γi(tk)−1 seconds to be solved using the standard, off-the-shelf

hardware; a computer twice as fast takes half of that time. As for the waiting time, we

consider that a factor of ωi(tk) results in 2ωi(tk) seconds of wait period the user must obey.

To obtain the fake accounts we consider two scenarios for the attacker (inspired in

the attack model shown in Section 4.2): one in which the attacker increases the comput-

ing power (using a cluster of high-performance computers, i.e., 2.5 times faster than the

reference hardware), or increase both the computing power and the number of distinct

sources from which the malicious requests depart (using a botnet of high-performance

computers).

The other parameters in our evaluation are defined as follows. For green and useful

puzzles, ∆t = 48 hours and β = 0.125. We use Γreq = 15 (as maximum possible

complexity when the user does not have a valid identity), Γreval = 14 (when the user has

a valid but expired identity), and Γrenew = 13 (otherwise). The waiting time factor is

Ω = 17. Given the short scale of our simulation (one week), we consider that identities

expire E = 24 hours after created/renewed, and become invalid after V = 48 hours. For

the mechanism based on static puzzles, we consider a scenario with puzzles of complexity

Γ = 10 (which take around 17 minutes to be solved, depending on the hardware capacity)

and Γ = 15 (which take around 9 hours to be solved). We also compare the performance

of green and useful puzzles solution with the adaptive puzzles one; we set the maximum

value of puzzle complexity as Γ = 17, ∆t = 48 hours, and β = 0.125.

Effectiveness in mitigating fake accounts. Figure 6.10 shows the results achieved

when the attacker increases the computing power as an strategy to control more coun-

terfeit identities. The scenarios considered are one in which the attacker has Mu = 10
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sources in his/her control (Figures 6.10(a) and 6.10(b)), and another in which he/she con-

trols Mu = 500 sources (Figures 6.10(c) and 6.10(d)). The number of high-performance

computers available for the attack is defined proportionally to the number of legitimate

sources considered: Mc = 1 computer; Mc = 10; Mc = 0.5% (50 computers); Mc = 1%
(100 computers); and Mc = 5% (500 computers). In the attack scenarios where static

puzzles are used, the number of high-performance available for the attack is Mc = 5%.

For the sake of legibility, we omit the results obtained with adaptive puzzles from these

figures.
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Figure 6.10: Number of legitimate and fake accounts, in the scenario where the attacker

increases his/her computing power to solve the puzzles.

One can see in Figure 6.10(b) that the use of green and useful puzzles (also re-

ferred to as “our solution” in the remainder of this section) clearly limits the number

of fake accounts the attacker can control, in contrast to the scenario where static puzzles

(ROWAIHY et al., 2007) are used (curves “Static (10)” and “Static (15)”). This observa-

tion holds even for the worst case scenario to our solution, i.e., when the attacker has a

cluster of Mc = 5% high-performance computers: our solution reduced in 79% the num-

ber of fake accounts he/she can control, comparing to the scenario “Static (15)” (from

6,237 valid identities to 1,309). As for the overhead imposed to legitimate users, Fig-

ure 6.10(a) shows that it was negligible. Observe, however, that the use of static puzzles

with complexity Γ = 15 imposed a non-negligible overhead to legitimate users.

Figure 6.10(d) evidences that increasing the computing power available is the only

way the attacker can circumvent our solution; even so, he/she is not able to control more
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Figure 6.11: Number of legitimate and fake accounts in the botnet scenario.

Table 6.8: Puzzle resolution times (seconds).

Scenario Mean Std. Dev. Median 9th decile

Adaptive puzzles

legitimate users, “Mc = 10” 3,033 8,173.412 84 8,848.0

attacker, “Mc = 10” 11,950 10,264.92 6,582 26,242.0

legitimate users, “Mc = 5%” 3,830 10,890.83 80 13,474

attacker, “Mc = 5%” 11,160 13,382.31 6,582 26,242

Green and useful puzzles

legitimate users, “Mc = 10” 534.5 1,317.5 55 1,751

attacker, “Mc = 10” 6,224.1 1,388.5 6,582 6,582

legitimate users, “Mc = 5%” 627.9 1,555.1 54 1,886

attacker, “Mc = 5%” 1,322.7 1,541.8 847 3,305

Static puzzles

legitimate users, “Γ = 10” 497.6 198.5 455 596

attacker, “Γ = 10” 412 0 412 412

legitimate users, “Γ = 15” 15,825.4 6,032.2 14,466 19,003

attacker, “Γ = 15” 13,110 0 13,110 13,110

identities than would happen in the case of static puzzles with complexityΓ = 15; the gain

with our solution was of 34.2% when compared to static puzzles (from 6,237 identities

to 4,161). Figure 6.10(c) shows that legitimate users remain unaffected. In the case

of adaptive puzzles, legitimate users obtain 159,683 identities and the attacker, only 51

identities during the period of evaluation for Mc = 10; in the scenario where Mc = 5%,

159,597 legitimate identities are created, and 25,038 fake ones.

From the results described above, two major conclusions can be drawn. First, our

solution makes it more expensive for an attacker to control fake accounts in the system,

and he/she cannot repeat the same performance as seen in traditional approaches. Second,

static puzzles impose an important trade-off between effectiveness (in mitigating fake

accounts) and overhead (to legitimate users); with Γ = 10, static puzzles were totally

ineffective; with Γ = 15, there was a considerable overhead imposed to legitimate users,

in exchange for some improvement in mitigating fake accounts.

The attack does not improve much when the attacker uses a botnet to solve puzzles.

Figure 6.11 shows that he/she only achieves a relative success in the extreme scenario

where the botnet represents 5% of the total of sources. However, such success is not
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Table 6.9: Puzzle complexity and energy consumption (estimates).

Puzzle Resolution Consumption Adaptive Puzzles Green Puzzles

complexity (seconds) (joules) # leg. KJ leg. # mal. KJ mal. # leg. KJ leg. # mal. KJ mal.

0 65 78.97 70,944 5,602 0 0 75,179 5,937 0 0

1 66 80.19 17,927 1,437 0 0 20,229 1,622 0 0

2 68 82.62 14,962 1,236 0 0 18,026 1,489 0 0

3 72 87.48 14,206 1,242 0 0 16,489 1,442 0 0

4 80 97.20 13,928 1,353 0 0 16,900 1,642 0 0

5 96 116.64 14,214 1,657 0 0 18,321 2,136 0 0

6 128 155.52 15,134 2,353 0 0 20,838 3,240 261 40

7 192 233.28 16,494 3,847 0 0 21,781 5,081 4,477 1,044

8 320 388.80 18,630 7,243 3,291 1,279 17,807 6,923 1,253 487

9 576 699.84 16,334 11,431 1,785 1,249 16,658 11,657 2,081 1,456

10 1,088 1,321.92 14,229 18,809 819 1,082 16,644 22,002 2,871 3,795

11 2,112 2,566.08 13,716 35,196 1,136 2,915 17,953 46,068 3,599 9,235

12 4,160 5,054.40 13,983 70,675 2,158 10,907 19,127 96,675 4,464 22,562

13 8,256 10,031.04 14,972 150,184 2,617 26,251 17,722 177,770 3,704 37,154

14 16,448 19,984.32 15,697 313,693 3,365 67,247 5,926 118,427 959 19,164

15 32,832 39,890.88 16,121 643,080 4,458 177,833 0 0 0 0

16 65,600 79,704.00 13,573 1,081,822 4,585 365,442 0 0 0 0

17 131,136 159,330.24 4,625 736,902 1,324 210,953 0 0 0 0

Total 319,689 3,087,772 25,538 865,161 319,600 502,117 23,669 94,941

sustainable; by the end of the evaluation, he/she has only a few identities more than he/she

would have if static puzzles were used. Again, the overhead to legitimate users was

minimal.

Table 6.8 presents the average time that legitimate users and the attacker take to solve

puzzles, in each of the scenarios evaluated. The table also shows the standard deviation

of the resolution times, median, and the 9th decile. Results show that in the case of green

and useful puzzles, legitimate users are assigned easier-to-solve ones (which took 534

seconds on average to be solved, in the scenario “Mc = 10”). In contrast, the attacker

took eleven times more on average to solve the assigned puzzles (6,224 seconds in the

same scenario). More importantly, 90% of legitimate users took at most 1,751 seconds to

solve the assigned puzzles; for the attacker, this time was 6,582 seconds.

For static puzzles, legitimate users and attacker took on average almost the same time

to solve them (which was extremely high for “Γ = 15”); the difference observed is be-

cause the computing power of legitimate users is not uniform, and different from the

attacker (which is fixed). These results evidence that adaptive puzzles and wait time rep-

resent a promising direction to tackle fake accounts.

Energy efficiency. The estimate for the energy consumption is based on the resolution

of puzzles written in python, ran on an Intel Core i3-350M notebook, with 3MB of cache

memory, 2.26 GHz CPU clock, and Windows 7. We used JouleMeter3 to collect the mea-

surements, and considered only the processor energy consumption with its usage around

100%. In an average of 10 runs of the puzzle for each value of complexity considered, we

3JouleMeter page: http://research.microsoft.com/en-us/projects/joulemeter/
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observed that the consumption is constant and equals to 1.215 joules. It is important to

emphasize that, although we do not consider the various existing hardware and processor

types, this estimate remains as an important indicator – which was neglected in previous

investigations – for the average energy consumption expected for a puzzle-based solution.

Table 6.9 gives an overview of the energy consumption caused by green puzzles for the

scenario Mu = 5% depicted in Figure 6.11. In this table we present the values of puzzle

complexity considered in the evaluation, estimates of the time required to solve such

puzzle (column resolution), and the estimated energy consumption measured in joules.

For the sake of comparison, we also include the results achieved with adaptive puzzles.

The total energy consumption (summing up legitimate users and the attacker) caused

by green puzzles (597 MJ) is significantly lower compared to the energy consumption

measured in the case of adaptive puzzles (3,952 MJ); the savings ratio isD = min(3952,597)
3952

=
0.84. More importantly, it is only 3,84% of the consumption estimated for the mechanism

based on static puzzles (15,530 MJ; consequence of 319,722 puzzles of complexity 15 as-

signed to legitimate users, and 23,174 assigned to the attacker). This represents a savings

ratio of D = min(15530,597)
15530

= 0.96, and a difference of 14,945 MJ (4.15 MWh), or 28.25%

of the annual energy consumption per capita in Brazil (IBGE, 2012). These results not

only emphasize the need for “green” puzzles, but also highlight the potentialities of using

waiting time to materialize them.

Monetary analysis of the attack. Next we present a budgetary analysis of the attack.

Table 6.10 presents a summary of the analysis, for the scenarios related to our solution.

Values fields “cluster” and “botnet” are displayed in units hired. Field “total” contains the

budget of the attack in each scenario considered (displayed in US dollars). Field “US$/id”

contains the cost per identity obtained by the attacker.

Table 6.10: Economic analysis of the attack scenarios evaluated with our solution.

Scenario cluster
Mu = 10 Mu = 5%

identities total US$/id identities total US$/id

Mc = 1 1 6 15 2.50 17 260 15.2941

Mc = 10 10 63 105 1.66 278 350 1.2589

Mc = 0.5% 50 119 509 4.27 902 754 0.8359

Mc = 1% 100 268 1,013 3.77 1,581 1,258 0.7956

Mc = 5% 500 1,309 5,045 3.85 4,161 5,290 1.2713

In the scenarios where static puzzles were used, the number of cluster instances hired

was 500, at the price of US$ 0.06/hour each. In total, the budget for the attack was

US$ 5,040. In the case of Γ = 10, the cost per identity obtained was US$ 0.0630, whereas

in the case of Γ = 15, the cost per id was US$ 0.7965.

One can clearly see that our solution makes it extremely expensive for an attacker to

obtain identities; in order to obtain the highest profit possible (in terms of identities ob-

tained), the attacker must pay US$ 5,290 (which makes a total of US$ 1.2713 per identity).

These results show that although the attacker is still able to obtain counterfeit identities,

he/she has to dedicate a large fraction of budgetary resources to do so. More importantly,

the cost per identity our solution imposes to attacker overcomes the expected profit one

can make with fake accounts (US$ 0.10, as discussed in the previous section).

Assuming an attack scenario in which the attacker has a ratio of one zombie computer
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in the botnet for two identities he/she wants to control, the required budget would be
80,000

2
×US$ 0.50 = US$ 20, 000. Note that this is a scenario in which the attacker is able

to subvert our solution with marginal computing power for the puzzle-solving process

(therefore, not being required to hire a cluster for that purpose). Although the cost per

identity is only US$ 0.25, the required budget is significantly higher, thus proving our

argument that the attacker in fact has to dedicate a large fraction of resources to launch a

successful attack.

Experimental evaluation using PlanetLab

The primary goal of this evaluation – carried out using the BitTornado framework – is

to assess the technical feasibility of our solution in hampering the spread of fake accounts.

We also compare our solution with existing approaches.

In this evaluation we consider 240 legitimate sources and 20 malicious ones. The

legitimate users request 2,400 identities during one hour. The first request of each user

is uniformly distributed during this period; their recurrence follows an exponential dis-

tribution, varying from 1 to 15. The interval between arrivals is also exponentially dis-

tributed, between 1 and 10 minutes. The attacker requests 1,200 identities (1/3 of the

requests of legitimate users), making an average of 60 identities per malicious source;

their recurrence follows a fixed rate of one request per minute. Our evaluation (includ-

ing the behavior of legitimate users and the attacker) was defined observing the technical

constraints imposed by the PlanetLab environment (e.g., limited computing power, and

unstable nodes and network connectivity); due to these constraints, the identity renewal

aspect of our solution could not be evaluated.

To make puzzles useful in our design, we used a software that emulates a small sim-

ulation experiment; it receives a list of random number generator seeds, and generates

a single text file containing the results (for all seeds informed). The puzzle complexity

is determined by the number of seeds informed, which in turn is proportional to 2γi(t)−1.

For the mechanism based on static puzzles, we considered the one proposed by Douceur

(DOUCEUR, 2002) (discussed in Section 6.1).

The other parameters were defined as follows. For our solution, ∆t = 48 hours,

β = 0.125, Γpl,req = 22 (which is equivalent to Γ = 4 used in the simulation model),

Γpl,reval = 21 (Γreval = 3), Γpl,renew = 20 (Γrenew = 2), and Ω = 10. For the mechanism

based on static puzzles, we considered three scenarios: γpl = 16 (γ = 1), γpl = 20
(γ = 2), and γpl = 24 (γ = 6). It is important to mention that the difference in the

puzzle complexity, comparing the simulation model with the evaluation presented next,

was necessary to adapt the puzzle-based mechanisms to the computing power constraints

present in the PlanetLab environment.

Figure 6.12 shows that the dynamic of identity assignments to legitimate users with

the proposed solution (curve “Our solution”) is similar to what is observed in the scenario

without control (“No control”). In contrast, it evidences the overhead/ineffectiveness of

using static puzzles for identity management. Focusing on the attacker, our solution re-

duced significantly the number of fake accounts he/she created (compared to the scenario

without control).

The estimates of energy consumption obtained also indicate the efficacy of our solu-

tion. While static puzzles with γpl = 16, γpl = 20, and γpl = 24 caused an estimated

consumption of 58.70 KJ, 533.85 KJ, and 803.92 KJ (respectively), our solution led to

only 13.39 KJ. It represents 22.81% (Dγpl=16 = 0.7718), 2.41% (Dγpl=20 = 0.9749), and

1.66% (Dγpl=24 = 0.9833) of the estimated consumption with static puzzles.
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Figure 6.12: Results achieved with the PlanetLab environment.

Table 6.11: Number of jobs assigned per puzzle complexity.

Puzzle Number of Useful Puzzles Puzzle Number of Useful Puzzles

complexity jobs # assigned total jobs complexity jobs # assigned total jobs

1 2 911 1,822 10 1,024 195 199,680

2 4 130 520 11 2,048 181 370,688

3 8 125 1,000 12 4,96 77 315,392

4 16 137 2,192 13 8,192 57 466,944

5 32 142 4,544 14 16,384 44 720,896

6 64 132 8,448 15 32,768 41 1,343,488

7 128 124 15,872 16 65,536 47 3,080,192

8 256 100 25,600 17 131,072 64 8,388,608

9 512 113 57,856 18 262,144 37 9,699,328

Total
# assigned total jobs

2,657 24,703,070

Finally, we evaluate how useful our solution can be, compared to traditional puzzles.

Observe from Table 6.11 that the total number of simulation jobs assigned to users re-

questing identities (both legitimate users and the attacker) was 24,703,070. In the case of

static puzzles with γpl = 16, γpl = 20, and γpl = 24, these numbers were 191,889,408

(2928 puzzles), 2,451,570,688 (2338 puzzles), and 8,992,587,776 (536 puzzles) respec-

tively. Considering the metric of proportion of useful puzzles assigned compared to static

ones, and assuming r = 0.5 (i.e. only half of the assigned jobs were not test jobs), we

have Uγpl=16 = 0.064, Uγpl=20 = 0.005, and Uγpl=24 = 0.001. It is important to ob-

serve that, although the proportion of useful simulation jobs issued is small compared to

the number of puzzles assigned by the baseline mechanism, our solution is the only that

actually assigns such useful jobs.

In summary, the experiments carried out in the PlanetLab environment not only con-

firmed the results achieved through simulation, but also evidenced the technical feasibility

of using adaptive puzzles, waiting time, and massive distributed computing for green and

useful identity management.
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6.4 Analytical modeling and analysis

Having assessed the effectiveness of our solution considering traces of identity re-

quests (synthetically generated and real ones), in this section we evaluate our solution by

means of analytical modeling. Here we focus on the following research questions: (i) is

the proposed solution able to scale in environments comprised of millions of users, over

long periods of time? And (ii) would an attacker, being aware of the inner-working of

the mechanism, be able to subvert it? If so, under which conditions? To answer these

questions, we present in the following subsections a mathematical model derived from

our conceptual strategy (Subsection 6.4.1), and discuss the strategies that an attacker can

use to tamper with our design for identity management (Subsection 6.4.2). We close this

section with an analysis, extrapolating to millions of users and in a period of one year,

whose goal is to assert that our design clearly limits the power of an attacker to obtain a

widespread number of counterfeit identities, whereas imposes marginal overhead to legit-

imate users (Subsection 6.4.3).

6.4.1 Model

We assume that legitimate requests arrive following some distribution fleg(t; . . .),
whereas malicious ones arrive following another distribution fmal(t; . . .). Note that ei-

ther distribution can be Gaussian, Exponential, Uniform, or Fixed. In this case, we

can derive as λleg(t) = S−1
leg · fleg(t; . . .) the arrival rate of legitimate requests, and

λmal(t) = S−1
mal · fmal(t; . . .) for malicious requests. In these equations, Sleg and Smal

represent the number of legitimate and malicious sources, respectively.

The analysis in our model evolves in rounds, where each round has duration ∆t. In

this case, the number of identity requests within a given round i (∀i > 0) is given by

Equation 6.9. In this equation, k can be either leg ormal, andRk is the number of identity

requests of type k. For the sake of analysis, we assume that the attacker aims to obtain

(and control) 1/3 of identities in the network. Furthermore, in this model legitimate users

and the attacker do not share sources. In the following section we discuss those scenarios

in which legitimate users share sources with the attacker.

Λk(i) = Rk

∫ i·∆t

(i−1)·∆t

λk(t) dt (6.8)

To model identity renewal in our model, we define a function Λ′
k(i) (computed follow-

ing Equation 6.9), which is the sum of the number of users that arrived for the first time

in the network (defined by Λk(i)), and the number of identities that expired in the previ-

ous round and thus must be renewed (see Equation 6.16), Ψk(i − 1). For simplicity, we

assume here that both legitimate users and attackers renew their identities once expired.

Λ′
k(i) =

Ψk(i− 1)

Sk
+ Λk(i) (6.9)

The rate in which identities are granted per second (service rate), defined for a given

round i, is given by Equation 6.10 (for k ∈ {leg,mal}). In this equation, Pk is the average

computing power of the hardware in possession of a given user (either a legitimate user

or an attacker). A value of Pk = 1 represents a standard, off-the-shelf hardware (for

reference); a value of Pk = 2 denotes a hardware twice as fast. The other variables in

this equation have the same meaning as discussed in Section 5.1. The values of γk(i) and

ωk(i) are computed according to Equations 6.1 and 6.4, respectively.



116

µk(i) = Pk ·
1

2γ + 2γk(i) + 2ω + 2ωk(i)
(6.10)

For example, assume that a given legitimate user has an average computing power

equivalent to the capacity of a standard, off-the-shelf hardware considered as reference

(i.e. Pk = 1). Assume also the following parameter setting: γ = 4, ω = 0, Γ = 10,

and Ω = 16. For a measured value of trust score equals to θk(i) = 0.5, the rate in that

user can obtain identities is µk(i) ≈ 0.00075 (a). If the trust score is θk(i) = 0.9, we

have µk(i) ≈ 0.00096 (b). With a computing power of Pk = 2 (twice faster than the

standard, off-the-shelf hardware), we have µk(i) ≈ 0.00148 when θk(i) = 0.5 (c), and

µk(i) ≈ 0.00194 when θk(i) = 0.9 (d). Note that µk(i) increases with higher values of

trust scores and also with the increasing user’s computing power. Conversely, it decreases

with higher values of γ, ω, Γ, and Ω.

Based on the service rate defined above, the maximum number of identities that one

can obtain in each round can be computed using Equation 6.11.

Mk(i) = ∆t · µk(i) (6.11)

Considering a size of sliding window ∆t = 28, 800 (eigth hours), in the four cases

illustrated in the previous paragraphs we have the following number of identities the user

can obtain: 21.6 (a), 27.65 (b), 42.63 (c), and 55.87 (d).

An important input for defining the service rate (as shown in Equation 6.10) is the

average trust score of the sources of identity requests (either legitimate or malicious). In

order to estimate it, we first need to estimate the average recurrence of sources, and the

network recurrence rate. The former is given by Equation 6.12, whereas the latter is given

in Equation 6.14.

ˆ∆φk(i) = min(Λ′
k(i) + ψk(i− 1) , Mk(i− 1)) (6.12)

The rationale for computing ˆ∆φk(i) is the following. In each round i, Λk(i) new iden-

tity requests arrive in the system. However, the number of identities effectively granted

for some (or several) round(s) can be smaller (Λk(i) > Mk(i)). In practice, it means that

the users whose requests were not yet granted are either solving the assigned puzzle or

respecting the waiting period. As a consequence, there will be a number of identity re-

quests that will not be granted an identity in that round, and therefore will retry in the next

round. Therefore, for computing ˆ∆φk(i) in the i-th round, we take the minimum between

the number of identity requests that arrived in that round Λk(i) plus the number of re-

quests that arrived in the previous rounds, but have not yet received an identity ψk(i− 1),
and the number of requests that were granted an identity in the previous round Mk(i−1).
Observe that the mechanism for identity management in our framework is recurrent; the

service rate in the next round depends on the measured arrival rate in the previous one.

ψk(i) = Λ′
k(i) + ψk(i− 1)− ˆ∆φk(i) (6.13)

Similarly, the number of identity requests that have not been granted an identity and

therefore will retry in the next round (ψk(i), given in Equation 6.13) is defined as the

difference between the number of identities that arrived and the estimated value of ∆φk(i).
The network recurrence rate (Equation 6.14) is given by the minimum between 1

(in case there is no request yet granted an identity) and the average of legitimate and

malicious identity requests that were granted an identity. In this equation, K is a set
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that indicates what types of users have requested at least one identity during that round

(K ⊆ {leg,mal}). In case K = ∅ (i.e. neither legitimate users or attackers have obtained

identities during that round), it returns 1.

ˆΦ(i) = max

(

1 ,
1

max (1, |K|)
·
∑

k∈K

ˆ∆φk(i− 1)

)

(6.14)

Finally, the number of identities of type k that are valid after i rounds (where i can be

given by the total period of analysis T divided by the size of the sliding window ∆t, i.e.

⌊T/∆t⌋) is given by Gk(i), as shown in Equation 6.15. In this equation, v is the number of

rounds in which an identity is valid, and is given by the maximum validity v = V/∆t.

Gk(i) =

⌊

Sk ·
i
∑

j=i−v

ˆ∆φk(j)

⌋

(6.15)

It is important to keep track of the number of identities that expired, so that they re-

enter the system as new identity requests. This number, denoted as Ψk(i) for the i-th
round, and computed according to Equation 6.16, is defined as the difference between the

total number of identity requests that have arrived since the first round, and the number of

identities currently valid plus the number of requests that were not yet granted an identity.

Ψk(i) = Sk ·
i
∑

j=0

Λk(j)− (Gk(i) + ψk(i) · Sk) (6.16)

6.4.2 Analysis of possible attack strategies

We use the model described earlier to answer the following research question posed in

the introduction: would an attacker, being aware of the inner-working of the mechanism,

be able to subvert it? If so, under which conditions? To answer this question, in this

analysis we assume that the goal of the attacker is to obtain (and control) a minimum of

1/3 of identities in the network.

Given such goal, there are two strategies that an attacker can attempt to achieve it

more quickly: augment its computing power (to solve the puzzles faster), and increase

the number of sources under his/her control (to perform requests with higher values of

trust scores, and thus receive puzzles of lower complexity). While the former strategy is

already known in the literature, the latter is specific to our design.

We argue that an attacker, in possession of a finite amount of computational resources

and controlling a certain number of sources of identity requests, must evenly divide the

number of identities to be requested among the sources in his/her control, and request

identities at a fixed rate, to maximize the profit of the attack. Based on the previous

statement, and taking into account the mathematical design of our design, we derive the

following theorems:

Theorem 3. Let Smal = u be a set of sources in hands of the attacker, and Rmal = r the

number of identities to be obtained. The strategy that maximizes the profit of the attacker

(i.e. that minimizes the overall complexity of the puzzles to be solved) is to evenly divide

the Smal requests among the Rmal sources.

Proof. Consider γ = ω = 0, and Pmal = 1 (i.e. the attacker has an average computing

power per source equals to the computing power of a standard, off-the-shelf hardware



118

used as reference). In order to obtain puzzles of lower complexity from the bootstrap

service, the value of θ(t) of the sources in hands of the attacker must be as high as possible,

or at least around 0.5 (θ(t) ' 0.5). To this end, the recurrence of a source must be as low

as possible, or at most around the same value of the measured network recurrence rate

(∆φ(t) / Φ(t)). To achieve this, and at the same time perform r counterfeit requests,

the attacker must divide them as uniformly as possible among the u sources available (i.e.

∆φ(t) = r
u

), so as to keep the average recurrence per source low and thus appear less

suspicious to our scheme. Suppose that, by doing this, the recurrence of sources in hands

of the attacker becomes equal to Φ(t) (i.e. ∆φi(t) = Φ(t), where i is the index of a source

in hands of the attacker). As a consequence, we have θi(t) = 0.5. From Equation 6.10,

the attacker’s capability to solve puzzles is then µ = 1/(20.5·Γ + 20.5·Ω + 2).

To show that evenly dividing all requests to be performed among all sources is the best

strategy for the attacker, suppose a different, generic attack strategy in which counterfeit

requests are not evenly divided. Therefore, for some source(s), its recurrence will be

larger than Φ(t) = r
u

. Conversely, for the rest it will be proportionally lower (and smaller

than Φ(t) as well). Assume that k sources (with k ∈ N
∗ and k < u) request less x

identities each (with x ∈ N
∗). ∆φ(t) will decrease to r

u
− x. Consequently, the trust

score of these k sources will increase to θ′1 = 0.5 + ϑ1 (with ϑ1 ∈ (0, 0.5]); the attacker’s

capability to solve puzzles becomes µ′
1 = 1/(2θ′1·Γ + 2θ

′

1
·Ω + 2).

The total number of identities which remain to be requested is k·x, so that all r identity

requests are performed. These requests must be originated from the remaining u − k
sources. If the remaining requests are evenly distributed among them, their recurrence rate

will increase to ∆iφ(t) =
r
u
+ k · x

u−k
. Such a recurrence will be higher than the average

recurrence of the network Φ(t) = r
u

; the trust score of these k sources will decrease to

θ′2 = 0.5 − ϑ2 (with ϑ2 ∈ (0, 0.5]); the attacker’s capability to solve puzzles becomes

µ′
2 = 1/(2θ′2 ·Γ + 2θ

′

2
·Ω + 2). Comparing this situation with the previous one (in which requests

are evenly divided among sources), we have µ′
2 ≪ µ ≪ µ′

1. One may see that, while the

attacker has a gain with the sources that request fewer identities, the overhead with the

sources that request more identities increases significantly. This is because the complexity

of puzzles has an exponential growth rate. This proof shows that any attack strategy that

does not evenly divide requests among sources will result in even more complex puzzles

being assigned to requests.

Theorem 4. Let r be the number of identities an attacker must obtain, and T the time

period during which these identities should be requested. The strategy that maximizes the

profit of the attacker is to spread the r requests throughout period T .

Proof. Let ∆t be the sliding window considered for computing the recurrence of a source

∆φ(t) and of the network Φ(t). Consider also that the time period begins in T0 and

ends in Tf . For the sake of simplicity, we consider that the attacker controls one single

source of identity requests. The results presented here, however, can be straightforwardly

generalized for the case of an attacker having multiple sources.

In order to obtain puzzles of lower complexity from the bootstrap service, the value of

θ(t) of the source in hands of the attacker must be as high as possible, or at least around

0.5 (θ(t) ' 0.5). To this end, the recurrence of that source, ∆φ(t), must be as low as

possible, or at most around the same value of the measured network recurrence rate, Φ(t).
To achieve this, and at the same time perform r counterfeit requests in T units of time, the

attacker must divide them as uniformly as possible along T (i.e. ∆φ(t) = r/T ·∆t), so as

to keep the average recurrence of his/her source low within the sliding window ∆t, and
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thus appear less suspicious to our scheme. Suppose that, by doing this, the recurrence of

sources in hands of the attacker becomes equal to Φ(t). From Equation 6.10, the attacker’s

capability to solve puzzles is then µ = 1/(20.5·Γ + 20.5·Ω + 2).

To show that evenly dividing all requests to be performed along T is the best strategy

for the attacker, suppose a different, generic attack strategy in which counterfeit requests

are not evenly divided. Therefore, for some period ∆t ∈ T , its recurrence will be larger

than ∆φ(t) = r/T · ∆t (and thus larger than Φ(t)). Conversely, for the rest it will be

proportionally lower (and smaller than Φ(t) as well). Assume that from Ti−1 to Ti (with

0 < i < f ) that source request less x identities (with x ∈ N
∗). ∆φ(t) will decrease to

r−x
T
·(Ti−Ti−1) and, therefore, it will be lower than Φ(t). Consequently, the trust score of

these k sources will increase to θ′1 = 0.5+ϑ1 (with ϑ1 ∈ (0, 0.5]); the attacker’s capability

to solve puzzles becomes µ′
1 =

1/(2θ′1·Γ + 2θ
′

1
·Ω + 2).

The total number of identities which remain to be requested is x, so that all r identity

requests are performed. These requests must be performed in the remaining Tf−Ti period

of time. If the remaining requests are evenly distributed among them, their recurrence will

increase to ∆φ(t) = r+x
T
· (Tf − Ti). Such a recurrence will be higher than Φ(t); the trust

score of these k sources will decrease to θ′2 = 0.5− ϑ2 (with ϑ2 ∈ (0, 0.5]); the attacker’s

capability to solve puzzles becomes µ′
2 = 1/(2θ′2·Γ + 2θ

′

2
·Ω + 2). Comparing this situation

with the previous one (in which requests are evenly divided throughout time), we have

µ′
2 ≪ µ ≪ µ′

1. One may see that, while the attacker has a gain with the sources that re-

quest fewer identities, the overhead with the sources that request more identities increases

significantly. This is because the complexity of the puzzle increases exponentially. This

proof shows that any attack strategy that does not evenly divide requests throughout the

time will result in even more complex puzzles being assigned to requests.

Theorem 5. Let ∆φl(t) be the recurrence of sources shared by legitimate users, and let

∆φm(t) be the recurrence of a source originating malicious requests. In order to achieve

as high values of trust score as possible for the malicious requests, the attacker must

originate those requests from sources not being shared with legitimate users.

Proof. Consider the scenario where legitimate users do not share sources with an at-

tacker; in this scenario, the recurrence of a source that originates legitimate requests

only is ∆φl(t) = x, and the recurrence of a source originating malicious requests is

∆φm(t) = y (with x, y ∈ N
∗). In the scenario the attacker shares sources with legitimate

users, the recurrence of a single source originating both legitimate and malicious requests

is now ∆φl,m(t) = x + y. This increased recurrence ultimately results in lower values

of trust scores assigned to requests coming from this source – and consequently puzzles

of higher complexity. While these lower values of trust scores affect both legitimate and

malicious requests, it is worth noting that a legitimate user is minimally penalized, as it

performs only a few identity requests. An attacker, in contrast, should be more penalized

as his/her number of identity requests will be significantly larger (in compliance with the

goal of obtaining fake accounts).

From the discussion and the theorems presented above, we conclude the following

about the strategy that maximizes the attacker’s profit: (i) the identity requests to be

performed must be evenly divided among the sources in control of the attacker; (ii) these

requests must be uniformly spread during the period of the attack; and (iii) the attacker

must avoid sources that are shared with other users.
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6.4.3 Dynamics of identity assignment

We employed the mathematical model described earlier to analyze how our mecha-

nism would behave in extreme conditions (e.g. millions of users, intense workload, etc.),

and also to verify the results achieved with simulation and experimentation (to be dis-

cussed next). In this subsection we cover some of the results achieved.

Figure 6.13 presents the results of an evaluation to understand how our mechanism

would behave with a very large number of users, during a long period of time. In this

analysis, we considered a number of 3,6 million legitimate users that attempt to obtain

one identity each, during one year (366 days). An attacker, controlling a botnet of 10,000

machines, attempts to control a number of 1.8 million identities in the same period (in

order to make 1/3 of the identities in the system). We considered the following distribu-

tions for the arrival of legitimate users: fixed rate, Gaussian, and Exponential. As for the

arrival of malicious identity requests, we considered a fixed distribution (which is in line

with the conclusions drawn in the previous subsection). The other parameter setting for

the analysis are: Pleg = Pmal = 1; ∆t = 48 hours; β = 0.125; γ = 6; Γ = 13; ω = 0; and

Ω = 17. The identities assigned are valid for a period of four days, or twice the duration

of the sliding window.
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Figure 6.13: Number of valid identities for legitimate and malicous users.

As one can see, legitimate users were minimally penalized, and managed to control

70% of the identities (≈ 2.5 millions) by the end of the analysis, in all of the considered

scenarios. In contrast, the attacker was severely constrained in resources, and thus was

able to achieve only 6% of the initial goal (of controlling 1.8 million identities). Consid-

ering only the valid identities in the system, the attacker was able to maintain 4.8% of the

identities, far less than the initial goal of controlling 1/3 (or ≈ 34%) of valid identities.

6.5 Considerations

In this section, we present some considerations regarding the use of adaptive, green,

and useful puzzles. With respect to the validity of a puzzle, an attacker may explore a

period of time in which the source he/she is associated to achieves a high trust score, and

request a potentially high number (e.g., millions) of identities. Because the trust score

varies only with the number of identities granted (rather than the number of identities

requested), the attacker would obtain millions of easy-to-solve puzzles in this scenario.
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The attacker would then solve the received puzzles and obtain millions of identities at a

significantly lower cost (in contrast to the case in which a new identity request comes only

after the puzzle of the previous request is solved).

To prevent this attack, puzzles may carry a validity timestamp, defined based on the

time it is expected to be solved using a standard, off-the-shelf hardware. Once this times-

tamp is expired, the puzzle is no longer valid, and its solution may be refused by the

bootstrap service. To remediate the case in which low capable machines do not timely

solve the puzzles, another puzzle may be assigned, having a validity timestamp that is

double the time it is expected to be solved using a standard hardware (and so on).

There are also three important considerations regarding the adoption of green and

useful puzzles in the context of identity management. With regard to using wait as a

complement to puzzles, a possible attack is the “parallelization” of the wait period: an

attacker could request n identities in a same instant, solve the puzzles and use a same

time interval to obey simultaneously the n assigned wait periods. To mitigate this attack,

the bootstrap service must compare the current value of the source trust score with the

one used to estimate the wait period (which is also included in the TASKCOMPLETED

message sent for indicating the wait is finished); if the difference between these values

exceeds a treshold ∆θ (i.e., θ′i(t) − θ
′
i(t

′) ≥ ∆θ), the bootstrap can interrupt the identity

request process (similarly to what happens if the user does not obey the wait time). The

rationale is that the user has not fully paid the price for obtaining an identity, as θ′i(t)
(the trust score of his/her request) decreased more than ∆θ (maximum tolerable) since

the request initiated.

Now focusing on the use of jobs as an alternative to cryptographic puzzles, it is impor-

tant to observe that one cannot fully trust on the results received, as an attacker may fake

job results. For this reason, the bootstrap must inform in J some “test jobs” (for which

the result is already known); this approach follows the same strategy used in other solu-

tions based on massive distributed computing (e.g., ReCAPTCHA (AHN et al., 2008)).

In this case, the attacker will not be able to distinguish which are “test jobs” and “real

jobs”; the attacker will have to solve all of them correctly to avoid the risk of faking the

result for a test job, and having his/her request process terminated by the bootstrap.

Finally, it is important to emphasize that both our solution and those based on tradi-

tional puzzles must verify puzzle solution for each identity requested. Therefore, assum-

ing that each solution receives a same number of identity requests, energy consumption

due to puzzle verification will be similar. In other words, the energy consumption caused

by puzzle solution verification is approximately the same regardless of the puzzle-based

approached used to limit fake accounts. This observation allows us to claim that the en-

ergy required for puzzle verification does not affect the green aspect of our solution, when

compared to existing puzzle-based approaches.

6.6 Summary

The use of computational puzzles to limit the spread of fake accounts has been ham-

pered due to the lack of mechanisms that deal properly with situations in which there

is a gap of computing power between legitimate users and attackers. Existing solutions

neither take advantage of the discrepant behavior observed between legitimate users and

attackers as an approach to weight the complexity of assigned puzzles. To address these

limitations, in this chapter we proposed the use of adaptive puzzles as a controlling factor

to Sybil attacks.
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The experiments carried out showed the effectiveness of the proposed solution in de-

creasing the attackers’ ability of creating an indiscriminate number of counterfeit iden-

tities, whereas not compromising legitimate users, which were, in general, minimally

penalized. When computing lower trust scores to sources having higher recurrence rates,

(malicious) users associated to these sources had to cope with more complex computa-

tional puzzles. Conversely, users associated to presumably legitimate sources (and that

made fewer use of the bootstrap service to obtain new identities) received less complex

computational puzzles (given the higher trust scores determined for the great majority of

these sources in the system).

In this chapter we also proposed a novel, lightweight solution for long-term identity

management, based on adaptive puzzles, waiting time, and massive distributed comput-

ing. Our proposal enables the assignment of puzzles that consume resources in an efficient

and useful manner. The results achieved with green and useful puzzles have shown that it

is possible to force potential attackers to pay substantially higher costs for each identity;

legitimate users received more easier-to-solve puzzles than the attacker, and took 52.9%

less time on average to solve them. The use of waiting time, technique traditionally used

in websites to limit the access to services, led to significant energy savings (at least 77.1%

when compared to static puzzles (ROWAIHY et al., 2007)). More importantly, we ob-

served an improvement of 34% in the mitigation of fake accounts when compared to the

state-of-the-art mechanisms; this provides evidence to our claim that a puzzle-based iden-

tity management scheme can be modified so as to reduce its resource consumption, and

without compromising its effectiveness. Finally, the use of massive distributed comput-

ing has shown to be technically feasible (considering several experiments carried out in

environments such as PlanetLab) for providing utility for the processing cycles dedicated

to solve puzzles.

The experiments carried out evidenced two major issues associated to puzzles. First,

it was confirmed the unfeasibility of using static puzzles, given the difficulty in establish-

ing a complexity that is effective against attackers and less harmful to legitimate users.

Second, cryptographic puzzles have not shown to be reliable in assuring that an attacker

will be penalized as expected. For example, the resolution time of a puzzle having a

given complexity, in a certain multi-core hardware, varied from a few seconds to hun-

dreds of minutes. The use of lessons learned from massive distributed computing, and the

replacement of cryptographic puzzles with real data processing jobs (in our evaluation,

simulation jobs), has shown to be a promising direction to deal with this issue.
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7 CONCLUSIONS

The goals of this chapter are threefold: summarize the thesis, present the conclusions,

and discuss future work. First, the list of incremental steps to support the hypothesis in

this thesis is presented. Second, the main contributions are summarized and discussed.

Third, and last, prospective directions for future research are shown.

7.1 Summary of contributions

In this thesis, we proposed a framework for adaptively pricing identity requests as an

approach to limit the spread of counterfeit identities (Sybils). Our framework is based

on the hypothesis that “the sources in hands of attackers launch a significantly higher

number of identity requests than those associated to presumably legitimate users.”

Based on it, we formulated a model that derives values of trust scores based on the fre-

quency that sources of identity requests obtain identities, in comparison to the average

number of identities already granted to other sources in the network. The model offers

support for the concept of adaptive puzzles – a proof of work strategy that limits the spread

of fake accounts in the network by making it extremely expensive for potential attackers to

obtain a single identity, while keeping the price to be paid per identity significantly lower

for legitimate users. In our research, we also reshaped traditional cryptographic puzzles

in order to propose a lightweight design for green and useful identity management; green

because cryptographic puzzles should consume as lower resources (e.g., energy) as pos-

sible for their resolution; and useful because puzzle solutions should have value for some

external production system. The four main contributions of this thesis and a brief sum-

mary follow.

First contribution. A trust score model for pricing identity requests.

Summary. This contribution forms the basis of our framework for adaptively pricing

identity requests (MAUCH et al., 2010; CORDEIRO et al., 2011). An extensive

evaluation has shown the potentialities of using values of trust score as a solu-

tion to measure the reputation of identity requests, and thus price legitimate and

malicious identity requests accordingly; presumably legitimate requests received

significantly higher values of trust score, whereas a vast majority of the mali-

cious request received lower values, even in scenarios where the attacker had a

large fraction of resource for launching the attack. These observations showed

that the proposed trust score model not only has potential to mitigate the dissem-

ination of fake accounts, but also required a significant effort from the attacker to

manipulate it.
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Second contribution. The use of adaptive (computational) puzzles.

Summary. The concept of trust score introduced in the context of this thesis enables

an important advance in the use of proof of work to limit fake accounts – from

computational puzzles of fixed complexity to adaptive ones (CORDEIRO et al.,

2012). Presumably legitimate users, whose requests receive higher values of trust

score, are benefited with easier-to-solve puzzles; conversely, potential attackers

are penalized with more complex puzzles for each identity request made to the

bootstrap service. The evaluation has shown that attackers become severely con-

strained in resources, and thus cannot keep up the rate in which they create fake

accounts considering both a scenario without control, and also scenarios in which

puzzles of fixed complexity are used.

Third contribution. The notion of green and useful computational puzzles.

Summary. Traditional puzzles consume a non-negligible amount of resources – more

specifically, energy; when taking into account the energy consumed by all users

interested in joining a system, the values become significant. More importantly,

these resources are ultimately wasted, given that no useful information is pro-

cessed when solving traditional cryptographic puzzles. In the context of this

thesis, we have addressed this problem by proposing green and useful puzzles

– which take less energy for their resolution without losing effectiveness, and

that enable the processing of useful data as a challenge for obtaining access to a

service (in this case, identities) (CORDEIRO et al., 2012, 2013). An extensive

evaluation has shown that green puzzles are as effective as traditional ones, with

the benefit of saving significant amounts of energy. From experimentation in the

PlanetLab environment, we also verified the technical feasibility of making puz-

zles useful – using a software that emulates a small simulation experiment.

Fourth contribution. A methodology for correcting traces of users’ usage sessions.

Summary. The comprehension of users’ behavior is paramount for evaluating im-

provements to networked, distributed systems. To this end, several strategies

have been proposed to obtain traces based on the capture of usage information,

which can then serve for evaluation purposes. One main strategy consists of tak-

ing snapshots of online users. In spite of its popularity, related proposals have

fallen short in ensuring accuracy of obtained data. Due to system-specific limi-

tations, users may fail to appear in some snapshots, although online. To bridge

this gap, we proposed a methodology to correct ill-collected snapshots and build

more accurate traces from them (CORDEIRO et al., 2014). In summary, we es-

timate the probability that a given snapshot is missing some users. The snapshot

is corrected if the probability exceeds a given threshold. An evaluation using

ground-truth data assessed the effectiveness of our methodology, and provided

important evidence that estimating failure probability is a feasible approach for

improving trace accuracy.

Given the aforementioned evolution of this thesis, highlighting the contributions and

lessons learned, the next section closes the thesis with a general discussion about our

achievements and presents prospective directions for future research.
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7.2 Final remarks

The work presented in this thesis investigated the problem of dissemination of fake ac-

counts under a different perspective. Previous solutions attempted to limit their existence

in the network using certification authorities, behavior analysis (this is the case for exam-

ple of reputation systems), or proof of work, to cite a few strategies. In this thesis, we

proposed a different direction to tackle fake accounts, namely the observation of profile

of request patterns of sources of identity requests. Using this strategy, we have shown that

it is possible to filter out presumably legitimate requests from those potentially malicious.

In conclusion, the overall work presented in this thesis underscored the importance

of adopting security measures to mitigate malicious behavior in large-scale distributed

systems. In the absence of countermeasure mechanisms, even a small proportion of fake

accounts is able to subvert systems such as file sharing communities (SANTOS et al.,

2010). The introduction of a framework that adaptively prices identity requests and re-

newals in this thesis demonstrated the efficacy of the concept of trust score as an index for

measuring the likeliness an identity request is part of an ongoing Sybil attack. The sim-

ple, yet powerful, trust score model thwarted attacks en masse and protected the system

against the widespread dissemination of fake accounts.

In spite of the progresses reported in the thesis, promising opportunities for future

research remain. The most prominent one is the instantiation of our framework for lim-

iting the dissemination of fake identities in online social networks. The basic idea is to

create an admission process in which newly created accounts are regarded as “verified”

only after a number of users already in the system (i.e., which already have verified ac-

counts) have vouched for (i.e., “introduced”) them. Our investigation will consider the

hypothesis that the majority of potential users already have real-life friends registered in

the network. Therefore, a user creating an account must indicate a number of other users

having already verified accounts to vouch his/her own identity.
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