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Resumo: Differential-algebraic equations (DAE) systems arise naturally from modelling many dynamic systems
and are more difficult to handle than ordinary differential equation (ODE) systems. For instance, it is well known
that difficulty arises when DAE's are solved with inconsistent initial values. Furthermore, the solution of high-
index problems requires specially designed integration methods or index reduction, which are usually limited. In
this work, alternatives for initialising and solving general high-index DAE systems are studied and a new

algorithm for index analysis and reduction is introduced.

1 INTRODUCTION

Differential-algebraic equations (DAE) systems
arise naturally when modelling many dynamic
systems. General implicit DAE system can be
represented by

F(t,y,y) =0 ()
where ¢ is the independent variable (usually the

time), FeR", y and y’ e R" are the dependent
variables and its derivatives with respect to ¢,
respectively. If (1) can be written in the explicit
form

y'=fty) ()
with the same state variables y, then (1) actually is a
system of implicit Ordinary differential equations
(ODE). In this work we are interested in problems
for which such conversion is impossible or not
desirable. There are several reasons to consider (1)
directly (Brenan et al., 1989). One of our particular
interest, is when the system of equations is
automatically generated by a simulation program
where the models are written in an object-oriented
language. In this work the process simulator EMSO
(Soares and Secchi, 2003) was used to write

models, develop and test methods, and to obtain
numerical solutions.

The basic difference between (1) and (2) is the
possibility of a singular Jacobian of F with respect
to y’, denoted by OF /dy"or F\, . If this is the case,

the DAE cannot be rewritten as an ODE with same
variables y. Then, in order to convert such DAE
systems to an ODE, state transformations or
differentiation of the equations are needed. Usually
the property known as index is used to measure the
distance between a particular DAE and its
equivalent ODE formulation. The minimum
number of times that all or part of a DAE (1) must
be differentiated with respect to ¢ to determine y’ as
a continuous function of y and ¢ is defined as the
differential index V"

Obviously, accordingly to the above definition, (2)
has a differential index v = 0. DAE systems with
v<1land v> 1 are known as low- and high-index
systems, respectively.

The solution of general low-index DAE systems is,
in principle, not much more difficult than the
solution of ODE systems but the initialisation of

! Other definitions of index can be found in Unger ef al. |
(1994).



such systems still can pose problems (Pantelides,
1988). Furthermore, none of the currently available
numerical techniques work for all high-index
DAE’s (Brenan et al., 1989).

In this work alternatives for initialising and solving
general high-index DAE systems in form (1),
coming from the equation-oriented general process
simulator EMSO, are studied. Moreover, a new
structural algorithm for index characterisation and
reduction is presented and the alternatives are
compared when applied in typical problems.

2 ALTERNATIVES

Low-index DAE systems can generally be solved

numerically by slightly modified ODE codes.

However, for high-index systems these methods

may converge poorly, they may converge to wrong

solutions, or they may not converge at all (Brenan

et al., 1989). For these systems there are basically

three general approaches:

1.  Manually modify the model to obtain a lower-
index equivalent model;

2. Integration by specifically designed high-index
solvers;

3. Apply automatic index reduction algorithms in
order to obtain a lower-index equivalent model.

2.1 Manual Modifications

The index of DAE systems describing dynamic
systems is strongly affected by precise formulation
of the problem, i.e., by the choice of independent
variables and equations. Since these choices can
often be made rather arbitrarily, in the work of
Letkopoulos and Stadtherr (1993) it is presented an
algorithm for selecting, whenever possible, the
independent equations and variables that lead to the
formulation of an index-one DAE. But this
algorithm is not concerned with index
determination, it only seeks to detect whether the
index is one of if it is higher than one. If no index-
one formulation can be found, the algorithm does
not attempt to formulate a minimum index problem
or perform index reduction. In a similar way the
work of Gani and Cameron (1992) explores how
different assumptions such as equilibrium or
incompressibility can affect the index of DAE
systems.

These approaches can be quite useful for finding
lower-index equivalent models for small problems.
But clearly they are not suitable to be embedded in
a simulation package, because could be quite
difficult or impossible to automate it for large-scale
models.
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2.2 Specifically Designed y]igh-lndex Solvers

As already stated, there are no numerical method

capable of handling all classes of high-index DAE.

Presently available numerical codes are basically

modified ODE solvers (Unger et al., 1995), and can

be divided in two main groups:

e Solvers for high-index problems of restricted
problem structure (e.g. in Hessenberg form or
semi-explicit);

e Solvers for high-index problems limited for
problems with index three or less.

Again, the former group of solvers is not suitable
for our purposes because could be impossible to
convert general DAE systems to the required
stricter structure.
The last group of solvers appears to be promising
for our application, mainly because problems with
index higher than three are quite uncommon to
appear in mathematical models of chemical
processes. Representing this class of solvers, the
codes PSIDE (Lioen et al., 1998) and MEBDFI
(Abdulla and Cash, 1999) were considered.
Although no restriction in problem structure is
imposed when using these codes, it is required to
inform as input the index of each variable. In order
to exemplify how the indices of the variables are
determined, consider the following system of
equations

y'=ft,y,z)
Z'=k(t,y,z,u) 3)
0=g(t,y)

where f, k, and g, are full rank in the
neighbourhood of the solution. Then, (3) has index
v =3 and the variable y, z, and u are of index 1, 2,
and 3, respectively. A more detailed description of
this procedure can be found at Lioen et al. (1998).
Should be stressed that (3) was wused for
demonstration purposes only and the cited codes
can handle general problems as (1) but require a
consistent initial condition in order to advance in
the solution.
From this discussion, it is clear that, in order to
implant these solvers in a general equation-oriented
process simulator, two problems arise:
e how to automate the determination of the index
of the variables
e how to determine a consistent initial condition

2.3 Index Analysis and Reduction

Historically, several works have addressed the
problem of index characterisation and reduction.
Most of these works consider only the structure of



the problem disregarding numerical values. From
this consideration comes the property known as
structural index vy, which is analogue to the
differential index v but considering structural
algebra.

Duff and Gear (1986) suggested a structural
analysis to identify index-two semi-explicit
systems. Gear (1988) conceptually proposed a
symbolical algorithm for index reduction, and
based on this idea Bachmann et al (1990)
presented an algorithm for index reduction of linear
systems. Unger et al. (1995) extended this
algorithm enabling the characterisation and index
reduction of general DAEs. Pantelides (1988)
introduced a graph-theoretical algorithm addressing
the problem of consistent initialisation of general
DAESs which can be used for index reduction. The
last two approaches are of similar complexity but
Pantelides’ algorithm is fairly well suited for an
implementation in sparse matrix representation
(Unger et al., 1995) and therefore was preferred in
this work. The basic idea of the Pantelides’
algorithm is to determine minimally structurally
singular (MSS) subsets of equations and then
differentiate it to form an augmented system aiming
at a system where no more MSS subsets can be
found. In Costa Jr. et al. (2001) the Pantelides’
algorithm was applied to index-one reduction using
automatic differentiation.

Algorithm for index reduction

It is well known that structural analysis of DAEs is
limited (see Pantelides, 1988; Unger et al., 1995;
and Reissig et al., 2000, for further discussion on
this subject). For instance, if a DAE system is
structurally singular, Pantelides’ approach will keep
differentiating the same subset of equations ad
infinitum (Pantelides, 1988). Besides, the structural
algorithm stops when an index-one equivalent

Symbol
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system is obtained and cazﬁidt reduce further the
index.

In order to remove these two limitations the

following modifications to the Pantelides’

algorithm are suggested:

e  start the search for MSS subsets with respect to
all variable derivatives and not only with
respect to the variable derivatives that are part
of the original system,;

e when a MSS subset with respect to the variable
derivatives is detected, check if it is singular
with respect to the entire set of variables. If this
is the case then the analysis is finished because
the system is structurally singular.

The first modification makes the algorithm capable

to reduce the index until zero, the second checks if

the system is structurally singular, avoiding infinite
loop when analysing singular systems.

Although it is not necessary to fully understand the

new index analysis algorithm presented in this

work, a reading on the original version of

Pantelides’ algorithm could be useful and can be

found at Pantelides (1988).

In order to introduce the algorithm for index

analysis, consider the following DAE:

JiGeuy,u,)=0
f2(xax'ay1)=0 (4)
f3(x,y2)=0

In optimal control context, we could imagine a
problem where y;, and y, are desired outputs
(specified optimal profiles), u; and u, are the
control actions and x is an unknown (state variable).
Using the notation found in Figure 1, this problem
can be represented in a bipartite graph as shown in
Figure 2.

Description

Marked equation f (it will be differentiated in next step)
Line between equation f and variable =
Matching line between equation f and variable x
Line between equation f and algebraic variable x

Matching line between equation f and algebraic variable @

Figure 1. Notation for representing DAE systems as bipartite graphs.



Figure 2. Graph for the DAE system (4).

The graph in Figure 2 is called G(E, V, L), where E
is the set of equations, left hand side of the bipartite

Algorithm 1.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Seminario do Programa de Pés-Graduagdao em Engenharia Quimica

OKTOBER FAORUM 2005 — PPGEQR

N /tf’[j >

graph, and V the set of Varieilglés. There is a line E; -
V; if the equation E; contains the variable V, the set
of lines is called L. A matching M is a subset of L
for which each line has a unique E; and V. The
cardinality of a matching is the number of lines that
it covers. For more details about graph theory
please refer to Diestel (2000).

The graph-theoretical algorithm for index analysis
proposed in this work is based on a breadth-first
search for finding a maximum cardinality matching,
herein after called AugmentMatching. Each call to
AugmentMatching, as stated in Algorithm 1, will
increase the cardinality of a current matching M.

Pseudocode for the AugmentMatching algorithm.

Bool AugmentMatching(E, V, L, E i,

flagdiff, M)

for each line of L which contains E i and is not in M:

if flagdiff is true:

Sw NP

Sow N

return false

The basic idea behind the Algorithm 1 is to find a
matching for the given equation node E;, returning
true if a matching could be found and false
otherwise. In this algorithm a variable is diff if it is
the higher order derivative of that variable in V.
The basic difference between this algorithm and the
one proposed by Pantelides (1988) are the steps
1.1-1.4 and the additional flag flagdiff. With this
modification one can select if the wanted matching
is with respect only to the higher order derivatives
or not. The Pantelides’ version is always with
respect to the higher order derivatives because the
low order ones are removed from the graph during
the execution of the procedure.

Using Algorithm 1, Algorithm 2 can analyse and
reduce the index of a general DAE system as (1),
given its graph G(E, V, L).

if the variable of line is diff:
add line to M and return true

else: add line to M and return true

if the equation of line is not marked:
set E j the equation of line and mark E j
if AugmentMatching(E, V, L, E j, flagdiff, M):

1

1

1

1

1

2 for each line of L which contains E i and is in M:
2

2

2

2 unmark E j, add line to M and return true
3

If the given graph G(E, V, L) is structurally non
singular, Algorithm 2 returns #rue and index
contains the index of the original system of
equations. Structural singularities are detected at
step 2.3 (which is missing on Pantelides’ version).
Another improvement of the new version of the
algorithm is for a solvable system, when the
algorithm stops at step 3, the number of variables
uncovered by M is exactly the number of dynamic
degrees of freedom and that set of variables is a
structurally feasible set of initial conditions.
Moreover, if the Dulmage-Mendelsohn
decomposition is applied to the final association,
the under-constrained component consists of the
entire set of feasible initial conditions.



Algorithm 2.
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Pseudocode for the index analysis/reduction algorithm.

Bool IndexAnalysis(E, V, L, index)

1 create an empty matching M and set index to zero

2 for each equation in E not in M:

2.1 if not AugmentMatching(E, V, L, equation, true, M):

2.2 if not AugmentMatching(E, V, L, equation, false, M):

2.3 return false

3 if there is no equation marked: return true

4 else: increase index by one

5 for each equation marked:

5.1 add the derivative of equation to E

5.2 for each variable in equation:

5.3 add the derivative of the variable to V

5.4 add a line to L between the variable derivative and
the equation derivative

6. back to 2

Algorithms 1 and 2 are easy to implement in
software packages, where G(E, V, L) is basically
the Jacobian pattern of the system of equations.
Should be stressed that the application of the
algorithm actually does not require differentiating
any equation or variable. Applications of the
Algorithm 2 are presented in Section 4.

3 INITIALISING GENERAL DAE SYSTEMS

It is well known that difficulties arise when DAE
systems are solved with inconsistent initial values
and may cause solution failures of many popular
DAE solvers (Wu and White, 2001). Therefore,
consistent initial values are crucial for obtaining the
numerical solution. Actually, most often failures in
solving a DAE system occur or have the source in
initialisation, for both low- and high-index systems.
In Section 2 alternatives for solving (advance in
solution) of general high-index DAE systems were
studied. But in order to advance in solution,
numerical codes require consistent initial values.
Popular solvers comes with routines based on
approximate methods which can determine the
variable derivatives y’ given the values of all
variables y (Brennan, et. al., 1989). But if the user
gives inconsistent values for y the solver will fail,
because not all variables y are independent.
Moreover, these routines cannot determine y’ for a
given y for high-index problems even if the given y
is consistent.

In this work an alternative approach that can be
used to initialise DAE systems of any index is
proposed as follows:

e analyse the system of equations with the index
analysis algorithm, Algorithm 2;

e if the system is not structurally singular, the
number of dynamic degrees of freedom
(number of initial conditions) together with one
feasible set of initial conditions are determined;

e considering y’ just as new variables, a system
of non-linear algebraic (NLA) equations can be
built using all equations (original plus the
derivatives coming from the algorithm) and al/
variables (y and y);

e the NLA, at this point, will be wunder-
constrained by a number of equations equal to
the number of dynamic degrees of freedom of
the original DAE system. Appending initial
conditions as new equations to this system, a
square NLA problem will be obtained, which
can be solved with usual Newton’s like
methods.

It should be noted that with this approach, the

initial conditions can be general algebraic or

differential equations and not just fixed values of
some variables as usual. A comparison of this
approach with the ones implemented in popular

solvers is shown in Section 4.



4 APPLICATIONS AND DISCUSSION

4.1 Index Analysis algorithm

In this section Algorithm 2 is applied step by step
to one structurally singular DAE system to
demonstrate one example where the algorithm
detects the singularity (the Pantelides’ algorithm
does not terminate for this problem). Further, the
algorithm is applied to the well-known pendulum
problem.

Uncontrollable DAE

Consider the DAE system (4) and its graph in
Figure 1. After the execution of one analysis step of
Algorithm 2 (execution from step 1 to 4) we will

Figure 3. Graph for the DAE system (4) after one

analysis step.

In the graph in Figure 3 the bold lines are the lines
covered by the current matching M. The black and
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grey bold lines are lines adcﬂsd to M at steps 2.1 and
2.2 of Algorithm 2, respectively. The grey variables
are the nondiff variables. From this figure it is easy
to conclude that f; was connected at step 2.1 and f;
and f; were connected at step 2.2. During the
execution of Algorithm 2, Algorithm 1 is called
several times and, for this example, it has marked
the equations f; and f; (step 2.2 of Algorithm 1).
The marked equations need to be differentiated and
added to the graph (steps 5 to 6 of Algorithm 2).
Then new nodes f;” and f;’ are added to the graph
and connected to the derivatives of the variables
that are connected with the original equations,
resulting in the graph shown in Figure 4(a).

(@)

(b)

Figure 4. Graph for the DAE system (4): (a) after one analysis step with the derivatives; and (b) when the singularity is

detected.



Going to the next analysis step, step 2.1 will
successfully add to M the line f; -u;’ but it will fail
to add a line for f; . Once step 2.1 fails, step 2.2 is
called, and for equation f; it will fail to add a
matching too. Then the Algorithm stops (step 2.3)
returning false. The graph for this problem after
two analysis steps (when the singularity is detected)
is shown in Figure 4 (b).

Pendulum Problem

Consider the well-known pendulum model in
Cartesian co-ordinates:

X'=w

yi=z

z'=Tx )
w=Ty—-g
x2+y2=L2

(@)
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The graph for this problenl LCén be seen in Figure
5(a). One analysis step of Algorithm 2 for this
graph will result in the graph shown in Figure 5(b).
As can be seen in Figure 5(b) the algorithm could
not find a matching for /5 with high order derivative
variables (step 2.1 of Algorithm 2) but step 2.2
successfully add to M a connection for it. At this
point, f5 is marked for differentiation and then f;’ is
added to the graph and a new analysis step is done,
resulting in Figure 6(a).

(b)

Figure 5. Graph for the pendulum problem: (a) for DAE system (5) and (b) after one analysis step of Algorithm 2.

Again f;’ could not be directly connected to a high
order derivative variable, but at step 2.2 of
Algorithm 2, f;° could be exchanged with f; (step
2.3 of Algorithm 1) and then connected to x’.
During the procedure of finding a connection for f5°
several equations were marked for differentiation
(step 2.2 of Algorithm 1), namely f;, f> and f;’.
After more two steps the algorithm finishes with
the graph show in Figure 6(b). As can be seen in
this figure, the variables y and z are not covered by

the matching M then this problem has two dynamic
degrees of freedom, hence it requires only two
arbitrary initial conditions and the uncovered
variables are good options for it.

Applying the Pantelides algorithm to the DAE (5) a
solution is found one step before the algorithm
proposed in this work and the final graph has less
equations and variables. On the other hand the
resulting graph has no information about feasible



initial conditions nor can be used to initialise the

(@)
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problem with the method pljééénted in Section 3.

Figure 6. Graph for the pendulum problem: (a) after two analysis steps; and (b) after Algorithm I ends.

4.2 Initialisation of general DAE systems

Initialisation of low-index DAE systems

In order to compare the approach for initialising
general DAE systems proposed in Section 3 with
usual techniques, the galvanostatic process of a thin
film of nickel hydroxide electrode proposed by Wu
and White (2001) was considered. The model due
to the authors, is an index-one DAE system with
two variables (y; and y,) and one dynamic degree of
freedom. Then, in order to initialise the system, one
of the variables could be arbitrary specified as
initial condition and the other three (the other

variable and the derivative of both) must be
determined by the initialisation procedure. As most
numerical techniques, initialisation codes need
initial guesses. Table 1 shows the convergence
range of the initial guess of one variable when the
other is given as initial condition of popular codes
for solving DAE systems.

As can be seen in Table 1 the proposed method is
fairly more robust. Moreover, the proposed method
can initialise high-index problems depending non-
linearly on the derivatives where usual methods
fail. On the other hand the method requires the
symbolic differentiation of the equations.
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Table 1. Convergence range in initialising an index-one problem.

Solver Yy, convergence range, given y; convergence range, given
y;=0.05 as initial condition ,=0.38 as initial condition
DASSL" 0.321 - 0.370 0.071 - 0.352
LIMEX" 0.318 - 0.377 0.056 - 0.418
RADAUS5" 0.348 - 0.352 0.143 - 0.190
DAEIS* -0.974 - 1.663 0.000 - 1.000
Proposed Method -2.70 - 2.66 -0 — 0
Consistent value 0.35024 0.15513

*Data from Wu and White (2001).
4.2.1 Initialisation of high-index DAE systems

The proposed approach was successfully used to
initialise high-index problems as the classical
index-three pendulum model Eq (5) or the index-
three batch distillation column due to Logsdon and
Biegler (1993). The classical codes tested in
Section 4.2.1 fail to initialise high-index DAE
systems, then a comparison was not possible.

4.3 4.3 Solving high-index DAE systems

Once the initialisation step terminates successfully
one can try to advance in solution. As discussed
before, codes designed for general high-index

problems are limited to systems with index at most
three and require an index analysis to discover the
index of the variables. Another option is to apply an
index reduction algorithm, as discussed in Section
2.3, to discover which equations need to be
differentiate and then actually differentiate the
equations to get a reduced index equivalent system
which can be handled by codes designed for low-
index problems. Indeed the last option is a more
general, because, in principle, it can be applied for
any kind of problem. On the other hand, using an
index reduced system the solution falls down in the
well known “drift-off” effect (see Figure 7).

1.004
= = |ndex-zero Solution
— MEBDFI Salution

05004

-0.500 4

0.00 5.00 100 150

Figure 7. Numerical solution for the position of the index-three pendulum problem.

As can be seen in Figure 7, the numerical solution
using an index-reduced system yield acceptable
results only for low integration times. For long time
the algebraic constraints (cable length in the
pendulum problem), which are not directly
considered in the index-reduced system, starts to be
not respected.

5 CONCLUSIONS

Alternatives to initialise and solve general high-
index DAE systems coming from the dynamic

process simulator EMSO were studied. A new
algorithm for index analysis and reduction was
introduced together with an approach for
initialising both low- and high-index problems. The
proposed method has shown success in initialising
high-index problems and proved to be more robust
than the classical codes when initialising low-index
systems. The algorithm consists in a modification
of the well-known Pantelides’ algorithm, improving
the detection of singularities where the original



algorithm does not finishes. Furthermore, when the
execution of the algorithm ends, a consistent set of
initial conditions is discovered.

For solving high-index DAE systems in software
packages it was concluded that, at present, the
better alternative is to use codes specially designed
for  high-index  problems as  MEBDFIL
Unfortunately, these codes can only handle systems
with index at most three and still requires a prior
index characterisation. On the other hand, the index
reduction approach can be applied to systems of
any index but the solution can presents degradation.
How to reduce this degradation (the “drift-off”
effect) is the subject of ongoing research.

Both algorithms, Pantelides’ and the modified
version proposed in this work, are implemented in
the process simulator EMSO, in such simulation
package the derivatives of the equations are
obtained by a built-in symbolic differentiation code.

REFERENCES

Abdulla T. J. and J. R. Cash, 1999, A Package for the
Solution of Initial Value Problem for system of Implicit
Differential Algebraic Equations,
www.netlib.org/ode/mebdfi.f.

Bachmann, R., L Briill, T. Mrziglod, and U. Pallaske, 1990,

On Methods for Reducing the Index of Differential

Algebraic Equations, Comp. Chem. Engng, 14, 1271-
1273.

Brenan K. E., S. L. Campbell and L. R. Petzold, 1989,
Numerical Solution of Initial Value Problems in
Differential-Algebraic Equations. North-Holland, New
York.

Costa Jr.,, EF., R.C. Vieira, A.R. Secchi, E.C. Biscaia
(2001), Automatic Structural Characterization of DAE
Systems, ESCAPE-11, Kolding, Denmark, pp. 123-128.

Diestel R. (2000), Graph Theory — Eletronic Edition 2000,
Graduate Texts in Mathematics, vol. 173, Springer-
Verlag.

Duff I. S. and C. W. Gear, 1986, Computing the structural
index, SIAM J. Alg. Disc. Meth. 7, 594-603.

Letkopoulos A. and M. A. Stadtherr, 1993, Index analysis
of unsteady-state chemical process systems — I, Comp.
Chem. Engng 17, 399-413.

Lioen W. M., J.J.B. Swart and W. A van der Veen, PSIDE

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Seminario do Programa de Pés-Graduagdao em Engenharia Quimica

OKTOBER FAORUM 2005 — PPGEQR

A%
Users' Gu1 e, 1998,
http://www.cwi.nl/archive/projects/PSIDE/.
Logsdon J. S and L. T. Biegler, 1993, Accurate

Determination of Optimal Reflux Policies for the
Maximum Distillate Problem in Batch Distillation, Ind.
Eng. Chem. Res., 32, No 4, 692-700.

Gani R. and T. Cameron, 1992, Modelling for dynamic
simulation of Chemical Processes — the index problem,
Chem. Engng Sci. 47, 1311-1315.

Gear C. W., 1988, Differential-algebraic equation index
transformation. SIAM J. Sci. Stat. Comput., 9, 39-47.

Pantelides C. C., 1988, The consistent initialization of
differential-algebraic systems, SIAM J. Sci. Stat.
Comput. 9, 213-231.

Reissig G, W. S. Martinson and P. Barton, 2000,
Differential-Algebraic Equations of Index 1 may have an
Arbitrarily High Structural Index, SIAM J. Sci. Comput.,
21, No 6, 1987-1990.

Soares R. P. and A. R. Secchi, 2003, EMSO: A new

Modelling,
Optimisation, ESCAPE-13, 947-952.

Unger J., A. Kroner and W. Marquardt, 1994, Structural

Environment for Simulation and

Analysis of Differential-Algebraic Equation Systems —
Theory and Application, Computers Chem. Engng, 19,
No 8, pp 867-882.
Wu B., R.E. White (2001), An initialization
subroutine for DAEs solvers: DAEIS, Computers
Chem. Engng, 25, pp 301-311.



