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Abstract— The aim of the present work is
the development of a method based on the
momentum transfer law to obtain the solu-
tion of confined jet diffusion flames. The
Reichardt’s equation is used to approximate
the flow/mixture fraction and it is discretized
based on the second order finite difference tech-
nique. All thermochemical variables are deter-
mined by the mixture fraction as the Sandia
Flame C, used to check the results, is close to
equilibrium. The semi-analytical/numerical re-
sults compare reasonably with the experimen-
tal data indicating that the method contributes
to solve some jet flames at low cost.
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I. INTRODUCTION

A jet diffusion flame is an important example in non-
premixed combustion, since the fuel and the oxidizer
enter the chamber in separate streams. Combustion
corresponds to a complex sequence of chemical reac-
tions between a fuel and an oxidizer releasing heat and
sometimes producing light too. Combustion is usually
fast compared to molecular mixing, happening in lay-
ers thinner than the typical length scales of turbulence
(Peters, 2000).

The length scale disparity in turbulent combustion
inside a burner, for example, is very large: the burner
has lengths of order 1m, the containing energy eddies
have diameters of order 1−10cm, the small-scale mix-
ing eddies are of order 1 − 10mm, the flame thickness
has dimensions which varies between 10−100µm, and
the molecular iterations characteristic lengths are very
small, ranging from 1 − 10nm.

Moreover, the time-scale disparity is also very large
(Poinsot and Veynante, 2005) and, at least theoreti-
cally, all scales must be well predicted to obtain an ad-
equate mathematical solution of a jet diffusion flame.
Due to the exothermicity of combustion reactions, the
temperature raises since the chemical reactions be-
come faster, then the length scale is short.

Jets and jet flames seem to be simple; however, their
structure is complex because a jet usually starts with
a potential zone of 2 to 10 diameters length and ends
with a turbulent plume which is very difficult to be
simulated by the conventional numerical techniques,
including RANS (Reynolds Averaged Navier-Stokes)
and LES (Large-Eddy Simulation). The majority of
jet and jet flame simulations found in the literature
reveals a turbulent structure which is much coarser
than that seen in the experiments.

To solve nonpremixed flames many approximate
models are found in the literature (Williams, 1985;
Liñán, 1991; Peters, 2000; Warnatz et al., 2001; Vey-
nante and Vervisch, 2003; Fernández-Tarrazo et al.,
2006). A two-layer flame structure considers a very
thin fuel consumption layer and a much thicker oxi-
dation layer, hypothesis valid for stoichiometric and
lean conditions and for moderately rich flames. Some
models employ a formulation based on the mixture
fraction for the flow and on the flamelet models for
the chemistry. The basic idea of the flamelet model-
ing is that an instantaneous flame element embedded
in a turbulent flow has a structure of a laminar flame
(Peters, 2000). The flamelet equations correspond to
a balance between the unsteady changes, the diffusive
effects and the chemical reactions. Then the species
mass fraction Yi depend on the mixture fraction, on
the scalar dissipation rate and on the time.

The initially chemical elements contained in the fuel
are conserved during combustion; they can be cal-
culated by the mixture fraction (Bilger, 1980; Law,
2006), a conserved scalar. The element mass frac-
tions are not changed by reactive processes, they are
changed by mixing and such is governed by diffusion.
The mixture fraction axial decrease in a flame is sim-
ilar to that of velocity decrease (Kuo, 2005); such ve-
locity decrease depends on the mixing, which indicates
the turbulent flow evolution.

The scalar dissipation rate turns an important
quantity when analyzing turbulent combustion using
flamelets (Peters, 2000). It can be seen as a diffusion
coefficient acting on an infinitely fast chemistry model.
For jet flames its mean value is of order 100, and it may
oscillate considerably.
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When the burner dimensions are much bigger than
that of the fuel jet diameter, of a jet diffusion flame,
the heat losses to the walls are usually small and the
contribution due to radiation turns negligible; it is
more important in furnaces, spreading of buildings and
forest fires (Law, 2006).

The present work develops an analytical/numerical
method to approximate the solution of confined jet dif-
fusion flames. The method is based on the solution of
the diffusion Reichardt’s equation, discretized by the
finite difference technique.

II. MODEL FORMULATION AND
SOLUTION PROCEDURE

In a jet diffusion flame the jet is injected usually from
a tube with diameter d and the pilot, used to stabi-
lize the flame, has a diameter D, as shown in Fig. 1.
Inside a burner the Mach is normally low, the pres-
sure remains almost constant and the heat losses to
the walls are small (Poinsot and Veynante, 2005).

The complete set of governing equations includes
the momentum (Navier-Stokes), mixture fraction, en-
thalpy, species mass fraction and state. Favre filter-
ing, or density weighted Favre filtering, turns conve-
nient when writing the governing equations. It helps
to avoid terms such as ρ′u′ that comes from the time-
averaging method. The set of governing equations in
nondimensionalized form can be derived by applying a
spatial, density-weighted filter, resulting (De Bortoli,
2008) for:

Figure 1: Cylindrical burner sketch
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where ũ is the velocity, ρ̄ the density, t the time, p̄ the
pressure, τ̃ the stress tensor, Z̃ the mixture fraction,
h̃ the enthalpy, and Ỹi the mass fractions: YF for the
fuel and YO for the oxidizer. χ is the scalar dissipation
rate and τ the nondimensional time.

In these equations Re = u0d/η is the Reynolds,
Sc = η

Di
= 0.7 (where η is the kinematic viscosity

and Di the diffusivity of each specie) the Schmidt,
Pr = η

DT
= 0.7 (where DT is the thermal diffusiv-

ity) the Prandtl, Da = AaYO(1−α)ρste
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(Steiner and Bushe, 1998). u0

is the velocity, E the activation energy, A the pre-
exponential coefficient, Tu and Tb the unburnt and
burnt temperatures, respectively, WF the molecular
weight of the fuel and WO2 of the oxidizer, χst the
scalar dissipation rate and ρst the density at stoichio-
metric condition. a = 2∆ZZst(1 − Zst) appears after
the nondimensionalization of the species mass fraction

equation and Zst =
YO2,2

µO2
WO2

µF WF
YF1

+YO2,2

is the mixture

fraction at stoichiometric condition, where µF , µO2

are the reaction coefficients and YF1
and YO2,2

corre-
spond to the initial mass fraction quantities of fuel and
oxidizer, respectively.

The temperature can be obtained from the enthalpy
through a simple Newton iteration h̃ =

∑n
i=1 Ỹihi(T̃ ).

The reaction rate, in nondimensional form, can be ap-

proximated by ẇ ∼ DaYF YOe
−Ze(1−θ

[1−α(1−θ)] (De Bortoli,
2008).

The exponential source term, of the Arrhenius type
approximation, depends strongly on the temperature
which modifies considerably the density, affecting the
stability of a numerical procedure. At low Mach num-
bers the spatial variations in pressure are small com-
pared with the pressure itself and may be neglected in
the equation of state, where p may be approximated by
a constant (Liñán, 1991) when obtaining the density.
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Instead of solving the set of equations (1-5), one
solves a simplified momentum equation. Reichardt
discovered that the velocity profiles under considera-
tion can be approximated successfully by a Gauss func-
tion, or by its integral, the error function (Schlichting
and Kestin, 1968). In two-dimensional frictionless flow
the momentum equation is given by

∂
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(

p̄

ρ
+ (ū)2

)

+
∂

∂y
(ūv) = 0 (6)

Reichardt made the assumption that ūv =

−λ(x)∂ū2

∂y , λ(x) is the momentum transfer length,
which states that the flux of the x-component of mo-
mentum is proportional to the transverse gradient of
momentum. Eliminating ūv and with the assumption
of constant pressure one obtains the Reichardt’s fun-
damental equation
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∂2ū2

∂y2
(7)

In this way, the distribution of momentum in free
turbulent flow is governed by a generalized heat con-
duction equation type. The distribution of momentum
can be approximated by
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where c1 and c2 are constants and b is the half jet di-
ameter, which depends on the axial distance from the
jet origin. Then, to satisfy the Eq. (7), the momentum
transfer length must be equal to λ(x) = b

2
db
dx .

As for jet diffusion flames almost in equilibrium the
jet is governed essentially by mixing, one proposes to
employ here the Reichadt’s equation in axisymmetric
coordinates with λ depending on x as well as on r;
λ(x, r), resulting
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constants c1 and c2 can be determined considering that
ū = u0 for x = 0, r = 0 and ū ∼ 0.1u0 for r = 0, x ∼

70d0, where d0 is the fuel jet diameter.
The mixture fraction is assumed to be equal to the

velocity obtained from Eq. (9) because one considers
the existence of two jet invariants (Kuo, 2005):
- conservation of momentum Iu =

∫

∞
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2
0/2)

- conservation of mass of fuel specie IZ =
∫

∞

0
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2
0/2)

Moreover, the relation Z.x
IZ

= U.x
Iu

, results in Z = U for
u0 = 1.

All thermochemical variables are determined by the
mixture fraction since the Sandia Flame C is close to
equilibrium. Consider a one-step global reaction given
by µF [CmHn] + µO2

[O2] → µCO2
[CO2] + µH2O[H2O]

if YO2 = 0, then (Peters, 2000)

YF = YF1
(Z − Zst)/(1 − Zst) (11)

T = T0 + QYO2,2(1 − Z)/(CpO2
µO2WO2) (12)

and if YF = 0, then

YO2
= YO2,2

(1 − Z/Zst) (13)

T = T0 + QYF1Z/(CpF
µF WF ) (14)

where Q is the heat release, T0 the mixing tempera-
ture (without combustion) and Cp the specific heat.
As the elements mass fraction does not change during
combustion (are conserved) one can obtain the burned
quantities for:
- Z ≤ Zst

YCO2,b = mWCO2YF,1Z/WF (15)

YH2O,b = nWH2OYF,1Z/WF (16)

- Z ≥ Zst

YCO2,b = m
WCO2

WF
YF,1Zst

1 − Z

1 − Zst
(17)

YH2O,b = n
WH2O

2WF
YF,1Zst

1 − Z

1 − Zst
(18)

where W∗ are the corresponding molecular weights.
Observe that the solution (10) corresponds to a gen-

eral/possible form of the analytical solution of Eq. (9),
where b, the half of the jet diameter, depends on x at
some exponent q.

III. RESULTS

The jet flame was chosen because it seems to be repre-
sentative of the class of nonpremixed flames. A burner
commonly employed in practice consists in surround-
ing a high velocity jet of gas fuel with an annular
pilot flame. Here, one employs a duct of cylindrical
cross section with diameter De = 1 and the fuel is in-
jected from a tube of diameter d. The Sandia Flame C
(Re=13400) is used to compare the results; it consists
of a main jet with a mixture of 25% of methane and
75% of air. This jet is placed in a coflow of air and the
flame is stabilized by a pilot (Barlow and Frank, 2003).
The domain spans a region of 110D×10D in the axial
and the radial directions, respectively. One employs a
uniform mesh containing 300 × 100 points. In the fol-
lowing, some results for flame C are compared with the
corresponding experimental data (Barlow and Frank,
2003). The velocity/mixture fraction result shown in
Fig. 2 indicates the axial decreasing behavior, since
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Figure 2: Comparison of the axial and radial (at X/D =
30) mixture fraction profiles for flame C with experimental
data (Barlow and Frank, 2003)

this flame is governed by hydrodynamics. The reac-
tion occurs at a very thin zone, not affecting the mean
flow. The radial velocity distribution can be reason-
ably approximated by a Gaussian function. If we solve
the LES set of equations (1-5) the mixture fraction is
better predicted for X/D between 10−30, as shown in
Fig. 2 for a mesh containing 199× 41× 41 cells; how-
ever, its cost is at least 102 times the cost for solving
the Eq. (9).

Based on the Burke-Schumann analytic solution
(Peters, 2000; Poinsot and Veynante, 2005), the fuel
mass fraction is reasonably well predicted, as shown
in Fig. 3; the oxidizer mass fraction is well predicted,
but it tends to dissipate a little in the radial direction
for high R/D, as shown in Fig. 4.

Figure 5 shows the temperature profile along the
flame centerline. The temperature increases consid-
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Figure 3: Comparison of the axial and radial (at X/D =
30) fuel CH4 mass fraction profiles for flame C with exper-
imental data (Barlow and Frank, 2003)

erably at X/D ∼ 45, at reaction zone, and decreases
after it due to the thermal expansion. The correspond-
ing radial profile indicates that the flame can be rea-
sonably approximated using a Gaussian function, as
by Reichardt suggested. The temperature distribu-
tion can also be represented in terms of the velocity
distribution (Schlichting and Kestin, 1968).

Finally, Fig. 6 shows the radial mass fraction of the
product CO2 at X/D = 45 and 60. Both profiles com-
pare reasonably with the corresponding experimental
data. Although the use of only one equation, Eq. (9),
the flame spreading seems to be adequately captured
with an enormous decrease of the computational time
compared to that needed to solve the set of equations
(1-5).

Latin American Applied Research 39:157-163(2009)

160



 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0  10  20  30  40  50  60  70  80

Y
O

2

X/D

’YO2-exp’

’YO2-san’

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0  1  2  3  4  5  6  7  8

Y
O

2

R/D

’YO2-45-exp’

’YO2-45-san’

Figure 4: Comparison of the axial and radial (at X/D =
45) oxidizer profiles for flame C with experimental data
(Barlow and Frank, 2003)

IV. CONCLUSIONS

The present work developed an analytical/numerical
method for the solution of a piloted jet diffusion flame.
The numerical solution of the Reichard’s equation is
based on the corresponding analytical solution with λ
in equation (9) depending on x as well as on r.

Many numerical works found in the literature em-
ploy more than one million points to obtain reasonable
results for jet diffusion flames. Here, the analytical/
numerical solution is cheaply obtained (less than 1 min
in an Intel Acer Aspire 5570-2792 Dual Core Note-
book). One observes that the appropriate model sim-
plification results in a mathematical equation, based
on the momentum transfer law, whose solution reduces
the time needed when solving some confined jet diffu-
sion flames.
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Figure 5: Comparison of the axial and radial (at X/D =
45 temperature profiles for flame C with experimental data
(Barlow and Frank, 2003)
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