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Abstract

Bromeliaceae is a morphologically distinctive and ecologically diverse family originating in the New World. Three
centers of diversity, 58 genera, and about 3,140 bromeliad species are currently recognized. We compiled all of the
studies related to the reproductive biology, genetic diversity, and population structure of the Bromeliaceae, and dis-
cuss the evolution and conservation of this family. Bromeliads are preferentially pollinated by vertebrates and show
marked variation in breeding systems, from predominant inbreeding to predominant outcrossing, as well as con-
stancy in chromosome number (2n = 2x = 50). Autogamous or mixed mating system bromeliads have a high inbreed-
ing coefficient (FIS), while outcrossing species show low FIS. The degree of differentiation among populations (FST) of
species ranges from 0.043 to 0.961, which can be influenced by pollen and seed dispersal effects, clonal growth,
gene flow rates, and connectivity among populations. The evolutionary history of the Bromeliaceae is poorly known,
although some studies have indicated that the family arose in the Guayana Shield roughly 100 Mya. We believe that
genetic, cytogenetic, and reproductive data will be essential for diagnosing species status and for assisting conser-
vation programs.
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Introduction

The Bromeliaceae is one of the morphologically and

ecologically most diverse flowering plant families native to

the tropics and subtropics of the New World (Givnish et al.,

2011). Its geographical distribution ranges from the states

of Virginia, Texas, and California in the USA (latitude

37° N) to northern Patagonia in Argentina (latitude 44° S).

The family is known for its recent adaptive radiation. Bro-

meliads have different habits, varying from terrestrial to

epiphytical, and are found from sea level to altitudes above

4,000 m, in both desert and humid regions, as well as in

soils subject to regular floods and in places with very low or

high luminosity. They can thrive on scalding sands and

rocks, and withstand temperatures near 0 °C (Benzing,

2000).

Traditionally, the family has been divided into three

subfamilies, Bromelioideae (~650 spp.), Pitcairnioideae

(~890 spp.), and Tillandsioideae (~1000 spp.), based on

Smith and Downs (1979); this classification is adopted in

the present study. However, in a recent phylogeny based on

eight plastid regions, with representatives from 46 of 58

genera, Givnish et al. (2011) confirmed the eight-

subfamily classification advanced by Givnish et al. (2007).

The new classification splits the paraphyletic Pitcarnioi-

deae into six subfamilies and proposes that they are related

to each other as follow: (Brocchinioideae, (Lindmanioi-

deae, (Tillandsioideae, (Hechtiooideae, (Navioideae, (Pit-

carnioideae, (Puyoideae, Bromelioideae))))))).

Bromeliads are especially appreciated for their orna-

mental value, but some species have proven medicinal

properties (e.g., Bromelia antiacantha) or are cultivated as

tropical fruits (e.g., pineapple: Ananas comosus). Here, we

review the main genetic and evolutionary topics concern-

ing Bromeliaceae, from a conservation standpoint.

Pollination and Reproductive Biology

Among the plant families, Bromeliaceae is the one

with the highest diversity of pollination modes (ornitho-

phily, chiropterophily, entomophily, mixed/unspecific, and

autogamy) throughout its geographic distribution (Kessler
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and Krömer, 2000; Canela and Sazima, 2005; Wendt et al.,

2008; Schmid et al., 2010). Bromeliads have evolved floral

displays with a great diversity of colors, shapes, and scents,

which are related to pollinator attraction, with nectar being

the usual reward (Benzing, 2000). The presence of Brome-

liaceae in the New World has provided an important re-

source base, largely absent in the Old World, for small,

hovering vertebrate pollinators (Fleming and Muchhala,

2008). A recent study (Krömer et al., 2008) strongly sup-

ports the hypothesis that the composition of nectar sugars in

Bromeliaceae is correlated with the pollinator syndrome

(lepidopterophilous, trochilophilous, or chiropterophilous).

Although the majority of bromeliads are pollinated by ver-

tebrates, mainly hummingbirds and bats, bees are among

the most frequent visitors to some short-corolla species

with ornithophilous features. Nevertheless, few studies

have identified insects as effective pollinators of these bro-

meliads (Kamke et al., 2011).

Simultaneously with the divergence of bromeliad

subfamilies (see “Evolution” below), the first split of mod-

ern hummingbird lineages appears to have occurred in the

Andes about 13 Mya, with several other Andean lineages

diverging during the Pliocene and Pleistocene (Givnish et

al., 2011). This might have contributed to the rapid expan-

sion of the range of bromeliads and pollinators throughout

the Neotropics. However, plant-pollinator interactions,

seed dispersal, and the mechanisms promoting or con-

straining species diversification via these interactions are

complex and poorly studied in the Neotropics (Antonelli

and Sanmartín, 2011).

Bromeliads possess specialized floral features such as

herkogamy and dichogamy, which prevent spontaneous

self-fertilization and facilitate animal-mediated outcross-

ing (Benzing, 2000; Martinelli G, 1994, PhD Thesis, Uni-

versity of St. Andrews). Floral morphology, hand-polli-

nation experiments, and population genetics studies have

shown that selfing and mixed are the most common mating

systems in a large part of the family (Bush and Guilbeau,

2009; Matallana et al., 2010; Table 1), although self-in-

compatibility systems can be found in all of the subfamilies

(Pitcairnioideae: Vosgueritchian and Buzato, 2006; Bro-

melioideae: Canela and Sazima, 2003, 2005; Schmid et al.,

2010; Kamke et al., 2011; Tillandsioideae: Hietz et al.,

2006; Ramírez-Morillo et al., 2009). The Tillandsioideae

subfamily has a particularly high frequency of selfing and

mixed systems in various genera, including Alcantarea,

Guzmania, Racinea, Tillandsia, Vriesea, and Werauhia

(Benzing, 2000; Lasso and Ackerman, 2004; Paggi et al.,

2007, 2012; Matallana et al., 2010; Martinelli G, 1994, PhD

Thesis, University of St. Andrews; Table 1). Clonality is

another reproductive strategy present in the family (Mu-

rawski and Hamrick, 1990; Izquierdo and Pinero, 2000;

Sarthou et al., 2001; Sampaio et al., 2002; Sgorbati et al.,

2004; Cascante-Marín et al., 2006; Barbará et al., 2009),

with important ecological and evolutionary consequences

(Gonzales et al., 2008) such as recruitment and population

maintenance (Villegas, 2001).

We studied the mating systems of two bromeliad spe-

cies. Vriesea gigantea presented a high natural production

of flowers, fruits, and seeds, with high rates of viable seeds,

with an average germination rate of 94% (Paggi et al.,

2007, 2010). Furthermore, the species showed regular

chromosome segregation and high pollen viability

(84-98%, Palma-Silva et al., 2008), which indicated that

the populations analyzed were fertile. Manual hand-polli-

nation indicated that V. gigantea is self-compatible (Paggi

et al., 2007) and showed low to moderate levels of inbreed-

ing depression (� = 0.02 to 0.39; Sampaio et al., 2012). In a

study with Vriesea friburgensis we highlighted that it is

pollinated by hummingbirds and produces high flower,

fruit, and seeds together with high seed and pollen viability.

We concluded that the wild populations studied were fer-

tile. Self-sterility was observed from spontaneous selfing

and manual self-pollination treatments, which may be a

consequence of late-acting self-incompatibility. We pro-

posed that this self-sterile species depends on pollinator

services to maintain its population fitness and viability

through cross-pollination (Paggi et al., 2012).

Diversity and Genetic Structure

The genetic diversity of only a few species of Brome-

liaceae has been studied. We compiled data from all diver-

sity and genetic structure studies published before June

2011 (Table 1). Of the 58 genera and about 3,140 bromeliad

species (Givnish et al., 2011), only 20 species of the follow-

ing nine genera have been previously evaluated: Aechmea,

Alcantarea, Bromelia, Dyckia, Encholirium, Pitcairnia,

Puya, Tillandsia, and Vriesea. Most of the studied species

are endemic to the Atlantic rainforest in southeastern

Brazil.

The use of co-dominant markers has been the pre-

ferred method for studying bromeliad population genetics,

with nuclear microsatellite markers being the most fre-

quently used molecular markers (nine species), followed by

allozymes (eight species). Dominant markers such as am-

plified fragment length polymorphisms have been used in

only one study of one species, and random amplified poly-

morphic DNA was applied in another study of three species

(Table 1). A comparison of genetic diversity parameters

among such studies is difficult, as the highly polymorphic

SSRs usually show higher observed and expected hetero-

zygosity (HO and HE, respectively) compared with other

markers. For example, populations of Pitcairnia geyskesii

have been evaluated using allozymes (Sarthou et al., 2001)

and SSRs (Boisselier-Dubayle et al., 2010). With allozy-

mes, HO and HE were 0.188 and 0.246, respectively; with

SSRs, HO and HE were 0.293 and 0.324, respectively.

We found low inbreeding coefficient indices (FIS) in

almost all species with outcrossing mating systems. The ex-
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ceptions were B. antiacantha (FIS = 0.431), possibly due to

the Wahlund effect and/or null alleles, and Alcantarea

glaziouana (FIS = 0.156), owing to biparental inbreeding.

Pitcairnia staminea, which is autogamous, had a high in-

breeding coefficient (FIS = 0.240; Table 1). V. gigantea and

Dyckia ibiramensis, which have a mixed mating system,

also showed high inbreeding coefficients (FIS = 0.273 and

0.436, respectively; Table 1). The degree of differentiation

among populations (FST) of species evaluated ranged from

0.043 to 0.961. These differences in plant population struc-

ture can be influenced by pollen and seed dispersal effects,

clonal growth (Gliddon et al., 1987), gene flow rates, and

connectivity among populations. Compared with species

from continuous forest habitats, species restricted to

inselberg habitats (Barbará et al., 2007, 2009; Palma-Silva

et al., 2011; Table 1) showed more highly structured popu-

lations, with extremely high population differentiation and

isolation based on the distance among inselbergs. Thus,

rock outcrops could be highly useful venues for studies re-

garding the molecular ecology and genetics of continental

radiations.

Cytogenetics

Few cytogenetic studies of Bromeliaceae are avail-

able. Chromosome numbers have been determined for

nearly 12% of the known species (Cotias-de-Oliveira et al.,

2004), most of which are horticulturally important as orna-

mentals or fruit producers. Owing to the scarcity of cyto-

genetic data, the chromosomal evolution of the family has

not been completely elucidated. The major hindrances to

cytogenetic studies are probably the very small size and

poor staining ability of the chromosomes, together with a

marked cytoplasmic content (Sharma and Ghosh, 1971;

Brown and Gilmartin, 1986).

Billings (1904) was the first to determine the chromo-

some number of a bromeliad, using Tillandsia usneoides,

after which several studies were carried out. The first re-

ports revealed a great variety of diploid numbers (2n = 16,

34, 36, 46, 48, 50, 52, 54, 56, 64, 96, and 100) and basic

numbers (x = 5, 8, 9, 16, 17, and 25; Brown and Gilmartin,

1986; Bellintani et al, 2005). In contrast, most of the 72

bromeliad species studied by Marchant (1967) showed a

basic number of x = 25 (except Cryptanthus: x = 17). Since

then, studies in several different species have generally

found the basic chromosome number to be a multiple of

x = 25, corroborating Marchant’s finding (Brown and Gil-

martin, 1989; Cotias-de-Oliveira et al., 2000, 2004; Pal-

ma-Silva et al., 2004; Gitaí et al., 2005; Ceita et al., 2008;

Louzada et al., 2010). Polyploidy of this base number

(2n = 4x = 100 and 2n = 6x = 150) has been observed in all

subfamilies, but with low frequency (Brown and Gilmartin,

1989; Gitaí et al., 2005; Louzada et al., 2010).

Brown and Gilmartin (1989) have proposed a model

to explain the evolution of the chromosome base number.

In their model, two paleodiploids (x = 8 and x = 9) hybrid-

ized, resulting in a paleotetraploid lineage (x = 17), which

in turn hybridized with the x = 8 paleodiploid, and the

poliploidization stabilized at the hexaploid level of x = 25.

Eletrophoretic data (Soltis et al., 1987) suggest that a “di-

ploidization” of the dibasic paleohexaploid occurred. The

dibasic model could explain the origin of the distinctive

chromosome number in Cryptanthus, which may represent

a paleotetraploid with 2n = 34. One alternative hypothesis

is that Cryptanthus evolved from x = 25 via aneuploidy

(Brown and Gilmartin, 1989). Flow cytometric results ob-

tained by Ramírez-Morillo and Brown (2001) indicated

that the Cryptanthus chromosome number originated by

descending aneuploidy.

Bromeliaceae chromosomes are usually exceedingly

small (0.21-2.72 �m), although the size varies widely

among species. According to Gitaí et al. (2005), larger

chromosomes are usually found at lower ploidy levels, with

diploids exhibiting a higher contrast between maximal and

minimal chromosome sizes compared with polyploids.

Chromosome banding and triple staining with

CMA3/Actinomycin/DAPI has revealed that bromeliads

have relatively little heterochromatin, with only one or two

CMA+/DAPI- terminal bands corresponding to nucleolus

organizing regions. B chromosomes have been reported in

three Bromelioideae species (Cotias-de-Oliveira et al.,

2000, 2004; Bellintani et al., 2005).

Evolution

Recently, Givnish et al. (2011) reinforced the i.e. of

Smith (1934) that bromeliads arose in the Guayana Shield

roughly 100 Mya during the Cretaceous Period, with the

extant subfamilies beginning to diverge only about 19 Mya.

Givnish et al. (2011) also suggested that about 15.4 Mya,

bromeliads began to spread from that hyper-humid, ex-

tremely infertile center to other parts of tropical and sub-

tropical America, and probably arrived in tropical Africa

about 9.3 Mya, in a recent long-distance dispersal event.

During the evolution of this family, events such as climatic

oscillations throughout the Pleistocene have resulted in the

dispersion of some clades, including Bromelioidae

(Givnish et al., 2011). As of the current time, V. gigantea

has survived glaciation periods in two fragmented refugia

in southeastern Brazil (Palma-Silva et al., 2009).

The “bromeliad revolution” probably occurred after

the uplift of the northern Andes and shift of the Amazon to

its present course (Givnish et al., 2007). Some morphologi-

cal and physiological adaptations, including crassulacean

acid metabolism (CAM) photosynthesis and the formation

of rosettes and leaf absorptive scales, might have been cru-

cial to the adaptive radiation of bromeliads (Benzing, 2000;

Crayn et al., 2004).

An ecological peculiarity of Bromeliaceae, compared

with other families of the order Poales, is their epiphytic

habit (Linder and Rudall, 2005). Based on plastid loci,
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Crayn et al. (2004) proposed that the epiphytic habit of bro-

meliads evolved a minimum of three times, most likely in

response to geological and climatic changes in the late Ter-

tiary.

The more than 3,000 bromeliad species that currently

occupy the Neotropical region have evolved to fill numer-

ous niches, with an incredible diversity of adaptations.

Some aspects of the complex evolutionary history of this

family are still unclear, indicating the need for further mo-

lecular studies, in combination with paleontological data,

to explain the evolutionary gaps in the wide diversity of

bromeliad forms and adaptations.

Conservation

Bromeliads are widely distributed in the Neotropics,

with three centers of diversity: the Brazilian Atlantic rain-

forest; the Andean slopes of Peru, Colombia, and Ecuador;

and Mexico and adjacent Central America (Zizka et al.,

2009). Many species are presently distributed in endan-

gered biomes, are endemic, or have a relict distribution,

threatening the survival of many members of this family.

For example, the Brazilian Atlantic rainforest is a diverse

biome with multiple extremely endangered vegetation ty-

pes occupying only 7.91% of the extent of their original dis-

tribution (Fundação SOS Mata Atlântica and Instituto

Nacional de Pesquisas Espaciais, 2009; Carnaval and Mo-

ritz, 2008). As the Atlantic rainforest contains at least 803

bromeliad species, 653 of which are endemic and 40% of

which are endangered, the preservation of the Atlantic rain-

forest is vital for the conservation of Bromeliaceae (Mar-

tinelli et al., 2008).

Few studies of Bromeliaceae connect genetic data

and conservation planning. All of the works cited in the

above section “Diversity and genetic structure” contain

data that could be used in making conservation decisions.

Considerations of the clonal and sexual reproduction, de-

mography, genetic structure within and among populations,

gene flow, and mating systems of Bromeliaceae are of pri-

mary importance in developing successful conservation

strategies (Bizoux and Mahy, 2007).

Our group has studied mainly Brazilian bromeliads,

and our field records show a significant reduction in the

current distribution of species, compared with the first re-

cords in the literature. We believe that genetic, cytogenetic,

and reproductive data will be essential for diagnosing spe-

cies status and for assisting conservation programs and will

help to elucidate aspects of evolution and environmental

and climate change for Bromeliaceae and the Brazilian At-

lantic rainforest.
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