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ABSTRACT

The Internet has become a large platform where users can interact and share personal
files or third-party productions. Considering the increasing demand for efficient content
sharing, modern and robust content distribution systems (CDS) need to be deployed and
maintained. In the context of this thesis, CDS are defined as systems used for sharing
any kind of content on the Internet. Two categories of CDS are underscored as the most
popular ones: file sharing and streaming systems.

Peer-to-peer (P2P) architectures have emerged as a potential solution to improve con-
tent dissemination in CDS. The popularization of P2P architectures, in the context of
CDS, motivated the scientific community to investigate some challenging problems, namely
network topology optimization, bootstrap mechanisms, and service discovery. One par-
ticular interesting challenge, in the context of this thesis, is related to mechanisms to
approximate users to their personal interests. This is important to guarantee good qual-

ity of experience (QoE) to users when searching for content. Imprecise descriptions are
likely to happen due to different users’ opinion or malicious behavior.

Substantial research has been carried out to fight content pollution in CDS. Proposed
approaches try to identify and isolate suspicious content after publication. The rationale
is to build a base of knowledge about polluters and fake content. However, the reaction
time until a content is considered polluted is considerably long, which allows pollution
to get widely disseminated. Furthermore, some previous approaches attempt to polarize
contents in either polluted or not, not taking into account the inherent subjectivity behind
the evaluation of shared contents.

The main objective of this thesis is to devise a mechanism to provide users a good
QoE – by acting proactively in the early stages of content distribution life cycle –
and reduce the effect of malicious interferences. To achieve that, three main steps
guided the research work presented in this thesis. First, we proposed a novel strategy
that operates conservatively to avoid wide pollution dissemination. Second, we extended
our previous solution to cope with the subjectivity regarding content descriptions. Third,
and last, we address the pollution attack as a massive attack. To evaluate our solution, a
set of experiments was carried out using both real tests and simulations. Results showed
the importance of adopting security measures to mitigate malicious behavior in CDS. In
the absence of countermeasure mechanisms, even a small proportion (10%) of attackers
was able to subvert the system. The introduction of a conservative strategy in this thesis
demonstrated the efficacy of delaying users in circumventing massive attacks.

Keywords: Content distribution systems, peer-to-peer systems, file sharing, streaming
systems, tagging systems, conservative strategies, delaying mechanisms, content pollu-
tion, massive attacks.





RESUMO

Atrasar para Aprimorar: Protegendo Usuários Contra Ataques Massivos em
Sistemas de Distribuição de Conteúdo

A Internet tem se tornado uma plataforma importante para interação e compartilha-
mento de arquivos, o que motivou uma crescente demanda por serviços eficientes. Sis-

temas de distribuição de conteúdo (CDS) precisaram ser criados visando modernidade e
robustez. No contexto desta tese, CDS são definidos como sistemas usados para compar-
tilhar qualquer tipo de conteúdo na Internet. Duas categorias de CDS se destacam como
as mais populares: compartilhamento de arquivos e sistemas de mídia contínua.

Arquiteturas par-a-par (P2P) surgiram como potenciais soluções para o aprimora-
mento da disseminação de conteúdo nos CDS. Nesse contexto, a popularização das ar-
quiteturas P2P motivou a comunidade científica a investigar alguns aspectos de pesquisa
desafiadores, e.g., otimização de topologias de redes, mecanismos de inicialização de sis-
temas e serviços de descoberta de recursos. Um desafio com interesse especial a esta
tese diz respeito a mecanismos para conciliar a preferência dos usuários aos conteúdos
publicados. Esse aspecto é importante para garantir uma boa qualidade de experiência

(QoE) aos usuários dos sistemas, uma vez que podem existir divergências entre opiniões
na descrição dos conteúdos e ações maliciosas.

Esforços de pesquisa constantes têm sido feitos para combater poluição de conteúdo
em CDS. Abordagens buscam construir uma base de conhecimento sobre poluidores e
conteúdos poluídos para identificar e isolar conteúdos suspeitos depois que eles são pu-
blicados. Entretanto, o tempo de reação dessas abordagens até considerar um conteúdo
poluído é consideravelmente longo, permitindo uma ampla disseminação de poluição.
Além disso, algumas abordagens anteriores buscam polarizar conteúdos entre poluídos
ou não, desconsiderando a intrínseca subjetividade acerca da classificação dos conteúdos
compartilhados.

O objetivo principal desta tese é propor um mecanismo para prover uma boa
QoE aos usuários – agindo proativamente durante as fases iniciais da publicação dos
conteúdos – e reduzir os efeitos de interferências maliciosas. Para alcançar tal objetivo,
três passos principais guiaram o trabalho de pesquisa apresentado nesta tese. Primeiro,
propusemos uma estratégia inovadora que opera de forma conservadora para conter a dis-
seminação de poluição. Segundo, estendemos nossa solução para lidar com a subjetivi-
dade acerca das descrições dos conteúdos. Terceiro, tratamos o ataque de poluição como
um ataque massivo. Para avaliar a solução, experimentos foram executados utilizando
testes reais e simulações. Resultados ressaltaram a importância de adotar medidas de se-
gurança para combater comportamentos maliciosos em CDS. Na ausência de mecanismos
de contramedida, pequenas proporções (10%) de atacantes foram capazes de comprome-
ter o sistema. A instanciação da estratégia conservadora proposta nesta tese demonstrou
a eficácia em atrasar usuários para contornar ataques massivos.

Palavras-chave: Sistemas de distribuição de conteúdo, sistemas par-a-par, compartilha-
mento de arquivos, sistemas de mídia contínua, sistemas de anotações, estratégias conser-
vadoras, mecanismos de atraso, poluição de conteúdo, ataques massivos.
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1 INTRODUCTION

The Internet has become a large platform where users can interact and share contents.
These contents are typically personal files or third-party productions, which are published
and downloaded by users based on their own interests (ANDRADE et al., 2005). Recent
measurement reports have indicated that there is a noticeable number of content shar-
ing activity taking place on the Internet, and that the exchange of multimedia contents
accounts for an expressive traffic volume on Internet backbones (GERBER; DOVER-
SPIKE, 2011). For example, the content uploaded to YouTube in 60 days is equivalent to
the amount that would have been broadcast for 60 years, without interruption, by NBC,
CBS and ABC altogether (The New York Times, 2010; FIGUEIREDO; BENEVENUTO;
ALMEIDA, 2011). To satisfy the demand for efficient content sharing, modern and ro-
bust content distribution systems (CDS) need to be deployed and maintained (AGER et al.,
2011).

In the context of this thesis, CDS are defined as systems used for sharing any kind
of content on the Internet. Two categories of CDS are underscored as the most popular
ones: file sharing and streaming systems. File sharing systems are used to store and dis-
seminate any digital content, from documents and pictures to audios and videos. Since
files are accessed only after the entire download is complete, there is no restriction re-
garding the order in which bytes are obtained. In contrast, streaming systems are used
to disseminate media (e.g., audio and/or video) in a timely manner in order to enable its
prompt reproduction. If the content is being broadcast while recorded, the streaming sys-
tem is classified as “live”. Live streaming systems demand efficient network connections
to disseminate high-quality streams on the Internet.

Peer-to-peer (P2P) architectures have emerged as an alternative to speed up content
dissemination in CDS (COHEN, 2003; ZHANG; LIU; PETER YUM, 2005; LIAO et al.,
2006; HECHT et al., 2011). These architectures help balancing out the server band-
width load. As a result, overload is removed from the network near the server, and the
bandwidth requirements are spread over the network of users (peers). Instead of main-
taining central entities to distribute content, P2P systems are designed so as peers can in-
teract to share data and maximize their download bandwidth usage. The adoption of P2P
architectures, in the context of CDS, has attracted attention from the scientific commu-
nity to some interesting challenges, namely network topology optimization (CHOFFNES;
BUSTAMANTE, 2008; CHOFFNES; SÁNCHEZ; BUSTAMANTE, 2010; POESE et al.,
2010; CAPOTA et al., 2011), bootstrap mechanisms (TADDIA; MAZZINI, 2008), and
service discovery (IAMNITCHI; FOSTER, 2001). One particular interesting challenge,
in the context of this thesis, refers to mechanisms employed to match user’s interests and
published contents.

The efficacy of CDS depends on the expertise of publishers to properly describe con-
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tents, which comprises an important task to guarantee good quality of experience (QoE)
to users. Since users typically have different opinions, similar contents may be clas-
sified with unrelated descriptions. Moreover, due to malicious behavior, attackers can
publish contents with popular descriptions to deviate users’ attention, obfuscate their
queries, and/or promote marketing campaigns. Concrete evidences and statistics about
“pollution1” have been widely reported in the recent past (e.g., in BitTorrent communities
(TORRENTFREAK, 2009; CUEVAS et al., 2010) and KaZaa network (LIANG et al.,
2005)). These evidences are underscored by a previous study (SANTOS et al., 2011) and
the results of a survey we have carried out with administrators of BitTorrent communi-
ties, who informed that around 25% of contents being published are “polluted” and need
manual intervention.

There has been substantial research on means to mitigate content pollution in CDS,
leading to the proposal of several generic countermeasure mechanisms (CAI et al., 2009;
ANAND; BHASKAR, 2011; SHIN; REEVES, 2012). Although these are interesting
strategies to fight pollution, they try to identify and isolate suspicious content after pub-
lication. However, attackers can easily generate multiple fake content and keep inserting
malicious decoys. To circumvent that, alternative and complementary solutions focused
on detecting, in addition to fake content, the users responsible for uploading them. One
limitation of these solutions is that the time required to detect these copies and/or polluters
may be long enough to allow the wide pollution dissemination (a). Another limitation is
the fact that previous approaches attempt to polarize contents in either polluted or not (b).
Therefore, they do not take into account the inherent subjectivity behind the evaluation of
shared contents.

The main objective of this thesis is to devise a mechanism to provide users a good
QoE – by acting proactively in the early stages of content distribution life cycle –
and reduce the effect of malicious interferences. To achieve that, the research work
presented in this thesis was carried out in three main steps. In the first iteration towards
a solution to protect users from malicious behaviors, we focused on the limitation (a)
and proposed a novel strategy that operates conservatively to avoid wide dissemination
of polluted content in early stages. The strategy, called FUNNEL, defines a reputation for
contents based on binary votes (positive and negative) and regulates the access to poten-
tial fake contents. As content reputation increases, more users are allowed to download it.
Otherwise, if the reputation decreases, fewer downloads are authorized. Although FUN-
NEL behaves proactively to protect systems from suspicious polluted content, it requires
some sort of expertise from users to assign precise votes.

It is important to notice that contents regarded as “polluted” by a certain user might
be considered “non-polluted” by another. Furthermore, Lee et al. (LEE et al., 2006) have
shown that about 70% of users fail to notice certain types of incorrect descriptions. Such
a fact is neglected in the design of existing approaches, which assume that non-malicious
users always detect inappropriate metadata. In the second iteration, we advanced our pre-
vious solution to cope with limitation (b). The binary classification was replaced by a free
vocabulary, which allows users to describe contents using annotations (tags). This novel
approach, called DÉGRADÉ, improves user’s expectations by moving beyond content po-
larization (polluted or not) and providing a flexible platform to describe contents.

In the third and last iteration, we generalized the pollution attack to a massive attack,
in which malicious users arrive en masse to harm the overall system. We proposed a

1In the context of this thesis, content pollution represents the act of intentionally uploading mislabeled
content or later describing them with imprecise metadata.
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novel analytic model to represent users’ arrival and impose artificial delays to diminish
massive attacks. The effect of delaying users “dilutes” malicious activities and gives
honest users the chance to join before potential attackers. Different delaying strategies
may be applied to maximize the overall QoE depending on specificities of the targeted
system. In conclusion, the incremental path taken in this thesis allowed us to abstract
the rationale behind the conservative strategy to formulate our hypothesis that “delaying
user’s actions mitigates massive attacks and improves users’ quality of experience.”

The advantages of employing delaying strategies are evidenced in some previous re-
search studies (LI; PU; AHAMAD, 2004; HUSNA; PHITHAKKITNUKOON; DANTU,
2008). Proposed anti-spam frameworks slow down spammers by adding delay to email
delivery. Furthermore, when the cost of retrieving contents from a system is considerably
high, it is worth adding artificial delay in order to avoid wasting resources. For example,
in file sharing systems, the cost in terms of bandwidth and time spent to download a file
may be too high; hence, users wait to increase the chances of retrieving expected contents.
This trade-off between waiting times and users’ quality of experience is investigated in
detail throughout this thesis.

The solution devised in this thesis may be instantiated in any kind of CDS. How-
ever, due to the use of delaying strategies, its applicability should be carefully considered
in time-constrained systems, e.g., live streaming. We designed our solution for general
CDS, being file sharing and streaming systems two representative examples. The set of
experiments carried out in this thesis comprises both real tests and simulations. During
the progress of this work, the overall solution was improved (through iterations) to be-
come more robust and consider different users behavior, always focusing on reproducing
real environments. Thus, we decided not to employ the same values for input parameters
and rather approximate the evaluation scenarios to mimic important facets present in the
wild. For example, to evaluate FUNNEL and prove the feasibility of the conservative strat-
egy, we reproduced a BitTorrent community in a controlled testbed. Similarly, to evaluate
DÉGRADÉ, a sequence of tag assignments needed to be incorporated to the solution so as
to represent annotations of users. Furthermore, user’s arrival rates were updated to be in
accordance to more recent measurements found in the literature.

1.1 Contributions

The incremental steps just introduced unfold in three main contributions which we
detail next.

• Design of a conservative strategy based on binary votes to fight pollution in CDS.
The solution was instantiated and evaluated on a real BitTorrent infrastructure (SAN-

TOS et al., 2011).

• Design of a robust strategy that employs user generated content (textual annota-
tions) to circumvent pollution.
The solution was instantiated and evaluated using an extensive set of annotations

provided by the popular Delicious online bookmarking system (SANTOS et al.,

2013).

• Development of an analytic model that employs delaying functions to mitigate gen-
eral massive attacks.
The solution was instantiated and evaluated on different use cases (SANTOS et al.,

2013).
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1.2 Organization

Chapter 2 first presents an overview on content CDS and depicts the most popular
systems in two different fronts: file sharing and streaming systems. Then, a list of derived
commonalities is presented and described. Finally, the last part of this chapter provides
technical background on the content pollution and massive attacks, and discusses related
work.

Chapter 3 introduces the first solution proposed in this thesis, named FUNNEL. The
conservative model is described in detail and an experimental evaluation is conducted
using a real BitTorrent infrastructure.

Chapter 4 presents DÉGRADÉ, an extension to the previous solution to lessen the
subjectiveness problem related to content pollution. This novel solution is evaluated using
crawled data from an online bookmarking system and the results are discussed under
different perspectives.

Chapter 5 formally defines pollution, based on previous results, as a massive attack.
Subsequently, an analytic model to tackle the problem is presented and validated using
different use cases.

Chapter 6 summarizes the contributions and key findings of this thesis, and presents
prospective directions for future research.
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2 BACKGROUND AND STATE OF THE ART

Most popular content distribution systems emerged almost a decade ago. Since the
standardization of MP3 files, in 1991, several file sharing systems appeared. Audiogalaxy
was a precursor of those systems, released in the late 90s. It was designed exclusively
to share audio files and quickly attracted the attention of recording industry associations.
Napster was another system also released with similar purposes. Both systems were dis-
continued due to copyright infringements and their services were definitively shut down
some years later. The collapse of previous systems motivated some others to appear.
Around 2000, Kazaa and Gnutella emerged as precursors of a new generation of file shar-
ing systems. They started using more decentralized approaches to avoid being caught by
recording industries, who concentrated efforts for years to shut them down. Although
both systems are still running, the number of users has dropped dramatically last years
since lawsuits started being settled against piracy in the world (PC Magazine, 2011). In
2001, BitTorrent was introduced as a novel protocol to efficiently distribute large amounts
of data and quickly gained attention from anti-piracy companies. A study carried out in
2009 revealed that BitTorrent was the most popular protocol used to share content in the
world (SCHULZE; MOCHALSKI, 2009).

As part of an evolutive process, each of these systems was created to circumvent
practical limitations of predecessors. In the beginning, applications were created to enable
users to share audio files in MP3 format. Along with the evolution of computers and
storage devices, users also started sharing different kinds of content, beyond audio. The
need for more flexible services fostered the design of more robust systems. Users wanted
to be able to search and download any kind of content efficiently. Continuous efforts
from developers and researchers have been made towards more sophisticated file sharing
systems (ANDROUTSELLIS-THEOTOKIS, 2002).

Advances on communication technologies motivated other interactive applications.
As an example, streaming systems stand out as a novel reference to disseminate media
on the Internet. Audio and video are the most common categories which benefit from
streaming systems. Streaming may disseminate previously recorded or live content. Sev-
eral systems emerged in the recent past, such as Spotify (KREITZ; NIEMELA, 2010),
CloudStream (HUANG et al., 2011), SplitStream (CASTRO et al., 2003), TVAnts (SIL-
VERSTON; FOURMAUX, 2006), SopCast (LU et al., 2009), PPStream (JIA; LI; CHEN,
2007), PPLive (SPOTO et al., 2009), Tribler (POUWELSE et al., 2008), and LiveShift
(HECHT et al., 2011). They implement different features and policies according to their
targeted audience. Some of them support only a limited number of streams (also known
as “channels”), which are broadcasted by certified companies, while others allow also
regular users to broadcast content.

As systems became more flexible, e.g., by allowing users to create their own channels,
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some security issues have been exposed. In the context of content generation, media with
poor quality and imprecise description became possible. Moreover, selfish behaviors were
evidenced in many CDS (LIANG et al., 2005). These problems highlight the importance
of designing robust countermeasure mechanisms while considering advances in CDS.
Although we present fruitful discussions about designs and systems, the reader familiar
with content distribution systems and massive attacks may feel comfortable to skip this
chapter.

Organization. The remainder of this chapter is organized as follows. Section 2.1
describes several content distribution systems, considering both file sharing and video
streaming, with respect to a predefined set of dimensions. Section 2.2 discusses content
pollution problems and analyzes previous work related to this thesis. Finally, Section 2.3
closes the chapter with a summary.

2.1 Content distribution systems

This section presents a detailed discussion about content distribution systems. First,
a taxonomy is provided to classify CDS with respect to different dimensions (Subsec-
tion 2.1.1). Second, the category of file sharing systems is discussed according to the
predefined dimensions (Subsection 2.1.2). Then, streaming systems are presented and
discussed (Subsection 2.1.3). Finally, section closes with a discussion about key aspects
of studied systems (Subsection 2.1.4).

2.1.1 Classification and dimensions

The study carried out in this section investigates CDS under different dimensions. We
first describe them and then classify some of the most popular systems according to their
nuances.

• Architecture. The architecture of content distribution systems may be classified
according to three different structures. The first one comprises the popular client-
server architectures. In these architectures, the service is provided exclusively by
the server(s), whilst clients are only regular consumers. The second one is called
Peer-to-Peer (P2P) architecture. In these architectures, consumers are also capable
of supporting/improving the service by sharing their available resources, e.g., stor-
age, computing power, and network bandwidth. The third, and last, architecture
considered in this study comprises a hybrid infrastructure. In this case, the list of
features provided by the service is instantiated on the server and partially also on
the clients.

• Usability. The term usability refers to the ease of use and the learning process
related to a system. Although it comprises a wide research field that relates distinct
areas of investigation, we limit this study to three main aspects of usability. The first
one is the efficiency to use, which measures the time to accomplish regular tasks.
The second one is the learning process, which represents the time to get used to the
system. The third one is the user satisfaction, which measures his feeling about the
system.

• Operation. The operation of a content distribution system is analyzed in two dif-
ferent steps. First, it is considered the system configuration in terms of parameters
and infrastructure requirements. Second, it is considered the complete deployment
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procedure to launch the system. Both steps allow estimation on how much effort is
required (from users and/or administrators) to keep systems up and running.

• Efficiency. The efficiency of content distribution systems can be measured using
several metrics. Efficiency in terms of time may represent the latency until the last
user receives the entire content. It may also represent how efficient the connection
management is, avoiding redundant traffic and bandwidth waste. Furthermore, effi-
ciency may represent the bandwidth allocation of users. The more bandwidth used,
the more efficient the system would be.

• Effectiveness. This dimension measures if a CDS provides the expected content
to users. The system is supposed to provide good experience to users when they
search for a content, download and evaluate it. In the context of this study, CDS
are analyzed and compared assuming that user’s queries are always precise. This
mitigates potential subjectiveness concerning users behavior and allows a fair com-
parison among systems.

• Security. It is recurrent that content distribution systems expose information about
users. In some cases, every user can access a list containing IP addresses of others.
In other cases, it is possible to access user’s personal information. Depending on
systems design, user’s privacy can be seriously compromised. Besides privacy,
another relevant security issue to be considered in content distribution systems is
related to content integrity. Thus, the data received by users should be the same
originally published.

• Legal aspects. This dimension refers to the nature of content disseminated in the
systems. Since most of CDS is used to disseminate video content (SCHULZE;
MOCHALSKI, 2009), recording industries are directly affected by unauthorized
distribution of copyrighted material. The goal is to analyze content distribution
systems from the legality perspective.

• Economic aspects. Two economic aspects of content distribution systems are ana-
lyzed in this dimension. First, positive aspects discuss how companies make money
out of these systems. Second, negative aspects are presented when those systems
are used to illegal purposes.

2.1.2 File sharing

The first kind of CDS discussed is file sharing systems. These systems enable users to
share contents over the Internet. To be considered a file sharing system, it should support
both store and retrieve operations. In the following, we describe the most popular systems
with respect to the aforementioned dimensions.

MegaUpload and Rapidshare

There are many systems like MegaUpload and Rapidshare, e.g., boxify (BOXIFY,
2012), minus (MINUS, 2012), and justbeamit (JUSTBEAMIT, 2012). These systems are
known as file hosting services and are part of the first class of systems used to distribute
content on the Internet.
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Architecture. File hosting services use client-server architecture. Since these services
are provided by companies, it is hard to know how they organize their internal infrastruc-
ture. To cope with large amount of data and traffic, they use clusters of machines and hard
drives. It is important to notice that it is possible to have a client-server architecture using
replicated servers (mirrors).

Usability. In order to use these services, users just need to access a website or a pro-
prietary (and specific) application and select the file to upload. Most of the services do
not require registration, so users upload a file and retrieve a link for further downloads.
Typically, services do not limit the upload rate and the whole process is easy and straight-
forward. However, to retrieve the contents, users need to wait a while and experience
low download rates intentionally imposed by some providers to motivate users to upgrade
their accounts. Moreover, some providers define the maximum amount of data that users
can store on the system.

Operation. The infrastructure is run by service providers. They offer storage and
network resources to distribute contents. Although HTTP is normally used, sometimes
users need to download and install a specific software to interact with the service.

Efficiency. Since these systems use client-server architectures, the server needs to
send the entire file to every new request. This generates a lot of redundant traffic and
significantly increases overall costs. To reduce the latency between the server and users,
and also the inter-domain traffic between Internet Service Providers (ISPs), mirroring is a
technique frequently used by these services.

Effectiveness. Users publish files and describe them. In this kind of services, only the
publishers can provide metadata. This may lead to imprecise and heterogeneous descrip-
tions. Therefore, using storage services to find contents may be a cumbersome task, also
because some of them do not even provide search mechanisms. To circumvent that, blog
communities index contents by providing links and additional descriptions to files.

Security. Depending on the system, a registration may be required in order to up-
load files. If so, the system stores information about all uploaded files, as well as user’s
personal data – e.g., email address and name. Moreover, users’ IP addresses can be asso-
ciated with upload activities and, eventually, be exposed by services. On the other hand, if
the system does not require a registration, the only exposed information is the IP address
related to a certain activity.

Legal aspects. Service providers keep track of all uploaded files and can easily react
in case of copyright infringements. However, they use passive policies and remove illegal
contents upon request.

Economic aspects. In general, file hosting services make profits from downloaders
and uploaders activities. In the former, services limit downloading rates of users and/or
impose delays to access files. In the latter, services define a maximum size per file and a
quota per user. In order to get more privileges, users need to pay a subscription, which
may vary according to the benefits offered.

Peer2Mail

These systems use mail servers to store content. Users need to run a local application
that splits the files (in order to fit servers rules) and use private accounts to store these
data. In order to retrieve the content, the same application must be used to download the
parts of a file and merge them.

Architecture. Since it uses a user account to store data in a specific mail server, the
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architecture can be classified as traditional client-server. The service does not require any
modification on server-side and can be used in many mail servers. The architecture is
already in place and requires only a client application to handle splits and merges of files.

Usability. In order to use these services, users must download a third-party software
and configure it to use a specific email account to store data. Once logged in, users can
list the files uploaded to his account and easily download them. To share contents with
other users, the email account must be also shared.

Operation. There is no need for a service configuration or deployment. One clear
advantage of these systems is that they require a client-side software and everything works
transparently. The most effort for the users is to configure an already existing email
account to store files.

Efficiency. Since mail servers are used as storage systems, all traffic goes through a
centralized point. Although this produces high costs for servers, users can take advantage
of powerful infrastructures and download content at high speeds.

Effectiveness. In these systems, contents are described only by their filenames, which
demands additional indexing mechanisms. In order to enable users to find contents, por-
tals and forums need to publish content descriptions and the email account where files can
be downloaded. There is no guarantee that content descriptions and files match, so users
must trust on indexing systems.

Security. These systems rely on the infrastructure of mail servers, hence, always re-
quire a user account to work and store data. Thus, every uploaded content is associated
with a specific account. Another security issue concerns file integrity. Since large files
need to be split to fit mail servers, potential problems may arise during the merge process,
when users download the files. Particularly, it is difficult to detect which part of the file is
corrupted due to the absence of hashing schemes.

Legal aspects. The architecture of these systems demands a laborious work to detect
illegal content. The published contents are stored in personal email accounts, in which
a user may claim that they are for personal uses only. The terms of service vary from
one mail provider to the others and the process to delete user’s email messages is not
trivial. Moreover, users can simply change their account passwords and the infrastructure
is settled again. It is difficult to anti-piracy companies monitor user’s email account in
order to find copyrighted content.

Economic aspects. The model employed by these systems does not provide a clear
way to make profit. Conversely, the misuse of mail servers increases storage and infras-
tructure costs. Client applications display advertisement to users, but since there is a lack
of description for contents, it is difficult to show effective/personalized advertisements.

Napster and Audiogalaxy

This class of content distribution systems was the first not to store files in a centralized
point. Instead, they stored files across user’s machines and maintained a centralized index
to assist users in finding contents. Due to this centralized index, many anti-piracy agencies
went to court and forced them to shut down. Nowadays, these systems adjusted their
business model to offer legalized content and/or services. The scope of this section is
limited to the old versions of these systems.

Architecture. These are considered the first peer-to-peer systems to gain popularity on
the Internet. Instead of traditional client-server architectures, in which each client must
download the content from the server, clients (called peers) connect directly to each other
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in order to download the files. This novel approach reduces the overhead on server-side
and replicates files across the network.

Usability. These systems were originally designed to share MP3 files. In order to use
the system, users need to download a client application, search for any music by typing a
query, and choose one to download from the result set.

Operation. The whole system relies in a unique central point to work. This central
point is responsible for indexing files and enabling users to find each other. The client
applications are configured with a default server address and users just need to connect
and search for music. Moreover, users need to define a shared folder to publish and store
downloaded contents. When the application is launched, it announces the files in the
shared folder to be indexed by the server.

Efficiency. Users play an important role on these systems by storing and upload-
ing contents. The central server only needs to index contents instead of storing them.
This technique saves upload bandwidth on the server and starts using users’ bandwidth.
Therefore, the efficiency of the system depends on users’ capacity. Since the content is
downloaded from a single user at a time, the rates are limited according to sender/receiver
capacities. Besides, the system performance becomes dependent of users’ reachability,
i.e., users behind firewall or NAT most likely are not able to receive income connections,
which limits the overall performance.

Effectiveness. Since these systems were originally designed to share MP3 files, users
can search using file names and metadata. Users are responsible for providing metadata
according to their own perceptions. This autonomy generates heterogeneous descriptions
and potential fake files. Moreover, data exchanged may be corrupt due to communication
fails or malice. Should this happens, users need to download the entire file again.

Security. The addresses of users are stored on the server in order to enable direct
connections between them. Furthermore, since users must connect to each other, their IP
addresses are exposed in the network, which might be undesirable by some users. The
restrictions about the type of files supported by these systems keep them reasonably safe
against virus and malwares.

Legal aspects. These systems work as a central directory of files. As they got popular
in the web, more users started abusing them and sharing copyrighted contents. This fact
attracted the attention of recording industry, which started fighting in court to shut the
services down. After losing the case, their central servers were forced to stop.

Economic aspects. The sharing activities in these systems produced a huge loss for
recording industries. Besides this negative impact on the market share of companies,
these file sharing systems base their revenue on selling advertisements both on websites
and client softwares.

Kazaa, eDonkey, Gnutella, and BitTorrent

This class of applications emerged as an alternative to decentralize systems load and
improve performance. Different strategies were introduced in order to speed up content
dissemination. Instead of downloading a content from a single user, these systems im-
plemented parallel transfers by dividing files into smaller parts and requesting them from
multiple users in the overlay. By adopting decentralized infrastructures, these systems at-
tempt to hamper anti-piracy actions to mitigate content sharing. Except for Kazaa, which
changed to a streaming service (like Napster), all the others are still active as originally
proposed.
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Architecture. These systems employ mesh architectures where peers contact each
other to exchange piece of files (chunks). Every peer has incoming and outgoing con-
nections to a set of other peers. They typically form random or small-world topologies
to enable fast and robust communication (AL-HAMRA; LEGOUT; BARAKAT, 2007;
DALE et al., 2008; FAUZIE et al., 2011; KRYCZKA et al., 2011). Since peers need to
share chunks, the more neighbors and potential interesting peers they have, the faster the
downloads can be (CAPOTA et al., 2011).

Usability. In order to use these systems, users need to find the desired content. Most of
the systems (excluding BitTorrent) offer native search mechanisms in the protocol level,
i.e., users can open the software, type their query, and choose any content to download.
However, BitTorrent protocol does not offer this feature. Instead, users need to search for
a metadata file (torrent) through web portals, for example, and load it on their preferred
software. These torrent files contain references to the real content and enable peers to
connect to each other. Portals play an important role in aggregating torrents and users
feedback about them.

Operation. Once users decided which file to download, the next step is to find peers
which have chunks of that content. Kazaa and Gnutella use a flooding strategy to reach a
huge number of potential uploaders. The ones who have the content announce themselves
as available. To avoid overloading the network with messages, protocols set a time-to-live
(TTL) around 7 hops. Conversely, eDonkey and BitTorrent offer infrastructures to find
neighbors given a content hash, which may be found by other means as explained before.

Efficiency. Since these systems rely on the neighbors capacities and the overlay topol-
ogy, incentive mechanisms to enforce users to contribute are of paramount importance.
The natural behavior of users is to download as fast as possible, saving their resources
as much as they can (HUGHES; COULSON; WALKERDINE, 2005). The first version
of Gnutella protocol did not have any incentive mechanism, which resulted in about 70%
of free-riders in the system (ADAR; HUBERMAN, 2000). Proposed solutions tried to
employ the amount of upload and download per user, within time slots or not, to foster
contributions. This strategy is called tit-for-tat (TFT) and advocates that the more users
contribute, the more they should receive.

Effectiveness. In this kind of decentralized systems, users behave arbitrarily and pub-
lish contents without any moderation. Since there is no central point where files are
indexed, it becomes easy to flood the system with fake data. Moderation efforts are diffi-
cult to maintain due to the lack of central points. One of the advantages of using chunks
to disseminate contents is that, in case of corrupt data, only the invalid chunks need to be
downloaded again.

Security. User IP addresses are spread through the network. In order to start down-
loading contents, peers need to find the location of other peers. By definition, a mesh
topology comprises a set of connections between pairs of users. Although some advances
were presented in the literature (BLOND et al., 2011), privacy is still an issue in most P2P
systems (BLOND et al., 2011). Content corruption is also a well-known problem in file
sharing systems (KONRATH; BARCELLOS; MANSILHA, 2007). However, hashes for
the entire content or their chunks (COHEN, 2003) and reputation mechanisms have been
used to protect the integrity of files (BARCELLOS et al., 2008).

Legal aspects. These systems, like most file sharing systems, have been targeted by
anti-piracy companies due to the huge traffic of illegal copyrighted contents. Kazaa ser-
vices were shut down by court and emerged again as a legal streaming service. The other
services are still in place and are frequently used to disseminate copyrighted content.
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Economic aspects. Kazaa system concentrates its revenue on selling subscriptions.
Users pay regularly to access a library of online songs. On the other hand, eDonkey,
Gnutella and BitTorrent applications show advertisements to their users. Except for
Kazaa, these systems are frequently used to share copyrighted content without autho-
rization, negatively impacting recording companies (SCHMIDT et al., 2012).

2.1.3 Streaming systems

Streaming systems are defined as systems capable of distributing media, e.g., audio
and video, to a set of users through a network. According to Liu, Guo, and Liang (LIU;
GUO; LIANG, 2008), they can be classified into two categories: on-demand and live. In
an on-demand system, users enjoy the flexibility of consuming whatever content when-
ever they want. The playback of the same content on different users are not synchronized.
In contrast, during a live streaming session, the same piece of content is disseminated to
all users in realtime; hence, the content playback on all users is synchronized. Examples
of these systems are discussed in the following.

Streaming on demand

• YouTube and Hulu

Architecture. These systems use a client-server approach to disseminate content on
the Internet. They were originally created to run on users’ browsers and, later, their
services were also released for mobile devices. The back-end of these systems uses
clustered machines to process users’ requests and store contents.

Usability. In order to benefit from these systems, users need to open their browser
(or access YouTube/Hulu specific applications) and go to the desired website. Both
services provide a searching mechanism where users type queries and look for con-
tents. There is also recommendation systems to suggest featured and sponsored
videos. In some cases, users need to install plugins or extensions on browsers to be
able to watch online content.

Operation. The requested media is loaded on server and sent to users. The traffic
is encapsulated in HTTP packets and relies on specific software on client side to be
played. In the case of YouTube, the majority of contents is generated and uploaded
by users, whilst in Hulu the contents are essentially provided by big players.

Efficiency. The efficiency of these centralized services is limited by the providers
infrastructure. Since entire contents are stored on their administrative domains, stor-
age devices, processing units, and network bandwidth may support only a limited
load. Unless they migrate to a more decentralized architecture, extra equipments
need to be purchased in order to extend their capacity.

Effectiveness. YouTube is a service that basically depends on contents generated
by users. Therefore, its catalog of videos is susceptible to malicious interferences.
Uploaded videos are described by their publishers, which potentially generates im-
precise and controversial descriptions. Publishers are interested in attracting audi-
ence and, therefore, have incentives to employ popular/interesting words. Often,
these words do not match the content itself and cause a bad quality of experience
for users (BENEVENUTO et al., 2008, 2009). Conversely, contents published on
Hulu are described by their producers or people with enough knowledge about those
pieces of content. Since it is a moderated platform, quality of experience tends to be
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higher than in YouTube, along with the cost of moderating every published content.

Security. These systems are maintained by private companies, which provide their
own security policies. Contents are stored on robust data centers and under compa-
nies’ responsibility.

Legal aspects. Every content uploaded to YouTube needs to be aligned to their
terms of service. Although they use algorithms to detect and deny copyrighted
content, many illegal material are daily submitted to their servers. In those cases,
media producers and artists should report to a team of moderators, who acts to avoid
law infringements. Similar problems do not happen to Hulu, because contents are
previously licensed close to regulatory agencies before being published.

Economic aspects. The business model used in these systems is based on advertise-
ments. Additionally, they offer users a paid subscription that grants more space and
longer videos on YouTube, for instance, and packages with more TV shows and
movies on Hulu. Part of the revenue is naturally converted to copyright companies.

• Tribler and Vuze

These systems are built on top of BitTorrent protocol and, hence, present most of its
characteristics. A key feature implemented in these systems is the ability to increase
download priority of first chunks. This is of paramount importance to enable play-
ers to reproduce the media before the download is complete. This modification de-
grades the efficiency of BitTorrent protocol, since the Local Rarest First (LRF) pol-
icy is severely affected (LEGOUT; URVOY-KELLER; MICHIARDI, 2006; SHAH;
PARIS, 2007).

Live streaming

• SplitStream

Architecture. This system uses a tree-based architecture to push content to users.
The stream is split into stripes and multicast each stripe using a separate tree. Split-
Stream relies on a structured P2P overlay to construct and maintain these trees.

Usability. Since this is a more academic work, the SplitStream prototype is not
available for downloading on the Internet.

Operation. The content is generated by the broadcaster and split into stripes. Users
join as many stripes as they wish to receive and specify an upper bound on the
number of stripes they want to forward.

Efficiency. Since SplitStream uses a tree-based approach, the task of maintaining
the overlay is tough. The main problem is that updating the topology of the trees
becomes harder in the presence of churn. Furthermore, users who stay in the leaves
of a tree do not contribute to the others. Thus, they should preferably be in different
positions when connected in other trees. Another problem related to the tree-based
topology concerns bottlenecks. Users with low upload bandwidth might negatively
impact all their descendants in the tree overlay.

Effectiveness. Although there is no official SplitStream release, its proposed archi-
tecture allows regular users to create and broadcast their own content. The proto-
type does not provide any means to search for contents. However, the effectiveness
of the system is severely affected in the absence of mechanisms to avoid content
pollution.
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Security. Isolated selfish behaviors are tolerated by this system due to the use of
multiple trees, but a coordinated eclipse attack may be enough to degrade system’s
overall performance.

Legal aspects. Since this system allows users to broadcast their own content, copy-
right infringements remain an issue.

Economic aspects. The prototype is part of an academic work and has no direct
economic interest.

• PPLive, PPStream, and SopCast

Architecture. These systems’ architecture is based on a mesh-pull overlay, i.e.,
chunks of data are sent under request. Each overlay represents a channel in the
system and users may participate in many of them at once.

Usability. In order to watch a channel, users must use a proprietary client. One or
more channels can be selected and the transmission is started.

Operation. A central server is responsible to maintain a list of available channels,
which is downloaded when clients are started. SopCast allows users to broadcast
their own channels. When users select a channel, the client queries a membership
server for initial peers participating on that channel. In order to gather more peers,
further queries can be performed to this server. Moreover, a gossip protocol is used
to exchange list of peers.

Efficiency. These applications maintain a set of servers dedicated to upload content.
However, to reduce their load, they require users to share their upload bandwidth.
By default, clients contribute their full available capacities and do not prioritize any
other client. This lack of incentives encourage users to “free-ride”. To circumvent
that, Piatek et al. (PIATEK et al., 2010; MOL; EPEMA; SIPS, 2007) have proposed
the use of contracts (i.e., receipts) to certify data transfers among peers in PPLive.
These contracts are employed to prioritize the ones who contributed most when
selecting neighbors.

Effectiveness. Since channels are maintained by PPLive and PPStream adminis-
trators, there is a considerable effort to provide precise descriptions to users. This
approach is considered effective for low number of channels, but may not scale
when this number increases. In contrast, channels are also created and described by
users in SopCast, which may lead to many polluted content.

Security. Mesh-based approaches are exposed to some privacy issues. Since dis-
covering peers is important to keep systems working efficiently, users’ IP addresses
are exchanged and flooded in this type of network. Besides, attackers can connect
to many IP addresses and start uploading junk data. This malicious behavior may
overload victims and tamper with their video reproduction.

Legal aspects. In PPLive and PPStream, channels are moderated by administrators
and regular users cannot simply create new ones. Thus, copyright infringements are
not a problem in those systems. However, SopCast users may abuse the system to
disseminate copyrighted content on their own channels.

Economic aspects. The business model used in these systems is based on adver-
tisements and special subscriptions offered to their users. In addition, SopCast sells
hardware to host their channels and services.
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2.1.4 Discussions

In the previous subsections, we have shown that centralized infrastructures may offer
robust and reliable services to users. However, the costs to maintain redundant machines
and network links are high. Furthermore, a laborious work is required to keep the system
free of fake content uploaded by users. To reduce costs, more decentralized architectures
have been proposed by researchers and developers. Therefore, users started playing an
important role in the system by sharing their resources with others.

When the first CDS appeared, systems required users to be altruistic, hence, incen-
tive mechanisms were not in place to enforce them to share their resources. Neverthe-
less, most of users behave selfishly and overall systems performance were severely af-
fected (LIANG et al., 2005). This behavior fostered the development of mechanisms
based on reciprocity to incentivize users to cooperate. Reciprocity-based mechanisms are
commonly employed when users of a system have mutual interests on each other. Rep-
utation mechanisms and BitTorrent’s TFT are examples of popular techniques based on
reciprocity to classify users and/or contents in a system.

With the advent of live streaming systems, most of the incentive mechanisms became
unsuitable and/or ineffective. Due to live aspects of the transmission, the widely-used
bilateral incentive strategies could not be effectively applied to the live streaming envi-
ronment (PIATEK et al., 2010). Different approaches were proposed to artificially intro-
duce mutual interests, for example, by splitting the streams (CASTRO et al., 2003; MOL;
EPEMA; SIPS, 2007) or periodically changing the overlay topology (MAGHAREI; RE-
JAIE, 2007). In spite of clear improvements on live streaming systems, they still face
overload problems to provide short delays and low latency (HEI et al., 2007; SILVER-
STON et al., 2009).

To overcome the limitations of purely decentralized systems, hybrid architectures have
been conceived. This approach tries to use as much resource from users as possible, but
also provide dedicated infrastructures to guarantee certain level of QoE to users. Spo-
tify (KREITZ; NIEMELA, 2010) is a popular audio streaming system that uses hybrid
architectures to broadcast content. This successful case was also applied in the context
of file sharing systems (ANDRADE et al., 2007; ROCHA et al., 2009). However, as
highlighted in previous sections, content pollution problems remain an open issue in most
CDS. This is the main object of study of this thesis and is discussed in detail next.

2.2 State of the art

This section first elaborates on the content pollution problem to better motivate the
investigation carried out in this thesis. Due to the importance of massive behaviors in this
context, massive attacks are also introduced. The most prominent solutions proposed by
the scientific community to tackle these problems in CDS are also discussed in detail in
this section. Several attacks and countermeasures are investigated in the context of file
sharing and streaming systems.

2.2.1 The content pollution and massive attacks

Given the overview on content distribution systems, this subsection describes in detail
the specific problem related to pollution. Moreover, the problem is generalized to con-
sider the wide class of massive attacks. There are two main types of pollution in CDS:
content corruption and decoy insertion. In the former, malicious users replace parts of a
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content with junk data in order to violate its integrity. In the latter, malicious users con-
tinuously upload contents with incorrect descriptions (metadata). Isolated polluters are
easily tolerated by many systems, however, content pollution becomes a serious problem
when combined with massive attacks.

Corruption and decoy insertion attacks may be present in file sharing (DHUNGEL
et al., 2008) and also in streaming systems (YANG et al., 2008). Dhungel et al. verified
the existence of corruption attacks in BitTorrent communities (DHUNGEL et al., 2008).
In streaming systems, malicious users may try to upload junk data or modify authentic
content to promote advertisements, for example. Evidences of decoy insertions were re-
ported by administrators in BitTorrent communities (TORRENTFREAK, 2009). Content
with incorrect metadata were also reported in streaming systems to attract user’s attention
or tamper with their experience (BENEVENUTO et al., 2012).

To understand the seriousness of the problem, we carried out a measurement study
that estimates the amount of polluted content (decoys) available for download in BitTor-
rent communities. It is worth stating that we do not take sides on the P2P file sharing
debate; instead, we present evidence of pollution dissemination in BitTorrent file sharing
communities.

The measurement study consisted in querying large BitTorrent communities for pop-
ular movies. Since it is not feasible to query for every published content, we focused
on movies whose release date is 2010. A list with the top-250 movies according to
IMDb (IMDB, 2012) was collected and their titles were searched at the isoHunt Bit-
Torrent community. The results for each query were matched against a database available
at Bitsnoop BitTorrent community (BITSNOOP, 2012), as explained below. Queries with
no results were removed from the analysis.

Bitsnoop employs an automatic mechanism to determine the status of content “re-
ferred to” by torrent files. The mechanism, named FakeSkan, basically retrieves and
analyzes torrents that present suspicious information (e.g., names, file sizes and struc-
ture). In addition to analyzing torrent data, the mechanism also considers users’ votes
to set the status of a torrent. When inconsistencies arise, FakeSkan presents warnings to
users about to download the content. Internally, it operates as follows. A torrent may be
initially flagged as VERIFIED or FAKE depending on whether it comes from a secure
source (e.g., previously verified by other community administrator) or there are strong
signs that the torrent may be polluted (e.g., torrent file name referring to some book col-
lection but containing executable files). Otherwise, the torrent is automatically classified
as GOOD or BAD according to user feedback, and eventually changed to either VERI-
FIED or FAKE by an administrator. In the absence of feedback from users, the torrent
status is set to NONE. Thus, the status that results from a query about a torrent may be
one of the following: VERIFIED, GOOD, NONE, BAD, FAKE, or NOTFOUND. The
latter case happens when FakeSkan is unaware of the torrent.

In our analysis, torrents returned by queries to the 250 most popular movies in 2010
were inspected by Bitsnoop. Table 2.1 summarizes the query responses grouped by torrent
status. The results show that 20% of torrents are flagged as FAKE or BAD, i.e., almost 2.4
times the number of VERIFIED and GOOD copies, which account for roughly 27% of
the downloads. Our findings are consistent with a recent study, which concludes that 30%
of torrents are published by anti-piracy agencies or malicious users, and this proportion
of torrents are responsible for 25% of the downloads (CUEVAS et al., 2010).

The summary of torrent status presented in Table 2.1 gives an overview of the pollu-
tion scenario. However, we would like to know the impact of pollution on users’ perspec-
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Table 2.1: Torrent clusters with 90% confidence interval for averages
Torrent status # of copies Avg. torrent len. (MB) Avg. # of seeders Avg. # of leechers # of downloads
NOTFOUND 22,794 775.226 ± 5.734 1.100 ± 0.378 1.247 ± 0.147 314,673
VERIFIED 6,901 1557.930 ± 35.037 94.110 ± 10.147 38.544 ± 5.015 11,338,693

GOOD 83 860.338 ± 66.751 24.096 ± 20.294 8.494 ± 6.041 137,404
NONE 36,694 823.835 ± 5.524 7.329 ± 0.828 3.421 ± 0.257 2,643,607
BAD 4,055 748.813 ± 7.874 19.254 ± 5.010 4.584 ± 1.105 215,189
FAKE 12,707 771.105 ± 2.697 97.488 ± 15.106 37.541 ± 14.024 5,225,590

tive, represented by the probability that a user finds a polluted copy when searching for
contents. In order to understand this impact, we plotted a histogram of torrent status for
queries, averaged in groups of 20 movie titles, as shown in Figure 2.1. Nearly 25% of the
queries resulted in lists with more than 20% of the torrents flagged as FAKE, hampering
the process of finding the desired content. In order to obtain a more precise estimate of
the amount of traffic generated by polluted contents, we investigated at isoHunt the size
and number of downloads performed with each copy flagged as FAKE.
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Figure 2.1: Histogram of torrent status per groups of 20 movie titles, sorted by the pro-
portion of copies marked as FAKE.

Figure 2.2 shows the complementary cumulative distribution function (CCDF) of the
number of completed downloads of copies considered FAKE. A pair (x,y) in this plot
means that the probability that a copy is downloaded at least x times is equal to y. Since
the 94% (11,956) less frequently downloaded torrents were obtained at most 10 times
(reflecting a curve close to y-axis), the graph was adjusted to focus on the most frequently
downloaded torrents. The plot shows that ∼3.8% (500) fake copies were downloaded over
5,000 times. This number is even higher if we consider the ∼2% (250) most downloaded
copies, which were obtained more than 10,000 times. A small portion of fake torrents
were downloaded more than 15,000 times. In summary, in the context of the 250 most
popular movies of 2010, the copies flagged as FAKE summed up to 5,225,590 downloads.

We estimated the (negative) impact that these useless downloads had on the amount
of data traffic generated on the Internet. Downloads of copies flagged as FAKE accounted
for ∼3.5 PB (3,572 TB) of data traffic; this value increases by approximately 149 TB if we
also consider the downloads of BAD copies. These results indicate that pollution leads
to a significant and unnecessarily waste of client and network resources (such as time
and network bandwidth). More importantly, they highlight the importance of devising
mechanisms to control pollution.

2.2.2 Related work

This thesis is related to three main research fields: content pollution, massive attacks,
and conservative strategies. Incremental steps of our research traversed these three general
areas, which are detailed next.
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Figure 2.2: CCDF of the number of completed FAKE copy downloads

Content pollution approaches

In this subsection we cover the most prominent solutions proposed so far by the sci-
entific community to fight pollution in CDS. In order to organize the discussion, we first
focus on the decoy insertion problem and then analyze the problem of mislabeled con-
tents.

Malicious decoy. Solutions to fight decoy insertions in CDS are fundamentally based
on reputation mechanisms. The set of solutions proposed up to date may be classified
in three categories. The first one tries to assign a reputation score to shared contents.
Similarly, the second one builds users’ reputations to isolate malicious publishers. The
third one combines the other two and uses both contents and users’ reputation to mitigate
pollution.

In the first category, Walsh and Sirer (WALSH; SIRER, 2006) present a reputation-
based mechanism, called Credence, which assigns scores to contents in order to govern
their dissemination in the system. When users download a content, they evaluate it and
assign a numeric vote from −1 to 1. However, before users start downloading a content,
they gather testimonials from neighbors to take a decision. Each vote is weighted by a
correlation index calculated by analyzing previous votes to common downloads between
users. Credence relies on the assumption that honest users issue similar votes when es-
tablishing the authenticity of a given content. In this case, users having higher voting
similarity are more trustworthy than others having lower similarity. The evaluation of
the model, using the Gnutella network, led to satisfactory results. This strategy, however,
does not prevent newly published, polluted contents to be widely disseminated when there
is little knowledge available to form an opinion about their reputation. This is worsened
when new polluted contents are quickly published.

Built on top of the idea of traditional reputation-based mechanisms, Cai et al. (CAI
et al., 2009) proposed a holistic mechanism which combines users’ feedback with content-
associated information and statistical data reflecting the diffusion state of contents to de-
fend against pollution attacks. The mechanism provides a set of strategies integrated to
contents lifecycle (publication, search, selection, and download) that help users on dis-
tinguishing polluted versions. Since authors assume that (i) malicious users cannot spoof
their identities and (ii) the routing protocol is reliable, problems related to vote integrity
and inappropriate content descriptions remain unsolved.
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In the second category of reputation mechanisms, Eigentrust (KAMVAR; SCHLOSSER;
GARCIA-MOLINA, 2003) is employed to establish a global trust (i.e., reputation) value
for each peer based on their upload records, which could then be used to select reliable
sources. One practical limitation of Eigentrust is the need of a set of pre-trusted users
to operate accordingly. To circumvent this issue, Scrubber (COSTA et al., 2007) pro-
poses a distributed voting protocol, in which peers combine individual experiences and
testimonials from other peers to calculate reputation scores. The individual experience
increases whether a peer has good interactions with some other, and decreases otherwise.
Moreover, testimonials of neighbor peers are requested periodically to create a more ro-
bust mechanism. Thus, a peer is considered trustworthy if its final reputation is above a
pre-defined threshold. In order to avoid vote manipulation from neighbors, Vieira et al.
propose SimplyRep (VIEIRA et al., 2012), a reputation mechanism based only on local
observations. Furthermore, SimplyRep introduces a dynamic threshold to classify peers
as malicious considering the system state: tempest or calm. An issue common to the
solutions presented so far lies in their vulnerability to whitewashing attacks (JOSANG;
ISMAIL; BOYD, 2007), since newcomers and newly published contents start with a neu-
tral reputation.

To circumvent that, researchers proposed solutions that combine both content and
peer reputations to protect CDS against pollution. XRep (DAMIANI et al., 2002) is
one of those mechanisms that employs distributed voting algorithms to identify poten-
tial authentic content. XRep protocol calculates the reputation of a content by collecting
neighbor’s votes about that content and themselves. Votes about users are employed to
weight their votes on contents. Samples of the result set are used to reduce the effect of
manipulation. Another mechanism, called Hybrid (COSTA; ALMEIDA, 2007), extends
Scrubber to support also votes on contents. Due to its similarity to Credence, Hybrid in-
herits some of its weaknesses, such as demanding a considerable amount of time to detect
polluted contents, especially when attackers behave in coordination (collusion attacks) to
circumvent the system and, for example, obtain new identities (whitewashing).

Mislabeled content. User-specified tags have emerged as an alternative, or comple-
mentary, way of describing online resources such as web pages, photos, and videos. Since
its inception, tags have been largely explored in collaborative platforms such as Delicious,
Flickr, and YouTube. In line with their growing popularity, the also called social tag-
ging systems have received great attention from the scientific community. Examples of
research directions under investigation include understanding the semantics of tags asso-
ciated to different types of resources (HECKNER; NEUBAUER; WOLFF, 2008), and the
study of their structure and dynamics (MARLOW et al., 2006).

It is consensus in the literature that tags substantially improve searching and retriev-
ing of resources on collaborative platforms, and have the potential to boost reputation
systems (MARLOW et al., 2006). Folksonomies add an additional layer of descriptive in-
formation about the content, and enable dealing with the subjectivity associated with the
process of resource description. In this realm, Andrade et al. have proposed a peer-to-peer
annotation approach where users can freely annotate available resources (ANDRADE;
SANTOS-NETO; BRASILEIRO, 2008). Despite its potential, one of the main problems
is the malicious or accidental assignment of inaccurate/incorrect tags to resources. This
behavior, known in the literature as “tag spamming”, has been widely discussed in past
research (BIAN et al., 2008; KOUTRIKA et al., 2008; BENEVENUTO et al., 2012).

Bian et al. (BIAN et al., 2008) focus their investigation on algorithms to rank social
media in question answering portals. In those systems, users can ask for specific in-
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formation by posting questions in order to obtain answers from other users. Moreover,
users can vote on existing answers to increase/decrease their ranking. Authors describe
a machine learning-based ranking framework that integrates user interactions and con-
tent relevance to mitigate vote spam attacks. Using a similar strategy, Benevenuto et
al. (BENEVENUTO et al., 2012) devise an algorithm to detect video response spam on
YouTube. Since users can post videos in response to other users’ videos, this may be ex-
ploited to increase the popularity of a video or advertise products. Thus, authors present
a heuristic that employs attributes of video users and their social behavior to detect spam.
Although effective, these solutions require a training data to calibrate the heuristic previ-
ously. However, their applicability remains uncertain in systems where such training data
is not available or users behave very dynamically.

In another front, Koutrika et al. (KOUTRIKA et al., 2008) carry out an investigation
on how tagging systems react to spam. Authors introduce a framework for modeling
tagging systems and user tagging behavior. They also describe a method to rank tagged
contents based on feedback from users. The proposed method considers the frequency
of tags and the reputation of users who assigned them to define content relevance. This
approach does not aim at detecting fake content, rather it focuses on giving lower weight
to suspicious tag assignments.

General massive attacks

Three most representative massive attacks are presented and discussed in sequence.
In massive lying, malicious users collude to manipulate voting/reputation mechanisms or
subvert distributed protocols. In eclipse attacks, malicious users “choke” victims with
useless connections to isolate them from the rest of the network. Finally, in piece corrup-

tion attacks, malicious users replace parts of a content with junk data in order to violate
its integrity.

Massive lying. Several protocols and systems present in the literature rely on infor-
mation provided by users. One of the main algorithms used by the BitTorrent protocol,
the Local Rarest First (LRF), considers the frequency in which pieces appear on reports
received from users’ neighbors. Therefore, massive lying users may provide incorrect
information about piece possession and subvert the LRF algorithm (LEHMANN et al.,
2012). Lehmann et al. propose a countermeasure that “rotates” the list of neighbors of
a user in order to increase the probability of finding potential honest users (LEHMANN
et al., 2012). Massive lying attacks also gained attention in online social networks. In
this case, users collude to praise their own products or bad-mouth the products of their
competitors. Liu, Yang, and Sun (LIU; YANG; SUN, 2008) propose a technique to cor-
relate ratings and users to identify feedback manipulations. They first detect abnormal
rating values for individual products. Then, a similarity is calculated among users who
provided these ratings. Finally, this similarity is employed to detect and remove ratings
from colluding users.

Eclipse. This popular attack in the context of P2P systems is used to isolate victims
or split the network (DHUNGEL et al., 2008, 2011). Many malicious users join the sys-
tem and establish several connections to legitimate users, ultimately degrading the overall
QoE. The aforementioned “rotation” algorithm may also be applied to tackle Eclipse at-
tacks (LEHMANN et al., 2012). So and Reeves (SO; REEVES, 2011) propose a solution
using locality filters to restrict the neighborhood of a user and mitigate the effect of mas-
sive attacks. In another work, Singh et al. (SINGH et al., 2006) design a solution to detect
colluding users by monitoring their list of neighbors. This is supported by the assumption
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that during eclipse attacks, the number of attacker’s neighbors is much higher than aver-
age. These solutions require laborious work to combine third-party information and take
local decisions.

Piece corruption. This attack consists on malicious users connecting to a victim and
uploading junk data (DHUNGEL et al., 2008; YANG et al., 2008). Solutions based on
hash functions were proposed to verify the integrity of pieces (HARIDASAN; RENESSE,
2006; MEIER; WATTENHOFER, 2008; SO; REEVES, 2011). In another work, Lehmann
et al. (LEHMANN et al., 2012) propose an additional reputation mechanism to isolate
users who send corrupt pieces. Although these solutions seem promising, they pose sig-
nificant costs to either calculate hash functions or build user’s reputation.

Conservative strategies

Some practical solutions that use conservative strategies have been proposed to mit-
igate massive attacks on the Internet. In one front, solutions try to slow down user’s
actions by using reverse Turing tests, like CAPTCHA (AWERBUCH; SCHEIDELER,
2004). The goal is to impose low costs for individuals and high costs for users who try
to abuse the system. In another front, authentication services delay successive requests
for identities to avoid brute-force attacks. These strategies not only discourage exhaustive
searches, but also protect systems against DoS attacks.

Conservative strategies have been used also to implement anti-spam mechanisms. Li,
Pu, and Ahamad (LI; PU; AHAMAD, 2004) propose a framework that slows down spam-
mers by carefully tuning email delivery parameters. The proposed approach adds delay to
the email delivery process at the TCP level and increases computation cost at the sender
side for delivering emails. In order to slow a TCP connection, authors suggest to postpone
TCP acknowledgments or inject congestion notification bits to spoof congestion. Further-
more, to increase sender computation cost, they force the sender to generate more packets
(e.g., of a smaller size) to deliver the same message. Results showed that selectively
delaying connections can slow down a spammer thousands of times.

Another proposal to fight email spams on the Internet tries to classify email senders
into categories such as legitimate, suspicious and bots (HUSNA; PHITHAKKITNUKOON;
DANTU, 2008). In this case, bots are considered sources of spamming and must be
blocked. The proposed mechanism analyzes traffic from their behavior patterns and ap-
plies traffic shaping strategies to delay messages. In order to do that, they analyze the
headers of the messages and apply clustering techniques to identify botnet groups. The
clustering also considers parameters such as IP address, content length, time of arrival,
frequency of messages and content type. Authors show that shaping the transmission
channel not only delays spam traffic, but also mitigates automatic use of zombie ma-
chines (bots) to send undesirable messages. Moreover, it has been reported that 90% of
spam emails can be eliminated by delaying spammer’s traffic.

2.3 Summary

CDS are frequently target of malicious interferences. Attackers use content sharing
platforms to publish bogus content and/or mislabel existing ones. These attacks are more
effective when massively employed by users. One of the main motivations for that is to
flood CDS with advertisements/spams. A second motivation is to launch denial-of-service
(DoS) attacks and tamper with user’s experience, which may be promoted by anti-piracy
companies. Content pollution attacks, if neglected, may turn CDS into a useless platform
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and compel the users to abandon the system.
As discussed in the previous section, existing solutions use lazy approaches to de-

tect and isolate polluted content. They attempt to identify polluters and/or fake decoys
only after evidences are produced, which allows wide dissemination of undesired content
until they are definitively banned. Furthermore, many approaches try to derive content
relevance based on users’ feedback, but they ignore the problem of massive attacks. Col-
luding users could easily manipulate content relevance by creating sybil identities to pro-
vide wrong feedback. In the following chapters, we leverage the power of conservative
strategies to mitigate massive attacks in CDS.



43

3 CONSERVATIVE APPROACH BASED ON BINARY VOTES

Considering the limitations of the aforementioned solutions, this chapter introduces
a conservative strategy, and corresponding mechanism, to control content pollution dis-
semination in CDS. The strategy counts positive and negative votes assigned to contents
in order to classify them as either non-polluted or polluted. The mechanism, called FUN-
NEL, operates by controlling the distribution of copies according to votes assigned by
community users. That is, the number of concurrent downloads permitted is affected
by the proportion between positive and negative votes. An incentive mechanism elicits
feedback from users about downloaded contents.

FUNNEL was initially designed to target closed BitTorrent communities, i.e., commu-
nities that require user registration before publishing and/or retrieving torrents. Although
FUNNEL was instantiated in a controlled environment, it may also be easily deployed in
real world communities, since its design does not require any modifications to BitTor-
rent agents. An implementation of the mechanism was evaluated through experiments.
Results indicate that FUNNEL prevents polluted copies from being disseminated, whilst
imposing a low overhead in the distribution of non-polluted ones.

Organization. The remainder of this chapter is organized as follows. Section 3.1
describes the proposed strategy and the mechanism that instantiates it, coined FUNNEL.
Section 3.2 presents the results of an experimental evaluation performed with FUNNEL to
analyze the technical feasibility of the approach. Section 3.3 enumerates a list of consid-
erations on the proposed solution. Finally, Section 3.4 closes the chapter with a summary.

3.1 FUNNEL model

This section describes the proposed strategy to fight content pollution and details
FUNNEL – the mechanism instantiation for BitTorrent file sharing communities. Our key
observation is that soon after some new content is published, there is no evidence whether
it is legitimate. The legitimacy of the content can only be established after a substantial
number of users have downloaded and evaluated the content, as well as provided feedback
about it. This may take some time, and some users may even refuse to provide feedback.
If no control is in place, a polluted content could be widely disseminated before it is iden-
tified as such. Previous approaches may demand a large number of negative evaluations
before they are able to classify a given content as polluted.

3.1.1 Overall strategy

The distinguishing aspect of our strategy is to start with a very low dissemination
rate, growing quickly as long as positive feedback (towards the legitimacy of the content)
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is provided by users. For the sake of clarity, we describe the strategy considering the
dissemination of a single content version, since the strategy is independently applied to
every content version published.

A binary voting mechanism is used to build the reputation of a given object in the
community (R). When a user finishes retrieving the content, he/she issues a positive vote
to testify the legitimacy of the downloaded version, or a negative vote to report the ver-
sion as polluted. The content reputation is supported by the Subjective Logic (JOSANG;
POPE; HAYWARD, 2006) and is computed using the fraction of positive votes out of the
total number of votes issued to a given version. The reputation, which is defined in the
interval [0; 1], is expressed by Equation 3.1. Variables p and n represent, respectively,
the number of positive and negative votes issued by users. In addition to the number of
votes, the equation includes a constant factor a that defines the behavior when few votes
are available: if p, n → 0, then R → a.

R =
p+ 2a

p+ n + 2
(3.1)

Since the strategy relies on votes, it could be thwarted by malicious users that do
not download the content and/or vote multiple times. Further, the strategy requires that
most non-malicious users vote and do so truthfully. These issues will be addressed in
Sections 3.1.4 and 3.1.5, respectively.

The value of R is used to establish the number of concurrent downloads allowed in a
given instant, denoted as A. The value of A is calculated according to Equation 3.2, as a
function of the corresponding content reputation (R), and assumes a value in the discrete
interval [Amin, Amax] (with Amin, Amax ∈ N

∗). In this context, Amin denotes a lower
bound, which guarantees a minimum number of downloads (when R → 0, A → Amin).

As soon as the perceived content reputation surpasses the reputation threshold r (i.e.,
when R ≥ r), downloads are not restricted and peers are free to download. Otherwise,
content dissemination is ruled by the current value of A, being limited by Amax – which
denotes an upper bound for the number of downloads to be allowed by the strategy (when
R → 1, A → Amax).

A =

{

∞ if R ≥ r,

R × (Amax − Amin) + Amin otherwise.
(3.2)

Three important properties hold for Equation 3.2:

• Property 1: For any r ∈ (0, 1] and R ≥ r, A = ∞; when so, the content will be
assumed beyond suspicion and unlimited downloads will be allowed;

• Property 2: For any r ∈ (0, 1] and R < r, A = R × (Amax −Amin) + Amin,
situation in which content dissemination will be ruled according to its perceived
reputation;

• Property 3: When r = 0, A = ∞ regardless of R; when so, no control will be
imposed and peers will be free to download the content, regardless of the perceived
reputation.

Figure 3.1(a) illustrates the behavior of variable A as a function of the reputation score
R. For instance, when R ≥ r = 0.9, an arbitrary number of downloads can take place;
if new negative votes are provided, the reputation score could fall below 0.9, with the
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limitation being reinstated. Figure 3.1(b) evaluates the variation of reputation according
to Equation 3.1, as a function of the (positive and negative) votes issued to it.
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Figure 3.1: When content reputation R exceeds r, it is deemed non-polluted (a), which
occurs for a specific vote range (b)

The number of concurrent downloads actually taking place at any moment is denoted
as D. The value of D is incremented when a download begins (or resumes), and is
decremented when it ends (or is interrupted). Although D ≤ A is desirable, since both A
and D fluctuate, it is possible that A drops and temporarily D > A. To establish if a new
download is possible, the values of A and D are compared. If D < A (or R ≥ r), new
downloads can be allowed.

In the following subsections, we describe how this strategy was designed and instan-
tiated in BitTorrent file sharing communities. With FUNNEL, we initially target closed
communities, in which users obtain a weak identity (an email address needs to be pro-
vided and confirmed) and use it for authentication purposes before accessing the portal.

The remainder of the section is organized as follows. The method applied to estimate
the current number of concurrent downloads (D) in a BitTorrent swarm is described next
in Subsection 3.1.2. The technique employed by the tracker to control the number of con-
current downloads in the swarm is then presented in Subsection 3.1.3. In Subsection 3.1.4
we discuss how to allow only a single vote per community user. The presentation of the
mechanism is concluded in Subsection 3.1.5, with the description of the voting incentive
mechanism.

3.1.2 Estimating the number of concurrent downloads

To apply the dissemination control mechanism, the tracker needs to calculate the num-
ber of peers simultaneously retrieving a given torrent (D). Each torrent may be regarded
as a version of a published content. Participating peers act autonomously and without
the trackers’ intervention, hampering a precise estimation of D. Therefore, when instan-
tiating the strategy for BitTorrent, the value of D will be approximately the number of
leechers in the swarm. To determine D, the tracker keeps track of which peers are in the
swarm (peers are removed after some time of inactivity) and their progress in terms of
download and upload. The estimation of D is based on the number of online peers with
incomplete downloads.
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Since there is no guarantee about the download progress information sent to the
tracker, malicious peers might pretend they are still downloading the torrent. Hence, a
massive attack could lead the tracker to overestimate the value of D, potentially causing
new download requests to be denied (new downloads are allowed when D < A). In fact,
malicious peers might remain in the swarm with little or no participation, contributing just
enough to occupy the present slots and prevent new downloads from starting. However,
in a content pollution attack, the objective of the polluter is the opposite: to increase the
number of concurrent downloads.

Nonetheless, malicious peers might aim at causing a denial-of-service (DoS) attack
against peers sharing a non-polluted content. There is a cost associated with this attack,
given that malicious peers must continuously announce themselves to the tracker in order
to be seen as leechers. To overcome this limitation, a probabilistic strategy could be em-
ployed, in which requests that would be denied are granted according to some probability.
Honest peers would eventually get a chance to proceed, preventing malicious peers to
take over the swarm. Lehmann et al. (LEHMANN et al., 2012) propose a “rotation algo-
rithm” to protect swarms against similar massive attacks. Another possibility would be to
enforce an upper bound on download times (based on file size or the average of observed
download times). While it would be relevant to quantify the effect of both strategies, we
leave their exploration for future work.

3.1.3 Adjusting the number of concurrent downloads

In order to control content dissemination in the community, the tracker can only re-
sort to the list of peers provided to BitTorrent agents. The strategy adopted by FUNNEL

consists in adjusting the size of this list depending on whether the request for download
should be granted or not. In the former case, the tracker acts according to its normal
behavior, and provides the agent with a regular list. Otherwise, an empty list is sent to
the peer1. A session starts when a peer P receives a non-empty list (the tracker has given
authorization). As mentioned earlier, P continues receiving lists even if D ≥ A becomes
true (because the value of A has fallen). The value of A may be decreased reflecting a
drop in reputation R. However, if the session with P expires, a future request of P for
download will be evaluated again by the tracker.

It is also important to consider the situation in which a peer P has its request de-
nied, but attempts to bypass the control and join the swarm. Current BitTorrent agent
implementations typically include two extensions which are employed in the discovery
of peers: PeerExchange (PEX) and Distributed Hash Tables (DHTs). Since it is a gossip-
based protocol, PEX does not affect FUNNEL: new peers can only be discovered when at

least one peer is previously known. If P is attempting to join the swarm for the first time,
it is not aware of other peer addresses.

In contrast, the use of DHT enables the discovery of peers without needing a tracker,
which would allow peers to bypass FUNNEL. Torrent files may contain the address of
one or more nodes of the DHT; if reached, these nodes could provide IP addresses of
peers in the swarm. To assess the real impact of this limitation, we measured the pop-
ularity of DHTs in several popular BitTorrent communities. To this end, thousands of
torrent files were collected from six communities and analyzed. Figure 3.2 summarizes
the number of collected files and the fraction of DHT-enabled torrents in each commu-
nity. The small fractions correspond to contents that might be retrieved by peers in the

1We did not explore in this thesis the possibility of sending partial lists.
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swarm without a tracker, and therefore circumventing FUNNEL. This low adoption may
be due to several practical limitations of DHTs, including their susceptibility to malicious
behavior (URDANETA; PIERRE; STEEN, 2011; TIMPANARO et al., 2011). However,
a community wishing to enforce content pollution control might discourage or forbid its
users from publishing DHT-enabled torrents (this seems to be common-practice already
in some closed communities).
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3.1.4 Ensuring unique votes per user

Recall that FUNNEL targets the dissemination of polluted content in closed commu-
nities. Hence, each interaction of a peer with the tracker can be associated to the corre-
sponding user identity in the portal. The portal aggregates the votes issued by users to
each of the published torrents, storing tuples in the format 〈Peer, Torrent, V ote〉. The
portal also uses this information to count the number of positive and negative votes as-
signed to each torrent.

Note that a peer may be able to identify a polluted version even before the download is
completed. Therefore, as soon as the peer has enough evidence that the version is polluted
(e.g., by previewing part of audio/video contents), it may halt the download and provide
its (negative) feedback.

A set of malicious peers may take advantage of this characteristic to perform a col-
lusion attack. Malicious peers could try to manipulate the reputation of a torrent, by
voting (negatively) against non-polluted contents, and (positively) for polluted ones. In
both cases, the reputation might affect the dissemination of a content contrary to what
was intended by normal users. To mitigate the impact of such an attack, the portal keeps
a record indicating in which torrents users have participated, even though temporarily,
and accepts votes provided by these users only. In addition, resources such as computing
challenges (e.g., CAPTCHAs) may be employed to mitigate this kind of attack (AWER-
BUCH; SCHEIDELER, 2004).

3.1.5 Incentives for users to vote

The proposed mechanism uses the votes issued by users to build up the reputation of
torrents in the community. If users retrieve a content but often fail to provide a feedback
on its legitimacy, the mechanism becomes ineffective. To address this issue, an incentive
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mechanism is required. Two approaches were considered: reward users who vote, and
punish those that do not. Rewarding users who vote might induce large amounts of indis-
criminate votes, since users would attempt to increase the amount of benefits. Punishing
users who do not vote, conversely, is susceptible to whitewashing (FELDMAN et al.,
2006), although there is a non-negligible cost to obtain a new identity.

FUNNEL follows the second approach: the tracker employs a policy to “punish” users
who do not vote. Similarly to the approach presented in Subsection 3.1.3, the tracker
sends peer lists whose sizes are affected by the fraction of torrents with user’s votes out
of the total torrents in which this user has participated. Therefore, let N represent the
number of peers in the original list that would be provided by the tracker, V the number
of torrents in which the user has voted, and P the number of torrents in which he/she
has participated, the size S of the list provided to a requesting peer is computed as in
Equation 3.3.

S = N ×min

{

V + 1

P
, 1

}

(3.3)

Given that a user cannot vote about a torrent without having joined the corresponding
swarm, and that votes may be issued before the download completion, it follows that
V ≤ P . The equation tolerates one missing vote without decreasing the peer list size, i.e.,
if the difference between V and P is greater than 1, the fraction will be lower than 1. The
operator min guarantees that the size of the list does not exceed N , which happens when
votes are issued prior to the complete retrieval of a content (V = P ).

3.2 Evaluation

This section presents an experimental evaluation of FUNNEL. The purpose of this
evaluation is to provide answers to three fundamental questions, attempting to quantify:
(i) the negative impact caused by the mechanism in a scenario where a non-polluted con-
tent is disseminated or, in other words, the overhead imposed by FUNNEL with non-
polluted contents; (ii) the effectiveness of FUNNEL in slowing down the dissemination of
polluted contents to normal users; (iii) the negative impact of collusion attacks performed
by malicious peers against the mechanism.

Each of the scenarios employed in the experimental evaluation comprised the dissem-
ination of a single content version (one torrent), instead of many, due to two reasons.
First, unlike other approaches, FUNNEL spawns individually and independently to every
content version. Second, it is very hard, if not impossible, to safely model user behavior
when facing multiple torrents of the same content. Users may decide according to factors
such as the publisher identity, the current number of seeders, of leechers, and number of
torrents downloaded. Hence, although FUNNEL may influence the user’s choice of tor-
rent by decreasing the number of leechers (and indirectly, of seeders), the choice will be
affected by multiple subjective factors. We are not aware of any study that analyzes the
rationale behind this choice and reliably establishes a user behavior pattern.

In Subsection 3.2.1, we introduce the experimental setup and the notations employed.
Results are, then, discussed in three parts. First, in Subsection 3.2.2, we show the effec-
tiveness of the solution when a non-polluted and a polluted content are published. Second,
in Subsection 3.2.3, we evaluate the strategy that controls the number of concurrent down-
loads taking place. Third, in Subsection 3.2.4, we present the evolution in the proportion
of honest and malicious users who had access to the content.
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3.2.1 Experiment details

Two very different scenarios were evaluated: honest peers seeding a non-polluted
torrent, and malicious peers seeding a polluted torrent. In the former case, an attacker will
try to prevent the distribution of the content, whereas in the latter the attacker will attempt
to have the content disseminated among honest leechers. We refer to these scenarios as
‘non-polluted’ and ‘polluted’, respectively.

Let I denote the number of initial seeders (either honest or malicious) that start a
swarm and remain available during the entire experiment. Let C denote the total number
of honest/correct peers that will arrive. The number of malicious peers who attack the
system represents a proportion M of the honest peers.

We examined (both through simulation and experimentally) a range of values for I , C,
and M to assess parameter sensitivity. Not only the scale of peers has been varied (from
hundreds to thousands of peers), but also the proportion among the values assigned to I ,
C, and M . Since the results observed were consistent for all combinations of parameters,
we chose to describe (and present the results obtained for) an intermediate-size scenario,
with I = 20 and C = 500. To assure that these choices were representative, we monitored
30 popular trackers and examined 3,167,832 torrents. Figure 3.3 shows the cumulative
distribution function (CDF) of swarm sizes and the distribution of users among these
swarms. We notice that swarms with 500 peers or less correspond to 99.94% of all torrents
and include 80% of all peers.
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The proposed mechanism employs a voting-based reputation scheme to classify con-
tents as being polluted or non-polluted. Such schemes are subject to collusion attacks, in
which a malicious user lies to manipulate the reputation of a given content. Hence, in both
polluted and non-polluted scenarios, the attacker leverages a proportion of M colluding
peers to attempt to defeat the mechanism. They will not only redistribute polluted content,
but also provide false feedback. In the context of this work, an attacker votes positively to
a polluted content and negatively to a non-polluted one. For the experimental setup being
presented, the value of M was varied from 0 to 30% (note that these malicious users will
need to have an account in the community).

First, the swarm is created with I initial seeders. To evaluate the most damaging sce-
nario, malicious peers join immediately afterwards and contact the tracker. Honest peers,
in turn, join the swarm following an exponential distribution, in line with measurements
presented in (GUO et al., 2005). Peers leave the swarm only after completing their down-
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loads, obeying a minimal contribution metric, denoted as ρ. The value of ρ represents
the amount of data a peer is willing to upload in regard to what he/she has downloaded.
For example, if ρ = 0, a peer will leave the swarm right after completing the download,
regardless of the amount he/she has uploaded. If ρ = 2, it means a peer will attempt to
upload at least twice as much content as he/she downloaded. Note that a user relies on
interested leechers in order to upload content until its ρ is fulfilled. Conversely, a user
might upload substantially more than what its ρ would indicate, since ρ is in effect only
after the leecher becomes a seeder.

In this context, we define the behavior of honest and malicious peers when retrieving
polluted and non-polluted contents. There are four possible cases, as follows. When an
honest peer completes the download of a polluted content, we assume that it immediately
detects the pollution and therefore leaves the system (ρ = 0). Likewise, if a malicious peer
finishes retrieving a non-polluted content, it does not disseminate it (ρ = 0). Although
the idea of leaving the system immediately does not mimic real user behavior, we left this
factor out of the evaluation in order to simplify the analysis.

In contrast, when a malicious peer retrieves a polluted content, it remains in the swarm
contributing indefinitely to its dissemination (ρ = ∞). The fourth and last case corre-
sponds to the ‘normal case’: an honest peer retrieves a non-polluted content. The level
of collaboration in BitTorrent communities have been up to debate, so it is hard to assign
‘real’ values of ρ to peers. Adopting a methodology in line with a previous study (ANAG-
NOSTAKIS et al., 2006), we assume that after (fully) downloading the content, 25% of
leechers leave the swarm without becoming seeders (ρ = 0), 41% are willing to upload
as much as they have downloaded (ρ = 1), and 34% attempt to upload twice as much as
they have downloaded (ρ = 2).

To keep the campaign of experiments manageable, we chose relatively small torrents:
60 MB. The set of BitTorrent agents – the standard implementation of BitTornado – was
distributed among 10 dedicated machines, interconnected through a 100 Mbps network
switch. Agent configuration included a limit of 7 upload connections and infinite number
of download connections (in larger settings, the operating system would have forced a
limit on this value). In addition, we adjusted the upload and download rates of the agents
to 256 Kbps and 1 Mbps, respectively. Finally, we have assigned the following values for
FUNNEL input parameters: Amin = 1, Amax = 50, a = 0.5, and r = 0.95. These values
were chosen because they represent a reasonable balance between a more conservative,
rigid dissemination policy and a more relaxed one.

3.2.2 Effectiveness of the mechanism

To measure the effectiveness in both polluted and non-polluted scenarios, we mea-
sured how long it took to each honest peer to complete its download. Figure 3.4 illus-
trates the amount of time peers remain online (up to completion) in both non-polluted and
polluted scenarios (Figure 3.4(a) and Figure 3.4(b), respectively). A pair (x,y) in the plot
means that a fraction of peers x remains online for up to y minutes in order to complete
their download.

Figure 3.4(a) illustrates the behavior of the mechanism for non-polluted scenario. In
this case, the lower the curves, the better. First, note that the curves ‘No Control’ and
‘M = 0%’ are similar. That is, when there are no attackers, the presence of the pollution
control mechanism introduces a negligible overhead. More precisely, results indicate that
the delays imposed by the mechanism are not larger than 10 minutes to 80% of peers.

When running an experiment with 2% of malicious peers, the mechanism receives
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Figure 3.4: Effectiveness against pollution attacks with colluding peers

votes against the legitimacy of the content (negative), which induces FUNNEL to slow
down the dissemination of non-polluted content. This may be observed by the fact that, in
comparison to the curve ‘M = 0%’, honest peers took at most 70 extra minutes to down-
load the content. However, we note that, to duplicate this delay, it takes five times more
attackers (M = 10%). In addition, the efficiency of the attack decreases as the proportion
of malicious peers exceeds 10%. Such phenomenon occurs because when colluding peers
arrive, at most A = [0 + (1− 0)× 0.5] × (1 + 50) + 1 = 26.5 of the malicious peers
are allowed to start their downloads (R = 0.5 since in the initial stage there are no votes
recorded, thus R = a). Therefore, only the remaining malicious peers may “compete”
with the honest peers in the swarm for an opportunity to start the download.

Results regarding the polluted scenario are shown in Figure 3.4(b). In the absence
of control, 100% of peers complete the download of the polluted content in less than 50
minutes. In this case, the benefits of using FUNNEL are highly expressive: approximately
90% of peers consume more than 750 minutes (12.5 hours) to complete the download
of the polluted content (curve ‘M = 0%’). For the sake of legibility, the plots in the
figure were limited in the y-axis. Please note, however, that the overall behavior of curves
M = 0% and M = 2% remained unchanged, even past 15 hours of experiment. The
mechanism also performs efficiently, controlling the dissemination of polluted content,
even in the presence of 2% of malicious peers voting positively. When M ≥ 10%, the
set of malicious users obtained success in promoting content dissemination; however,
note that to obtain the 60 MB file, it took the honest peers approximately 600 minutes
(10 hours), 12 times more than in the absence of FUNNEL. We emphasize that, in the
experiments carried out to evaluate our proposal, peers do not give up on trying to obtain
a non-polluted content. In practice, peers may leave the network due to the delay to start
the download, so that FUNNEL may be actually more efficient in holding pollution than
shown in the plot.

3.2.3 Setting the number of concurrent downloads

In an in-depth analysis of the evaluated scenarios, it is possible to precisely observe
the performance of our mechanism in controlling the dissemination of polluted content
among peers belonging to the swarm. Figure 3.5 presents how the number of peers (honest
and malicious) evolves in the observed swarms. The plot shown in Figure 3.5(a) illustrates
an environment in which the dissemination of a non-polluted content is hampered by 10
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malicious, colluding peers (2%). In the first 10 minutes, the swarm is taken over by these
attackers, being followed by A − 10 = 16 honest peers. When the malicious peers issue
their negative vote, the value of A, computed by the tracker and represented in the dotted
line in the plot, is decreased. The attack leads to a reduction in the number of peers
retrieving the content (peers currently in the swarm complete their downloads and new
peers are prevented from joining because of the lower value of A). However, the positive
votes (issued by the honest peers) cause an increase in the value of A, which reaches Amax

after approximately 1 hour and 45 minutes of experiment. Such effect may be observed in
Figure 3.5(a), with the end of the dotted line and the surge in the number of honest peers.
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Figure 3.5: Number of downloads during the dissemination of a content

The plot in Figure 3.5(b) illustrates an environment in which the dissemination of
a polluted content is supported by 100 malicious, colluding peers (20%). In this case,
malicious peers completely take over the system, impeding honest peers to retrieve the
content in the initial stage. However, FUNNEL prevents 100 − A = 74 attackers to start
their downloads, and these must “compete” for an opportunity along with honest peers
that arrive in the swarm. Observing Figure 3.5(b), one may note the effect caused by the
attacker’s positive votes: an increase in the value of A occurs during the first 30 minutes of
the experiment. As new downloads are authorized, both honest and malicious peers enter
the swarm. The votes of honest peers cause a decrease in the value of A, compensated by
a minority of counterfeit votes provided by attackers which had the opportunity to begin
their downloads. This procedure occurs along the experiment and allows us to conclude
that the system in fact adapts and reacts quickly, depending on the number of attackers,
towards a stable situation in which non-polluted versions are widely disseminated and
polluted ones are slowly disseminated among peers.

3.2.4 Impact of the mechanism on peer joins

In this subsection we analyze the effectiveness of FUNNEL from a different perspec-
tive. Instead of focusing on the number of completed downloads, we now concentrate on
the number of honest and malicious peers starting their downloads. Since FUNNEL em-
ploys a conservative strategy, we say that peers arrive when they first attempt to start their
downloads, and actually join when they are allowed to start. In this analysis, we observe
the proportion of peers (honest and malicious) during the distribution of a polluted and
non-polluted content. Both scenarios were instantiated with 10 and 30% of attackers, and
a fixed number of 500 honest peers.
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Figure 3.6 shows the cumulative proportion of peers during the entire experiment. A
pair (x, y) in the plots means that a proportion of y peers (from all honest or malicious,
depending on the curve) had access to the content by instant x. When the ‘Honest’ curve
reaches the top of the figure, it means all 500 honest peers were allowed to join the system.
Similarly, when the ‘Malicious’ curve reaches the top, all attackers were allowed in.

Since malicious peers arrive first, they get hold of the first slots to download the con-
tent. During the experiment, honest peers arrive and compete as well for slots of down-
load, thus increasing the set of waiting peers. Both honest and malicious peers gradually
access the content and cast their votes. In the non-polluted scenarios, attackers try to join
and vote in order to deny the access of other peers to the system. In the polluted scenarios,
they try to ease the access of other peers.
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Figure 3.6: Proportion of peers (honest and malicious) joining the system during the
dissemination of a content when FUNNEL is present

Figures 3.6(a) and 3.6(b) represent the non-polluted scenarios, for M = 10% and
M = 30%, respectively. First note that, by definition, curves are proportional and will
reach 1, but in different time scales (3h-13h). These figures illustrate the benefits of the
control mechanism to honest peers. This is due to the fact that the conservative mechanism
holds together malicious and honest peers, increasing the proportion of honest peers over
time. This leads to a scenario in which the majority of peers waiting for access are honest
and therefore the probability of a honest peer joining the system becomes higher. Recall
that peers are induced to wait by receiving empty lists. If the user does not want to wait,
he might look for another potentially good content. For M = 10% (Figure 3.6(a)), at time
3 hours and 10 minutes, we notice that more than 90% of honest peers have managed
to join the system, whereas only 55% of attackers have had access. At the same time,
for M = 30% (Figure 3.6(b)), the proportion of attackers remains close to 30%, and
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the waiting attackers finally join when more than 80% of honest peers have accessed the
system. In the absence of FUNNEL, in contrast, 100% of attackers would instantly join
the system.

In the polluted scenarios (Figures 3.6(c) and 3.6(d)), FUNNEL provides a similar ben-
efit to honest peers. They join the system, download the polluted content, and vote neg-
atively about it. As the number of allowed downloads decreases, due to honest votes,
attackers face an even lower probability of joining the system. This explains why only 50
and 30% of attackers, for M = 10% and M = 30% respectively, join the system during
the first 8 hours of experiment, 5 hours later if compared to the non-polluted scenarios.
When the curves of malicious peers start growing (about 8 hours in the figures), almost
80% of honest peers have accessed the system.

In summary, FUNNEL reduces the proportion of malicious peers accessing both non-
polluted and polluted contents during the initial phase of its dissemination, when most
honest peers arrive. This positive effect is due to the contention strategy of our mecha-
nism: since honest and malicious peers wait until joining the system, collusion and mas-
sive attacks are “diluted” and fewer malicious votes are casted over time. Consequently,
the potential harm that an “en masse” arrival of malicious peers could cause is reduced.

3.3 Considerations on the proposed solution

As presented in the previous sections, FUNNEL enables the quick dissemination of
legitimate versions of a content, while limiting the spread of polluted ones, even in the
presence of malicious, colluding peers. An aspect of paramount importance concerning
our solution is its relevance and impact for BitTorrent users: there is a significant number
of communities (therefore, users) that might take advantage of FUNNEL, as presented
in this chapter. Nonetheless, our solution has the potential to be extended to a broader,
wider range of scenarios (e.g., to enable its applicability to open communities and other
P2P file sharing systems). A number of issues must be addressed in order to accomplish
such a generalization, for example (i) dealing with the presence of counterfeit identities
(sybil nodes) (DOUCEUR, 2002), (ii) aggregating positive and negative votes, and (iii)
computing the number of concurrent downloads, (being the latter two more relevant in
the case of purely decentralized P2P systems).

FUNNEL relies on the feedback provided by users to compute the reputation of a given
content, and adjusts the number of concurrent downloads according to the resulting rep-
utation. Since our solution controls the dissemination of a given content, we decided not
to consider an extra mechanism to assign scores to users. However, additional strategies
to create users’ reputation and moderate their activities can be designed as a complement
to the current solution. In this case, votes assigned by users might be weighted by their
reputation and, hence, FUNNEL would potentially converge faster. However, even with
user incentives to elicit feedback, some users may remain uncooperative (i.e., unwilling to
vote). A lower number of votes tends to delay convergence; in the meantime, the mech-
anism will conservatively allow a fraction of downloads to take place. Like other P2P
systems, our approach relies on the cooperation of a fraction of users, who will either
respond to the incentive mechanism or simply behave altruistically.

In regard to the dissemination control, malicious peers might launch an attack against
users sharing non-polluted contents by taking over all the download slots when only Amin

are available (e.g., after a previous attack to decrease the content’s reputation). The Amin

slots would then be occupied by malicious peers pretending to have limited bandwidth
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capabilities (e.g., 1 Kbps). Consequently, legitimate users would not be able to download
the content and regenerate it (providing positive votes to raise its reputation). A simple
approach to overcome this threat would be setting expiration times for the download au-
thorizations. While this is an intuitively effective strategy, the optimum value for this limit
is not obvious. If this period is too short, honest peers would prematurely loose the slot.
This means that they would be able to keep on downloading, although would not receive
fresh information about new peers. Conversely, if the period is too long, malicious peers
would be able to hold their slots for longer times, and consequently cause a larger impact
on the system. While it would be relevant to elaborate on how to optimally set this period
in a dynamic context, this is out of the scope of this thesis.

Finally, we expect objects with lower popularity to be more susceptible to distributed
denial-of-service attacks. If there is not much interest on a content being shared in the
network, fewer resources might be necessary for an attacker to take control over it (either
by providing false testimonies or by requesting, but not finishing, several downloads in
parallel). Nevertheless, considering the exponential distribution of users among contents,
a reduced number of users would be affected by attacks on objects of low popularity.
Substantial resources would be needed to harm a reasonable amount of users. While this
might represent indeed an attack scenario, it is of smaller relevance. Instead, we have
concentrated on cases where larger number of users might be affected by a single attack.

3.4 Summary

BitTorrent communities have become one of the most popular alternatives for file
sharing. One of the side effects of such a high popularity is that they have also become
a natural target of content pollution attacks, where malicious users disseminate corrupted
copies, viruses, or other malware. In addition to contributing to the spread of malicious
decoys, content pollution may also promote the waste of client and network resources,
considering that peers may attempt to obtain titles through repeated downloads. To miti-
gate this problem we proposed a novel content pollution control strategy and correspond-
ing mechanism, FUNNEL, to reduce the dissemination of polluted content according to
users’ perception on the content’s legitimacy. FUNNEL addresses the major shortcoming
of manual inspection required by traditional, ad hoc proposals, by automatically adjust-
ing the number of concurrent downloads according to the proportion between positive and
negative votes.

We have shown the effectiveness and technical feasibility of the proposed mechanism
through an experimental evaluation, carried out using an implementation of FUNNEL.
The results obtained – considering real BitTorrent agents on live networks – also demon-
strate the efficiency of the proposed solution, which has imposed significant delays to
the dissemination of polluted contents, whereas causing a relatively low delay for the
dissemination of non-polluted, legitimate ones. Furthermore, low dissemination delays
experienced by non-polluted copies have been observed even when there is a large num-
ber of peers colluding to hamper the dissemination. These observations show that our
conservative approach not only controls the dissemination of polluted content, but also
requires a significant effort to adversely manipulate the mechanism.

Although FUNNEL achieved satisfactory results, it relies on a binary voting schema,
which polarizes contents in either polluted or not, and is unable to deal with the inherent
subjectivity to characterize “pollution”. This characteristic assumes that users have sim-
ilar opinions about contents and are able to accordingly detect inappropriate metadata,
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which was already shown to be false (LEE et al., 2006). As a next iteration to tackle the
pollution problem, a more flexible mechanism is designed in order to enable users to ex-
press their opinions beyond simply positive and negative votes. The next chapter presents
our solution that aims at providing users a better quality of experience in CDS.
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4 EXTENDING THE MODEL TO DEAL WITH SUBJEC-
TIVENESS

As an important step towards increasing download quality in content distribution sys-
tems, this chapter presents DÉGRADÉ, a novel tag-based strategy to control the dissemina-
tion of undesired contents. Unlike existing solutions, DÉGRADÉ leverages social tagging
system techniques to allow users to express their perception about downloaded contents
in a flexible and accurate fashion. Furthermore, and key to our solution, it restricts the
dissemination of contents when the uncertainty on the vocabulary describing them is high,
and promotes their dissemination otherwise. DÉGRADÉ goes beyond the traditional bi-
nary polarization (“polluted” vs. “non-polluted”) of users’ feedback in characterizing
contents and provides a more effective way for users to express their “taste”. The control
strategy underneath manages to reconcile such “tastes” and downloads.

DÉGRADÉ has been evaluated by means of a large set of simulations. BitTorrent
swarms have been reproduced to mimic various scenarios of content dissemination, and
real traces from Delicious have been employed as sequences of tag assignments. In ad-
dition, attacks have been designed to induce users to download undesired contents, and
their impact to the proposed strategy have been analyzed. The results achieved show that
our strategy is capable of significantly improving the “quality” of downloads even in the
presence of malicious behaviors.

Organization. The remainder of this chapter is organized as follows. Section 4.1
presents the proposed strategy and equations that govern its behavior. Section 4.2 dis-
cusses evaluation results. Section 4.3 enumerates a list of considerations on the proposed
solution. Finally, Section 4.4 closes the chapter with a summary.

4.1 DÉGRADÉ model

This section introduces the downloads control strategy supported by content vocabu-
lary variation. This strategy, called DÉGRADÉ, can be divided in two main components.
The first one is the tagging component used by users to type in the set of tags associated
to some content. The second one is the aggregator service, where the tags are stored and
employed to build our solution. The tagging component allows users to annotate contents
similarly to the popular Delicious bookmarking system. After each tag assignment, the
aggregator service updates the content vocabulary and the variation metric used to control
further requests for download. In the next subsections, we detail how DÉGRADÉ funda-
mentally works. First, in Subsection 4.1.1, we investigate the typical dynamics observed
in vocabularies of collaborative tagging systems. Second, we define a metric that captures
such vocabulary variation, in Subsection 4.1.2. Third, in Subsection 4.1.3, we elaborate
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on the key idea behind DÉGRADÉ: as the variation increases (and therefore the metric
value), less downloads are allowed to proceed.

4.1.1 Stable patterns in tag proportions

In the proposed strategy to fight pollution, users describe contents using tags. Given
a set T of n possible tags to assign to any content, we define a tag assignment through a
vector of n binary elements indexed by those tags. So, for |T | = n, the i-th assignment
is represented as a vector ~vi = 〈vi,t1 , . . . , vi,tn〉, whose element vi,tj is set to 1 if the
assignment contains a tag tj , and 0 otherwise. A sequence of assignments defines the
content vocabulary, which represents the entire set of tag frequencies. Those frequencies
are called proportions when normalized by the total amount of tags. Consider the matrix
M with m assignments:

Mm×n =











~v1
~v2
...
~vm











=











v1,t1 v1,t2 · · · v1,tn
v2,t1 v2,t2 · · · v2,tn

...
...

. . .
...

vm,t1 vm,t2 · · · vm,tn











Equation 4.1 defines the proportion of a tag tk after the m-th assignment.

pm,tk =

∑

1≤i≤m vi,tk
∑

1≤i≤m
1≤j≤n

vi,tj
(4.1)

For example, given a set T = {t1, t2, t3, t4} and three assignments {〈1, 0, 0, 0〉, 〈1, 0, 1, 0〉,
〈1, 1, 1, 0〉}, the tag proportions are p3,t1 = 3

6
, p3,t2 = 1

6
, p3,t3 = 2

6
and p3,t4 = 0. After

each assignment, the proportions are updated; so, if a new assignment 〈0, 1, 0, 1〉 is per-
formed, the new relative frequencies are p4,t1 = 3

8
, p4,t2 = 2

8
, p4,t3 = 2

8
and p4,t4 = 1

8
.

The values of proportions fluctuate as the number of assignments increases, but asymptot-
ically they tend to stabilize (GOLDER; HUBERMAN, 2006). The set of tag proportions
is employed to determine the variation level in the content vocabulary. To illustrate, the
analysis of tag proportions in a Delicious trace produced the results shown in Figure 4.1.
Next, we present the metric that captures vocabulary variation, and the strategy to adjust
the number of allowable concurrent downloads in face of its value.
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Figure 4.1: Stabilization of tag proportions for a specific Delicious trace
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4.1.2 Variation metric

We now present the metric proposed to evaluate different phases in the dynamics of
vocabularies. Considering a window with m assignments ~v1, ~v2, . . . , ~vm and a sequence
of proportions Φt = 〈p1,t, p2,t, . . . , pm,t〉 which reflects these assignments, we define the
variation of a tag t in terms of the standard deviation of its proportions (σt = σ(Φt)). Sev-
eral measures of dispersion, such as variance and range, could have been used instead.
However, the variance presents a data unit with different scale, equals to the square of the
original one, hindering its interpretation. The range, in turn, is not sufficiently robust be-
cause it represents an approximation of the dataset variability and is sensitive to boundary
values.

To illustrate, the matrix M7,4 in the following shows a sequence of 7 assignments
(from line 1 to line 7). From the matrix of assignments, we derive a matrix of propor-

tions (on the right) whose elements pi,tj represent the proportion of a tag tj for the first i
assignments, calculated according to Equation 4.1.

M7,4 =





















1 1 0 0
0 1 1 0
0 1 0 0
1 0 0 1
0 0 1 1
1 1 1 1
0 1 0 0





















[

pi,tj
]

7×4
=





















1/2
1/2

0 0

1/4
2/4

1/4
0

1/5
3/5

1/5
0

2/7
3/7

1/7
1/7

2/9
3/9

2/9
2/9

3/13
4/13

3/13
3/13

3/14
5/14

3/14
3/14





















The vocabulary variation (denoted as ∆w) is based on a recent subset of tag propor-
tions. In order to capture the current state of the vocabulary after m assignments, a win-
dow is used to consider only the w most recent proportions. The ∆w metric is calculated
by summing the variation of each tag (σt) within the window, according to Equation 4.2.

∆w =

√
2

2

∑

t∈T
σt (4.2)

The constant in the equation is used to normalize the metric. Next, we justify how
we have obtained this constant. Since max is a subadditivity function, we have that for
any non-negative function f , max(f1 + f2 + · · · + fk) ≤ max(f1) + max(f2) + · · · +
max(fk). Thus, in order to find the maximum value for the summation of standard devi-
ations, we must sum the upper bound of each individual term; hence, max(

∑

t∈T σt) =
∑

t∈T max(σt). From (JOARDER; LATIF, 2006), we have that max(σ) = d
2

√

n
n−1

,
where d is the sample range and n is the number of elements in the sample (n ≥ 2).
Given that max(σ) decreases as n increases, its maximum is reached when n = 2; then,
max(

∑

t∈T σt) =
∑

t∈T
dt
2

√
2 =

√
2
2

∑

t∈T dt, where dt is the range of the proportions of
a tag t. Consider two subsequent assignments (n = 2) of two disjoint sets of tags with
sizes a and b, respectively. The matrix of proportions is as follows.







1
a

1
a

×a· · · 1
a

0 0 ×b· · · 0

1
a+b

1
a+b

· · · 1
a+b

1
a+b

1
a+b

· · · 1
a+b







By summing the absolute difference between proportions of each tag (represented by
columns in the matrix), we get max(

∑

t∈T σt) =
√
2
2
[( 1

a
− 1

a+b
)a+ ( 1

a+b
− 0)b] = b

a+b

√
2.
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This equation achieves its maximum if a = 1 and b → ∞, which gives a normalization
term equals to

√
2.

We illustrate next the use of Equation 4.2 in the matrix of proportions derived from
M7,4 (suppose w = 7, ignoring for the moment the effect of a window):

∆7 =

√
2

2
(σ(Φt1) + σ(Φt2) + σ(Φt3) + σ(Φt4))

=

√
2

2
(0.10436 + 0.10667 + 0.08623 + 0.11196)

= 0.28936

This means that the aforementioned assignments lead to a variation of approximately
29% in the vocabulary dynamics. This variation is used to adjust the number of allowable
concurrent downloads, as explained next.

4.1.3 Adjusting the number of allowable concurrent downloads

DÉGRADÉ aims at providing a reliable view of the content vocabulary – i.e., tag pro-
portions have stabilized – reducing the probability that users retrieve contents with poor
and insignificant descriptions. Rather than considering only an immediate description of
contents, the history of assignments is employed to calculate the vocabulary variation (∆)
and support the strategy to control downloads. In this context, the proposed model reuse
the two variables previously introduced by FUNNEL (Subsection 3.1.1): D and A. We
recall that D represents the number of downloads currently taking place, whereas A rep-
resents the maximum number of concurrent downloads to be allowed. The value of A is
defined based on an expected behavior, as described next. Let δ ∈ [0; 1) be a threshold
parameter, and Amin and Amax the bounds of A while the strategy is running, we have
that:

• If ∆ → 1, then A → Amin;

• If ∆ → δ+, then A → Amax;

• If ∆ < δ, then A = ∞.

DÉGRADÉ adjusts the value of A according to ∆. When the variation gradually de-
creases and converges to δ, A will approach Amax. If the variation is below the threshold,
then DÉGRADÉ becomes inactive. We introduce a transformation function g : [0, 1] 7→
[0, 1] that defines how A fluctuates in terms of ∆. For the sake of clarity, Figure 4.2(a)
shows three possible functions. The first one produces a more sensitive strategy, because
small variations (e.g., 0.1 ≤ ∆ ≤ 0.2) are mapped to high values (around 0.6). The
second function is considered neutral, since it does not change ∆. The third function in
the figure represents a quadratic function and is considered resistant because when the
variation metric is close to 0.4, for example, the function returns around 0.2, indicating
half of the variation calculated.

The behavior of A is depicted in Figure 4.2(b) for the three aforementioned trans-
formation functions. The threshold δ employed in this example is set to 0.2. When the
vocabulary variation is equal to 1, the number of allowable concurrent downloads is Amin

for all transformation functions shown. As the variation decreases, A approaches Amax
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Figure 4.2: Impact of different transformation functions on the number of allowable con-
current downloads

with different rates depending on which function is used. When g(∆) goes below δ (∆ ap-
proximately lower than 0.01, 0.2, and 0.45 for the sensitive, neutral, and resistant curves,
respectively), DÉGRADÉ allows every download to proceed. The list of requirements
expressed earlier is summarized in Equation 4.3.

A =

{

∞ if g(∆) < δ,
(g(∆)−δ)×Amin+(1−g(∆))×Amax

1−δ
otherwise.

(4.3)

The threshold parameter δ ∈ [0; 1) should be adjusted according to restriction lev-
els required by system administrators. If it is set with the lowest value, the condition
g(∆) < δ will never be reached and the strategy will always control the number of con-
current downloads. In contrast, as δ approaches 1, less restrictive the strategy becomes,
allowing downloads to proceed without control. Thus, A is computed and compared with
D; the download is authorized if D < A, and delayed otherwise. Therefore, although
DÉGRADÉ does not directly change the vocabulary, it reduces the number of downloads
being based on low quality (incorrect, uncertain) information. The value of δ along with
the transformation function define how conservative the strategy will be. Since we focus
the evaluation of our strategy on extreme scenarios, we adopted the sensitive function
(g(x) = 2

√
x − x) throughout the analysis. It is important to notice that high variations

during the first assignments is an expected behavior, but this does not necessarily mean
that a content is mislabeled. Since the proportions among tags vary considerably in early
stages of content description, tag assignments may produce high variations in ∆. How-
ever, this effect results in a protection against potential attackers when description are
more vulnerable to malice, i.e., easier to manipulate. To show the effectiveness of the
overall strategy, we carried out an extensive set of simulations, which are discussed next.

4.2 Evaluation

In this section we present and discuss the results obtained with the evaluation of the
proposed strategy. First, we describe in detail the traces employed in our evaluation (Sub-
section 4.2.1) and the scenarios derived from the dataset (Subsection 4.2.2). Then, we
present the content distribution fluid-based model used to assess the proposed strategy
(Subsection 4.2.3), and a sensitivity analysis performed for a proper setting of the strat-
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egy parameters (Subsection 4.2.4). We close the section with a discussion on the results
achieved (Subsection 4.2.5).

4.2.1 Dataset details

A fundamental input for the evaluation of our strategy is the set of tag assignments for
the content being disseminated. Synthetically generated inputs generally do not capture
the true dynamics of users’ behavior in face of contents being disseminated. To obtain
more accurate and realistic results, the evaluation was based on a set of traces gathered
from Delicious, in the context of Tagora Project1.

The dataset obtained comprises 140,126,586 tag assignments from 532,924 users.
These assignments characterize 17,262,480 items (i.e., websites), and involve 2,481,698
distinct tags, summing 1.1 GB of data. A sequence of assignments for a specific item is
called a trace. Given its dimension, a methodology was used to select the most relevant
set of traces from the dataset, as follows. First, the 2,000 traces with the largest number
of assignments were selected. Second, a clustering algorithm, called k-medoids, was em-
ployed to group these traces in clusters. k-medoids is a partitioning technique that groups
a dataset into k clusters. The criterion used to assess the number of clusters is the average
“silhouette” of the data, as described by Lletí et al. (LLETÍ et al., 2004). Two significant
clusters, from the initial set of 2,000 traces, have been identified according to three prop-
erties: (i) number of tag assignments, (ii) number of distinct tags, and (iii) cumulative
number of tags. Since our objective was to select representative traces within clusters
instead of their properties, the use of the well-known k-means technique did not fit. k-
means would select averaged values for the properties, but these values could correspond
to no trace from the dataset. Table 4.1 summarizes the clusters and properties of the most
representative trace within each cluster (the one whose average dissimilarity to others is
minimal, i.e., the medoid) within each cluster. For the sake of simplicity, we refer to the
clusters as WIDE and NARROW.

Table 4.1: List of clusters

Cluster # of traces
Properties of the selected traces

# of tag assignments # of distinct tags Cum. # of tags
WIDE 527 3,001 887 10,195

NARROW 1,473 1,255 335 4,223

4.2.2 Evaluation scenarios

The evaluation of DÉGRADÉ comprised two scenarios, one for each cluster identified
according to the methodology presented in the previous subsection. In the remaining of
this section, we refer to these scenarios by the cluster name they represent, i.e., WIDE and
NARROW. The characteristics, common to both scenarios, are defined as follows.

The process of content dissemination is regarded as a swarm session, similar to those
in the BitTorrent context. A session starts with I initial seeders, which upload the content
indefinitely and remain online during the entire simulation. During the session, C leech-
ers (also referred to as correct peers, i.e., ordinary agents which respect the established
protocol) and a proportion of M malicious peers arrive. In order to evaluate DÉGRADÉ

against unfavorable conditions, malicious peers arrive before every honest peer.

1Available at http://www.tagora-project.eu/data/#delicious
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Initially, there are 20 seeders (I = 20). The proportion of malicious peers varies from
0 to 30% to evaluate the impact of massive attacks. The value of C is set according to
each trace, and leechers arrive according to a rate defined by the function λ(t) = α0

1+βt
,

whose decay factor β is set to 0.01 and the initial rate α0 is set in such a way that every
peer arrives until t ≈ 4h (ANDRADE et al., 2009).

Once a honest peer finishes the download of the content being disseminated, he/she
classifies it using one set of tags extracted from the trace that rules the scenario, and re-
mains online as seeders for the entire session. The average number of tags per assignment
in both traces is around 3.4. Furthermore, each malicious peer assigns 100 tags following
one of the attack strategies depicted in Table 4.2. These attacks are adapted from Koutrika
et al. (KOUTRIKA et al., 2008). After the tag assignment, malicious peers leave the sys-
tem without performing any seeding.

Table 4.2: Attack strategies
Attack Strategy Description

RANDOM Random incorrect tags Assign a random set of tags not present in
vocabulary

TARGET Fixed incorrect tags Select a set of tags not present in vocabulary
and keep assigning it

The attacks RANDOM and TARGET have the goal of creating a misrepresentation (or
incorrect perception) of a given content. By launching such attacks, the attacker attempts
to mislead the user in his search for the desired content, and either (i) make him download
an undesired content, whose vocabulary erroneously describe another content – the de-
sired one, or (ii) hinder his search for a desired content, by promoting many fake contents
whose vocabularies describe the one the user is actually searching for.

It is important to emphasize that the RANDOM and TARGET attacks are the most
representative ones in the context of social tagging systems, as evidenced in previous
research (KOUTRIKA et al., 2008). This is the reason why we concentrate on these
attacks when evaluating the robustness of our strategy.

4.2.3 Swarm-based content distribution fluid-based model

Since BitTorrent employs a swarm-based architecture to disseminate content and it
is one of the most popular CDS protocols, we have guided our evaluation mimicking a
BitTorrent-like model (QIU; SRIKANT, 2004; GUO et al., 2005). It is a fluid model that
governs swarms evolution, and allows the analytical estimation of download progresses
within time slots. According to the model, the amount of traffic generated in a swarm per
time slot can be calculated as min{µ(ηx+ y), cx}, where: x is the number of leechers; y
is the number of seeders; µ and c are, respectively, the uploading and downloading rates;
and η is the file sharing efficiency, which represents the probability of a leecher to upload
to another leecher. Qiu and Srikant have demonstrated that for a content divided into P

fragments, if each peer connects to other k peers, η ≈ 1 −
(

logP
P

)k
(QIU; SRIKANT,

2004). These equations are used to estimate the number of completed downloads per time
slot. For example, considering a content of size F , the i-th peer finishes its download
after i× F is transfered in the swarm.
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4.2.4 Sensitivity analysis

The parameters involved in the evaluation were determined through a sensitivity anal-
ysis carried out with the selected traces. One of these parameters is the window size (w),
which is used by DÉGRADÉ to calculate the vocabulary variation. From a preliminary
analysis, we have observed that our strategy becomes more sensitive for small values of
w (even in the absence of attacks), and thus may become less effective in capturing the
real state of the system. Conversely, higher values of w may obfuscate suspicious behav-
iors. In order to select a proper value for this parameter, the dynamics of ∆ was studied
for the various traces available. Figure 4.3 shows a detailed analysis for one trace.

We have observed the proportion of tags to define the window size (w) and the sensi-
bility of DÉGRADÉ. Figure 4.3(a) shows these proportions as a function of the number of
assignments. The figure highlights two events in the trace, named A and B. These events
were detected using manual inspection and selected as extreme uncommon behaviors in
the trace. The first one ranges from the 20-th to the 25-th assignment, whereas the second
one comprises only the 50-th assignment. On event A, 31 tags are assigned, out of which
19 have not appeared before in the trace. On event B, a single assignment contains 84 tags
(whereas 97.5% of assignments contains up to 10 tags each), out of which 53 were new.
These events, which we have analyzed and concluded not to be malicious, are considered
outliers and must be captured by our variation metric. Figure 4.3(b) shows the impact of
different window sizes. For larger values of w (50 and 200), note that ∆ remains close to
0.8 despite events A and B, which are not properly captured. On the other extreme, a very
small window (w = 2) causes ∆ to vary wildly with any event, making it difficult to iden-
tify A and B. We find that an intermediate window size (w = 10) is able to capture both
events and presents small variations during the subsequent assignments. Thus, w = 10
was used in all other simulations.
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Figure 4.3: Window size analysis

The other parameters define how restrictive and conservative DÉGRADÉ behaves. Re-
call that the conservative strategy allows from Amin to Amax concurrent downloads, de-
pending on how close to δ our variation metric is. An in-depth analysis of δ, Amin, and
Amax was performed to understand their impact on our strategy. With respect to Amin,
its value should not be high, otherwise there could be massive joins of malicious peers.
The value of Amin, equal or larger than 1, would ideally reflect the level of popularity of
a content. That is, a very popular content might have associated a comparatively higher
value of Amin, assuming there would be some correct users competing for slots. Since
the number of allowed concurrent downloads varies from Amin to Amax according to δ,
if Amax is set close to Amin, the range of A gets reduced and the strategy becomes more
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resistant to the variation metric. Conversely, as we increase Amax, the strategy works
smoother and gradually adjusts the number of concurrent downloads in terms of δ. We
have set Amin to a small value (Amin = 10) to make DÉGRADÉ more robust against col-
luding attackers present in our scenarios. Moreover, we have made the strategy smoother,
with Amax = 3000, due to high proportions of malicious peers always considered during
the evaluations.

Recall from Subsection 4.1.3 that DÉGRADÉ may free all downloads when the vari-
ation becomes quite small. The parameter δ determines when DÉGRADÉ does this and
becomes inactive. We have investigated two strategies for setting this parameter, namely
relaxed and conservative. The former frees downloads earlier, by accepting a higher δ
value (this level of variation can be reached more quickly). This relaxed strategy is ad-
equate for scenarios with few or no malicious users, freeing downloads earlier, but it is
more susceptible to attackers manipulation. In contrast, the conservative strategy em-
ploys lower values for δ (combined with a large Amax) so that the variation needs to be
quite small before DÉGRADÉ becomes inactive. In our evaluation, we have chosen the
conservative strategy, with δ = 0.05, due to its resilience under attacks.

The last parameter of the model, T , represents the number of time slot peers need to
wait before they try again and was set to 5 minutes. The values adopted for the model pa-
rameters are summarized in Table 4.3, together with values for the evaluation parameters,
mentioned next. The fluid-based model parameters determine the content size (F ), the
peers’ bandwidth (µ and c), and the sharing interest of leechers (η, calculated according
to the equation proposed by Qiu and Srikant, with k = 4 and the content subdivided in
pieces of 16 KB).

Table 4.3: Set of parameters employed in the evaluation
Model parameters
w 10
δ 0.05

Amin 10
Amax 3,000
T 5 min

Simulation parameters
F 512 MB
µ 256 Kbps
c 1,024 Kbps
η 99.99%

We propose three evaluation metrics to capture the effectiveness of our strategy. The
first metric, named similarity, measures how close the vocabulary is to its final state at the
instant users get access to the content being shared. Since the complete trace is available
beforehand, we can compare the vocabulary state when users join to the vocabulary result-
ing from the trace (for simplicity, we denote this final state as “vocabulary definition”).
We apply the cosine similarity equation between both vocabularies and get a value be-
tween 0 and 1, with values closer to 1 representing stronger similarity. The second metric
is the proportion of “bad” assignments (i.e., assignments that do not reflect the nature of
the content) performed up to the instant when each user gets access to the content (a more
stable vocabulary allows the user to make an informed decision). And the last metric is
the downloading time, which is used to measure the overhead imposed by the strategy and
malicious behavior on content downloading time.

These metrics represent an effort on how to measure and quantify the potential quality
of experience of users. We are aware that summarizing a subjective aspect into an ob-
jective metric requires some sort of simplification, therefore, imprecision. Alternatively,
a more robust strategy could be based on survey techniques to capture several aspects of
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users feedback. Although this would lead to a more precise metric for quality of experi-
ence, it would require a laborious work to instantiate it in dynamic systems in the wild. In
face of these reasons, we decided to derive objective metrics that are easy to implement
and still capture important facets of systems’ dynamics.

4.2.5 Results

This subsection aims at answering four research questions, as follows. Q1. How
harmful content vocabulary attacks can be against systems without a protection strategy?
Q2. How effective is DÉGRADÉ with and without attacks? Q3. What is the overhead
imposed by DÉGRADÉ? Q4. How is DÉGRADÉ affected by the presence of peers not
willing to post testimonies (i.e., assign tags) about downloaded contents?

Impact of attacks on systems running without DÉGRADÉ

In order to understand the effect of the attacks RANDOM and TARGET on content
vocabulary (see Subsection 4.2.2), we have carried out simulations using the fluid-based
model with our strategy disabled. Figure 4.4 shows the results obtained for the trace
clusters WIDE and NARROW (as described in Subsection 4.2.1). Each boxplot, (a) and
(b), is composed by seven boxes. Each box represents a distribution of similarity values
(on y-axis); hence, the higher the dots concentrate, the better. The first box on the left
(labeled NO) in both plots shows the similarity distribution in the absence of attacks and
is used as a baseline for comparison. The other boxes show the effect of each attack (RND
= RANDOM and TGT = TARGET) for different proportions of malicious users (from 10
to 30%). Observing the plots, first notice that 10% of malicious users performing any
of the two attacks are enough to cause significant impact on the similarity metric. This
may be easily observed by comparing the median values of the first box with the two
subsequent boxes. Note also that the harm caused by attackers increases together with the
proportion of attackers. Finally, the plots suggest that the TARGET attack causes slightly
more damage than the RANDOM attack, although their median values get closer as the
number of malicious users increases.
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Figure 4.4: Similarity metric experienced by users when they access contents

In the absence of DÉGRADÉ, malicious users join the session first and assign “bad”
tags according to the respective attack strategy. This behavior negatively impacts the sim-
ilarity metric, since many users join the session while the current assignments diverge
from the vocabulary definition. In scenarios without attack, 50% of users join when the
similarity metric is larger than 0.9; in all attack scenarios, the same percentage of users
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join when similarity is below 0.2, and frequently, 0.1. These results answer Q1 by indi-
cating a low level of users’ satisfaction when malicious users may freely download (and
assign tags to) contents, as honest users access contents with divergent descriptions. Prac-
tically, a user may query for a content and receive others as result due to malicious tag
assignments. Next, we evaluate the effectiveness of our strategy in hampering attacks and,
more importantly, providing users with access to contents whose description is correct and
stable.

Effectiveness of DÉGRADÉ in increasing download quality

To answer Q2, the simulations with attack scenarios (as in the previous subsection)
were repeated, but with the strategy on. First, we have observed the behavior of the simi-
larity metric when the strategy is active. Second, we have analyzed the proportion of bad
assignments when honest users join the system. DÉGRADÉ will be effective if it is able to
achieve a high similarity metric in the absence of attacks, and allows this metric to be min-
imally affected when the system is under attack. Furthermore, the mechanism activation
should enable users to join when there is low proportions of malicious assignments.

Regarding the first part of our observation, Figure 4.5 shows the similarity metric for
the WIDE trace obtained without (OFF) and with (ON) DÉGRADÉ. Starting with Fig-
ure 4.5(a), notice that the use of DÉGRADÉ without attack provides a small, but notice-
able, advantage. More precisely, the similarity median increases from 0.9 to 0.95.
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Figure 4.5: Similarity metric experienced by users when DÉGRADÉ is active for different
proportions of attackers (WIDE)

As it can be noted in Figures 4.5(b), 4.5(c) and 4.5(d), when attacks strike, DÉGRADÉ

is highly efficient in reducing their negative impact. First, considering 10% of malicious
users (Figure 4.5(b)), the strategy provides an increase of the similarity median from 0.1 to
0.75 under the RANDOM attack, and from 0.02 to 0.35, under the TARGET attack. When
the proportion of malicious users is increased, as shown in Figures 4.5(c) and 4.5(d), the
impact of the attacks becomes more severe, but it is clear that in both cases DÉGRADÉ

manages to hold the attacks. In particular, we observe that DÉGRADÉ increases the me-
dian similarity at least 11 times (from ∼0.05 to 0.55) in the case of the RANDOM attack,
and at least 15 times (from ∼0.01 to 0.15) for the TARGET one.

The aforementioned benefits were seen in the NARROW trace as well (see Figure 4.6).
More precisely, we notice that the attacks produce similar effects in both traces when
DÉGRADÉ is inactive, but the system using the NARROW trace is slightly less affected.
This may be observed by comparing, for example, boxes RND+OFF in Figures 4.5(b)
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and 4.6(b). Moreover, the advantages of our strategy are highlighted by observing that
the NARROW cluster in Table 4.1 contains roughly 73% of all 2,000 studied traces.
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Figure 4.6: Similarity metric experienced by users when DÉGRADÉ is active for different
proportions of attackers (NARROW)

The second set of simulations performed to answer Q2 focused on the effectiveness
of DÉGRADÉ in preventing malicious assignments, specially in the beginning, when the
majority of users arrive. A pair (x, y) in Figure 4.7 means that y users joined the session
when there was a proportion of at most x malicious assignments, which means that curves
to the left are better than the ones to the right. Each graphic has two curves (OFF and ON)
per proportion of malicious users, 10, 20 and 30%. In the absence of DÉGRADÉ (OFF),
malicious users are expected to join the session first and assign their “bad” tags. First
note that, for each M , the corresponding “OFF” curves in Figures 4.7(a) and 4.7(b) are
identical; this is because we measure the proportion of malicious assignments regardless
of the attack strategy. More important, the figures show that 10% of attackers are sufficient
to produce a huge negative effect: approximately half of the honest users join the session
when there have been more than 85% of malicious assignments. As expected, with 30%
of malicious users and no control, the attack is more damaging: only 150 honest users
(5%) join in the presence of less than 50% of malicious assignments. In addition, half of
them experience at least 95% of malicious assignments when they join.
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Figure 4.7: Proportion of bad assignments experienced by users (WIDE)

The effectiveness of DÉGRADÉ is evident for both attacks and traces. When there is
10% of malicious users and the strategy is ON in both attacks, every user joins the session
in the presence of at most 25% of malicious assignments (Figure 4.7). Considering the
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NARROW trace, this proportion is around 17% of malicious assignments (Figure 4.8). If
we increase the proportion of malicious users to 30%, the effectiveness of our strategy
is still quite substantial. In the RANDOM attack in both traces, no single user joins in
the presence of more than 42% of malicious assignments. The results are similar for
the TARGET attack; for example, in the WIDE trace only 500 honest users (∼16%) join
in the presence of more than 43% of malicious assignments, but every user joins in the
presence of less than 50% of malicious assignments. The protection of DÉGRADÉ against
the TARGET attack is noteworthy: every user joins in the presence of at most 38% of
malicious assignments.
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Figure 4.8: Proportion of bad assignments experienced by users (NARROW)

Overhead on users’ downloading time

The aforementioned benefits provided by DÉGRADÉ come with a price: a fraction
of honest user joins is delayed, until the vocabulary gets more stable. The impact of
this overhead, associated with Q3, is discussed in this subsection. Figure 4.9 shows the
delay imposed by our strategy for different proportions of attackers. A point (x, y) in
the plot means that y users take at most x minutes, from their arrival, to complete their
downloads. The distance between curves OFF and ‘M = 0%’ represents the overhead
of activating DÉGRADÉ in the absence of attacks. The horizontal distance between these
curves in Figure 4.9(a) (in Figure 4.9(b) as well) shows that although the overhead can be
substantial in some cases, it is less than 50 minutes for most users.

Since DÉGRADÉ delays user joins based on the vocabulary variations, attackers may
increase users’ downloading time and the overhead on honest users. We observe that
the results are similar for both considered attacks. In the worst case for our strategy,
attackers can increase downloading times by 30% (by comparing curves ‘M = 0%’ and
‘M = 30%’). Results for the NARROW trace are omitted due to their similarity to the
WIDE one.

In summary, we now have elements to answer Q3: the proposed strategy was shown
to be effective and efficient in providing a stable view of the vocabulary to users, as well
as protecting them from malicious assignments. We also noticed that the impact on users’
downloading time is low in the absence of attack, and remains acceptable even when
there are 30% of malicious peers. Recall that a system with 30% of malicious users is an
extreme case. However, even under these adversarial conditions, DÉGRADÉ has shown to
be effective.
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Figure 4.9: Impact of DÉGRADÉ activation on users’ downloading time (WIDE)

Impact of sparse tag assignments on DÉGRADÉ

The previous analysis assumes that all users will assign tags to downloaded content,
which may be unrealistic. In practice, only a fraction of users will annotate a content. In
this subsection, we evaluate whether sparse tag assignments have a negative impact on
the proposed strategy and, if so, quantify it, to answer Q4. In all scenarios considered, the
proportion of malicious users was fixed at 20% and the proportion of absent users varied
between 0 and 100%. Results for both studied traces were similar, hence only the WIDE

trace is discussed in this subsection.
The investigation in this subsection focuses on the three aforementioned metrics. Fig-

ure 4.10 shows the impact of absent users on the similarity metric. Each box represents
a scenario with a specific proportion of absent users with (ON) or without (OFF) DÉ-
GRADÉ. Results for the RANDOM attack are shown in Figure 4.10(a). As expected, if no
honest user assigns tags (boxes OFF+100 and ON+100), users who arrive subsequently
experience lower values for the similarity metrics. In scenarios without our mechanism
(boxes OFF), users access contents with very poor vocabularies, that is, distinct from their
final definition (medians lower than 0.1). In contrast, when DÉGRADÉ is active, results
are improved (median greater than 0.3) even when less than one third of users assign tags.
Figure 4.10(b) shows that the TARGET attack is quite damaging (with 20% of attackers),
leading to low similarity metrics even when there is no absent user. However, when DÉ-
GRADÉ is on, we notice an increase in download quality, since the median increases to
0.2 and 0.1 with 0 and 70% of absent users, respectively.
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Figure 4.10: Similarity metric experienced by users for different proportions of absent
users (WIDE and M = 20%)
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The second evaluated metric is the proportion of bad assignments. Figure 4.11 shows
results for both attacks. Scenarios in the absence of honest votes were removed because
every user arrives either when nobody voted or when there are only malicious assign-
ments. Figure 4.11(a) presents the evaluation for the RANDOM attack. When DÉGRADÉ

is inactive (OFF) and 70% of honest users do not assign tags (Ab = 70%), almost 2,200
users (74%) join the session when there are only malicious assignments. However, the
activation of DÉGRADÉ considerably improves the results, enabling almost 2,500 users
(85%) to join with 55% or less of bad assignments. Similarly, Figure 4.11(b) presents
the evaluation for the TARGET attack. As in the RANDOM attack, results get worse when
fewer users assign tags. In the scenario without DÉGRADÉ (OFF) and 70% of absent
users (Ab = 70%), 2,000 users join the session with at least 90% of bad assignments.
Conversely, when DÉGRADÉ is active, 2,800 users join with at most 55% of bad assign-
ments.
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Figure 4.11: Proportion of bad assignments experienced by users (WIDE and M = 20%)

The third and last metric evaluated to answer Q4 was download time in scenarios with
attack. Since this metric remains unaffected when DÉGRADÉ is off, Figure 4.12 contains
only curves pertaining to the use of our strategy. The results are similar for both attacks,
RANDOM and TARGET, shown in Figures 4.12(a) and 4.12(b), respectively. We observe
that users wait around 50 extra minutes if there is an attack in which 20% of users are
malicious and less than one third of honest users assign tags (Ab = 70%). To illustrate
the resilience of the proposed strategy, consider one extreme case: with 20% of attackers
and no single legitimate tag assignment, the download time is (just) doubled.
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Figure 4.12: Impact of absent users on downloading time (WIDE and M = 20%)

The set of simulations carried out in this subsection aimed at answering how DÉ-
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GRADÉ reacts when high proportions of users do not assign tags. The analysis was per-
formed under extreme scenarios in which 20% of users were malicious. Moreover, we
also considered the case with 100% of absent users. Results provide evidences to answer
Q4 and show that DÉGRADÉ is effective even when a significant fraction of honest users
does not annotate downloaded contents.

4.3 Considerations on the proposed solution

As shown in the previous sections, our strategy provides substantial improvement over
existing mechanisms that aim at tackling pollution: while it allows users to express their
subjective opinion about contents, it provides a better quality of experience for users that
wish to obtain contents in file sharing systems (even in face of malicious behaviors). In
this section, we present some considerations regarding the deployment and operation of
our strategy in real CDS.

The deployment of DÉGRADÉ (in BitTorrent communities, for example) requires mi-
nor changes to the entities that compose it. Depending on the framework design, it is
expected that most of the changes be concentrated on the central entities rather than the
end-users’ entities (this is the case, for example, of centralized and super-peer P2P archi-
tectures). Considering its instantiation in a BitTorrent-based file sharing community, the
majority of changes required would be concentrated in the tracker. These modifications
should be done in such a way that the tracker keeps information, for example, about the
tag cloud that describes the torrent under its control, and about the number of concur-
rent downloads of the content pointed by that torrent. Furthermore, the tracker should be
modified in order to establish a control upon the number of concurrent downloads, ensure
that peers assign tags per torrent once and after download only, and eventually provide
incentives for peers that provide feedback after download. While the deployment of these
modifications are not expected to violate the basic principles of the BitTorrent protocol, it
imposes challenges that should be properly addressed in the future.

With regard to the subjectivity of users’ opinion, it is important to emphasize that
precisely dealing with such subjectivity is an untraceable problem. Solutions that aim at
tackling the content pollution problem in file sharing systems, however, should deal with
the subjectivity in users’ opinion to be successful. This subjectivity is manifested both
when the user publishes a content (and defines the metadata for it), and also when other
users express their feedback about the content being shared. In this context, our strategy
goes a step further by dealing with the subjectivity using the concept of social tagging
systems; this is certainly a significant improvement over existing approaches, which often
relied on binary feedback to handle subjectivity. The motivation behind assigning tags
may be associated with user’s interests. Santos-Neto et al. (SANTOS-NETO et al., 2009,
2013) have shown that individual needs for organizing content provide strong motivation
for tagging. Moreover, additional mechanisms may be instantiated to give incentives to
users to annotate content (MARLOW et al., 2006; FURNAS et al., 2006; ROINESTAD
et al., 2009). In this work, we assume that a tagging system is in place and users cooperate;
however, to cover a larger number of possibilities, we also investigated the impact of
sparse tag assignments.

Focusing on the conservativeness of our strategy, it might become more conservative
with regard to the dissemination of a given content when the metadata precisely reflects
the nature of that content. It is important to observe, however, that a robust strategy can-
not rely solely on the metadata – which is created by one (or a limited group of) user(s)
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when the content is published. For example, over 80% of contents published in KaZaa,
and 50% of contents in FastTrack network, have a mismatch between content and meta-
data (LIANG et al., 2005). Instead, we focus on proposing a variation metric to capture
suspicious malicious behavior and use feedback provided by several users – who will
consume that content and, therefore, perform a natural manual inspection. We are aware
that the variation metric may not capture some facets on vocabulary “health,” for example
when users naturally change their opinion about something. Moreover, new terms are
often created and employed by users to describe contents. Despite these two factors, the
metric convergence is just slightly delayed without major impact on the system.

Another important discussion refers to the coexistence of our strategy in file sharing
systems that also adopt other mechanisms that limit the number of concurrent downloads
taking place. A prospective direction to deal with this aspect is discussed next. First,
assume that there are n protocols that estimate their own values for the number of autho-
rized downloads, Ai (with 1 ≤ i ≤ n). A solution that combines these protocols should
define a function g : A1, . . . , An → A, so that A represents an aggregation for the number
of allowed concurrent downloads. In order to properly define g, however, it is important
knowing the nature of the other protocols. A prospective direction to define g would be
using the average of A1, . . . , An. Different weights might also be used for each value of
Ai. It is important to emphasize, however, that a real implementation needs to consider
the nature of the file sharing system as well.

4.4 Summary

Content pollution in CDS is a topic that has received considerably attention from the
research community. In general, proposed strategies are based on users’ feedback for re-
ducing the reputation of corrupted, mislabeled contents, as well as those containing virus
or other malware. However, these strategies have neglected the subjectivity of users’
opinions regarding contents. Disregarding such subjectivity, users may download unde-
sired content, eventually leading to users’ dissatisfaction with the community and even
waste of resources (such as time and network bandwidth). To address this limitation, in
this chapter we presented DÉGRADÉ, a tag-based strategy to hinder the dissemination of
undesirable contents in file sharing systems.

The simulations carried out showed the effectiveness of using tags as a mechanism to
control the dissemination of contents, when there was insufficient/imprecise information
describing it. By tracking the variation of the proportion of tags that formed the vocab-
ulary describing that content, fewer peers were authorized to proceed their downloads
– since there was a higher probability that the content would not actually correspond to
what users really expected.

Another positive aspect of DÉGRADÉ – observed in consequence of the delay imposed
to users’ downloads – is that it enabled a more precise construction of the content vocabu-
lary. As download requests were gradually authorized, attacks en masse were thwarted by
DÉGRADÉ; further, honest peers also arrived in the system and got a chance to download
the content.

The experience obtained during the design of FUNNEL and DÉGRADÉ helped us to
find many other domains that may take advantage of conservative strategies. Instead of
controlling user’s joins, these strategies may also be applied to delay malicious actions
in general. To explore these possibilities and increase the overall strategy applicability,
we derived a generic model from our previous solutions. The next chapter presents this
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model and discusses some examples where this novel solution may improve user’s quality
of experience.
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5 GENERALIZATION OF THE MODEL

This chapter presents a generic model to mitigate massive attacks in CDS. A clear
benefit of designing a novel generic model is that the resulting solution tackles not only
content pollution problems, but also other denial-of-service (DoS) attacks. The previous
models, FUNNEL and DÉGRADÉ, are generalized and the artificial delay imposed to users
is determined by a set of mathematical functions. Users (peers) are henceforth referred as
consumers, and CDS and service are used interchangeably throughout this chapter. Thus,
the overall system comprises three main entities: service, contents, and consumers. The
service is responsible for storing and indexing all available contents. Contents, in turn, are
objects of interest that consumers wish to download. Consumers are users of the system.
They access the service to search for and download contents.

Similarly to scenarios investigated in previous chapters, there is a CDS in which con-
sumers may insert and/or describe contents according to their own perceptions. We recall
that this degree of freedom enables attackers to publish fake contents and provide im-
precise metadata about existing ones. Although isolated malicious actions are commonly
tolerated by existing systems, massive interference of attackers potentially decreases the
quality of experience (QoE) of consumers and may turn the system into a useless content
distribution platform. The solution presented in this chapter introduces the concept of
delaying functions to protect consumers against malicious behaviors and, hence, increase
their overall QoE. The usage of delaying functions is employed to guide the number
of concurrent downloads allowed in the system (represented by A in FUNNEL and DÉ-
GRADÉ approaches). As users join and assign votes (or tags), more or less downloads are
authorized. Thus, to generalize our previous models, the delaying function would con-
sider these votes to impose short or long delays to users. Delaying users decreases the
chance that large number of attackers takeover the system and affect users’ QoE. In the
context of this work, QoE can be defined in terms of the amount of attackers who join the
system before each consumer. This represents the potential damage caused by malicious
behaviors, since subsequent arriving consumers will experience a service potentially tam-
pered by attackers, e.g., unbalanced votes issued, imprecise descriptions about contents,
and network topology manipulation.

The proposed strategy employs a delaying mechanism so as to allow a large proportion
of honest users to arrive in the service and compete with malicious ones (that potentially
arrive earlier) in order to get access to the service. Given that (a) there is a larger pro-
portion of honest users than malicious ones waiting for a chance to access the system
and (b) the strategy randomly selects which users will join at a given instant, it is possi-
ble to protect the system from massive damage that would be caused by attackers in the
early stages of the content distribution process. Legal aspects of shared content are out
of the scope of this thesis and, hence, the conservative strategy aims at providing users
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what they expect to find (ideally free of malicious interferences). To prove concept and
technical feasibility of the proposed strategy, a fluid-based model is formulated (captur-
ing users’ arrival, delaying functions etc) and an extensive set of simulations is carried
out to understand how such strategy performs considering both realistic and worst-case
scenarios. A discrete-event simulator is also instantiated to overcome the limitations of
the analytic model and investigate the impact of the proposed strategy on individual users.

Organization. The remainder of this chapter is organized as follows. Section 5.1 for-
malizes massive attacks as a superset of content pollution attacks. Section 5.2 introduces
the conservative strategy to delay users and the QoE metric used to evaluate the solution.
Section 5.3 presents a detailed evaluation in multiple use cases. Section 5.4 draws some
considerations on the proposed solution. Finally, Section 5.5 closes the chapter with a
summary.

5.1 Problem formalization

In scenarios considered in this chapter, there is a service that hosts contents and a set
of users (consumers and attackers) who want to join the system. Consumers try to access
content and download it, whereas attackers aim at promoting poor QoE to consumers, e.g.,
posting wrong testimonials about content, publishing content with imprecise descriptions,
flagging authentic content as inappropriate etc. In order to represent the behavior of users,
a set of mathematical functions determines the amount of consumers and attackers arriv-
ing in the system per time unit. For the sake of generalization, a fluid-based model is
introduced so that continuous functions are applied to describe accesses to contents.

At any given instant t, let functions λc(t) and λa(t) represent the arrival rate of con-
sumers and attackers, respectively. Given these arrival rate functions, the definite integral
from m to n, for example, represents the total number of users who arrived during the
interval [m,n]. Therefore, Equations 5.1 determine the total number of consumers and
attackers in the system until instant tf , i.e., m = 0 and n = tf .

c(tf) =

∫ tf

0

λc(t) dt a(tf ) =

∫ tf

0

λa(t) dt (5.1)

To measure the QoE in the system, it is necessary to introduce a function that rep-
resents the proportion of attackers in the system at any given instant t. Equation 5.2
combines both c and a to formalize this proportion, called p.

p(t) =

{

a(t)
c(t)+a(t)

if c(t) + a(t) > 0,

0 otherwise.
(5.2)

To calculate the QoE at instant tf , defined in terms of the average proportion of at-
tackers when consumers join the system, it is necessary to accumulate p for every arriving
consumer λc and divide it by the total number of consumers c(tf ). This metric, hence-
forth named Q, measures the overall QoE in the system and is calculated as shown in
Equation 5.3.

Q = 1− 1

c(tf )

∫ tf

0

λc(t)p(t) dt (5.3)

Given the functions that reproduce user arrivals and the QoE metric, it is possible to
envisage a conservative strategy to “reshape” the arrivals and mitigate massive malicious
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joins in the system. The next section introduces the concept of delaying functions to
protect users and improve their QoE.

5.2 Conservative strategy

Before introducing the generic model to tackle general massive attacks, it is important
to recall important facets of DÉGRADÉ and FUNNEL models. In FUNNEL model, binary
votes are employed to calculate a content reputation. This reputation is employed to de-
termine the number of concurrent downloads to be authorized. In the absence of positive
and negative votes, DÉGRADÉ model considers the stability in content vocabulary to de-
rive a variation metric. Similar to the content reputation used by FUNNEL, this metric
is employed to determine the number of downloads to be authorized. In summary, both
models employ user’s feedback to adjust the number of concurrent downloads.

Essential elements present in FUNNEL and DÉGRADÉ are summarized in Table 5.1.
The vocabulary describes how users express their opinion about contents (e.g., votes or
tags). The objective is to provide enough information to calculate a numeric value that
represents “content health”. This value, called metric, is employed to determine the num-
ber of allowed concurrent downloads. As the metric approaches the threshold, the con-
servative strategy assumes content as properly classified and stops controlling it.

Table 5.1: Comparison between our conservative strategies
FUNNEL DÉGRADÉ

Vocabulary binary free
Metric reputation (R) variation (∆)

Threshold r δ

In order to generalize our conservative strategy, the metric and the threshold are re-
placed by a delaying function which determines the number of users allowed to join the
system at a given instant. This function forces users to wait and increases the probabil-
ity that consumers join before attackers, hence, protecting the system against malicious
manipulations in the early stages of the content distribution process. Two terms are em-
ployed with distinct meanings: while the term arrive refers to the act of arriving in the
system to access some content, join is used when the access is actually granted.

Since the control strategy randomly selects users to access the system, it is known that
the probability of a consumer or an attacker to be granted access to the system is directly
related to their respective proportions waiting to join. Given the number of consumers
and attackers waiting to join at instant t, represented by wc(t) and wa(t) respectively, the
probability that a consumer or an attacker joins (C and A) is defined by the following
Equations 5.4.

{

P [C] = wc(t)
wc(t)+wa(t)

, P [A] = 1− P [C] if wc(t) + wa(t) > 0,

P [C] = P [A] = 0 otherwise.
(5.4)

Let f(t) be a delaying function that represents the rate at which users are allowed
to join the system at instant t. Equation 5.5 employs P [C] to determine the number
of consumers actually joining the system, λc. Similarly, Equation 5.6 employs P [A] to
determine the number of attackers joining, λa.
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λc(t) =

{

P [C]× f(t) if wc(t) + wa(t) > f(t),

wc(t) otherwise.
(5.5)

λa(t) =

{

P [A]× f(t) if wc(t) + wa(t) > f(t),

wa(t) otherwise.
(5.6)

The overall system design is illustrated in Figure 5.1 through a fluid flow model. For
the sake of representation, the figure illustrates a snapshot of the system. The two up-
permost recipients represent the sources of consumers (on the left) and attackers (on the
right). The drops fall into the funnel according to known arrival rates. The liquid accu-
mulates in the funnel and leaves according to the f function. The final destination is the
recipient in the bottom, where consumers and attackers “stay” after they have joined.

λaλc

wa
wc

c
a

λa

λc

f

Figure 5.1: Overall system design

In order to measure the overhead imposed to the N first consumers due to the delaying
strategy, a metric called average waiting time (W) is introduced. This metric is calculated
by subtracting the times each consumer arrives from the times they join in the system
and dividing this difference by N . Let tf and tf be the times when the N-th consumer
arrives and joins the system, respectively. The definite integral of arrival and joining
times multiplied by the corresponding functions, λc and λc, is employed to calculate W ,
as shown in Equation 5.7.

W =
1

N

(

∫ tf

0

tλc(t) dt−
∫ tf

0

tλc(t) dt

)

(5.7)

Distinct delaying functions produce different QoE (Q) and average waiting time (W).
For example, a delaying function can be more restrictive by allowing only a few users
to join in the beginning. In this case, users who arrive early experience long waiting
times, but are more protected against attackers. Conversely, if the delaying function is
more permissive in the beginning, users (including potential attackers) are allowed to join
earlier and waiting times will be shorter. The trade-off between Q and W is investigated
and discussed throughout the evaluation section.
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5.3 Evaluation

This section instantiates the aforementioned strategy in order to evaluate its use in
multiple scenarios and under adversarial conditions. First, Subsection 5.3.1 presents the
set of parameters and the evaluation scenarios. Second, Subsection 5.3.2 investigates the
worst and best cases to be used as baselines in the evaluation. Third, Subsection 5.3.3
discusses analytical results for two scenarios and presents an in-depth investigation about
waiting times.

5.3.1 Evaluation scenarios

In order to investigate the impact of different delaying functions on the Q and W
metrics, two baselines were designed: (i) without delaying functions, called WORSTQ,
and (ii) with a delaying function that forces users to wait until all of them have arrived,
called BESTQ. The first case depicts the minimum possible overhead, i.e., consumers do
not need to wait, but this produces the worst value for the Q metric. In contrast, the
second case leads to the best value for Q.

Two other cases were designed to evaluate the strategy. The first one illustrates a sce-
nario in which consumers arrive uniformly within 1 hour, called uniform (UN) for short.
The second case, in turn, illustrates a flash crowd scenario (FC), in which consumers ar-
rive within 24 hours, but 80% arrive in the first 5 hours. In both scenarios, C consumers
and A attackers arrive in the system. The arrival and delaying functions are defined in
terms of users per second.

Two delaying functions were used to evaluate each scenario: CONSTANT and LIN-
EAR. The CONSTANT function enforces a constant joining rate, whereas the LINEAR one
enforces a linear rate, both adjusted by an α coefficient. In this evaluation, C is set to
3,000 and A varies so that attackers represent from 0 to 30% of all users in the system.
Moreover, attackers always arrive en masse before every consumer. The parameters used
in this evaluation section are summarized in Table 5.2.

Table 5.2: Set of parameters employed in the evaluation
C 3,000
A 0 . . . 30%

λc(t)
3,000/3,600 33.097/(1 + 0.1t)
(UN, 1 hour) (FC, 24 hours)

f(t)
α αt

(CONSTANT) (LINEAR)

5.3.2 Baseline

As previously mentioned, two boundary cases were designed to support the evaluation
of different delaying functions. For the first case, called WORSTQ, Equation 5.7 was
solved for W = 0, which yields λc = λc. Since attackers arrive first, every consumer
experiences the maximum number of attackers in the system. Conversely, for the second
case, called BESTQ, every consumer and attacker is waiting before they are allowed to
join the system. Therefore, the value of p in Equation 5.3 remains constant, regardless of
λc, and produces the best value of Q for a specific number of attackers. In order to perform
a fair comparison across multiple scenarios, a normalized Q is introduced (Qnorm) as
a scaled value of Q between WORSTQ and BESTQ. Thus, for different proportions of
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attackers, the value of Qnorm decreases to 0 as Q approaches WORSTQ and increases to
1 as it approaches BESTQ. The values of WORSTQ and BESTQ employed to calculate
Qnorm are summarized in Table 5.3.

Table 5.3: Boundary values for the baselines

A WORSTQ BESTQ
10% .74 .90
30% .48 .70

5.3.3 Results

Two scenarios (UN and FC) are investigated using different delaying functions: CON-
STANT and LINEAR. The values of α coefficient for both functions vary to produce differ-
ent results for Qnorm and W . Furthermore, an in-depth investigation using discrete-event
simulation (DES) is carried out to measure the overhead on individual consumers.

Uniform scenario

In the uniform scenario, 3,000 consumers arrive uniformly distributed during 1 hour.
However, before they arrive, a proportion A of attackers arrive in the system. In the
context of this evaluation, two values of A are used, 10 and 30%. Figure 5.2 shows the
relationship between W and Qnorm. As expected, consumers experience a better Qnorm

when their average waiting time increases.
In both cases, with 10 and 30% of attackers (Figures 5.2(a) and 5.2(b), respectively),

the LINEAR function produces better results when compared to the CONSTANT one, i.e.,
for any given W , the LINEAR curve is above the CONSTANT. Moreover, Figure 5.2(a)
shows that in the presence of 10% of attackers, when the average waiting time is 30
minutes, the LINEAR delaying function results in Qnorm equals to 0.6. Even when there
is 30% of attackers, as shown in Figure 5.2(b), Qnorm is greater than 0.5.

It is possible to notice that there is a clear relationship between W and QoE. Users
from different kinds of systems may tolerate different waiting times. It is unlikely to
happen that users wait one hour to watch a 30 seconds video, for example. In this case,
users may prefer to try different versions of the video until they find the expected one,
unless this comprises a cumbersome task that takes approximately one hour. Considering
a case in which users need to download a large file before using it, they may prefer to wait
longer in order to avoid undesirable content, hence saving resources.

To understand the QoE each consumer faces individually, it is necessary to observe the
proportion of attackers in the system when each consumer joins. To focus on an extreme
case, Figure 5.3 illustrates the system behavior in the presence of 30% of attackers. In
a first turn, three curves are plotted in Figure 5.3(a): one represents the curve without
a delaying function, and the other two represent the curves with the CONSTANT and
LINEAR functions. A point (x, y) in the plot means that y consumers join when there is a
proportion of x, or less, attackers in the system. In a second turn, these cases are detailed
in Figures 5.3(b), 5.3(c), and 5.3(d). The value of the α coefficient was set so that the
average waiting time of consumers was 30 minutes. The curve ‘OFF’ in Figure 5.3(a)
shows that 2,000 consumers join when there is already more than 40% of attackers in the
system. In contrast, less than 1,200 consumers experience more than 40% of attackers
when the CONSTANT strategy is in place. This number of consumers is reduced to less
than 800 when the strategy is LINEAR.



81

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

Q
no

rm

W (in minutes)

Constant
Linear

(a) A = 10%

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60

Q
no

rm

W (in minutes)

Constant
Linear

(b) A = 30%

Figure 5.2: Relationship between W and QoE (UN scenario)

Figures 5.3(b), 5.3(c), and 5.3(d) plot the cumulative number of consumers and at-
tackers who joined the system. The axes x and y represent the time in minutes and the
number of users, respectively. In the absence of a delaying function (Figure 5.3(b)), all the
attackers are in the system from the beginning and consumers arrive following a uniform
distribution. The scenario using the CONSTANT function (Figure 5.3(c)) illustrates these
attackers being delayed and consumers slowly joining. Similarly, using the LINEAR func-
tion (Figure 5.3(d)), the number of consumers is greater than the number of attackers most
of the time. It is important to emphasize that each plot contains an extreme proportion of
30% of attackers.

Summary. The use of delaying functions produced an improvement on Q. The LIN-
EAR function led to lower W and higher Q in comparison to the CONSTANT one. Al-
though consumers arrive during 1 hour in the studied uniform scenario, results are valid
also for any other scenarios in which arrivals are uniform.

Flash crowd scenario

In the flash crowd scenario, almost 2,500 consumers arrive in the first 5 hours. In total,
3,000 consumers arrive within 24 hours. As in the previous scenario (UN), the attackers
arrive first in the system. Figure 5.4 shows the relationship between W and Qnorm for
10 and 30% of attackers. The first observation is that although the difference between
Qnorm is not greater than 0.1 for a given W in CONSTANT and LINEAR functions, the
latter again performs better than the former.

Figure 5.4(a) shows that in the presence of 10% of attackers, the CONSTANT function
increases the Qnorm metric to 0.8 when the average waiting time is 5 hours. This value
is close to 0.9 for the LINEAR function. A similar effect is observed in Figure 5.4(b), in
which 30% of attackers arrive in the system. However, the increment in the number of
attackers decreases Qnorm from 0.9 to 0.8 for the LINEAR function (W = 5), but it is still
a significant improvement.

To investigate the system behavior in more detail, Figure 5.5 focuses on results for
30% of attackers. Figure 5.5(a) shows the proportion of attackers in the system when
consumers join. In this evaluation scenario, α was set so that the average waiting time
of consumers was 12 hours. The magnitude of waiting times is system-dependent and
its feasibility is discussed later in this section. The curve ‘OFF’ is equal to that in Fig-
ure 5.3(a), since all the attackers are already in the system and consumers’ arrival rate
does not matter in this case. However, both CONSTANT and LINEAR delaying functions
significantly decrease the proportion of attackers when consumers join, i.e., around 80%
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Figure 5.3: Dynamics of users in the system in the presence of 30% of attackers (UN

scenario)

of consumers join when there is less than 35% of attackers.
In the absence of a delaying function (Figure 5.5(b)), all the attackers are in the system

from the beginning and the number of consumers increases quickly in the first minutes
(flash crowd). Figures 5.5(c) and 5.5(d) show that CONSTANT and LINEAR functions,
respectively, delay users so that consumers represent majority of users all the time in the
system. Moreover, the number of attackers is severely reduced in the early phases, i.e.,
instead of 1,285 attackers (30%) since the beginning, there are only 500 attackers after 16
hours using CONSTANT or LINEAR function.

Summary. In flash crowd scenarios, the number of consumers rapidly increases and
even low values of W are enough to significantly improve Q. Although both CONSTANT
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Figure 5.5: Dynamics of users in the system in the presence of 30% of attackers (FC
scenario)

and LINEAR functions achieve similar results for Q, the former provides higher values
for QoE with lower waiting times.

Waiting time analysis

The results discussed earlier were obtained using the analytic model presented in Sec-
tions 5.1 and 5.2. However, the model provides an average (W) and thus cannot capture
details about the waiting time of individual users. To circumvent this limitation, a discrete-
event simulation (DES) was carried out to reproduce previous results. Four scenarios were
simulated: UN+CONSTANT, UN+LINEAR, FC+CONSTANT, and FC+LINEAR, each one
containing the extreme proportion of 30% of attackers.

In the simulator, consumers and attackers arrive exactly as explained in Subsection 5.3.1,
i.e., consumers arrive uniformly (UN) or in flash crowd (FC), and attackers always arrive
first. The delaying functions determine the number of users allowed to join. Users are
randomly selected by the strategy from the set of waiting users. The waiting time for each
user is computed by subtracting the joining and arrival times.

Figures 5.6 and 5.7 show the scenarios UN and FC, respectively. Lines in the plots
represent previous results obtained using the analytic model (Mod) and points represent
simulation results (Sim). The characters C and A stand for consumers and attackers,
respectively. Results show that curves (model) and respective points (simulation) match
for each evaluated case, which indicates that the simulator behaves exactly as expressed
in the analytic model. Simulation results are discussed to provide the reader with details
of what individual consumers experience when trying to access the service.

Given that users need to wait for a chance to join the system, it is of paramount im-



84

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  30  60  90  120  150

# 
of

 u
se

rs

Time (m)

Mod, C
Mod, A
Sim, C
Sim, A

(a) CONSTANT delaying function

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  30  60  90

# 
of

 u
se

rs

Time (m)

Mod, C
Mod, A
Sim, C
Sim, A

(b) LINEAR delaying function

Figure 5.6: Validation of the simulator when the conservative strategy is running in the
presence of 30% of attackers (UN scenario)
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Figure 5.7: Validation of the simulator when the conservative strategy is running in the
presence of 30% of attackers (FC scenario)

portance to observe not only the average waiting time, but also the impact on individual
consumers. To illustrate that, Figures 5.8 and 5.9 plot consumers’ waiting times paired
with histograms for UN and FC scenarios, respectively. Each point (x, y) represents the
waiting time y of a consumer x. Consumers are sorted on x-axis according to their arrival
times. Histograms are plotted by grouping points into 20 bins on the y-axis.

In UN scenario, Figure 5.8(a) shows the effect of the CONSTANT delaying function
on consumers’ waiting time. Two main conclusions can be drawn from this figure: (i) the
order in which consumers arrive has a strong positive correlation with their waiting time,
and (ii) the distribution of waiting times is denser in the lowest values (between 0 and 20
minutes). Similar results are shown for the LINEAR function in Figure 5.8(b). Although
the histogram shows largest bars in the middle of the y-axis, the highest waiting time is
around 110 minutes, whereas in the CONSTANT function it is around 170. It is important
to notice that the distribution of waiting times is different for each delaying function, but
the respective W metrics are almost equal.

Considering the FC scenario, Figure 5.9(a) shows the effect of the CONSTANT de-
laying function on consumers’ waiting time. Similar to the previous scenario, the size of
histogram bars decreases as the waiting time increases. Figure 5.9(b) plots waiting times
incurred by the use of the LINEAR function. In this case, the maximum waiting time, ∼26
hours, is approximately 62% of the maximum value incurred by the CONSTANT function,
∼42 hours.

In order to summarize these four studied scenarios, i.e., UN+CONSTANT, UN+LINEAR,
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Figure 5.8: Scatter plot and histogram for consumers’ waiting time (UN scenario)

0 1000 2000 3000
Consumers

0
5

10
15
20
25
30
35
40

W
ai

tin
g 

tim
e 

(h
)

0 250

(a) CONSTANT delaying function

0 1000 2000 3000
Consumers

0

5

10

15

20

25

W
ai

tin
g 

tim
e 

(h
)

0 250

(b) LINEAR delaying function

Figure 5.9: Scatter plot and histogram for consumers’ waiting time (FC scenario)

FC+CONSTANT, and FC+LINEAR, values of the average, median, and standard devia-
tion are shown for different proportions of attackers in Table 5.4. Values for the UN

scenarios are presented in minutes, whereas FC scenarios are in hours. As one may no-
tice, the ‘med’ values are lower than corresponding ‘avg’ for all scenarios, except for
FC+LINEAR. This indicates that, for the majority of the cases, 50% of consumers wait
less than the W metric presented earlier.

Table 5.4: Summary of waiting times, presented in minutes for UN and hours for FC, for
different proportions of attackers

A
UN+CONSTANT UN+LINEAR FC+CONSTANT FC+LINEAR

avg med std avg med std avg med std avg med std
0% 30.0 21.9 26.5 30.0 26.6 20.3 11.5 10.3 8.1 11.6 12.2 6.1

10% 41.1 35.5 31.2 34.6 32.3 21.9 13.4 12.0 9.0 12.4 13.0 6.4
30% 63.7 60.8 43.2 44.2 43.7 25.0 18.4 17.4 11.7 14.6 15.3 7.2

The impact of studied attacks on W can be measured by comparing the ‘avg’ columns
for different values of A. Results show that the CONSTANT delaying function is more
sensitive to the number of attackers, i.e., when there are 30% of attackers, ‘avg’ increases
from 30.0 to 63.7 (112%) and from 11.5 to 18.4 (60%) in UN and FC cases, respec-
tively. In contrast, the LINEAR function presents a more robust behavior. In this case,
‘avg’ increases from 30.0 to 44.2 (47%) and from 11.6 to 14.6 (25%) in UN and FC
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cases, respectively. The performance of these two delaying functions is more similar in
the presence of 10% of attackers, i.e., ‘avg’ increases 37% (UN) and 16% (FC) for the
CONSTANT function, and 15% (UN) and 6% (FC) for the LINEAR function.

Summary. This analysis showed that users’ waiting time is more concentrated in
lower values for the CONSTANT function, considering both UN and FC scenarios. How-
ever, when employing the LINEAR function, the highest waiting time is ∼35% lower com-
pared to the corresponding CONSTANT function in both UN (from 170 to 110 minutes)
and FC (from 40 to 25) scenarios. Table 5.4 indicates that the LINEAR delaying function
presents lower overhead in most of the cases. Furthermore, it is possible to observe that
the LINEAR function is more robust against massive attacks.

5.4 Considerations on the proposed solution

As shown in the previous sections, the presented solution provides a flexible model
to protect consumers from malicious interferences in the system. The strategy behaves
proactively to mitigate massive joins of attackers in early stages of the content distribu-
tion process. Furthermore, it can be instantiated in different domains and adapted to be-
have more or less conservatively, leveraging distinct delaying functions. This subsection
presents considerations regarding deployment and operation of the conservative strategy
in real systems.

This chapter formalized massive attacks and discussed the feasibility of using delaying
strategies to improve users’ QoE. Although the efficacy of the proposed approach has been
shown, a number of practical issues must be addressed in order to enable the integration of
the strategy to a real CDS. First, it is necessary to estimate the arrival rate of consumers.
Second, since the strategy may behave more or less conservatively, it is also necessary
to define the average waiting time to be imposed to consumers. Third, the shape of the
delaying function must be chosen, e.g., CONSTANT or LINEAR.

In regard to the estimation of arrival rates, there are several studies in the literature
that show user’s behavior in file sharing (GUO et al., 2005; ANDRADE et al., 2009)
and streaming systems (GILL et al., 2008; CHATZOPOULOU; SHENG; FALOUTSOS,
2010), as representative examples of CDS. These methodologies could be applied to esti-
mate user’s arrival rates and used as input for the model presented in this chapter.

Another important discussion is the determination of the average waiting time to be
imposed to users, since system administrators need to define proper values for W and de-
rive the respective delaying function to be employed. The sensitivity analysis presented in
Figures 5.2 and 5.4 may support administrators decision. The higher the average waiting
time is, the higher QoE users have. It is important to emphasize that there is a trade-off
between these metrics and some heuristic is needed to determine proper artificial delays.
A simple approach to tackle this would be to use W so that the derivative of Qnorm with
respect to W is equal to (or lower than) 1, i.e., W begins to increase equal to (or faster
than) Qnorm. However, a perfect value for the average waiting time does not exist and an
ideal value depends on the nature of the system. Considering critical systems with time
constraints, this task is even harder and may compromise the use of delaying strategies.
In some cases, depending on content popularity, short delays are enough to mitigate mas-
sive attacks. The relationship between content popularity and effectiveness of delaying
strategies was previously discussed in this chapter.

In respect to the choice of the delaying function, this chapter presented and discussed
two possibilities: CONSTANT and LINEAR. The former allows users to join following a
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constant (uniform) rate. This may suit systems whose administrators want to avoid flash
crowd behaviors. The latter allows an increasing number of users to join the system. In
this case, the strategy may act more conservative in the beginning and less so as time
passes. These two intuitive functions are taken as case study in this work, but other
strategies (e.g., logarithmic and exponential) may be employed.

One last discussion about the proposed solution is related to the meaning of QoE and
the definition introduced, with the Q metric. This metric captures the rationale behind the
health of a system and employs a simple (and easy to be calculated) equation to measure
the QoE. For instance, if Q is 1, one may conclude that every user joined before attackers.
Conversely, a Q equals to 0 means that only attackers have joined the system. This ex-
ample shows that the Q metric may not capture important facets of QoE, for example, in
scenarios where attackers join later and still can damage the system. However, the metric
is proposed as a complement, not a substitute, for other QoE metrics.

5.5 Summary

This chapter presented a flexible model to study the impact of massive attacks on CDS.
Two metrics, Q and W , were introduced and used to instantiate a conservative strategy.
Results underscored that slowing down users, even when short waiting times are used, is a
prominent solution to speed up the matching between users and expected contents. In the
absence of such a mechanism, every attacker has access to the system in the beginning and
may act maliciously. However, when the mechanism is turned on, the impact of massive
attacks is “diluted” because consumers also arrive and contend with attackers for a chance
to join the system. Even in extreme cases with 30% of malicious users arriving en masse

in the beginning, the majority of consumers are allowed to join in the presence of few
attackers.

The main advantages of the proposed solution are threefold. First, unlike most of the
previous solutions, the conservative strategy neither relies on user’s feedback nor iden-
tity management mechanisms. Second, the general massive attack can be divided into
smaller instances and the solution may also be applied in distributed environments with
minor efforts. Third, since the proposed strategy can behave more or less restrictively, its
instantiation may happen in different contexts, such as file sharing and streaming systems.
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6 SUMMARY, CONCLUSIONS, AND FUTURE WORK

The goals of this chapter are to summarize the thesis, present the conclusions, and
discuss future work. First, the list of incremental steps to support the hypothesis in this
thesis is presented. Second, the main contributions are summarized and discussed. Third,
and last, prospective directions for future research are shown.

6.1 Summary of contributions

In this thesis, we presented the incremental steps carried out to defend our hypothe-
sis: “delaying user’s actions mitigates massive attacks and improves users’ quality of
experience.” Based on an evolutive process towards a generic model to represent user’s
behaviors, a conservative strategy was designed and instantiated in multiple use cases.
In a first iteration, we faced some challenges to design a robust strategy based on binary
votes to fight content pollution in BitTorrent communities. In a second iteration, this
strategy was improved to allow users to express their opinions through annotations, in-
stead of only assigning positive and negative votes. Based on prominent results achieved
using conservative strategies, in a third iteration, we generalized the proposed models
to increase their applicability and allow further investigations about delaying functions.
The complete solution is generic enough to be instantiated in any kind of CDS, but in
this thesis we always refer to the two most representative examples, e.g., file sharing and
streaming systems. It is important to notice that since delaying functions are employed to
mitigate massive attacks, users from some systems may not tolerate long waiting times.
In those cases, short waiting times can be considered and still produce reasonable results,
as shown in Chapter 5. The three main contributions of this thesis and a brief summary
follow.

First iteration. Design and instantiation of a conservative strategy based on binary
votes to control the dissemination of potential polluted content during early stages
of its publication.

Summary. In this iteration, we have demonstrated the efficiency of the proposed so-
lution, which has imposed significant delays to the dissemination of polluted
contents, whereas causing a relatively low delay for the dissemination of non-
polluted, legitimate ones. Furthermore, low dissemination delays experienced by
non-polluted copies have been observed even when there is a large number of
users colluding to hamper the dissemination. These observations showed that the
conservative approach proposed in this thesis not only mitigated the dissemina-
tion of polluted content, but also required a significant effort to adversely manip-
ulate the mechanism.
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Second iteration. Proposal of a flexible mechanism to describe contents using anno-
tations.

Summary. By moving beyond content polarization, we have introduced a new di-
mension to the content pollution problem. Contents started being considered
mislabeled instead of polluted. In the absence of binary votes to build content
reputation, we designed a variation metric to detect whether contents are prop-
erly described. Results showed that delaying users’ downloads enabled a more
precise construction of contents vocabulary. As download requests were gradu-
ally authorized, attacks en masse were thwarted by our solution; further, regular
users also arrived and had a chance to download contents.

Third iteration. Generalization of the content pollution attack to a massive attack,
and development of a generic model to mitigate these attacks in content distribu-
tion systems.

Summary. After analyzing the behavior of our previous approaches (first and sec-
ond iterations), we realized that the main benefits of using conservative strategies
were due to their delaying effect. The impact of massive attacks is reduced be-
cause consumers also arrive and contend with attackers for a chance to join. Re-
sults showed that, depending on the nature of the attack, it is possible to reduce
its impact even imposing small waiting times to users.

Given the aforementioned evolution of this thesis, highlighting the contributions and
lessons learned, the next section closes the thesis with a general discussion about our
achievements and presents prospective directions for future research.

6.2 Final remarks

The work presented in this thesis investigated the pollution problem under a different
perspective. Previous solutions attempted to observe and gather information in order to
react against pollution. Those solutions may be very effective in the medium and long run,
building a robust base of knowledge about users and contents. However, in short term,
massive user joins with a few polluters may be enough to compromise a CDS. Users who
download polluted content broadcast it to all their neighbors, producing a chain effect
in the pollution dissemination (KUMAR et al., 2006; LEE et al., 2006). For example,
previous solutions that try to detect and isolate fake content will allow several users to
download polluted content until the first vote is assigned. This may take a while, specially
for large files. We argue that our proactive approach is the main factor responsible for
reducing pollution propagation and diminishing massive attacks in CDS. Our findings
may support system architects to extend our model and instantiate a complete solution in
different contexts.

In conclusion, the overall work presented in this thesis underscored the importance of
adopting security mechanisms to mitigate malicious behavior in CDS. In the absence of
countermeasure mechanisms, we showed that even a small proportion (10%) of attackers
was able to subvert the system. The adoption of a conservative strategy demonstrated the
efficacy of delaying users in circumventing massive attacks. The simple, yet powerful,
strategy managed to thwart attacks en masse and protect users against malicious interfer-
ences. The user’s quality of experience was analyzed and results suggested that there is a
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trade-off between delaying users and their resulting experience. Additional investigation
should include a survey in order to demonstrate that the proportion of attackers in the
system affects the quality of experience observed by users. However, the current work
presented in this thesis pushes the state of the art by investigating the content pollution
problem and massive attacks under a different perspective. We focused on controlling
the impact of massive attacks during early stages on systems’ life cycle, which is a novel
approach in the context of CDS.

The investigation performed during this thesis leads to the identification of further op-
portunities of research. First, to demonstrate the effectiveness of conservative strategies
compared to traditional solutions, it is desirable to design a methodology for comparison
and evaluate them in multiple scenarios. Second, an additional mechanism could be at-
tached to our solution to aggregate information about users and improve overall efficacy.
For example, a reputation mechanism in which users evaluate each other would provide
a valuable information to any conservative strategy. Third, to have a more dynamic so-
lution, it would be desirable to carry out a deeper investigation on how to tune system
parameters for different contexts, preferably in an adaptive manner. Fourth, although we
evaluated pieces of our solution using experiments in a controlled environment and others
using simulations, it would be desirable to instantiate a complete solution in a real CDS.
Discussions on how to do that are presented in the previous chapters of this thesis. It is
important to emphasize that these research opportunities could be identified due to the
knowhow acquired during the development of this work.
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APPENDIX A CAPÍTULO EM PORTUGUÊS

A Internet tem se tornado uma plataforma importante para interação e comparti-
lhamento de conteúdo. Esses conteúdos tipicamente consistem de arquivos pessoais
ou de terceiros, que são publicados e recuperados pelos usuários com base em seus
próprios interesses (ANDRADE et al., 2005). Relatórios recentes indicaram grandes
quantidades conteúdos sendo compartilhados na Internet, em especial de conteúdos mul-
timedia, que representaram um volume representativo de tráfego entre provedores de In-
ternet (GERBER; DOVERSPIKE, 2011). Por exemplo, a quantidade de conteúdo envi-
ado ao YouTube dentro de um período de 60 dias é equivalente ao que teria sido trans-
mitido, sem interrupções, pela NBC, CBS e ABC juntas (The New York Times, 2010;
FIGUEIREDO; BENEVENUTO; ALMEIDA, 2011). Para satisfazer essa demanda por
serviços eficientes, sistemas de distribuição de conteúdo (CDS) precisam ser criados e
mantidos (AGER et al., 2011).

No contexto desta tese, CDS são definidos como sistemas usados para compartilhar
qualquer tipo de conteúdo na Internet. Duas categorias de CDS se destacam como as
mais populares: compartilhamento de arquivos e sistemas de mídia contínua. Sistemas
de compartilhamento de arquivos são usados para armazenar e disseminar qualquer tipo
de conteúdo, de documentos e imagens a áudios e vídeos. Tendo em vista que arquivos
são acessados apenas após serem recuperados totalmente da rede, não existem restrições
em relação à ordem em que seus bytes são obtidos. Por outro lado, nos sistemas de mídia
contínua, os bytes precisam ser recuperados de forma sistemática para permitir sua rápida
interpretação e reprodução. Nos casos em que o conteúdo multimedia é disseminado
enquanto gravado, sem armazenamento prévio, o sistema de distribuição é classificado
como “ao vivo”. Tais sistemas demandam conexões de rede eficientes para disseminar
conteúdos de alta qualidade na Internet.

Arquiteturas par-a-par (P2P) surgiram como potenciais soluções para o aprimora-
mento da disseminação de conteúdo nos CDS (COHEN, 2003; ZHANG; LIU; PETER YUM,
2005; LIAO et al., 2006; HECHT et al., 2011). Essas arquiteturas viabilizam o balancea-
mento da carga concentrada nos servidores. Em consequência disso, os usuários (peers)
assumem parte da tarefa anteriormente exercida pelos servidores. Ao invés de manter en-
tidades centralizadoras para distribuir conteúdos, sistemas P2P são criados para que peers

interajam para compartilhar dados e maximizar a utilização dos seus recursos. Nesse
contexto, a popularização das arquiteturas P2P motivou a comunidade científica a in-
vestigar alguns aspectos de pesquisa desafiadores, e.g., otimização de topologias de re-
des (CHOFFNES; BUSTAMANTE, 2008; CHOFFNES; SÁNCHEZ; BUSTAMANTE,
2010; POESE et al., 2010; CAPOTA et al., 2011), mecanismos de inicialização de sis-
temas (TADDIA; MAZZINI, 2008) e serviços de descoberta de recursos (IAMNITCHI;
FOSTER, 2001). Um desafio com interesse especial a esta tese diz respeito a mecanismos
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para conciliar a preferência dos usuários aos conteúdos publicados.
A eficácia dos CDS depende da experiência dos publicadores para descrever ade-

quadamente os conteúdos, aspecto importante para garantir uma boa qualidade de exper-

iência (QoE) aos usuários dos sistemas. Uma vez que podem existir divergências entre
opiniões de usuários, conteúdos similares podem ser classificados com descrições pouco
relacionadas. Além disso, usuários maliciosos podem publicar conteúdos com descrições
populares para desviar a atenção dos usuários comuns, atrapalhar suas consultas e/ou pro-
mover propagandas indesejadas. Evidências concretas e medições sobre “poluição” têm
sido relatadas por administradores de CDS (e.g., comunidades BitTorrent (TORRENTF-
REAK, 2009; CUEVAS et al., 2010) e rede KaZaa (LIANG et al., 2005)). Essas evidên-
cias são reforçadas por um estudo prévio (SANTOS et al., 2011) e resultados de pesquisas
que nós conduzimos junto a administradores de comunidades BitTorrent, que reportaram
que cerca de 25% de todo conteúdo publicado é poluído e precisa de intervenção manual.

Esforços de pesquisa constantes têm sido feitos para combater poluição de conteúdo
em CDS (CAI et al., 2009; ANAND; BHASKAR, 2011; SHIN; REEVES, 2012). Aborda-
gens buscam construir uma base de conhecimento sobre poluidores e conteúdos poluídos
para identificar e isolar conteúdos suspeitos depois que eles são publicados. Entretanto,
o tempo de reação dessas abordagens até considerar um conteúdo poluído é consider-
avelmente longo, permitindo uma ampla disseminação de poluição. Além disso, algu-
mas abordagens anteriores buscam polarizar conteúdos entre poluídos ou não, descon-
siderando a intrínseca subjetividade acerca da classificação dos conteúdos compartilha-
dos.

O objetivo principal desta tese é propor um mecanismo para prover uma boa
QoE aos usuários – agindo proativamente durante as fases iniciais da publicação dos
conteúdos – e reduzir os efeitos de interferências maliciosas. Para alcançar tal objetivo,
três passos principais guiaram o trabalho de pesquisa apresentado nesta tese. Primeiro,
propusemos uma estratégia inovadora que opera de forma conservadora para conter a dis-
seminação de poluição. Segundo, estendemos nossa solução para lidar com a subjetivi-
dade acerca das descrições dos conteúdos. Terceiro, tratamos o ataque de poluição como
um ataque massivo. Para avaliar a solução, experimentos foram executados utilizando
testes reais e simulações. Resultados ressaltaram a importância de adotar medidas de se-
gurança para combater comportamentos maliciosos em CDS. Na ausência de mecanismos
de contramedida, pequenas proporções (10%) de atacantes foram capazes de comprome-
ter o sistema. A instanciação da estratégia conservadora proposta nesta tese demonstrou
a eficácia em atrasar usuários para contornar ataques massivos.
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