
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

ENGENHARIA DA COMPUTAÇÃO

LUIGI VAZ FERREIRA

Detecting transient faults in the

Con�gurable Recon�gurable Core

architecture without false error signals

Final Report.

Profa. Dra. Fernanda Lima Kastensmidt
Advisor

Porto Alegre, December 2013

CIP � CATALOGING-IN-PUBLICATION

Ferreira, Luigi Vaz

Detecting transient faults in the Con�gurable Recon�g-
urable Core architecture without false error signals / Luigi
Vaz Ferreira. � Porto Alegre: UFRGS, 2013.

100 f.: il.

Final Report (Graduation) � Universidade Federal do Rio
Grande do Sul. Engenharia da Computação, Porto Alegre,
BR�RS, 2013. Advisor: Fernanda Lima Kastensmidt.

1. Fault tolerance. 2. Transient faults. 3. Circuit level
time-redundancy. 4. CGRA. I. Kastensmidt, Fernanda Lima.
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitora de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do curso: Prof. Marcelo Götz
Bibliotecária-chefe do Instituto de Informática: Alexander Borges Ribeiro

AGRADECIMENTOS

No âmbito acadêmico, agradeço a Professora Fernanda Lima Gusmão Kastens-
midt da Universidade Federal do Rio Grande do Sul por sua orientação na realização
deste trabalho. Agradeço também, ao Professor Thomas Schweizer da Eberhard
Karls Universität Tübingen pela oportunidade a mim fornecida de contribuição no
projeto ARES no ano de 2012.

Agradeço aos meus pais, Cledi Teresinha Barboza Vaz e Edson Luis Gomes Fer-
reira, e ao meu padrastro, Jesse James Vivian, pelo apoio durante toda a jornada
de realização desta graduação. Bem como ao resto de minha família pela compreen-
são de minhas ausências nas reuniões e momentos importantes devido a atividades
vinculadas ao curso de Engenharia da Computação.

A Mariana Cezimbra Franzen, agradeço pelo amor, compreenção e compan-
heirismo a mim sedidos durante todos estes anos de nosso relacionamento. A ela,
agradeço também o nosso �lho, Bernardo Franzen Ferreira, o qual ainda esta em
geração em seu ventre.

Agradeço aos meus amigos e colegas de curso Mauricio Kempf Bonatto, Mateus
Felipin Dalepiane e Alexandre Hertzog pelas horas de descontração e momentos de
alegria nos intervalos das aulas.

Por último e não menos importante, agradeço aos meus amigos Rafael Padilha
Ferreira e Jean Michel Ramos Prestes pelas horas de estudo na biblioteca e pelas
corridas diárias para esfriar a cabeça.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 6

LIST OF FIGURES . 7

LIST OF TABLES . 9

ABSTRACT . 10

RESUMO . 11

1 INTRODUCTION . 12

2 CONTEXTUALIZATION . 15
2.1 Con�gurable Recon�gurable Core 15
2.2 Flexible Error Handling Module 16
2.2.1 FEHM inclusion . 17
2.3 Transient Errors . 17
2.4 Transient error detection techniques 18
2.5 Circuit level time-redundancy . 20

3 PROPOSED WORK: TRANSIENT FAULTS SENSORS 24
3.1 Sensors design, conditions, and description 24
3.1.1 Essential Detector . 24
3.1.2 Double Sampling with Time Borrowing 26
3.1.3 Considerations . 30
3.2 Flow synthesis . 31
3.3 Simulation tools . 32

4 SENSORS IMPLEMENTATION PROCESS VALIDATION 33
4.1 Monitored path . 33
4.2 Delays scenario . 36
4.2.1 Maximum Delay Scenario . 37
4.2.2 Minimum Delay Scenario . 43
4.3 Dmin and Dmax in the Electrical Level 47
4.3.1 Maximum Delay (Dmax) . 48
4.3.2 Minimum Delay (Dmin) . 53
4.4 Construction and simulation results 56
4.4.1 DSTB implementation . 56
4.4.2 ED implementation . 60

4.5 Synthesis results . 63

5 FAULT INJECTION AND RESULTS 65
5.1 Logic level Project . 65
5.1.1 Delays in the Logic level . 66
5.1.2 Bu�ers construction in the Logic level 66
5.2 Fault Injection Scheme . 67
5.2.1 Input simulator routine . 67
5.2.2 Fault injector routine . 68
5.2.3 Data collector . 70
5.3 Test cases . 72
5.4 Results . 72

6 CONCLUSION . 83

REFERENCES . 85
ANNEX A

Graduation Work I87

LIST OF ABBREVIATIONS AND ACRONYMS

CRC Con�gurable Recon�gurable Core

PE Processor Element

FSM Finite State Machine

FU Functional Unit

FEHM Flexible Error Handling Module

TMR Triple Modular Redundancy

DWC Duplication With Comparison

DEDC Data Error Detection Component

TEDC Transition Error Detection Component

ECC Error Correction Codes

SBU Single-bit upset

MCU Multiple-cell upset

MBU Multiple-bit upset

SET Single-event transient

SEFI Single-event functional interrupt

SEL Single-event latchup

ECC Error Correction Codes

ED Essential Detector

DSTB Double Sampling with Time Borrowing

SDF Standard Delay Format

LIST OF FIGURES

Figure 2.1: PE array. 15
Figure 2.2: PE components. 16
Figure 2.3: FEHM components. 16
Figure 2.4: TripleFU approach. 17
Figure 2.5: FEHM-Cluster approach. 18
Figure 2.6: Single Event Transient (SET) in a combinational circuit (KAS-

TENSMIDT, 2007). 19
Figure 2.7: Sensor in place of a temporal barrier. 21
Figure 2.8: (a) conceptual diagram without transient fault; (b) conceptual

diagram with transient fault. 21
Figure 2.9: Conceptual design of the sensor 22
Figure 2.10: Guardband violation example. 23

Figure 3.1: Transient fault detector implemented with two �ip-�ops 24
Figure 3.2: Internal signals to Figure 3.1 . 25
Figure 3.3: Verilog mapping in ED design. 26
Figure 3.4: DSTB design. 27
Figure 3.5: DSTB operation . 27
Figure 3.6: DSTB circuit with a extra delay element. 28
Figure 3.7: Conceptual waveform with Dmin inside TW 28
Figure 3.8: Conceptual waveform with all the intervals that clock period must

cover. 28
Figure 3.9: Verilog mapping in DSTB design. 29
Figure 3.10: Flow synthesis . 31

Figure 4.1: TEDC modules and signals. 33
Figure 4.2: FEHM components and signals. 34
Figure 4.3: Monitored paths. 36
Figure 4.4: All multiplier inputs free . 38
Figure 4.5: A[0] free to test. 39
Figure 4.6: Rotates of the A vector . 40
Figure 4.7: Operands from the Center-PE to the Side-PEs. 42
Figure 4.8: Data from the East and West FEHM-Cluster ports to the Center-

PE. 42
Figure 4.9: Longest internal route: The operands come from the East and

West FEHM-Cluster ports. 43
Figure 4.10: Functional Unit interface. 43
Figure 4.11: Signal values to the �rst Nanotime analysis. 44

Figure 4.12: Con�guration of the pins in the set (4.5). 46
Figure 4.13: Shortest internal route. 47
Figure 4.14: FEHM input channel sources. 48
Figure 4.15: Paths con�guration to the maximum delay calculus. 48
Figure 4.16: Mapping between the internal/external FEHM-Cluster signals

and the signals shown in Figures 4.17 and 4.18. 50
Figure 4.17: First case simulation. Delay equal to 2.07 ns. 51
Figure 4.18: Second case simulation. Delay equal to 2.15 ns. 52
Figure 4.19: Channel that will take a di�erent value (minimum delay). 53
Figure 4.20: Illustration of the modi�ed code in Verilog code block 4.7. 54
Figure 4.21: FEHM-Cluster signals localization (minimum delay). 54
Figure 4.22: Simulation result to �nd the minimum delay. 55
Figure 4.23: DSTB circuit with a extra delay element. 56
Figure 4.24: DSTB Spice simulation without errors. 58
Figure 4.25: DSTB Spice simulation with errors. 59
Figure 4.26: Signals location to the ED simulations of the Figure 4.27 and

Figure 4.28. 60
Figure 4.27: ED Spice simulation without errors. 61
Figure 4.28: ED Spice simulation with errors. 62

Figure 5.1: Fault injection scheme. 67
Figure 5.2: Input simulation diagram. 67
Figure 5.3: Period to change the value of the input channels. 68
Figure 5.4: Verilog commands to the input simulations. 68
Figure 5.5: Fault injection routine. 69
Figure 5.6: Injection period. 69
Figure 5.7: Verilog commands to the fault injection. 70
Figure 5.8: Analyzed FEHM signals. 70
Figure 5.9: Sensors signal mapping: a) ED mapping; b) DSTB mapping. . . . 71
Figure 5.10: Read moments: a) out signal; b) eout and tout to the ED; c) eout

and tout to the DSTB. 71
Figure 5.11: Faults in the inputs of the FEHM (ED): tout and eout signals. . . 74
Figure 5.12: Faults in the inputs of the FEHM (DSTB): tout and eout signals. 74
Figure 5.13: Faults in the input of the FEHM (ED): out. 75
Figure 5.14: Faults in the input of the FEHM (DSTB): out. 76
Figure 5.15: Fault in the internal signals of FEHM (ED): eout and tout signals. 77
Figure 5.16: Fault in the internal signals of FEHM (DSTB): eout and tout

signals. 77
Figure 5.17: Faults in the internal signals of FEHM (ED): out signal. 78
Figure 5.18: Faults in the internal signals of FEHM (DSTB): out signal. 79
Figure 5.19: Faults in the voter of FEHM (ED): eout and tout signals. 80
Figure 5.20: Faults in the voter of FEHM (DSTB): eout and tout signals. . . . 80
Figure 5.21: Faults in the voter of FEHM (ED): out signal. 81
Figure 5.22: Faults in the voter of FEHM (DSTB): out signal. 82

LIST OF TABLES

Table 4.1: Relationship to the fastest path delay extracted from Nanotime
Results block 4.5. 45

Table 4.2: The fastest operation. 45
Table 4.3: Simulation cases to �nd the maximum delay. All the values of

the table are in hexadecimal. 50
Table 4.4: Signal values to �nd the minimum delay. 54
Table 4.5: Individual blocks areas to ASIC construction to 45 nm. 63
Table 4.6: Bu�ers areas and delays to a clock period of 10 ns. 63
Table 4.7: Total area to the FEHM with both sensors. 63
Table 4.8: Impact of the DSTB sensor in the performance of the FEHM-

Cluster and in the area of the FEHM. 64

Table 5.1: eout and tout interpretation. 72
Table 5.2: out signal analysis. 73
Table 5.3: Faults in the inputs of the FEHM (ED): tout and eout signals. . . 73
Table 5.4: Faults in the inputs of the FEHM (DSTB): tout and eout signals. 74
Table 5.5: Faults in the input of the FEHM (ED): out. 75
Table 5.6: Faults in the input of the FEHM (DSTB): out. 75
Table 5.7: Fault in the internal signals of FEHM (ED): eout and tout signals. 76
Table 5.8: Fault in the internal signals of FEHM (DSTB): eout and tout

signals. 76
Table 5.9: Faults in the internal signals of FEHM (ED): out signal. 78
Table 5.10: Faults in the internal signals of FEHM (DSTB): out signal. 78
Table 5.11: Faults in the voter of FEHM (ED): eout and tout signals. 79
Table 5.12: Faults in the voter of FEHM (DSTB): eout and tout signals. . . 79
Table 5.13: Faults in the voter of FEHM (ED): out signal. 81
Table 5.14: Faults in the voter of FEHM (DSTB): out signal. 81

ABSTRACT

Fault tolerance is an important issue to worry about in the computing world.
The detection of errors provided by transient faults, among others source of errors,
in a determined region of a computer architecture is necessary to increase the reli-
ability of the architecture. Circuit level time-redundancy (NICOLAIDIS, 1999) is
a good technique to detect transient errors (those caused by transient faults) with
low impact in area in a �rst moment. This work presents two implementations of
the technique and the conditions we must respect in order to maximize the error
detection without generating false errors signals. In addition, these implementa-
tions are used to construct the component that is part of a �exible error handling
module (FEHM) (SCHWEIZER et al., 2012). This module is incorporated in the
Con�gurable Recon�gurable Core (OPPOLD et al., 2007) architecture in order to
detect and mask errors caused by permanent and transient faults. As a result, the
simulations con�rm that the conditions formulated avoids the false errors signals
generation. However, the synthesis results shows that the technique can impact,
not only in the area, but also in the performance of the circuit. Furthermore, fault
injection simulations show that the FEHM has a vulnerability in the presence of
transient faults.

Keywords: Fault tolerance, transient faults, circuit level time-redundancy, CGRA.

RESUMO

Detectando falhas transientes na arquitetura Con�gurable

Recon�gurable Core sem sinais falsos de erro

Tolerância a falhas é uma questão importante a se preocupar no mundo da com-
putação. A detecção de erros providos de falhas transientes, entre outras fontes de
erros, em uma determinada região de uma arquitetura de computador é necessária
para aumentar a con�ança da arquitetura. Redundância no tempo a nível de cir-
cuito (NICOLAIDIS, 1999) é uma boa técnica para detectar erros transientes (erros
causados por falhas transientes) com um baixo impacto na área a priori. Este tra-
balho apresenta duas implementações desta técnica, bem como as condições que são
necessárias respeitar para maximizar a detecção sem a geração de sinais falsos de
erro. Adicionalmente, as implementações são usadas para construir o componente
que é parte de um módulo �exível de tratamento de erro (�exible error handling
module - FEHM -) (SCHWEIZER et al., 2012). Este módulo é incorporado na ar-
quitetura Con�gurable Recon�gurable Core (CRC) (OPPOLD et al., 2007) com o
objetivo de detectar e mascarar erros causados por falhas permanentes e transien-
tes. Como esperado, as simulações con�rmam que as condições formuladas evitam
a geração de sinais falsos de erros. Entretanto, os resultados de sintese mostram
que a técnica pode impactar, não somente em área, mas também na performance
do circuito. Além disso, simulações com injeção de falhas apresentam que o FEHM
possui uma vulnerabilidade na presença de falhas transientes.

Palavras-chave: tolerância a falhas, falhas transientes, redundância no tempo a
nível de circuito, CGRA.

12

1 INTRODUCTION

Fault tolerance is the ability of a system to continue correct performance of its
tasks after the occurrence of hardware or software faults. A fault is simply any
physical defect, imperfection, or �aw that occurs in hardware or software. Fault
tolerance can be achieved in systems by incorporating various forms of redundancy,
including hardware, information, time, and software redundancy (JOHNSON, 2000).

A fault can causes an error if not masked by the application, and consequently,
a error can causes a failure which can be catastrophic. A failure is an event that
occurs when the delivered system service deviates from correct service. The error is
the service deviation and the cause of the error is the fault (AVIZIENIS et al., 2004).
On semiconductor devices, a service is the logic value of an output. If an output
has a di�erent logic value that it is supposed to have, then, a service deviation has
occurred.

Upsets in the nodes of semiconductors are the sources of faults. It happens when
energetic particle passes through the pn-junction of a CMOS transistor in the o�
state, a short is momentarily created between the substrate and the struck drain
terminal. The amount of charge that is collected produces a transient current pulse
that lasts until the deposited charge disappears by recombination or is conducted
away via open current paths to VDD or ground, returning the logic node to its
original state. The transient current pulse, called Single Event Transient (SET), is
the upset event that can or not generates a fault in the circuit (KASTENSMIDT,
2007).

Fault tolerance on semiconductor devices has been meaningful since upsets were
�rst experienced in space applications several years ago. Since then, the interest in
studying fault tolerant techniques in order to keep integrated circuits (ICs) opera-
tional in such hostile environment has increased, driven by all possible applications
of radiation tolerant circuits, such as space missions, satellites, high-energy physics
experiments and others. Spacecraft systems include a large variety of analog and
digital components that are potentially sensitive to radiation and therefore fault
tolerant techniques must be used to ensure reliability. However, the continuous
evolution of the fabrication technology of semiconductor components, in terms of
transistor geometry shrinking, power supply, speed, and logic density, the fault tol-
erance starts to be a matter of concern for circuits operating at ground level as well
(KASTENSMIDT, 2007).

As redundancy is the way to achieve fault tolerance, naturally, handling errors
and compensating failures in system on chips (SoCs) requires additional hardware
for detecting and replacing faulty parts, and thus decrease the overall pro�tability
and will very likely make CMOS-based silicon scaling economically less feasible.

13

To accomplish a small hardware overhead a low-cost reliability methodology was
proposed on the Adaptive Reliability for Embedded Systems (ARES) project of
the Eberhard Karls University of Tübingen. The focus of the project is to devise
methods to develop and implement a multi-functional, self-adaptive coarse-grained
recon�gurable core as a reliability enhancer. In addition, the author of this document
was part of the project in the year of 2012 and the work here presented is based in
the activities that were done to the project.

The small hardware overhead was reached making instead of every component
of a SoC having its own set of redundant hardware, only a multi-functional coarse
grained recon�gurable architecture (CGRA) was hardened (MOTOMURA, 2002;
DE SUTTER; RAGHAVAN; LAMBRECHTS, 2013; HARTENSTEIN, 2001). Then,
in a second step this hardened CGRA was used to improve the overall system re-
liability by applying dynamic functional veri�cation (KüHN et al., 2012) on the
SoC.

Hardening of the CGRA itself is achieved by means of a low-cost triple mod-
ular redundancy (TMR) method (SCHWEIZER et al., 2012) in combination with
remapping strategies (EISENHARDT et al., 2011), which move (remap) functional-
ity of defective processing elements (PEs) to unused, non-defective PEs and thereby
allowing graceful degradation. Defective PEs are identi�ed by a �exible error han-
dling module (FEHM). This module allows to detect and to mask errors that were
generated by permanent, and transient faults.

Transient faults that occurs in sequential logics, called Single Event Upset (SEU),
causes a bit�ip in the output value of the logic. If the sequential logic is not being
used in the current clock cycle operation, the bit�ip will not in�uence in the current
computation and will remain in the sequential logic until it be updated by a new
data, or be detected by the TMR at some clock cycles after it occurrence. In the
last case the error was caused by a transient fault that became pertinent in the
circuit. Nevertheless, if the sequential logic is being used in the current clock cycle
computation, when the bit�ip has occurred, the transition that results of the bit�ip
can generate a wrong computation value when it is stored in the next sequential
circuit. It can happens in time enough to not be detected and masked by the TMR.
In addition, transient faults that occurs in combinational logics can generate an
error whether the transient pulse is stored in a memory cell or a latch. It is a
problem because it also can happens in time enough to be detected by the TMR.
Furthermore, it can occurs in the signals that compose the TMR logic (that is a
combinational logic).

By this reason, the focus of this work is to implement the component of the
FEHM that will be able to detect when an error comes from a transient fault that
was generated in the CGRA. To achieve this purpose, it was chosen to use the
circuit level time-redundancy technique to implement the component, because it
results in a sensor that can inform whether an error was generated by a transient
fault. In addition, the conditions to implement the chosen technique to maximize
the detection capability of the sensor and avoid false errors signals are in this work
formulated.

Therefore, this document is organized as follow: Chapter 2 explain the multi-
functional CGRA architecture, the FEHM components, the transient faults e�ects,
and the techniques to detected transient errors (caused by transient faults) in digital
systems; Chapter 3 has the proposed work to implement the component that will be

14

able to detect when a error was caused by a transient fault in a speci�c con�guration
of the CRGA; Chapter 4 presents the component implementation in a hardware
description language and its validation in the electrical level; Chapter 5 shows the
error diagnostic capability of the FEHM with the implemented component in a fault
injection in a timing simulation on the logic level; Finally, the conclusions are drawn
in chapter 6.

15

2 CONTEXTUALIZATION

2.1 Con�gurable Recon�gurable Core

On the ARES project was developed a modi�ed architecture model that is a
coarse-grained recon�gurable architecture. This architecture is the Con�gurable
Recon�gurable Core (CRC) that has the focus of use a fast recon�guration to op-
timize area, performance and power. It also represents a range of processor-like
architectures (OPPOLD et al., 2007).

The CRC consists of a Processor Element (PE) rectangular array connected
through a recon�gurable network(Figure 2.1).

Each PE, Figure 2.2, is composed of a Functional Unit (FU), which executes
arithmetic and logical operations, a registers set, a context memory, which holds
all the con�guration contexts, and a �nite state machine (FSM) that changes the
context every clock cycle. A PE context determines the FU operation, the FU
operand sources (ports or registers), the FU result destination (ports or registers),
and the route through input and output ports for the CRC.

The context memory and the FSM must be con�gured using an external source.
Hence, each PE has a module that is represented in Figure 2.2 as external recon�g-
uration.

PE

PE

PE

PEPEPE

PE PE

PEPE PE PE

PE

PE

PE

Figure 2.1: PE array.

The CRC, as it is presented in Figure 2.1, has no capacity to detect or mask er-
rors, so, a modi�cation in the architecture design was proposed to increase the CRC
reliability. This modi�cation is the insertion of a new module in the architecture
that is able to detect and mask transient errors that occur in the PE. The Flexible
Error Handling Module is presented in the next section.

16

n 1 1n

11111n n nn

1n

context memory

FU

data register

status register to
 o

u
tp

u
t
p
o
rt

s

from input ports

N E S W

fsm memory

external

i/o port S

i/o port N

 i
/o

 p
o
rt

 W

i/
o
 p

o
rt

 E

reconfiguration

Standard PE

Figure 2.2: PE components.

2.2 Flexible Error Handling Module

Flexible Error Handling Module (FEHM) (SCHWEIZER et al., 2012) is based
on Triple Modular Redundancy (TMR) to detect and mask errors. It monitors three
input channels, and each input channel has an enable signal. Consequently, if one
channel is disabled, the FEHM will work as a Duplication With Comparison (DWC).
However, in the DWC operation mode, only error detection is possible.

As it is shown in Figure 2.3, the FEHM provides three outputs: 3 data error sig-
nals, 3 transition error signals, and 1 output channel, where the data is presumably
right when the module is in TMR mode.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(in1, in2, in3)

input channels channel

enabled

multiplexer

voter

data

detection
error

detection
error
transition

FEHM

channel error data error

data error transition errorout

clk

3 3

nnn 3

3n

3 3

Figure 2.3: FEHM components.

The FEHM uses an integrated voting mechanism to mask the data error by
forwarding a correct channel through the out.

17

The data error signals are provided by the Data Error Detection Component
(DEDC). It compares each pair of input channel of the module. Inside the pairs,
the input channels are compared to each other with a bitwise XOR operation. This
operation is reduced to one bit per channel with a XOR tree. This one bit per
channel (channel error) indicates if one channel has a di�erent value among the
others.

The Transition Error Detection Component (TEDC) monitors the data error
signals (Figure 2.3) provided by DEDC, and signalizes when a error caused by a
fault in the combinational logic formed by the path from the input of the FUs and
the output of the DEDC occurs.

2.2.1 FEHM inclusion

The inclusion of the FEHM in the architecture is made using two possible ap-
proaches: TripleFU or FEHM-Cluster. TripleFU, Figure 2.4, implements traditional
TMR, since two more FUs are inserted inside a PE and each FU output is directed
to the FEHM inputs. This approach considerably increases the PE area. FEHM-
Cluster, Figure 2.5, monitors the FU of three di�erent PEs and the FEHM is em-
bedded in one of the PEs(Center-PE). The Side-PEs have a dedicated route to carry
the result of theirs FU straight to FEHM (SCHWEIZER et al., 2012).

TripleFU Data Error Signals

FU FUFU

FEHM
FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

Figure 2.4: TripleFU approach.

2.3 Transient Errors

Transient errors are also known as soft-errors and are caused by transient faults.
Soft-errors are errors that do not cause any permanent damage to the devices, just
some perturbations in the hardware such as transient voltage pulses and bit�ips.
These perturbations can �ip some logic value stored in a memory element in the
system.

Soft-erros are caused by radiation. Neutron particles that are generated by cos-
mic radiation interact with the Earth atmosphere and can cause some perturbations
in digital systems. Alpha particles emitted by radioactive impurities present in low
concentration in chip package materials are another source of soft-errors.

In (NICOLAIDIS, 2011), when a particle strike causes a bit-�ip (upset) in a
memory cell or a latch, we consider that a Single-bit upset (SBU) has occurred.
However, when two or more memory cells or latches su�er a bit-�ip, it is a Multiple-
cell upset (MCU). Whether the event causes the upset of two or more bits in the
same word, we have a Multiple-bit upset (MBU). A Single-event transient (SET)
occurs whether the strike of the particle in the combinational logic causes a voltage

18

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

Data

CenterWest East

CenterWest East

Error Signals

FEHM Cluster

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

Figure 2.5: FEHM-Cluster approach.

glitch in the circuit, and it becomes a bit error when captured in a storage element.
By (KASTENSMIDT, 2007), the voltage glitch might not be stored in a storage
element since logic, electrical and window-latch masking occurs. Logic masking, as
it is presented in Figure 2.6.(a), occurs when the transient pulse is barred in some
logic gate due to the input values of the gate. For example, if the voltage glitch
happens in the input of a NAND gate, and the inputs are both in high level (1), the
pulse will not be propagated to the output of the NAND gate. Electrical masking
occurs if the pulse is attenuated as it propagates through the logic chain and fades
out before it reaches the registered output, as shown in Figure 2.6.(b). The window-
latch masking takes place when the the SET e�ect happens out of the latch period
of a storage element (depends of the setup and hold time to a memory element).

The perturbation of control registers, clock signals, and reset signals that causes
loss of functionality is called Single-event functional interrupt (SEFI). But, when the
event creates an abnormal high-current state by triggering a parasitic dual bipolar
circuit, which requires a power reset, it is a Single-event latchup (SEL). This last
one can possibly cause permanent damage to the device, in which case the result is
a hard error (NICOLAIDIS, 2011).

In the literature we can �nd the term SEU (Single-event upset) as a references
to soft-error, but this term could mean a reference to SBU and MBU together
(NICOLAIDIS, 2011). On this work, SEU has the last meaning.

2.4 Transient error detection techniques

Error Correction Codes (ECC), Redundancy in time and space, Error detection
with logic synthesis and Logic implications are some techniques to achieve tran-
sient errors (or soft-errors) mitigation that are applied in electrical or logic circuits
(ALVES, 2011). There is also the Hardened Storage cells (SRAM cells, latches, �ip-
�ops) that will preserve their state even if the state of one of their nodes is altered
by an ionizing particle strike. Therefore, it is a good way to construct a cell to
prevent SEU (NICOLAIDIS, 2010).

19

Figure 2.6: Single Event Transient (SET) in a combinational circuit (KASTENS-
MIDT, 2007).

20

Error Correction Codes are good to detect transient errors in memory elements
and transmission lines. They can indicate if the data that has been read is the same
data that was stored in the memory element by using some parity recover. They
can also indicate if the stored data was altered by a particle strike. ECC can be ex-
tended to other logic structures with easily predictable outputs, such as multipliers,
adders, and programmable logic arrays (PLAs). However, detecting errors in appar-
ently random logic, without any discernible logic regularity, is a signi�cantly harder
problem. In random logic we must determine if the logic operations performed in
some circuit inputs are correct (ALVES, 2011).

Error detection with logic synthesis is a synthesis tweaking applied in order to
minimize the number of potential transient errors, via error masking. Features
of logic gates are used to �x the error as the signal propagates downstream. For
example, a single alpha particle striking any input line of a two-input logic OR gate
will have no e�ect at that gate output when both inputs are logic ones. It is a e�ect
that happens naturally in a circuit run time, and it is knowing as logic masking.

The Logic implications is a new method to detect transient errors. This method
takes an existing design and searches all internal circuit nodes for consistent logic
patterns among them. When an invariant pattern is found, it will append some
simple checker hardware that reinforce the validity of the relationship (ALVES,
2011) .

The techniques such as Error detection with logic synthesis and ECC do not
achieves the TEDC implementation requirements, since it should operate like a
sensor that monitors the output of the DEDC component. Logic Implications could
be the chosen technique, but, it will probably change the components which are
already implemented.

Redundancy in space, to monitors the desired signal, implies the duplication of
the DEDC component. In this case, the TEDC component would be a comparator.
However, it does not �t in the FEHM design, since there must exist just one DEDC
per FEHM.

Redundancy in time, as it is explained in (ALVES, 2011), is the re-execution of
the same logic multiple times, while storing any intermediate data in memory, and
reporting any output di�erences throughout the various executions. However, its
multiple logic re-execution signi�cantly decreases the throughput of the circuit.

The concept of circuit level time-redundancy (NICOLAIDIS, 2010) is interesting
to the TEDC implementation. The data is checked, at least, twice at each clock
cycle and the result of each checked data is compared to each other. If the value
is the same in all the checking moments, it is assumed as correct. This technique
di�ers from the redundancy in time concept, since there is no logic re-execution to
detect the error, just the logic circuit output is read more than once in the same
execution with a period of picoseconds between each read time. This technique is
a good choice to implement the TEDC component, since it operate as a sensor and
it do not have to make changes in the logic circuit that has been monitored. The
circuit level time-redundancy technique is presented in the next section.

2.5 Circuit level time-redundancy

Circuit level time-redundancy is a design solution to transient errors mitiga-
tion. The main idea is that transient faults have a limited duration (just a few

21

hundreds picoseconds - the exactly value depends of circuit features and particle
energy- (NICOLAIDIS, 1999)) then apply �ne time-grain redundancy(i.e. within
the clock cycle). Low hardware cost can be achieved, because one does not need to
construct the same logic more than once.

The implementation of this technique results in a transient error sensor. Gen-
erally, this sensor is put in place of temporal barriers (pipe-lines) as it is shown in
Figure 2.7. The sensor can also be put in the end of critical paths or in parallel with
some elements to monitor the data time.

T
em

poral
B
arrier

Clk

T
em

poral
B
arrier

Clk

Combinational Circuit
In Out

In

Error

Out

T
em

poral
B
arrier

Clk

Combinational Circuit

Clk

sensor

Figure 2.7: Sensor in place of a temporal barrier.

Basically, to detect the transient error, the same data is checked, at least, in
two di�erent moments. If the data value is the same in both checking moments, it
is assumed that data value as correct. For example, in Figure 2.8, T1 and T2 are
the checking moments of the data value and the situation which any error occurs
(Figure 2.8.(a)), the input signal In has the same value in T1 and T2. However, in
Figure 2.8.(b), the input signal In was modi�ed by a voltage glitch and it switches
the Error signal from low to high in T2. In this last one situation, the Error signal
still on the high level until the next T2 moment, where the In signal has the same
value in both moments (T1 and T2).

Clk

In

Out

Error

Clk

In

Out

Error

(a)

T1 T1 T1 T2T1T2 T2 T2

(b)

T1 T1 T1 T2T1T2 T2 T2

Figure 2.8: (a) conceptual diagram without transient fault; (b) conceptual diagram
with transient fault.

A comprehensive way that shows the design of these sensors is presented in Figure
2.9. In these block diagrams, the Memory Element and the Redundant Memory
Element could be as a �ip-�op as a latch, the Comparator block could be a XOR
gate, and the delay elements δIn and δClk could be implemented with bu�ers.

In Figure 2.9.a), the δClk is inserted in the Redundant Memory Element clock line
to check if the data arrived respecting the Memory Element latch conditions. As it

22

was mentioned, the signal δClk+Clk could be constructed using a bu�er element in
the Clk line. All the same, one can create a second clock line with a di�erence δClk
with the Clk line. δClk was described in some works (NICOLAIDIS, 1999; ANGHEL;
NICOLAIDIS, 2000) using the follows relationships:

{
δClk = Dtr −Dsetup

δClk < Dmin

(2.1)

In (2.1), Dtr is the maximal transient pulse duration that will be detected when it
generates a error. This term is determined by the designer. Dsetup is the Redundant
Memory Element setup time and Dmin is the Combinational Circuit minimum path
delay. In addition, the relation δClk < Dmin means that all the path times should
exceed the δClk. It must be obeyed to avoid false error signals. For example, if
both Figure 2.8 waveforms diagrams are from the circuit that is shown in Figure
2.9.a), δClk is equal T2−T1 and T2 must be less than the minimum delay of the data
path. Therefore, the designer should choose a Dtr that makes δClk obey the relation
(2.1). However, there is another relation to δClk that maximizes the transient pulse
duration which will be detected without a false error signal generation. This last
relation is based on Dmin and in the Redundant Memory Element time to hold
(Dhold) as it is presented in (2.2).

δClk = Dmin −Dhold (2.2)

The equation (2.2) is based on the principle that the data which takes the min-
imum delay will not be save in the Redundant Memory Element, since it will come
after the time to hold of this element.

Memory Element

Memory Element

Redundant

C
o
m

p
arato

r

Memory Element

Memory Element

Redundant

C
o
m

p
arato

r

Error

Out

Error

Out

Clk

δin + In

In

δClk + Clk

Clk

In

a) b)

Figure 2.9: Conceptual design of the sensor

In this work, the period that a transient fault can be detected by a sensor will
be referenced as TW . In the case of the Figure 2.8, TW is equal T2 − T1 (or equal to
δClk in the latest example).

The circuit in the Figure 2.9.b) is used to detect when a transient fault causes a
violation (an error) in the projected guardband. It can be seen in Figure 2.10.

A guardband δ is de�ned in Figure 2.10. When the signal In comes between
t0 and t0+T−δ (T is the clock period) the guardband will not be violated. On
the other hand, if the signal In arrives between t0 + T − δ and t0 + T, a violation
guardband error will appear.

The guardband in Figure 2.9.b) is de�ned with the term δIn. The value of δIn
must consider the maximum path delay to ensure that false error signals will not
occur.

23

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
��

�
�
�

�
�
�
�
������ ������ �

�
�
�

�
�
�
�
������ ������

t0 t0

In

Error Error

Clk

T

In

Clk

T

δδ

Figure 2.10: Guardband violation example.

Note that all the sensors that were presented here have a delay element δ or in
the clock line or in the input line of the sensors. It δ can a�ect the clock period (T) of
the circuit were the sensor is inserted. However, a sensor implementation that uses a
latch as Memory element and a �ip-�op as Redundant Memory Element is proposed
in (BOWMAN et al., 2009). In a �rst moment, this sensor implementation does not
have a delay element, then, it is a good improvement in the sensors implementation,
since it will have a small impact in the performance of the circuit were it is inserted.
The design of this sensor is presented in chapter 3.1, where the proposed work is
presented.

24

3 PROPOSEDWORK: TRANSIENT FAULTS SEN-

SORS

The objective of the work is to implement the Transient Error Detector Compo-
nent (TEDC) of the FEHM using the Circuit level time-redundancy technique.

To the execution of the work, two transient faults sensors design that use the
concept of circuit level time-redundancy were chosen to be implemented and incor-
porated into the FEHM.

Therefore, the design and implementations conditions to each sensor is presented
in section 3.1. Section 3.2 shows the �ow synthesis that is used. Finally, section 3.3
presents the simulations tools that will be used on each simulation level.

3.1 Sensors design, conditions, and description

This section presents both sensors that will be implemented to construct the
TEDC. One of them is a classical design solution to transient errors mitigation using
circuit level time-redundancy (NICOLAIDIS, 1999). The other is an evolution of the
�rst design (BOWMAN et al., 2009). Thus, the section 3.1.1 presents the classical
design and section 3.1.2 presents the other design.

3.1.1 Essential Detector

Figure 3.1 presents one implementation using digital blocks of the Figure 2.9.a)
diagram. One can �nd this implementation in (NICOLAIDIS, 1999).

Error

δ + Clk

In

Clk

Out

OutSFF

FF

Shadow FF
δ

Figure 3.1: Transient fault detector implemented with two �ip-�ops

The implementation in Figure 3.1 uses two �ip-�ops and will be called in this
work as Essential Detector (ED). The FF and Shadow FF are the Memory Element
and the Redundant Memory Element respectively. One bu�er (δ) is used to con-
struct the element δClk. A demonstration about the internal signals of the circuit is
presented in Figure 3.1. It is supposed that both �ip-�ops are sensitive at the rise
edge of the clock.

25

Out

Error

Clk

In

Error

Clk

In

Out

T1 T1 T1 T2T1T2 T2 T2

δ + Clk

OutSFF

(b)(a)

δ + Clk

OutSFF

T1 T1 T1 T2T1T2 T2 T2

Figure 3.2: Internal signals to Figure 3.1

The delay element δ causes the occurrence of the Shadow FF latch edge in T2. In
the situation where any transient pulse occurs (Figure 3.2.(a)), the data is correctly
saved inside the two �ip-�ops. It is seen in the waveforms of the signals Out and
OutSFF . However, in the another situation (Figure 3.2.(b)), the �ip-�op FF could
not save the correct value of the signal In, since a SET has occurred.

The delay δ that is generated by the bu�er must be enough to Shadow FF not
save the data when it come, in the current clock cycle, from Dmin (the minimal path
delay) until the next clock latch edge.

The data will not be save in a �ip-�op if it comes after the �ip-�op time to hold
(Thf). Therefore, the delay δ should considerate Dmin and Thf times. Consequently,
to this implementation:

δ = Dmin − Thf (3.1)

Therefore, this sensor will be able to indicate all the errors that are caused by
transient pulses with durations less than Dmin. Thus, the TW to the ED sensor is
equal to Dmin (TW = Dmin).

3.1.1.1 Behavioral verilog description

The verilog description that was used for the ED is presented in the Verilog code
block 3.1. The signals of the verilog description are mapped in the ED design as it
is presented in Figure 3.3.This implementation uses a bu�er in the clock line, but,
the verilog code has an inversor in the place of the bu�er. The explanation to this
is that the synthesis tool optimize the circuit. So, with the optimization, the bu�er
was replaced by a wire connection. Therefore, the solution to this case was to put
an inversor with a speci�c name (like �clk_buf�) and , after the synthesis process,
manually replace the inversor by the required bu�er.

26

clk

mfss_out
tout

in out

ms�

�

clk_buf

Figure 3.3: Verilog mapping in ED design.

Verilog code 3.1: ED verilog description

1 //ED
2 module tedm (out , tout , in , c l k) ;
3

4 // por t s
5 output out , tout ;
6 input in , c l k ;
7

8 // i n t e r n a l w i r e s
9 wire ff_out , msff_out ;
10

11 // connec t i ons
12 a s s i gn eout = ff_out ;
13 a s s i gn tout = msff_out ^ f f_out ;
14

15 //ED
16 a s s i gn clk_buf= ~c lk ;
17 ret_dff_high_edge msf f (. q (msff_out) ,
18 . d (in) , . c l k (clk_buf)) ; // shadow f f
19

20 ret_dff_high_edge f f (. q (f f_out) , .
21 d(in) , . c l k (c l k)) ; // f f
22 endmodule // tedm

3.1.2 Double Sampling with Time Borrowing

Double sampling with time borrowing (DSTB), Figure 3.4, is a solution that
eliminates the metastability in data path. Now, only in the error path is possible the
metastability occurrence. By (BOWMAN et al., 2009), this is a drastic simpli�cation
on the sensor metastability handle.

OutSFF
Error

In

Clk Latch

Shadow FF

Out

Figure 3.4: DSTB design.

27

The sensor uses one �ip-�op (Shadow FF) to double sample the data. The
Memory Element is a latch. It is supposed that the Shadow FF is sensitive to the
rise edge of the clock and the latch is high level sensitive. As the latch is high level
sensitive, then its TW is all the high level of the clock signal (the duty cycle of the
clock). This fact is shown in Figure 3.5.

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

OutSFF

Out

OutSFF

Out

(b)(a)

Error

Clk

Error

Clk

InIn

TwTw

Figure 3.5: DSTB operation

28

To not generate false errors signals, all the that of the current clock cycle must
to be out of the TW period, because it is the evaluation time of the data that comes
from the previous clock cycle. Therefore, the data transition that take the minimum
path delay must exceeds the duty-cycle period of the clock signal, because it is the
TW of the DSTB. Then, we have the follow relations:

TW = Clkduty−cycle (3.2)

TW < Dmin (3.3)

In (3.3) the term Dmin is the minimum path delay of the combinational circuit.
The relation (3.3) must be respected to avoid false error signals. If the delay of the
minimum path is to small that it is impossible to reduce the duty-cycle of the clock
signal, bu�ers can be inserted in the data path to push the occurrence of the data to
after the high level of the clock (In node in Figure 3.4) as it is shown in Figure 3.6.
Therefore, the delay δ that the bu�er might generate is based in Dmin, the clock
duty cycle, and the latch time to hold (Thl). Nevertheless, this will a�ect the clock
period, since the delay of the maximum path (Dmax) could exceed the clock period
and it could cause a false error signal.

Outsff

Out

Error

in

clk

Shadow FF

δ
Latch

Figure 3.6: DSTB circuit with a extra delay element.

Figure 3.7 has an illustration of the situation where the data with minimum
delay comes inside of DSTB TW period. The δ value might put all the valid data
out of the duty cycle period in the current clock cycle, since that data will be
evaluated in the next clock cycle. The valid data are which come between Dmin and
Dmax. All data that come between the high clock edge and Dmin might be take as
error generated by a transient fault, consequently, the TW is theoretically the period
between the positive edge of the clock and Dmin. Dvalid represents the valid data
period in Figure 3.7. The latch must not save the valid data of the current clock
cycle, since the value which was saved in the Shadow Flip-Flop is the value result
from the previously clock cycle. Both elements (Latch and Flip-Flop) must save the
values of the previously execution cycle. Therefore, that is the reason which the Thl
is necessary to de�ne δ.

Looking at Figure 3.7, we can see that δ, to the DSTB sensor, is de�ned as:

δ = Cduty −Dmin + Thl (3.4)

Cduty in the project parameters is:

Cduty = ρ ∗ T, 0 < ρ < 1 (3.5)

Figure 3.8 shows all the intervals which the clock period T must cover.

29

δ

Dvalid

Dmin Dmax

Cduty

Thl
Tsf

Figure 3.7: Conceptual waveform with Dmin inside TW

δ

Dvalid

Dmin

T

Tsf

Figure 3.8: Conceptual waveform with all the intervals that clock period must cover.

The T de�nition needs to take the �ip-�op setup time (Tsf) because all valid
data should be saved inside the Shadow �ip-�op. Consequently, T should respect
the follow condition:

T ≥ Dmin + δ +Dvalid + Tsf (3.6)

Dvalid in the project parameters is:

Dvalid = Dmax −Dmin (3.7)

Using (3.4) and (3.5) we can de�ne δ with the project parameters as:

δ = ρ ∗ T−Dmin + Thl (3.8)

Consequently, using (3.6), (3.7), and (3.8) we can de�ne the condition to T as:

T ≥ Dmin + ρ ∗ T−Dmin + Thl +Dmax −Dmin + Tsf

T ≥ ρ ∗ T +Dmax −Dmin + Tsf + Thl (3.9)

Isolating T in the left side of the inequality, we get:

T ≥ Dmax −Dmin + Tsf + Thl
1− ρ (3.10)

30

Therefore, when a bu�er is inserted in DSTB Latch data line the follows relations
should be respected:

{
T ≥ Dmax−Dmin+Tsf+Thl

1−ρ , 0 < ρ < 1

δ = ρ ∗ T−Dmin + Thl , 0 < ρ < 1
(3.11)

The implementation of the DSTB using the conditions (3.11) decrease the TW
period to be equal to Dmin. However, it will ensure that false error signals will not
be generated.

3.1.2.1 Behavioral verilog description

The verilog description to the DSTB that was used is presented in the Verilog
code block 3.2. The signals of the verilog description are mapped in the DSTB
design as it is presented in Figure 3.9. One inversor (�in_buf�) was inserted in the
input line, and after the synthesis it was manually replaced by the required bu�er.

ms�_out

out

tout

in

clk

ms�

latch

in_buf

Figure 3.9: Verilog mapping in DSTB design.

Verilog code 3.2: DSTB verilog description

1 //DSTB
2 module tedm (out , tout , in , c l k) ;
3

4 // por t s
5 output out , tout ;
6 input in , c l k ;
7

8 // i n t e r n a l w i r e s
9 wire latch_out , msff_out ;
10

11 // connec t i ons
12 a s s i gn out = latch_out ;
13 a s s i gn tout = msff_out ^ latch_out ;
14

15 //DSTB
16 a s s i gn in_buf = ~in ;
17 ret_dff_high_edge msf f (. q (msff_out) ,
18 . d (in_buf) , . c l k (c l k)) ; // shadow f f
19 d_latch l a t ch (. q (latch_out) ,
20 . d (in) , . c l k (c l k)) ; // l a t ch
21

31

22 endmodule // tedm

3.1.3 Considerations

By the conditions that were presented in sections 3.1.1 and 3.1.2 to the design of
the sensors that were chosen to be implemented in this work, it is very important to
obtain the Dmin and Dmax, because if the δ value is arbitrarily chosen, the valid data
transitions could be interpreted as errors that were generated by a transient fault.
Whether both sensors were projected using the relations to δ that were de�ned to
each one, then errors generated by transient faults of duration less than Dmin will
be always indicated by the sensors.

As bu�ers could be inserted in the input line of the DSTB design, it could
in�uence in the performance of the whole circuit, since it will deslocate all the valid
data. Thus, the minimum period of the clock that the circuit operates without the
sensor may be increase when DSTB is inserted in the circuit.

32

3.2 Flow synthesis

The whole architecture was described in a behavioral verilog and synthesized
with the Design Compiler tool of Synopsys to a gate description verilog. This
process used the Nangate FreePDK45 Generic Open Cell Library of Si2 (SI2, 2012)
(Silicon Integration Initiative) to make the technological mapping. Besides of the
gate description verilog, a Standard Delay Format (SDF) �le is also generated by
the design compiler. With these �les, it is possible to perform a timing simulation
in the logic level.

From the gate description verilog was generated a spice net-list using the Calibre
tool (a Veri�cation-tool of Mentor Graphics). The synthesis process is represented
in a graphic way in Figure 3.2.

Open cell
Lib

Nangate

(Gate)

Nangate
Open cell

Lib
(Transistor)

gate
description
verilog

.sdf

behavioral
verilog

Technologic
mapping

(Design Compiler)

description
spice

Spice net-list
Generation
(Calibre)

lo
gi
c
le
ve
l

el
ec
tr
ic
al
le
ve
l

Figure 3.10: Flow synthesis

33

3.3 Simulation tools

The sensors implementation process were �rstly validated with a spice simulation,
because it is a more complete simulation process since it is in an electrical level.
Capacitance and resistance are cared about on this level of simulation. So, the
NanoSim tool (SYNOPSYS, 2010) was used to this purpose.

Another thing that was done on the electrical level was the delays scenarios
determination. It used the NanoTime (SYNOPSYS, 2009) analyzer tool to discover
some path delays.

The transient fault detection capability was simulated in the logic level using the
Modelsim tool (GRAPHICS, 2002). It was done on this level, because it take a long
time in the electrical level. In addition, it is more simple to make fault injection
simulations using the Modelsim SE.

34

4 SENSORS IMPLEMENTATION PROCESS VAL-

IDATION

On this chapter, the implementation process of the sensors with all the conditions
that were drawn in chapter 3 is validated. To the sensors implementation, it is
necessary to know the values of the maximum and minimum path delays where
the sensors aim to monitor. The process was validate taken the parameters to the
FEHM-Cluster approach.

By this reason, section 4.1 presents the path that will be monitored in the FEHM-
Cluster by the sensors. Section 4.2 aim to explain the way that the scenarios to
obtain Dmax and Dmin to the target path where determined. Section 4.3 shows
the calculus to Dmax and Dmin using the scenarios that were discovered in section
4.2. Section 4.4 presents the sensors construction based in the conditions that were
drawn in chapter 3 to an false error signal free implementation. Finally, section 4.5
has the synthesis results to a ASIC using a open cell library of 45 nm technology.

4.1 Monitored path

A set of three instances of the same sensor type is placed in the TEDC as in Figure
4.1. The verilog description of the sensors in chapter 3 shows that both sensors were
described with the same signature (tedm). Therefore, the TEDC verilog description
is presented in the Verilog code block 4.3.

in clk

out tout

out

in

tout

clk

ted1

out

in

tout

clk

ted2

out

in

tout

clk

ted3

TEDC

Figure 4.1: TEDC modules and signals.

35

Verilog code 4.3: TEDC verilog description

1 module tedc (out , tout , in , c l k) ;
2 // por t s
3 output [2 : 0] out , tout ;
4 input c l k ;
5 input [2 : 0] in ;
6 tedm ted1 (. out (out [0]) , . tout (tout [0]) ,
7 . in (in [0]) , . c l k (c l k)) ;
8 tedm ted2 (. out (out [1]) , . tout (tout [1]) ,
9 . in (in [1]) , . c l k (c l k)) ;
10 tedm ted3 (. out (out [2]) , . tout (tout [2]) ,
11 . in (in [2]) , . c l k (c l k)) ;
12 endmodule // tedc

The TEDC is inserted in the FEHM as it is presented in Figure 4.2. The verilog
description of the FEHM is presented in the Verilog code block 4.4.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

in1 in2 in3 enabled

multiplexer

out

clk

FEHM

eout tout

pe_temppe_detected

voter

3 3

nnn 3

3n

3 3

tout

in clk

out

select DEDC

TEDC

Figure 4.2: FEHM components and signals.

36

Verilog code 4.4: FEHM verilog description

1 module fehm (out , eout , tout , in1 , in2 , in3 , enabled , c l k) ;
2 // MUST be s e t on i n s t a n t i a t i o n !
3 parameter WIDTH = 0 ;
4 // por t s
5 output [WIDTH−1:0] out ;
6 output [2 : 0] eout , tout ;
7 input [WIDTH−1:0] in1 , in2 , in3 ;
8 input [2 : 0] enabled ;
9 input c l k ;
10

11 // i n t e r n a l w i r e s
12 wire [2 : 0] pe_detected , pe_temp , s e l e c t ;
13

14 //DEDC
15 pedm3 #(.WIDTH(WIDTH))
16 dedc (. eout (pe_detected) , . in1 (in1) , . in2 (in2) ,
17 . in3 (in3) , . enabled (enabled)) ;
18 a s s i gn pe_temp = pe_detected & enabled ;
19

20 //TEDC
21 tedc tedc (. out (eout) , . tout (tout) ,
22 . in (pe_temp) , . c l k (c l k)) ;
23 // voter
24 a s s i gn s e l e c t [0] = ~pe_detected [0] & enabled [0] ;
25

26 a s s i gn s e l e c t [1] = &{~pe_detected [1] , enabled [1] ,
27 pe_detected [0] | ~enabled [0] } ;
28

29 a s s i gn s e l e c t [2] = &{~pe_detected [2] , enabled [2] ,
30 pe_detected [0] | ~enabled [0] ,
31 pe_detected [1] | ~enabled [1] } ;
32 // mu l t ip l exe r
33 mux3 #(.WIDTH(WIDTH))
34 mux (. out (out) , . in1 (in1) , . in2 (in2) ,
35 . in3 (in3) , . s e l e c t (s e l e c t)) ;
36

37 endmodule // fehm

Looking at Figure 4.2 and Verilog code block 4.4, it is possible to notice that the
signal set which the TEDC should to monitors is named as pe_temp. Therefore,
the delays of the paths that ends on this set of nodes (pe_temp[0], pe_temp[1], and
pe_temp[2] nodes) should to be measured to the bu�er sensors implementation.

In context of the FEHM-Cluster, the monitored paths are shown in red in Figure
4.3. It start in the input of the multiplexers which de�nes the FU operands source
of all the PEs of the cluster and end in the pe_temp set of nodes.

Therefore, the maximum and minimum delay to the paths that are shown in
Figure 4.3 must be discovered.

37

enabled

voter

out

multiplexer

eout tout

in3 in2 in1

FEHM

clk

FEHM

FEHM-Cluster

Center-PE Side-PE EastSide-PE West

FU FU FU

TEDC

DEDC

FEHM

pe_temp[2:0]

Figure 4.3: Monitored paths.

4.2 Delays scenario

Each simulation level (electrical and logical) has its own maximum and minimum
delay time. Therefore, here, the scenario to take both delays values is obtained. It
involves the FU operation, the FU input values and the internal route of the chosen
approach. Once the scenario was obtained, it is possible to con�gure the architecture
to get the desired data. The sections 4.2.1 and 4.2.2 describe all that was done to
determine the scenarios.

The determination of the scenarios was made using the principle that each oper-
ation is executed with one clock cycle. With this in mind, the required delay, in this
case, is the time between the rise edge of the clock and some change in any node of
the set denominated as pe_temp (Figure 4.3).

38

4.2.1 Maximum Delay Scenario

The maximum delay scenario of the FEHM-Cluster was discovered using three
steps. They are described below:

First step: Discover what is the slowest FU operation.

Second step: Discover the worst input vectors to the operation found on the early
step.

Third step: Discover the con�guration that does the longest routing between the
FEHM-Cluster input ports and the FU input of each PE inside a cluster.

4.2.1.1 The slowest Functional Unit operation

The information about the slowest FU operation was found in a paper that
describes the �Cost functions� used by the architecture compiler (OPPOLD et al.,
2004) of the CRC. These functions need the time delay of such paths, digital blocks
or FU operations. The values found in this paper are outdated, but the relation
between the operation times are enough to get the searched information. The Table
1 of the article (OPPOLD et al., 2004) shows us that the slowest operation is the
multiplication.

4.2.1.2 The worst input vectors

The second step goal was reached with the Nanotime tool help. It is a Transistor-
level Static Timing Analysis. Basically, we should inform the Nanotime in what
Spice �le and, inside of this �le, what subcircuit we want to analyze. The set of
input and output ports should be also informed. With all these informations, the
tool can calculate the delay of all possible paths that have the input and output pins
in the set informed before. To discover the worst input vectors, only the multiplier
of the FU was analyzed. The commands to analyze the timing of the multiplier in
the Nanosim are shown in the Nanotime Commands block 4.1.

Nanotime Commands 4.1: Setup commands.

1 s e t search_path { .}
2 s e t l ibrary_path { .}
3 s e t l ink_path {∗}
4 s e t oc_global_voltage 1 .2
5

6 r e g i s t e r_n e t l i s t −format sp i c e {pe_cluster_h_fehm . sp \
7 tech . sp}
8 l ink_des ign fu_1_DW02_mult_0
9

10 s e t input_ports {A[∗] B[∗] }
11 se t_port_di rect ion −input $input_ports
12

13 s e t output_ports {TC PRODUCT[∗] }
14 se t_port_di rect ion −output $output_ports
15 report_port

39

In the Nanotime Commands block 4.1, the link_design fu_1_DW02_mult_0
command informs the Nanotime tool that we want analyze only the multiplier of
the FU. The fu_1_DW02_mult_0 is the name of the multiplier instance in the
FU. In addition, the name of the multiplier operands are A and B, and name of the
multiplier outputs are TC and PRODUCT.

The follow methodology was used to get the worst multiplier input vectors. First,
all the circuit inputs were let free in a way that the tool could analyze all the possible
paths. It is shown in Figure 4.4. The Nanotime commands to trace and report the
eight slowest paths are in the Nanotime Commands block 4.2. The result of the �rst
path trace is presented in the Nanotime Result block 4.1.

P7 P6 P5 P4 P3 P2 P1 P0

Multiplier

XB2 XB1 XB0 XA3 XA1 XA0XB3 XA2

PRODUCT

B A

Figure 4.4: All multiplier inputs free

Nanotime Commands 4.2: Trace and report the eight slowest paths

trace_paths −ful l_path_enumeration

report_paths −max −max_paths 8

Nanotime Results 4.1: Maximum delay. First path trace.

Path Path
Slack Delay Type Sta r tpo in t Endpoint

−−−−−−−− −−−−−−−− −−−−− −− −−−−−−−−−−−−− −− −−−−−−−−−−
8 .297 0 .703 D−O r B[2] f PRODUCT[7]
8 .298 0 .702 D−O r B[1] f PRODUCT[7]
8 .309 0 .691 D−O f B[1] f PRODUCT[7]
8 .309 0 .691 D−O r A[0] f PRODUCT[7]
8 .310 0 .690 D−O r A[1] f PRODUCT[7]
8 .321 0 .679 D−O f B[2] f PRODUCT[7]
8 .331 0 .669 D−O f B[1] r PRODUCT[7]
8 .333 0 .667 D−O f B[0] f PRODUCT[7]

The Nanotime Result block 4.1 shows us that the slowest path begins in the pin
B[2], ends in the pin PRODUCT[7], and its delay is equal to 0.703 ns. Therefore,
these informations ({start point, end point, delay time}) are taken as reference

40

values to the next path traces. The reference values will be represented, formally,
like in (4.1).

{B[2], PRODUCT[7], 0.703 ns} (4.1)

The second path trace was done with the pins B[3], B[1], and B[0] �xed in
1. It tries to de�ne the value of the B operand. With this con�guration (B =[
1 XB2 1 1

]
and A =

[
XA3 XA2 XA1 XA0

]
) , whether the result of the path

trace is equal to (4.1), then we can assume that the B operand value is:

B =
[
1 XB2 1 1

]
(4.2)

The Nanotime Commands block 4.3 shows the commands to force the value 1
in the pins previous cited and the Nanotime Results block 4.2 has the second path
trace results.

Nanotime Commands 4.3: Forcing the values in the B vector

se t_case_ana lys i s 1 B [0]
se t_case_ana lys i s 1 B [1]
se t_case_ana lys i s 1 B [3]

Nanotime Results 4.2: Second path trace result.

Path Path
Slack Delay Type Sta r tpo in t Endpoint

−−−−−−−− −−−−−−−− −−−−− −− −−−−−−−−−−−−− −− −−−−−−−−−−
8 .297 0 .703 D−O r B[2] f PRODUCT[7]
8 .309 0 .691 D−O r A[0] f PRODUCT[7]
8 .310 0 .690 D−O r A[1] f PRODUCT[7]
8 .321 0 .679 D−O f B[2] f PRODUCT[7]
8 .337 0 .663 D−O f B[2] r PRODUCT[7]
8 .338 0 .662 D−O f A[1] f PRODUCT[7]
8 .343 0 .657 D−O r B[2] r PRODUCT[7]
8 .350 0 .650 D−O f A[0] f PRODUCT[7]

Nanotime Results block 4.2 con�rms that we can assume the value to the B
operand as in (4.2) because the slowest path has the same begin, end, and delay
time as (4.1).

Now, the A operand should be discovered. The value of the A vector was got
in a interactive way. First, the follow con�guration, A =

[
1 1 1 XA0

]
and B =[

1 XB2 1 1
]
was used like it is shown in Figure 4.5. The goal is always the same:

to verify if the con�guration generates the same slowest path that is represented in
(4.1). The commands to make the con�guration are shown in Nanotime Commands
block 4.4 and the result is in Nanotime Results block 4.3.

1 1 1XB2 1 1 1 XA0

Figure 4.5: A[0] free to test.

41

Nanotime Commands 4.4: Forcing values in the B and A vector

se t_case_ana lys i s 1 B [0]
se t_case_ana lys i s 1 B [1]
se t_case_ana lys i s 1 B [3]

se t_case_ana lys i s 1 A[1]
se t_case_ana lys i s 1 A[2]
se t_case_ana lys i s 1 A[3]

Nanotime Results 4.3: First interactive to �nd the values of the A vector

Path Path
Slack Delay Type Sta r tpo in t Endpoint

−−−−−−−− −−−−−−−− −−−−− −− −−−−−−−−−−−−− −− −−−−−−−−−−
8 .307 0 .693 D−O r B[2] f PRODUCT[7]
8 .320 0 .680 D−O r A[0] f PRODUCT[7]
8 .321 0 .679 D−O f B[2] f PRODUCT[7]
8 .350 0 .650 D−O f A[0] f PRODUCT[7]
8 .359 0 .641 D−O f B[2] r PRODUCT[7]
8 .389 0 .611 D−O f A[0] r PRODUCT[7]
8 .389 0 .611 D−O r B[2] f PRODUCT[6]
8 .402 0 .598 D−O r A[0] f PRODUCT[6]

The result shows us that with A =
[
1 1 1 XA0

]
the worst path delay is not

the same as in (4.1) since it is equal to 0.693 ns. However, the A vector received
successive rotates left like it is shown in Figure 4.6. On each rotate, a path trace
was done and the slowest path for each case was compared with (4.1). The process
stopped when the A operand took the follow con�guration: A =

[
1 XA2 1 1

]
.

Nanotime Results block 4.4 shows that the slowest path to B =
[
1 XB2 1 1

]
and

A =
[
1 XA2 1 1

]
is the same as (4.1).

1 1 1XB2 1 1 1XA1

1 1 1XB2 1 1 1XA2

Figure 4.6: Rotates of the A vector

42

Nanotime Results 4.4: Delays to vector (4.2.1.2)

Path Path
Slack Delay Type Sta r tpo in t Endpoint

−−−−−−−− −−−−−−−− −−−−− −− −−−−−−−−−−−−−− −− −−−−−−−−−−
8 .297 0 .703 D−O r B[2] f PRODUCT[7]
8 .328 0 .672 D−O f B[2] f PRODUCT[7]
8 .355 0 .645 D−O f B[2] r PRODUCT[7]
8 .379 0 .621 D−O r B[2] f PRODUCT[6]
8 .392 0 .608 D−O r B[2] r PRODUCT[5]
8 .399 0 .601 D−O r A[2] f PRODUCT[7]
8 .407 0 .593 D−O r B[2] r PRODUCT[6]
8 .410 0 .590 D−O f B[2] f PRODUCT[6]

These path traces show us that the worst input case to the multiplier is the
follow:

A =
[
1 XA2 1 1

]

B =
[
1 RB2 1 1

] (4.3)

In (4.3) the RB2 represents a transition from 0 to 1. A XA2 is still used to
represents the transition of the pin A[2] since nothing is clear about it. So, the
scenario to the maximum delay should consider the two situations to the A[2] pin:
a transition from 0 to 1 and a transition from 1 to 0.

4.2.1.3 The longest FEHM-Cluster internal route

The longest internal route is worth to �nd since it will make the operands arrive
a little bit later in the multiplier input ports. The meaning of �longest� is that the
operands must pass through the maximum number of elements as possible.

An external sight of the FEHM-Cluster shows us that it is a black-box with four
input/output ports. When the cluster is operating in TMR mode, all the three
internal PEs should execute, in the same clock cycle, the same operation with the
same operands. The Figure 4.7 illustrates the operands going from the Center-PE
to the Side-PEs. The route represented in this �gure is inherent. Consequently, it
is not necessary a especial con�guration to trace this path between the Center-PE
and the Side-PEs.

43

FEHM

Side-PE West Center-PE Side-PE East

Figure 4.7: Operands from the Center-PE to the Side-PEs.

Di�erent from the North and South FEHM-Cluster ports, the East and West
ports do not have a direct net to Center-PE. As a result, the data should pass
through the Side-PEs and be routed to the Center-PE when it come from those
ports. The Figure 4.8 shows all the connections that were mentioned.

FEHM

(F
E
H
M
-C
lu
st
er
)

W
es
t
P
or
t E

ast
P
ort

(F
E
H
M
-C
lu
ster)

Side-PE West Center-PE Side-PE East

(FEHM-Cluster)

(FEHM-Cluster)

(Center-PE) (Center-PE)
East Port

South Port

West Port

North Port

Figure 4.8: Data from the East and West FEHM-Cluster ports to the Center-PE.

Therefore, the longest internal route for the FEHM-Cluster is reached when the
data come from the West and East ports. The entire path which the data will travel
with that con�guration is illustrated in Figure 4.9.

44

FEHM

Side-PE West Center-PE Side-PE East

Figure 4.9: Longest internal route: The operands come from the East and West
FEHM-Cluster ports.

4.2.2 Minimum Delay Scenario

The minimum delay scenario was also determined using three steps. These are
practically the same steps used to discover the maximum delay scenario. The steps
are:

First step: Discover the fastest FU operation.

Second step: Discover the best input vectors to the operation that was found in
the �rst step.

Third step: Discover the shortest FEHM-Cluster internal route.

4.2.2.1 The fastest Functional Unit operation

The FU that was used in the architecture has sixteen operations (arithmetics,
logicals, shifts, comparisons . . .) and the follow interface:

op

din1 din2

dout fout

�n2�n1

Functional Unit

Figure 4.10: Functional Unit interface.

The signal op is the operation selector and it has 4 bits of width (log2 16 = 4).
To discover among of all the operations what is the fastest, a di�erent exercise was
done. On this time, the Nanotime tool was used to discover the operation. Now, the
circuit that was analyzed in the Nanotime is the whole Functional Unit. A method

45

like whose in section 4.2.1.2 was done to discover the operation. First, all the input
signals were let free to incorporate the values de�ned by the tool. The Figure 4.11
has a conceptual sight of the �rst step, the Nanotime Commands block 4.5 has all
the commands to make this �rst analysis, and the Nanotime Results block 4.5 has
the result.

dout fout

Functional Unit

X X X X

X

Figure 4.11: Signal values to the �rst Nanotime analysis.

Nanotime Commands 4.5: First analysis to found the fastest FU operation.

s e t search_path { .}
s e t l ibrary_path { .}
s e t l ink_path {∗}

s e t oc_global_voltage 1 .2
r e g i s t e r_n e t l i s t −format sp i c e {pe_cluster_h_fehm . sp \
tech . sp}
l ink_des ign fu_1
report_port

s e t input_ports { din1 [∗] din2 [∗] f i n 1 f i n 2 op [∗] }
se t_port_di rect ion −input $input_ports
s e t output_ports { fout dout [∗] }
se t_port_di rect ion −output $output_ports

report_port
report_des ign
report_net
r epo r t_ce l l
c reate_c lock −name MCLK −per iod 10 .0
report_clock
match_topology
check_topology

set_input_delay −c l o ck MCLK −r i s e 1 .0 $input_ports
set_input_delay −c l o ck MCLK − f a l l 1 . 0 $input_ports
report_port −input_delay
set_output_delay −c l o ck MCLK 0.0 $output_ports
report_port −output_delay

46

check_design

trace_paths −ful l_path_enumeration
report_paths −min −max_paths 8

Nanotime Results 4.5: Result to the �rst analysis.

Path Path
Slack Delay Type Sta r tpo in t Endpoint
−−−−−−−− −−−−−−−− −−−−− −− −−−−−−−−−−−−− −− −−−−−−−−−

1 .045 0 .045 D−O r din1 [6] r dout [6]
1 .045 0 .045 D−O r din1 [4] r dout [4]
1 .045 0 .045 D−O r din1 [7] r dout [7]
1 .046 0 .046 D−O f din1 [4] f dout [4]
1 .046 0 .046 D−O f din1 [7] f dout [7]
1 .046 0 .046 D−O f din1 [6] f dout [6]
1 .052 0 .052 D−O r din1 [3] r dout [3]
1 .052 0 .052 D−O r din1 [2] r dout [2]

Nanotime Results block 4.5 shows us that the fastest operation makes the data
whose come from the pins din1[4], din1[6], and din1[7] take 0.045 ns long until the
result be ready in the pins dout[4], dout[6], and dout[7] respectively. Table 4.1 shows
the relationship between the pins extracted from Nanotime Results block 4.5.

input pin transition output pin transition
din1[4] rise dout[4] rise
din1[6] rise dout[6] rise
din1[7] rise dout[7] rise

Table 4.1: Relationship to the fastest path delay extracted from Nanotime Results
block 4.5.

From this point, on an exhaustive way, all the operations were analyzed in the
Nanotime. The operation code was de�ned using the command �set_case_analysis�
for each operation. The result was compared with Nanotime Results 4.5. In the end
of these analysis, three di�erent operations got the expected result. The operations
are in the Table 4.2.

Operation code(hex) Operation
5 or
6 xor
A ==

Table 4.2: The fastest operation.

These three operations are part of the minimum delay scenario. Therefore, it is
necessary to de�ne de input values for each one of them.

47

4.2.2.2 The best input vectors

For each operation in Table 4.2, the operand din2 and the �ags signals (�n1 and
�n2) were set in zero. The Nanotime tool analyzed the circuit with this con�guration
and the results were like in Nanotime Results block 4.5 .Therefore, we can conclude
that:

din2 =
[
0 0 0 0 0 0 0 0

]
fin2 =

[
0
]

fin1 =
[
0
] (4.4)

Looking at Table 4.1 we can see that all the pins (din1[4], din1[6] and din1[7])
must take a rise transition. So, in the next Nanotime analysis the set of pins:

{
din1[0] din1[1] din1[2] din1[3] din1[5]

}
(4.5)

were tested to see if they can in�uence in the path delay of the other pins. For
each operation in Table 4.2 the set of pins (4.5) took two di�erent values. First, all
the pins were set to low level, the circuit was analyzed and the result was compared
with the result in Nanotime Result block 4.5 . In the sequence, the same procedure
was done, however with all the pins in the high level. In both cases, the result
was the same that in Nanotime Result block 4.5 . The Figure 4.12 shows the pins
con�guration to both cases.

0 0 0 0 0 0 0 0 0000000

0 0 0 0 0 0 0 0 0011111

a)

b)

567 4 3 012 f 567 4 3 012 f

567 4 3 012 f

0
1

3
2 op

din1 din2

dout

X X X

567 4 3 012 f 567 4 3 012 f

567 4 3 012 f

0
1

3
2

din2din1

dout

op

X X X

Figure 4.12: Con�guration of the pins in the set (4.5).

As it was found, the pins in set 4.5 do not in�uence in the path delay from
din1[4 − 6 − 7] to dout[4 − 6 − 7] when the FU is executing any operation of the
Table 4.2. In addition, the only restriction in the pins din1[4 − 6 − 7] is a rise
transition. Therefore, the follow values to signals din1, �n1, din2, and �n2 were
chosen:

48

din1 =
[
R7 R6 1 R4 1 1 1 1

]
fin1 =

[
0
]

din2 =
[
0 0 0 0 0 0 0 0

]
fin2 =

[
0
] (4.6)

In (4.6) the terms R7, R6, and R4 represent a rise transition in the pins din1[7],
din1[6], and din1[4] respectively.

4.2.2.3 The shortest FEHM-Cluster internal route

The shortest FEHM-Cluster internal route is that makes the shortest path be-
tween the operands source and the input ports of the Functional Unit. As operand
source, I mean the ports. In section 4.2.1.3 was shown that the North and the South
FEHM-Cluster ports have a direct connection with the North and South Center-PE
ports respectively (Figure 4.8). Consequently, the data to the minimum delay sce-
nario come from the North and the South ports like in Figure 4.13.

FEHM

Side-PE West Center-PE Side-PE East

Figure 4.13: Shortest internal route.

The data come from the ports and do not come from the internal registers because
was found that once the ports are selected to be the source of the FU operands, any
change in this line (from the ports to the FU input) take less time than the time
necessary to change a context. A register is selected by a context. Consequently, if
you are only using registers, you should change the context to take another value.

4.3 Dmin and Dmax in the Electrical Level

To discover the delays value, the scenarios that were determined in section 4.2
were con�gured in the target approach.

The maximum delay of the monitored path in the electrical level is calculated in
the section 4.3.1. Section 4.3.2 shows the calculus to the minimum delay with the
Spice net-list simulation.

49

4.3.1 Maximum Delay (Dmax)

Since we want to �nd the delay between the high edge of the clock and the
output of the DEDC, erros should be done and undone to get some transitions in
pe_temp. To generate a error, one input channel of the FEHM should be di�erent
among the others. As this section is about the maximum delay, the channel that
was chosen to be di�erent is the channel that comes from the East Side-PE. All the
same, it also could come from the West Side-PE, however, that was an arbitrary
choice. The channel from the Side-PEs to the FEHM are longer than the channel
from the Center-PE, because it has the FEHM inside. The others FEHM channels
were took from the Center-PE North Port. The Figure 4.14 has the illustration
about the sources of the FEHM input channels.

FEHM

Side-PE West Center-PE Side-PE East

Figure 4.14: FEHM input channel sources.

Using the conception shown in Figure 4.14 and the longest route con�guration
discussed in section 4.2.1.3, the FEHM-Cluster con�guration to the maximum delay
calculus is shown in Figure 4.15.

FEHM

Side-PE West Center-PE Side-PE East

Figure 4.15: Paths con�guration to the maximum delay calculus.

50

The behavioral verilog was changed with a direct connection between the North
Port of the Center-PE and the two input channels of the FEHM (in2 and in3) to
make the connections showed in Figure 4.14. The original and the changed code are
shown in the Verilog code blocks 4.5 and 4.6 respectively.

Verilog code 4.5: Original code. The input channels of the FEHM came from the
FU output of the East, West and Center PEs.

1 fehm #(.WIDTH(DATA_WIDTH + 1))
2 inst_fehm (. out (outEDM) , . eout (pe_out) , . tout (te_out) ,
3 . in1 ({ frst_e_edm , drst_e_edm}) ,
4 . in2 ({ foutFU_tmp , doutFU_tmp}) ,
5 . in3 ({ frst_w_edm , drst_w_edm}) ,
6 . enabled (edm_enabled) , . c l k (c l k)) ;

Verilog code 4.6: Direct connection between the Center-PE North Port and the in2
and in3 input channels of the FEHM.

1 fehm #(.WIDTH(DATA_WIDTH + 1))
2 inst_fehm (. out (outEDM) , . eout (pe_out) , . tout (te_out) ,
3 . in1 ({ frst_e_edm , drst_e_edm}) ,
4 . in2 ({ finN , dinN }) ,
5 . in3 ({ finN , dinN }) ,
6 . enabled (edm_enabled) , . c l k (c l k)) ;

Since the FEHM-Cluster was simulated in the Nanosim, the whole con�guration
process of each PE of the cluster was done using a .vec �le. It describes all the logic
values for each input node of the circuit in each instant of time. This .vec �le was
generated by a Python script created by the author of this work.

The .vec �le has two parts: the con�guration part and the execution part. In the
�rst part, all the respective con�guration streams are passed to each PE inside the
FEHM-Cluster. The con�guration streams have the route and operation informa-
tions. In the second part, all the values are passed to the FEHM-Cluster ports. The
FEHM-Cluster was con�gured to take the �rsts four bits of the East FEHM-Cluster
port as B operand and the �rsts four bits of the West FEHM-Cluster port as the A
operand.

As it was said in section 4.2.1.2, nothing is clear about the transition of the A[2].
Consequently, two simulations were done. They are the �First case� and the �Second
case�. In both cases, the B operand has a transition from B16 to F16, because in
section 4.2.1.2, it was de�ned that the pin B[2] should take a transition from 0 to
1 and all the other pins could be 1. The �First case� does the A operand transition
from F16 to B16 and the �Second case� does the A operand transition from B16 to
F16. Table 4.3 has the values of the FEHM-Cluster ports to each simulation case.

The Table 4.3 also shows the values of the multiplication results and the �error�
�ag. Obviously, the �Error� column shows the comparison result between the North
port value and the multiplication result. Each simulation case has two steps. These
steps are necessary to make the transitions in the two operands and to purposeful
generate the errors. The errors are generated in the �rst step of each case where
a di�erent value of the multiplication result is set in the North port. The second
step sets the error signal in low level putting a value equal the multiplication result

51

Case
FEHM-Cluster Ports Results

West(A) East(B) North Multiplier Error(pe_temp[0])

First
0F 0B 00E100 A5 1
0B 0F 00A500 A5 0

Second
0B 0B 00E100 79 1
0F 0F 00E100 E1 0

Table 4.3: Simulation cases to �nd the maximum delay. All the values of the table
are in hexadecimal.

in the North port. The delay is measured, in both cases, when the error signal
(pe_temp[0]) does a stable transition from 1 to 0.

The reason to measure the delay in a stable transition from 1 to 0, and not in
another way, is the calculation time to each bit of the multiplication result. There
are bits that will be ready earlier than others, consequently, the pe_temp[0] will
change from 0 to 1 when the earliest bit of the multiplication result comes carring
a di�erent logic value than the bit with the same index in the North port. On the
other hand, the pe_temp[0] will change stably from 1 to 0 unless all the bits in
the multiplication result have the same logic value as bits with the same index in
the North port. Therefore, the pe_temp[0] fall transition takes longer than the rise
transition, because it needs to wait until the latest bit of the FU result be ready.

Figure 4.17 and Figure 4.18 have the Nanosim simulation to the �First� and
�Second� cases respectively. To both, the pe_temp[2:0] is the channel presented in
the Figure 4.3, the clk is the global clock, and the other signals/vectors are localized
like in the Figure 4.16.

FEHM

d
in
ve
ct
or
w
[7
:0
]

d
invectore[7:0]

dinvectorn[23:0]

dio2edm[7:0]dio1edm[7:0]

dedme[7:0]

Side-PE West Center-PE Side-PE East

Figure 4.16: Mapping between the internal/external FEHM-Cluster signals and the
signals shown in Figures 4.17 and 4.18.

52

S
y
n

o
p

s
y
s
,

In
c
.

(c
)

2
0

0
0

−
2

0
0

9

F
ir
s
t
c
a
s
e

2
.1

9
5
u

2
.1

9
5
u

2
.2

u

2
.2

u

2
.2

0
5
u

2
.2

0
5
u

2
.2

1
u

2
.2

1
u

s
e
c
 (

lin
)

1
b

c
lk

8
h

0
0

0
F

0
B

d
in

v
e
c
to

rw
[7

:0
]

8
h

0
0

0
B

0
F

d
in

v
e
c
to

re
[7

:0
]

2
4
h

0
0
0
0
0
0

0
0
E

1
0
0

0
0
A

5
0
0

d
in

v
e
c
to

rn
[2

3
:0

]
8
h

0
0

0
F

0
B

d
io

1
e
d
m

[7
:0

]

8
h

0
0

0
B

*F
*

0
F

d
io

2
e
d
m

[7
:0

]

8
h

0
0

A
5

*
A

5
d
e
d
m

e
[7

:0
]

4
h

0
2

2
o
p
_
s
e
l[
3
:0

]
3
h

0
1

0
0

1
0

p
e
_
te

m
p
[2

:0
]

0

0
.2

0
.4

0
.6

0
.81

1
.2

(lin)

v
(p

e
_
te

m
p
[0

])

0

0
.2

0
.4

0
.6

0
.81

1
.2

(lin)

v
(c

lk
)

D
e
la

y
:2

.0
7
n

F
ig
ur
e
4.
17
:
F
ir
st

ca
se

si
m
ul
at
io
n.

D
el
ay

eq
ua
l
to

2.
07

ns
.

53

S
y
n

o
p

s
y
s
,

In
c
.

(c
)

2
0

0
0

−
2

0
0

9

S
e
c
o
n
d
 c

a
s
e

2
.1

9
5
u

2
.1

9
5
u

2
.2

u

2
.2

u

2
.2

0
5
u

2
.2

0
5
u

2
.2

1
u

2
.2

1
u

s
e
c
 (

lin
)

1
b

c
lk

8
h

0
0

0
B

0
F

d
in

v
e
c
to

rw
[7

:0
]

8
h

0
0

0
B

0
F

d
in

v
e
c
to

re
[7

:0
]

2
4
h

0
0
0
0
0
0

0
0
E

1
0
0

d
in

v
e
c
to

rn
[2

3
:0

]

8
h

0
0

0
B

*0
F

d
io

1
e
d
m

[7
:0

]

8
h

0
0

0
B

*0
F
*

0
F

d
io

2
e
d
m

[7
:0

]

8
h

0
0

7
9

E
1

d
e
d
m

e
[7

:0
]

4
h

0
2

2
o
p
_
s
e
l[
3
:0

]
3
h

0
1

1
0

p
e
_
te

m
p
[2

:0
]

0

0
.2

0
.4

0
.6

0
.8

1

1
.2

(lin)

v
(p

e
_
te

m
p
[0

])

0

0
.2

0
.4

0
.6

0
.81

1
.2

(lin)

v
(c

lk
)

D
e
la

y
:2

.1
5
n

F
ig
ur
e
4.
18
:
Se
co
nd

ca
se

si
m
ul
at
io
n.

D
el
ay

eq
ua
l
to

2.
15

ns
.

54

The delay that was measured in the second case simulation is bigger than the
delay that was measured in the �rst case simulation. Therefore:

Dmax = 2.15 ns (4.7)

4.3.2 Minimum Delay (Dmin)

As the FEHM is inside of Center-PE, the channel that will take a di�erent value
is the channel which comes from the Center-PE FU. Its is shown in the Figure 4.19.

FEHM

Side-PE West Center-PE Side-PE East

Figure 4.19: Channel that will take a di�erent value (minimum delay).

The others channels of the FEHM were taken directly from the East FEHM-
Cluster port. Like in maximum delay calculus, the behavioral verilog code of the
Center-PE was hardly modi�ed. The modi�cation is presented in the Verilog Code
block 4.7 and in Figure 4.20.

Verilog code 4.7: Modi�cated code. The input channels in1 and in3 of the FEHM
come from the Center-PE East port.

1 fehm #(.WIDTH(DATA_WIDTH + 1))
2 inst_fehm (. out (outEDM) , . eout (pe_out) , . tout (te_out) ,
3 . in1 ({ finE , dinE }) ,
4 . in2 ({ foutFU_tmp , doutFU_tmp}) ,
5 . in3 ({ finE , dinE }) ,
6 . enabled (edm_enabled) , . c l k (c l k)) ;

Like in section 4.3.1, a error must be generated with the purpose to get to the
delay in the desired node (Figure 4.3). Therefore, each operation in Table 4.2 was
simulated using 2 clock cycles. However, the error was generated in the second clock
cycle and the delay was measured when the wanted node takes a rise transition. This
was done in order to the reasons mentioned in section 4.3.1. Next table shows us the
values of each signal that was used in the simulation to found the minimum delay.

55

FEHM

Side-PE West Center-PE Side-PE East

Figure 4.20: Illustration of the modi�ed code in Verilog code block 4.7.

Operation
FEHM-Cluster Ports Results

North(din1) South(din2) East FU Error(pe_temp[1])

5 (or)
000000 000000 00 00 0
00FF00 000000 00 FF 1

6 (xor)
000000 000000 00 00 0
00FF00 000000 00 FF 1

A (==)
000000 000100 00 00 0
00FF00 000000 00 FF 1

Table 4.4: Signal values to �nd the minimum delay.

Figure 4.22 has the Nanosim simulation to the situations presented in Table 4.4.
In Figure 4.22 the signal clk is the global clock, the signal pe_temp[2:0] represents
the desired set of nodes which is presented in Figure 4.3, the op_sel[3:0] is the FU
operation code, and the others signals are localized like in Figure 4.21.

FEHM

dinvectorn[23:0]

dinvectors[23:0]

doutfu_tmp[7:0]

dio1edm[7:0] dio2edm[7:0]

Side-PE West Center-PE Side-PE East

d
invectore[7:0]

Figure 4.21: FEHM-Cluster signals localization (minimum delay).

56

M
in

im
u
m

 d
e
la

y
 s

im
u
la

ti
o
n
 e

n
v
ir
o
n
m

e
n
t

4
.3

5
u

4
.3

5
u

4
.3

6
u

4
.3

6
u

4
.3

7
u

4
.3

7
u

4
.3

8
u

4
.3

8
u

4
.3

9
u

4
.3

9
u

4
.4

u

4
.4

u

s
e
c
 (

lin
)

1
b

c
lk

8
h

0
0

d
in

v
e
c
to

re
[7

:0
]

2
4
h

0
0
0
0
0
0

0
0
F

F
0
0

0
0
0
0
0
0

0
0
F

F
0
0

0
0
0
0
0
0

0
0
F

F
0
0

d
in

v
e
c
to

rn
[2

3
:0

]
2
4
h

0
0
0
0
0
0

0
0
0
1
0
0

0
0
0
0
0
0

d
in

v
e
c
to

rs
[2

3
:0

]

8
h

0
0

F
F

0
0

F
F

0
0

F
F

d
io

1
e
d
m

[7
:0

]

8
h

0
0

0
1

0
0

d
io

2
e
d
m

[7
:0

]

8
h

0
0

F
F

0
0

F
F

0
0

F
F

d
o
u
tf
u
_
tm

p
[7

:0
]

4
h

5
6

A
o
p
_
s
e
l[
3
:0

]

3
h

0
2

0
2

*0
2

p
e
_
te

m
p
[2

:0
]

0

0
.2

0
.4

0
.6

0
.81

1
.2

(lin)

v
(p

e
_
te

m
p
[1

])

0

0
.2

0
.4

0
.6

0
.81

1
.2

(lin)

v
(c

lk
)

D
e
la

y
:5

3
0
p

D
e
la

y
:5

8
7
p

D
e
la

y
:5

2
4
p

D
e
la

y
:5

7
6
p

D
e
la

y
:5

2
8
p

F
ig
ur
e
4.
22
:
Si
m
ul
at
io
n
re
su
lt
to

�n
d
th
e
m
in
im
um

de
la
y.

57

Looking at the Figure 4.22 we can see that among the three operations, the XOR
operation got the minimum delay. Consequently:

Dmin = 0.524 ns (4.8)

4.4 Construction and simulation results

On this section, a unit validation of the sensors going to be performed. This val-
idation is in the electrical level using the Spice net-list description. The sensors will
be projected to the required parameters to monitor the path that ends in pe_temp
(the output of the DEDC).

The parameters to the sensors implementations are the maximum (Dmax) and
minimum (Dmin) delays of the monitored path, the clock period, and the clock duty
cycle. To this validation, will be used a arbitrary clock period (T) of 10 ns and a
clock duty cycle of 50 % (ρ = 0.5). As it was discovered, the Dmax is equal to 2.15
ns and Dmin is equal to 0.524 ns.

The objective of this section is to verify whether with the project parameters
to the sensors, both implementations will work as expected in section 3.1. Once
the relations that were presented in section 3.1 are here satis�ed, it is possible to
project the sensors to operate in the maximum performance of the target circuit
(FEHM-Cluster).

4.4.1 DSTB implementation

As it was presented in section 3.1, the TW of the DSTB, without a bu�er in the
input line, is all the clock duty-cycle period. In addition, the minimum path delay
(Dmin) must respect the (3.3) and exceeds the TW period. However, to the project
parameters, the condition does not is satis�ed, since:

TW = 0.5 ∗ 10 ns = 5 ns

Dmin = 0.524 ns

TW > Dmin

In order to �x this situation, as it is shown in Figure 4.23, one bu�er must be
inserted in the data line of the latch. The goal of this bu�er is to push out the
fastest data from the clock duty-cycle period.

ms�_out

out

tout

in

clk

ms�

δ
latch

Figure 4.23: DSTB circuit with a extra delay element.

58

The �rst step to construct the circuit is to verify if the previously de�ned period
T satis�es the condition (3.10). The latch that was used in this work has a time to
hold equal to −0.033 ns and the �ip-�op has a setup time of the 0.0418 ns in the
transistor level. Then:

10 ns ≥ 2.15− 0.524 + 0.0418− 0.033

1− 0.5
ns

10 ns ≥ 3.2696 ns

As one can see, the period T = 10 ns satis�es the condition (3.10).
Now, the delay δ can be discovered with (3.8). So:

δ = 0.5 ∗ 10− 0.524− 0.033 [ns]

δ = 4.443 ns (4.9)

The value δ = 4.443 ns is theoretical. The bu�er that was constructed has a
approximate value. It is 4.444 ns to a positive edge and 4.455 ns to a negative edge.
As a result, the DSTB circuit that was implemented has one detection period to
rise transitions (TWr) and another to fall transitions (TWf

) of data. Both of them
start before of clock positive edge and end before of Dmin. The reason to both start
before the clock latch edge is the Shadow Flip-Flop time to hold. Some Nanosim
commands were used to calculate the two detection periods. The results were:

{
TWr = 0.544ns

TWf
= 0.555ns

(4.10)

The TWr starts on 0.024 ns before the clock positive edge and ends 0.520 ns after
that. TWf

starts 0.034 ns before the positive clock edge and ends 0.521 ns after. As
a result, the data that take 0.524 ns longer to be ready in the DSTB input node will
not be get as a transient error.

Figure 4.24 shows a simulation in Nanosim where there are any errors. The data
come always in Dvalid period. Figure 4.25 shows a simulation where the data come
in the two detection periods. To both images, the signals that are presented are
placed as in Figure 4.23.

59

S
y
n

o
p

s
y
s
,

In
c
.

(c
)

2
0

0
0

−
2

0
0

9

1
5
n

1
5
n

2
0
n

2
0
n

2
5
n

2
5
n

3
0
n

3
0
n

3
5
n

3
5
n

s
e
c
 (

lin
)

1
b

c
lk

1
b

in

1
b

o
u
t

1
b

to
u
t

0

0
.2

0
.4

0
.6

0
.81

1
.2

(lin)
v
(c

lk
)

0

0
.2

0
.4

0
.6

0
.81

1
.2

(lin)

v
(i
n

)

D
e
la

y
:−

5
2
4
p

D
e
la

y
:−

5
2
4
p

F
ig
ur
e
4.
24
:
D
ST

B
Sp

ic
e
si
m
ul
at
io
n
w
it
ho
ut

er
ro
rs
.

60

S
y
n

o
p

s
y
s
,

In
c
.

(c
)

2
0

0
0

−
2

0
0

9

1
0
0
n

1
0
0
n

1
1
0
n

1
1
0
n

1
2
0
n

1
2
0
n

1
3
0
n

1
3
0
n

s
e
c
 (

lin
)

1
b

c
lk

1
b

in

1
b

o
u
t

1
b

to
u
t

0

0
.2

0
.4

0
.6

0
.81

1
.2

(lin)
v
(c

lk
)

0

0
.2

0
.4

0
.6

0
.81

1
.2

(lin)

v
(i
n

)

D
e
la

y
:−

4
0
0
p

D
e
la

y
:−

2
.1

5
n

D
e

la
y
:−

8
0

0
p

D
e

la
y
:−

5
0

0
p

er
ro
r

er
ro
r

F
ig
ur
e
4.
25
:
D
ST

B
Sp

ic
e
si
m
ul
at
io
n
w
it
h
er
ro
rs
.

61

4.4.2 ED implementation

In section 3.1, it is said that the δ value to the bu�er which will be inserted in
the clock line of the ED must to be calculated as δ = Dmin − Thf . As Dmin was
found to a rise transition, the time to hold that was used was also the �ip-�op Thf
to a rise transition, consequently, Thf = −0.018 ns. As a result, δ is theoretically
equal to 0.542 ns. However, the practical bu�er has a positive edge delay equal to
0.541 ns. Therefore, there is a little window of time where the errors will not be
detected.

The TWr and TWf
to the ED are equal to:

{
TWr = 0.539 ns

TWf
= 0.532 ns

(4.11)

TWr and TWf
respectively begin 0.022 ns and 0.038 ns before the clock latch edge.

Figure 4.27 presents the simulation to the ED sensor to a situation which there is
any error. Figure 4.28 shows that when a transition occurs in the period between
the rise edge of the clock and Dmin, it will be taken as a error caused by transient
fault. Both images presents the simulation values to the nodes presented in Figure
4.26.

clk

mfss_out
tout

in out

ms�
δ

�

Figure 4.26: Signals location to the ED simulations of the Figure 4.27 and Figure
4.28.

62

S
y
n

o
p

s
y
s
,

In
c
.

(c
)

2
0

0
0

−
2

0
0

9

1
5
n

1
5
n

2
0
n

2
0
n

2
5
n

2
5
n

3
0
n

3
0
n

3
5
n

3
5
n

s
e
c
 (

lin
)

1
b

c
lk

1
b

in

1
b

o
u
t

1
b

to
u
t

0

0
.2

0
.4

0
.6

0
.81

1
.2

(lin)

v
(c

lk
)

0

0
.2

0
.4

0
.6

0
.81

1
.2

(lin)

v
(i
n

)

D
e
la

y
:−

5
2
4
p

D
e
la

y
:−

5
2
4
p

F
ig
ur
e
4.
27
:
E
D
Sp

ic
e
si
m
ul
at
io
n
w
it
ho
ut

er
ro
rs
.

63

S
y
n

o
p

s
y
s
,

In
c
.

(c
)

2
0

0
0

−
2

0
0

9

5
0
n

5
0
n

6
0
n

6
0
n

7
0
n

7
0
n

8
0
n

8
0
n

9
0
n

9
0
n

s
e
c
 (

lin
)

1
b

c
lk

1
b

in

1
b

o
u
t

1
b

to
u
t

0

0
.2

0
.4

0
.6

0
.81

1
.2

(lin)

v
(c

lk
)

0

0
.2

0
.4

0
.6

0
.81

1
.2

(lin)

v
(i
n

)

D
e
la

y
:−

4
0
0
p

D
e
la

y
:−

6
0
0
p

D
e
la

y
:2

0
0
p

D
e
la

y
:−

4
0
0

p

er
ro
r

er
ro
r

F
ig
ur
e
4.
28
:
E
D
Sp

ic
e
si
m
ul
at
io
n
w
it
h
er
ro
rs
.

64

4.5 Synthesis results

The results were obtained to the architecture be implemented in an ASIC using
the Nangate FreePDK45 Generic Open Cell Library (SI2, 2012). It is a open cell
library to the technology of 45 nm.

The Table 4.5 shows the area results to the FEHM without the sensors, and the
sensors implementation without the bu�ers.

Block number of logic gates area(µm2)
FEHM without sensors 156 96.8239
ED sensor without bu�er 21 19.152

DSTB sensor without bu�er 16 14.896

Table 4.5: Individual blocks areas to ASIC construction to 45 nm.

To the sensors project parameters that were de�ned at the beginning of the
chapter, the bu�ers that were implemented in sections 4.4.2 and 4.4.1 have area and
delay that are presented in Table 4.6.

Block number of logic gates area (µm2) δ (ns)
ED bu�er 41 39.368 0.541

DSTB bu�er 343 366.016 4.444

Table 4.6: Bu�ers areas and delays to a clock period of 10 ns.

In Table 4.6 it is possible to notice that the bu�er to the ED sensor is smallest
than the bu�er to the DSTB. The explanation to this e�ect is the reference edge of
the clock that is used to construct the bu�er and the Dmin value. On this project,
the Dmin is equal to 5.24 % of the clock period. So, the minimum path delay is
nearest of the rise edge of the clock than the fall edge. The bu�er construction to
the ED sensor took as reference the rise edge of the clock instead of DSTB bu�er
that took the fall edge.

To each sensor type, the FEHM has three instances of each one. So, the total
area to a FEHM implemented with ED is the sum of the FEHM area without sensors
plus three times the sum of the ED sensor with its bu�er. The same is true to a
FEHM that is implemented with the DSTB sensor. So, Table 4.7 presents the total
area of the FEHM with the sensors and bu�ers included.

block number of logic gates area(µm2)
FEHM with ED 342 272.3839

FEHM with DSTB 1233 1239.5599

Table 4.7: Total area to the FEHM with both sensors.

As the target circuit to the sensors project is the FEHM-Cluster, Dmin and Dmax

will never be change if the con�guration of the cluster (data width and number of
internal registers) is the same. However, the clock period that was used in the

65

parameters was not the minimal clock period of the FEHM-Cluster. The maximal
frequency of the cluster, without the sensors, is about to 443 MHz (2.256 ns) with a
duty cycle of 50 % (Cduty = 1.128 ns). Dmin still inside of the duty-cycle (0.514 ns <
1.128 ns), then, to implement a DSTB sensor to work with this parameters it still
be necessary to insert a bu�er in the clock line. Therefore, using the equation 3.4,
δ = 0.571 ns to the DSTB bu�er. In addition, the relation (3.10) (pg. 29) is not
satis�ed to this parameters, since 2.256 ns < 3.2696 ns. Then, the performance of
the circuit will be a�ected if the DSTB is used. Table 4.8 presents the FEHM area
and the FEHM-Cluster best performance with and without the DSTB inclusion in
the TEDC of the FEHM.

DSTB inclusion FEHM area(µm2) FEHM-Cluster performance (ns)
yes 266.1651 3.2696
no 96.8239 2.256

Table 4.8: Impact of the DSTB sensor in the performance of the FEHM-Cluster and
in the area of the FEHM.

The performance with the ED inclusion is the same as without the sensor. The
only thing that is altered is the area of the circuit. It is presented in Table 4.7.

66

5 FAULT INJECTION AND RESULTS

Once the sensors implementation process worked in the electrical level, the
FEHM behavior was analyzed with both sensors. In addition, the errors diagnostic
capability was measured to this module.

Using the output values of the sensors it is possible to inform if the error that was
detected was caused by a persistent or a transient fault. A SEU, that is a transient
fault, could be interpreted as a persistent fault if the bit�ip that is caused by the SEU
generates an error at some clock cycles after the cycle when it occurred. Therefore,
as only transient faults were injected, it is expected that all the errors generated
by the faults with duration equal or less than Dmin be diagnosed as provided by a
transient fault.

The fault injection was performed in the logic level, because it was necessary
20,000 (twenty thousand) clock cycles to each injected transient fault width. There-
fore, a big number of clock cycles were simulated, then, a simulation in the electrical
level would be onerous. Another reason to the simulation in the logic level is the
used tool (Modelsim SE) and the HDL language to the testbenches construction
(SystemVerilog).

The FEHM is a module that is formed by 156 logic gates plus the gates that
are necessary to construct the sensors. The module was tested with the two sensors
implementations that were chosen to be implemented in this work. To turns the
circuit more sensitive to a fault occurrence, all the simulations were made with
the circuit working in the maximum FEHM-Cluster clock frequency (443 MHz).
However, only the FEHM was simulated not the whole cluster.

As the fault injection was performed in the logic level, it is necessary to calculate
the delays of the monitored path and project the sensors to work with this param-
eters. Therefore, the project of the sensors in the logic level is presented in section
5.1. The scheme of the fault injection is presented in section 5.2. The test cases of
analysis are presented in section 5.3 and the results of the fault injection to the test
cases are shown in section 5.4.

5.1 Logic level Project

To the fault injection, the circuit should operate in the maximum frequency,
because it is the minimum clock period, then, the error rate will be bigger than in
other clock frequency. Therefore, the sensors going to be projected to operate with
a clock frequency of 443 MHz (T = 2.256 ns) and a duty cycle of 50% (ρ = 0.5). In
addition, to construct the sensors, as it was said in the section 4.4, it is necessary
the values of the maximum and minimum delay of the monitored path. For this

67

reason, the delay values going to be obtained in the section 5.1.1 and the δ to each
type of sensor will be calculated in the section 5.1.2.

5.1.1 Delays in the Logic level

The scenarios that were obtained in the section 4.2 were used together with
the con�gurations that were de�ned in the section 4.3. From the cases which were
presented to the maximum delay, it was possible to discover that its value (Dmax)
is 1.806 ns. The minimum delay value (Dmin) is 0.614 ns.

5.1.2 Bu�ers construction in the Logic level

As it was shown in section 4.4.2, the δED value of the ED must to be generated
by the follow equation:

δED = Dmin − Thf (5.1)

To discover the Thf value in the logic level, a testbench was made to this purpose.
The result is that the Thf to a rise transition is equal to -0.023 ns and to a fall
transition is equal to -0.088 ns. All the same in section 4.4.2, the time to hold which
was chosen is to a rise transition, since the minimum delay was obtained to this kind
of transition. Therefore, using the equation (5.1) the δED value is the follow:

δED = 0.614− (−0.023) = 0.637 ns (5.2)

On this simulation level, it is possible to create a bu�er that generates exactly
the δED. One just need to insert the bu�er in the gate description verilog and de�ne
the delay of the bu�er in the SDF �le.

In the maximum frequency it still need to insert a bu�er that generates a delay
δDSTB in the input line of the DSTB, because the minimum delay is inside of the
DSTB detection period. However, di�erent of the electrical level, the minimum
clock period satify the condition 3.10. So, using the equation presented in 4.4.1 it
is possible to obtain the δDSTB. The equation is in the follow:

δDSTB = ρ ∗ T−Dmin + Thl (5.3)

The same interactive method was used to determine the time to hold to the latch
(Thl). As a result, the time to hold to a rise transition is -0.023 ns and to a fall
transition is -0.088 ns. As the maximum delay was determined with a fall transition,
then, the time to hold value that will be used is -0.088. Therefore, the δDSTB is:

δDSTB = 0.5 ∗ 2.256 ns− 0.614 ns+ (−0.088 ns) = 0.426 ns (5.4)

With the two δ de�ned in the logic level, it is possible to make the time simulation
with the fault injection in the Modelsim tool.

68

5.2 Fault Injection Scheme

To make the fault injection, it was necessary the development of three routines.
A routine to simulate the dynamic of the input channels of FEHM. A routine to
inject de faults in the module, and in the input channels. Another routine to collect
the values of the desired output signals. The scheme is shown in a graphic way in
Figure 5.1.

Fault
InjectorFEHM

Input simulator

Data Collector

Figure 5.1: Fault injection scheme.

The section 5.2.1 explained as the input simulator was made. Section 5.2.2
describes the fault injection methodology. Finally, the section 5.2.3 describe where
and when the data are collected.

5.2.1 Input simulator routine

As only the FEHM was used to the fault injection, it was necessary to make a
routine that simulate the input channels behavior of the module. The routine is
demonstrated in the diagram below:

De�ne time to change

Change the input value

De�ne input value

Wait the clock rise edge

Figure 5.2: Input simulation diagram.

69

It is shown in the diagram that at each clock cycle the input channels change
theirs value. The value and the moment when the data will change are de�ned
randomly.

To the correct input channels simulation, the data can not change in any moment
of the clock period. Thus, the transition moment is chosen randomly inside of a Ti
period. It is represented in Figure 5.3.

�������
�������
�������
�������

�������
�������
�������
�������
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

Ti

base

Figure 5.3: Period to change the value of the input channels.

The Ti is equal 1.192 ns and the base is equal to 0.470 ns. Any changes in the
input channel value in this period do not generate errors.

The Verilog commands that were used to construct the routine are presented in
Figure 5.4 below.

newInput = $random % 9′h1_1111_1111

#timeToChange in2 = newInput
#70 in1 = newInput
#70 in3 = newInput

timeToChange = $random % Ti
timeToChange = timeToChange+ base

always @(posedge clk);

De�ne time to change

Change the input value

De�ne input value

Wait the clock rise edge

Figure 5.4: Verilog commands to the input simulations.

Looking at the Figure 5.4, it is possible to note that the value of the three
channels are changed in di�erent time moments. This di�erence was noted in the
simulations. So, to take a more realistic simulation of the input channels it was
considered in the routine.

5.2.2 Fault injector routine

The transient faults were inserted in the module at every two clock cycles. In a
�rst moment, the injection was made at each clock cycle, but it was noticed that a
fault overlap occurred in some cases. With faults at every two clock cycles, it was
possible to analyze the individual e�ects of each injected fault. The fault injection
routine is presented in Figure 5.5.

70

Inject the fault

Restore the signal

Wait 2 clocks rise edges

Choose a signal

De�ne the fault begin

Figure 5.5: Fault injection routine.

As the signal where the fault will be inserted as the moment when the fault will
begins are set randomly. The fault injection act, in this context, refers to take the
signal original value and inverts it in the fault begin moment. The signal remains
with its inverted value during all the fault duration period.

The fault can be injected on any moment of the Tf period. As it is illustrated
in Figure 5.6, the Tf is exactly the clock period. In addition, the Figure 5.7 shows
the verilog commands that were used to make the fault injection routine.

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
�
�
�
�

�
�
�
�

Tf

Figure 5.6: Injection period.

With the routine showed in this section, 10.000 faults were injected in the FEHM
using three test cases. This cases going to be presented in the section 5.3.

71

Inject the fault

Restore the signal

Wait 2 clocks rise edges

Choose a signal

De�ne the fault begin

always @(posedge clk);

Faultbegin = $random%Tf

pin = $random%numOfSignals

antV alue = signalsV alue[pin]
value =∼ antV alue

#faultDuration $signal_force(signals[pin], antValue,0,0,0,0)

#Faultbegin $signal_force(signals[pin],value,0,0,faultDuration,0)

Figure 5.7: Verilog commands to the fault injection.

5.2.3 Data collector

The FEHM behavior was analyzed through signals out, eout, and tout as it is
presented in Figure 5.8. The out signal has the value that appears in more than
one input channel of the FEHM. The eout signal indicates if a input channel has a
di�erent value among the others. The signal tout indicates whether the error that
has occurred was caused by a transient fault.

����
����
����
����

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

multiplexer

voter

(in1, in2, in3)

input channels channel
enabled

FEHM

clk

eout toutout

pe_detected pe_temp

TEDC

3 3

nnn 3

3n

3 3

DEDC

Figure 5.8: Analyzed FEHM signals.

72

The out signal is read in a di�erent moment from the others. It is collected at
every rise edge of the clock, while the signals eout and tout are collected in the fall
edge of the clock. However, only the signals of the ED are read exactly in the fall
edge of the clock, the signals of the DSTB are collected some picoseconds after that.
The reason to this is that the eout signal comes from a latch which is transparent in
the high level of the clock. When the data arrived very close of the clock fall edge,
the latch generates small oscillations during the memorization period. Thus, just a
few picoseconds after the fall edge, the data will be stable in the latch output. The
Figure 5.9 presents the sensor signals mapping with the monitored FEHM signals,
and Figure 5.10 illustrates the read moments of the signals.

Clk

OutSFF

eout[n]

tout[n]

δ + Clk

OutSFF

eout[n]

tout[n]
Clk

pe_temp[n]

pe_temp[n]

FF

Shadow FF
δ

Latch

Shadow FF

δ

b)

a)

Figure 5.9: Sensors signal mapping: a) ED mapping; b) DSTB mapping.

Clk

a)

Clk

b)

Clk

c)

tc tc tc

Figure 5.10: Read moments: a) out signal; b) eout and tout to the ED; c) eout and
tout to the DSTB.

73

5.3 Test cases

Transient faults with duration (width) of 20%, 25%, 30%, 45%, and 50% of the
clock period were injected in the FEHM to obtain the behavior of this module in
this kind of fault occurrence. Three test cases were used to the fault injection. One
case was to verify the behavior of the FEHM outputs when a transient fault occurs
in some place where generates a error in the inputs of the module. Two cases were
to investigate what happens when a transient fault occurs inside of the module. The
cases with theirs con�gurations are listed below:

• First case: fault only in the input signals of the FEHM and all the input
channels with the same value;

• Second case: fault in all the module internal signals and all the input channels
with the same value;

• Third case: fault only in the voter signals and one channel always di�erent
among the others.

The third case is important, since the voter is not monitored or has redundancy.
Faults that happens direct in the voter signals, when it generates some error, will
not be detected. In addition, the errors generated in the voter causes a incorrect
value in the module out signal.

The next section presents the results to each test case, and the interpretations
to each output signals combination as well.

5.4 Results

The interpretation to the signals eout and tout is described in Table 5.1.

tout[n] eout[n] Error detected Diagnosis
1 0 yes Transient fault
1 1 yes Transient fault
0 0 no No error
0 1 yes Undiagnosed

Table 5.1: eout and tout interpretation.

The interpretation in Table 5.1 is based on the fact that only transient faults
were injected in the FEHM. In addition, inside of the module there is no memory
elements that are not the elements necessary to implement the sensors. So, always
that an error is detected in this simulation , means that this error was caused by
a transient fault occurrence. Every time that eout signal indicates that a error has
occurred, the signal tout must indicate that this error was caused by a transient
fault. For this reason, the fourth line of the Table 5.1 has an Undiagnosed in the
Diagnosis column, because was not possible to the sensors indicate whether the error
was caused by a transient fault.

The �rst and second line of the table 5.1 show us that independent of the eout
value, when the tout is equal to 1, means that an error was caused by a transient

74

fault. The third line of the table means that there are faults which were masked
logically, electrically, or in time.

Both sensors were projected to diagnose generated errors from transient faults
with width less than 0.614 ns. In addition, the clock period to the simulation is
equal to 2.256 ns. Therefore, the TW to both sensors is equal to 27.21% of clock
period. Consequently, errors that were generated by transient faults with width less
than TW (27.21 %) should to be diagnosed as a result of a transient fault.

The out signal was analyzed according to the voting algorithm that was imple-
mented in Verilog. The analysis was made by the description in Table 5.2.

Input channels relationship out value Interpretation
in1 = in2 in1 = in3 in2 = in3 out = in1 ok
in1 = in2 in1 = in3 in2 = in3 out 6= in1 error
in1 6= in2 in1 6= in3 in2 = in3 out = in2 ok
in1 6= in2 in1 6= in3 in2 = in3 out 6= in2 error
in1 6= in2 in1 = in3 in2 6= in3 out = in1 ok
in1 6= in2 in1 = in3 in2 6= in3 out 6= in1 error
in1 = in2 in1 6= in3 in2 6= in3 out = in1 ok
in1 = in2 in1 6= in3 in2 6= in3 out 6= in1 error
in1 6= in2 in1 6= in3 in2 6= in3 out = 0 ok
in1 6= in2 in1 6= in3 in2 6= in3 out 6= 0 error

Table 5.2: out signal analysis.

The original values of in1, in2, and in3 were stored in auxiliary variables before
the fault injection in these channels. The stored values were worth to obtain the
out expected value and compare it with the simulation result value. When both are
di�erent, means that an error has occurred.

Theoretically, when the FEHM is working in the TMR mode, the out is guar-
anteed to be correct. However, in the practical results, it was veri�ed that in some
cases up to 17% of the injected faults, errors were generated in the out signal with
the module working in TMR.

First case

According with the interpretations that was gave to tout and eout signals, we
can distribute the analyzed data into three groups: Transient fault, No error, and
Undiagnosed. With this in mind, the fault injection result to the di�erent widths is
presented in Table 5.3 to the FEHM implemented with ED, and Table 5.4 to the
FEHM implemented with DSTB. The charts in Figure 5.11 and in Figure 5.12 also
contains the results to the �rst case.

Fault Width (% of the clock period) 20 % 25 % 30 % 45 % 50 %
No error (%) 76.91 69.66 64.55 61.42 60.47

Error detected: Transient fault (%) 23.09 30.34 34.33 26.79 24.63
Error detected: Undiagnosed (%) 0 0 1.12 11.79 14.9

Table 5.3: Faults in the inputs of the FEHM (ED): tout and eout signals.

75

Fault Width (% of the clock period) 20 % 25 % 30 % 45 % 50 %
No error (%) 76.61 69.15 64.71 61.38 60.19

Error detected: Transient fault (%) 23.39 30.85 33.86 26.62 24.51
Error detected: Undiagnosed (%) 0 0 1.43 12 15.3

Table 5.4: Faults in the inputs of the FEHM (DSTB): tout and eout signals.

Figure 5.11: Faults in the inputs of the FEHM (ED): tout and eout signals.

Figure 5.12: Faults in the inputs of the FEHM (DSTB): tout and eout signals.

76

It is possible to notice that in both charts (Figure 5.11 and Figure 5.12) all the
errors which were caused by faults of width equal to 20% and 25% of the clock period,
the occurrence of Undiagnosed errors is null. However, to 30%, 45%, and 50% width
the Undiagnosed errors occurrence increase as the width of the fault increases. A
migration from Transient fault group to the Undiagnosed is also perceptible.

The results to the out signal are in the Table 5.5 and Table 5.6. In addition,
they are presented in the charts of the Figure 5.13 and the Figure 5.14.

Fault Width (% of the clock period) 20 % 25 % 30 % 45 % 50 %
Ok (%) 96.22 96.47 96.62 96.98 97.06
Error (%) 3.78 3.53 3.38 3.02 2.94

Table 5.5: Faults in the input of the FEHM (ED): out.

Fault Width (% of the clock period) 20 % 25 % 30 % 45 % 50 %
Ok (%) 96.22 96.6 96.72 97.09 97.11
Error (%) 3.78 3.4 3.28 2.91 2.89

Table 5.6: Faults in the input of the FEHM (DSTB): out.

Figure 5.13: Faults in the input of the FEHM (ED): out.

77

Figure 5.14: Faults in the input of the FEHM (DSTB): out.

The number of errors in the out signal decreases as the fault width increases.
As only the input channels were the fault injection target in this case, a fault can
generate a error as the follow: the selected channel by the multiplexer has its value
changed by a transient fault at some few picoseconds before the rise edge of the clock
(the check moment to the out signal), so, there is no enough time to the module
detect the error and select a channel that has a correct value.

Second case

The second case was the fault injection in all the internal signals of the FEHM.
This case is important to verify the robustness of the module in the transient fault
occurrence. The results are shown in the Table 5.7 and Table 5.8, and are represented
in the charts of the �gures 5.15 and 5.18.

Fault Width (% of the clock period) 20 % 25 % 30 % 45 % 50 %
No error (%) 97.9 97.61 97.03 95.15 94.27

Error detected: Transient fault (%) 2.1 2.39 2.9 4.29 4.88
Error detected: Undiagnosed (%) 0 0 0.07 0.54 0.85

Table 5.7: Fault in the internal signals of FEHM (ED): eout and tout signals.

Fault Width (% of the clock period) 20 % 25 % 30 % 45 % 50 %
No error (%) 97.85 97.31 96.61 94.63 94.08

Error detected: Transient fault (%) 2.15 2.69 3.26 4.65 5.1
Error detected: Undiagnosed (%) 0 0 0.13 0.72 0.82

Table 5.8: Fault in the internal signals of FEHM (DSTB): eout and tout signals.

78

Figure 5.15: Fault in the internal signals of FEHM (ED): eout and tout signals.

Figure 5.16: Fault in the internal signals of FEHM (DSTB): eout and tout signals.

The charts show us that as the fault width increases, the number of Transient
faults generated errors and Undiagnosed errors increase. To a fault width of the
50% of clock period, the occurrence of diagnosed errors is about 5% of the faults
injected. The incidence of undiagnosed errors correspond to about 0.8%. In addition,
compared with the �rst case, the number of errors that were caused by faults inside
of the FEHM are less than the number of errors that were caused by faults in the
module inputs.

Errors in the out signal, in this case, happens when the fault occurs in the
signals that are referent to the multiplexer and to the voter. The transient fault can

79

directly change the values of the signal out with an upset in some internal signal
of the multiplexer. Or the fault can change the voter to select the standard output
(out = 000000000) to when all the three input channels have di�erent values among
each other. The result to the out signal is in tables 5.9 and 5.10, and in the chart
of �gures 5.17 and 5.18.

Fault Width (% of the clock period) 20 % 25 % 30 % 45 % 50 %
Ok (%) 96.7 96.07 95.25 93.42 92.78
Error (%) 3.3 3.93 4.75 6.58 7.22

Table 5.9: Faults in the internal signals of FEHM (ED): out signal.

Fault Width (% of the clock period) 20 % 25 % 30 % 45 % 50 %
Ok (%) 96.32 95.56 94.6 92.69 92.18
Error (%) 3.68 4.44 5.4 7.31 7.82

Table 5.10: Faults in the internal signals of FEHM (DSTB): out signal.

Figure 5.17: Faults in the internal signals of FEHM (ED): out signal.

80

Figure 5.18: Faults in the internal signals of FEHM (DSTB): out signal.

Third case

Only the FEHM voter was the target of fault injection in this case. In addition,
there was always a input channel with a di�erent value among the others. As it is
possible to notice, the sensors does not monitor the voter signals, thus, the injected
faults will not be detected by them. This fact is observed in the chart of the �gures
5.19 and 5.20, and in the tables 5.11 and 5.12.

Fault Width (% of the clock period) 20 % 25 % 30 % 45 % 50 %
No error (%) 100 100 100 100 100

Error detected: Transient fault (%) 0 0 0 0 0
Error detected: Undiagnosed (%) 0 0 0 0 0

Table 5.11: Faults in the voter of FEHM (ED): eout and tout signals.

Fault Width (% of the clock period) 20 % 25 % 30 % 45 % 50 %
No error (%) 100 100 100 100 100

Error detected: Transient fault (%) 0 0 0 0 0
Error detected: Undiagnosed (%) 0 0 0 0 0

Table 5.12: Faults in the voter of FEHM (DSTB): eout and tout signals.

81

Figure 5.19: Faults in the voter of FEHM (ED): eout and tout signals.

Figure 5.20: Faults in the voter of FEHM (DSTB): eout and tout signals.

82

The charts of �gures 5.21 and 5.22, and the results in the tables 5.13 and 5.14,
show us that to a fault width of the 50%, about 17% of the faults that were injected
in the voter generate an error in the out signal. The error happens because the fault
forces the voter to select the input channel that has the wrong value.

Fault Width (% of the clock period) 20 % 25 % 30 % 45 % 50 %
Ok (%) 91.08 89.72 88.1 84.12 82.78
Error (%) 8.92 10.28 11.9 15.88 17.22

Table 5.13: Faults in the voter of FEHM (ED): out signal.

Fault Width (% of the clock period) 20 % 25 % 30 % 45 % 50 %
Ok (%) 91.51 90.03 88.54 84.39 83.12
Error (%) 8.49 9.97 11.46 15.61 16.88

Table 5.14: Faults in the voter of FEHM (DSTB): out signal.

Figure 5.21: Faults in the voter of FEHM (ED): out signal.

83

Figure 5.22: Faults in the voter of FEHM (DSTB): out signal.

84

6 CONCLUSION

The circuit level time-redundancy technique proved to be good to the design
requisitions of the TEDC, since it implementation results in a sensor that can be
attached in a node without impact in the design of others components.

As it was seen in chapter 3.1, the sensors design that were chosen to be imple-
mented have di�erent construction conditions. The conditions that were pointed
out should to be respected to maximize the transient error detection window (TW)
of the sensors without false errors signal detection.

The DSTB design, in a �rst moment, has a little impact in a circuit area and
performance. However, it is true only if the minimum path delay of the node where
it is attached is out of the level period of the clock in which the latch is sensitive.
The level of the duty cycle on this work.

In addition, in chapter 4, where the sensors where implemented using the values
of the parameters conditions to the FEHM-Cluster, the inclusion impact of the
DSTB was bigger than the impact of the ED. It is seen in the section 4.5 that the
synthesis results of area has reached worst values to the DSTB than to ED. The
area was impacted by the size of the bu�ers of the sensors that should generate the
delay δ to each sensor design. Furthermore, it was also demonstrated that the best
performance of the FEHM-Cluster should decrease 44.9 % when the DSTB sensor
is used to construct the TEDC.

The FEHM has obtained approximate diagnose capability with both sensors.
The TEDC implemented with the DSTB has detected up to 0.51 % more errors
than when it was tested with the ED sensor. However, the di�erence is less than 1
% and faults were injected randomly. Therefore, it can be said that both options
took the same error detection rate.

If we analyze the synthesis and fault injection results, it is possible to notice
that between both sensors design, using the Nangate FreePDK45 Generic Open
Cell Library to the technological mapping, and using the FEHM-Cluster as the
target to the sensors project, the ED sensor is the best choice to the construction
of the TEDC block. It sensor obtained less impact in the area of the FEHM. In
addition, the FEHM-Cluster performance is minimally decreased by it, because the
delay element δ to it sensor is in the clock line of the Shadow Flip-Flop, not in the
input line.

As a last consideration, even the FEHM working in TMR mode, the signal out
will be a�ected by transient errors that occurs in the circuit. It is also proved in
the fault injection that was done in chapter 5. To all the test cases, the signal
out presented some alteration on it value. The explanation to this fact is that
as the multiplexer as the voter of the FEHM are not protected against transient

85

errors. Therefore, to turns the module more reliable, it is necessary to harden these
components (voter and multiplexer) against transient errors.

86

REFERENCES

ALVES, N. State-of-the-Art Techniques for Detecting Transient Errors in Electrical
Circuits. Potentials, IEEE, [S.l.], v.30, n.3, p.30�35, 2011.

ANGHEL, L.; NICOLAIDIS, M. Cost reduction and evaluation of a temporary
faults detecting technique. Proceedings of the Design, Automation and Test
in Europe Conference (DATE), [S.l.], March 2000.

AVIZIENIS, A. et al. Basic concepts and taxonomy of dependable and secure com-
puting. Dependable and Secure Computing, IEEE Transactions on, [S.l.],
v.1, n.1, p.11�33, 2004.

BOWMAN, K. et al. Energy-E�cient and Metastability-Immune Resilient Circuits
for Dynamic Variation Tolerance. Solid-State Circuits, IEEE Journal of, [S.l.],
v.44, n.1, p.49�63, 2009.

DE SUTTER, B.; RAGHAVAN, P.; LAMBRECHTS, A. Handbook of Signal
Processing Systems. 2.ed. [S.l.]: Springer, 2013. p.553�592. ISBN: 978-1-4614-
6858-5.

EISENHARDT, S. et al. Spatial and Temporal Data Path Remapping for Fault-
Tolerant Coarse-Grained Recon�gurable Architectures. In: DEFECT AND FAULT
TOLERANCE IN VLSI AND NANOTECHNOLOGY SYSTEMS (DFT), 2011
IEEE INTERNATIONAL SYMPOSIUM ON. Anais. . . [S.l.: s.n.], 2011. p.382�
388.

GRAPHICS, M. Modelsim SE User's Manual. [S.l.]: Mentor Graphics, 2002.

HARTENSTEIN, R. Coarse grain recon�gurable architectures. In: DESIGN AU-
TOMATION CONFERENCE, 2001. PROCEEDINGS OF THE ASP-DAC 2001.
ASIA AND SOUTH PACIFIC. Anais. . . [S.l.: s.n.], 2001. p.564�569.

JOHNSON, B. The Electrical Engineering Handbook. [S.l.]: CRC Press LLC,
2000.

KASTENSMIDT, F. L. SEE Mitigation Strategies for Digital Circuit Design Appli-
cable to ASIC and FPGAs. In: IEEE NSREC, SHORT COURSE, 2007. Anais. . .
[S.l.: s.n.], 2007.

KüHN, J. M. et al. Improving System Reliability using Dynamic Functional Veri�ca-
tion on CGRAs. In: INTERNATIONAL WORKSHOP ON HIGHLY-EFFICIENT

87

ACCELERATORS AND RECONFIGURABLE TECHNOLOGIES (HEART), Ok-
inawa, Japan. Proceedings. . . [S.l.: s.n.], 2012.

MOTOMURA, M. A dynamically recon�gurable processor architecture.Micropro-
cessor Forum, [S.l.], 2002.

NICOLAIDIS, M. Time redundancy based soft-error tolerance to rescue nanometer
technologies. In: VLSI TEST SYMPOSIUM, 1999. PROCEEDINGS. 17TH IEEE.
Anais. . . [S.l.: s.n.], 1999. p.86�94.

NICOLAIDIS, M. Design techniques for soft-error mitigation. In: IC DESIGN AND
TECHNOLOGY (ICICDT), 2010 IEEE INTERNATIONAL CONFERENCE ON.
Anais. . . [S.l.: s.n.], 2010. p.208�214.

NICOLAIDIS, M. Soft Errors in Modern Electronic Systems. [S.l.]: Springer,
2011.

OPPOLD, T. et al. Cost Functions for the Design of Dynamically Recon�gurable
Processor Architectures. In: WORKSHOP ON SYNTHESIS AND SYSTEM INTE-
GRATION OF MIXED INFORMATION TECHNOLOGIES (SASIMI), Kanazawa,
Japan. Anais. . . [S.l.: s.n.], 2004.

OPPOLD, T. et al. CRC - Concepts and Evaluation of Processor-Like Recon�g-
urable Architectures (CRC - Konzepte und Bewertung prozessorartig rekon�gurier-
barer Architekturen). it - Information Technology, [S.l.], v.49, n.3, p.157�, 2007.

SCHWEIZER, T. et al. Using Run-Time Recon�guration to Implement Fault-
Tolerant Coarse Grained Recon�gurable Architectures. In: PARALLEL AND
DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS PHD FORUM
(IPDPSW), 2012 IEEE 26TH INTERNATIONAL. Anais. . . [S.l.: s.n.], 2012.
p.320�327.

SI2. NanGate FreePDK45 Generic Open Cell Library. [S.l.]: Si2 Silicon In-
tegration Initiative, 2011., 2012.

SYNOPSYS. Static Timing Veri�cation of Custom Blocks Using Synopsys'
NanoTime Tool. [S.l.]: Synopsys, 2009.

SYNOPSYS. NanoSim User Guide. [S.l.: s.n.], 2010. v.Synopsys.

88

ANNEX A GRADUATION WORK I

SET detection technique to incorporate in the
Configurable Reconfigurable Core architecture

Luigi V. Ferreira1

1Instituto de Informática – Universidade Federal do Rio Grande do Sul (UFRGS)
Caixa Postal 15.064 – 91.501-970 – Porto Alegre – RS – Brazil

lvferreira@inf.ufrgs.br

Abstract. Fault tolerance is a important issue to worry about in the computing
world. The SET detection, among others transient errors, in a determined region
of a computer architecture is necessary to increase the reliability of the architec-
ture. By this reason, in this work is defined a transient error detection technique
to construct a component which will be able to detect the SET occurrence in the
Configurable Reconfigurable Core architecture [Oppold et al. 2007]. Classical
and state-of-the-art techniques are presented and analized to find a technique
which has the implementation concepts that fit in the SET detector requiriments.
As a result, a classical technique is defined to construct the detector compo-
nent, since its implementation implies in a simple sensor that does not entails
changes in others component of the architecture. The result of the work seems
to be a good design solution to increase the Configurable Reconfigurable Core
reliability.

Resumo. Tolerância a falhas é uma questão importante para se preocupar no
mundo da computação. A detecção de SET, entre outros errors transientes, em
uma determinada região de uma arquitetura de computador é necessária para
aumentar confiança (reliability, em inglês) da arquitetura. Por esta razão, uma
técnica de detecção de erro transiente é definida neste trabalho com o objetivo
de construir um componente que será capaz de detectar a ocorrência de SET na
arquitetura Configurable Reconfigurable Core [Oppold et al. 2007]. Técnicas
clássicas e no estado-da-arte são apresentadas e analizadas com o objetivo de
encontrar uma técnica daqual seus conceitos de implementação se enquadrem
nos requerimentos do detector de SET. Como resultado, uma técnica clássica é
definida para construir o component de detecção, desde que sua implementação
implica em um simples sensor que não acarreta mudanças nos outros compo-
nentes da arquitetura. O resultado do trabalho parece ser uma boa solução de
design para aumentar a confiança do Configurable Reconfigurable Core.

1. Introduction
The idea of creating computing systems with flexible hardware dates back to the

1960s, it was the emergence of the SRAM-based field-programmable gate array (FPGA)
in the 1980s that boosted Reconfigurable Computing as a research and engineering field
[Teich 2009]. This flexible hardware is known as reconfigurable architectures. These
architectures are able to adapt their hardware to application demands and serve broad
and relevant application domains from embedded to high-performance computing like
telecommunication and networking among others.

FPGA is a fine-grained reconfigurable architecture, since it is reconfigurable at bit
level [Ferreira et al. 2011]. It consists of an array of logic blocks and routing channels.
Each logic block is composed by, at least, a Look-Up Table (LUT) and a flip-flop. The
configuration of this device is made through a bitstream file that has the configuration
signals to the logic blocks and the routing channels. Another concept is the coarse-grained
reconfigurable architectures (CGRA) that are reconfigurable at word level - 16 bits, 32
bits, etc. - [Ferreira et al. 2011]. A major benefit of using word level reconfiguration is
the massive reduction of configuration memory and configuration time, as well as drastic
complexity reduction of the P&R (placement and routing) problem [Hartenstein 2001].
Some CGRA can be reconfigured during a single clock cycle.

In contrast to FPGAs, CGRAs are designed specific to application(s)
with dedicated functional units, application-specific bit-width and interconnects
[Rakossy et al. 2012]. The CGRA functional units are inside of blocks that are called
as processing elements (PE). Beyond of the FUs, the PEs consist in a set of registers and
a configurable memory cache at least. The registers can keep the FU result and the FU
operands. The configurable memory cache keeps the configuration context of the PE, that
means, the signals that indicate the FU operation, the source of the FU operands, and
the FU result destination. The CGRAs are also known as processor-like reconfigurable
architectures.

On the Adaptive Reliability for Embedded Systems project (ARES) of the Eber-
hard Karls University of Tübingen was developed a modified architecture model that is
a coarse-grained reconfigurable architecture. This architecture is the Configurable Re-
configurable Core (CRC) that has the focus of use a fast reconfiguration to optimize
area, performance and power. It also represents a range of processor-like architectures
[Oppold et al. 2007].

The CRC consists of a Processor Element (PE) rectangular array connected
through a reconfigurable network(Figure 1). Each PE, Figure 2, is composed of a Func-
tional Unit (FU), which executes arithmetic and logical operations, a registers set, a con-
text memory, which holds all the configuration contexts, and a finity state machine (FSM)
that changes the context every clock cycle. A PE context determines the FU operation,
the FU operand sources (ports or registers), the FU result destination (ports or registers),
and the route through input and output ports for the CRC. The context memory and the
FSM must be configured using an external source. Hence, each PE has a module that is
represented in Figure 2 as “external reconfiguration”.

The CRC, as it is presented in Figure 1, has not capacity to detect or mask transient
errors, so, a modification in the architecture design was proposed to increase the CRC
reliability. This modification is the insertation of a new module in the architecture that is
able to detect and mask transient errors that occur in the PE. Inside of this new module,
there is a component which must detect the occurrence of SET in the mechanism that
detect errors in the data. The focus of this work is to determine the technique to construct
the SET detection component that causes less impact on the architecture. For this purpose,
this article is organized as follows: section 2 presents information about what can generate
a transient error and what are their consequences; section 3 presents the module that
enables the architecture to detect and mask transient errors; section 4 describes some
techniques to detect transient errors; section 5 presents the choosed technique; section 6,

PE

PE

PE

PEPEPE

PE PE

PEPE PE PE

PE

PE

PE

Figure 1. PE array.

n 1 1n

11111n n nn

1n

context memory

FU

data register

status register to
 o

ut
pu

t p
or

ts

from input ports
N E S W

fsm memory

external

i/o port S

i/o port N

 i/
o

po
rt

 W

i/o
 p

or
t E

reconfiguration

Standard PE

Figure 2. PE components.

some existing implemented examples of the choosed technique are presented; section 7
presents what will be done in the next work; conclusions are drawn in section 8.

2. Transient Errors
Transient errors are also known as soft-errors. Soft-errors are errors that do not

cause any permanent danification to the devices, just some pertubations in the hardware
such as transient voltage pulses and bitflips. These pertubations can flip some logic value
stored in a memory element in the system.

Soft-erros are caused by radiation. Neutron particles that are generated by cosmic
radiation interact with the Earth atmosphere and can cause some pertubations in digital
systems. Alpha particles emitted by radioactive impurities present in low concentration
in chip package materials are another source of soft-errors.

When a particle strike causes a bit-flip (upset) in a memory cell or a latch, we
consider that a Single-bit upset (SBU) has occured. However, when two or more mem-
ory cells or latches suffer a bit-flip, it is a Multiple-cell upset (MCU). Whether the event
causes the upset of two or more bits in the same word, we have a Multiple-bit upset
(MBU). A Single-event transient (SET) occurs if the strike of the particle causes a volt-
age glitch in the circuit, and it becomes a bit error when captured in a storage element.

The pertubation of control registers, clock signals, and reset signals that causes loss of
functionality is called Single-event functional interrupt (SEFI). But, when the event cre-
ates an abnormal high-current state by triggering a parasitic dual bipolar circuit, which
requires a power reset, it is a Single-event latchup (SEL). This last one can possibly cause
permanent damage to the device, in which case the result is a hard error [Nicolaidis 2011].

In the literature we can find the term SEU (Single-event upset) as a refer-
ences to soft-error, but this term could mean a reference to SBU and MBU together
[Nicolaidis 2011].

3. Flexible Error Handling Module

A new module was developed to enable the CRC architecture to detect
and mask faults. This module is the Flexible Error Handling Module (FEHM)
[Schweizer et al. 2012] that is based on Triple Modular Redundancy (TMR), since it mon-
itors three input channels. Each input channel has an enable signal. Consequently, if one
channel is disabled, the FEHM will work as a Duplicantion With Comparation (DWC).
However, in the DWC operation mode, only error detection is possible.

As it is shown in Figure 3, the FEHM provides three outputs: 3 data error signals,
3 transition error signals, and 1 output channel, where the data is presumably right when
the module is working in TMR mode.

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

(in1, in2, in3)

input channels channel
enabled

multiplexer

voter

data

detection
error

detection
error
transition

FEHM

channel error data error

data error transition errorout

clk

3 3

nnn 3

3n

3 3

Figure 3. FEHM components

The data error signals are provided by the Data Error Detection Component
(DEDC). It compares each pair of input channel of the module. Inside the pairs, the
input channels are compared to each other with a bitwise XOR operation. This operation
is reduced to one bit per channel with a XOR tree. This one bit per channel (channel
error) indicates if one channel has a different value of the others.

The Transition Error Detection Component (TEDC) monitors the data error sig-
nals (Figure 3) provided by DEDC, and signalizes when a SET occurs in the DEDC. The
implementation of the TEDC is the focus of this work.

The inclusion of the FEHM in the architecture is made using two possible ap-
proaches: TripleFU or FEHM-Cluster. TripleFU, Figure 4, implements traditional TMR,
since two more FUs are inserted inside a PE and each FU output is directed to the FEHM
inputs. This approach considerably increases the PE area. FEHM-Cluster, Figure 5, mon-
itors the FU of three different PEs and the FEHM is embedded in one of the PEs(Center-
PE). The Side-PEs have a dedicated route to carry the result of theirs FU straight to FEHM
[Schweizer et al. 2012].

TripleFU Data Error Signals

FU FUFU

FEHM
FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

FU FUFU

FEHM

Figure 4. TripleFU approach

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

CenterWest East

Data

CenterWest East

CenterWest East

Error Signals

FEHM Cluster

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

FU FU FU

FEHM

Figure 5. FEHM-Cluster approach

4. Transient error detection techniques
Error Correction Codes (ECC), Redundancy in time and space, Error detection

with logic synthesis and Logic implications are some techniques to acheive transient er-
rors (or soft-errors) mitigation that are applied in electrical or logic circuits [Alves 2011].
There is also the Hardened Storage cells (SRAM cells, latches, flip-flops) that will pre-
serve their state even if the state of one of their nodes is altered by an ionizing particle
strike. Therefore, it is a good way to construct a cell to prevent SEU [Nicolaidis 2010].

Error Correction Codes are good to detect transient errors in memory elements
and transmission lines. They can indicate if the data that has been read is the same data
that was stored in the memory element by using some paroty recover. They can also indi-
cate if the stored data was altered by a particle strike. ECC can be extended to other logic
structures with easily predictable outputs, such as multipliers, adders, and programmable
logic arrays (PLAs). However, detecting errors in apparently random logic, without any
discernible logic regularity, is a significantly harder problem. In random logic we must de-
termine if the logic operations performed in some circuit inputs are correct [Alves 2011].

Error detection with logic synthesis is a synthesis tweaking aplied in order to
minimize the number of potential transient errors, via error masking. Features of logic
gates are used to fix the error as the signal propagates downstream. For example, a single
alpha particle striking any input line of a two-input logic OR gate will have no effect at
that gate output when both inputs are logic ones.

The Logic implications is a new method to detect transient errors. This method
takes an existing design and searches all internal circuit nodes for consistent logic patterns
amoung them. When an invariant pattern is found, it will append some simple checker
hardware that reenforce the validity of the relationship [Alves 2011] .

The techniques such as Error detection with logic synthesis and ECC do not
achieves the TEDC implementation requirements, since TED should operate like a SET
sensor that monitors the output of the DEDC component. Logic Implications could be a
choosed technique, but, it will probably change the components which are already imple-
mented.

Redundancy in space, to monitors the desired signal, implies the duplication of the
DEDC component. In this case, the TEDC component would be a comparator. However,
it does not fit in the FEHM design, since there must exist just one DEDC per FEHM.

Redundancy in time, as it is explained in [Alves 2011], is the re-execution of the
same logic multiple times, while storing any intermediate data in memory, and reportong
any output differences throughout the various executions. However, its multiple logic
re-execution significantly decreases the throughput of the circuit.

The concept of circuit level time-redundancy [Nicolaidis 2010] is interesting to
the TEDC implementation. The data is checked, at least, twice at each clock cycle and
the result of each checked data is compared to each other. If the value is the same in all the
checking moments, it is assumed as correct. This technique differs from the redundancy
in time concept, since there is no logic re-execution to detect the error, just the logic circuit
output is read more than once in the same execution with a period of picoseconds between
each read time. This technique is a good choice to implement the TEDC component, since
it operate as a sensor and it do not have to make changes in the logic circuit that has been
monitored.

5. Circuit level time-redundancy
Circuit level time-redundancy is a design solution to SET mitigation. The main

idea is that transient faults have a limited duration (just a few hundreds picoseconds -
the exactly value depends of circuit features and particle energy- [Nicolaidis 1999]) then
apply fine time-grain redundancy(i.e. within the clock cycle). Low hardware cost can be

achieved, because one does not need to construct the same logic more than once.

The implementation of this technique result in a SET sensor. Generally, this sensor
is put in place of temporal barriers (pipe-lines) as it is shown in Figure 6. The sensor can
also be put in the end of critical paths or in parallel with some elements to monitor the
data time.

Tem
poral

B
arrier

Clk

Tem
poral

B
arrier

Clk

Combinational Circuit
In Out

In

Error

Out

Tem
poral

B
arrier

Clk

Combinational Circuit

Clk

sensor

Figure 6. SET sensor in place of a temporal barrier.

Basically, to detect fault, the same data is checked, at least, in two different mo-
ments. If the data value is the same in both checking moments, it is assumed that data
value as correct. For example, in Figure 7, T1 and T2 are the checking moments of the
data value and the situation which any error occurs (Figure 7.(a)), the input signal In has
the same value in T1 and T2. However, in Figure 7.(b), the input signal In was modified
by a voltage glitch and this switchs the signal Error from low to high in T2. In this last
one situation, the Error signal still on the high level until the next T2 moment, where the
In signal has the same value in both moments (T1 and T2).

Clk

In

Out

Error

Clk

In

Out

Error

(a)

T1 T1 T1 T2T1T2 T2 T2

(b)

T1 T1 T1 T2T1T2 T2 T2

Figure 7. (a) conceptual diagram without transient fault; (b) conceptual diagram
with transient fault.

A comprehensive way that shows the design of these sensors is presented in Figure
8. In these block diagrams, the Memory Element and the Redundant Memory Element
could be as a flip-flop as a latch, the Comparator block could be a XOR gate, and the
delay elements δIn and δClk could be implemented with buffers.

In Figure 8.a), the δClk is inserted in the Redundant Memory Element clock line
to check if the data arrived respecting the Memory Element latch conditions. As it was
mentioned, the signal δClk+Clk could be constructed using a buffer element in the “Clk”
line. All the same, one can create a second clock line with a difference δClk with the “Clk”
line. δClk was described in some works [Nicolaidis 1999, Anghel and Nicolaidis 2000]
using the follows relationships:

{
δClk = Dtr −Dsetup

δClk < Dmin

(1)

In (1), Dtr is the maximal SET that will be detected. This term is determined
by the designer. Dsetup is the Redundant Memory Element setup time and Dmin is the
Combinational Circuit minimum path delay. In addition, the relation δClk < Dmin means
that all the path times should exceed the δClk. It must be obeyed to avoid false error
signals. For example, if both Figure 7 waveforms diagrams are from the circuit that is
shown in Figure 8.a), δClk is equal T2 − T1 and T2 must be less than the minimum delay
of the data path. Therefore, the designer should choose a Dtr that makes δClk obey the
relation (1). However, there is another relation to δClk that maximizes the transient pulse
duration which will be detected. This last relation is based on Dmin and in the Redundant
Memory Element time to hold (Dhold) as it is presented in (2).

δClk = Dmin −Dhold (2)

The equation (2) is based on the principle that the data which takes the minimum
delay will not be save in the Redundant Memory Element, since it will come after the
time to hold.

Memory Element

Memory Element
Redundant

C
om

parator

Memory Element

Memory Element
Redundant

C
om

parator

Error

Out

Error

Out

Clk

δin + In

In

δClk + Clk

Clk

In

a) b)

Figure 8. Conceptual design of the SET sensor

In this work, the period that a SET can be detected by a sensor will be referenced
as TW . In the case of the Figure 7, TW is equal T2 − T1 (or equal to δClk in the latest
example).

The circuit in the Figure 8.b) is used to detect when a transient error causes a
violation in the projected guardband. It can be seen in Figure 9.

���� ����

������������������ ���������� ������
t0 t0

In

Error Error

Clk

T

In

Clk

T

δδ

Figure 9. Guardband violation example.

A guardband δ is defined in Figure 9. When the signal In comes between t0 and
t0+T−δ (T is the clock period) the guardband will not be violated. On the other hand, if
the signal In arrives between t0+T−δ and t0+T, a violation guardband error will appear.

The guardband in Figure 8.b) is defined with the term δIn. The value of δIn must
consider the maximum path delay to ensure that false error signals will not occur.

6. Examples
Figure 10 presents one implementation using digital blocks of the Figure 8.a) di-

agram. One can find this implementation in [Nicolaidis 1999].

Error

δ + Clk

In

Clk

Out

OutSFF

FF

Shadow FF
δ

Figure 10. Transient fault detector implemented with two flip-flops

The implementation in Figure 10 uses two flip-flops and will be called in this work
as Essential Detector (ED). The “FF” and “Shadow FF” are the “Memory Element” and
the “Redundant Memory Element” respectively. One buffer (δ) is used to construct the
element δClk. A demonstration about the internal signals of the circuit is presented Figure
10. It is supposed that both flip-flops have theirs latch edges in the rise edge of the clock.

Out

Error

Clk

In

Error

Clk

In

Out

T1 T1 T1 T2T1T2 T2 T2

δ + Clk

OutSFF

(b)(a)

δ + Clk

OutSFF

T1 T1 T1 T2T1T2 T2 T2

Figure 11. Internal signals to Figure 10

The delay element δ causes the occurrence of the Shadow FF latch edge in T2. In
the situation where any error occurs (Figure 11.(a)), the data is saved inside the two flip-
flops. It is seen in the waveforms of the signals Out and OutSFF . However, in the another
situation (Figure 11.(b)), the flip-flop FF could not save the new value of the signal In,
since it has arrived after the latch edge.

6.1. Razor Flip-Flop
The Razor Flip-Flop (RFF), Figure 12, was proposed to construct a new approach

to Dynamic Voltage Scaling (DVS), which is based on dynamic detection and correction
of speed path failures in digital designs [Ernst et al. 2004, Ernst et al. 2003].

Clk

Error

In

OutLatch

Out

FF

Shadow Latch

Figure 12. Razor Flip-Flop architecture

The digital design uses a latch (Shadow Latch) to double sample the signal In. If
the flip-flop (FF) is sensitive to the rise edge and the lacth (Shadow Latch) is high level
sensitive, the TW of this sensor is all the high level period of the clock signal. The RFF
operation is similar to the Double Sample with Time Borrowing sensor and its operation
is explained in section 6.2.

6.2. Double Sampling with Time Borrowing

Double sampling with time borrowing (DSTB), Figure 13, is a solution that elim-
inates the metastability in data path. Now, only in the error path is possible the metasta-
bility occurence. By [Bowman et al. 2009], this is a drastic simplification on the sensor
metastability handle.

OutSFF
Error

In

Clk Latch

Shadow FF

Out

Figure 13. DSTB design

The sensor uses one flip-flop (Shadow FF) to double sample the data. The Memory
Element is a latch. It is supposed that the Shadow FF is sensitive to the rise edge of the
clock and the latch is high level sensitive. Its TW is all the high level of the clock signal.
This fact is shown in Figure 14.

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

Out

OutSFF OutSFF

Out

In

Error

Clk

(a) (b)

In

Clk

Error

Tw Tw

Figure 14. DSTB operation

The minimum path delay must exceeds the duty-cycle period of the clock signal,
then, we have the follow relations:

TW = Clkduty−cicle (3)

TW < Dmin (4)

In (4) the term Dmin is the minimum path delay of the combinational circuit that
is shown in Figure 6. The relation (4) must be respected to eleminate false error signals.
If the delay of the minimum path is to small that is impossible to reduce the duty-cycle of
the clock signal, buffers can be inserted in the data path to push the occurrence of the data
to after the high level of the clock (In node in Figure 13). Nevertheless, this will affect
the clock period, since the delay of the maximum path could exceed the clock period and
this could cause a false error signal. Therefore, to the DSTB, the minimum and maximum
path delays between temporal barriers must be well known.

6.3. Transition Detector with Time Borrowing

The Transition Detector with Time Borrowing (TDTB), Figure 15, is the SET
sensor which has the lowest clock energy [Bowman et al. 2009]. It is constructed using
one latch and one transition detector.

��
��
��
��

��
��
��
��
�
�
�
�

����

�
�
�
�

����

����

����������

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�

�
�
�

����

�
�
�

�
�
�

Xor Output
Error

OutIn

Clk

Transition detector

Latch

Dynamic gate

Figure 15. TDTB design

The Transition detector monitors the In node signal during the high level of the
clock fase. The operation of the TDTB can be seen in Figure 16.

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

Xor Output

Out

Xor Output

Out

(a)

In

Error

(b)

In

Error

Clk Clk

Tw Tw

Figure 16. TDTB signals

In the conceptual waveform diagram in Figure 16, the Xor Output node gener-
ates small pulses on every In node signal transition. These pulses does not affect the

Dynamic gate output (Error) during the low clock fase (Figure 16.(a)). If the input In
signal arrives after the rise clock edge, Clk’ is logically high, then the pulse discharges
the Dynamic gate in the Error node (Figure 16.(b)). As it is shown in Figure 16, the Error
node signal remains logically high just in the high level period of the clock. It happens
because Dynamic gate pre-charges when the clock signal switchs from high to low. In
[Bowman et al. 2009], a set-dominant latch (SDL) is inserted in the Dynamic gate output
to keep the Error signal high during all the low clock fase when a SET occurs.

7. Implementation

The TEDC will be implemented in Verilog and two differents circuit level time-
redundancy designs will be constructed. The designs are the DSTB and the ED. Both
implementations will be inserted into the FEHM and the designs will be tested in the
FEHM-Cluster approach.

Faults will be injected in the FEHM-Cluster and the SET detection results will be
observed to take a trade-off between the two TEDC implementations. Area and power
cost will be also estimated for both.

8. Conclusion

A good technique to enable the CRC architecture to detect transient errors as SET
is the circuit level with time-redundancy. This technique fits in the TEDC design require-
ments, since it is not necessary to make changes in the architecture components where is
desirable to detect the SET occurrence.

As it was pointed out in the sections 5 and 6, to implement the sensors is nec-
essary the knowledge of the maximum and minimum path delays to not take false SET
detections.

References

Alves, N. (2011). State-of-the-Art techniques for detecting transient errors in electrical
circuits. Potentials, IEEE, 30(3):30–35.

Anghel, L. and Nicolaidis, M. (2000). Cost reduction and evaluation of a temporary
faults detecting technique. Proceedings of the Design, Automation and Test in Europe
Conference (DATE).

Bowman, K., Tschanz, J., Kim, N. S., Lee, J., Wilkerson, C., Lu, S., Karnik, T., and De,
V. (2009). Energy-Efficient and Metastability-Immune resilient circuits for dynamic
variation tolerance. Solid-State Circuits, IEEE Journal of, 44(1):49–63.

Ernst, D., Das, S., Lee, S., Blaauw, D., Austin, T., Mudge, T., Kim, N. S., and Flautner,
K. (2004). Razor: circuit-level correction of timing errors for low-power operation.
Micro, IEEE, 24(6):10–20.

Ernst, D., Kim, N. S., Das, S., Pant, S., Rao, R., Pham, T., Ziesler, C., Blaauw, D., Austin,
T., Flautner, K., and Mudge, T. (2003). Razor: a low-power pipeline based on circuit-
level timing speculation. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th
Annual IEEE/ACM International Symposium on, pages 7–18.

Ferreira, R., Vendramini, J., Mucida, L., Pereira, M., and Carro, L. (2011). An FPGA-
based heterogeneous coarse-grained dynamically reconfigurable architecture. In Com-
pilers, Architectures and Synthesis for Embedded Systems (CASES), 2011 Proceedings
of the 14th International Conference on, pages 195–204.

Hartenstein, R. (2001). Coarse grain reconfigurable architectures. In Design Automation
Conference, 2001. Proceedings of the ASP-DAC 2001. Asia and South Pacific, pages
564–569.

Nicolaidis, M. (1999). Time redundancy based soft-error tolerance to rescue nanometer
technologies. In VLSI Test Symposium, 1999. Proceedings. 17th IEEE, pages 86–94.

Nicolaidis, M. (2010). Design techniques for soft-error mitigation. In IC Design and
Technology (ICICDT), 2010 IEEE International Conference on, pages 208–214.

Nicolaidis, M. (2011). Soft Errors in Modern Electronic Systems. Springer.

Oppold, T., Schweizer, T., de Oliveira Filho, J. A., Eisenhardt, S., and Rosenstiel, W.
(2007). CRC - concepts and evaluation of processor-like reconfigurable architectures
(CRC - konzepte und bewertung prozessorartig rekonfigurierbarer architekturen). it -
Information Technology, 49(3):157–.

Rakossy, Z., Naphade, T., and Chattopadhyay, A. (2012). Design and analysis of layered
coarse-grained reconfigurable architecture. In Reconfigurable Computing and FPGAs
(ReConFig), 2012 International Conference on, pages 1–6.

Schweizer, T., Kuster, A., Eisenhardt, S., Kuhn, T., and Rosenstiel, W. (2012). Using
run-time reconfiguration to implement fault-tolerant coarse grained reconfigurable ar-
chitectures. In Parallel and Distributed Processing Symposium Workshops PhD Forum
(IPDPSW), 2012 IEEE 26th International, pages 320–327.

Teich, J. (2009). From dynamic reconfiguration to self-reconfiguration: Invasive algo-
rithms and architectures. In Field-Programmable Technology, 2009. FPT 2009. Inter-
national Conference on, pages 11–12.

