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RESUMO 

Este trabalho tem como objetivo o desenvolvimento de uma ferramenta de profiling 

para a plataforma móvel Android. As ferramentas atuais de tracing e profiling não 
acompanharam o crescimento do mercado móvel, fazendo com que a tarefa de obter 

dados sobre a execução de aplicativos se torne muito mais difícil. As poucas ferramentas 
que estão à disposição têm grandes limitações com relação a quais informações elas 
conseguem obter e também quanto a quantidade de informação que pode ser coletada. 

Além das poucas opções de ferramentas, o desenvolvimento de aplicações para sistemas 
embarcados já é, naturalmente, mais complexo devido às limitações do sistema, como, 

por exemplo, desempenho reduzido e alimentação por bateria. Portanto, o 
desenvolvimento de uma ferramenta que obtenha informações como: dissipação de 
potência, tempo de execução e outras estatísticas é extremamente necessária no 

desenvolvimento de aplicações para sistemas embarcados. 

Este trabalho apresenta uma ferramenta multiplataforma que suporta a emulação de 

arquiteturas ARM e MIPS executando Android, além de suportar parcialmente a 
arquitetura x86. Ela obtém as informações citadas anteriormente por aplicação e ainda é 
capaz de obter dados de aplicações que executam tanto código nativo, quanto aplicações 

que executam na máquina virtual Dalvik. Para alcançar este objetivo, nós estendemos o 
QEMU do Android SDK e desenvolvemos ferramentas com interfaces gráficas para 

processar os dados coletados.  

Além disso, nós avaliamos o impacto da nossa implementação em relação ao tempo 
de execução de diversos benchmarks e nós fizemos um estudo de caso comparando 

diferentes arquiteturas, aplicações escritas puramente em Java e aplicações com partes 
em código nativo, bem como o impacto do JIT compiler na execução. Todos estas 
comparações através do uso da ferramenta desenvolvida. 

 

 

 

 

 

 

 

 

Palavras-Chave: Aplicações Android, Emulador Android, QEMU, ferramenta de 
profiling, JNI. 



 

ABSTRACT 

This work aims to develop a profiling tool for the Android platform. Current tools for 
mobile development are very limited in which and how much information they can trace 

or profile. They are also scarce when compared to general-purpose development tools. 
This makes the development of embedded applications even a harder task to be 

accomplished, due to its hard constraints, such as limited performance and power budget. 
Therefore, a tool that provides information such as power dissipation, execution time and 
other statistics is mandatory when it comes to develop embedded applications.  

This work presents a multiplatform tool that fully supports ARM and MIPS 
architectures, and partially supports x86 architecture executing Android. It provides the 

aforementioned information per application and it is also able to trace all applications 
native code, including that generated by Dalvik Virtual Machine. To accomplish this, we 
extended Android SDK’s QEMU, and we developed graphical user interfaces to process 

the traced data.  

In addition, we evaluated the impact of this implementation in relation to the execution 

time of several benchmarks and we present a case study comparing different 
architectures, applications written purely in Java and applications that use native code and 
the impact of the JIT compiler in the execution. All these comparisons through the usage 

of the developed tool. 
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1 INTRODUCTION 

Mobile devices have hard constraints. Physical resources like storage, processing 

capacity, memory occupation and power supply are critical for these systems. For 
instance, mobile systems have only a few gigabytes of storage, so applications must be 

developed considering that, as well as the application’s storage usage after it is delivered 
to the user. Moreover, a number of applications must run concurrently in an environment 
that is not optimized for performance, but rather for energy consumption. The latter must 

be kept as low as possible to maintain an acceptable battery lifetime. Therefore, mobile 
systems’ developers must think differently from general-purpose ones regarding the 

optimization of their applications. For this reason, the use of profiling and monitoring 
tools is extremely important to help ensure these requirements are met at earlier stages of 
the development process. With these tools, it is possible to guarantee that the application 

will not consume excessive power, will not use more memory than is strictly necessary 
with useless or not optimized data and will not overuse the device’s processor.  

Considering this scenario, in this work we propose a multiplatform tool that aims to 
provide valuable information about Android applications. Information that today is not 
available, such as power dissipation estimation, statistics about executed basic blocks and 

instructions, and CPU cycle estimation.  

Android is a Linux-based mobile software platform that is mainly used in 

smartphones, tablets and that will also be popular in other devices in a near future, such 
as smart TVs and watches. It is the world’s most popular mobile platform (the cut it had 
in the smartphone market in 2011 was about 50% and, just one year later, it reached 

almost 70% (IDC, 2013)).  Hence, the proposed tool can pave the way for designers to 
meet these requirements (i.e. power dissipation, processing capacity, and storage), so 
most likely the developed application will efficiently run on a mobile device. 

As a case study, a comparison between different architectures and between 
applications written purely in Java and applications that use Java Native Interface (JNI) 

is made. In addition, the Just-In-Time (JIT) compiler is evaluated. 

The remaining of this work is organized as follows: Section 2 presents an Android 
overview. Section 3 presents related works. Section 4 presents the implementation and 

the environment setup of the proposed tool. The related experimental results and the case 
study comparing Java and JNI applications for different architectures, with or without the 

JIT compiler mechanism, are given in Section 5. Section 6 makes the conclusion. 
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2 ANDROID OVERVIEW 

Android is an open-source software stack for mobile devices (ANDROID-PROJECT, 

2013), developed by OHA (Open Handset Alliance) consortium, which is composed of 
mobile operators, handset manufacturers, semiconductor companies, software companies 

and commercialization companies, such as Google, ARM, Intel, Samsung, HTC, 
Motorola, Qualcomm, NVIDIA and many others (OHA, 2013).  

2.1 Market share 

Figure 2.1 shows the growing popularity of Android in the market. This growth in 
mobile platforms is impressive: in these days, it holds 70% of the market share, followed 

by iOS (mobile software platform developed by Apple Inc.), with about 20%.  
 

 

Figure 2.1: Global mobile platform market share. Source: Gartner, IDC, Strategy 
Analytics, BI intelligence estimates, and company filings 

Android is also taking place in the global computing platform market, composed 
of computers, tablets, smartphones, and other devices. Latest researches by BI 
Intelligence (BI INTELLIGENCE, 2013) show that Android holds 53% of the global 

computing platform market share, taking Windows’ place, which today holds 24% of the 
market share, as shown in Figure 2.2. 
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Figure 2.2: Global computing platform market share. Source: Gartner, IDC, Strategy 

Analytics, BI intelligence estimates, and company filings 

2.2 Technical details 

2.2.1 Android stack 

Figure 2.3 depicts the Android stack. The Linux Kernel ① is a layer that interacts 
with the hardware; it also contains all essential hardware drivers. Android is based on 

Linux 2.6 Kernel on Android versions older than Ice Cream Sandwich and 3.x kernel for 
newer versions, with some architectural modifications made by Google. The libraries 

layer ② contains native libraries written in C or C++. These libraries are optimized 
mainly for CPU and GPU intensive tasks. 

Google has chosen to deploy an alternative virtual machine on Android, called 

Dalvik Virtual Machine (DVM), instead of keeping Oracle’s Java Virtual Machine 
(JVM). Its purpose is to provide a platform-independent programming environment that 

abstracts details of the underlying hardware or operating system. Therefore, application’s 
portability is increased. 

 Dalvik VM, defined in the Android Runtime ③, is a register-based architecture 

(ANDROID-DALVIK, 2013), opposed to JVM that is a stack-based architecture. Dalvik 
was designed to run on low memory environments and to allow multiple instances of the 

VM, so every application runs on its own instance of the VM. Therefore, it provides 
security, isolation and effective memory management.  

An advantage that a register-based architecture has over a stack-based architecture 

is that it is likely to have better performance. A register-based architecture needs less VM 
instructions to implement a high-level code, even though this comes at a cost of increased 

instruction size. With larger instructions, register-based architectures take more time to 
execute each instruction, compared to stack-based architectures. However, the product 
between the time per instruction and the number of executed instructions is smaller in 
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register-based architectures than in stack-based ones, which means that a register-based 
architecture will take less time to execute an application (EHRINGER, 2012). 

Android applications are written in Java, afterwards compiled to Oracle’s Java 
Standard Edition bytecodes, and then these bytecodes are converted to a single Dalvik 
Executable (.dex) file by the “dx” tool. These Dalvik Executable bytecodes, rather than 

Java bytecodes, are executed on Dalvik Virtual Machine. 

The Application Framework ④ consists in basic tools for applications’ 

development. Finally, the Applications layer ⑤ is the layer where all developed 
applications are. 

2.2.2 Native code 

It is possible to develop Android applications purely in Java, in Java with parts of 
it using native code or purely in native code. Some reasons to use native code are the 

following: the interpretation overhead can be mostly avoided once the code does not 
execute on the Dalvik VM; and it is possible to reuse existing C or C++ code. Thus, the 
developer does not have to convert it to Java. Android provides two main ways of using 

native code in the application: by using the Java Native Interface (JNI); or by using Native 
Activities, which are activities written in native code. The latter was added to Android in 

the API level 9 (Android 2.3 Gingerbread) (ANDROID-NATIVE ACTIVITY, 2013). 

2.2.3 Just-In-Time compiler 

Dalvik has a Just-In-Time compiler that was added to Android 2.2 release and it 

is still being used and optimized in the current version of Android. This dynamic binary 
translation mechanism allows the application to run faster as it analyzes the code and 

caches the most executed parts of the translated code for further reuse, which avoids most 

 

Figure 2.3: Android Stack. Source: Google Developers 
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of the interpretation overhead of Java code. Google’s experiments show an improvement 

of two to five times for CPU-bound code (BORNSTEIN, 2010), as shown in Figure 2.4. 

In addition, the latest Android version, KitKat, allows the user to choose between 

two runtimes, Dalvik and ART. ART (ANDROID-ART, 2013) is an ahead-of-time 
compiler that has the goal to speed up applications’ loading and possibly to consume less 
energy by performing a compilation of the intermediate code during the application’s 

installation. Therefore, the interpretation overhead can be avoided with the cost of a 
longer installation time and more storage utilization to save this compiled code. As ART 

is an experimental runtime so far, it is not known if, in the next versions of Android, we 
will continue to have Dalvik runtime and JIT compiler or we will move to ART runtime. 

 

Figure 2.4: JIT speed up. Source: Google I/O 2010 

 

 



17 

 

 

3 RELATED WORK 

Several attempts were made to create tools for tracing and profiling Android 

applications. Still, to the best of our knowledge, we are far from having a complete pack 
of profiling tools.  

3.1 Traceview 

Android Software Development Kit (SDK) provides software tools for debugging, 
profiling and monitoring. The Dalvik Debug Monitor Server (DDMS) that belongs to this 

kit, contains Traceview, which is a profiling tool that provides timeline and profile panels 
in a Graphical User Interface (GUI). The former panel contains the start/stop time of each 

thread, shown in Figure 3.1. 

 

Figure 3.1: Traceview timeline panel. Source: Android Developers. 

The profile panel, shown in Figure 3.2, contains a summary of each method, with the 
name of the method and its children methods; the inclusive and exclusive execution times 
and the number of calls/recursive calls of the method. The inclusive method execution 

time is the time spent in the method plus the time spent in any called methods, consisting 
in the total time that the method took to execute, from the first instruction to the last one 

(ANDROID-TRACEVIEW, 2013). The exclusive method execution time is the time that 
is spent exclusively in the method, therefore, the execution time of any child method 
called is not considered. This trace can be done either by changing the application’s 

source code to call both start and stop tracing methods or by manually starting and 
stopping the trace after the application is already being executed. 

This tool is very useful to profile an application; however, it is very limited on the 
amount of data that it can trace: it stores all the traced data in a buffer with a limited size, 
which depends on the amount of free RAM that is available on the mobile device. 

Therefore, if the buffer overflows, all the data profiled after the overflow will be lost. 
Thus, this tool does not scale with larger applications and it is not possible to fully execute 
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even small applications. Even with more than 1GB of memory available, most of the 

tested benchmarks (which will be further discussed later) still will make the buffer to 
overflow.  

Another important limitation is that it can only trace methods executed by the Dalvik 

Virtual Machine. Therefore, native code (used through Java Native Interface (JNI) 
methods or Native Activities) is not considered. Tracing native code is a core feature 

when it comes to trace applications that have native methods (e.g.: WebKit, used by the 
most popular web browsers). In addition, none of the SDK tools provide power 
dissipation information. 

3.2 Modification of DDMS 

As the DDMS is written in Java and runs as an Eclipse plugin, it is not performance 

oriented. Thus, the tool proposed by Hyen-Ju Yoon (YOON, 2012) has the goal of 
speeding up the profiling process. It is done by decomposing the Traceview into a log 
data processing layer and a Pretrace program layer that create and analyze the start and 

end time of methods.  

This modification is show in Figure 3.3. However, no quantitative information about 

this speed up is discussed in their work and, in the same way as Traceview, it does not 
provide native code information.  

3.3 AndroScope 

Due to before mentioned Traceview limitations (i.e. it traces just methods that are 
executed by the Dalvik VM, and presents poor performance in opening large amounts of 

data), M. Cho et al. (CHO, HWANG, et al., 2012) proposed another performance analysis 

 

Figure 3.2: Traceview profile panel. Source: Android Developers 
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tool for the Android platform, called AndroScope. This tool was made to profile Java and 

native applications, Dalvik VM and Android libraries. 

In this work, a low-level performance analysis through Hardware Performance 
Counters (HPC) is used to store counts of hardware events such as cache misses, CPU 

cycles and executed instructions. With this information, it is possible to obtain the 
Instructions Per Cycle (IPC) ratio, which can be used as a performance factor. An 

extended GCC compiler front-end automatically inserts instrumentation codes to obtain 
the trace of native libraries and to provide a runtime filtering by class, method name or 
signature, which allows a selective trace.  

The authors also developed a graphical user interface, based on Traceview, to display 
the traced data. They created a new layer to process massive trace logs faster, called 

“tracebridge” and used Traceview just to display the post-processed data. 

However, performance analysis through HPCs cannot be easily done in the Android 
Emulator because they are not implemented in QEMU (an open source machine emulator 

and virtualizer). As HPCs are architecture dependent, this implementation would have to 
be specific for each architecture emulated by QEMU and supported by Android (e.g.: 

MIPS, x86 and ARM or any future architecture that may appear), making the process of 
building a multi-architecture tool highly complex. Moreover, all native libraries would 
have to be recompiled in order to be traced. As the statistics of these counters in the Linux 

kernel are obtained by sampling, it may contain inaccurate measures from the 
applications. 

3.4 CPU cycle estimation 

A research conducted by Fujitsu Laboratories Ltd. (THACH, TAMIYA, et al., 2012), 
proposed a cycle estimation methodology for an instruction-level CPU emulator. It is 

divided into a two-phase pipeline scheduling process. First, a static phase is conducted to 
obtain a rough estimation of the CPU cycle count with the purpose of reducing the 

instrumentation performance overhead. Then, a dynamic phase is responsible for refining 
the results and guaranteeing more precision. This methodology was implemented by 

 

Figure 3.3: Modified method tracing. Source: (CHO, HWANG, et al., 2012) 
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modifying the QEMU source-code with an estimation error in the CPU cycle count of 

about 10% when compared to a real CPU.  

In addition, a cache simulator to model L1 and L2 caches behavior was built based on 

an ARM Cortex-A8 architecture. To keep track of the content of each cache line, the 
simulator uses virtual tag lists. By checking the tags when a memory access instruction is 
found, it can determined if this instruction leads to a cache hit or a cache miss. When a 

cache miss occurs, the cache simulator triggers the dynamic adaptation to add the cache 
miss penalty cycles. 

However, as the source code is not available, the possibility of extending it to have 
more features (e.g.: counter for executed basic block and instruction information; power 
cost estimation; instruction categorization; identification of different applications; use a 

database to store the processed data for future reuse) was discarded. 

3.5 MARSSx86 

Patel and other researchers proposed another QEMU modification to perform full 
system simulation for multicore x86 CPUs, called MARSSx86 (MARSSX86, 2013). 
MARSSx86 is a cycle accurate tool for full system simulation of the x86 architecture. It 

performs detailed simulation of CPUs, caches and memory.  

Although it is an open source tool, it currently does not support architectures other 

than x86. This limits its field of application, considering that ARM is the main 
architecture used in mobile devices (90% of the smartphones market share (TREFIS 
TEAM, 2013)). In the same way and with the same limitations, PTLsim (PTLSIM, 2013), 

 

Figure 3.4: MARSSx86 overview. Source: MARSS MICRO 2012 tutorial 
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a cycle accurate x86 microprocessor simulator, was improved and ported to have 

integration with QEMU. This tool is presented in Figure 3.4. 

3.6 PowerTutor 

PowerTutor (POWERTUTOR, 2011) is a power estimation system that uses the 
model generated by PowerBooter (ZHANG, TIWANA, et al., 2010) for online power 
estimation. PowerBooter models the most significant components regarding power 

dissipation in the system, which are: CPU and LCD display as well as GPS, Wi-Fi, 3G, 
and audio interfaces. These components’ power dissipation is considered independent, 

which results in an error of 6,27%, according to the authors, and which suggest that a sum 
of these individual components is sufficient to estimate system power dissipation. The 
PowerBooter technique relies on knowledge of battery discharge voltage curve and access 

to battery voltage sensor, which is available in most smartphones. However, this 
information generated by PowerBooter is not publicly available. 

PowerTutor was implemented for the Android platform. However, the PowerBooter 
models need to be created specifically to each smartphone model, as they have different 
power dissipation behavior. Also, each application is considered to be the only application 

that is running in the system, this simplification can provide an accurate estimation in this 
ideal scenario, but as we have several applications running at the same time, this 

estimation may diverge from the real power and energy consumption of the system as a 
whole. 

In addition, to the best of our knowledge, only a few models are supported: HTC G1, 

HTC G2 and Nexus One smartphones; all other devices will use a generic model that may 
not estimate the power and energy consumption with the proper accuracy. Moreover, as 

PowerTutor runs concurrently with all other applications that are being executed. 
Therefore, it will also use the available resources in the device to run this profiling tool. 
In our approach, this estimation is done offline and, consequently, it does not use the 

available resources in the device to process the collected data. 

3.7 Sesame 

Sesame (DONG e ZHONG, 2011) generates and adapts energy models without any 
external measurement. To achieve a low overhead in the system’s performance, it 
schedules the computation of intensive tasks to be executed when the system is idle and 

when it is connected to a power supply. Hence, only data collection and simple calculation 
are performed during system usage. 

In addition, Sesame monitors the accuracy of the energy model in use and adapts it 
accordingly when the accuracy is below a certain threshold. This tool was developed to 
run on any Linux-based mobile system, which includes laptops and smartphones, for 

example. 

Sesame uses system statistics, such as CPU timing statistics and memory usage 

provided by Linux. Also it uses the Advanced Configuration and Power Interface (ACPI), 
available on modern mobile devices, which provides platform-independent interfaces for 
power states of the hardware, including the processor and peripherals. 

However, this approach is not able to provide this information to each application, all 
information is collected from the system as a whole. Which does not allow the developer 
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to see the actual costs of his application, once several other applications may be running 

concurrently in the system. 

3.8 Trepn Profiler 

Trepn Profiler (QUALCOMM DEVELOPERS, 2013) profiles performance and 
power dissipation for Qualcomm Snapdragon processors. Also, external scripts can be 
used in order to allow automated test environments. Moreover, the collected data can be 

seen in real time and it can be exported for offline analysis. 

The power information is obtained through specific hardware sensors that are present 

in these processors. Therefore, the range of mobile devices that it reaches is very limited. 
This limitation forbids the evaluation of these costs in other processors and architectures, 
because mobile devices with different processors will present different power dissipation 

behavior for the same application. Figure 3.5 shows overlays of this tool in a device that 
is running a game. 

All the previous works illustrate the difficulty of tracing and profiling mobile 
applications. To differentiate the proposed tool with the existent ones, a comparison 

among them is presented in Table 3.1. As can be observed, the proposed tool is able to 
profile a larger range of information: executed basic blocks and instructions, power 
dissipation estimation, etc.   

In opposite to the existing tools, besides being capable of presenting information for 
each process; it also allows one to see the most costly parts of the code, separated by basic 

blocks. As this most costly parts cannot be separated, so far, by methods, other tools can 
be used to complement the trace (e.g.: Traceview or AndroScope). As it was not possible 
to extend any one of discussed tools to have additional features due to already mentioned 

reasons (i.e. source code not available or platform-specific tool), the proposed tool was 
developed from scratch. The tool was built on top of the Android’s QEMU, which is a 

 

Figure 3.5: Trepn profiler example. Source: Qualcomm developers 
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QEMU version modified to run the Android emulator, due to the fact that the emulator is 

the official and largely used tool to develop and test Android applications.   
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Table 3.1: Tools comparison 

Features\Tools 

Our 

tool Traceview 

Mod. of 

DDMS AndroScope 

Cycle 

estim. MARSSx86 PowerTutor Sesame 

Trepn 

Profiler 

Trace native code X     X ? X       

Trace basic block information: BB 
instructions, #calls by each process X                 

Process instruction information: #calls, 
categories X                 

Process a large amount of data X   ? X ? X       

IPC estimation       X X X       

Power dissipation estimation X           X X X 

Cycle cost information X     X X X       

Faster data visualization than Traceview - - X X - - - - - 

Instruction categorization X                 

Identify and separate the data of 
different applications in the trace X         ? X     

Trace method information: name, exec. 

time, #calls, calls hierarchy   X X X           

Support multiple architectures X X X ? ?     X   

No need to import the data every time 
the program is executed: usage of a 
database to store data X                 

Legend: 

X Tool has this feature 

? No information is given about this feature 

- Feature does not apply 

Blank cells Not available 
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4 IMPLEMENTATION 

As already discussed, our tool consists in a QEMU modification to generate trace 

information. In addition, as it is designed to work with multiple Instruction Set 
Architectures (ISAs), the added modifications must be compatible with all Android 

officially supported platforms (i.e.: ARM, MIPS and x86). So far, ARM and MIPS 
architectures are fully supported whilst x86 architecture is partially supported. For x86, 
the PID must be obtained from the emulated device’s memory, so we can identify each 

process and, therefore, separate the data collected for these processes. Once this 
additional step is done, the x86 will be fully supported. 

Figure 4.1 shows an overview of the tool flow. From Android SDK, we modified 
QEMU to trace more information about the application. The VNC connection mechanism 
also passed through modifications (explained in details later) to save this trace. In 

addition, we developed graphical user interfaces to process the collected data and to 
characterize the instructions and its categories. All collected data from the emulator’s 

execution is saved in files that will be afterwards processed by the GUIs and saved in a 
database. 

 
Figure 4.1: Tool overview 
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4.1 QEMU modification 

The Android Emulator is based on QEMU and it is included in the Android SDK.  

Therefore, we use the emulator to execute the applications and to generate the data 

that we are interested in. QEMU emulates the hardware so it is possible to run programs 
on a virtual hardware platform using different ISAs, such as ARM, MIPS, x86, PowerPC, 
SPARC and others (QEMU, 2013). This emulation is possible due to a dynamic 

translation mechanism. By using dynamic binary translation, it is possible to translate, 
typically one basic block at a time, instructions from the guest machine ISA to the host 

machine ISA. As expected, it is slower than execution on real hardware. 

The emulator must be executed with specific QEMU options, such as the logging of 
all basic blocks that are translated. We modified this mechanism to insert a basic block 

identifier to each new basic block that is inserted in this log, before its translation. The 
execution count of each basic block per process is saved in a hash table. To distinguish 

processes, we used the context switching trace mechanism, implemented by OHA, to get 
the Process Identifier (PID) of the current process that is being executed. Thus, we can 
obtain how many times each process executed any of the basic blocks. To accomplish 

these features, we modified the QEMU emulation flow, as shown in Figure 4.2.  

Every time there is a basic block to be executed that is not cached, QEMU translates 

it into a Translated Block (TB), a basic block composed of instructions implemented with 
the ISA of the host machine. Whenever the program counter (PC) is updated, the 
respective TB is searched. Whether it is not found (i.e., not cached), the basic block is 

 
Figure 4.2: Modified QEMU emulation flow 
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translated and saved to the BB log file. On the other hand, if it is cached, it is loaded 

without the need to translate it again. 

Once this step is completed, the hash table must be updated. There are two possible 

situations: the current process never executed the current TB (because it was just 
translated or because it was cached by another process) or the process already executed 
the current TB. In the former case, a new hash entry is created for this (PID,BB) pair. In 

the latter, the entry was already created, and therefore, we simply update its counter to 
count one more execution of the given BB.  

The process of reading a TB from cache is slow. Therefore, QEMU implements a TB 
chaining mechanism. Every time a TB returns, QEMU tries to chain the current TB to the 
next TB that will be executed so it does not need to search the TBs one by one, this is 

done by speculating which is the next translated block to be executed after the current 
TB’s branch. However, this mechanism had to be removed because the hash table is 

updated after each TB is searched or created. Therefore, we can have the original executed 
basic blocks and have a correct counting for each basic block and process. Finally, after 
the hash was updated, the TB is executed. 

We modified the closing of the Virtual Network Connection (VNC) to conveniently 
trigger the saving of the hash table to a file so it can be posteriorly processed. VNC is a 

protocol that allows an operating system to be viewed and controlled remotely over the 
Internet. Although Android’s emulator control with mouse and keyboard does not work 
through a VNC connection, Android Debug Bridge (ADB) is supported, and can be easily 

used to run and control applications. ADB is a command line tool that allows 
communication with an emulator instance or a connected Android device (ANDROID-

ADB, 2013).  

In addition, the emulator uses an Android Virtual Device (AVD) to determine the 
device’s configuration that will be emulated. An AVD is an emulator configuration that 

defines software and hardware configuration, so an actual device can be 
modeled/emulated (ANDROID-AVD, 2013). Also, this configuration can be modified 

prior to execution and it can be customized to meet the device’s configuration that the 
user considers to be the most appropriate. For instance, it is possible to emulate a device 
running Android 4.2.2 on an ARM processor, with 512MB RAM, 1GB internal storage 

and 2GB SD card; or an Android 4.0.3 on a MIPS processor, with 256MB RAM, 512MB 
internal storage and 4GB SD card. 

4.2 Graphical User Interfaces 

4.2.1 Instruction categorization GUI 

A Graphical User Interface for instruction categorization (“Instruction categorization 

GUI” from Figure 4.1) has the goal to create an instruction information file (“Instr. Info 
File” from Figure 4.1) with categorized instructions in addition to cycle and the power 

costs for each category. These categories can be customized in order to meet the 
developer’s requirements. For instance, BEQ, BNE and BLT instructions may be inserted 
in the Conditional Branch category and other categories may be created as well, such as 

Load, Store, Unconditional Branches and Arithmetic and Logical operations. This GUI 
is presented in Figure 4.3. The left table contains the instructions that does not have any 

category. These undefined instructions, if any, will be saved to the instruction information 
file with the default category, called “Undefined”. The right table contains the instructions 
of a given category, selected by the combo box of “Selected Category”. 
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Some actions that can be taken on this GUI are: create instruction information files 
for different ISAs, for instance: ARMv7 or MIPS; add or remove instructions manually; 

create categories for the instructions, specifying the average cycle cost and power 
dissipation of the instructions. Moreover, each architecture can have different instruction 
types. For instance, in an ARM architecture is possible to define either Thumb or ARM 

instructions. Thumb instructions are a subset of ARM instructions with reduced bit 
encoding size. Therefore, Thumb instructions need less memory than ARM instructions: 

they are 16 bits long, while ARM instructions are 32 bits long. However, not every ARM 
instruction has an equivalent Thumb instruction. 

In addition, BB log files can be imported, so every instruction that was executed can 

be categorized easily; this makes the process of creating a new category characterization 
file much faster. Also, it is possible to import already created category characterization 

files, in order to edit it. The output file of this GUI is a XML file with the 
architecture/organization, created categories with their costs and instructions. 

An example of this structure is an ARMv7 architecture, which has a conditional 

branch category with CPU cycle cost of 3 (ARM, 2013), power dissipation cost of 113 
miliWatts (BAZZAZ, SALEHI e EJLALI, 2013). This category comprise the following 

instructions: BEQ (ARM), BEQ (Thumb), BNE (ARM), BLT (Thumb), BLE (ARM), 
BGT (Thumb), BGE (Thumb) and other conditional branch instructions. 

 

Figure 4.3: AndroProf instruction categorization GUI 
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Figure 4.4 depicts the project organization of this graphical interface, that was 

developed following the Model-View-Controller (MVC) software architecture. In 
addition, Figure 4.5 shows an example of the structure of the instruction categorization 

file (“Instr. Info File” from Figure 4.1), which is formatted in a XML file. 

4.2.2 Analysis GUI 

Finally, an analysis tool (“Analysis GUI” from Figure 4.1) with a GUI, presented in 
Figure 4.6, imports both created files from QEMU and the instruction categorization file 

and, after processing the data, it presents the analyzed data to the user for an easier 

 

Figure 4.4: Instruction categorization GUI project 

 

 

Figure 4.5: Instruction categorization file XML structure 
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understanding of what was executed, saving all necessary data into a database. This 

database is necessary due to memory limitations, besides the obvious advantage of 
providing a way of loading previous saved architecture configurations. Some features of 

this GUI are:  

 information about basic blocks, instructions and categories: total cycle and 

power costs and histograms;  

 PID chart based on the total cycle or power cost of each PID. This feature 
allows seeing which the most costly processes that had executed are; 

 performance and energy consumption estimation based on a given operation 
frequency and other reference data; 

 import profiles (instruction characterization) for different instruction set 
architectures, or variations of these ISAs. 

In addition, it is possible to run a set of applications automatically with the scripts that 

are provided. Therefore, a set of benchmarks can be executed in sequence on the emulator 
and their data will be automatically save. Thus, on the data analysis process, the user will 

know the PID of the application of interest, and its data can be evaluated. 

Figure 4.7 depicts the project of the analysis GUI, as the instruction categorization 
GUI, was developed with MVC software architecture. Figure 4.8 shows the Entity-

Relationship (ER) diagram of the database that was implemented. 

 

Figure 4.6: AndroProf analysis GUI 
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Figure 4.8: Database ER diagram 

 

 

Figure 4.7: Analysis GUI project 
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4.3 Environment setup 

The tracing tool runs on the Ubuntu operating system. However, it can be executed 

on any other OS (e.g.: Windows and Mac OS X), as long as the Android source can be 
checked out from the tool’s Git repository that is available in the following link: 
“https://bitbucket.org/AndersonSartor/androprof-release”. Also, the SDK needs to be 

compiled (ANDROID-SOURCE, 2013).  

QEMU modifications were written in the C language, since the QEMU code was also 

written in C. The GUIs run on any operating system that supports the Java Runtime 
Environment (JRE), necessary to run Java applications. We chose Java language because 
of its portability.  

We also provide bash scripts to make the emulation process easier. For instance, SDK 
compilation, emulator call and automated benchmarks execution. Finally, for the 

database, we used SQLite3, a library that implements a serverless, transactional SQL 
database engine (SQLITE, 2013). This is useful because the user does not need to have a 
specific Database Management System (DBMS), like Oracle™ or MySQL™, in the host 

computer. As can be observed, all employed tools that comprise the framework were 
chosen so it can be as more platform independent and open-source as possible. 
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5 RESULTS AND CASE STUDY 

To evaluate the emulation speed of the proposed tool, we compared the execution 

times of our implementation with original Android’s QEMU. The Android Emulator’s 
and QEMU’s options used in both emulator’s executions were the same. Thus, the 

overhead of our tool is due to the disabling of the chaining mechanism, in addition to the 
cost of the added profiling process. Comparing the boot times, the original emulator boots 
in about 50 seconds, while our modification increases the boot time to 6 minutes, on 

average. 

The configuration of the host computer that we used to simulate the Android device 

was the following: Intel Core i7 860 2.80GHz, 8GB RAM, Samsung HD103SI HDD; and 
the AVD configuration used was: Android 4.0.3, ARM (armeabi-v7a) CPU, 512MB 
RAM. An Android benchmark set was created, based on the JVM SPEC 2008 

benchmarks (SPEC, 2013). 

Table 5.1 presents the average execution time between three executions of each 

benchmark. The minimum average speed down of our QEMU modification, in the tested 
benchmarks, was 3 times in the SQLite benchmark, while the maximum was 21 times in 
the MPEG Audio benchmark. We have this large variation in the speed down due to the 

Table 5.1: Average execution time comparison 

  

Original 

QEMU ① 

Modified 

QEMU ②   

Benchmark Time (s) Time (s) 

Speed down 

(②/①) 

SciMark FFT 89,67  1.121,33  12,51  

SciMark LU 715,00  8.825,00  12,34  

SciMark Monte Carlo 1.347,00  27.374,00  20,32  

SciMark SOR 458,67  5.861,67  12,78  

SciMark Sparse 595,00  6.820,67  11,46  

Serial 1,00  16,33  16,33  

Crypto AES 1.520,00  20.816,33  13,69  

Crypto RSA 32,00  512,00  16,00  

Crypto Sign Verify 925,00  12.712,00  13,74  

Compress 1.291,00  20.471,33  15,86  

MPEGAudio 765,00  16.111,33  21,06  

SQLite 154,67  466,67  3,02  

Average: 14,09  
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benchmarks’ characteristics: SQLite is a data-bound application, while MPEG Audio is 

CPU-bound, which impacts on the overhead depending on how intense was the use of our 
hash table structure. That is, CPU-bound applications intensively use the hash table, due 

to the increased number of executed instructions; therefore, these applications have a 
larger speed down on our tool when compared to data-bound applications. 

The average speed down of our QEMU modification, also presented in Table 5.1, in 

relation to original QEMU is about 14 times. This cost is paid in order to increase the 
range of information that is traced from the application’s execution. 

To validate our tool, we compared the execution results from three different 
benchmarks that we developed based on JVM SPEC 2008 benchmarks (SPEC, 2013). In 
addition, the most exclusive time consuming methods were converted to use the JNI. This 

benchmark set was composed of benchmarks with the following characteristics: 
mathematics (SciMark Sparse and SciMark FFT) and multimedia processing (MPEG 

audio). 

The AVD configuration used was: Android 4.0.3 with 512MB RAM for both, ARM 
(armeabi-v7a) and MIPS, CPUs. Also, the JIT compiler was enable in both devices. 

5.1 Execution time, number of BBs and number of instructions 
comparison between ARM/MIPS and Java/JNI 

Table 5.2 presents the average execution time between three executions, number of 
basic blocks and number of instructions for each Java and JNI executed benchmarks on 

ARM and MIPS architectures, and Figure 5.1 presents this data in a graphical form for 
an easier visualization. Comparing ARM and MIPS, both execution times and number of 

Table 5.2. ARM and MIPS comparison 

ARM 

Java Time (ms) #BBs #Instrs 

SciMark Sparse 9.126.874  6.494.177.530  57.620.647.133  

SciMark FFT 1.437.846  857.892.746  6.757.657.737  

MPEG Audio 19.635.264  13.455.264.830  119.524.591.950  

JNI       

SciMark Sparse 1.022.425  703.986.571  6.217.487  

SciMark FFT 320.962  222.462.041  1.944.832.689  

MPEG Audio 44.124.298  29.272.511.931  260.106.923.761  

MIPS 

Java Time (ms) #BBs #Instrs 

SciMark Sparse 9.307.618 6.634.976.525 75.351.389.129 

SciMark FFT 1.397.534 946.438.842 10.719.421.833 

MPEG Audio 20.245.078 14.309.245.120 162.507.503.608 

JNI       

SciMark Sparse 906.160 649.293.812 7.340.895.994 

SciMark FFT 398.672 229.410.566 2.300.136.199 

MPEG Audio 48.343.377 33.923.478.164 385.247.616.970 
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basic blocks were almost the same. However, MIPS executed more instructions than 

ARM, because its ISA comprises simpler instructions (more RISC oriented). 

When one  compares Java execution with JNI, it can be observed a speed up of 8,92 
times when using JNI on ARM, and a speedup of 10.27 times on MIPS for the SciMark 

Sparse execution; and 4,48 on ARM and 3,5 on MIPS for the SciMark FFT. However, 
MPEG Audio benchmark presented a speed down for both processors, 2,25 on ARM and 

2,39 on MIPS. Considering the average number of instructions per basic block, the 
average for all benchmarks was of 8 instructions/BB on ARM and 11 instructions/BB on 
MIPS.  

The usage of JNI can be beneficial or not for a specific application, depending on 
several factors, such as: the overhead of accessing Java attributes and calling a Java 

method through a native method, the number of times that this method is called, the 
complexity of the method, etc. In our tests, both SciMark benchmarks had a decrease on 
the execution time when using JNI; these two benchmarks have one method that was 

executed for 80-90% of the execution time and this method performs calculation with 
arrays and matrices.  

On the other hand, MPEG Audio had its execution time increased, this benchmark has 
five methods that take about 10% of the execution time each. Moreover, some of these 
methods are simple and called several times, which impacts on the performance as the 

overhead created overcomes the benefits of programing in native code.  

The decision of developing some features of the application in native code depends 

on the type of application that is being developed. For example, many games and web 
browsers use native code to speed up the execution. This discussion highlights the 
importance of supporting the profile of native methods.  

 

Figure 5.1: #BBs and #instructions comparison for ARM and MIPS 
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Moreover, supporting multiple platforms is extremely important for profiling tools, 

because in today’s market we have multiple processors architectures (e.g.: ARM, MIPS 
and x86) and multiple processors organizations (e.g.: ARM Cortex A8, Cortex A9, Cortex 

A15, etc.) that need profiling tools capable of working along with all these different 
platforms.  

5.2 Energy and performance estimation 

To estimate the energy and performance, we obtained data on processor power 
dissipation and Cycles per Instruction (CPI) from the Excel spreadsheet data embedded 

in the “A Detailed Analysis of Contemporary ARM and x86 Architectures” Technical 
Report (BLEM, MENON e SANKARALINGAM, 2013). As the Technical Report does 
not provide power dissipation per instruction or category, we did not use this feature, even 

though it is available in AndroProf (we have considered that all instructions had the same 
power dissipation). 

Table 5.3 presents the data obtained from the arithmetic average of all executed 
benchmarks from the Excel file embedded in technical report. With this information, we 
can estimate the main memory access rate and also consider the power dissipation given 

by these accesses.  

The main memory access rate is of about 1% for both Cortex A8 and Cortex A9. Also, 

we considered the processors’ frequency to be 1GHz for the Cortex A8 and 2GHz for the 
Cortex A9 (ARM-CORTEX-A, 2013). 

Main memory read/write power dissipations were obtained from CACTI 6.5 (CACTI, 

2013), with the following configuration: 512MB, 8 banks, block size of 64 bytes and 
45nm technology; which results in an access time of 8,26ns and 2,66nJ/2,56nJ of 

read/write energy, respectively. We will consider the average of these two values as the 

Table 5.3: ARM Power and cycles information 

ARM Cortex A8 

Processor power dissipation (W) 
                         

0,89  

CPI 

                       

13,03  

Number of Instructions 
       

39.171.751.755  

Number of cache misses 

            

521.966.483  

ARM Cortex A9 

Processor power dissipation (W) 

                         

1,25  

CPI 
                         

2,37  

Number of Instructions 

       

39.372.723.114  

Number of cache misses 
            

451.238.875  
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energy consumption of each memory access (2,61nJ), disregarding if it was a memory 
read or write, to simplify calculation. 

 With this information in hand we can estimate the number of cycles and the power 
dissipated with the help of the GUI from Figure 5.2, which uses the following formulas: 

 𝐸𝑠𝑡𝑖𝑚𝐶𝑦𝑐𝑙𝑒𝑠 = 𝐶𝑃𝐼 ∗ #𝐼𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠 (1) 

 
ExecTime=

EstimCycles

ProcFrequency
 (2) 

 
𝑀𝑒𝑚𝐴𝑐𝑃𝑤𝐷𝑖𝑠 =  

𝑀𝐴𝑐𝐸𝑛𝐶𝑜𝑛𝑠 ∗ 𝑀𝐴𝑐𝑅𝑎𝑡𝑒 ∗ #𝐼𝑛𝑠𝑡

𝐸𝑥𝑒𝑐𝑇𝑖𝑚𝑒
 (3) 

 𝐸𝑠𝑡𝑖𝑚𝑃𝑤𝐷𝑖𝑠 = 𝑃𝑟𝑜𝑐𝑃𝑤𝐷𝑖𝑠 + 𝑀𝑒𝑚𝐴𝑐𝑃𝑤𝐷𝑖𝑠 (4) 

 

Figure 5.2: Time and power estimation 

 

Table 5.4: ARM Cortex A8 and A9 cycles comparison 

  ARM Cortex A8 ARM Cortex A9 

Java Estimated cycles Estimated cycles 

SciMark Sparse 750.989.080.031 136.515.747.939 

Scimark FFT 88.074.803.379 16.010.349.521 

MPEG Audio 1.557.803.804.988 283.179.552.454 

JNI     

SciMark Sparse 81.034.581.835 14.730.569.115 

SciMark FFT 25.347.652.007 4.607.728.347 

MPEG Audio 3.390.060.145.184 616.249.435.025 

      

Average 982.218.344.570,69 178.548.897.066,97 
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Table 5.4 presents the average of the estimated cycles for both Cortex A8 and Cortex 
A9 based on the information of the technical report and the data we traced from our 

applications. Comparing the average estimated cycles for our benchmarks in both Cortex 
A8 and Cortex A9, we have a 5,5 A8/A9 ratio due to the difference between both 
processors CPI.  

CPI and number of cache misses vary depending on the application, therefore the 
power dissipation varies too. However, as we considered the CPI and the cache misses to 

be the same to all of our benchmarks, they all presented the same power dissipation. 
Calculating the power dissipation by (4), we have a 0,8927W power dissipation for 
Cortex A8 and 1,2753W for Cortex A9 for each executed benchmark, which results in an 

A8/A9 power dissipation ratio of approximately 0,7.  
Table 5.5 presents the A8 and A9 energy consumption comparison, which gives us an 

A8/A9 average energy consumption ratio of 7,7. This shows how the power dissipation 
and energy consumption can vary depending on the organization of the same processor 
architecture, feature that is also available on our tool. 

5.3 QEMU modification impact for Java and JNI applications on 
ARM and MIPS architectures 

Table 5.6 presents the comparison between the average execution time in the 
unmodified version of the emulator and our modified version. The speed down for ARM 

architecture varied between 11,30 and 26,02, and the average was 18,30. For MIPS 
architecture, the speed down varied between 1,71 and 9,98, with an average of 5,51. This 
variation in the speed down, as aforementioned, is due to the disabling of the chaining 

mechanism and how the application uses the hash table: more accesses and more 
insertions in the hash table will imply on a larger overhead on the execution time. 
Comparing the speed down between each Java/JNI application, it stayed relatively the 

same for both ARM and for MPEG Audio on MIPS. However, SciMark Sparse and FFT 
presented a difference of 3 times in the speed down of the JNI version when compared 

with the Java version. This difference may be due the huge amount (GB scale) of 
information that original MIPS version saves to QEMU log file, increasing the execution 
time depending on how much information is saved besides the basic blocks. In addition, 

this huge amount of information that is saved on original MIPS version affects its 

Table 5.5. ARM Cortex A8 and A9 energy consumption comparison 

  ARM Cortex A8 ARM Cortex A9 

Java Estim. energy(J) Estim. energy(J) 

SciMark Sparse 670,39 87,05 

Scimark FFT 78,62 10,21 

MPEG Audio 1.390,61 180,57 

JNI     

SciMark Sparse 72,34 9,39 

SciMark FFT 22,63 2,94 

MPEG Audio 3.026,22 392,95 

      

Average 876,8 113,85 
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performance, as we removed most of this additional information that was saved because 
it would not be useful now, the speed down from MIPS was lower than on ARM. 

5.4 JIT compiler evaluation 

To evaluate the JIT compiler, we disabled it in the emulator and obtained the 
applications’ data for the same set of benchmarks. In the emulator, a new system image 

needs to be created in order to make this change in the system propriety permanent; 
otherwise, it will load the default system image in the next reboot, which loads the 

configuration that has the JIT enabled.  

The results are presented in Table 5.7, comparing it to Table 5.2, it can be noticed that 
there was no real speed down in the applications, it stayed almost the same (20% 

variation, which is usual for the Android Emulator). Therefore, it can be implied that or 
the applications are not suitable for JIT optimization at all or the JIT compilation is not 

fully supported by the emulator, which may not consider this modification in its system’s 
properties. To test the second hypothesis, we did the same test in both MIPS and x86 
emulator, and no relevant speed down was achieved either. Then, the same applications 

were executed in a Motorola Atrix MB860, to test the first hypothesis; its results are 

Table 5.6. ARM and MIPS QEMU modification overhead 

  ARM MIPS 

QEMU Original Modified   Original Modified   

Java 

Average 

time 

(ms) ① 

Average 

time 

(ms) ② 

Speed 

down 

(②/①) 

Average 

time  

(ms) ③ 

Average 

time  

(ms) ④ 

Speed 

down 

(④/③) 

SciMark 
Sparse 595.000 9.126.874 15,34 932.383 9.307.618 9,98 

SciMark FFT 89.667 1.437.846 16,04 318.407 1.397.534 4,39 

MPEG Audio 765.000 19.635.264 25,67 2.722.453 20.245.078 7,44 

JNI             

SciMark 
Sparse 66.237 1.022.425 15,44 274.228 906.16 3,30 

SciMark FFT 28.398 320.962 11,30 233.453 398.672 1,71 

MPEG Audio 1.695.486 44.124.298 26,02 7.765.469 48.343.377 6,23 

    Average:  18,30   Average:  5,51 

 

Table 5.7: Execution time on the emulator (ARM) with JIT disabled 

ARM 

Java Time (ms) #BBs #Instrs 

SciMark Sparse 9.309.768 6.548.418.024 58.126.721.664 

SciMark FFT 1.378.704 961.762.098 8.513.355.694 

MPEG Audio 20.666.729 14.264.664.658 126.753.132.018 

JNI       

SciMark Sparse 959.598 647.920.652 5.728.513.790 

SciMark FFT 330.707 226.595.211 1.984.727.422 

MPEG Audio 46.721.163 31.488.794.368 279.769.953.812 
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presented in Table 5.8. Therefore, it can be implied that the emulator does not support, so 

far, the execution of applications with JIT either enabled or disabled.  

The results in Table 5.8 were obtained from executing the benchmarks on a Motorola 

Atrix with an unofficial ROM image of Android 4.0.3, this Android version was chosen 
in order to be the same version that was being used in the emulator. In addition, the results 
represent the behavior expected from the applications. That is, for Java applications, a 

speed up from two to almost four times can be achieved when the JIT compiler is enabled. 
In addition, when disabling the JIT, JNI applications do not present a large speed down 

as Java applications do because, as the most costly methods are implemented in native 
code, it does not execute on the DVM, consequently it does not get affected by the JIT 
compiler.  

 

Table 5.8: JIT speed up - Motorola Atrix 

Atrix With JIT Without JIT Speed up 

Java Time (ms) ① Time (ms) ② ②/① 

Scimark Sparse 27.940,33 70.512,67 2,52 

Scimark FFT 8.851,00 18.759,00 2,12 

MPEG Audio 41.942,33 152.220,00 3,63 

JNI       

Scimark Sparse 12.954,33 13.309,00 1,03 

Scimark FFT 6.687,33 8.240,00 1,23 

MPEG Audio 133.411,67 203.889,67 1,53 
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6 CONCLUSION AND FUTURE WORK 

There are only a few options of tracing and profiling tools available to Android 

developers, and all of these options have limitations. Due to the difficulty of getting useful 
data of Android applications’ execution, in this work we presented a tool to generate more 

relevant information (e.g. power dissipation estimation and information about the basic 
blocks) for an easier data analysis at earlier designs stages. As future work, we will create 
default profiles, with power and cycles costs of the main instruction categories, for 

multiple processors architectures and organizations. Therefore, one can use the tool to 
estimate power and cycles with more accuracy for multiple platforms, helping the 

developer to make project choices based on the behavior of the application that is being 
developed and also by comparing this behavior with other applications. 

We will also modify the Android Emulator to trigger the saving of the BB data. 

Therefore, the VNC connection will no longer be needed. By doing this, mouse and 
keyboard will be supported to control the emulator and the communication with our tool 

will be done directly through the emulator. In addition, the x86 architecture will be fully 
compatible and method information will be generated. Moreover, a cache simulator will 
be implemented in order to have a more accurate cycles and power estimation. 

Our tool presents a large speed down, depending on the application’s characteristics, 
because we added a new layer to the QEMU execution flow and the chaining mechanism 

was disabled. Therefore, we will also study means to trace the applications with chaining 
enabled and to use a better-optimized hash. In addition, the tool will provide trace method 
information and cache events simulation. 
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APPENDIX A: JAVA APPLICATIONS EXECUTION TIME 

Table A.1: Java applications execution time on original QEMU (ARM) 

Original QEMU Exec. 1 Exec. 2 Exec. 3 

Java PID Time (s) PID Time (s) PID Time (s) 

1) scimark fft 1181 1200 589 964 1074 1200 

2) scimark lu 1223 8113 644 8393 663 9969 

3) scimark monte carlo 1374 29708 690 29278 608 23136 

4) scimark sor 1269 5462 748 6323 982 5800 

5) scimark sparse 1313 8076 984 6236 1027 6150 

6) serial 1436 16 862 19 1117 14 

7) crypto aes 1476 18672 1084 20732 851 23045 

8) crypto rsa 562 409 902 578 1158 549 

9) crypto signverify 602 12009 1032 11694 929 14433 

10) compress 651 20770 795 21941 710 18703 

11) mpegaudio 706 18289 1156 15039 780 15006 

12) sqlite 770 468 943 468 1198 464 

 

Table A.2: Java applications execution time on modified QEMU (ARM) 

Modified QEMU Exec. 1 Exec. 2 Exec. 3 

Java PID Time (s) PID Time (s) PID Time (s) 

1) scimark fft 546 90 465 90 513 89 

2) scimark lu 586 702 513 703 554 740 

3) scimark monte carlo 625 1323 552 1333 594 1385 

4) scimark sor 666 467 594 452 636 457 

5) scimark sparse 705 628 634 589 675 568 

6) serial 745 1 685 1 716 1 

7) crypto aes 784 1523 724 1500 756 1537 

8) crypto rsa 826 34 766 31 797 31 

9) crypto signverify 865 959 805 901 837 915 

10) compress 467 1263 847 1298 877 1312 

11) mpegaudio 546 774 887 741 921 780 

12) sqlite 507 157 962 153 963 154 
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APPENDIX B: JAVA AND JNI APPLICATIONS TIME, 

#BBS, #INSTRUCTIONS ON ARM AND MIPS 

Table B.1: Java/JNI applications on ARM (execution 1) 

ARM Exec 1 

Java PID Time (ms) #BBs #Instrs 

Scimark Sparse 524 9.952.442 7.175.033.543 63.649.663.756 

Scimark FFT 550 1.491.727 1.050.006.489 9.293.766.960 

MPEG Audio 633 20.132.107 13.969.674.398 124.129.261.344 

JNI         

Scimark Sparse 535 1.200.588 831.938.143 7.348.385.437 

Scimark FFT 546 331.967 243.906.208 2.135.079.624 

MPEG Audio 590 49.579.028 34.073.346.887 302.755.747.196 

 

Table B.2: Java/JNI applications on ARM (execution 2) 

ARM Exec 2 

Java PID Time (ms) #BBs #Instrs 

Scimark Sparse 541 8.800.688 6.392.049.364 56.750.218.825 

Scimark FFT 592 1.411.419 989.290.087 8.753.545.538 

MPEG Audio 612 16.717.209 10.532.954.021 93.599.318.742 

JNI         

Scimark Sparse 552 907.459 613.819.947 5.420.042.394 

Scimark FFT 579 327.335 223.512.232 1.954.384.697 

MPEG Audio 608 44.896.131 29.792.921.446 264.716.639.591 

 

Table B.3: Java/JNI applications on ARM (execution 3) 

ARM Exec 3 

Java PID Time (ms) #BBs #Instrs 

Scimark Sparse 543 8.627.491 5.915.449.683 52.462.058.818 

Scimark FFT 634 1.410.392 534.381.662 2.225.660.712 

MPEG Audio 617 22.056.475 15.863.166.071 140.845.195.764 

JNI         

Scimark Sparse 542 959.228 666.201.623 5.884.033.981 
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Scimark FFT 569 303.583 199.967.684 1.745.033.746 

MPEG Audio 598 37.897.735 23.951.267.460 212.848.384.497 

 

Table B.4: Java/JNI applications on MIPS (execution 1) 

MIPS Exec 1 

Java PID Time (ms) #BBs #Instrs 

Scimark Sparse 604 10.487.097 7.259.923.444 82.479.997.535 

Scimark FFT 662 1.481.143 1.025.728.420 11.627.696.468 

MPEG Audio 680 20.296.199 13.802.013.951 156.756.864.319 

JNI         

Scimark Sparse 744 931.673 677.456.878 7.659.968.520 

Scimark FFT 600 444.305 155.087.887 911.216.558 

MPEG Audio 799 50.039.346 35.017.503.392 397.617.642.551 

 

Table B.5: Java/JNI applications on MIPS (execution 2) 

MIPS Exec 2 

Java PID Time (ms) #BBs #Instrs 

Scimark Sparse 600 7.712.524 5.669.756.824 64.391.879.180 

Scimark FFT 704 1.501.045 1.049.075.048 11.889.875.728 

MPEG Audio 673 19.000.087 13.878.762.485 157.637.243.834 

JNI         

Scimark Sparse 757 953.706 658.027.071 7.433.314.612 

Scimark FFT 785 391.464 267.990.852 3.010.294.383 

MPEG Audio 814 48.327.677 33.464.711.742 380.044.701.743 

 

Table B.6: Java/JNI applications on MIPS (execution 3) 

MIPS Exec 3 

Java PID Time (ms) #BBs #Instrs 

Scimark Sparse 581 9.723.233 6.975.249.308 79.182.290.671 

Scimark FFT 746 1.210.414 764.513.059 8.640.693.302 

MPEG Audio 655 21.438.947 15.246.958.924 173.128.402.672 

JNI         

Scimark Sparse 578 833.101 612.397.487 6.929.404.851 

Scimark FFT 605 360.247 265.152.959 2.978.897.657 

MPEG Audio 633 46.663.107 33.288.219.359 378.080.506.615 
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APPENDIX C: JAVA AND JNI APPLICATIONS TIME, 

#BBS, #INSTRUCTIONS ON ARM EMULATOR WITH 

JIT DISABLED 

Table C.1: Java/JNI applications on ARM without JIT (execution 1) 

ARM without JIT Exec 1 

Java PID Time (ms) #BBs #Instrs 

Scimark Sparse 536 9.313.152 6.572.364.308 58.360.163.878 

Scimark FFT 567 1.396.684 981.508.892 8.687.760.472 

MPEG Audio 593 20.106.173 13.716.040.321 121.787.684.906 

JNI         

Scimark Sparse 515 1.001.531 698.239.912 6.178.322.405 

Scimark FFT 540 359.485 255.732.490 2.241.238.529 

MPEG Audio 567 49.740.040 34.189.793.798 303.777.013.368 

 

Table C.2: Java/JNI applications on ARM without JIT (execution 2) 

ARM without JIT Exec 2 

Java PID Time (ms) #BBs #Instrs 

Scimark Sparse 526 8.799.521 6.381.261.714 56.618.080.751 

Scimark FFT 557 1.423.476 1.011.203.401 8.950.055.699 

MPEG Audio 583 21.624.236 15.322.115.509 136.127.668.597 

JNI         

Scimark Sparse 517 761.299 462.299.765 4.078.783.875 

Scimark FFT 545 270.415 169.363.627 1.481.465.926 

MPEG Audio 571 42.723.867 28.100.681.862 249.671.069.177 

 

Table C.3: Java/JNI applications on ARM without JIT (execution 3) 

ARM without JIT Exec 3 

Java PID Time (ms) #BBs #Instrs 

Scimark Sparse 532 9.816.631 6.691.628.049 59.401.920.363 

Scimark FFT 563 1.315.951 892.574.002 7.902.250.912 

MPEG Audio 589 20.269.778 13.755.838.144 122.344.042.552 
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JNI         

Scimark Sparse 526 1.115.965 783.222.280 6.928.435.089 

Scimark FFT 557 362.221 254.689.516 2.231.477.812 

MPEG Audio 583 47.699.582 32.175.907.445 285.861.778.892 
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APPENDIX D: JAVA AND JNI APPLICATIONS ON 

MOTOROLA ATRIX WITH AND WITHOUT JIT 

Table D.1: Java/JNI applications on Motorola Atrix with JIT 

Motorola Atrix 

With JIT Exec 1 Exec 2 Exec 3 

Java Time (ms) Time (ms) Time (ms) 

Scimark Sparse 27.948 27.838 28.035 

Scimark FFT 9.397 8.161 8.995 

MPEG Audio 42.344 41.559 41.924 

JNI       

Scimark Sparse 12.618 13.417 12.828 

Scimark FFT 6.681 6.170 7.211 

MPEG Audio 133.559 133.268 133.408 

 

Table D.2: Java/JNI application on Motorola Atrix without JIT 

Motorola Atrix 

Without JIT Exec 1 Exec 2 Exec 3 

Java Time (ms) Time (ms) Time (ms) 

Scimark Sparse 70.661 70.411 70.466 

Scimark FFT 18.319 19.340 18.618 

MPEG Audio 152.208 152.325 152.127 

JNI       

Scimark Sparse 13.543 13.071 13.313 

Scimark FFT 8.847 7.494 8.379 

MPEG Audio 203.593 203.480 204.596 
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AndroProf: A Profiling tool for the Android platform 

Anderson Luiz Sartor 
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andersonsartor@gmail.com 

Abstract. Tracing and profiling tools for mobile development are very 

limited in which and how much information they can trace or profile. They are 
also scarce when compared to general-purpose development tools. Due to this 
fact, many projects are not carried on because of the difficulty to get the desired 

information about the applications. For developers, good profiling information 
usually means that they will develop better applications. To help solving this 

issue, this research proposes a tool that will provide a large range of 
information, such as: executed basic blocks statistics, power consumption 
estimation and CPU cycle count estimation. In order to validate the tool, we 

propose a study based on a series of Android benchmarks. Each benchmark will 
have three different implementations: purely in Java, Java using Java Native 

Interface (JNI) and Java with Native Activities. In addition, each 
implementation of each benchmark will be tested with and without the Just-In-
Time (JIT) compiler, so we will be able to measure the impact of these different 

ways of execution on performance and power consumption. 

1. Introduction 

Mobile technology has changed the world at an unprecedented speed. As this change goes 
by, more people have been using smartphones and tablets to communicate, to work, and 

to stay connected to the world. Companies have been developing both hardware and 
software to meet this increasing and more demanding market.  

We have focused our research on Android, a Linux-based mobile software 
platform that is mainly used in smartphones and tablets, since it is the world’s most 
popular mobile platform. The cut Android had in the smartphone market in 2011 was 

about 50% and, just one year later, that cut reached almost 70% [1], mainly because the 
decrease in sales of smartphones with Symbian or BlackBerry operating systems. 

Mobile devices have hard constraints. Physical resources like storage, processing 
capacity and power supply are critical for these systems. For instance, mobile systems 
have only a few Gigabytes of storage, so applications must be compiled considering that. 
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Moreover, a number of applications must run concurrently in an environment that is not 

optimized for performance, but rather for power consumption. The power consumption 
must be kept as low as possible to maintain an acceptable battery lifetime. Therefore, 

mobile systems’ developers must think differently from general-purpose developers 
regarding the optimization of their applications. 

To help ensure these requirements are met, the use of profiling and monitoring 

tools are extremely important. With these tools, it is possible to guarantee that the 
application will not consume excessive power, will not use more memory than is strictly 

necessary with useless or not optimized data and will not overuse the device’s processing 
capacity. The proposed tool has the objective to provide valuable information, which 
today is not available, about Android applications.  Hence, these requirements are likely 

to be achieved and consequently the application is expected to successfully run in a 
mobile device.  

The remaining of this work is organized as follows: Section 2 introduces the 
Android platform. Section 3 presents related works. Section 4 and 5 presents the project 
and the implementation methodology of the proposed tool, respectively. Section 6 

presents the case study that will be made. Section 7 presents a chronogram regarding the 
next steps of this research. Finally, Section 8 makes conclusion. 

2. Android - Overview 

Android is an open-source software stack for mobile devices [2], developed by OHA 
(Open Handset Alliance) consortium, which is composed of mobile operators, handset 
manufacturers, semiconductor companies, software companies and commercialization 

companies, such as: Google, ARM, Intel, Samsung, HTC, Motorola, Qualcomm, 
NVIDIA and many others [3]. 

2.1. Market share 

Figure 1 shows the growing popularity of Android in the market. This growth in mobile 
platforms is impressive: in these days, it holds 70% of the market share, followed by iOS, 

with about 20%. 
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 Figure 16. Global Mobile Platform Market Share  

Android is also taking place in the global computing platform market, composed 
of computers, tablets, smartphones, and other devices. Latest researches by BI 

Intelligence [4] show that Android holds 53% of the global computing platform market 
share, taking Windows place, which today holds 24% of the market share, as shown in 
Figure 2. 

 

Figure 17. Global Computing Platform Market Share 
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2.2. Technical details 

Figure 3 depicts the Android stack. The Linux Kernel ① is a layer that interacts with the 

hardware; it also contains all essential hardware drivers. Android is based on Linux 2.6 
Kernel with some architectural modifications made by Google. The libraries layer ② 

contains native libraries written in C or C++. These libraries are optimized mainly for 
CPU and GPU intensive tasks. 

 

Figure 18. Android Stack. Source: Google Developers 

Google has chosen to deploy an alternative virtual machine on Android, called 

Dalvik Virtual Machine (DVM), instead of keeping Oracle’s Java Virtual Machine 
(JVM). A virtual machine runs an application inside an operating system. Its purpose is 

to provide a platform-independent programming environment that abstracts details of the 
underlying hardware or operating system [5]. Therefore, application’s portability is 
increased. For instance, if one considers that a virtual machine supports ARM and 

Intel x86 processors, once compiled, a given application could be executed on these 
processors without the need to recompile. 

 Dalvik VM, defined in the Android Runtime ③, is a register-based architecture 
[6], opposed to JVM that is a stack-based architecture. Dalvik was designed to run on low 

memory environments and to allow multiple instances of the VM, so every application 
runs on its own instance of the VM. Therefore, it provides security, isolation and effective 

memory management.  

An advantage that a register-based architecture has over a stack-based architecture 
is that it is likely to have better performance. A register-based architecture needs less VM 

instructions to implement a high level code, even though this comes at a cost of increased 
instruction size. With larger instructions, register-based architectures take more time to 

execute each instruction, compared to stack-based architectures. However, the product 
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between the time per instruction and the number of executed instructions is smaller in 

register-based architectures than in stack-based ones, which means that a register-based 
architecture will take less time to execute an application [7]. 

Android applications are written in Java, afterwards compiled to Oracle’s Java 
Standard Edition bytecodes, then these bytecodes are converted to a single Dalvik 
Executable (.dex) file by the “dx” tool. These Dalvik Executable bytecodes, rather than 

Java bytecodes, are executed on Dalvik Virtual Machine. 

The Application Framework ④ consists in basic tools for applications’ 

development. Finally, the Applications layer ⑤ is the layer where all developed 

applications are. 

It is possible to develop Android applications purely in Java or parts of it using 

native code. Some reasons to use native code are the following: the interpretation 
overhead can be mostly avoided once the code does not execute on the Dalvik VM; and 
it is possible to reuse existing C or C++ code. Thus, the developer does not have to convert 

it to Java. Android provides two main ways of using native code in the application: by 
using the Java Native Interface (JNI); or by using Native Activities. The latter was added 
to Android in the API level 9 (Android 2.3 Gingerbread) [8]. 

Moreover, Dalvik has a Just-In-Time compiler that was added to Android 2.2 
release and it is still being used in the current version of Android. This mechanism allows 

the application to run faster as it analyzes the code and caches the most executed parts of 
the translated code for further reuse, which avoids most of the interpretation overhead. 
Google’s experiments show an improvement of two to five times for CPU-bound code 

[9]. 

3. Related Work 

Several attempts were made to create tools for tracing and profiling Android applications. 

Still, to the best of our knowledge, we are far from having a complete pack of tools for 
profiling these applications. The most relevant tools are described in the next subtopics. 

3.1. Traceview 

Android Software Development Kit (SDK) provides software tools for debugging, 
profiling and monitoring. For example, the Dalvik Debug Monitor Server (DDMS) 

contains Traceview, which is a profiling tool that provides timeline profile panels. The 
former panel contains the start/stop time of each thread; the latter contains a summary of 
each method, with the name of the method and children methods, the inclusive and 

exclusive execution times and the number of calls/recursive calls of the method. The 
exclusive time is the time that is spent exclusively in the method, therefore, the execution 

time of any called method will not be considered. The inclusive time is the time spent in 
the method plus the time spent in any called methods, consisting in the total time that the 
method took to execute, from the first instruction to the last one [10] . 

This tool is very useful to profile an application; however, it is very limited on the 
amount of data that it can trace: it stores all the traced data in a buffer with a limited size. 

Therefore, when the trace execution ends, it saves only the amount of trace data that were 
in the buffer, losing the remaining of it. This tool does not scale with larger applications 
and it is not possible to run a full execution trace even of small applications. The buffer 

size depends on the amount of free RAM that is available on the device. However, even 
with more than 1GB available, most of the tested benchmarks still will make the buffer 

overflow. Another important limitation is that it can only trace methods executed by 
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Dalvik Virtual Machine. Therefore, native code (JNI methods or Native Activities) is not 

considered. Tracing native code is a core feature when it comes to trace applications that 
have native methods. 

3.2. Modification of DDMS 

As the DDMS is written in Java and runs as an Eclipse plugin, it is slow by nature. 
Therefore, the tool proposed by Hyen-Ju Yoon [11] has the goal of speeding up the 

profiling speed. It is done by decomposing the Traceview into a log data processing layer 
and a Pretrace program layer that create and analyze the start and end time of methods. 

However, no quantitative information of this speed up is given at all. Moreover, as already 
explained, DDMS focuses on Dalvik VM only, so native library and Linux kernel cannot 
be observed in detail. 

3.3. AndroScope 

Due to before mentioned Traceview limitations (i.e it traces just methods that are created 

by the Dalvik VM, and presents poor performance in opening large amounts of data),  M. 
Cho et al. [12], proposed a performance analysis tool for the Android platform. This tool 
was made to support Java and native applications, Dalvik VM and Android libraries.  

A low-level performance analysis through Hardware Performance Counters 
(HPC) is used to store counts of hardware events such as cache misses, CPU cycles and 

executed instructions. With this information, it is possible to obtain the IPC, as a 
performance factor. An extended GCC compiler front-end automatically inserts 
instrumentation codes to obtain the trace of native libraries and to provide a runtime 

filtering by class, method name or signature, which allows a selective trace.  

M. Cho et al. also developed a graphical user interface, based on Traceview, to 

display the traced data. They created a new layer to process mass trace logs faster, called 
“tracebridge” and used Traceview just to display the post-processed data. 

This performance analysis through HPCs cannot be done in the Android Emulator 

because HPCs are not implemented in QEMU, an open source machine emulator and 
virtualizer that will be the basis for part of the tool we are proposing. Therefore, to use 

functionalities that HPC provides, we would have to implement it or use alternative ways 
to get the same results. We will get executed instructions with QEMU’s basic block log 
mechanism and CPU cycles estimation by importing a category characterization file. 

However, initially our tool will not be able to get cache misses events information because 
we do not have temporal information of the execution. 

3.4. CPU cycle count estimation 
A research conducted by Fujitsu Laboratories Ltd. [13], proposed a cycle estimation 
methodology for an instruction-level CPU emulator. It is divided into a two-phase 

pipeline scheduling process. First, a static phase is conducted to obtain a rough estimation 
of the CPU cycle count with the purpose of reducing the instrumentation performance 

cost. Then, the dynamic phase is responsible for refining the results and guaranteeing 
more precision. This methodology was implemented by modifying the QEMU source-
code with an error in the CPU cycle count of about 10% when comparing to a real CPU. 

However, as the source code is not available, the possibility of extending it to have more 
features (e.g.: such as: executed basic block and instruction information, power cost 

estimation and instruction categorization) was discarded. 
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All the previous works illustrate the difficulty of tracing and profiling mobile 

applications. In addition to CPU cycle estimation, this work proposes an approach that 
will provide information about the executed basic blocks and power consumption. 

 A comparison between these tools with our tool is presented on Table 1: 

Table 10. Tools comparison 

Features\Tools Our 

tool 

Trace

view 

Mod. of 

DDMS 

Andro

Scope 

Cycle 

estim. 

Trace native code X   X ? 

Trace basic block information: BB 

instructions, #calls by each process 

X     

Process instruction information: 

#calls, categories 

X     

Process a large amount of data X  ? X ? 

IPC estimation    X X 

Power cost information X     

Cycle cost information X   X X 

Faster data visualization than 

Traceview 

- - X X - 

Instruction categorization X     

Identify and separate the data of 

different applications in the trace 

X     

Trace method information: name, 

exec. time, #calls, calls hierarchy 

 X X X  

Support different architectures X X X ? ? 

No need to import the data every 

time the program is executed: usage 

of a database to store data 

X     

 

Legend: 

X 

? 

- 

Blank cells 

Tool has this feature 

No information is given about this feature 
Feature does not apply 
Not Available 

 

4. Project 

To accomplish this, two main pillars will be the basis of the tool:  

 A QEMU modification to generate trace information about the executed basic 

blocks; 

 A graphical user interface to import and analyze the collected data and a second 

graphical user interface that will allow the user to define different Instruction Set 
Architectures (ISAs) and set categories’ cycle and power costs; 

We are going to use the Android Emulator, available in the Android SDK, to 
execute the applications. The Emulator is based on QEMU, also included in Android 
SDK. Our tool will not require a specific Android Virtual Device (AVD). AVD is an 

emulator configuration that defines software and hardware configuration, so an actual 
device can be modeled/emulated [14]. For instance, it is possible to emulate a device 
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running Android 4.2.2, on an ARM processor, with 512MB RAM, 1GB internal storage 

and 2GB SD card; or an Android 2.3 running on an Intel Atom, with 256MB RAM, 
512MB internal storage and 4GB SD card. In our tool, the user will be free to choose the 

configuration that is considered the most appropriate. 

 

Figure 19. Tool overview 

Figure 4 shows an overview of the tool flow; components that will be added are 

represented in green and the ones that will be modified, in orange. QEMU will be 
modified to generate more information about the basic blocks, which will be saved in the 

BB info file, and to include an ID for each basic block in the BB log. The Emulator will 
be modified to trigger the BB data collected from QEMU.  

A Graphical User Interface for instruction categorization will be made to assign 

categories for instructions; these categories will have both cycle and power costs. Finally, 
an analysis tool with a Graphical User Interface will import both created files from 

QEMU and the instruction categorization file and, after processing the data, it will present 
the analyzed data to the user for an easier understanding of what was executed, saving all 
necessary data into a database. The database is necessary because of memory limitations, 

besides the obvious advantage of providing a way of loading previous saved 
configurations. 

4.1. QEMU modification 
QEMU [15] emulates the hardware so it is possible to run programs on a virtual hardware 

platform using different ISAs, such as ARM, MIPS, x86, PowerPC, SPARC and others. 
This emulation is possible due to a dynamic translation mechanism. As expected, it is 

slower than execution on real hardware. By using dynamic binary translation, it is 
possible to translate, typically one basic block at a time, instructions from one ISA to 
another. 
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Figure 20. Modified QEMU emulation flow 

Considering the components that comprise QEMU, shown in Figure 4, its 
emulation flow is demonstrated in Figure 5. In the same way as before, green components 

represent the components that will be added; orange, the modified; gray, the removed; 
and blue, the ones which will not be modified.  

Every time there is a new Basic Block to be executed, QEMU translates it into a 

Translated Block (TB), a Basic Block composed of instructions implemented with the 
ISA of the host machine. Whenever the PC is updated, the respective TB is searched. The 

TB can or cannot be cached.  

Whether the Translated Block (TB) is not cached, the original basic block is saved 
into a log file (enabled by the option –d in_asm on QEMU command line interface) and 

the TB is cached so it is not necessary to translate it again whenever this same BB is 
found. A modification in the log saving process will include a basic block identifier, so 

each basic block will be unique. This identifier will be used, in addition to the Process ID 
(PID), to keep track of how many times each process executed this basic block. Therefore, 
we do not need to store the whole basic block in the structure responsible for counting the 

executed basic blocks, only its identifier. In addition, an entry in a hash table will be 
created using the PID and the Basic Block ID as the key. This entry will store how many 

times the BB was called, in addition to the PC address from the first instruction of each 
BB.  
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On the other hand, if the TB is cached, the entry in the hash table will be updated 

if the process already executed the given TB, or a new entry will be created if it is the 
first time the BB is executed by the given process. After finding or creating the TB and 

updating the hash table, QEMU executes it. 

The process of reading a TB from cache is slow. Therefore, QEMU implements a 
TB chaining mechanism. Every time a TB returns, QEMU tries to chain this TB to the 

next TB that will be executed so it does not need to search the TBs one by one. However, 
we will remove this mechanism because our hash table is updated after each TB is 

searched or created. Therefore, we can have the original executed translated blocks and 
have a correct counting for each basic block and process. 

Nowadays, some smartphones and tablets are coming with other architectures 

besides ARM; for instance: Intel x86. This percentage of architectures other than ARM 
tends to increase once more processors’ manufacturers start to reveal interest in this area. 

Hence, the goal is also to modify QEMU to support different architectures and provide 
this information not only for ARM processors. 

4.2. Graphical user Interfaces 

We propose two GUIs (Graphical user Interfaces) that will help in the data 

analysis process: an instruction categorization GUI and an analysis GUI.  

The former GUI has the goal to create an instruction information file (“Instr. Info 

File” from Figure 4) with categorized instructions with data on cycle and the power costs 
for each category. Some features of this GUI will be: 

 Create instruction information files for different processors’ architectures and 

organizations; 

 Import either instructions from a BB log file or instructions, with their categories 

and costs, from a previously created file of this GUI. It also will be possible to 
add instructions manually; 

 Create categories for the instructions, specifying the average cycle cost and power 
consumption of the instructions on this new category; 

 Each instruction will have a type. For instance, in an ARM architecture it will be 
possible to define either Thumb or ARM instructions. Thumb instructions are a 
subset of ARM instructions with reduced bit encoding size. Therefore, Thumb 

instructions need less memory than ARM instructions: they are 16 bits long, while 
ARM instructions are 32 bits long. However, not every ARM instruction has an 

equivalent Thumb instruction; 

 Export these categorized instructions with their respective costs; 

An example of this structure is given as follows: for an ARMv7 architecture, we 
can create a conditional branch category with cycle cost of 1, power consumption cost of 
2 watts, which comprise the following instructions: BEQ (ARM), BEQ (Thumb), BNE 

(ARM), BLT (Thumb), BLE (ARM), BGT (Thumb), BGE (Thumb) and other conditional 
branch instructions; and other categories. 

We also propose a second GUI to process the data generated by the modified 
QEMU and organize it in a more legible way. Some features that will be available are: 

 Information about the basic blocks: total cycle cost per basic block. This allows 

the user to know the most costly basic blocks in terms of cycles and compare the 
behavior of the basic blocks of a specific process; 



61 

 

 PID chart based on the total cycle cost of each PID. This feature will allow seeing 

which the most costly processes that had executed are; 

 Performance estimation based on a given operation frequency; 

 Instructions and basic blocks histogram, which will allow seeing which were the 
most executed instructions and basic blocks, respectively; 

 A chart that shows the total cycle cost by instruction; 

 Instruction categories histogram and total cycle cost chart; 

 Import profiles (instruction characterization) for different QEMU supported 
instruction set architectures; 

 Power consumption estimation, based on the information provided by the user 
when configuring the instruction categories. This is a useful feature, once the 

mobile devices have limitations in relation to battery capacity, so the development 
of an application that consumes the lowest power as possible is extremely 

important; 

5. Implementation methodology 

The tracing tool is proposed to run on Ubuntu operating system; however, nothing 
prevents it from running on another OS, as long as the Android source can be checked 

out from the Android’s Git repository, an open-source version-control system designed 
to handle large projects distributed  over multiple repositories. Also, Repo, a repository 

management tool complementary to Git  [16] needs to be supported and the SDK needs 
to be compiled. 

The GUI runs on any operating system that supports Java Runtime Environment 

(JRE), necessary to run Java applications. 

The following programming languages and libraries will be used: 

 For the execution of the emulator, bash scripts to make the emulation process 
easier will be provided; 

 QEMU modification: C language, since the QEMU code was written in C, the 

modifications and the new modules that will be added will be written in C as well; 

 GUI: Java language, because of its portability. Any operating system that supports 

Java Virtual Machine (JVM) will be able to run the tools’ GUIs; 

 BD: SQLite3, a library that implements a serverless, transactional SQL database 

engine [17]. Useful because the user does not have to get a specific Database 
Management System (DBMS), like Oracle or MySQL, in the host computer. 

In relation to the development environment: 

 QEMU modification: gedit (standard Ubuntu’s text editor) and GCC, to maintain 

the SDK compilation, which compiles both QEMU and Android Emulator; 

 GUI: Eclipse IDE with WindowBuilder plugin, a plugin that helps on the creation 

of graphical windows. 
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6. Case Study 

Considering the overhead caused by the use of a virtual machine, we propose to convert 

some SPEC benchmarks to both Java Native Interface (JNI) and Native Activities. This 
conversion will take the methods that are executed most of the time and convert it to a 

native C method that will be called by the Java side. Therefore, the execution of the 
method will not be made by Dalvik VM. By doing this, a low virtual machine overhead 
is expected in the execution of these native methods. 

Dalvik JIT mechanism was implemented to speed up the execution of applications 
once the cached code will not have to be interpreted again on its execution. Considering 

this, we propose six simulations for each benchmark: Java applications with and without 
JIT, JNI applications with and without JIT and Native Activities applications with and 
without JIT. 

With the developed tool, it will be possible to have more information of how the 
Dalvik VM and the JIT mechanism affects the execution, in addition to the time measures 

to compare performance. 

7. Chronogram 

A chronogram of the activities that will be developed in this work is organized in 
Table 2. 

Table 11. Activities chronogram 

 Jul. Ago. Sep. Oct. Nov. Dec. 

QEMU modification X X X    

Instruction categorization GUI  X     

Processing GUI  X X X   

Case study   X X X X 

8. Conclusion 

Regarding the available tracing and profiling tools that are available to Android 
developers, there are only a few options, and all of these options have limitations. Due to 

the difficulty of getting useful data of Android applications’ execution, we propose a tool 
to generate more information and to process this information so it will be easier for the 
user to analyze the data. In addition, the tool has the goal to be able to process a larger 

amount of data than some other profiling tools, like Traceview. 

In relation to the case study, it will be possible to validate the tool as well as make 

a study with a series of comparisons between different kinds of applications, with 
different implementations and running with different optimization mechanisms. 
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