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Abstract: The main objective of this study was to use infrared spectroscopy to identify 
vegetable oils used as raw material for biodiesel production and apply multivariate analysis 
to the data. Six different vegetable oil sources—canola, cotton, corn, palm, sunflower and 
soybeans—were used to produce biodiesel batches. The spectra were acquired by Fourier 
transform infrared spectroscopy using a universal attenuated total reflectance sensor 
(FTIR-UATR). For the multivariate analysis principal component analysis (PCA), 
hierarchical cluster analysis (HCA), interval principal component analysis (iPCA) and soft 
independent modeling of class analogy (SIMCA) were used. The results indicate that is 
possible to develop a methodology to identify vegetable oils used as raw material in the 
production of biodiesel by FTIR-UATR applying multivariate analysis. It was also 
observed that the iPCA found the best spectral range for separation of biodiesel batches 
using FTIR-UATR data, and with this result, the SIMCA method classified 100% of the 
soybean biodiesel samples. 
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1. Introduction 

Brazil has always stood out on the global scene for its advanced know-how in the production of 
biofuels, and was the second-largest producer of biodiesel in 2010 and the biggest global consumer  
in 2011 [1]. The first experiments on the use of ethanol in Otto cycle engines date back to the 
beginning of the 20th century. Although studies on biofuels in Brazil started long ago, it was only in 
the 21th century that the country put into action a plan to produce biodiesel on a large scale, taking 
advantage of the experience acquired with the Pro-Alcohol Program. With the intent to broaden the 
Brazilian energy matrix, in 2004, the Federal Government launched the National Program of Biodiesel 
Production and Use (PNPB). 

Biodiesel is defined by the National Petroleum Agency (ANP), through Government Directive  
Nº 255, of 15 September 2003, as a compound fuel derived from vegetable oils or animal fats, called 
B100 [2]. It can be used in pressure-ignited internal combustion engines or for other types of energy 
generation and can partially or totally replace fossil fuels. Therefore, there are wide possibilities to  
use biodiesel in urban, road and rail transportation, for the generation of energy, in stationary  
engines, and others. 

Brazil enjoys a privileged position compared to other countries, due to its biodiversity and vast 
territorial area, able to facilitate the cultivation of distinct species in every region. Consequently, the 
raw materials for the production of biodiesel can be selected in accordance with their availability in 
each region throughout the country [3]. Among the sources stand out among them are oilseeds, like 
cotton, peanut, dendê (palm oil), sunflower, castor bean, barbados nut and soybean [4–6]. Besides the 
privileged location, two other factors drive Brazil’s biodiesel production. The first is the amount of 
arable land available and the second is the abundance of water resources. According to the Ministry of 
Agriculture, just considering the new areas that could be destined for the production of oilseeds, they 
would amount to approximately 200 million hectares [5]. 

Currently, soybean oil is the most used vegetable raw material for making biodiesel in Brazil, with 
an average share of 78% in the production of this fuel, followed by cotton oil, with approximately a  
4-percent share. The remainder includes animal fats, and other oily materials [7]. Notwithstanding 
soybean oil’s status as most important raw material, in terms of volume, in the production of biodiesel, 
the Federal Government has been encouraging the development of other oilseed crops, particularly the 
ones linked with family farming operations. Furthermore, depending on only one crop as major 
supplier of raw material of an important national energy autonomy project might turn it unsustainable, 
as it would promote the economic development only (or mainly) of regions where climate and 
geological characteristics are favorable, whilst keeping the project at the mercy of economic pressures 
from one production chain only. Similar problems surfaced in the development of the Pro-Alcohol 
Program in the 1970s. 

In this sense, the Ministry of Agriculture, Livestock and Food Supply (MAPA) has been assisting 
the farmers with crop management practices, providing them with cultivars for the production of 
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biodiesel. In line with this work, the Brazilian government encourages the production of biodiesel from 
different oilseeds and technological nuances, inviting the participation of agribusiness and family 
farming operations [5]. Likewise, federal decrees define the taxation rules, which can vary according 
to planting region, raw material or production category, with distinct tax rates levied on agribusiness 
and family farming, where the latter is a priority of the program. Another factor that leads to the 
cultivation of several oilseed crops is easy access to bank loans and reduced interest rates, besides the 
obligation of the biodiesel producing companies to acquire 5% of their raw material from family 
farmers. Besides the incentive for the production of biofuels, aligned with the economic development 
brought about by the production of the oilseeds, the adoption of a quality control program is essential 
for the identification of the different vegetable oil sources of these biofuels. 

This need becomes even more relevant as there are soaring financial attractions for the production 
of alternative biofuels from renewable sources, in which a diversity of fuel formulations is (or could 
be) available in the market. This would also inhibit the use of raw materials and the production of 
biodiesel without the authorization of the regulating organ. 

Nevertheless, few studies with the aim to identify a vegetable oil source utilized in the production 
of biofuels exist. With the incentives of the federal government, now encouraging the use of new raw 
materials for the production of biodiesel, it is necessary to identify their source and, to this end, there is 
a need to resort to methodologies that make it possible to identify a vegetable oil source. With regard 
to chemistry, vegetable oils of distinct sources present a different fatty acids chemical compositions. 
They differ with regard to the length of the chain, the degree of saturation or the presence of other 
chemical functions [8], properties that can all be identified through spectrometric techniques [9–14]. 

A major reason for characterizing its source is related to inspection, as some countries rely on 
different policies depending on the raw material. Another reason is related to the specific  
physical-chemical properties of every different vegetable oil and their relation with correct application. 
Within this context, besides the development of research towards making it technically and 
economically viable to use other raw materials for the production of biodiesel, it becomes evident (or 
consequent) that it is necessary to develop analytical techniques to make it possible to identify the 
vegetable oil source utilized in the production of biodiesel. 

Multivariate analyses have recently made possible modeling of chemical and physical properties of 
simple and complex systems from spectroscopic data. Recent works using near infrared (NIR) 
spectroscopy, and multivariate analysis for biodiesels in order to identify which vegetable oils are used 
in production were investigated. Principal component analysis (PCA), and hierarchical cluster analysis 
(HCA) were used for unsupervised pattern recognition while soft independent modelling of class 
analogy (SIMCA), was used for supervised pattern recognition [14]. In another work four different 
multivariate data analysis techniques are used to solve the classification problem, including regularized 
discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA),  
K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by 
feedstock (base stock) type can be successfully solved with modern machine learning techniques and 
NIR spectroscopy data [15]. Also two classification methods are compared, namely full-spectrum soft 
independent modelling of class analogy (SIMCA) and linear discriminant analysis with variables 
selected by the successive projections algorithm (SPA-LDA) [16]. 
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In the other hand, qualitative and quantitative analysis using spectroscopy in the infrared region 
expanded from the time when the data generated by a FT-IR spectrophotometer could only be scanned, 
enabling statistical methods to solve problems of chemical analysis [17–21]. In HCA the spectra data 
matrix is reduced to one dimension, by matching similar pairs, until all points in a single group are 
matched. The goal of HCA is to display the data in a two-dimensional space in order to emphasize 
their natural groupings and patterns. The distance between the points (samples and variables) reflects 
the similarity of their properties, so the closer the points in the sample space, the more similar they are. 
Results are presented as dendrograms, which samples or variables are grouped according to similarity. In 
PCA the n-dimensional data is designed into a low-dimensional space, usually two or three. This is done 
by calculating the principal components obtained by making linear combinations of original variables. In 
a principal component analysis, clustering of samples defines the structure of data through graphs of 
scores and loadings, whose axes are principal components (PCs) in which data are designed [22–24]. 
The iPCA analysis consists of dividing the data set into a number of equidistant intervals. For each 
interval a PCA is performed, and the results are shown in charts of scores. This method is intended to 
give an overview of the data and may be useful in the interpretation of signs which are more 
representative of the spectrum to build a good model for multivariate calibration [25–27]. In SIMCA, 
there is a training set which is modeled by principal component analysis (PCA). Subsequently, new 
samples are fitted to the model. Test samples are classified as similar or dissimilar [23,28]. 

2. Experimental Section 

2.1. Materials and Methods 

Were used six different vegetable oil sources: canola, cotton, corn, palm, sunflower and soybean. 
For the latter two, two samples of each oil from different sources were acquired. A two-letter code was 
used to identify the samples. The first letter specifies if the oil sample is degummed (O) or biodiesel 
(B), the second letter specifies which vegetable oil source was utilized (for example, C = Canola) and 
the code that comes next to letter identification represents the analysis reproduction number. Finally, 
the small letter (a or b) identifies the origin of the sample. The biodiesel samples were produced from 
samples of degummed oils. From the cotton oil sample two batches were produced and from the 
soybean sample (b) three batches of biodiesel were produced. This procedure was adopted with the 
purpose to guarantee the method reproducibility. The canola and sunflower biodiesel batches were 
acquired from the biodiesel pilot plant of the University of Santa Cruz do Sul—UNISC, in Rio Grande 
do Sul, Brazil. 

The methylation route was used to produce the biodiesel via transesterification. Sodium methoxide 
(Rodhia) was used as catalyst, and as reagent, methyl alcohol (Vetec, P.A) at a 1:6 molar rate [29]. The 
biodiesel samples were characterized through methods standardized by the AOCS Physical and 
Chemical Characteristics of Oils, Fats, and Waxes and European Norm (EN) by the following 
parameters and respective methods: moisture (AOCS Ca2e-84), acidity rate (AOCS Ca5a-40), total 
glycerol (EN 14105), free glycerol (AOCS Ca14-5) and methanol (EN 14110). 
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2.2. Acquisition of Spectra in the Medium Infrared 

The infrared spectra were acquired on a Perkin Elmer model Spectrum 400 FTIR Spectrometer, 
based on a Universal Attenuated Total Reflectance sensor (UATR-FTIR). A range from  
4,000 to 650 cm−1 was scanned, with a resolution of 4 cm−1 and 32 scans. The crystal utilized in this 
technique, contains diamond in its upper layer and a zinc selenide focusing element. The spectra of 
each sample were acquired with six replicates. Later, they were normalized, in order to eliminate the 
differences in intensity stemming from concentration variations, reducing external effects in the same 
order of magnitude, and all of them varying within an intensity range from 0 to 1 [30]. 

2.3. Multivariate Data Analysis 

All obtained spectra were treated by multivariate analysis tools, using the Hierarchical Cluster 
Analysis (HCA) and the Principal Components Analysis (PCA) and the Soft Independent Modeling of 
Class Analogy (SIMCA), through the computer program Pirouette® 3.11 by Infometrix (Bothell, WA, 
USA). Interval Principal Component Analysis (iPCA) from the software Matlab® 7.11.0  
(The Math Works, Natick, MA, USA) was also employed, using the iToolbox package 
(http://www.models.kvl.dk, Copenhagen, Denmark). 

2.4. Modeling of Biodiesel Batches in the Medium Infrared 

The set of raw spectra of biodiesel samples are shown in Figure 1. To remove noise the spectra 
were then treated using the Savitzky–Golay first derivative procedure with a second-order polynomial 
and a 15-point window. Mean centered data and Standard Normal Variate (SNV) were used as  
pre-processing tools for multivariate analysis [31]. 

Figure 1. Spectra of samples of biodiesel obtained in the range 4,000 to 650 cm−1. 

 

2.4.1. PCA and HCA 

In the PCA and HCA, the 735–1,783 and 2,810–3,035 cm−1 regions were selected because the other 
regions contained no spectral information or were polluted by water vapor or carbon dioxide bands due 
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to poor compensation. For obtaining the HCA dendrogram, the Euclidian distance and the incremental 
connection method were used. In Figure 2, one can observe the spectra of samples of biodiesel with the 
application of the first derivative and the SNV. The regions of the spectra that were excluded  
are highlighted. 

Figure 2. UATR-FTIR spectra of samples of biodiesel with the application of the first 
derivative and the SNV. The excluded regions of the spectra are highlighted. 

 

2.4.2. Interval Principal Component Analysis (iPCA) 

The objectives of the results obtained at the Interval Principal Component Analysis (iPCA) 
consisted in detecting the spectral region where there is the best separation of the different samples of 
biodiesel with the intent to utilize it later in the SIMCA classification method. The spectra were split 
into 8, 16, 32 and 64 equidistant regions, while the combination of results between the principal 
components: PC1 versus PC2, PC1 versus PC3 e PC2 versus PC3, was also evaluated. 

2.4.3. Soft Independent Modeling of Class Analogy (SIMCA) 

Once the best spectral region was obtained with the iPCA algorithm, the SIMCA model was built 
using of the biodiesel spectra data. The SIMCA model built was in accordance with the data in Table 1. 

Table 1. Training and testing data sets of the SIMCA model. 

Training Set 
Class  Specification Sample Identification Numbers of Batches Number of Spectra 
Class I Canola BCa 1 6 
Class II Sunflower  BGa 1 6 
Class III Corn BMa 1 6 
Class IV Soybean BSb 2 10 

Testing Set 
Class IV Soybean BSb 1 6 
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3. Results and Discussion 

3.1. Characterization of the Biodiesel Batches 

The results from the characterization of the biodiesel samples are shown on Table 2. 

Table 2. Results of standardized methods for the characterization of samples of biodiesel. 

Parameters Moisture 
Index Total 

Acidity 
Total 

Glycerol 
Free Glycerol Methanol 

Methods 
AOCS 

Ca2e-84 
AOCS 

Ca5a-40 
EN 14105 

AOCS 
Ca14-56 

EN 14110 

Maximum Standards 
(ANP 07/2008) 

500  
mg·kg−1 

0.5 
mg·KOH·g−1 

0.25% 
Weight 

0.02% 
Weight 

0.2%  
Weight 

Soybean A (BSa) 601 0.42 1.72 0.20 0.184 
Soybean 1B (BSb) 310 0.35 0.15 0.013 0.154 
Soybean 2B (BSb) 326 0.38 0.16 0.009 0.165 
Soybean 3B (BSb) 305 0.32 0.14 0.011 0.147 

Corn (BMa) 350 0.30 0.22 0.012 0.134 
Palm (BPa) 427 0.37 0.23 0.013 0.152 

Canola B (BCb) 433 0.51 0.26 0.018 0.179 
Cotton A (BAa) 343 0.45 0.15 0.003 0.145 
Cotton B (BAb) 356 0.42 0.17 0.006 0.167 

Sunflower A (BGa) 458 0.49 0.24 0.009 0.145 
Sunflower B (BGb) 489 0.43 0.11 0.012 0.153 

3.2. Joint Analysis between the Biodiesel and the Degummed Oil Samples 

Through the PCA, it was observed that 93.73% of data variances were explained by the analysis of 
the two principal components. Figure 3 shows PCA scores plot (PC1 versus PC2) obtained from 
UATR/FTIR data. PC1 separates the biodiesel samples, with positive values, from the degummed oil 
samples, in negative values on the scores chart. On the other hand, PC2, in turn, manages to separate 
both the biodiesel samples and the samples of palm and cotton degummed oils, in positive values, from 
the samples of biodiesel and samples of soybean, sunflower, canola and corn degummed oils, in 
negative values on the scores chart. 

Although the samples of degummed oils and the samples of biodiesel are on opposite sides in 
Figure 3, it is clear that the vegetable oil source exerts an influence on the PC2 of these samples, for 
example, by observing the samples of biodiesel and the samples of degummed palm and cotton oils, it 
is ascertained that they are located approximately at the same height of the PC2 axis, though on 
opposite sides. The same thing also occurs with the other samples. The trends observed through 
analyses of the principal components were confirmed through the dendrogram obtained by HCA 
(Figure 4). 
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Figure 5. Percent variance to the UATR-FTIR derivate spectra data divided into 16 
equidistant intervals. 

 

The spectral region from 1,300–900 cm−1 is referred to as the fingerprint, as it confirms the identity 
of compounds. Within this range, the most important absorptions are the ones stemming from the 
stretching of the C–O bond of the esters. These absorption ranges of the ester C–O bonds, actually 
correspond to two asymmetric vibrations that involve the bonds C–C and C–O. In the case of saturated 
aliphatic esters, the two bands observed appear at 1,275–1,185 cm−1 and at 1,160–1,050 cm−1. The first 
involves the bond stretching between the oxygen and the carbonyl carbon, coupled with C–C 
stretching. The second involves the bond stretching between the oxygen atom and a carbon atom. The 
band that occurs in the biggest number of waves is usually the more intense of the two [32]. 

The spectral region where the best separation of biodiesel samples in the UATR-FTIR spectra data 
was achieved includes the range of 1,276 to 1,068 cm−1, regarding interval 14, which can be  
visualized in Figure 6. 

Figure 6. iPCA scores plot (PC1 versus PC2) for the UATR-FTIR spectra of biodiesel samples. 

 

Figure 6 presents differences between soybean and sunflower samples. It is observed that the 
batches of soybean A and B are not in the same group and, consequently, they present differences in 
their chemical composition. This is justified by the characterization data of the biodiesel samples 
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shown on Table 2. The batch of soybean A presents parameters such as moisture, total glycerol, free 
glycerol and methanol that are not in line with the specified quality patterns of biodiesel (set forth by 
ANP 07/2008), particularly with regard to the total glycerol rate, reaching the value of 1.72%, and the 
established limit is 0.25%. The amount of glycerol in the batch suggests that the decantation process 
was insufficient, which means that the glycerin was not totally removed. In the same way the behavior 
of the batches of sunflower A and B can be observed, where it becomes evident that the biodiesel from 
sunflower A has more similarity with the soybean A, which is not in compliance with the 
recommended specification. For these reasons, the batches of soybean A and sunflower A were not 
considered in the development of the SIMCA modeling. 

3.4. Soft Independent Modeling of Class Analogy (SIMCA) 

The spectral region, from 1,276 to 1,068 cm−1, where the best biodiesel sample separation was 
achieved using UATR-FTIR spectra data at the iPCA was used for the SIMCA modeling. Prior to this 
modeling, a PCA was developed from the spectra samples that make up the training data presented in 
Table 1. Upon analyzing the results achieved with the PCA, it was observed that 98.40% of data 
variance was explained in the two first principal components. The Figure 7 shows the scores plot (PC1 
versus PC2) for the UATR-FTIR spectra of biodiesel samples used in the SIMCA training set. 

Figure 7. Scores plot (PC1 versus PC2) for the UATR-FTIR spectra of biodiesel samples 
used in the SIMCA training set. 

 

Table 3 presents a summary of the SIMCA model obtained. Figure 8 presents the Coomans diagram 
which features the orthogonal distances of the biodiesel utilized for the training set. It is observed that 
Class II and Class IV samples classify correctly into their respective classes. 
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Table 3. Summary of the results for the SIMCA model. 

Training Data 

Class 
Specification  
of the Batch 

Number of 
Factors 

% of Cumulative 
Variance 

Correctly 
Classified 

Incorrectly 
Classified 

I Canola 2 66.29 

100% 0 
II Sunflower 2 95.79 
III Corn 2 55.47 
IV Soybean 3 66.29 

Figure 8. SIMCA Model—Distance between the classes for the training biodiesel samples 
(Class II versus Class IV). 

 

Figure 9 presents the results achieved for the testing samples. The results proved satisfactory and 
suggest a 100% correct classification for the spectra of the samples of the batch of soybean  
biodiesel tested. 

Figure 9. SIMCA Model—Distance between the classes for testing biodiesel samples 
(Class II versus Class IV). 
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4. Conclusions 

The present paper suggests that is possible to develop a methodology to identify vegetable oils used 
as raw material in the production of biodiesel by Fourier transform infrared spectroscopy using a 
universal attenuated total reflectance (FTIR-UATR) sensor by applying multivariate methods of 
analysis. Upon comparing the samples of degummed oils and biodiesel in the FTIR through the PCA, 
it becomes evident that a vegetable oil source has the same influence on the principal components as 
the corresponding biodiesel. 

The application of principal component analysis by interval method (iPCA) made it possible to 
locate the best spectral intervals for the separation of samples of biodiesel using UATR-FTIR spectra 
data. In light of the results obtained in the FTIR, the SIMCA modeling allowed for the 100% 
classification of the soybean biodiesel samples. 
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