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ABSTRACT

The recent field of Deep Learning has introduced to Machine Learning new meth-
ods based on distributed abstract representations of the training data throughout
hierarchical structures. The hierarchical organization of layers allows these meth-
ods to store distributed information on sensory signals and to create concepts with
different abstraction levels to represent the input data. This work investigates the
impact of a hierarchical structure inspired by ideas on Deep Learning and based on
the Incremental Gaussian Mixture Network (IGMN), a probabilistic neural network
with an on-line and incremental learning, specially suitable for robotic tasks. As
a result, a hierarchical architecture, called Hierarchical Incremental Gaussian Mix-
ture Network (HIGMN), was developed, which combines two levels of IGMNs. The
HIGMN first-level layers are able to learn concepts from data of different domains
that are then related in the second-level layer. The proposed model was compared
with the IGMN regarding robotic tasks, in special, the task of learning and repro-
ducing a wall-following behavior, based on a Learning from Demonstration (LfD)
approach. The experiments showed how the HIGMN can perform parallely three
different tasks - concept learning, behavior segmentation, and learning and repro-
ducing behaviors - and its ability to learn a wall-following behavior and to perform it
in unknown environments with new sensory information. HIGMN could reproduce
the wall-following behavior after a single, simple, and short demonstration of the
behavior. Moreover, it acquired different types of knowledge: information on the
environment, the robot kinematics, and the target behavior.

Keywords: Hierarchical Incremental Gaussian Mixture Network, IGMN, Robotics,
Learning from Demonstration, Deep Learning.



RESUMO

O recente campo de Deep Learning introduziu à área de Aprendizagem de Máquina
novos métodos baseados em representações distribúıdas e abstratas dos dados de trei-
namento ao longo de estruturas hierárquicas. A organização hierárquica de camadas
permite que esses métodos guardem informações distribúıdas sobre os sinais sensori-
ais e criem conceitos com diferentes ńıveis de abstração para representar os dados de
entrada. Este trabalho investiga o impacto de uma estrutura hierárquica inspirada
pelas ideias apresentadas em Deep Learning, e com base na Incremental Gaussian
Mixture Network (IGMN), uma rede neural probabiĺıstica com aprendizagem online
e incremental, especialmente adequada para as tarefas de robótica. Como resultado,
foi desenvolvida uma arquitetura hierárquica, denominada Hierarchical Incremental
Gaussian Mixture Network (HIGMN), que combina dois ńıveis de IGMNs. As cama-
das de primeiro ńıvel da HIGMN são capazes de aprender conceitos a partir de dados
de diferentes domı́nios que são então relacionados na camada de segundo ńıvel. O
modelo proposto foi comparado com a IGMN em tarefas de robótica, em especial, na
tarefa de aprender e reproduzir um comportamento de seguir paredes, com base em
uma abordagem de Aprendizado por Demonstração. Os experimentos mostraram
como a HIGMN pode executar três diferentes tarefas em paralelo (aprendizagem de
conceitos, segmentação de comportamento, e aprendizagem e reprodução de com-
portamentos) e sua capacidade de aprender um comportamento de seguir paredes
e reproduzi-lo em ambientes desconhecidos com novas informações sensoriais. A
HIGMN conseguiu reproduzir o comportamento de seguir paredes depois de uma
única, simples e curta demonstração do comportamento. Além disso, ela adquiriu
conhecimento de diferentes tipos: informações sobre o ambiente, a cinemática do
robô, e o comportamento alvo.

Palavras-chave: Hierarchical Incremental Gaussian Mixture Network, IGMN, Robótica,
Aprendizado por Demonstração, Deep Learning.
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1 INTRODUCTION

Studies about the mammal brain, especially about the neocortex (HAWKINS,
2005)(AREL; ROSE; KARNOWSKI, 2010), emphasize important structural and
functional characteristics: the neocortex is organized in a hierarchical structure, in
which sensory inputs are propagated and transformed through several layers of neu-
rons, resulting in a distributed representation of information in multiple abstraction
levels (SERRE et al., 2007). Abstraction, in this context, refers to the generalization
of a representation, i.e., a high abstract representation is more generic, comprising
a large amount of information, while a low abstract representation, contrarily, is
more specific and comprises less information. In the neocortex, neurons with a low
abstraction (or low level neurons) are tied to particular perceptions.

These neocortex characteristics are the basis of the Deep Learning networks,
or simply Deep Architectures (BENGIO, 2009). Deep Architectures are models
composed of multiple layers (in general more than three) of non-linear operators.
These networks learn features (or concepts) with low abstraction at the first layer,
and high-level concepts at the last one, in a way that the high-level concepts are
formed by composition of the lower ones.

The depth, which refers to the number of layers in a network, is an important
aspect of Deep Architectures. In fact, it is argued that some functions cannot be
efficiently represented by too shallow networks (BENGIO, 2009). Therefore, if a
network lacks of the necessary number of layers, it needs a number of neurons much
larger than it would have by adding more layers.

Classical learning algorithms are limited to networks with normally two or three
layers, obtaining poor results with deeper networks (BENGIO; LeCun, 2007)(UT-
GOFF; STRACUZZI, 2002). The Deep Learning field introduced learning algo-
rithms able to train deeper models, successfully working for networks with four or
more layers. These learning algorithms work by training a layer at a time with an
unsupervised algorithm. The first layer receives the raw data and then it extracts
features. The second and upper layers learn the activations of the lower layers.

Deep Architectures have been successfully applied in several applications (BEN-
GIO, 2009), such as classification, regression, dimensionality reduction, modeling
textures, modeling motion, information retrieval, natural language processing, col-
laborative filtering, and robotics. The current Deep Architectures (HINTON; OSIN-
DERO; TEH, 2006)(BENGIO et al., 2007)(RANZATO; BOUREAU; LECUN, 2008)
(RANZATO et al., 2007)(VINCENT et al., 2008) focus on processing sensory data,
using them to create abstract internal representations; however, not much atten-
tion have been given to the motor signals. In Hadsell et al. (2008), a Deep Belief
Network (DBN) is used to process visual perception of a mobile robot in an au-
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tonomous navigation task. The images obtained by a camera on the robot are
preprocessed and then sent to the DBN. The high-level features discovered by the
network are used as inputs for a classifier to find possible locations for navigation,
and both the planning and the motor controller are separate modules.

1.1 Motivation for this work

Heinen (2011) presented the Incremental Gaussian Mixture Network (IGMN), a
probabilistic neural network based on Gaussian Mixture Models (GMMs). IGMN
uses an incremental approximation of the Expectation-Maximization (EM) algo-
rithm (DEMPSTER et al., 1977) to create, update or even remove its neurons as
necessary. The network has a one-shot on-line learning algorithm, i.e, only a single
scan over the data is necessary to build a consistent model and this can be performed
in an on-line way. The IGMN has been applied in several robotic tasks, such as in
learning concepts from environment (ENGEL; HEINEN, 2010a)(HEINEN; ENGEL,
2011a)(HEINEN; ENGEL, 2010a), incremental and on-line mapping (HEINEN; EN-
GEL, 2011b)(HEINEN; ENGEL, 2010a)(HEINEN; ENGEL, 2010b), computing es-
timates of wheel velocities (HEINEN; ENGEL, 2010c)(HEINEN; ENGEL, 2009),
computing the inverse kinematics of a legged robot (HEINEN, 2011), and solving
the road sign problem (PINTO; ENGEL; HEINEN, 2012).

This work presents an analysis of the impact of a hierarchical architecture based
on IGMNs, specifically for robotic tasks. The motivation of this work relies on
the features presented by Deep Learning models and the applicability of IGMN in
robotics. The structure of a Deep Learning network presents important features
for Machine Learning: (i) with its hierarchical organization of layers, it can store
distributed information on sensory signals; (ii) it can learn low level concepts and
relate them as high level concepts; (iii) the relation between concepts is accom-
plished through the learning of activations, performed by high-level layers. On the
other hand, IGMN presents some important characteristics for robotics applications:
(i) IGMN works in an on-line manner, it does not need a separated training step;
(ii) it has an incremental topology, thus, it is not necessary to define the number
of neurons a priori ; (iii) it has a one-shot learning, i.e., it only needs a single scan
over the data, each training pattern can be discarded immediately after it is used;
(iv) it handles the stability-plasticity dilemma and does not suffer from catastrophic
interference.

In this dissertation, we present a probabilistic model called Hierarchical Incre-
mental Gaussian Mixture Network (HIGMN), which is composed of hierarchically
connected layers of IGMNs, that can extract features from the data, both sensory
and motor, and learning relations of these features at a higher level. Moreover, the
model extracts features from the input signals independently for each domain, i.e.,
features of the sonars and engines are extracted separately. Relations of these fea-
tures are then learned on a second level, where new high-level concepts are created.

Despite the fact that HIGMN performs in parallel the tasks of learning concepts,
segmenting behaviors, and learning and reproducing behaviors, we focus on the
task of learning and reproducing a right wall-following behavior by demonstration,
comparing the results of the model with a single IGMN.

The main contribution of this work is the development of the HIGMN, apply-
ing characteristics presented in Deep Learning on a IGMN based model, and new



18

applications of IGMN in robotic tasks, specifically the task of learning and repro-
ducing a behavior by demonstration. This work enables new researches in the field
of behavior learning and other applications of HIGMN.

1.2 Dissertation structure

This work starts by describing the IGMN model in Chapter 2, which serves as
basis for the proposed model, HIGMN, presented on Chapter 3. Chapter 4 presents
the reference works related to the applications explored herein: concept learning
in Section 4.2.1; behavior segmentation in Section 4.2.2; and behavior learning in
Section 4.2.3. Chapter 5 describes the experiments and obtained results. Finally,
Chapter 6 presents the conclusions of the work.
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2 INCREMENTAL GAUSSIANMIXTURE NETWORK

This chapter describes in detail the Incremental Gaussian Mixture Network
(IGMN) (HEINEN, 2011)(ENGEL; HEINEN, 2010a)(ENGEL; HEINEN, 2010b),
a probabilistic neural network based on Gaussian Mixture Models (GMMs), inher-
iting, therefore, an important feature from a representation point of view: IGMN
describes noisy environments in a very parsimonious way, with parameters that are
readily understandable (HEINEN, 2011). IGMN can perform supervised, unsuper-
vised and semi-supervised learning, and has an incremental architecture, i.e., the
network can create or remove neurons as necessary, handling the stability-plasticity
dilemma. IGMN has also a one-shot and on-line learning, which means that only a
single scan over the data is necessary to build a consistent model and this can be
performed in an on-line way.

The network operation can be summarized in two modes, (a) learning mode,
in which IGMN updates the neurons for new input patterns if at least one neuron
can properly represent the new information, creates new neurons if there is no neu-
ron able to represent it, and removes noisy neurons, which represent noise data.
IGMN can perform the learning mode on-line and perpetually, without suffering
from catastrophic interference. Thus, a complete retraining is not necessary when
new training input is presented to the network. After at least one learning step,
the network can perform the (b) recalling mode to estimate the missing elements
at the input layer. IGMN can estimate any number of missing input elements (e.g.,
presenting to the network an incomplete pattern) through a weighted sum of the
regression performed by its hidden neurons.

This chapter is structured as follows: Section 2.1 describes the architecture of
IGMN with an overview of its mechanisms; Sections 2.2 and 2.3 present in detail the
learning and recalling mode of the network, respectively; and, finally, Section 2.4
gives a summary of all configuration parameters of the networks and its algorithm
in pseudo-code.

2.1 Architecture

IGMN is a two-layer neural network (Figure 2.1) with an incremental topology,
adjusting itself to fit to the training data. This section presents an overview of the
mechanisms and features of IGMN and its layers, which work differently in each
operation mode.

The input layer is a representation of the input vector, within a fixed number
of neurons: one neuron for each input variable. In learning mode, this layer only
receives the input data and sends them to the hidden layer, without any computa-
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Figure 2.1: Example of an IGMN with 3 input nodes and 4 hidden neurons.

tion. In IGMN, there is no explicit output layer. Any neuron at the input layer
can be used as input or output element by omitting its value (i.e., presenting an
incomplete pattern to the network) in the recalling mode. In this case, the neurons
whose input values are known, are used as input elements and their values are sent
to the hidden layer, then the neurons whose input values are unknown or missing,
receive an estimate of their values from the hidden layer.

The hidden layer is responsible to hold and handle all information of the net-
work. In the learning mode, the hidden layer receives the input pattern from the
input layer and assimilates this information by updating the current set of neurons
or creating new ones. At the same time, the layer can remove the neurons which
are considered noise (i.e., which do not have a minimum activation during a cer-
tain number of steps). This process is incremental and one-shot, i.e., there is no
need to present the same information more than once to the network, the pattern is
learned in a single step, and it can be performed in an on-line way. In the recalling
mode, the hidden layer receives a partial information from the input layer and uses
it to estimate the missing information. Each neuron at this layer is a linear regres-
sor, which generates its own estimate. The hidden layer returns the sum of these
estimate weighted by the posterior probability of each neuron.

The two layers are fully connected to each other, but not to their own neurons,
and the connections have no weights, all necessary information is encapsulated in
the neurons. In the beginning, there is no neuron at the hidden layer, the network
creates them as necessary.

2.2 Learning mode

This section describes the IGMN learning mode, presenting all conditions to
create, update, and remove neurons. This process can be performed perpetually,
there is no need for a single and exclusive training phase. Figure 2.2 shows the
information flow through the network in the learning mode: the input layer receives
the pattern and simply sends it to the hidden layer.

IGMN assumes that the probability density of the input pattern p(x) can be
modeled by a linear combination of multivariate Gaussian density components, in
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Figure 2.2: Information flow through the IGMN in the learning mode: the input
layer receives the pattern and simply sends it to the hidden layer.

the form:

p(x) =
M∑
j=1

p(x|j)p(j) (2.1)

where M is the number of neurons, or components. The coefficients p(j) are
related to the prior probability of x be generated by component j, equivalent to
neuron j of the hidden layer. The Probability Density Function (PDF) of an ob-
serving vector x belonging to the j-th, p(x|j), is computed as a multivariate normal
distribution:

p(x|j) =
1

(2π)D/2
√
|Cj|

exp
{
−1

2
(x− µj)TC−1j (x− µj)

}
(2.2)

where D is the dimensionality of the vector x, µj and Cj are the mean and
covariance matrix of the j-th neuron, respectively.

2.2.1 Creating neurons

New neurons are created as necessary, according to the minimum likelihood
criterion, i.e., when the input vector x matches the criterion:

p(x|j) < τmin

(2π)D/2
√
|Cj|

, ∀j (2.3)

where the parameter τmin is a fraction of the maximum value of the likelihood
function. If no neuron has reached the minimum likelihood, a new neuron j is
created with the following configuration:

µj = x; spj = 1; vj = 1; p(j) =
1

M∑
i=1

spi

; Cj = σ2
ini

where σini is a fraction δ of the overall variance of the corresponding input
variables, estimated from the range of these values according to:
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σini = δ [max(x)−min(x)] (2.4)

2.2.2 Updating neurons

If there is, at least, one p(x|j) greater than the minimum likelihood threshold,
the data point x is assimilated by existing neurons. To avoid overspecialization of
the neuron, the update process only occurs if a maximum likelihood criterion is
satisfied as given by:

p(x|j) < τmax

(2π)D/2
√
|Cj|

, ∀j (2.5)

where, in the same way of τmin, τmax is a fraction of the maximum value of the
likelihood function. The j − th neuron is updated if it satisfies the criterion 2.5.
The parameters of the model must be updated by the following equations:

spj(t) = spj(t− 1) + p(j|x) (2.6)

∆µj =
p(j|x)

spj

[
x− µj(t− 1)

]
(2.7)

ej = x− µj(t− 1) (2.8)

p(j) =
spj

M∑
q=1

spq

(2.9)

µj(t) = µj(t− 1) + ∆µj (2.10)

Cj(t) =

(
1− p(j|x)

spj

)
Cj(t− 1)−∆µj∆µ

T
j +

p(j|x)

spj
eje

T
j (2.11)

where ej and ∆µj are used to simplify the notation of the equations, spj is the
accumulator of p(j) and p(j|x) is the posterior probability, computed as follows:

p(j|x) =
p(x|j)p(j)

M∑
q=1

p(x|q)p(q)
, ∀j (2.12)

2.2.3 Removing neurons

A neuron j is removed whenever vj > vmin and spj < spmin, where vmin and
spmin are manually chosen (e.g., 5.0 and 3.0, respectively). In that case, p(q) must
also be adjusted for all q ∈ M , q 6= j, using equation 2.9. In other words, each
neuron is given some time (vmin) to show its importance to the model in the form
of an accumulation of its posterior probabilities spj.
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Figure 2.3: The information flow of IGMN in recalling mode: the input layer sends
the known values to the hidden layer and the hidden layer sends back an estimate
of x3.

2.3 Recalling mode

IGMN can estimate any missing input value from known input values in a process
called Recalling. Figure 2.3 shows the information flow of IGMN in this mode.
Assuming that xi is a partial input vector presented to the network, IGMN can
estimate the posterior probabilities using the partial vector as follows:

p(j|xi) =
p(xi|j)p(j)

M∑
q=1

p(xi|q)p(q)
, ∀j (2.13)

With the posteriors, the missing inputs xo can be estimated using the following
equation:

x̂o =
M∑
j=1

p(j|xi)(µj,o +Cj,oiC
−1
j,i [xi − µj,i]) (2.14)

where Cj,oi is the submatrix of the j-th neuron covariance matrix associating the
unknown and known parts of the data, Cj,i is the submatrix corresponding to the
known part only and µj,i is the j-th neuron mean without the unknown elements.

2.4 Summarizing

2.4.1 Configuration parameters

IGMN has a total of six configuration parameters:

• δ: this parameter is used to set the initial radius of the covariance matrices,
σini, related to the domain range. It can take any value in 0 < δ < 1.

• τmin: this parameter defines the level of acceptance for new information of
the existing neurons. It is used to create new neurons. It is a fraction of
the maximum value of the likelihood function and can take any value in 0 <
τmin < 1.
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• τmax: this is an optional parameter, which defines the level of acceptance for
new information of the existing neurons. It is used to update existing neurons.
It is also a fraction of the maximum value of the likelihood function and can
take any value in 0 < τmax < 1, but constraint to τmax < τmin.

• spmin: the minimum activation of a neuron to be not considered as noise..
It is used in the process of removing neurons. A natural choice for spmin is
D + 1 (dimension of the input), because, according to (TRÅVÉN, 1991), a
minimum of D + 1 samples are required to obtain a nonsingular estimate of
an unconstrained covariance matrix.

• vmin: the number of steps in which neurons can have less activation than
spmin. After vmin steps, if the neuron has an spj < spmin, it is considered as
noise and is removed. It can be set to any value greater than D + 1.

2.4.2 Neurons variables

Each neuron of IGMN has a set of variables, of which the first three are actually
inherited from the mixture components. The other variables are accumulators used
in the learning mode by the network.

• p(j): the prior probability of the neuron j.

• µj : the mean of the neuron j.

• Cj : the covariance matrix of the neuron j.

• spj : the accumulator of p(j|x) of the neuron j.

• vj : the accumulator of steps since the creation of the neuron j.

2.4.3 Learning algorithm

Algorithm 1 presents a detailed pseudo-code description of the IGMN learning
mode, which works as follows.
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Algorithm 1 Learning Mode

function IGMNLearning(x)
{Compute the likelihood for all neurons}
for all neuron j do

p(x|j) = 1

(2π)D/2
√
|Cj |

exp
{
−1

2
(x− µj)TC−1j (x− µj)

}
end for

{Create a new neuron k if necessary}
if M < 1 or p(x|j) < τmin

(2π)D/2
√
|Cj |

, ∀j then

M(t) = M(t− 1) + 1; vk = 1; spk = 1.0;
µk = x; Ck = σ2

iniI;

p(x|k) = 1

(2π)D/2
√
|Ck|

exp
{
−1

2
(x− µk)TC−1k (x− µk)

}
p(j) = spj

M∑
q=1

spq

,∀j

end if

{Compute the posterior probabilities}
p(j|x) = p(x|j)p(j)

M∑
q=1

p(x|q)p(q)
,∀j

{Update all neurons}
for all neuron j do

if p(x|j) < τmax

(2π)D/2
√
|Cj |

then

spj(t) = spj(t− 1) + p(j|x)

∆µj = p(j|x)
spj

[
x− µj(t− 1)

]
ej = x− µj(t− 1)
p(j) = spj

M∑
q=1

spq

µj(t) = µj(t− 1) + ∆µj
Cj(t) =

(
1− p(j|x)

spj

)
Cj(t− 1)−∆µj∆µ

T
j + p(j|x)

spj
eje

T
j

end if
end for

{Remove noisy neurons}
for all neuron j do

if vj > vmin and spj < spmin then
delete the j-th neuron

end if
end for

end function
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2.4.4 Recalling algorithm

Algorithm 2 presents a detailed pseudo-code description of the IGMN recalling
mode.

Algorithm 2 Recalling Mode

function IGMNRecalling(xi)
{Compute the likelihood for all neurons}
for all neuron j do

p(xi|j) = 1

(2π)D/2
√
|Cj,i|

exp
{
−1

2
(x− µj,i)TC−1j,i (xi − µj,i)

}
end for

{Compute the posterior probabilities}
p(j|xi) = p(xi|j)p(j)

M∑
q=1

p(xi|q)p(q)
, ∀j

{Compute the estimate x̂t}

x̂o =
M∑
j=1

p(j|xi)(µj,o +Cj,oiC
−1
j,i [xi − µj,i])

end function
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3 HIERARCHICAL IGMN

This chapter describes in detail the architecture and operation of the model
proposed in this work, called Hierarchical Incremental Gaussian Mixture Network
(HIGMN), which is a probabilistic hierarchical neural network composed of two
levels: the first level, composed of two IGMNs, receives the raw data, extracting
features from different domains; the second level, composed of a single IGMN, re-
ceives the internal activation of the lower layers. HIGMN was developed aiming to
work with data from different domains. For example, in a robotic task in which the
network can receive data from robot’s sensors, motors, or other information relative
to robot operation.

Similarly to IGMN, the HIGMN operation can be divided into two modes:
(a) learning mode, in which HIGMN receives the training patterns and presents
them to the first-level layers (IGMNs), which perform their learning process inde-
pendently from each other, and then the internal activation of both layers are used
as input to train the second-level layer; and the (b) recalling mode, in which,
given an input of one of its first-level layers, HIGMN can estimate the missing input
of the other one. The learning algorithm of the HIGMN was developed aiming to
preserve some characteristics of IGMN, which are especially useful for robotic tasks
(HEINEN, 2011): (i) HIGMN works in an on-line manner, i.e., it does not need a
separated training step; (ii) It has an incremental topology, it is not necessary to
define the number of neurons of the HIGMN layers a priori ; (iii) It has a one-shot
learning, i.e., it only needs a single scan over the data, each training pattern can
be discarded immediately after it is used; (iv) It handles the stability-plasticity
dilemma and does not suffer from catastrophic interference.

This chapter is structured as follows: Section 3.1 presents the architecture of
HIGMN, describing the organization of its layers; Section 3.2 and 3.3 describe the
HIGMN learning and recalling process, respectively; and, finally, Section 3.4 de-
scribes the learning and recalling algorithms in pseudo-code.

3.1 Architecture

HIGMN is composed of three layers distributed into two levels, as shown in
Figure 3.1. In fact, all layers of this model are IGMNs modules. The first level
contains two layers, which are independent from each other: there is no connections
between them. The second-level contains a single layer, which connects the networks
below. In fact, there is no restriction on the maximum number of layers at the first
level, but two layers is the minimum necessary.

HIGMN handles data of sources from different domains. Consider, for instance,
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Figure 3.1: Architecture of HIGMN. First-level layers have bidirectional connections
with different domains (inputs s and v), while the second-level layer has bidirectional
connections with the layers below.

the sonar readings (described by vector s) and wheel velocities (by vector v) of
a mobile robot. Each layer in HIGMN first level is responsible for one of these
domains, e.g., NS layer for sonars and NV layer for velocities. These layers receive
the raw data directly from their respective domains. In learning mode, the first-level
layers extract features from the data, learning, therefore, concepts which represent
characteristics of the environment (in the case of sensors) and robot kinematics
(motor). In recalling mode, HIGMN can predict the omitted inputs of one first-level
layer using the given input of the other one. For example, given the sonar input (s),
HIGMN can estimate the wheel velocities (v̂).

The second level is composed of a single IGMN (NH), which learns the internal
state of the first-level layers during the learning mode. This level learns the correla-
tions among the concepts of the layers below which are used in the recalling mode
to estimate the omitted inputs of some first-level layer.

3.2 Learning mode

This section presents the learning mode of HIGMN which is a one-shot and
incremental process, thus, the model can be used in on-line applications, with no
need to store raw training data or wait a certain number of steps to learn a subset
of data. Figure 3.2 shows the data flow of the network during this process.

When HIGMN receives a new training pattern, it sends the data directly to the
first-level layers which perform the IGMN learning process with no modification,
as described in Section 2.2. Completing the learning process, HIGMN computes
the internal state of first-level layers, in order to use these states as input to the
second-level layer. The internal state of a layer represents the sum of centroids of the
stored concepts stimulated by the training instance, weighted by their activations.
The internal state is computed as:

φ =
M∑
j=1

p(j|x)µj (3.1)

where M is the number of neurons at the layer, µj is the mean of the j-th neuron,
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Figure 3.2: Information flow of HIGMN during the learning mode. First-level layers
receives the inputs (s and v) from different domains, while the second-level layer
receives the activations of the layers below.

and p(j|x) is the posterior probability of the neuron j given the input x. Following,
the internal states of these layers are concatenated and used as input (h) to the
second-level layer:

h = (φS,φV )

Finally, the second-level performs the IGMN’s learning process without modifi-
cation.

As a result of this process, HIGMN learns two kinds of information: at the first
level, HIGMN learns concepts which represent characteristics of the input domain;
at the second level, the network learns the relations among these concepts. Sections
5.2 and 5.3 show a practical example of these results. The HIGMN learning process
is similar to Deep Architectures, which use the activations (internal state) as input
to the next layer on the hierarchy.

3.3 Recalling mode

Once trained, the HIGMN can compute estimates of the complete input set of
one of its first-level layers (e.g., NV ) from the stimulus of the other one (e.g., NS).
This process is similar to the recall performed by IGMN, but using the information
of all layers. Figure 3.3 shows the information flow of HIGMN during the recalling
process, which is described in detail below.

Compared with IGMN, the HIGMN recalling process needs some extra steps to
estimate a set of inputs. The recalling starts by presenting the complete input to
one of HIGMN first-level layer, for instance the NS layer, then the network must
perform a chain of internal processes to compute an estimate of omitted inputs of
NV .

Assume that an input vector s is presented to HIGMN. In order to estimate the
corresponding missing values of v, the following steps are performed:

1. The layer NS receives the input s and using the Equations 2.2 and 2.12 it com-
putes p(s|j) and p(j|s), respectively. The mean µS,k and the covariance matrix
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Figure 3.3: Information flow of HIGMN during the recalling mode. All layers in the
network are stimulated to compute an estimative v̂.

CS,k of the component with the highest posterior probability argk max [p(k|s)]
are stored to be used at the final process. In sequence, using Equation 3.1, the
internal state of NS is calculated to be used as partial input to the second-level
layer:

hi = φS =
MS∑
j=1

p(j|s)µS,j

2. The layer NH receives the incomplete input hi and using the Equations 2.2
and 2.12 it computes p(hi|j) and p(j|hi). The covariance matrix CH,k of the
component with the highest posterior probability argk max [p(k|hi)] is stored
to be used at the final process.

3. The second-level layer NH computes a estimate of the internal state φ̂V , using
the Equation 2.14:

φ̂V =
M∑
j=1

p(j|hi)(µH,j,o +CH,j,oiC
−1
H,j,o[hi − µH,j,i])

where CH,j,oi is the submatrix of the j-th neuron covariance matrix associating
the unknown and known parts of the data, CH,j,i is the submatrix correspond-
ing to the known part only and µH,j,i is the j-th neuron mean without the
unknown elements.

4. The NV layer receives the estimate φ̂V and uses this value as its input, i.e.:

v = φ̂V

Using the Equations 2.2 and 2.12 it computes p(v|j) and p(j|v), respec-
tively. The mean µV,k of the component with the highest posterior probability
argk max [p(k|v)] is stored to be used at the final process.
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5. Finally, the recall is performed as follows:

v̂ = µV,k +CH,sv,kC
−1
S,k(s− µS,k) (3.2)

3.3.1 Notes about the recalling algorithm

Notice that Equation 3.2 does not use a weighted sum such as IGMN recall
Equation 2.14, i.e., HIGMN does not use a full regression. Also notice that only the
parameters (mean vectors and covariance matrices) of highest posterior neurons are
used, not a mixture weighted by the posteriors.

We did not use the mixture of parameters or the full regression due to its bad
results during preliminary tests in the robotic tasks presented in Chapter 5. The
current equation is the simplest regression for this hierarchical structure, which does
not include mixture of covariance matrices or mean vectors. The evaluation of the
current regression equation is still an open subject.

3.4 Summarizing

3.4.1 Learning algorithm

Algorithm 3 presents a detailed pseudo-code description of the HIGMN learning
mode, which works as follows.

Algorithm 3 Learning Mode

function HIGMNLearning(s, v)
{Learning first-level layers}
IGMNSLearning(s)
IGMNVLearning(v)

{Internal states are computed}

φS =
M∑
j=1

p(j|s)µS,j

φV =
M∑
j=1

p(j|v)µV,j

h = (φS,φV )

{Learning second-level layers}
IGMNHLearning(h)

end function
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3.4.2 Recalling algorithm

Algorithm 4 presents a detailed pseudo-code description of the HIGMN recalling
mode.

Algorithm 4 Recalling Mode

function HIGMNRecalling(s)
{Activate the NS layer}
p(s|j) = 1

(2π)D/2
√
|CS,j |

exp
{
−1

2
(s− µS,j)TC−1S,j(s− µS,j)

}
, ∀j

p(j|s) = p(s|j)pS(j)
MS∑
q=1

p(s|q)pS(q)

, ∀j

{Compute the internal state of NS layer}

φS =
MS∑
j=1

p(j|s)µS,j

hi = φS

{Activate the NH layer}
p(hi|j) = 1

(2π)D/2
√
|CH,j,i|

exp
{
−1

2
(hi − µH,j,i)TC−1H,j,i(hi − µH,j,i)

}
, ∀j

p(j|hi) = p(hi|j)pH(j)
MH∑
q=1

p(hi|q)pH(q)

, ∀j

{Compute the estimate φ̂V }

φ̂V =
M∑
j=1

p(j|hi)(µH,j,o +CH,j,oiC
−1
H,j,o[hi − µH,j,i])

v = φ̂V

{Activate the NV layer}
p(v|j) = 1

(2π)D/2
√
|CV,j |

exp
{
−1

2
(v− µV,j)TC−1V,j(v− µV,j)

}
, ∀j

p(j|v) = p(v|j)pV (j)
MV∑
q=1

p(v|q)pV (q)

, ∀j

{Compute the estimate v̂}
µS,k,CS,k, argk max [p(k|s)]
CH,k, argk max [p(k|hi)]
µV,k, argk max [p(k|v)]

v̂ = µV,k +CH,sv,kC
−1
S,k(s− µS,k)

end function
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4 DEFINITIONS AND RELATED WORKS

This chapter presents an introduction, in Section 4.1, to the terms and concepts
used in this work, and also presents an overview of the tasks presented later on.
Section 4.2 presents the related works, divided into three subsections: Section 4.2.1
decribes concept learning methods; Section 4.2.2 presents techniques for segmenta-
tion of behaviors; and Section 4.2.3 presents methods for learning and reproducing
behaviors.

4.1 Introduction

In the field of Machine Learning, the features extracted from an environment
can be understood as concepts. For instance, suppose a set of groups created
by a clustering process, which are extracted by partitioning a data set based on a
measure of similarity between the data. The clusters represent the regularities in
the environment and define the concepts of it.

Definition 1. (Concept) a concept represents one or more features of a domain.

We define “concept” as features that represent a domain. For example, consider
the sonar readings of a mobile robot as a target domain and concepts as “wall at
right”, “corridor”, “wall forward”, or “dead end”. Notice that a concept can be more
or less generic. A high abstract (generic) concept can represent more features of the
domain, e.g., “obstacle at right” or simply “obstacle”, while a low abstract (specific)
concept represents few or only one feature, e.g., “obstacle at 34.5 centimeters at 64
degrees”. However, concepts are not limited to represent sensory information. The
kinematics of a robot or other source of information can also be described as such.
For example, the domain of motor actions of a legged robot can be described by
concepts as “walk forward”, “kick with the right leg”, “raise the left leg”, or yet
“set the knee joint of the left leg to 32 degrees”.

The concept learning is tied to the detection of regularities, and is specially
useful in robotic tasks (KLINGSPOR; MORIK; RIEGER, 1996)(LINÅKER; JA-
COBSSON, 2001)(NOLFI; TANI, 1999)(TANI, 2003), where the concepts formed
from the sensory data represent, in an abstract way, the world where the robotic
agent is placed. In this field of application, the detection of regularities allows the
robot to understand the world where it is placed (BURFOOT; LUNGARELLA; KU-
NIYOSHI, 2008) and, therefore, to localize its position and detect changes in the
environment (THRUN; BURGARD; FOX, 2006). However, concept learning also
has an important role in information reduction. A robot can receive a large amount
of data from its sensors at every second of its execution, and in some occasions the
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use of the raw data is impractical. By learning concepts, the robot can generalize a
set of data and use only the information really useful to accomplish its goals. For
example, suppose a mobile robot exploring an unknown environment equipped with
a video camera. Eventually, the robot finds an obstacle and must avoid it. In this
occasion, the robot does not need to know the exactly position of the obstacle (e.g.,
10cm or 12cm), its color, its geometric information, its height, or what the obstacle
is. The robot just need to avoid it and continue its exploration.

While concepts can represent the regularities in sensory and motor domains, a
behavior defines the relation between them, more specifically, a behavior repre-
sents a relation between a set of sensory stimuli (perceptions) and motor responses
(actions) (ARKIN, 1998).

Definition 2. (Behavior) a behavior specifies what are the motor responses (actions)
for a given sensory stimuli (perceptions).

We consider a robotic behavior as a mapping of perceptions to actions. While
a complex behavior can involve a large number of perceptions and actions, and
complex relations between them, a trivial behavior can be viewed as a map of
only one particular perception to only one specific action. For example, a complex
behavior can be described as “If there is a wall at left, wall at right, corridor, or an
open door, then go forward”, while a simple behavior can be described as “If there
is a wall at left, then go forward”.

Several approaches have been applied in order to learn the mapping of actions
upon perceptions. An important one is the Learning from Demonstration (LfD)
(ARGALL et al., 2009). In this approach, the mapping is learned from examples
(demonstration) provided by a teacher. A demonstration is composed of sequences
of perception-action pairs recorded during the demonstration of the target behavior.

The decomposition of a complex behavior into a set of simpler ones is often a
key process for methods based on the LfD approach. The behavior segmentation
is useful in tasks such as recognition of behaviors, in which the simpler behaviors
can be used as building blocks for complexer ones. In the same way, it also has an
important role to reduce the complexity in the definition of a complex behavior, i.e.,
simple behaviors are easier to interpret than describing a complex behavior as raw
sensor and motor signals.

4.2 Related works

4.2.1 Concept learning

In order to exploit the full capabilities of a robot (NILSSON, 1984)(BADLER
et al., 1991), a human-machine interaction is necessary. In this way, the knowledge
of a robot must be understandable for humans, that is, the low-level representa-
tions created by robots must be translated into high-level human-understandable
representations. Based on this premise, Klingspor et al. (1996) exploited the trans-
lation of the knowledge, applying a machine learning approach to bridge the gap
between the low-level and high-level representations. The sensory data obtained by
robot exploration in known environments, classified by a simulation component, are
used as input to the learning system. Concepts, which describe the movements and
the pattern of sensory data to be sensed during the execution of the movement,
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are the output of this system. The learned concepts are used in the form of com-
plex set of rules in a Prolog-like grammar to describe the behavior of the robot.
The main drawbacks of this approach are: (i) it requires a prior knowledge of the
domain to define the rule set (set of concepts), which is fixed and cannot change
after the learning process; (ii) it relies on using a logical description of the robot
control. The logical representations result in a high computational cost, and their
effectiveness in real-time robotic applications is not encouraging (MAHADEVAN;
THEOCHAROUS; KHALEELI, 1998).

Another approach for concept learning is presented in Nolfi and Tani (1999),
which proposed a hierarchical architecture to enhance the extraction of regularities
from time series through prediction learning. Each layer of this architecture is
trained to predict the internal state of the lower layers when such states change
significantly.

(a) Trajectory (b) Concepts

Figure 4.1: The experiment performed in Nolfi and Tani (1999). (A) shows the
environment composed of two rooms with a short corridor. The left circle represents
the robot and the trace represents the trajectory of the robot. (B) shows the concept
segmentation performed during one lap in the two rooms. The full circle, empty
circle, and full square indicate, respectively, which of the three output units is active
in a given step.

The experiments use a Khepera robot, a miniature mobile robot with circular
shape of diameter of 55 mm, height of 30 mm, and weight of 70 g, supported by
two wheels controlled by DC motors with an incremental encoder. The Khepera
has 8 (eight) infrared sensors, which can detect obstacles within a range of approx-
imately 3 cm. The robot is programmed to produce a wall-following behavior in an
environment with two rooms, as shows the figure 4.1 (A).

The number of layers of this architecture can be arbitrarily chosen. Their work
used three layers of Elman networks (ELMAN, 1990). The training of this archi-
tecture must be performed sequentially by its layers - the second layer can only be
trained after the first-layer training process is finished. The networks were trained
for 100,000, 100,000, and 10,000,000 steps, respectively. The result of the segmen-
tation performed by the second network is shown in the figure 4.1 (B), where the
full circle, empty circle, and full square indicate, respectively, which of the three
output units is active in a given step. As pointed out in Heinen (2011), the main
drawbacks of this approach are: (i) it requires, a priori, the number of concepts
(i.e., hidden units in the second network), which are fixed and cannot be changed
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after the learning process; (ii) the learning algorithm is off-line and requires several
scans over the training data to converge.

Lin̊aker and Niklasson, based on notevelty detection (or change detection), pro-
posed the Adaptive Resource Allocating Vector Quantization (ARAVQ) network
(LINÅKER; NIKLASSON, 2000a)(LINÅKER; NIKLASSON, 2000b)(LINÅKER;
JACOBSSON, 2001)(LINÅKER, 2003). The ARAVQ works clustering the sen-
sory data, storing moving averages of the robot’s sonars. Changes in input can be
detected when there is a significantly mismatch between the moving average of the
input and the model vectors. This approach is able to learn concepts of significantly
different perceptions, such as corridors, corners and rooms, as shows Figure 4.2

Figure 4.2: Result of concept learning perfomed in Lin̊aker and Niklasson (2000)
using the two rooms environment. The ARAVQ identified 3 concepts: wall at right,
corridor, and curve to the left.

Like other distance-based clustering methods, its learned model is equivalent
to equiprobable spherical probabilistic distributions with the same variance, badly
fitting to data flows better described by elliptical distributions (HEINEN, 2011).
The ARAVQ, also is not able to notice differences in the sensor readings that do
not affect the mean (LENSER, 2005).

The Incremental Gaussian Mixture Network (IGMN) was used for concept learn-
ing in several works (ENGEL; HEINEN, 2010a)(HEINEN; ENGEL, 2011a)(HEINEN;
ENGEL, 2010a). Figure 4.3 shows the results of IGMN in two different environ-
ments. The experiments performed in Heinen (2011) used a Pioneer 3-DX simulated
in the ARCOS software. The data consist of sequences of 4 sonar readings, corre-
sponding to -90, -10, +10, and +90 degrees relative to the front of the robot, while
the robot performed a right wall-following behavior.

4.2.2 Behavior segmentation

Focused on reducing the requirements on a human programmer, Koenig and
Mataric (2006) investigate the capacity of a robot to understand and extract im-
portant features from a given demonstration of a behavior through its segmentation
into a set of simpler behaviors. They presented a method based on a cost function,
developed to identify significantly changes in the robot perceptions within a time
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(a) Six corridors (b) Two rooms

Figure 4.3: Result of concept learning perfomed in Heinen (2011) using two envi-
ronments: (a) six corridors; and (b) the two rooms environment.

window. Their experiments were performed using a Pioneer 2-DX robot in a simu-
lated environment, performing different exploration behaviors. Their method uses
the data from robot’s sensors and other information provided by the teacher before
the training, such as the environment map, the robot global position, and important
locations in the map. When the sensor readings and the other information change
significantly (defined by a threshold) in a given sliding time window, the current
position is defined as a transition point, as shown in Figure 4.4.

Although their method can perform the segmentation in an on-line manner, it
relies on a priori knowledge of the environment, including global information that
must be provided by an human user. It makes the method not suitable for different
and unknown environments.

Billing and Hellström (2008) evaluated three different techniques for behavior
recognition, focusing on developing an alternative to classical classifier, providing
more informative interpretation of a demonstration. They use a set of predefined
simple behaviors as building blocks to compose the demonstrated complex behav-
iors: (FLW) following a left wall; (FRW) following a right wall; (AVOID) go for-
ward avoiding obstacles; (CORRIDOR) drive through a corridor; and (SLALOM)
drive around circular cones. The first proposed method was function oriented which
compares actions for similar perceptions. The second method was based on an auto-
associative neural network which compares reconstruction errors of the sensory and
motor information. The third and last one was a method used a prediction-based
control algorithm inspired by the human neuromotor system, called S-Learning
(ROHRER; HULET, 2006a)(ROHRER; HULET, 2006b).

Figures 4.5 (a) and (b) show the trajectories presented to the three methods.
The segmentation is given by the activations of the simpler behaviors. Figures 4.5
(c) and (d) show the activations using the S-Learning method.

4.2.3 Learning and reproducing behaviors

In Calinon et al. (2007), Calinon et al. present an architecture for extract-
ing features of a generic task, applying it for learning behaviors in a humanoid
robot. In a first step, their method projects the input data (the hand’s path, hands-
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(a) Wall-following exploration (b) Zig-zag exploration

Figure 4.4: Behavior segmentation performed in Koenig and Mataric (2006). The
dotted lines represent the demonstrated trajectory, while the empty square points
represent the identified different behaviors: (WL) left wall-following; and (WR) right
wall-following.

object relationship, and joint angles) onto a lower dimensionality space using Prin-
cipal Component Analysis (PCA), following by encoding them with a GMM and
a Bernoulli Mixture Model (BMM) through the Expectation-Maximization (EM)
algorithm. Finally, a Gaussian mixture regression is used to control the robot. In
their experiments, a Fujitsu HOAP-2 humanoid robot was used. The HOAP-2 has
25 Degrees of Freedom (DOF), but only 11, related to the arms and torso, were
used. The training is performed through kinesthetics, i.e., the teacher moves the
robot’s arms in each training step. Figure 4.6 shows the human teacher moving the
arms of the HOAP-2 in order to perform three different tasks: the chess task, in
which the robot must grab and move a chess piece two squares forward; the bucket
task, in which the robot must grab and bring a bucket to a specific position; and the
sugar task, in which the robot must grab a cube of sugar and bring it to the mouth,
using either the right or left hand.

Although the method succeeded to perform the demonstrated trajectories, as
pointed out in Huang et al. (2010), these three tasks are considered as performing
only a trajectory following task, i.e., reproduce exactly the taught trajectory.

Focusing in reducing the number of required demonstrations, eliminating the
need for unnecessary examples, Chernova and Veloso (2007) presented a interac-
tive method to learn behaviors. This approach considers the problem of LfD as a
classification task, in which the demonstration examples are grouped by the action.
The behavior is represented as a set of Gaussian Mixture Models (GMMs), with
each model corresponding to a single action. Figure 4.7 (a) shows the environment
used for one of the performed experiments, where a Sony AIBO robot must follow
a corridor and close a loop. Four GMMs were defined, representing the actions:
(Forward) go forward 20 cm; (Turn Left) turn 90 degrees left; (Turn Right) turn 90
degrees right; and (U-Turn) turn 180 degrees. The robot has one infrared sensor,
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(a) L-Trajectory (b) SLALOM-Trajectory

(c) S-Learning method on L-Trajectory
(d) S-Learning method on SLALOM-
Trajectory

Figure 4.5: The experiment results presented in Billing and Hellström (2008) using
two trajectories: (a) a L-shaped trajectory; and (b) a trajectory around cones.
(c) and (d) show the activations of S-Learning method with the L-Trajectory and
SLALOM-Trajectory, respectively.

and by turning its head, the robot calculate the distance from obstacles in three
directions: front, left, and right. The sensor reading is performed at each interval
between actions. At the first training step, a human user controlled the robot, chose
the proper action for each position, and at the end of one closed loop, the data com-
posed of sensor readings and the performed actions are used to train the mixture
models, using the Expectation-Maximization (EM) algorithm. Figure 4.7 (b) shows
the data acquired through the first training loop, and in Figure 4.7 (c) the Gaussian
mixtures fitted to training data. After the first training step, the robot performed
by itself the same trajectory, but when it finds a situation with low confidence in its
internal model, it requires the action by the teacher and stores the new example to
the next training step.

The main drawbacks of this approach are: (i) the discretization of actions, the
robot cannot generalize the training examples; (ii) the actions also must be defined
a priori ; (iii) the method is offline, requiring the reseting and retraining of each
mixture model at the beginning of each training step.

Heinen and Engel demonstrate how the IGMN can be used to estimate the
wheel velocities based on the sonar readings (HEINEN; ENGEL, 2010c)(HEINEN;
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(a) Chess task (b) Bucket task (c) Sugar task

Figure 4.6: A human teacher demonstrating three different behaviors in Calinon
et al. (2007): (a) grabbing and moving a chess piece two squares forward; (b)
grabbing and bringing a bucket to a specific position; (c) grabbing a cube of sugar
and bringing it to the mouth, using either the right or left hand.

(a) Task environment (b) Training data (c) Models fitting

Figure 4.7: In experiments performed in Chernova and Veloso (2007): (a) the en-
vironment where the robot must follow a corridor and close a loop; (b) shows the
training data acquired after a demonstration step; and (c) the GMMs fitting the
training data.

ENGEL, 2009)(HEINEN, 2011). Figure 4.8 shows the result of an estimate trajec-
tory performed by an IGMN (dotted black line) trained with a trajectory around an
irregular environment (solid gray line). The data used in this experiment consists
in 1631 examples (one lap around the environment) of 4 sonar readings and 2 wheel
velocities. As shown by experimental results, IGMN could learn and reproduce a
behavior, but only in a trajectory following task.
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Figure 4.8: A trajectory performed by a mobile robot in Heinen (2011). The solid
gray line describe the original trajectory while the dotted black line shows the tra-
jectory performed by IGMN.

4.3 Discussion

This chapter presented an overview of related works regarding three tasks: con-
cept learning, which consists of feature extraction and representation of the do-
main; behavior segmentation, which consists of the decomposition of a complex
behavior into simpler ones; and behavior learning, which consists of learning the
mapping between perceptions and actions and reproducing the learned behavior.

The model proposed in this work, Hierarchical Incremental Gaussian Mixture
Network (HIGMN), performs these three techniques in parallel, learning concepts
at its first level, segmenting the behavior at its second level, and learning and repro-
ducing the target behavior as combination of both. In the next chapter, we present
the results of experiments in these tasks using the HIGMN.
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5 LEARNING BEHAVIORS WITH THE HIGMN

This chapter presents the experiments performed using both HIGMN and IGMN
in the task of learning and reproducing a behavior. In this task, a robot must learn
a functional mapping that acts upon a given stimulus (perception) to produce a
specific response (action) (ARKIN, 1998). Using a Learning from Demonstration
approach, both networks must learn from a sequence of perception-action pairs of a
recorded demonstration of the target behavior (ARGALL et al., 2009). In order to
enhance the difference of performance in this task between the HIGMN and IGMN,
the wall-following behavior (also known as boundary-following (NILSSON, 1998))
was chosen as target behavior. The wall-following is a relatively complex behavior
which involves several features of environment and motor mechanisms (which will be
analyzed in the form of concepts), as well as the combinations between them (simpler
behaviors that can be analyzed as a segmentation task). The experiments used two
different trajectories as demonstration of a right-wall-following behavior. These
trajectories do not include all the situations which a robot could find in performing
the behavior in different environments. Therefore, we analyze the ability of the
models to perform the learned behavior in several environments with both known
and unknown situations.

This chapter is organized as follows: Section 5.1 describes the configuration of the
experiments presented here; Section 5.2 presents the results of the concept learning in
the first level of the HIGMN; likewise, Section 5.3 presents the results of the behavior
segmentation in the second level of the HIGMN, and the segmentation performed by
IGMN; Section 5.4 presents the experiments of reproduction of the learned behavior
in several environments for HIGMN and IGMN; Section 5.5 presents a tool to analyze
the concept and behavior activations of HIGMN; and, finally, Section 5.6 shows some
failure cases of HIGMN trying to perform the wall-following behavior.

5.1 Experiments setup

The experiments were performed using a simulated Pioneer-3DX (P3DX) in the
software MobileSim. The P3DX is a mobile robot equipped with 8 frontal sonar
sensors, as can be seen in Figure 5.1, and 2 wheels which compose its drive system.

Two different datasets are used as training data. Each dataset is composed of a
sequence of sensory and motor readings of two trajectories (Figure 5.2) performed
by a simulated robot using a right-wall-following algorithm. Each reading contains
8 sonar measures and the current velocities of the 2 wheels. Both trajectories are
examples of the target behavior, nevertheless consisting of a small limited set of
perceptions. The first trajectory, in Figure 5.2 (a), is a drive around a simple
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Figure 5.1: A schema of Pioneer-3DX with 8 frontal sonars and its respectively
dispositions.

environment composed of two rooms with different sizes joined by a short corridor
(this environment is presented in Nolfi and Tani (1999)). The second trajectory, in
Figure 5.2 (b), is a drive around a complex environment composed of several rooms
with different sizes and connections.

(a) Two rooms trajectory (b) Complex trajectory

Figure 5.2: Trajectories used as examples of the right-wall-following behavior in the
training of the networks. (a) shows the simple two rooms trajectory, while (b) shows
the complex trajectory in an environment composed of several rooms with different
sizes and connections among them.

The HIGMN is composed of two layers at the first level, which receive the sensory
and motor information, respectively, extracting features from them, and one layer
at the second level, which receives both sensory and motor features and performs a
segmentation of the example behavior. The layer responsible for the sensory data
receives 8 sonar readings truncated in the range of 0 to 2000 (equivalent to 2 meters).
Similarly the layer responsible for the motor data receives 2 values, corresponding
to the velocities of the robot’s wheels in the range of 0 to 507. The second-level
layer receives 10 values corresponding to both data (8 to the sonar readings and 2
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to the motor velocities) in the same range of the lower layers.
Both layers of the first level use the following configuration for their parameters:

δ = 0.1, and τmin = 0.1. The sonar layer also uses vmin = 16, spmin = 9, and
τmax = 0.01. The motor layer uses vmin = 4 and spmin = 3, the τmax parameter is
ignored in this layer. The second-level layer uses δ = 0.85, τmin = 0.1, vmin = 20,
and spmin = 11, the τmax parameter is also ignored in this layer. The first-level
layers were configured with a low δ, resulting in a high sensitivity to create new
neurons, i.e., the layers create neurons for small variations of the input data. A
high sensitivity in these layers is necessary in order to create a large number of
concepts to represent in more detail the environment and the robot kinematics. On
the contrary, the second-level layer was configured with a high δ in order to result
in a high generalization of the information, comprising, therefore, several concepts
into a single behavior.

The IGMN was configured with the following parameters: δ = 0.3, τ = 0.1,
vmin = 20, and spmin = 11. The δ parameter in the IGMN must be near the
average of this parameter in the layers of the HIGMN. The IGMN directly receives
the sensory and motor information, then directly learning the behavior, without
describing any concept of the sensors or motors. The δ cannot be too high (near to
1), because the network would generalize too much and would not describe well all
the actions necessary to perform the behavior. On the other hand, if δ is too low
(near to 0), the network would learn behaviors so as to memorize or nearly memorize
the data and would not perform any action beyond the ones that were presented to
the network.

The parameters of the models are used in all experiments, and their values were
chosen after a search for good results in most cases.
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5.2 Concept learning

One important aspect of the HIGMN is how the information acquired by the
network is represented by its layers. For example, the first-level layers have the task
of learning concepts which represent the regularities in the environment and in the
robot kinematics. These concepts have a probabilistic representation in the form of
Gaussian distributions, and can either be analyzed by a human expert or be used
without any dependence of the HIGMN in other applications.

This section shows the results of the concept formation at the HIGMN first-level
layers, for both sonar readings and wheel velocities in two different environments:
using the two rooms and the complex trajectories. It also presents how the concepts
learned by HIGMN can be understood by a human being. It does not include the
results of the IGMN because, when it is used for learning behaviors, IGMN is not
able to learn concepts simultaneously.

5.2.1 Two Rooms trajectory

Tables 5.1 and 5.2 show the concepts created by sensor and motor layer, respec-
tively, after a training performed using the two rooms trajectory. The first column
describes the index of the neuron. The second column shows the a priori probabil-
ity of the neuron, which can be read as the percent of activation of overall training,
e.g., the neuron 0 had 87% of activation given the training data. The third column
shows the means of the neuron, which represent the features of the environment.
The covariance matrices are omitted here to keep readability.

Table 5.1: 9 concepts learned from sonar readings in HIGMN sonar layer, using the
two rooms trajectory.

Neuron Prior p(j) Mean µj
0 0.8778 [2000, 2000, 2000, 2000, 2000, 2000, 1483, 1119]
1 0.0364 [1129, 1496, 2000, 2000, 2000, 2000, 1483, 1119]
2 0.0121 [1129, 2000, 2000, 2000, 2000, 2000, 1483, 1119]
3 0.0267 [2000, 2000, 2000, 2000, 1964, 1653, 1608, 1965]
4 0.0088 [2000, 2000, 2000, 2000, 2000, 1371, 1102, 1121]
5 0.0134 [2000, 2000, 2000, 2000, 2000, 2000, 2000, 2000]
6 0.0047 [1382, 1220, 1417, 1981, 2000, 2000, 2000, 1234]
7 0.0120 [1062, 1443, 2000, 2000, 2000, 2000, 2000, 1186]
8 0.0081 [1091, 1481, 2000, 2000, 2000, 2000, 2000, 2000]

Table 5.1 presents the concepts created from the perception of the robot: the
8 sonar readings. Neuron 0, which represents the concept of “wall at right”, had
87% of activation, which can be understood that, for the robot, 87% of the known
environment is wall at its right side. Neuron 1 represents the concept “corridor”, and
neurons 2 and 7 represent the intermediate concept between wall and corridor, which
can be understood as “corridor entrance” and “corridor exit”. Neuron 3 represents
the “left curve”, while neuron 6 represents the “right curve plus obstacle at right”.
Neuron 4 is also an intermediate concept, which takes place between curve and wall,
and can be understood as “end of left curve”. Neuron 5 represents “no obstacles”,
which was created by the truncate process (there was no time instant without any
obstacles to the robot in the training trajectory, but some readings show obstacles
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up to 2 meters away). Finally, neuron 8 represents the concept of “wall at left”.

Table 5.2: 10 concepts learned from wheel velocities readings in HIGMN motor
layer, using the two rooms trajectory.

Neuron Prior p(j) Mean µj
0 0.0017 [044, 044]
1 0.0017 [195, 195]
2 0.0031 [279, 259]
3 0.0067 [344, 318]
4 0.8045 [400, 399]
5 0.0865 [418, 379]
6 0.0540 [480, 318]
7 0.0171 [400, 286]
8 0.0188 [318, 479]
9 0.0059 [262, 371]

Table 5.2 shows the result of the concept formation process in the motor layer,
which receives the velocities of the robot wheels. Neurons 0, 1 and 4 represent the
concept of “go forward” with different velocities. In fact, neurons 0 and 1, as well
as neurons 2 and 3 which represent “slightly turn left”, were created when the robot
was not in full acceleration (about 400, equivalent to 40 cm/s) and do not activate
again after this start. Neurons 5, 6, and 7 represent the concept of “turn right” with
different intensities. Similarly, neurons 8 and 9 represent “turn left”.

Figure 5.3 shows the most active concepts for sonar and motor layer, when the
same trajectory is presented to the trained HIGMN. The plots have a 15-step
resolution, i.e., one concept is shown activated at each 15 readings. Notice that
neurons 1, 2, and 3 of motor layer do not appear in Figure 5.3 (b) due to the plot
resolution: these neurons have their activations in less than 15 steps.

(a) Sonar layer (b) Motor layer

Figure 5.3: Concepts learned by HIGMN from the two rooms trajectory for: (a)
sonar layer; and (b) motor layer. It shows the active concepts in these layers for
each 15 readings.
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5.2.2 Complex trajectory

Tables 5.3 and 5.4 show the concepts created from the training using the complex
trajectory.

Table 5.3: 31 concepts learned from sonar readings in HIGMN sonar layer, using
the complex trajectory.

Neuron Prior p(j) Mean µj
0 0.1196 [1835, 2000, 2000, 2000, 2000, 2000, 2000, 2000]
1 0.1417 [2000, 2000, 2000, 2000, 2000, 2000, 2000, 0755]
2 0.0531 [1265, 2000, 2000, 2000, 2000, 1986, 1848, 1652]
3 0.0170 [1913, 2000, 2000, 2000, 2000, 1586, 1608, 1614]
4 0.0168 [2000, 2000, 2000, 2000, 2000, 1311, 1390, 1665]
5 0.0825 [2000, 1880, 1774, 1915, 2000, 2000, 2000, 1066]
6 0.0114 [2000, 1250, 1147, 1212, 2000, 2000, 2000, 0995]
7 0.0138 [0976, 0753, 2000, 2000, 2000, 2000, 2000, 1017]
8 0.0392 [0731, 2000, 2000, 2000, 2000, 2000, 2000, 1043]
9 0.0145 [2000, 2000, 1783, 1548, 1547, 1778, 1759, 1328]
10 0.0231 [1786, 1977, 2000, 2000, 2000, 2000, 1813, 1010]
11 0.1543 [1672, 2000, 2000, 2000, 2000, 2000, 1335, 0996]
12 0.0163 [2000, 2000, 1845, 1581, 1562, 1772, 1398, 1023]
13 0.0141 [2000, 2000, 2000, 2000, 1455, 1653, 1454, 1067]
14 0.0129 [2000, 2000, 2000, 2000, 1213, 1381, 1464, 1074]
15 0.0108 [1570, 1531, 1880, 2000, 2000, 2000, 2000, 0736]
16 0.0115 [1419, 1859, 2000, 2000, 2000, 2000, 1745, 0250]
17 0.0118 [2000, 1784, 1809, 2000, 1345, 1088, 1028, 1297]
18 0.0115 [2000, 2000, 1985, 1396, 1188, 1169, 0953, 0445]
19 0.0119 [2000, 2000, 2000, 1456, 2000, 2000, 2000, 0769]
20 0.0109 [1959, 0962, 2000, 2000, 2000, 2000, 2000, 1007]
21 0.0126 [2000, 2000, 1543, 1599, 1917, 1927, 1614, 1729]
22 0.0105 [2000, 1310, 1180, 1224, 1474, 1720, 1438, 1540]
23 0.0131 [2000, 2000, 2000, 2000, 0411, 0343, 0343, 0564]
24 0.0312 [1318, 1149, 1325, 1837, 2000, 2000, 2000, 2000]
25 0.0196 [1952, 1571, 1538, 1730, 2000, 2000, 2000, 2000]
26 0.0233 [1189, 1004, 1142, 1552, 2000, 2000, 2000, 2000]
27 0.0494 [0832, 0820, 1030, 1629, 2000, 2000, 2000, 2000]
28 0.0244 [0538, 0689, 1080, 2000, 2000, 2000, 2000, 2000]
29 0.0060 [0556, 0818, 1484, 1507, 1563, 1876, 2000, 2000]
30 0.0026 [0558, 0767, 1287, 1403, 1415, 1647, 2000, 2000]

Notice the difference between the number of concepts learned with the two rooms
trajectory and with this trajectory in Table 5.3. The complex environment presents
a lot more characteristics than the two rooms, reflecting in the number of concepts:
the robot needs more features to understand this environment. Furthermore, the
HIGMN created several concepts with the same interpretation, for example, the
“right curve” concepts (neurons 24, 25, 26, and 27), which differs only in the distance
to the walls.
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Table 5.4: 4 concepts learned from wheel velocities readings in HIGMN motor layer,
using the complex trajectory.

Neuron Prior p(j) Mean µj
0 0.0020 [001, 067]
1 0.0186 [157, 207]
2 0.3180 [139, 238]
3 0.6614 [222, 164]

Notwithstanding the complexity in the perception domain, the motor concepts
are quite simple regarding the two rooms concepts, as shown in Table 5.4. Neuron 0
was created while the robot was not in its full acceleration, which, in this trajectory,
is approximately 200 (or 20 cm/s). Note that the motor layer did not learn the
concept “go forward”, which reflects the fact that the complex trajectory has no
sufficient use of this concept, as can be seen in the Figure 5.2 (b).

Figure 5.4: Concepts learned by HIGMN from the complex trajectory for motor
layer. It shows the active concepts in this layers for each 15 readings. Sonar layer
was omitted due to its number of concepts.

Figure 5.4 shows the most active concepts for the motor layer, when the same
trajectory is presented to the trained HIGMN. The sonar layer was omitted due to
its number of concepts.
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5.3 Behavior segmentation

When a new pair perception-action is presented to the HIGMN, at first, the
first-level layers use it to adjust the current concepts or to create new ones, in or-
der to learn this new information. In sequence, the internal states (i.e., their means
weighted by their activations) of these concepts are used as input to the second-level
layer, which is responsible for behavior segmentation. In a behavior segmentation
task, a robot must split a complex behavior up into simple smaller ones. The
HIGMN second-level layer segments the incoming information flow, extracting sim-
pler behaviors and representing them with one neuron for each behavior, in the
form of Gaussian distributions. During recalling, the second level combines them to
represent and reproduce the target behavior.

This section presents the results of behavior segmentation performed by the
HIGMN second level, using the two rooms and complex trajectories. It also presents
the results of behavior segmentation performed by a single IGMN, which learns
directly from the raw data. Finally, the segmented behaviors are analyzed, showing
how they compose the target behavior and how each one represents the mapping
between the sensory and motor information.

5.3.1 Two Rooms trajectory

The segmented behaviors by HIGMN, trained using the two rooms trajectory,
can be seen in Table 5.5, where the first 8 values of the mean column represent the
sonar readings and the last 2 represent the wheel velocities. The HIGMN extracted
two basic behaviors which compose the wall-following behavior. These behaviors
are quite difficult to understand compared to concepts in the previous section, due
to the fact that the covariance matrices affect largely the meaning of a neuron. It
is necessary to analyze the neuron activations, presented by Figure 5.5 (a), to a
better understanding of the role of these neurons when executing the wall-following
behavior. For example, neuron 1, that was activated in corridors, corners, and other
curves, represents completely different actions: on the corridor, the neuron is used
to “go forward”; in some corners, it is used to “turn left”; in other cases, it is used
to “turn right”. On the other hand, neuron 0, activated most of the time, just
represents the action “go forward” when there is a wall at robot’s right side.

Similarly to the results of concept extraction, neuron 0, which represents the
behavior “if there is a wall at right, go forward”, had 85% of activation during the
training, which means that, to the understanding of a robot, 85% of the time it
must perform the behavior related to neuron 0.

Table 5.5: 2 simpler behaviors extracted by HIGMN which compose the wall-
fallowing behavior. The mean values are highly affected by theirs covariance matri-
ces, impairing their understanding.

Neuron Prior p(j) Mean µj
0 0.8558 [1999, 1998, 1999, 1999, 1999, 1999, 1485, 1119, 401, 393]
1 0.1442 [1574, 1771, 1955, 1972, 1951, 1845, 1649, 1471, 408, 374]

Table 5.6 shows the result of behavior segmentation performed by IGMN. It
created 6 neurons to represent the wall-following behavior. The covariance matrices
also affect the interpretation of these neurons. However, they can still be understood
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by analyzing them together with the Figure 5.5 (b). The most active behavior (here
76% of the time) is also the behavior “if there is a wall at right, go forward”,
represented by neuron 0. Neuron 1 represents “if there is a corner, turn left or turn
right”, depending on the sensor information. The remainder neurons were activated
on the corridor exclusively, where there are highly changes on robot’s perception.

Table 5.6: 5 behaviors extracted by IGMN which compose the wall-fallowing behav-
ior.

Neuron Prior p(j) Mean µj
0 0.7670 [2000, 1999, 2000, 1999, 1999, 1999, 1538, 1161, 398, 397]
1 0.1372 [1999, 1955, 2000, 1992, 1931, 1752, 1519, 1422, 439, 338]
2 0.0441 [1101, 1592, 1998, 2000, 2000, 2000, 1522, 1146, 397, 402]
3 0.0088 [1999, 1999, 1999, 1999, 1999, 1999, 1958, 0965, 397, 401]
4 0.0240 [1276, 1383, 1768, 1942, 2000, 2000, 1978, 1234, 355, 416]
5 0.0189 [1521, 1808, 2000, 2000, 2000, 2000, 1999, 1720, 333, 433]

(a) HIGMN (b) IGMN

Figure 5.5: Results of the behavior segmentation, using the two rooms environment,
performed by: (a) HIGMN; and (b) IGMN. Each neuron represents one distinct
behavior which composes the wall-following behavior.

5.3.2 Complex trajectory

Tables 5.7 and 5.8 show the segmented behaviors of HIGMN and IGMN, respec-
tively, from the training using the complex trajectory.

Table 5.7: 3 behaviors segmented by HIGMN. The first one represents 99% of the
wall-following behavior.

Neuron Prior p(j) Mean µj
0 0.9979 [1728, 1782, 1758, 1777, 1730, 1675, 1537, 1213, 194, 188]
1 0.0007 [0632, 0736, 1091, 1696, 1845, 1933, 1933, 1933, 222, 164]
2 0.0014 [0031, 0043, 0073, 0079, 0080, 0093, 0112, 0112, 222, 164]
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As can be seen in Table 5.7, HIGMN created 3 neurons to represent the wall-
following behavior in the complex environment. Notice that neuron 0 had 99.79%
of activation, being active most of the time. Figure 5.6 (a) shows that, except for
the first steps, this neuron was used to represent a wall-following behavior. Neurons
1 and 2 represent the first steps of the trajectory, and due to the plot resolution of
15 steps, the last one does not appear in Figure 5.6 (a).

Table 5.8: 5 behaviors extracted by IGMN which compose the wall-fallowing behav-
ior.

Neuron Prior p(j) Mean µj
0 0.3571 [1699, 1970, 1992, 1995, 1994, 1919, 1656, 1329, 184, 202]
1 0.4569 [1707, 1610, 1549, 1628, 1669, 1726, 1730, 1391, 190, 194]
2 0.0076 [0836, 0693, 1999, 2000, 2000, 2000, 2000, 1021, 166, 215]
3 0.1381 [1999, 1977, 1942, 1650, 1192, 0790, 0516, 0443, 238, 140]
4 0.0395 [2000, 1654, 1394, 1364, 1083, 0909, 0818, 0873, 225, 158]

IGMN created 5 neurons, as can be seen in Table 5.8. Contrarily to the two
rooms environment, in the complex environment, interpreting the meaning of these
neurons is a hard task, even within the chart of neurons activations. The regularities
seen by the robot in this trajectory are a mixture of several different perceptions
and actions.

Figure 5.6 shows the neuron activations when the same trajectory is presented
to the trained HIGMN and IGMN, respectively.

(a) HIGMN (b) IGMN

Figure 5.6: Results of the behavior segmentation, using the complex environment,
performed by: (a) HIGMN; and (b) IGMN. Each neuron represents one distinct
behavior which composes the wall-following behavior.
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5.4 Reproducing the wall-following behavior

After the training, we tested the HIGMN’s ability to reproduce the target be-
havior and compared it to IGMN. In this task, the trained networks receive the
8 sonar readings from a mobile robot and must calculate the motor response, the
velocities of the 2 wheels. This section shows the results of behavior reproduction in
several environments, including situations different from those presented during the
training. The experimental results presented in this section were partially published
in (PEREIRA; ENGEL; PINTO, 2012).

5.4.1 Reproducing the original trajectory

In Heinen (2011), an IGMN was trained with the two rooms trajectory aiming to
estimate the same training motor data given the same perceptions. In this case the
sensori-motor data used for training the network was stored and then the sensor data
was presented again and the estimate of the motor is compared with the training
motor data. Figure 5.7 shows the results of this experiment using both HIGMN and
IGMN, respectively. The x axis corresponds to the index of the sonar reading (i.e.,
the 2070 training examples), while the y axis corresponds to the difference between
the right and left motor velocities y(t) = vright− vleft. A positive value in the y axis
corresponds to the robot turning left and a negative value, to turning right.

(a) HIGMN (b) IGMN

Figure 5.7: Difference between the original and predicted wheel velocities in two
rooms trajectory for: (a) HIGMN; and (b) IGMN.

Note that, in Figure 5.7 (a), HIGMN presented several irregularities on the
velocities prediction, even when the robot just had to keep the same velocities to
go forward. However, the network could identify the changes on perceptions and
perform different actions. Note also that, at the beginning of every left curve, the
HIGMN predicts a right turn. HIGMN also presented two major errors: when the
robot drove through the corridor (x(t) about 300) for the first time and when it
left the corridor for the second time (x(t) about 1000). On the other hand, IGMN
showed a good accuracy to predict the velocities, presenting only a few irregularities:
when the robot drove through the corridor (x(t) about 300), before the first right
curve (x(t) about 800), and during the second right curve (x(t) about 950). Table
5.9 shows the Normalized Root Mean Squared (NRMS) error of both models.
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Table 5.9: The NRMS errors of HIGMN and IGMN when predicting the motor
values presented on their training in two rooms trajectory.

Model NRMS Error
HIGMN 0.09608
IGMN 0.05222

The next experiment tested the ability to generalize the learning trajectory, using
the networks to control a simulated robot in the two rooms environment in an on-
line way. Although this experiment uses the same environment of the training data,
the robot perceptions are different. Figure 5.8 (a) shows the path taken by HIGMN,
which presents some irregularities that appeared on the previous experiments: when
the robot followed a straight wall segment at its right, we can notice a slightly
tendency to its left; before the robot entered the corridor for the first time, HIGMN
sent it to the right; before every left curve, the robot performed a small turn to its
right. As shown in Figure 5.8 (b), IGMN could perform only a fraction of the goal
trajectory. Due to the fact that IGMN predicted a left turn just before the first
right curve, the robot remained trapped in loop in the small room.

(a) HIGMN (b) IGMN

Figure 5.8: (a) HIGMN and (b) IGMN performing the learned behavior. HIGMN
could reproduce successfully the right-wall-behavior.

Despite their performance on the two rooms, neither HIGMN nor IGMN could
reproduce the complex trajectory. Both networks presented a large error on the
experiment of exactly predicting the wheel velocities presented on the trajectory.
Their NRMS errors are noted in Table 5.10. The velocities comparative of the
complex trajectory were omitted due to its readability.

Table 5.10: The NRMS errors of HIGMN and IGMN when predicting the motor
values presented on their training in the complex trajectory.

Model NRMS Error
HIGMN 0.14365
IGMN 0.33112

We show the results of reproducing the complex trajectory in Section 5.6.
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5.4.2 Performing the wall-following in unkown environments

In order to verify whether HIGMN could generalize the example trajectory and
learn the right-wall-following behavior, the next experiments were performed in
different environments, with conditions distinct from those presented during the
training. In the first experiment, shown in Figure 5.9, the networks, trained with
the two rooms trajectory, must reproduce the learned behavior to control a mobile
robot in a cross-shaped environment.

(a) HIGMN (b) IGMN

Figure 5.9: Comparison between (a) HIGMN and (b) IGMN when reproducing the
learned behavior in new cross-shaped environment.

Observe that, when the robot drives towards the center of the room, there is a
curve to the right with no obstacle. This is an unknown perception to the robot, and
there is no example of it at the two rooms trajectory. Figure 5.9 (a) shows the path
taken by HIGMN, which could perform successfully the target behavior. Contrarily,
IGMN, in Figure 5.9 (b), only showed the ability to reproduce the behavior to
perceptions found in the example trajectory: when encountered the right curve, the
IGMN slightly turns the robot to the left and sends it towards an empty space.
The same result can be seen in Figure 5.10, where the robot encounters a similar
situation.

(a) HIGMN (b) IGMN

Figure 5.10: Comparison between (a) HIGMN and (b) IGMN when reproducing the
learned behavior in an irregular environment.
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Several tests were performed using the HIGMN, shown in Figure 5.11 and Figure
5.12, using the two rooms and complex trajectories as training example, respectively.

Figure 5.11: Path taken by HIGMN in different environments. HIGMN could suc-
cessfully perform the wall-following behavior after being trained with two rooms
trajectory.
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Figure 5.12: Path taken by HIGMN in different environments. HIGMN could suc-
cessfully perform the wall-following behavior after being trained with complex tra-
jectory.
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5.5 Analysis of neuron activations

This section shows the analyses of the HIGMN neuron activations. These analy-
ses are based on the graphical representation of Fuzzy sets and Fuzzy rules (SIVANAN-
DAM; SUMATHI; DEEPA, 2006), and are especially useful to see the coverage area
in which concepts are representing the domain and better understanding the relation
between concept and behavior neurons.

5.5.1 Concept activations

(a) Two rooms (b) Complex

Figure 5.13: Sensor coverage by neurons of HIGMN sonar layer resulted from train-
ing with (a) Two rooms trajectory, and (b) Complex trajectory. Both results present
several gaps in the coverage area.

Figure 5.13 shows the sensor coverage by neurons of the sonar layer at the
HIGMN first level for both two rooms and complex trajectories, respectively. The
figure is divided into 8 subplots, one for each sonar. Each subplot shows several nor-
mal distributions, one for each neuron at the sonar layer. The x axis corresponds to
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the range of the sensors (2 meters, or 2000) and the y axis corresponds to the nor-
malized activations (in the range 0 to 1) for each neuron given the sensor position,
notice that each subplot corresponds to a single variable, ignoring the correlation
among other input sensors. We disregard the correlation among sensors for two
reasons: the highly dimensionality of the sensors (the neuron covariance matrices
contains 8x8 values) and the fact that the covariances were not significant to the
representation of these concepts (which can be false for other data).

Due to the fact that the HIGMN was trained using a single small trajectory for
the demonstration of the wall-following behavior (in addition, a simple trajectory,
in the case of the two rooms), the concepts learned by the network did not represent
all domain - there are several gaps. It is more evident for the two rooms, in Figure
5.13 (a), where several gaps can be noticed, mainly on low values of sonar readings.

(a) Two rooms (b) Complex

Figure 5.14: Motor coverage by neurons of HIGMN motor layer resulted from train-
ing with (a) Two rooms trajectory, and (b) Complex trajectory. The low velocity
presented in complex trajectory can be viewed as the gap after the position 300.

Figure 5.14 shows the motor coverage by motor layer neurons, where there are
two subplots, one for each actuator: the left and right wheels. The x axis corresponds
to the range of the wheel velocities (50.7 cm/s, or 507) and the y axis corresponds to
the probability for each neuron given the wheel velocity. Although the same analysis
can be used with the motor layer, in this case the coverage just show the velocity
range of the robot. For example, Figure 5.14 (b) shows the coverage of the motor
layer using the complex trajectory, and there is no coverage after 300, which only
impacts on the maximum velocity of the robot reproducing the behavior.
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5.5.2 Behavior activations

This section presents an analysis of the behavior activations. We omitted the
results of the complex trajectory due to the fact that the HIGMN uses only one
neuron to represent 99.79% of the behavior (i.e., it was activated 99.79% of the
time).

Figure 5.15: Behavior activations after presenting the whole training set.

Figure 5.15 shows the activation of neurons at the HIGMN second-level layer,
after the example patterns of the two rooms trajectory are presented to the HIGMN.
The x axis corresponds to the motor concept indexes, while the y axis corresponds
to the sensor concept indexes. The color intensity at the background corresponds
to the number of activations obtained by the behaviors after the complete process.
The behaviors are represented by the white symbols. Note that we used only the
most activated neuron at each level, and the spaces without symbols mean that the
respective concepts were not activated at the same time.

This figure reflects the prior probability shown in Table 5.5, where the neuron
1 had 85.58% of activation given all training data. The activations can be seen in
small segments of the trajectory, for example, Figure 5.16 shows the activations for
6 different segments: (a) steps 0 to 150, where the robot sees the wall at its right and
starts the acceleration to forward; (b) steps 500 to 530, where the robot encounters
the first curve to the left; (c) steps 850 to 870, where the robot encounters the first
curve to the right, just before it enters the corridor; (d) steps 940 to 960, where the
robot encounters the second curve to the right, after it leaves the corridor; (e) steps
295 to 375, where it drives through the corridor for the first time; and, finally,
(f) steps 850 to 950, where it drives through the corridor for the second time with
some superposition with the right curves.
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(a) Wall at right (b) First left curve

(c) First right curve (d) Second right curve

(e) First drive through corridor (f) Second drive through corridor

Figure 5.16: Behavior activations for several segments of the two rooms trajectory.
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5.6 Failure cases

Despite the good results presented by HIGMN reproducing the wall-following
behavior, the network fails in some cases, as shown in Figure 5.17.

(a) Dense map (b) Complex map

(c) Complex irregular map (d) Complex irregular map

(e) Complex sparse map (f) Complex sparse map

Figure 5.17: Several cases where HIGMN failed to perform the wall-following be-
havior.

In some environments, such as in Figure 5.17 (a) and (b), HIGMN failed to
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perform the behavior in all tests. In others, the robot eventually got stucked at
some obstacle, as shown in Figure 5.17 (c), (d), (e), and (f). In general, the failures
presented by HIGMN were due to a sequence of actions which unleashed the robot
in an unknown situation and it ended up stucked.

We assign these failures to the characteristics of some environments and to the
lack of information presented to the network. A robot in small or dense environ-
ments, such as in Figure 5.17 (a) and (b), presents low values in sonar readings. As
shown in Figure 5.13, there are several gaps at the coverage of the sensor domain by
the HIGMN concepts, mainly on low values, i.e., HIGMN does not have any repre-
sentation of the situation when the robot is too near some obstacle. In complex or
small environments, the robot suffers with the fast change and large variation of val-
ues in its sensory readings, which causes the HIGMN to activate different concepts
at each time step, leading to completely different action at each time step. These
problems force the HIGMN to generate a series of action that is not ideal to the
occasions, and make the robot get stuck at obstacles or trapped in endless loops.
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6 CONCLUSIONS

In this work, based on ideas presented by Deep Architectures, we studied how
to structure a group of Incremental Gaussian Mixture Networks (IGMNs) into a
hierarchical architecture and the impact of this arrangement compared with a single
network. This study resulted in the development of a hierarchical model, called
Hierarchical Incremental Gaussian Mixture Network (HIGMN), composed of two
levels of IGMNs: the first level containing two independent IGMNs, which receives
the raw data from different domains and extracts features from them; and the second
level containing a simple IGMN, which correlates the lower ones by receiving the
internal activations of these networks. Moreover, we showed the applicability of
this architecture into robotic task, especially the task of learning behaviors from
demonstrations.

We developed the learning algorithm of the HIGMN aiming to preserve the char-
acteristics of IGMN: (i) it works on-line, it does not need a separated training step;
(ii) it is incremental, it does not need to know the number of features; (iii) it handles
the stability-plasticity dilemma and does not suffer from catastrophic interference;
(iv) it is one-shot, it only needs a single scan over the data, each training pattern can
be discarded immediately after it is used. We also adapted the recalling algorithm
to use information from all networks, making the prediction of the complete set of
input of some first-level layer practical.

Beyond the characteristics inherited from IGMN, HIGMN also presents other
features specially useful for robotic tasks. When it is used to learn sensory and mo-
tor information, HIGMN can build two knowledge bases: concepts on the first-level
which describe features of the respective domains; and behaviors on the second-level
which describe rules of actions (mapping sensor to action). These knowledge bases
are especially useful given how HIGMN represents its information. Each concept
and behavior corresponds to one different neuron on HIGMN, with the same repre-
sentation: Gaussian distributions. Despite the uniform and compact representation
of concepts and behaviors, the neurons can be analyzed independently from the
network.

We verified that HIGMN was able to generalize the example trajectories and
perform the wall-following behavior in different environments, in spite of its insta-
bility. IGMN could reproduce only the known actions, still, it could not reproduce
the trajectories of training. HIGMN failed to complete loops on several experiments.
We assign such fact to the characteristics of some environments and to the lack of
information presented to the network in its training. HIGMN could reproduce the
wall-following behavior after a single, simple, and short demonstration of the be-
havior. However, we believe that more attention to training data should be giving
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by, among other things, selecting important characteristics of the target behavior.

6.1 Future Works

There are several promising research themes that can be investigated and even-
tually used to improve this work, some of them are listed here:

• Evaluation of HIGMN regression equation. We used a simple version of the
IGMN regression at the recall process, which gave better results in preliminary
experiments. The evaluation of the current equation is still open.

• Experiments with a real mobile robot. All experiments in this work were per-
formed with a simulated robot. For new developments, it is needed a real
mobile robot to ratify HIGMN.

• Apply HIGMN in other tasks. This work focused on robotic tasks, specifically
on concept learning, behavior segmentation and behavior learning. Other
researches can be done in other tasks, such as classification, clustering or even
other robotics-related tasks

• Enhance the model. Several opportunities to enhance the model were identified
during this work, including changes on the architecture. The HIGMN second-
level layer is a full IGMN, but only a sub-set of its covariance matrices is used
in the control of a robot. New developments can be done aiming to replace
this layer by a simpler method to learn the correlations among concepts.
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APPENDIX A RESUMO EM PORTUGUÊS

A.1 Introdução

Estudos sobre o encéfalo humano, em especial sobre o neocortex (HAWKINS,
2005)(AREL; ROSE; KARNOWSKI, 2010), enfatizam importantes caracteŕısticas
funcionais e estruturais: o neocortex é organizado em uma estrutura hierárquica,
na qual as entrada sensoriais são propagadas e transformadas através de diversas
camadas de neurônios, resultando em representações distribúıdas da informação em
múltiplos ńıveis de abstração (SERRE et al., 2007). Abstração neste contexto refere-
se à generalização de uma representação, ou seja, uma representação mais abstrata
é mais genérica, envolvendo uma grande quantidade de informação, enquanto uma
representação pouco abstrata é mais espećıfica e envolve pouca informação. No
neocortex, neurônios com baixo ńıvel de abstração estão atrelados à percepção par-
ticulares.

Essas caracteŕısticas do neocortex formam a base das redes em Deep Learning, ou
simplesmente Deep Architectures (BENGIO, 2009). Deep Architectures são modelos
compostos de múltiplas camadas (com quatro ou mais) de operadores não lineares.
Essas redes aprendem caracteŕısticas (ou conceitos) com baixo ńıvel de abstração
nas primeiras camadas, e conceitos de alto ńıvel de abstração nas últimas camadas,
de forma que os conceitos de alto ńıvel são formados por combinações de conceitos
menores.

A profundidade, que se refere ao número de camadas em uma rede, é um aspecto
importante das Deep Architectures. De fato, é argumentado que algumas funções
não podem ser representadas de forma eficiente por redes com poucas camadas
(BENGIO, 2009). Dessa forma, se uma rede não possúı o número necessário de
camadas, é preciso um número de neurônios muito maior que teria adicionando
mais camadas.

Algoritmos clássicos de aprendizagem são limitados a redes com normalmente
duas ou três camadas, obtendo resultados pobres com redes de maior profundidade
(BENGIO; LeCun, 2007)(UTGOFF; STRACUZZI, 2002). A área de Deep Learning
introduziu algoritmos de aprendizagem capazes de treinar modelos profundos, sendo
utilizado com sucesso para redes com quatro ou mais camadas. Esses algoritmos
trabalham fazendo o treinamento de uma camada por vez, utilizando aprendizado
não supervisionado. A primeira camada recebe os dados sem pré-processamento
extraindo caracteŕısticas do ambiente, enquanto as camadas superiores aprendem as
ativações das camadas mais baixas.

As Deep Architectures vem sendo utilizadas com sucesso em várias aplicações
(BENGIO, 2009), tal como classificação, regressão, redução de dimensionalidade,
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recuperação de informação, processamento de linguagem natural, filtragem colab-
orativa, e robótica. As Deep Architectures atuais (HINTON; OSINDERO; TEH,
2006)(BENGIO et al., 2007)(RANZATO; BOUREAU; LECUN, 2008) (RANZATO
et al., 2007)(VINCENT et al., 2008) focam no processamento de dados sensoriais,
utilizando-os para criar representações internas abstratas, no entanto pouca atenção
tem sido dada aos sinais motores. Em Hadsell et al. (2008), uma Deep Belief Net-
work (DBN) é utilizada para processar a percepção visual de um robô móvel em uma
tarefa de navegação autônoma. As imagens obtidas por uma câmera no robô são
pré-processadas e então enviadas para a DBN. Os conceitos de alto ńıvel descobertos
pela rede são utilizados como entrada em um classificador para encontrar posśıveis
locais para a navegação, sendo que as tarefas de planejamento e do controle motor
são responsabilidades de um módulo separado.

A.2 Motivação

Em Heinen (2011) foi apresentado a Incremental Gaussian Mixture Network
(IGMN), uma rede neural probabiĺıstica baseada em Modelos de Mistura de Gaus-
sianas (GMM). A IGMN utiliza uma aproximação incremental do algoritmo EM
(Expectation-Maximization)(DEMPSTER et al., 1977) para criar, atualizar, ou re-
mover seus neurônios conforme necessário. Seu algoritmo de aprendizado é one-shot
e online, ou seja, somente uma única varredura sobre os dados é necessário para con-
struir um modelo consistente e este processo pode ser feito de forma online. A IGMN
vem sendo aplicada com sucesso em diversas tarefas de robótica, como aprendizado
de conceitos (ENGEL; HEINEN, 2010a)(HEINEN; ENGEL, 2011a)(HEINEN; EN-
GEL, 2010a), mapeamento online e incremental (HEINEN; ENGEL, 2011b)(HEINEN;
ENGEL, 2010a)(HEINEN; ENGEL, 2010b), computar estimativas de velocidades
das rodas de um robô móvel (HEINEN; ENGEL, 2010c)(HEINEN; ENGEL, 2009),
computar a cinemática inversa de um robô com pernas (HEINEN, 2011), e resolver
o problema do Road Sign (PINTO; ENGEL; HEINEN, 2012).

Este trabalho apresenta uma análise do impacto de uma arquitetura hierárquica
baseada na IGMN, especialmente para tarefas em robótica. A motivação deste tra-
balho está fundamentado nas caracteŕısticas apresentadas pelos modelos de Deep
Learning e a aplicabilidade da IGMN em robótica. A estrutura das redes de Deep
Learning apresenta importantes caracteŕısticas para a área de Aprendizagem de
Máquina, como: (i) com sua organização hierárquica de camadas, estes modelos po-
dem guardar informações distribúıdas dos sinais sensoriais; (ii) elas podem aprender
conceitos de baixo ńıvel e relacioná-los em conceitos de alto ńıvel; (iii) a relação
entre conceitos é feita através do aprendizado das ativações, processo executado
pelas camadas de alto ńıvel. Por outro lado, a IGMN apresenta caracteŕısticas
importantes para aplicações em robótica: (i) a IGMN trabalha de forma online,
não necessita de uma etapa separada de treinamento; (ii) ela possui uma topologia
incremental, dessa forma, não é necessário definir o número de neurônios a priori ;
(iii) seu algoritmo de aprendizado é one-shot, ou seja, só é necessário uma única
varredura sobre os dados, cada padrão de treinamento pode ser descartado logo de-
pois de ser utilizado; (iv) resolve o dilema da estabilidade-plasticidade e não sobre
de interferência catastrófica.

Nesta dissertação, nós apresentamos um modelo probabiĺıstico chamado de HIGMN,
que é composto por camadas de IGMN conectadas de forma hierárquica, e que pode
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extrair conceitos a partir dos dados, tanto sensoriais quanto motores, e aprender as
relações desses conceitos em um ńıvel mais alto. Além disso, o modelo extráı con-
ceitos a partir de sinais de entrada de forma independente para cada domı́nio, isto
é, as caracteŕısticas dos sonares e motores são extráıdas separadamente. As relações
destes conceitos são então aprendidos no segundo ńıvel, onde novos conceitos de alto
ńıvel são criados.

Apesar do fato de que a HIGMN realiza em paralelo as tarefas de aprendiza-
gem de conceitos, segmentação de comportamentos, e aprendizado e reprodução de
comportamentos, nós nos concentramos na tarefa de aprender e reproduzir um com-
portamento de seguir paredes à direita por demonstração, comparando os resultados
do modelo em relação à uma única IGMN.

A principal contribuição deste trabalho é o desenvolvimento da HIGMN, apli-
cando caracteŕısticas apresentadas na Deep Learning em um modelo baseado na
IGMN, e novas aplicações da própria IGMN em tarefas de robótica, especificamente
a tarefa de aprendizagem e reprodução de um comportamento por demonstração.
Este trabalho permite novas pesquisas na área de aprendizado de comportamentos
e outras aplicações da HIGMN.

A.3 Conclusões

Neste trabalho, baseado em ideias apresentadas por Deep Architectures, estu-
damos como estruturar um conjunto de IGMNs em uma arquitetura hierárquica e o
impacto deste arranjo em comparação com uma única IGMN. Este estudo resultou
no desenvolvimento de um modelo hierárquico, chamado HIGMN, composto de dois
ńıveis de IGMNs: o primeiro ńıvel, contendo duas IGMNs independentes, que re-
cebe os dados brutos de diferentes domı́nios e extrai caracteŕısticas deles; o segundo
ńıvel, contendo uma única IGMN, que correlaciona as redes abaixo recebendo as
ativações internas destas. Além disso, o trabalho mostrou a aplicabilidade dessa
arquitetura em tarefas de robótica, especialmente ma tarefa de aprendizagem de
comportamentos por demonstração.

Nós desenvolvemos o algoritmo de aprendizado da HIGMN a fim de preservar
as caracteŕısticas da IGMN: (i) trabalha de forma online, não precisa de uma etapa
separada de treinamento; (ii) é incremental, não precisa conhecer o número de
conceitos a priori ; (iii) resolve o dilema da estabilidade-plasticidade e não sofre de
interferência catastrófica; (iv) é one-shot, só é necessário uma única varredura sobre
os dados, cada padrão de treinamento pode ser descartado logo depois de utilizado;
Nós também adaptamos o algoritmo de recalling para utilizar informação de todas
redes.

Além das caracteŕısticas herdadas da IGMN, a HIGMN também apresenta outras
caracteŕısticas especialmente úteis para tarefas robóticas. Quando ela é utilizada
para aprender informações sensoriais e motoras, a HIGMN pode construir duas
bases de conhecimento: conceitos no primeiro ńıvel, que descrevem caracteŕısticas
dos respectivos domı́nios; e comportamentos no segundo ńıvel, que descrevem as
regras de ações (mapeamento de sensores para ações). Estas bases de conhecimento
são especialmente úteis dado como a HIGMN representa suas informações. Cada
conceito e comportamento corresponde à um neurônio diferente na HIGMN com a
mesma representação: distribuições Gaussianas. Apesar da representação uniforme
e compacta de conceitos e comportamentos, os neurônios podem ser analisados de
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forma independente da rede.
Nós verificamos que a HIGMN foi capaz de generalizar as trajetórias de exemplo e

executar o comportamento de seguir paredes em diferentes ambientes, apesar de sua
instabilidade. A IGMN pôde reproduzir apenas as ações conhecidas, ainda assim,
não pôde reproduzir as trajetórias de treinamento. A HIGMN não conseguiu com-
pletar as voltas em vários experimentos. Nós atribúımos tal fato às caracteŕısticas de
alguns ambientes e a falta de informação apresentada à rede no seu treinamento. A
HIGMN pôde reproduzir o comportamento de seguir paredes depois de uma única,
simples e curta demonstração do comportamento. No entanto, acreditamos que mais
atenção deve ser dada aos dados de treinamento, como a seleção das caracteŕısticas
importantes do comportamento alvo.

A.4 Trabalhos futuros

Há vários temas de pesquisa promissores que podem ser investigados e eventual-
mente utilizados para melhorar este trabalho, alguns deles estão listados aqui:

• Avaliação da equação de regressão da HIGMN. Nós utilizamos uma versão
simples da regressão da IGMN no processo de recalling, a qual deu os melhores
resultados em experimentos preliminares. A avaliação da equação de regressão
continua em aberto.

• Experimentos com um robô móvel real. Todos os experimentos deste trabalho
foram realizadas com um robô simulado. Para novos desenvolvimentos, é
necessário um robô móvel real para avaliar a HIGMN.

• Aplicar a HIGMN em outras tarefas. Este trabalho se concentrou em tare-
fas de robóticas, especificamente na aprendizagem de conceitos, segmentação
de comportamento e aprendizagem de comportamento. Outras pesquisas po-
dem ser feitas focando em outras tarefas, como de classificação, clustering, ou
mesmo outras tarefas relacionadas à robótica

• Melhorias do modelo. Várias oportunidades para melhorar o modelo foram
identificados durante este trabalho, incluindo mudanças na arquitetura. Por
exemplo, a camada de segundo ńıvel da HIGMN é uma IGMN completa, mas
apenas um sub-conjunto de suas matrizes de covariância é utilizado no controle
de um robô. Novos desenvolvimentos podem ser feitos com o objetivo de sub-
stituir esta camada por um método mais simples para aprender as correlações
entre os conceitos.


