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Técnicas de Grão Fino de Detecção de Erros para Reparo Rápido de 
FPGAs 

RESUMO 

Field Programmable Gate Arrays (FPGAs) são componentes reconfiguráveis de 
hardware que encontraram grande sucesso comercial ao longo dos últimos anos em uma 
grande variedade de nichos de aplicação. Alta vazão de processamento, flexibilidade e 
tempo de projeto reduzido estão entre os principais atrativos desses dispositivos, e são 
essenciais para o seu sucesso comercial. Essas propriedades também são valiosas para 
sistemas críticos, que frequentemente enfrentam restrições severas de desempenho. 
Além disso, a possibilidade de reprogramação após implantação é relevante, uma vez 
que permite a adição de novas funcionalidades ou a correção de erros de projeto, 
estendendo a vida útil do sistema. Tais dispositivos, entretanto, dependem de grandes 
memórias para armazenar o bitstream de configuração, responsável por definir a função 
presente do FPGA. Assim, falhas afetando esta configuração são capazes de causar 
defeitos funcionais, sendo uma grande ameaça à confiabilidade. A forma mais 
tradicional de remover tais erros, isto é, scrubbing de configuração, consiste em 
periodicamente sobrescrever a memória com o seu conteúdo desejado. Entretanto, 
devido ao seu tamanho significativo e à banda de acesso limitada, scrubbing sofre de 
um longo tempo médio de reparo, e que está aumentando à medida que FPGAs ficam 
maiores e mais complexos a cada geração. Partições reconfiguráveis são úteis para 
reduzir este tempo, já que permitem a execução de um procedimento local de reparo na 
partição afetada. Para este propósito, mecanismos rápidos de detecção de erros são 
necessários para rapidamente disparar este scrubbing localizado e reduzir a latência de 
erro. Além disso, diagnóstico preciso é necessário para identificar a localização do erro 
dentro do espaço de endereçamento da configuração. Técnicas de redundância de grão 
fino têm o potencial de prover ambos, mas normalmente introduzem custos 
significativos devido à necessidade de numerosos verificadores de redundância. Neste 
trabalho, propomos uma técnica de detecção de erros de grão fino que utiliza recursos 
abundantes e subutilizados encontrados em FPGAs do estado da arte, especificamente 
as cadeias de propagação de vai-um. Assim, a técnica provê os principais benefícios da 
redundância de grão fino enquanto minimiza sua principal desvantagem. Reduções 
bastante significativas na latência de erro são atingíveis com a técnica proposta. 
Também é proposto um mecanismo heurístico para explorar o diagnóstico provido por 
técnicas desta natureza. Este mecanismo tem por objetivo identificar as localizações 
mais prováveis do erro na memória de configuração, baseado no diagnóstico de grão 
fino, e fazer uso dessa informação de forma a minimizar o tempo de reparo. 

 

Palavras-chave: FPGA, detecção de erro, tempo médio de reparo.  



 

 

 



 

 

 

ABSTRACT 

Field Programmable Gate Arrays (FPGAs) are reconfigurable hardware components 
that have found great commercial success over the past years in a wide variety of 
application niches. High processing throughput, flexibility and reduced design time are 
among the main assets of such devices, and are essential to their commercial success. 
These features are also valuable for critical systems that often face stringent 
performance constraints. Furthermore, the possibility to perform post-deployment 
reprogramming is relevant, as it allows adding new functionalities or correcting design 
mistakes, extending the system lifetime. Such devices, however, rely on large memories 
to store the configuration bitstream, responsible for defining the current FPGA function. 
Thus, faults affecting this configuration are able to cause functional failures, posing a 
major dependability threat. The most traditional means to remove such errors, i.e., 
configuration scrubbing, consists in periodically overwriting the memory with its 
desired contents. However, due to its significant size and limited access bandwidth, 
scrubbing suffers from a long mean time to repair, and which is increasing as FPGAs 
get larger and more complex after each generation. Reconfigurable partitions are useful 
to reduce this time, as they allow performing a local repair procedure on the affected 
partition. For that purpose, fast error detection mechanisms are required, in order to 
quickly trigger this localized scrubbing and reduce error latency. Moreover, precise 
diagnosis is necessary to identify the error location within the configuration addressing 
space. Fine-grained redundancy techniques have the potential to provide both, but 
usually introduce significant costs due to the need of numerous redundancy checkers. In 
this work we propose a fine-grained error detection technique that makes use of 
abundant and underused resources found in state-of-the-art FPGAs, namely the carry 
propagation chains. Thereby, the technique provides the main benefits of fine-grained 
redundancy while minimizing its main drawback. Very significant reductions in error 
latency are attainable with the proposed approach. A heuristic mechanism to explore the 
diagnosis provided by techniques of this nature is also proposed. This mechanism aims 
at identifying the most likely error locations in the configuration memory, based on the 
fine-grained diagnosis, and to make use of this information in order to minimize the 
repair time of scrubbing. 

 

 

 

 

Keywords: FPGA, error detection, mean time to repair. 
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1 INTRODUCTION 

Over the past decades, the amount of transistors that can be placed within a single 
silicon die has grown exponentially, as foreseen by Moore’s Law. These advances have 
fueled an increase in the amount and complexity of functionalities one can integrate in a 
single chip. Thereby, complex systems require only a small amount of Integrated 
Circuits (ICs) to carry out their functions, reducing project costs and time. On the other 
hand, the productivity of IC designers does not evolve at this same rate, leading to the 
phenomenon known as the productivity gap (ITRS, 2011). In other words, the amount 
of transistors made available by new manufacturing processes is so overwhelming that 
designers are unable to make the most efficient use of them. Furthermore, the time 
expected for the release of new products, known as time-to-market, becomes 
progressively shorter for most application niches, reducing the time available for design 
and further worsening the mentioned productivity gap. 

To alleviate this problem, efficient design techniques that maximize the reuse of 
modules, reducing the burden on designers, are desirable. Designs with high regularity, 
i.e., that are mostly composed of replicas of smaller and simpler blocks, are therefore 
very effective to tackle the productivity gap. Regularity is also a valuable feature to 
reduce testing time and cost, as well as increasing the manufacture yield. The yield is 
the fraction of fabricated chips that are usable (and sellable), being an important metric 
to maintain profits. In this context, Field Programmable Gate Arrays (FPGAs) become a 
viable alternative that has found great commercial success in the past years. 

FPGAs are reconfigurable devices that contain large amounts of generic logic and 
storage components, interconnected by flexible routing structures. On its own, an FPGA 
performs no useful operation, much like a processor without instructions to execute. 
This generic structure, however, can be programmed by uploading an appropriate 
configuration stream of bits in order to behave as virtually any digital circuit, provided 
it fits within the logic capacity limitations of the chosen device. Thus, FPGAs bring 
benefits of general purpose processors, as they are able to perform virtually any required 
function once properly programmed. And they also bring benefits of Application 
Specific Integrated Circuits (ASICs), as the function is computed by a dedicated circuit 
with potentially very high performance. 

As FPGAs comprise thousands and even millions of identical generic logic, memory 
and routing blocks, they intrinsically present high regularity. From the manufacturers’ 
point of view, this translates to the possibility of greatly simplifying the design of the 
different models within a same FPGA family or even of new families. Thus, 
manufacturers have been consistently able to release new products using very recent 
technologies, such as Xilinx’s UltraScale architecture (XILINX, INC., 2013), expected 
reach a 16 nm feature size, and Altera’s Stratix 10 (ALTERA CORPORATION, 2013), 
using a 14 nm process. From the users’ perspective, an FPGA provides the ability to 
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quickly implement the desired circuit much faster than by manufacturing it as an ASIC, 
which is also a precious asset in times of pressing time-to-market restrictions. 

Evidently, these benefits come with costs. Due to its generic and flexible nature, a 
circuit implemented in an FPGA is usually slower, larger and more power consuming 
than its ASIC counterpart. Nonetheless, fueled by the advances in semiconductor 
manufacturing technologies, FPGAs have shown a steady increase in their logic 
capacity and throughput in the past years. State-of-the-art FPGAs may include over 1.2 
million lookup tables (LUTs) (XILINX, INC., 2012a), which are the basic building 
blocks for circuit logic in current devices. A better perspective on what this number 
means may be obtained by considering that a 32-bit MIPS-compatible softcore1 
processor requires approximately 2,750 LUTs to be implemented. Thus, such a device is 
able to include over 400 processors, an unthinkable amount when FPGAs were first 
created. The high throughput available in newer FPGA devices, coupled with the 
offered flexibility and fast prototyping capabilities mentioned, made FPGAs very 
successful in a variety of niches. Nowadays, FPGAs are used in military, automotive, 
data center and telecommunication applications, among many others (ALTERA 
CORPORATION, 2012), (XILINX, INC., 2012b). 

The field programmability is also a very important feature in FPGAs, since it allows 
the addition of new functionalities after deployment, increasing the system lifetime. It 
also allows the correction of design mistakes with a much lower cost, when compared to 
ASICs. These possibilities are very interesting for critical systems, where efficient and 
high throughput computing may be required and a long lifetime is also desirable. 
Moreover, as these systems are frequently difficult to reach physically after deployment 
(e.g., space applications), the possibility to perform remote programming is of great 
relevance. 

A system is deemed critical when its malfunction may have severe adverse effects. 
Such effects include, e.g., when human lives are at stake. The braking system of a car 
and the control of airplane wings are examples of systems considered critical as human 
lives are put in danger whenever they do not perform their operation properly. Other 
systems are considered critical for environmental causes, such as the control of an oil 
extraction platform. Finally, economic reasons may characterize a critical system. The 
data base of a bank or a high throughput router in a network backbone may bring severe 
losses to their owners and users if they fail to operate as expected. 

Therefore, critical applications face stringent dependability2 constraints that must be 
satisfied in order to minimize unwanted service failures. Unfortunately, the same 
advances in semiconductor manufacturing processes that have allowed the continued 
reduction in transistors’ feature sizes also bring dependability threats. They increase the 
susceptibility of devices to several physical phenomena such as aging effects (e.g., 
negative bias temperature instability and hot carrier injection), which reduce the device 
lifetime. Radiation-induced single event effects (SEEs) also become more frequent, 
causing failures if not counteracted. Thus, efficient techniques able to tolerate hardware 

                                                 
1A softcore is a processor implemented in the reconfigurable fabric of an FPGA, i.e., 
with LUTs, flip-flops, etc. 
2 Please see Appendix A or (AVIZIENIS, LAPRIE, RANDELL, et al., 2004) and 
(PRADHAN, 1996) for a detailed description of dependability as well as other basic 
concepts and terminology of dependable systems. 
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faults are required to achieve the expected dependability levels. Fault tolerance 
techniques are traditionally based on some form of redundancy, which consists in 
performing a computation in a manner that allows checking its correctness. The most 
basic form of redundancy is repetition, either spatial or temporal. The regularity of 
FPGAs may also aid in the provisioning of redundancy, especially of the spatial nature, 
providing new possibilities for the designers of critical systems. 

One of the first challenges faced when providing fault tolerance for FPGAs is to 
understand the effects that faults have on such devices, which differ in many aspects 
from those of traditional ASICs. As the device functionality is user-specified, it must be 
stored in a special configuration memory. Figure 1.1(a) shows a simple circuit and the 
configuration bits that describe its correct implementation. The configuration memory is 
frequently implemented with cells that are susceptible to radiation-induced single event 
upsets (SEUs). For example, SRAM cells, which are used for most high end devices, 
may have their stored value flipped if hit by an energetic particle. Thus, SEUs can 
modify the user circuit function, as shown in Figure 1.1(b), something that does not 
occur for a hardwired ASIC. The effects that a flipped bit in the configuration memory 
has on the user circuit are hard to predict, due to the complex effects that a 
configuration pattern unforeseen by the manufacturer may have on the fabric. 
Moreover, the lack of low level schematics available to users further increases the 
complexity of developing (and evaluating) fault tolerance techniques for FPGAs. 

 

Furthermore, as the routing between the logic components is also configurable, 
faults in the configuration bitstream may affect it as well. This leads to soft errors that 
modify how the components are interconnected, which does not occur for dedicated 
hardwires. The example in Figure 1.1(b) shows the breaking of a routing wire caused by 
a bitflip. This property has severe implications on well-established fault tolerance 
techniques, since a single fault may even affect multiple independent user nets (LIMA, 
CARMICHAEL, FABULA, et al., 2001). 

It is also important to note that such faults remain in the system until explicitly 
removed, since in a traditional FPGA-based system the configuration memory is only 
loaded after power up. Thus, even when no actual permanent damage is caused to the 
storage cell, the user circuit may present erroneous behavior for a long time. To 
minimize this issue, one alternative is to periodically overwrite the configuration 
memory, in a procedure called scrubbing (CARMICHAEL, CAFFREY and 
SALAZAR, 2000). However, this approach may take a long time to reach the faulty bit, 
due to the large size of the configuration memory and the limited bandwidth available to 
access it. The mean time to repair (MTTR) is associated with how long it takes to 
traverse the entire configuration, and it is in the order milliseconds even for mid-range 

 

Figure 1.1: Fault-free circuit and its associated configuration bits (a) and faulty 
circuit due to a configuration upset (b) 
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FPGAs (CHAPMAN, 2010). Thus, systems that must meet real-time deadlines, for 
example, may find it insufficient to rely solely on configuration scrubbing, as the 
system is likely to be unavailable during the presence of the fault. 

Real-time systems require an answer that is both correct and within the expected 
timeframe whenever possible, preferably even after the occurrence of a fault. Hence, for 
such systems, the ability to detect and correct an error may not be sufficient if it takes 
too long to recover and many deadlines are missed. Even more drastic effects can occur 
in control or Digital Signal Processing (DSP) systems where the next output is highly 
dependent on the previous states. Let us take, for example, a simple digital biquad filter 
with an 8 KHz sampling frequency and with a 200 Hz sawtooth input. Figure 1.2(a) 
shows the output of the filter without faults. Now let us assume that a fault occurs and it 
modifies one of the coefficients from 0.9 to 1.9, leading the filter to a potentially 
unstable behavior. If the error lasts for the time of one sample (125 µs), the output of the 
filter becomes that shown in Figure 1.2(b), almost identical to the correct one. On the 
other hand, if the error lasts for 7 ms (or 56 samples), which is a relatively short repair 
time for a state-of-the-art FPGA, it causes the output to become that in Figure 1.2(c). 
Note that it severely disrupts the output values far longer than the duration of the error, 
a behavior that is typical in circuits with logic feedback (PRATT, CAFFREY, 
GRAHAM, et al., 2006). Therefore, faster means to detect and remove errors are 
required to allow the application of FPGAs in such systems. 

 

Even in systems that do not necessarily have real-time constraints, fast error 
detection and removal can be crucial. A softcore processor that has its program counter 
moved to an unknown memory location, for example, may never recover if only 
scrubbing is used, since removing the configuration error does not restore its execution 
flow. Checkpoint and rollback procedures can be used for such cases. The former 
consists in periodically saving the system state, while the latter is the action of returning 
to one of these states once a fault is detected. The longer it takes to detect the 
occurrence of a fault, the farther its effects may have propagated throughout the system. 
Thus, it becomes more costly to maintain backup copies of the system state and to 
return to one of these checkpoints if the system takes long to detect an error. For 
example, if a processor is unable to detect the presence of an error before it propagates 
to the main memory, rolling back to a safe state becomes very costly or even unfeasible, 
as a backup of the entire memory is required. On the other hand, if an error is detected 
while it is restricted to the register file, or even before it reaches a register, the rollback 
is greatly simplified. 

 

Figure 1.2: Fault-free output (a), one cycle error (b) and 56 cycles error (c). The 
markings on the x axes show the fault duration 
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The specific properties of faults on FPGAs dictate that hardening techniques applied 
to such devices must be specifically tailored to cope with faults that affect the 
configuration memory. Moreover, it is crucial to keep in mind that the routing resources 
are not reliable and that configuration faults last for long periods of time if only 
straightforward scrubbing is applied. Therefore, other techniques must be applied in 
conjunction, ensuring that the probability of service failure is kept at an acceptable 
level. On the other hand, the system is still subject to the other constraints found in 
embedded devices, such as performance, power, energy and area. As fault tolerance 
techniques are traditionally based on redundancy, they will have a negative impact on at 
least some of these parameters. For example, Triple Modular Redundancy (TMR) 
consists in instantiating three replicas of the original design and performing a majority 
vote on their results. Thereby, it allows masking errors on a single module, but comes 
with area and power costs of approximately 200%. Such costs may be prohibitive for 
systems with stringent budget or power constraints. Error detection alternatives with 
lower costs, such as Dual Modular Redundancy (DMR) can become attractive in such 
situations. DMR consists in duplicating the components to be hardened and in 
comparing their outputs, thus presenting approximately 100% area and power costs. 
Reaching the required dependability levels, while meeting the remaining design 
constraints and minimizing costs, is a challenging task that frequently requires iterative 
fine tuning, as shown in Figure 1.3.  Several iterations may be required until all 
constraints are met and costs are minimized, making it crucial to be able to quickly and 
efficiently modify the design, as well as to quickly and accurately evaluate the 
dependability and costs associated. 

 

Therefore, just as important as providing efficient means to cope with faults is 
evaluating the effectiveness of such means. A critical system specification should 
include values for metrics that determine the desired level of dependability. For 
example, “the system should not be offline for longer than 1 hour per year” or “the 
probability of a mission failure should be below 1 in a million” are the kind of 
specification that makes sense from the end user perspective. They must be 
appropriately translated into metrics that can be measured during design time, so that 
engineers are able to tune the techniques applied until the constraints are met with 
minimum costs. 

Traditional approaches include the use of mathematical models to estimate 
reliability, which may become too complex or imprecise for large systems, and fault 
injection, which may take a long time to become statistically significant, especially 
when based on simulation software. Furthermore, due to the complex effects of faults in 
FPGAs and the unavailability of low level schematics to the users, the evaluation of 
fault tolerance techniques for FPGAs most frequently uses an actual device to perform 
experiments. Doing so provides more precise results in a reduced time, compared to 
simulation-based approaches. Experiments using radiation sources to stimulate the 
occurrence of errors in the FPGA are also common and are valuable especially to 
estimate the expected error rates for the system after deployment. They are important to 

 

Figure 1.3: Iterative development cycle of dependable systems 
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perform the mentioned conversion of the dependability expected by the users into 
metrics that are manageable by designers, as they allow estimating the fault rates that 
would be observed in the deployment environment. 

1.1 Main goals and contributions 
The goal of this work is to tackle one of the main challenges found when providing 

fault tolerance for FPGAs: the long time required to detect and remove a configuration 
memory error. As discussed previously, this long repair latency can cause missed 
deadlines in real-time systems and it increases the costs of performing checkpoint and 
rollback procedures. It also increases the probability of faults accumulating in the 
system, which may break techniques built upon the single-fault assumption. This thesis 
focuses on soft errors, i.e., those that do not permanently damage the device and that 
can be removed by overwriting the correct memory contents. Soft errors are a very 
critical concern for digital systems with deeply scaled transistors, and for FPGAs the 
configuration memory consists in a particular concern (FULLER, CAFFREY, 
SALAZAR, et al., 2000). Other resources in FPGAs, such as internal block RAM 
memories, are also susceptible to SEUs. Faults on these components, however, have a 
similar behavior to that observed in ASICs and can be mitigated with the same 
established techniques, such as error correcting codes (ECCs). Thus, in this work, we 
focus on providing means to efficiently detect and remove soft errors from the 
configuration memory of FPGAs. 

In order to quickly detect and remove an error, one cannot rely solely on periodically 
overwriting the contents of the configuration memory. As discussed previously, the time 
required to do so is long enough for the error to cause missed deadlines and to 
propagate throughout the system logic, making it very costly to return to a consistent 
state. In this work, thus, we propose the use of techniques that allow fast error 
detection, i.e., a short latency between fault occurrence and detection. Such techniques 
can be used to perform a triggered scrubbing, i.e., one that ensues once an error is 
effectively detected. Furthermore, it is preferable that an accurate fault location is 
provided. With precise diagnosis, one can perform localized removal procedures in a 
much shorter time than with global scrubbing. Furthermore, by repairing a smaller 
portion of the memory, one can save energy, as fewer memory accesses are necessary. 
The key concept explored in this work to achieve both fast error detection and precise 
diagnosis is the granularity of the error detection mechanism. 

The granularity of a fault tolerance mechanism determines how the system is 
divided into modules for the sake of applying the technique. In other words, it 
determines how large and complex one allows each of these modules to be. Let us take 
DMR, one of the most traditional techniques, as an example. Figure 1.4(a) shows the 
basic coarse-grained approach. It allows detecting any single fault that occurs in one of 
the two copies and that propagates to the comparator. The latter condition, however, is 
frequently non-trivial, as a fault may be masked by circuit logic for long periods of 
time, depending on the nature of the function computed by the component. The 
granularity of the modules plays a significant role on this error detection latency. Note 
that small and simple components, as those shown in Figure 1.4(b), are more likely to 
quickly propagate an error to one of its outputs. This will in turn trigger the associated 
comparator, warning the system of the presence of an error. The approach in Figure 
1.4(a), on the other hand, will only allow detecting the error once it has propagated to a 
primary output. For FPGAs, the possible granularities range from single LUTs up to 
entire complex modules, such as softcore processors. 
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The granularity also affects the precision with which the location of the detected 
error is known. As the comparator is only able to indicate that the output of the modules 
diverged, it cannot further specify the location of the error, which may be anywhere in 
the two modules and also in the comparator itself. Thus, the smaller the modules are, 
the more precise is the knowledge regarding fault location. In the example in Figure 
1.4(a) a single bit of error detection is provided, which only allows indicating that a 
fault was detected, with no information about is location. On the other hand, in Figure 
1.4(b) we are able to narrow the fault location down to a smaller portion of the system, 
depending on which signal was raised. Fine-grained error detection is, hence, an 
important feature to reduce the error removal time, as it provides improved diagnosis, 
allowing for localized repair procedures. 

This thesis, thus, focuses on fine-grained error detection techniques for FPGAs and 
how they may be applied to achieve fast error detection and removal. One of the 
presented contributions is a technique that exploits abundant and underused resources 
found in state-of-the-art FPGAs to perform fine-grained comparison of replicated LUTs. 
As one of the main drawbacks of fine-grained fault tolerance is that it typically has an 
increased cost in area due to additional comparators (or voters), finding alternative 
mechanisms to implement them can help saving resources. Related works have even 
proposed the insertion of hardwired comparators in the FPGA fabric to minimize this 
area overhead (KYRIAKOULAKOS and PNEVMATIKATOS, 2009).  Thus, the 
technique proposed here allows providing the benefits of fine-grained DMR while 
minimizing its main disadvantage, namely the increased area. It does not require any 
modification in the FPGA substrate, being applicable to devices that contain carry 
propagation chains, which are dedicated circuits for the efficient implementation of 
adders found in many state-of-the-art devices. 

The use of very fine-grained diagnosis to perform accelerated error removal is also a 
challenging task, especially when one aims at doing so with acceptable costs. In this 
thesis, an approach to deal with very large error signatures (i.e., numerous individual 
error flags) is presented and evaluated. It relies on statistical information to build a 
relation between error signatures and the most likely error locations. It then identifies 
the optimum starting point of a scrubbing procedure aiming at minimizing the mean 
time required to actually reach the erroneous frame and correct it. 

As discussed previously, evaluating the effectiveness of fault tolerance techniques 
for FPGAs is a demanding task as well. For this purpose, this work also presents a high 
speed and low cost fault injection platform that allows performing extensive 
experimental campaigns in a timely manner. The platform requires a single FPGA to 
carry out all the required functions, reducing the complexity and cost of the 
experimental setup, while avoiding off-chip accesses that reduce the injection rate. 

 

Figure 1.4: Coarse-grained (a) and fine-grained (b) DMR 
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Radiation experiments were also performed with a particle accelerator at the 
VESUVIO facility in ISIS, Rutherford Appleton Laboratories in Didcot, United 
Kingdom. The purpose of these experiments is twofold: first, asserting the effectiveness 
of the proposed techniques in an actual radiation environment; second, validating that 
the results attained with the fault injection tool accurately represent the effects of 
radiation on the device. 

1.2 Outline 
This work is structured as follows. Chapter 2 describes a standard FPGA 

architecture and discusses the main components found in current devices. It also 
presents the dependability threats faced by FPGA-based systems. Related works on 
fault tolerance techniques for FPGAs are discussed in chapter 3, while chapter 4 focuses 
on radiation experiments and fault injection platforms. Chapter 4 also presents the fault 
injection platform developed in the context of this work, describing its implementation 
and presenting its costs and advantages. In chapter 5 we present the techniques required 
to leverage fine-grained fault tolerance as a means for fast configuration error removal 
in FPGAs. We also present experimental results, including the expected failure rates for 
the proposed approaches. Chapter 6 presents the Scrubbing Unit Repositioning for Fast 
Error Repair (SURFER) technique and evaluates it regarding area and delay costs, as 
well as reductions on repair time. Conclusions drawn from the conducted work are 
presented in chapter 7. Some of the most promising future works envisioned at this time 
are also presented in chapter 7. Appendix A presents the taxonomy on dependable 
systems adopted in this work. It is suggested especially for readers not familiar with the 
nomenclature and basic concepts of this area. Appendix B discusses and evaluates the 
impact of non-random input stimuli on the figures reported in chapters 5 and 6. 
Appendix C presents additional experimental results exploring the design space offered 
by the heuristic algorithm proposed in chapter 6. 



23 

 

 

2 FPGAS AND THEIR DEPENDABILITY THREATS 

The configurability of FPGAs is, at the same time, the key to their commercial 
success and the main source of area, delay and power costs. It must also be taken into 
account when a critical FPGA-based system is being designed, as it provides new 
possibilities, but also additional concerns. In this chapter we present the basic concepts 
of FPGA architectures in section 2.1. Then, in section 2.2 we present the main 
dependability threats for current FPGA devices. 

2.1 FPGA Architecture basics 
FPGAs are designed to be highly flexible, easily configurable and also to present 

high performance. A good source for further reading on the basic concepts of FPGA 
architecture is (KUON, TESSIER and ROSE, 2008). One of the most relevant aspects 
of such architectures, from both design and reliability perspectives, is the existence of a 
large configuration memory that stores the configuration bitstream. It is usually divided 
into frames, which are the smallest addressable units of the bitstream. The contents of 
this memory configure each and every element inside the device, including the behavior 
of each logic circuit and the routing between them. Thus, it stores the entire circuit 
functionality expected by the user, making its integrity a key requirement for the correct 
behavior of the system. Moreover, the configuration memory may be implemented with 
different manufacturing technologies, such as static RAM (SRAM) (LESEA, DRIMER, 
FABULA, et al., 2005), flash (MICROSEMI CORPORATION, 2011) or antifuse 
(MICROSEMI CORPORATION, 2012), each with its advantages and drawbacks, to be 
discussed in more details section 2.2. 

With regard to configuration memories, an important development of newer SRAM-
based FPGAs is the possibility to perform dynamic partial reconfiguration. It consists in 
modifying the bitstream while the device operates normally, which has many 
applications. The most straightforward is having a dynamically reconfigurable area that 
has its behavior modified to assist the system in its current needs, avoiding the use of a 
larger area. Many other applications exist, especially when considering the requirements 
of fault tolerant systems. Devices also frequently provide special components to access 
the configuration from within the FPGA logic, allowing the creation of self-modifying 
designs and creating many new opportunities also for critical systems. 

In order to be able to efficiently describe the required system function with the 
configuration memory, a flexible and powerful logic component is required. For that 
purpose, current FPGAs employ configurable lookup tables (LUTs) as their most basic 
functional building block. A k-input LUT is basically a multiplexer that selects one3 out 

                                                 
3 Some devices contain multiple output LUTs that can implement two or more functions 
that use the same input signals. 
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of 2k binary values which are stored in memory cells. It can implement, thus, any 
boolean function with up to k inputs, with the configuration memory cells holding the 
desired function’s truth table, as shown in Figure 2.1. 

 

LUTs are combined, along with other basic components such as flip-flops, into 
small modules called configurable logic blocks (CLBs). Xilinx 7-Series CLBs, for 
example, are divided into two slices, with each slice containing four 6-input LUTs and 
eight flip-flops (XILINX, INC., 2012a). Similarly, in an Altera’s Stratix V device, each 
CLB (called ALM – Adaptive Logic Module by the manufacturer) contains two 
adaptive LUT structures and four flip-flops (ALTERA CORPORATION, 2013). An 
adaptive LUT is an 8-input structure that can implement two 4-input functions, any 6-
input function and certain 7-input ones. Furthermore, each CLB typically contains carry 
propagation chains that greatly simplify the implementation of adders or subtracters in 
the FPGA fabric. Inside each CLB there are also multiplexers able to realize 
interconnections between the LUTs, the carry chain circuitry and the flip-flops. Figure 
2.2 shows the schematic of a Virtex 5 slice, which comprises four 6-input LUTs and 

 

Figure 2.1: Example of a 3-input LUT implementing the XOR function 
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Figure 2.2: Schematic of a Virtex 5 slice (XILINX, INC., 2010) 
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four flip-flops. Each LUT can also be used as a read-only memory (ROM) and flip-flops 
have several configuration options, such as their initialization value and whether they 
are sensitive to clock level (latch) or edge (actual flip-flop). Each LUT can also be used 
to implement two different 5-input functions, as long as they share common inputs. The 
multiplexers and XOR gates in the center compose the carry chain circuit. 

Aside from the CLBs, FPGAs contain dedicated blocks that implement some 
functions which are commonly required by the end users. For example, FPGAs are 
frequently used in digital signal processing (DSP) applications and such algorithms 
make heavy use of multiplication operations. Therefore, as multipliers are complex 
blocks that would require many LUTs to be implemented, FPGAs usually include 
hardwired DSP blocks. Each DSP block is able to compute a fixed point multiplication 
which may or may not be followed by an accumulation (XILINX, INC., 2010). Other 
more specific functions, such as dedicated transceivers and clock management units are 
also found in state-of-the-art FPGAs. 

Another important feature found in FPGAs is the embedded memory blocks. The 
flip-flops found in the CLBs are very efficient to implement registers, such as counters 
or timing barriers in a pipelined design. However, when larger random access memories 
(RAMs) are required, flip-flops become inappropriate for two main reasons: 1) they are 
not so abundant in the device and are commonly heavily used as purpose-specific 
registers or pipeline barriers, leaving few spare resources and 2) their access is made by 
general purpose routing wires, which means that the multiplexing required to make a 
random access memory would have to be LUT-implemented, leading to further resource 
waste. For this reason, FPGAs usually include block RAMs (BRAMs), which are 
hardwired arrays of SRAM cells with dedicated access circuitry, much like a cache 
inside a processor chip. They can be used as small instruction memories for simple 
programs or as buffers for incoming or outgoing data frames of a specific application. 

The communication with external components is done via FPGA pins, which are 
connected to the internal circuit using configurable input/output blocks (IOBs). These 
blocks can be configured to work as input, output or bidirectionally, according to 
different coding and electrical standards (XILINX, INC., 2010). Since they are the 
beginning and ending points of the system contained in the FPGA, these components 
play a significant role in reaching high reliability levels. Some techniques make use of 
pin redundancy to improve reliability (D'ANGELO, METRA, PASTORE, et al., 1998), 
(LIMA, CARRO and REIS, 2003). 

Finally, there is the great concern of interconnecting all the components of the 
FPGA: CLBs, BRAMs, dedicated hardwired logic and IOBs. The need for flexible 
routing resources, in the sense that they must be able to realize the interconnection 
topologies required by the user, and that are efficient in terms of area, delay and power, 
makes such resources a chief concern in FPGA design. The required flexibility imposes 
the need for a large amount of configuration bits associated with routing. In fact, the 
vast majority of the configuration bits actually configure how components are 
interconnected and not their behavior (XILINX, INC., 2011a), making such resources 
great concern regarding device reliability as well. 

2.2 Dependability threats for FPGAs 
The aggressive scaling of semiconductor devices, which leads to increased 

performance and lower energy consumption, frequently has adverse effects on 
dependability. The effects of energetic particles that may hit the silicon and disturb the 
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circuit operation, which are discussed in section 2.2.1, are of particular interest to this 
work. We also briefly discuss the effects of the aging of devices in section 2.2.2. 
Section 2.2.3 discusses the relation between dependability threats and the dependability 
metrics for FPGAs. 

2.2.1 Radiation effects 

With the reduction of transistors’ dimensions and of supply voltage, the amount of 
electrical charge in a transistor is significantly reduced. Thus, the critical charge, i.e., 
the electrical charge that needs to be collected after a radiation event in order to induce 
an error, is also reduced. With reduced critical charge, the rate at which radiation-
induced errors are observed tends to increase. 

Several different particle types may induce errors on silicon devices, by generating 
energetic ions either directly or as a secondary effect. Alpha particles, neutrons, protons 
and heavy ions are among the most commonly reported sources of errors. Figure 2.3 
shows the effects of an ion in the silicon. As the energetic ion passes through the device, 
it produces electron hole pairs (a), which are then rapidly collected in a funnel-like 
shape (b) and then more slowly over a long period of time by a diffusion process (c). If 
the amount of charge collected during this process exceeds the critical charge, then an 
error may occur. More in-depth discussions on the interaction of energetic particles and 
integrated circuits can be found at (SEXTON, 2003) and (BAUMANN, 2005). Of 
greater relevance to this work are the effects of such particles on a higher abstraction 
level, i.e., on circuit logic and on the service provided by the system. The current pulse 
induced by the particle may lead to several different single event effects (SEEs), 
especially when one considers the particular properties of FPGAs. 

 

2.2.1.1 Single Event Transient (SET) 

If the affected part of the circuit contains combinational logic, the fault may 
manifest itself as a glitch on the output of a given logic gate. This phenomenon is 
referred to as a single event transient (SET). 

Let us consider the simple circuit shown in Figure 2.4(a), in which the OR gate is 
subject to a fault that temporarily raises its output, n0, to a logic ‘1’. Figure 2.4(b) shows 
the situation in which the SET propagates through the combinational logic and is stored 
in a register, leading to the occurrence of a soft error. However, it may not lead to such 
an error due to several reasons. First of all, it may be masked by circuit logic, as shown 
in Figure 2.4(c) (note that the value of i2 has changed). Second, the storage cell may 

 

Figure 2.3: Effects of an energetic ion on a silicon device 
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have an “enable” input which, when deactivated, prevents the cell from reading its input 
value, as depicted in Figure 2.4(d). Finally, the fault may not be present during the 
occurrence of a latching window, as shown in Figure 2.4(e). The latching window is the 
period of time in which the storage cell updates its output value. It comprises the time 
when the clock is high (or low) for a latch or a narrow timeframe around the rising (or 
falling) edge of the clock for flip-flops (defined by the setup and hold times of the cell). 
With the reduction of the critical charge and with the increase of the operating 
frequency of newer devices, there is a possibility that the SET will last for more than a 
clock cycle. The impact of the long duration transient faults and several techniques to 
mitigate these effects are presented in (LISBÔA, 2009). 

 

Even though SETs on combinational logic should still be taken into consideration, 
they are far less common in FPGAs than in traditional ASICs (LESEA, DRIMER, 
FABULA, et al., 2005). This is mainly due to the higher capacitance found in the 
routing of signals in an FPGA, which makes it much less likely that a particle will have 
sufficient energy to induce an error. 

2.2.1.2 Single Event Upset (SEU) 

An energetic particle may also directly hit a storage element and potentially alter the 
stored value. This phenomenon, called single event upset (SEU), most frequently affects 
a single memory cell leading to a single bit upset (SBU). Due to the greater integration 
and reduced dimensions of transistors, a single particle may also cause a multiple bit 
upset (MBU), which may have undesirable effects on systems that rely on error 
correcting codes (ECC), for example. 

Figure 2.5 shows how a SEU occurs for a standard 6-transistor SRAM cell. Figure 
2.5(a) shows the initial (correct) state of the cell, which is storing ‘1’. As shown in 
Figure 2.5(b), the particle creates a pulse in the output of one of the cross-coupled 
inverters that form the cell, similarly to a SET. In this case, however, if the pulse lasts 
long enough, it drives the input of the other inverter, which in turn reinforces the effect 

 

Figure 2.4: Different outcomes of a single event transient (SET) 
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Figure 2.5: Single Event Upset on an SRAM cell 
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of the pulse on the first one through the feedback loop, altering the stored state, as 
shown in Figure 2.5(c). 

SEUs are of particular interest for FPGAs due to their reliance on a configuration 
memory to store the desired circuit functionality. Thus, if such memory is subject to a 
SEU, the circuit function may be modified until the memory is rewritten at that position. 
As any configurable element is subject to this type of faults, both logic and routing 
resources may be affected. For instance, a LUT may have its function altered, meaning 
that it will yield a wrong output if the inputs choose that specific value. On the other 
hand, as discussed in section 2.1, the majority of the configuration bits are related to the 
routing resources. Therefore, faults affecting the configuration bitstream are likely to 
affect the interconnection between the logic elements. Furthermore, the effects of such 
faults on the user circuit behavior are not straightforward. For example, a single fault in 
a routing configuration bit may corrupt multiple nets of the user design, with 
undesirable effects on traditional error mitigation schemes (LIMA, CARMICHAEL, 
FABULA, et al., 2001), (STERPONE and VIOLANTE, 2006). Such effects are a major 
concern for error detection and/or correction techniques for FPGAs and represent a 
major threat to the dependability of FPGA based systems. 

The technology used to implement the configuration cells has significant impact on 
the expected SEU rate. Flash-based FPGAs present, along with the non-volatility of 
flashes, the advantage of a higher tolerance to radiation-induced SEUs. However, for 
the most aggressively scaled technologies, even flash memories may be subject to such 
faults (IROM, NGUYEN, HARBOE-SøRENSEN, et al., 2011), creating the need for 
mitigation schemes even for such FPGAs. Furthermore, flash-based FPGAs present a 
much reduced logic capacity, in comparison to the SRAM-based ones. For example, the 
largest flash-based FPGA made available by Microsemi (formerly known as Actel) 
presents a logic capacity of 75,264 VersaTiles (each VersaTile can be configured to 
work as a D flip-flop or as a 3-input LUT) and 504Kb of BRAM (MICROSEMI 
CORPORATION, 2011). The largest SRAM-based FPGA made available by Xilinx, on 
the other hand, presents 1.22 million 6-input LUTs, over 45Mb of BRAM and 2.44 
million flip-flops (XILINX, INC., 2012a). 

Antifuse cells are also an alternative for the implementation of the configuration 
memory. This technology is highly resistant against radiation-induced faults, but 
presents the significant drawback of being programmable only once. This property 
prevents designers from including new functionalities or correcting design mistakes 
after the FPGA has been programmed. It also prevents the use of many techniques 
based on partial reconfiguration to avoid permanent faults. Moreover, antifuse-based 
FPGAs are also limited in terms of logic and embedded memory capacities, when 
compared to the SRAM ones. The largest antifuse-based FPGA made available by 
Microsemi contains 20,160 radiation-hardened flip-flops and 40,320 combinational 
cells (C-cell) (MICROSEMI CORPORATION, 2012). Each C-cell can implement over 
4,000 5-input functions (which are not all possible 5-input functions). 

The non-configuration memory cells (mainly BRAMs and flip-flops), which are 
usually implemented with SRAM cells, may also be subject to SEUs. However, as they 
are similar in purpose to the cells found in an ASIC, they may rely on the same 
traditional mitigation schemes, such as modular redundancy and ECCs. Such techniques 
should be used together with those targeting the configuration bitstream in order to 
provide comprehensive fault coverage. 
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2.2.1.3 Destructive Radiation Effects 

Differently from what is observed with SETs and SEUs, there are also single event 
effects that cause permanent, destructive damage to the system. These effects are much 
rarer than SETs and SEUs, usually requiring more specific conditions and higher energy 
particles to occur. In (SEXTON, 2003) a detailed discussion is presented for each of the 
different mechanisms that may cause permanent damage, which is summarized here. 

A single event latchup (SEL) occurs when a particle activates parasitic pnpn bipolar 
structures found in CMOS devices. A low impedance path is created between supply 
voltage and ground, though which a high current flows. As this effect can only be 
removed through a power cycle, i.e., by completely powering off the circuit, there is a 
high probability that the current will permanently destroy the affected region. Thus, the 
latchup is not destructive by itself but the high current it creates may damage the device. 
A SEL is similar in effect to a single event snapback (SES). SESs, however, do not 
require the pnpn structure, occurring within a single transistor. Other destructive 
phenomena are more common in power transistors, such as single event burnout (SEB) 
and single event gate rupture (SEGR), being of less concern for FPGAs. A SEB is 
caused by heavy ions that trigger an avalanche effect, that in turn create large currents, 
potentially damaging the circuit. It may also cause a SEGR, a phenomenon in which the 
particle causes the dielectric that separates gate and channel to fail, also permanently 
damaging the transistor. 

2.2.1.4 Cumulative Radiation Effects 

The long term exposure to radiation may also have negative effects on the device 
dependability. These effects, thus, are not due to a single particle that hits the device, 
but due to the accumulated effects of radiation. The total ionizing dose (TID) over time 
may cause charges to be trapped in the field and gate oxides, the latter causing changes 
in the transistor’s threshold voltage (VTh) (SCHRIMPF, 2007). This in turn degrades the 
transistor’s performance, until it eventually starts violating the timing constraints of the 
design, leading to intermittent and even permanent errors. Energetic particles may also 
cause displacement of atoms in the silicon lattice, also modifying its physical properties 
and potentially leading to intermittent or permanent faults. The cumulative radiation 
effects, due to their long term nature, are similar to aging effects, which are the subject 
of section 2.2.2. 

2.2.2 Aging effects 

The continued use of silicon devices leads to several physical phenomena that may, 
over time, cause intermittent or permanent faults. Such effects, collectively called aging 
effects, are the main responsible for the increased failure rate during the wear-out phase 
of semiconductor devices, as shown in the bathtub curve (Figure A.1 in Appendix A). In 
this section we briefly review the main physical sources of integrated circuits aging 
(BANSAL and RAO, 2011). 

Among the most common sources of aging faults in recent technologies are those 
related to bias temperature instability (BTI). The voltage and temperature stress of gate 
dielectric (silicon oxide – SiO2) may cause charges to become trapped in the interface 
between the silicon channel and the dielectric. BTI effects are divided into negative 
(NBTI), which affects PMOS transistors, and positive (PBTI), which affects NMOS 
transistors. Traditionally, due to the operating mode of CMOS gates, NBTI was of 
greater concern. However, with the introduction o hafnium oxide (HfO2) in newer 
technology nodes, PBTI may also become a concern (BANSAL and RAO, 2011). 



30 

 

SRAM cells are also susceptible to aging effects. NBTI reduces the static noise 
margin of these cells and may increase the fault rates. Specifically for FPGAs, most of 
the PMOS transistors are used in the configuration cells, as the LUTs and routing 
resources are made mostly with NMOS pass transistors (MEHTA and DEHON, 2011). 
The effect of NBTI on SRAM cells can be relevant for FPGAs, leading to configuration 
cell instability (RAMAKRISHNAN, SURESH, VIJAYKRISHNAN, et al., 2007). This 
may be observed as an increased SEU rate for FPGA devices that have been in use for a 
long time. 

Hot carrier injection (HCI) also creates charge traps in the SiO2-Si interface, but as a 
direct consequence of the high kinetic energy electrons that occur near the drain 
junction. These particles may also generate secondary particles through impact 
ionization, which may also become trapped in the oxide. As HCI affects NMOS 
transistors, in the case of FPGAs it may lead to faults in the routing pass transistors as 
well. Both HCI and BTI effects cause an increase in the threshold voltage, leading to 
slower device response and potential timing violations. 

Time-dependent dielectric breakdown (TDDB) is another consequence of the traps 
that occur in the gate oxide. These traps may accumulate until a conductive path is 
formed between gate and channel, thus breaking the dielectric. The result of this 
breakdown is a sudden increase in gate current and consequently in power consumption. 

2.2.3 Technology scaling and dependability metrics 

As discussed herein, technology scaling increases the susceptibility of integrated 
circuits to many adverse phenomena that negatively affect dependability. The increased 
susceptibility to radiation SEEs, for example, reduces the MTBF throughout the entire 
lifetime of systems, while the accelerated aging anticipates the wear-out phase, where 
the failure rate starts to increase severely. Other phenomena, such as process variability 
and the increased complexity of testing and performing burn-in on manufactured 
devices may extend the infant mortality phase as well (LI, KIM, MINTARNO, et al., 
2009), if not counteracted. Thus, the failure rate function z(t) gets higher at all phases of 
the devices’ lifetime, modifying the bathtub curve described in section A.4 of Appendix 
A, as shown in Figure 2.6. Note that the plateau region that defines the useful life of the 
system gets shorter, due to early-life failures and the anticipated wear-out phase. 
Furthermore, it gets higher, due to the increased susceptibility to random soft errors, 
such as radiation induced SEUs. 

 

Specifically for FPGAs, some efficient alternatives exist to mitigate manufacture 
defects (HATORI, SAKURAI, NOGAMI, et al., 1993), (HOWARD, TYRRELL and 
ALLINSON, 1994) and process variability (GOLSHAN, KHAJEH, HOMAYOUN, et 
al., 2011), (MEHTA and DEHON, 2011), usually relying on the fabric’s regularity for 

 

Figure 2.6: Technology scaling and the bathtub curve 
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this purpose. Furthermore, due to FPGAs’ improved energy efficiency when compared 
to general purpose processors, they tend to operate on lower temperatures, which in turn 
delays aging processes (MEHTA and DEHON, 2011). As discussed in section 2.2.2, 
one of the most critical effects of aging on FPGAs is the increased susceptibility to soft 
errors on the configuration cells (RAMAKRISHNAN, SURESH, VIJAYKRISHNAN, 
et al., 2007). Thus, being able to efficiently mitigate the effects of SEUs on FPGAs is 
crucial during all phases of the devices’ lifetime. 

Another relevant side-effect of technology scaling observed in FPGAs is that, as a 
general rule, the bitstream size increases faster than the configuration interface speed, 
increasing the total programming time. As configuration scrubbing remains the main 
alternative to remove errors from the bitstream, the MTTR attainable with this approach 
tends to increase as technology advances. The probability of timing failures in real-time 
systems is therefore also increased, as well as the downtime of systems with availability 
constraints. A more in-depth analysis on configuration rates and bitstream sizes for 
different device families (and manufacturing technologies) is presented in section 3.2. 
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3 FAULT TOLERANCE TECHNIQUES FOR FPGAS 

The many advantages and new concerns brought by FPGAs to the field of 
dependable systems have fueled a significant amount of works on fault tolerance 
techniques for such devices. Some techniques are adaptations of traditional redundancy 
schemes while others make explicit and intensive use of the underlying configuration 
memory to detect and possibly correct faults. Frequently, techniques make use of both 
approaches concurrently to provide a more comprehensive reliability solution. In 
section 3.1 we review the main works on this area, focusing on those that are based on 
redundancy schemes. Works that heavily exploit bitstream manipulation are discussed 
in section 3.2. Works that combine both are discussed in the category where the most 
significant contributions were made. The contributions of this thesis are contrasted with 
related works in section 3.3. 

3.1 Techniques based on redundancy 
Redundancy is the repetition of information or computation. While minimizing it is 

the goal in many situations (e.g., logic circuit minimization, data compression), it 
remains an essential tool to provide fault tolerance. Earlier works, such as (HATORI, 
SAKURAI, NOGAMI, et al., 1993) and (HOWARD, TYRRELL and ALLINSON, 
1994) propose to introduce redundancy in the form of spare resources that are used to 
improve the manufacture yield, i.e., the fraction of total produced chips that is usable. 
These resources are activated if, and only if, the manufacture test detects a fault, 
replacing the defective components in the chip. This approach allows maintaining the 
total logic capacity of the device and increases the probability that each chip is usable. 
Post-manufacture faults, however, were not a concern for these works. In the following 
years, several other works were concerned with improving the yield of FPGA 
architectures. Such techniques, however, are not the main concern of this work and we 
focus on techniques able to tolerate faults occurring at runtime. 

In (MOJOLI, SALVI, SAMI, et al., 1996) the importance of also mitigating post-
manufacture faults is presented. The work focuses on permanent faults. The authors 
assume a non-reprogrammable FPGA, thus ignoring any possibility of run-time 
reconfiguration. The proposed technique makes use of modular redundancy, i.e., the 
replication logic blocks followed by comparison or voting, to provide fault tolerance. 

Modular redundancy can be implemented with a varied number of replicas, with the 
most common variations being dual modular redundancy (DMR) and triple modular 
redundancy (TMR). As discussed previously, DMR allows the detection of single faults 
by comparing the outputs of two circuit copies, thereby signaling possible failures to 
other modules. TMR, on the other hand, allows masking single faults by voting the 
value given by the majority of three replicas. Figure 3.1(a) and Figure 3.1(b) show the 
basic DMR and TMR techniques, respectively. The reliability of the comparator or 
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voter component is also of critical concern for such systems. For this reason, 
redundancy is also frequently applied to them. Figure 3.1(c) shows a frequently used 
technique that triples the voters to avoid single points of failure (SPOFs). Modular 
redundancy may be applied with an arbitrary amount N of replicas (NMR) as well. 

 

Mojoli, Salvi, Sami, et al. (1996) make use of four replicas of each module, thus 
allowing not only the correction of single faults but also the detection of double faults. 
This technique is also able to correct two faults if they do not happen simultaneously. 
The authors argue for the need of using placement constraints to ensure isolation 
between the different replicas, even though the complex faults associated with routing 
resources were not yet discussed. Furthermore, the authors present different 
granularities of implementation. Previous works, which aimed at improving the 
manufacture yield, required a very deep understanding of the FPGA fabric, which is not 
always available or convenient for the end user. Hence, in (MOJOLI, SALVI, SAMI, et 
al., 1996) redundancy is implemented with the granularity of functions that can be 
handled by the user CAD tools. The presented results show that the technique has a high 
probability of providing correct service. However, they were obtained by means of high 
level equations that estimate the probability of faults affecting the control circuitry, 
without any experiments on a real device. 

Standard TMR is applied in (FULLER, CAFFREY, SALAZAR, et al., 2000). The 
authors present extensive radiation experiments on a Virtex device, showing that 
configuration upsets are a major concern in FPGAs. The addition of TMR combined 
with configuration scrubbing showed a 15× improvement on proton fluence-to-failure 
measurements. The authors also identified a critical component in the fabric of those 
devices, called “weak-keepers”. They were responsible for driving constant values that 
could be required by other components in the fabric and were susceptible to upsets that 
were not detectable in the configuration bitstream. Replacing the use of these circuits 
with other means to drive a constant value further improved the results. Very high 
availability measures (up to 99.9998%) could be achieved with the use of such 
techniques. 

In (LIMA, CARMICHAEL, FABULA, et al., 2001) the authors also make use of 
TMR on a Virtex device, which is evaluated through bitstream fault injection and 
confirmed through radiation ground testing. Experiments showed that single bit flips 
could lead to unexpected functional failures. Using proprietary tools, the source of such 
situations was identified: a single bit flip could connect signals from independent 
redundant modules, corrupting multiple nets and causing the voting scheme to fail. The 
relevance this property led to several further researches on how to mitigate this issue 
(STERPONE and VIOLANTE, 2006), (KASTENSMIDT, FILHO and CARRO, 2006). 
A Reliability-oriented place and Route Algorithm (RoRA) is presented in (STERPONE 
and VIOLANTE, 2006), with the purpose of deliberately avoiding the instantiation of 
routing paths that can lead to such faults, relying on TMR as redundancy mechanism. In 

 

Figure 3.1: DMR (a), TMR (b) and TMR with tripled voters (c) 
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(KASTENSMIDT, FILHO and CARRO, 2006), the proposed technique consists in 
introducing redundant routing paths that are able to maintain a reliable connection 
between the components in the presence of faults. Both approaches show very 
significant reductions in the sensitivity to this kind of faults. 

Besides spatial techniques, such as modular redundancy, time redundancy may also 
be used for fault tolerance. It consists in computing repeatedly or with additional delay 
in order to detect and/or mask errors. However, as all computations are performed on 
the same hardware, permanent faults are likely to repeatedly produce the same 
erroneous results, leading to undetectable situations and making time redundancy 
techniques more suitable for transient fault detection. This problem is of special concern 
for FPGAs, where faults affecting the bitstream linger until removed, which usually 
takes at least milliseconds, as discussed previously. 

In (LIMA, CARRO and REIS, 2003) a technique combining time redundancy, DMR 
and TMR is proposed, aiming at reducing the hardware costs of TMR, especially 
concerning the usage of IO pins. Figure 3.2 shows the proposed technique. During 
normal operation, the combinational logic to be protected is duplicated in modules dr0 
and dr1, following a standard DMR approach. Then, if the DMR comparator points out 
the occurrence of a fault, one extra cycle is used to determine which of the modules is 
faulty by means of time redundancy. In order to avoid the situations in which a 
bitstream error is not detected, the circuits operate with encoded inputs and decoded 
outputs. In the example in Figure 3.2, encoding consists in shifting the inputs 1 bit to the 
left, while decoding shifts the result two bits to the right. This approach allows 
stimulating the circuits differently, and potentially identifying which is the faulty one. 
Note, however, that not all circuits allow simple encoding and decoding to perform this 
kind of detection. Furthermore, there is no guarantee that the encoded inputs will 
stimulate the present fault, as they activate different paths in the circuit. Still, for some 

 

Figure 3.2: TMR, DMR and time-redundancy hybrid technique (LIMA, CARRO 
and REIS, 2003) 
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classes of circuits, such as arithmetic functions, it is possible to achieve relevant gains. 
The output flip-flops are tripled, with two of them receiving the outputs of dr0 and dr1 
and the third one receiving the output of the module currently deemed fault-free. The 
presented results show area reductions and high fault coverage for a multiplier example, 
assuming a stuck-at fault model. 

Another study concerning the use of TMR is presented in (KASTENSMIDT, 
STERPONE, CARRO, et al., 2005). In this work, the authors evaluate the trade-offs 
regarding different granularities of application. Entire large modules can be voted at 
their primary outputs (i.e., a coarse granularity) or additional voters can be inserted at 
the output of simpler modules (i.e., a fine granularity). The main drawback of fine TMR 
granularities is that they cause additional area overhead, due to the extra voters, 
similarly to what occurs with DMR and the additional comparators. On the other hand, 
there is a reduced likelihood that faults will affect two redundant modules that share a 
same voter, thus potentially improving the fault coverage. Kastensmidt, Sterpone, 
Carro, et al. (2005) present a case study considering three different voting granularities 
and performing fault injection on the bitstream of a Xilinx Spartan device. The results 
showed that the intermediate granularity presents the best fault coverage (99.02%). All 
uncovered faults were associated with routing bits, as expected. 

In (PRATT, CAFFREY, GRAHAM, et al., 2006) an approach to reduce the costs of 
applying TMR to a design is presented. The observation done in that work is that the 
divergence of the system’s output from the expected one may persist even after the 
configuration error is removed. This occurs mainly when the error modifies the 
behavior of a feedback structure of the design, i.e., a structure whose current state 
depends on its own previous state. For such parts of the design, simply removing the 
configuration error is not sufficient, as this operation does not restore the system state to 
a consistent one. The configuration bits that lead to this kind of situation are named 
persistent bits by the authors. The proposed approach is to apply TMR only to those 
parts of the design identified as feedback structures, aiming at reducing the amount of 
persistent bits. This is a valid approach for those applications that may accept short 
interruptions of service, but not a permanent one, such as audio or video decoding. The 
presented results show that a DSP application kernel could benefit from the technique 
more significantly than a synthetic design based on multiple linear feedback shift 
registers (LFSRs), which had more feedback loops that required TMR, reducing the 
gains of the technique. 

TMR is also used in (GERICOTA, LEMOS, ALVES, et al., 2007), but with a coarse 
granularity. The use of error detection to trigger configuration repair through partial 
scrubbing is evaluated. Error detection is performed by means of a scan chain that 
allows comparing internal signals of the TMR modules. Diagnosis information is not 
used to further divide the TMR modules, i.e., once an error is detected, the entire 
module is reconfigured. And, since coarse-grained TMR is used, large configuration 
areas, associated with large modules, must be repaired. Moreover, the time required to 
detect an error is associated with the time to sequentially compare the entire scan chain, 
thus presenting a linear dependence with the circuit size that limits scalability, similar to 
a global configuration readback mechanism. 

Kyriakoulakos and Pnevmatikatos (2009) present another discussion regarding the 
different granularities of implementation of modular redundancy. They argue for the use 
of very fine grains, based on the fact that it is intuitively less likely that two faults will 
strike a single comparison or voting domain. A domain comprises the original module, 
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its replica(s) and the comparator or voter responsible for its operation. More 
specifically, they consider that each LUT is a module, thus making use of the finest 
grain available for an FPGA. Furthermore, they exploit the fact in Virtex 5 devices, 
each 6-input LUT can implement two different 5-input functions, as long as they share 
the same set of inputs, as shown in Figure 3.3(a). Thus, if the original LUT has only 5 
inputs, it is possible to implement two replicas of the same function on a single 6-input 
LUT. They propose to modify the FPGA fabric to add a dedicated comparator to assess 
that the two 5-input functions are equal, thereby detecting any fault directly affecting 
one of them. Figure 3.3(b) shows the scheme, where a column fault wire is also added 
to indicate that a fault occurred at that column. Moreover, they synthesize the circuit to 
5-input LUTs, so that every LUT in the design can be mapped to this structure. They 
present another modified substrate in which a voter is added, being able to realize a 
TMR scheme in which every three 6-input LUTs of the fabric implement two tripled 
functions. 

 

No fault injection experiments were presented in (KYRIAKOULAKOS and 
PNEVMATIKATOS, 2009).  The faults associated with routing resources, which are 
likely to pose significant threats to this technique, are also left unchecked. The input 
signals of the replicas are the same, thus any fault affecting them is likely to remain 
undetected (even faults that affect a single net). Moreover, as a single voter is used for 
the TMR case, faults affecting the voter’s output may also disrupt the technique. 
Additionally, no results on the area and latency costs of the proposed modifications 
were presented. Nonetheless, the significant reduction in costs (1.76 instead of at least 3 
times for fine-grained DMR, measured by number of LUTs), points out an interesting 
research direction. 

In (SHE and SAMUDRALA, 2009) the authors present an approach to minimize the 
costs of TMR similar to that of (PRATT, CAFFREY, GRAHAM, et al., 2006). The idea 
is to apply redundancy selectively, only on those parts of the design that are deemed 
sensitive by a heuristic approach. The heuristic aims at maximizing the probability that 
a fault is masked, either by circuit logic or by the inserted TMR parts. It relies on input 
signal probabilities that state, for each primary input of the design, the likelihood of it 
being ‘1’. These probabilities are propagated throughout the circuit, considering the 
function computed by each LUT. Based on how likely it is for a LUT to propagate a 
fault (i.e., none of its other inputs has a dominant value), the “SEU sensitive 
probability” of each LUT is calculated. LUTs with a probability above a user-specified 
threshold are considered sensitive and receive TMR. The threshold probability can be 

 

(a)                                                            (b) 

Figure 3.3: 6-input LUT built with two 5-input LUTs (a), and with the XOR gate 
added for comparison (b) (KYRIAKOULAKOS and PNEVMATIKATOS, 2009) 
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mechanism (b) (BOLCHINI, MIELE and SANDIONIGI, 2011)
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detection capabilities are defined to allow localized scrubbing, as shown in Figure 
3.4(b) with the finest grains providing faster repair but increased area overhead. DMR 
and TMR variations are considered as potential redundancy techniques in the presented 
case study. Very significant MTTR reductions are achieved over global scrubbing (at 
least 80%). The problem of mapping the error indication signals, which can become 
numerous for fine granularities, is not addressed. 

Psarakis and Apostolakis (2012) present a similar approach to exploit the benefits of 
fine-grained redundancy. The goal of their work is to avoid the costly maintenance of 
checkpoints to perform rollback procedures once an error is detected. The authors 
propose to divide a design into smaller modules, such as pipeline stages of a processor, 
and to apply a concurrent error detection technique to each of them individually. Thus, 
they are able to detect the presence of an error before it has propagated to structures 
such as the register file or the main memory and to indicate in which stage the error 
occurred. Furthermore, each module is implemented in an individual reconfigurable 
partition that includes spare resources to mitigate the effects of permanent faults. And as 
each module is smaller than the total design, they are able to perform a localized 
scrubbing to reduce the MTTR. When scrubbing is unable to restore the module’s 
functionality, it is deemed as permanently faulty. In (PSARAKIS and APOSTOLAKIS, 
2012), however, they assume the existence of additional pre-compiled configurations to 
activate the spare resources and to avoid using the faulty ones within the module, 
similarly to (LACH, MANGIONE-SMITH and POTKONJAK, 1998). 

In their case study, they apply DMR to three modules of an OpenRISC processor, 
namely instruction decode, execute and the multiply-accumulate module. These 
modules represent only over 20% of the design, but the observed area overhead is 
40.2%, showing that the proposed approach indeed causes significant costs due to the 
addition of reconfigurable partitions and reconfiguration controllers. The authors do not 
present any study regarding fault coverage. Also, the memory access and the writeback 
stages are not addressed in the paper. They are very critical to the proposed technique, 
since they have write access to the main memory and the register file, respectively, and 
faults on these modules can lead to the introduction of errors in these storage structures. 

A set of modifications on the carry chain-based comparison technique presented in 
this thesis is proposed in (SONZA REORDA, STERPONE and ULLAH, 2013). The 
presented mechanism performs fine-grained comparison with carry propagation chains 
as well, and attempts to improve multiple-bit error detection properties. Since it is 
applicable only to LUTs that have up to 5 inputs, those with this property are separated 
from the rest and receive the technique, creating “multiple error regions”. All error flags 
associated with one slice column in a frame row (i.e., 20 slices or 80 LUTs in height) 
are joined into a single bit that indicates the presence of an error on that column. These 
multiple error detection bits are then used to locate the error and perform local 
correction. Experimental results showed promising gains on repair time, which was 
reduced from 20.65 ms for global scrubbing to the order of tens to hundreds of 
microseconds for a set of benchmark circuits. 

3.2 Techniques based on bitstream manipulation 
As discussed previously, FPGAs contain a configuration memory that stores the 

circuit functionality and that is the basis of their flexibility. Especially for SRAM-based 
devices, this memory can be manipulated during runtime in order to provide fault 
tolerance. In this section, we briefly discuss the main approaches that heavily exploit 
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this feature. Features found in newer devices, such as partial reconfiguration, have 
further expanded the possibilities offered by such techniques. 

Perhaps the most basic and intuitive approach is the configuration readback 
(CARMICHAEL, CAFFREY and SALAZAR, 2000), which consists in periodically 
reading the configuration and comparing it to a golden copy, which may be stored in a 
more reliable, off-chip medium. Doing so provides the ability to detect any fault striking 
the bitstream. Note, however, that such approach is not without costs. First, there is the 
energy consumed by the accesses performed to both memories (configuration and 
golden copy). There is also the financial cost of the golden copy itself. However, since 
the device needs to be programmed after power on, the system is likely to already 
possess some sort of non-volatile off-chip storage. Alternatively, data redundancy 
techniques may be employed, such as cyclic redundancy check (CRC) or checksum. 
Such approaches allow the detection of most errors with very high probability. They do 
not point, however, the error location. In (GOKHALE, GRAHAM, JOHNSON, et al., 
2004), a per-frame CRC calculation is performed, which allows locating the fault. The 
faulty frame can then be solely repaired. 

Error repair is usually performed through scrubbing (CARMICHAEL, CAFFREY 
and SALAZAR, 2000). In its most basic form, instead of reading the bitstream in search 
of errors, it consists in directly overwriting the current configuration with its desired 
contents, regardless of the existence of errors. Errors may also be removed by means of 
error correcting codes (ECCs). For Virtex 5 devices, for example, each configuration 
frame, which comprises 1,312 bits, also contains 12 dedicated ECC bits that allow 
correcting a single bit flip or detecting double flips in that frame (XILINX, INC., 
2011a). The device also includes a hardwired component that simplifies the verification 
of the correctness of the ECC embedded in each frame. Error correction and removal 
procedures must be performed by user-implemented circuitry. ECC-based approaches 
are interesting as they avoid the need to constantly access an off-chip memory to scrub 
the device.  

Readback and scrubbing, even when based on ECC codes, suffer from long times to 
detect (or remove) an error, which significantly increase the achievable MTTR. The 
time required is associated with how long it takes to traverse the entire configuration 
memory, which determines the worst case detection/correction time. This time tends to 
get longer as devices get more complex and, consequently, with larger configuration 
memories. For the largest Virtex 7 device, for instance, it can be as high as 125 ms. 
Figure 3.5 shows the total scrub time for the largest device of each Xilinx family. Note 
that there is a sharp increase in the latest families, since no improvement in the 
configuration speed is observed since the Virtex 4 family, when the 100 MHz 32-bit 
SelectMAP programming interface was first introduced (XILINX, INC., 2009a). This 
development also explains the significant reduction from the scrubbing time observed in 
comparison to Virtex II Pro devices, which relied on a 50 MHz 8-bit interface (XILINX, 
INC., 2011b). Spartan devices show a similar trend, where the increase in the 
configuration speed is unable to compensate the increased configuration size. 

The average time for the readback or scrubbing mechanism to reach the fault in the 
configuration is half of the worst case, assuming a uniform fault distribution over 
configuration frames. Even the average time may be too long for some applications, 
such as critical control loops. Furthermore, the circuit may not recover its functionality 
even after fault removal (PRATT, CAFFREY, GRAHAM, et al., 2006). However, as 
such approaches are among the few able to effectively remove the fault from the 
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bitstream, they are frequently used combined with redundancy approaches applied at the 
user circuit level, as in (FULLER, CAFFREY, SALAZAR, et al., 2000), (LIMA, 
CARRO and REIS, 2003) and (SHE and SAMUDRALA, 2009). 

Aside from the basic approaches of readback, scrubbing and those based on data 
redundancy codes, there are more complex schemes that periodically modify the 
bitstream in order to find permanent errors on the reconfigurable fabric. As a common 
drawback, these approaches usually present very high detection latencies, leading to a 
higher MTTR. They are, however, very efficient approaches to bypass the faulty 
components and eliminate them from the system, an important feature to avoid the 
accumulation of permanent faults in modular redundancy schemes, for example. 

In (SHNIDMAN, MANGIONE-SMITH and POTKONJAK, 1997) the authors 
present a technique to perform on-line testing of the resources in the FPGA by means of 
partial reconfiguration. The proposed approach consists in leaving one of the columns 
of the FPGA offline, while its functionality is tested. The test is performed by 
exhaustively stimulating all the resources of the column in parallel. The correctness of 
the LUTs’ outputs is assessed by comparing them with dedicated configuration 
memories that are included in the devices specifically for this purpose. Similarly, 
additional flip-flops are included to work as replicas of the original ones. After the test 
of that column is complete, the following one is tested, iteratively scanning the entire 
device. In order for the system to remain functional, a free column in the device 
computes the function of the column being tested. 

Another approach that exploits partial reconfiguration to mitigate permanent faults is 
presented in (LACH, MANGIONE-SMITH and POTKONJAK, 1998). In this work, 
however, the authors focus on how to divide the design into clusters and to allocate 
spare resource to each of them. Alternative configurations for each cluster are pre-
compiled, each using a different subset of the available resources and all of them 
maintaining the same interface with regard to the inputs and outputs of the cluster. This 
allows replacing the configuration of a cluster in order to avoid the use of a faulty 
resource without modifying the entire design, as the interfaces between each cluster are 
maintained. The technique had a very small impact in area (worst case 9.8%) and a 
reasonable impact on delay (from 14% to 45%). The reliability results, estiamted 
through probability equations, show that the technique is able to increase the reliability 

 

Figure 3.5: Total scrub time for the largest Xilinx FPGA of each family 
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considerably for different benchmark circuits. The equations, however, only consider 
faults in the CLBs, and not in the routing resources. This is likely to pose a main 
concern for the technique, as faults affecting the interfaces of the CLBs would make it 
impossible to use the pre-compiled configurations. Furthermore, the task of detecting 
the presence and the location of a fault remains an open question in (LACH, 
MANGIONE-SMITH and POTKONJAK, 1998). The introduction of error detection 
with the granularity demanded by the technique is likely to significantly increase the 
presented area overhead. 

An approach that combines both scan-based testing (SHNIDMAN, MANGIONE-
SMITH and POTKONJAK, 1997) and fault mitigation through spare resources (LACH, 
MANGIONE-SMITH and POTKONJAK, 1998) is the roving self test areas (STARs) 
technique, presented in (ABRAMOVICI, STROUD, HAMILTON, et al., 1999) and 
(EMMERT, STROUD and ABRAMOVICI, 2007). The roving STARs technique also 
provides other benefits, such as being able to detect faults affecting the routing 
resources. Furthermore, it provides a very precise fault diagnosis, including the 
identification of the failure mode of a resource. Thus, a faulty resource may still be used 
if a function that is not affected by that particular fault can be mapped to it. It relies on 
vertical (V-STAR) and horizontal (H-STAR) areas to identify faults in wires of both 
directions. Figure 3.6 shows the proposed approach. The system state must be 
transferred from a column (row) whenever it is about to be tested, in order for the 
system to remain functional. Thus, the system function must be stopped for this 
operation to take place. Moreover, routing wires must cross the STARs to allow for 
communication between components on opposite sides, imposing delay overheads. 
Finally, the times to transfer configuration and state while roving the STARs lead to 
repair latencies in the order of seconds (estimated in 1.34s for an ORCA 2C15A, a very 
small device by current standards). These times are likely to be even greater for newer 
devices, as the size of configurations grew considerably more than the operating 
frequency of the programming interfaces. 

 

As discussed previously, one of the alternatives to reduce error detection and 
correction times is to use detection techniques with fine granularities. In order to 
effectively exploit the potential benefits, however, some challenges need to be 
addressed not only from a redundancy point of view, but also from a configuration 
perspective. In (STRAKA, KASTIL and KOTASEK, 2010) the authors focus providing 
a generic controller to perform local reconfiguration of modules. This module receives 
one error signaling bit from each of the reconfigurable partitions, as depicted in Figure 
3.7, and upon detection accesses a table containing the initial and final addresses of the 
faulty module, which is then scrubbed to remove soft errors. If the error persists after 
reconfiguration, the fault is considered permanent. Thus, the proposed controller allows 

 

Figure 3.6: The roving STARs approach with horizontal (H-STAR) and vertical 
(V-STAR) testing areas (EMMERT, STROUD and ABRAMOVICI, 2007) 
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exploring the fault indication bits provided by each module to reduce the MTTR and the 
probability of timing failures. The proposed approach does not specify a granularity of 
operation, but is intrinsically limited to the finest grain available for dynamically 
reconfigurable partitions. Furthermore, it requires the use of such partitions to identify 
beforehand the configuration frame addresses associated with each module, which 
imposes area and delay costs. The presented results concern only frequency of operation 
and area occupied, not evaluating the possible gains on reliability or repair time. 

 

3.3 Contributions of this thesis 
Fine-grained redundancy has been explored in previous works with many different 

goals. In (KASTENSMIDT, STERPONE, CARRO, et al., 2005), different TMR 
granularities are evaluated in order to minimize the probability of a single fault affecting 
multiple redundancy domains. In (NIKNAHAD, SANDER and BECKER, 2011), the 
goal is to withstand very harsh environments, exploiting the fact that each individual 
TMR domain can mask the presence of one error. Other works make use of fine-grained 
partial fault tolerance (PRATT, CAFFREY, GRAHAM, et al., 2006) (SHE and 
SAMUDRALA, 2009) to reduce the costs of full redundancy, compromising fault 
coverage to reduce area costs. 

In this work, we make use of fine-grained redundancy with the main purpose of 
reducing repair time. When triggered repair procedures are used, which is the case in 
here and in related works such as (STRAKA, KASTIL and KOTASEK, 2010), 
(BOLCHINI, MIELE and SANDIONIGI, 2011), (PSARAKIS and APOSTOLAKIS, 
2012) and (SONZA REORDA, STERPONE and ULLAH, 2013), two features of fine-
grained redundancy become particularly valuable: reduced detection latency and precise 
diagnosis. The intuitive property is that the finest redundancy grains have the greatest 
potential to minimize the MTTR, since smaller modules have reduced masking 
probabilities and fewer associated configuration bits. But they also introduce the 
greatest overheads, which stem from the need of additional comparators or voters. 
Works such as (NIKNAHAD, SANDER and BECKER, 2011) present area costs that 
surpass 6 times, while others try to avoid them with modifications in the underlying 
fabric (KYRIAKOULAKOS and PNEVMATIKATOS, 2009). We propose a very fine-
grained error detection mechanism that relies on the carry propagation circuitry found in 
current FPGAs to implement comparators. Since such resources are frequently 
underused, as will be shown in the experiments discussed in chapter 5, they are likely to 
not conflict excessively with the remainder of the design. Thus, a fine-grained 

 

Figure 3.7: System with partial reconfiguration controller and multiple error 
signals (STRAKA, KASTIL and KOTASEK, 2010) 
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redundancy mechanism with manageable area costs can be devised for unmodified 
commercial FPGAs. Due to its very fine granularity, the technique is able to detect 
errors in a reduced timeframe when compared to coarser approaches. Reducing this 
error latency is important not only to minimize system downtime but to also to avoid the 
accumulation of errors. 

The fact that fine-grained diagnosis can be used to perform a localized repair 
procedure is also explored in this work. In (LACH, MANGIONE-SMITH and 
POTKONJAK, 1998), (STRAKA, KASTIL and KOTASEK, 2010), (BOLCHINI, 
MIELE and SANDIONIGI, 2011) and (PSARAKIS and APOSTOLAKIS, 2012) 
reconfigurable partitions are used to delimit the minimum scrubbed area. Each partition 
has an individual error detection mechanism, which allows the use of partial scrubbing 
on a reduced range of the configuration memory. However, the definition of partitions 
has costs: they have a fixed interface with other modules, which restrict placement and 
routing choices. Moreover, fragmentation due to unused components within the 
partition space can also lead to wasted resources. Such costs tend to become more 
significant as smaller partitions are defined. If the most significant gains are desired, 
therefore, very small partitions have to be used, introducing additional costs. 

In (SONZA REORDA, STERPONE and ULLAH, 2013) a modified version of the 
carry chain-based comparison mechanism presented in this work is used to detect errors 
as well. The fine-grained diagnosis is also used to accelerate repair, and differently from 
the other mentioned works, the minimum scrubbed unit is independent from 
reconfigurable partitions. The technique proposed in here also avoids the use of 
reconfigurable partitions as minimum scrubbed area, but with a different approach: we 
exploit the fact that the scrubbing does not necessarily start at the first configuration 
frame of a partition, and that starting it closer to the actual error location can 
significantly reduce repair time. As a result, partitions can be defined by designers as 
they see fit, following the recommended practices for design modularization. Moreover, 
when fine grains are used, the amount of error signals can increase quickly, and their 
mapping to error locations can be challenging, as will be discussed in chapter 6. We aim 
at providing a scalable mechanism able to handle numerous error detection bits and to 
extract useful information from them in a low cost, fast and reliable manner. 
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4 FAULT INJECTION FOR FPGAS 

Fault injection is an important and frequently used means to evaluate the 
dependability of systems. Specifically for FPGAs, several challenges and opportunities 
are found. In this chapter we first briefly discuss the basic aspects of fault injection 
techniques, such as the desired features and the basic approaches. Section 4.1 presents 
this discussion. In section 4.2 we present the particularities found in FPGA-based 
systems, as well as the main fault injection platforms available in the literature. The 
fault injection platform developed in this work is detailed in section 4.3. 

4.1 Fault injection Basics 
Fault injection consists in artificially inserting faults in a system or in a system 

model in order to evaluate its response to faults of a particular model. Thus, in order to 
do so, a fault injection platform typically requires the basic components shown in 
Figure 4.1. First, an instance or model of the circuit being evaluated, often called circuit 
or device under test (CUT or DUT, respectively), is required. The input generator unit 
applies input vectors that stimulate the operation of the CUT. At some point during or 
before the execution the fault injector disturbs the circuit behavior according to the 
specified fault model. The output vectors produced by the CUT must be evaluated, 
either by making use of a golden copy, i.e., a copy of the CUT that is kept free of faults, 
or by some other means to determine whether they are correct or not. This task is 
carried out by a fault classification unit, which determines what the effect of the injected 
fault on circuit behavior was, i.e., if it caused a functional failure and/or if it was 
detected by some sort of detection mechanism. 

 

Fault injectors are frequently used to measure dependability metrics such as 
reliability, availability and the fault coverage of a given fault tolerance technique. As 
the results of fault injection campaigns are used to guide the following steps of a 
project, the techniques and platforms used to perform such experiments play a critical 

 

Figure 4.1: Basic components of a fault injection platform 
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role in the overall project costs, time and quality. Thus, several assets are expected from 
such systems, from which we highlight the following: 

• Accuracy: a fault injector should be able to accurately mimic the effects of the 
faults that the system will be subject to after deployed. This includes the 
definition of an appropriate fault model and the correct application of it to the 
system instance or model being evaluated. The amount of faults applied also 
plays an important role in the overall accuracy, as it should be statistically 
significant and also able to identify unexpected faulty behaviors that may occur 
under particular circumstances. 

• Injection rate: as discussed, injecting a large amount of faults is important to 
achieve accurate results. Thus, being able to inject many faults in a short time 
interval is crucial to provide results quickly to designers, reducing the overall 
design time. As the system must execute for some time after each injection in 
order to observe its response to the fault, achieving high injection rates may be a 
challenging task. The achievable injection rate is closely related to the 
abstraction level adopted and to the complexity of the system being evaluated. 

• Flexibility: designers frequently must inject faults following different models, 
such as permanent and transient faults that may strike the system. Thus, a fault 
injection platform which provides flexibility, allowing the modification of fault 
models or other simulation parameters, such as initial and termination 
conditions, allows a more comprehensive assessment of the system’s 
dependability. 

• Controllability and reproducibility: another important asset is that of being able 
to inject faults at specific areas or components of the systems, which have 
already been identified as critical, for example. Furthermore, it is frequently 
important to reproduce an experiment, in order to evaluate if a system 
modification was able to improve the dependability. Thus, being able to choose 
exactly when, where and how to inject a fault is a relevant feature of a fault 
injection mechanism.  

• Cost: finally, but not less relevant, is the cost of the fault injection experiments. 
Those requiring expensive components, powerful simulation mainframes or 
several instances of the system under test may be unattractive for projects with a 
lower budget. 

Providing all of the above advantages at once is a complex task, as most approaches 
present trade-off situations. Faults may be injected into a system by several different 
means, depending on the current stage of the project and on the desired properties from 
the experimental flow. 

For the early stages of a project, when a hardware prototype is not yet available, a 
simulation model may be used, such as done by the MEFISTO tool (JENN, ARLAT, 
RIMEN, et al., 1994). The MEFISTO tool simulates a VHDL model of the system to 
perform the required fault injection experiments. As the VHDL language allows the use 
of different abstraction levels, it is possible to achieve higher accuracy with a reduced 
injection rate when using a structural description, or the opposite when a behavioral 
description is used. For the case study, a very simple 32-bit processor was used, 
described in the two mentioned abstraction levels, showing a 3.2 times difference is 
simulation time. The injections may be performed using commands of the simulation 
software that artificially modify the values of the signals and variables of the system. 
Alternatively, saboteur components or modified versions of system modules, called 
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mutants, may be used to inject faults. Such approaches allow the use of very complex 
fault models. As is typical of simulation-based fault injection techniques, the MEFISTO 
tool presents high flexibility, controllability and reproducibility, as well as a low cost, as 
no hardware prototype or special components are required. On the other hand, the 
achievable injection rate and accuracy are conflicting properties, which are tuned by the 
chosen abstraction level and the amount of faults to be injected. Furthermore, even 
when working on the lowest abstraction levels allowed by VHDL, complex electrical 
phenomena, such as cross talking wires and overheating, are not detectable. Simulation-
based fault injection platforms are presented in several other works, such as (CHA, 
RUDNICK, PATEL, et al., 1996), (AIDEMARK, VINTER, FOLKESSON, et al., 
2001) and (KAMMLER, GUAN, ASCHEID, et al., 2009). 

FPGAs have brought an interesting opportunity for fault injection campaigns, even 
those aiming at ASIC designs. Since FPGAs are easily configurable, they can be used to 
emulate an ASIC design with a significantly increased speed compared to that of 
software simulators. The emulated circuit can then be instrumented with additional 
hardware in order to perform fault injection according to the specified fault model and 
to assess the effects of each fault. Thus, FPGAs are able to greatly enhance the injection 
rates of simulation based approaches. Note, however, that such approaches are limited 
by the size circuit that fits the available FPGA device. Works such as (CIVERA, 
MACCHIARULO, REBAUDENGO, et al., 2002), (DE ANDRES, RUIZ, GIL, et al., 
2008) and the FT-UNSHADES platform (AGUIRRE, TOMBS, MUOZ, et al., 2007) 
are examples of fault injection platforms that use FPGAs to increase the injection rates. 

Once designers are able to make use of a system prototype, several other approaches 
become available, which allow overcoming some of the shortcomings found in 
simulation-based techniques. In (HSUEH, TSAI and IYER, 1997) the basic aspects of 
such approaches are presented, classified into hardware and software fault injection. 
Hardware fault injection techniques are further divided into injection with contact and 
injection without contact. Software-based approaches are divided into compile-time and 
runtime injection. 

Hardware fault injection without contact typically makes use of electromagnetic 
fields or beams of energetic particles to interfere with the device’s operation. Such 
approaches are valuable to measure not only the effectiveness of fault tolerance 
techniques but also to characterize manufacturing processes regarding their sensibility 
to the chosen source of faults. Thus, they present very high accuracy when the goal is to 
evaluate the effects to such physical phenomena, being an important step to validate 
systems that are to be used in harsh environments, such as space or industrial 
applications. However, the achievable injection rate is very limited, usually being orders 
of magnitude lower than that of simulation-based approaches, for example. Also, the 
only fault model to be addressed is that of the chosen physical source, limiting the 
flexibility. The controllability and reproducibility are also poor, as there is little choice 
regarding which parts of the system will be affected. Finally, the costs associated with 
such experiments may be high, due to the potentially expensive equipments that are 
required. 

Hardware fault injection with contact consists in the use of active probes or sockets 
that intercept the communication between the circuit and its board. Thus, only the 
values available at the external pins are accessible and/or modifiable. As the actual 
system is running, such techniques have a possibility of presenting a higher accuracy 
and injection rates than simulation-based approaches. On the other hand, the flexibility 
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is reduced, as only those faults applicable at the external pins are injectable, limiting the 
possible fault models and also jeopardizing the accuracy. The use of scan chains may 
improve such properties. Since engineers control precisely when and where faults are 
injected, such techniques present good controllability and reproducibility. The cost of 
these mechanisms may be high when very sensitive probes and sockets are required. 

Compile-time software fault injection consists in modifying the software prior to 
execution, either at the source code or at the executable binary. The main advantage of 
this approach is the reduced cost, especially due to its simplicity that greatly reduces the 
required engineering effort. They are useful to emulate permanent faults, as the 
modifications embedded in the code linger throughout the entire execution. On the other 
hand, the approach presents a low flexibility, being limited to those faults that can be 
mimicked with static modifications in the code. Conversely, runtime software fault 
injection is triggered by timers or exceptions and is able to model transient faults more 
accurately than compile-time approaches. Common to both software fault injection 
techniques are the limitations in the fault model, as not all parts of the hardware are 
reachable from the software’s perspective. Furthermore, the accuracy may be threatened 
by the intrusiveness of the injection and evaluation mechanisms. Also, they are only 
applicable to processor-like systems, since the existence of software is required. Finally, 
the controllability and reproducibility of both approaches are related to how much 
influence those parts outside the designers’ control have on the experiments. For 
example, the scheduler of the operating system may heavily modify the results of a fault 
injection campaign, especially for multi-threaded applications. 

4.2 Fault injection for FPGA-based systems 
The techniques discussed in section 4.1 were thought as means to evaluate the 

dependability of integrated circuits in general, regardless of whether they are FPGAs or 
not. Therefore, some of them are not directly applicable for many FPGA-based systems. 
For example, since software techniques require the existence of software in the first 
place, many FPGA systems lie out of scope, as they do not necessarily contain a 
processor. 

Furthermore, simulation-based approaches require in-depth knowledge of how the 
system works and, in order for them to achieve accurate results, the system should be 
simulated in a low abstraction level. However, low level schematics of FPGA devices 
are rarely available to the end-users, as this is not in the best interest of FPGA 
manufacturers. This makes it nearly infeasible to evaluate the impact of SEUs affecting 
the configuration memory by means of simulation. Moreover, the complex scenarios of 
configurations unexpected by the manufacturer (such as two independent wires being in 
short circuit) would have to be modeled in a very low abstraction level, such as using an 
electrical simulator, in order for their outcome to be precisely determined. Working on 
such low levels brings an enormous computational burden, especially when an entire 
complex system needs to be simulated. Thus, it is nearly mandatory to use an actual 
FPGA device to perform fault injection with satisfactory accuracy, especially when the 
impact of SEUs in the configuration memory is to be evaluated. The use of hardware 
fault injection techniques described in section 4.1 becomes, hence, not only very 
attractive for FPGA devices but also one of the few remaining alternatives. 

4.2.1 Radiation experiments 

Experiments with particle accelerators are an important step to evaluate the impact 
of radiation on these devices. Some of the works discussed in chapter 3 conducted such 
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experiments (FULLER, CAFFREY, SALAZAR, et al., 2000), (LIMA, 
CARMICHAEL, FABULA, et al., 2001) to measure the reliability of circuits or to 
validate results achieved with other fault injection approaches. Such works measure the 
dynamic cross-section, which is related to the susceptibility to the effects of radiation on 
the user design atop the fabric (FULLER, CAFFREY, SALAZAR, et al., 2000). It is an 
important metric as it measures the effectiveness of any fault tolerance technique that 
may be in use and is valuable to estimate the MTBF. 

Fuller, Caffrey, Salazar, et al. (2000) also report static cross-sections for the 
evaluated Virtex FPGA. This measurement is performed by reading back the device’s 
configuration memory and comparing it to the expected value. It is, thus, not related to 
the user circuit currently implemented, being an important metric to characterize the 
manufacturing process and the cell design employed with regard to SEU susceptibility. 
In (LESEA, DRIMER, FABULA, et al., 2005), a series of experiments called Rosetta 
attempts to quantify the amount of faults to be observed in Xilinx FPGAs. Boards 
consisting of a hundred devices are constantly monitored and left at different places and 
altitudes. Accelerated experiments were also performed at the Los Alamos Neutron 
Science Center (LANSCE). Quarterly updated results of the Rosetta experiment can be 
found at (XILINX, INC., 2012c). Figure 4.2 shows the neutron cross-sections per 
configuration bit measured at LANSCE for different FPGA families. 

 

As the manufacturing technology scales, so does the capacitance of the transistors, 
as well as the supply voltage Vdd. This in turn reduces the critical charge required to 
change a storage cell’s state, as was discussed in section 2.2.1. On the other hand, a 
smaller transistor is less likely to be struck by a particle. Furthermore, advances in the 
design of the storage cell may also improve its resilience against such particles. The 
result of these opposing factors is the non-monotonic variation of the cross-section per 
bit observed across different technologies shown in Figure 4.2. 

The cross-section per bit, however, is not the only information necessary to evaluate 
the sensibility of a given device, as the amount of bits grows significantly from one 
generation to another. When multiplying the cross-section per bit by the amount of 
configuration bits in the largest device of each family, one gets a very different plot, as 
can be seen in Figure 4.3. The coupled effect of a larger cross-section per bit and a 
larger configuration size drove quickly the total cross-section until Virtex II Pro 

Figure 4.2: Static cross-section per configuration bit, as reported by (XILINX, INC., 
2012c) 
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devices, which were manufactured with a 130 nm process. Then, Virtex 4 and Virtex 5 
families were able to compensate the increase in configuration size, slightly reducing 
the total cross-section. Until this point, a similar trend is observed for the Spartan series, 
as the Spartan 6 shows approximately the same total cross-section as the Spartan 3. 
However, Virtex 6 and Virtex 7 devices showed an aggressive increase in the total 
configuration size, while not significantly reducing the cross-section per bit. This results 
in a much larger total cross-section for these two families, reinforcing the need for fault 
tolerance techniques able to mitigate the effects of configuration errors. 

 

4.2.2 Artificial bitstream fault injection 

The fast prototyping provided by FPGAs is a valuable asset for evaluating the 
dependability of FPGA systems. As the chip is usually available at the early stages of 
the project (unless a project is being developed for an unreleased device), designers 
perform very accurate reliability estimations without waiting for the manufacture of the 
chip at a foundry. The unlimited reconfigurability provided by SRAM-based FPGAs 
allows one to perform efficient fault injection campaigns on the actual device, providing 
timely and accurate results. As the configuration memory is programmable, one can 
artificially flip one or more bits on its content, artificially emulating the effects of SEUs 
that affect such memory. 

Several platforms have been developed aiming at performing fault injection on the 
configuration memory of FPGA devices. The experiments conducted in (LIMA, 
CARMICHAEL, FABULA, et al., 2001) made use of a control panel and two FPGA 
boards to inject bitflips in the configuration memory. The CUT is placed on one of the 
FPGAs, while the other one, along with the control panel, controls the experiment and 
communicates with a host PC. In (WIRTHLIN, JOHNSON, ROLLINS, et al., 2003) a 
similar platform is presented, making use of three FPGAs. The first device contains the 
CUT, while the second contains a golden copy of it. The third device is responsible for 
applying the input vectors and checking the correctness of the CUT outputs. The fault 
rate was approximately 100 µs per fault. 

The FLIPPER platform is presented in (ALDERIGHI, CASINI, D'ANGELO, et al., 
2007). It uses two FPGA boards. One contains the management circuit, which flips 
configuration bits and applies input vectors, while the other contains the CUT. The 
reported fault injection time was 50 µs per fault. Both input vectors and golden outputs 

 
Figure 4.3: Static cross-section for the configuration of the largest device of each 

family 
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are derived from simulation software and stored in the on-board RAM before beginning 
the injection campaign. A software application, running on a PC, allows configuring the 
tests, choosing parameters such as clock rate, fault type (single or multiple bitflips) and 
stop conditions. 

The FT-UNSHADES-C platform used in (STERPONE, AGUIRRE, TOMBS, et al., 
2008), which is an extension of FT-UNSHADES (AGUIRRE, TOMBS, MUOZ, et al., 
2007) to perform fault injection in the configuration bits, makes use of a similar 
approach. A control FPGA provides the interface between a host PC and the system 
FPGA, which holds both the CUT and a golden copy. Input stimuli are also derived 
from simulation hardware, as does the FLIPPER platform. No results were presented 
regarding the possible injection rates. 

The fault injection platforms discussed so far make use of multiple FPGAs and, in 
some cases, of additional components, increasing the cost and complexity of the system. 
Furthermore, due to the need of off-chip communication, the use of multiple FPGAs is 
likely to also reduce the injection rate. A first system making use of a single FPGA was 
presented in (BERNARDI, SONZA REORDA, STERPONE, et al., 2004). It relies on a 
host PC, however, to inject a fault in the configuration bitstream and to reprogram the 
device, increasing the injection time to approximately 6 s. Such long times make it 
infeasible to use this system to perform exhaustive fault injection campaigns on current 
FPGAs, due to the increased configuration sizes. This concern is addressed in 
(STERPONE and VIOLANTE, 2007), which presents a platform that places all the 
required components (CUT, input stimuli generation, fault injection and fault 
classification) in a single FPGA. In this platform, the host PC is only responsible for 
receiving and displaying the experiment results. The experiment control is implemented 
in software and executes on a hardwired PowerPC processor that is available on some 
Xilinx FPGAs. Fault injection is performed by writing a faulty configuration frame 
through the internal configuration access port (ICAP), a component that allows 
accessing the configuration memory from a user circuit in the same FPGA. The time 
strictly required to inject a single bitflip with this platform is 10.1µs. A more detailed 
classification framework was presented in (BOLCHINI, CASTRO and MIELE, 2009), 
using the injector described in (STERPONE and VIOLANTE, 2007). It allows the 
individual evaluation of the effects of each fault, which is a valuable resource when one 
desires to improve the reliability of a design. 

4.3 Fault injection platform 
As was discussed in chapters 1 and 4, fault injection is among the most traditional 

means to measure the dependability of systems. Furthermore, FPGAs present a very 
particular fault model that requires dedicated experimental platforms to accurately 
measure metrics such as fault coverage and failures in time. The most traditional 
method is to flip configuration bits of an actual FPGA device to observe the effects on 
the user circuit running on the reconfigurable fabric. Several approaches available in the 
literature were discussed in section 4.2.2, and in this chapter we present the fault 
injection platform developed in this work. 

The main advantages of the proposed platform are: 

• Low cost and low complexity, since it requires only a single FPGA and a host 
computer to carry out its functions; 

• High injection rate, as no external memories or controllers are required to inject 
faults and to apply stimuli to the CUT; 
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• Applicability to other devices, as the system is composed only of LUTs, flip-
flops and a small memory, requiring no complex hardwired component, with the 
exception of an internal configuration access port (ICAP); 

• Modularity and extensibility, which allows adapting the system to different types 
of circuits and different fault models. 

4.3.1 Platform components 

As for any fault injection platform, the basic components shown in Figure 4.1 must 
be present in order to inject faults and to evaluate their effects on the operation of the 
CUT. The components that form the proposed platform are shown in Figure 4.4 and 
described in the following subsections. The function of each component may vary 
depending on the specific needs of each experiment campaign. Thus, the components 
described herein can be modified to satisfy different needs, and some of the possible 
variations are described in the following subsections as well. 

Furthermore, some adaptations are required to implement the platform in FPGAs 
from different manufacturers or different families of the same manufacturer, especially 
regarding the injector block, which must handle configuration addressing and interface 
with the reconfiguration port available in the device. The platform herein described was 
implemented and tested on Virtex 5 XC5VLX110T FPGA, and some of the details 
provided focus on this device family. The proposed approach, however, remains 
applicable to any device that allows the user circuit to access the configuration memory. 

4.3.1.1 Injector 

The injector unit is responsible for actually modifying the current bitstream 
according to the specified fault model. For that purpose, it must first choose the specific 
bit(s) of the configuration to be flipped. A bit is univocally identified by its frame 
address and its position within the frame. As discussed in section 2.1, a frame is the 
smallest addressable unit of the configuration memory. For example, a Virtex 5 frame is 
composed of 41 words of 32 bits, for a total of 1,312 bits. 

The frame address generation unit, thus, is responsible for choosing a valid frame 
address for injection. This choice may be pseudo-random or sequential, if exhaustive 
fault injection is to be performed. Frame addresses, however, are not organized in a 
straightforward continuous fashion. Each frame address is divided into fields that may 

 

Figure 4.4: Fault injection base architecture 
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vary from one device family to the other. Virtex 5 devices divide their frame addresses 
into block type (3 bits), top/bottom (1 bit), row address (5 bits), major address (8 bits) 
and minor address (7 bits), for a total of 24 bits. More details regarding frame 
addressing and organization can be found at (XILINX, INC., 2011a). 

The choice of an appropriate frame address must also take into account that the fault 
injection platform is on the same FPGA and it must not disturb its own operation. Thus, 
the concept of area under test (AUT) is defined, which restricts which configuration 
frames are eligible to suffer fault injection. The circuit under test must be placed within 
the AUT and the experiment control circuitry out of it, to ensure that it will maintain its 
own integrity. This is achieved by means of placement constraints. Using the address 
fields to aid in this process can greatly simplify determining the frames associated with 
the AUT. In this work, we use an AUT limited within the top frame row, comprising 
2,000 slices (8,000 LUTs and 8,000 flip-flops) and with approximately 2.6 million 
configuration bits. If larger circuits are to be tested, then larger AUTs can be defined. 
Doing so, however, also extends the experiment time. 

Once the injector has defined a target frame and bit, it must read the desired frame 
from the configuration. The read frame is stored in the frame memory. Then, the chosen 
bit is flipped and the frame is written back, thus corrupting the bitstream. The read 
frame remains in the frame memory for the following fault removal, once requested by 
the system control. Bits are flipped back to their original values and the correct frame 
contents are restored. 

 Interacting with ICAP requires the following of a specific protocol, that includes 
issuing read and write commands. Moreover, the results of each read command are 
preceded by a dummy frame. Likewise, after completing a write command, one dummy 
frame must be pushed in the ICAP data port. The costs of these commands and the 
dummy frames will be quantified and taken into account when estimating the reachable 
injection rate, in section 4.3.3. It is also important to keep in mind that configuration 
frames have addressable non-existing bits. In other words, there are, scattered 
throughout the memory, addressable bits that have no actual associated memory cell 
(XILINX, INC., 2011a). Such bits should not be considered by the injection platform. 
Thus, each injection is followed by a frame read to confirm that the injection was 
successful and that only real configuration cells will be taken into account. 

4.3.1.2 CUT I/O Controller 

The CUT I/O Controller is responsible for interfacing with the CUT in order to 
stimulate its operation and evaluate the effects of each injected fault. Thus, it must be 
able to generate input stimuli and to compare the circuit outputs to the expected values. 
This can be achieved by different means. The controller shown in Figure 4.4 assumes 
that inputs are generated and applied both to the CUT and to a golden copy of it, which 
allows evaluating the correctness of outputs at each cycle. If the CUT is a softcore 
processor, however, the developer may be interested in the final state of the memory, 
instead of a cycle per cycle comparison. The system may perform an initial fault-free 
run of the software and store the final (golden) state of the memory, which is then used 
as a reference for the subsequent faulty executions. The system requires, in this case, 
three memories: one stores the initial memory state, one stores the golden final state, 
and one is used as work memory, i.e., the memory that the CUT uses during execution. 

Several different options exist regarding the input stimuli generation as well. They 
may be pseudo-random, generated by a linear feedback shift register (LFSR), for 
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example. Alternatively, the developer may be interested in a specific set of input vectors 
that represent the typical use case of that hardware, which may be stored in a memory. 

4.3.1.3 Report Unit 

The report unit is responsible for transmitting the experimental results to the host PC 
for analysis. The specific information transmitted may differ depending on the purpose 
of the experiment and the nature of the CUT. If it possesses some sort of error detection 
mechanism, for example, the developer may be interested in determining which faults 
were detected and which were not. There may also be situations in which the developer 
is interested in the specific output values the CUT generated when faulty. For such 
situations, the transmission of results may become a serious bottleneck of the system. 
For straightforward error detection evaluations, however, low speed interfaces, such as a 
serial port, are sufficient. 

4.3.1.4 System Control 

The system control unit coordinates the operation of all other modules in order to 
realize a complete fault injection campaign. It starts by requesting a fault injection from 
the SEU injector unit (1). Once the fault is injected, it activates the I/O controller so that 
it starts applying input vectors (2). For a pre-specified number of cycles it monitors the 
correctness of outputs and any error detection signal that may be triggered (3). The 
system control then halts the I/O controller and requests the fault removal (4). While the 
fault is removed, the report unit transmits the outcome of that particular fault (5). Steps 
(1) through (5) are repeated until the desired amount of faults is injected. Then, the 
report unit transmits any final results that were obtained during the experiment (6) and 
finishes the execution. 

4.3.2 Area costs 

In order to leave as many resources as possible available for the CUT, allowing 
larger and more complex circuits, it is important to maintain the entire SEU injection 
and control system as small as possible. Table 4.1 shows the amount of resources used 
by each component and by the entire system as well as the proportional occupation of 
the device, considering a Virtex 5 XC5VLX110T. 

 

The exact area occupation depends on the specific version of the platform being 
used. For example, if the input vectors are stored in BRAMs, then the occupation of this 
type of component will be increased. If the system uses a LFSR to generate pseudo-
random inputs, then additional flip-flops and LUTs will be required instead. The area 
results provided herein refer to a platform injecting faults in a 32-bit ALU, which has 69 
input bits (two 32-bit operands and 5-bit operation code) and 33 output bits (the result 
value and an overflow flag). The injection platform system requires 1122 LUTs and 685 
flip-flops, occupying 1.62% and 0.99% of the total device respectively, which contains 

Table 4.1: Required resources and device occupation for a fault injection platform 

Module 
Required resources Device Occupation 

LUTs FFs BRAM LUTs FFs BRAM 
SEU Injector 431 149 1 0.62% 0.22% 0.68% 
CUT I/O Controller 14 137 0 0.02% 0.20% 0.00% 
Report Unit 30 15 0 0.04% 0.02% 0.00% 
System Control 647 384 0 0.94% 0.56% 0.00% 
Total 1122 685 1 1.62% 0.99% 0.68% 

 



55 

 

 

69,120 of each. The BRAM occupied by the SEU Injector unit stores the read frames 
before they are written back to the configuration. Note that, even though 98.38% of the 
LUTs are still available, not all of them are usable by the CUT. Some extra areas are 
required to ensure the isolation of the CUT and of the control system. Still, the vast 
majority of the FPGA may be used to accommodate the CUT. 

4.3.3 Injection Rate 

Since current FPGAs allow multiple clock domains, the components shown in 
Figure 4.4 do not need to run at the same frequency. In this work, the SEU injector and 
the ICAP run at 50 MHz to ensure that there is no timing violation, as is done in 
(CHAPMAN, 2010). If required, however, the ICAP can be used with frequencies up to 
100 MHz, further accelerating the process. 

As described in section 4.3.1.1, each fault is injected by reading the frame, applying 
the required modification and then writing the frame back. The frame is then read back 
to verify that the injection was successful. For each read command, one invalid dummy 
frame must also be retrieved, due to the internal implementation of the ICAP. Similarly, 
for each write command, one dummy frame must be inserted in the data input port of 
the ICAP. As each frame contains 41 words, each read or write access requires 82 
cycles to be completed. Furthermore, there is the action of sending the read or write 
instructions, which require several smaller commands. More details about the write and 
read sequences can be found at (XILINX, INC., 2011a). Thus, the total time to read or 
write a frame is the sum of the time required to send the command, to read or write a 
dummy frame and to read or write the actual data. For the implementation done in this 
work, the total times are 108 cycles to read a frame and 107 cycles to write a frame. 
Hence, the total time strictly required to inject a fault is 215 cycles (one frame read and 
one frame write). When considering also the time required to confirm the injection (one 
read operation) and to remove the fault (one write operation), 215 additional cycles are 
required. Thus, the strict injection time is 430 cycles, or 8.6 µs, considering the 50 MHz 
clock frequency. 

This injection rate allows, for example, exhaustively injecting faults in an 
intermediate-sized FPGA, such as the Virtex 5 XC5VLX110T used in this work (with 
approximately 24 Mbits of configuration), in less than 4 minutes. Further optimizations 
are possible, especially when performing sequential fault injection, since in such cases 
the following injected fault is likely to be in the same frame of the previous one. 
However, the injection latency is so short that the total campaign time is likely to be 
dominated by the stimulation of the CUT or the transmission of results. Therefore, 
further reducing injection time will have little impact on the final experiment for most 
cases. For example, assuming the CUT will run for 100,000 cycles at 50 MHz for each 
fault, injection time represents less than 0.5% of the total experiment time. The total 
time, in this case, is approximately 1 hour and 30 minutes for the AUT described in 
section 4.3.1.1 (2,000 slices on the top frame row of the device). 
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5 FINE-GRAINED ERROR DETECTION 

In this chapter, we present the developed fine-grained error detection mechanism. 
The basic approach is described in section 5.1 and in section 5.2 the experimental setup 
and design flow used to evaluate the proposed technique are detailed. Experimental 
results including area, delay, error detection and detection acceleration are presented 
and discussed in section 5.3. The radiation experiments conducted are described and 
discussed in section 5.4. 

5.1 Fine-grained detection with carry propagation chains 
When building an adder or a subtracter in a LUT-based FPGA, emerges the problem 

of calculating the most significant bits of the output. As they depend on all the least 
significant bits, the amount of LUTs required to compute each one increases 
significantly. For this reason, FPGA manufacturers include, along with each LUT, a 
small circuit that comprises basically a multiplexer and an XOR gate to compute both 
the carry out and the sum bits. Even though this circuit can be used to compute other 
functions (XILINX, INC., 2010), synthesis tools rarely use them, unless an adder is 
explicitly declared. 

Figure 5.1 shows a simplified view of a carry chain circuit and the LUTs coupled to 
it, based on a slice of a Virtex 5 device (XILINX, INC., 2010), shown in Figure 2.2. A 
Virtex 5 slice comprises 4 LUTs, 4 flip-flops, the carry chain circuit and some 
multiplexers for internal routing. The labels in Figure 5.1 indicate how one may use the 
carry circuit to compare two pairs of duplicated LUTs. At the first stage (the 
bottommost one), the multiplexer inputs are set to constant values ‘1’ and ‘0’, forcing it 
to propagate the output of LUT A, X, to the next stage. The first XOR gate has one input 
set to ‘1’ and the other to X. It behaves, thereby, like an inverter. Through the internal 
routing of the slice, the output of the first multiplexer is directly connected to the inputs 
of the second stage’s multiplexer and XOR gate. Through the external routing, i.e., the 
global routing wires of the FPGA, one may set the other input of the second multiplexer 
to X , as shown by the dashed arrow Figure 5.1. 

The two inputs of the multiplexer in the second stage are set to X andX , for when 
the selection signal equals ‘1’ or ‘0’, respectively. As the selection signal is the output 
of LUT B, Y, this is equivalent to calculating the XNOR function of X and Y. The inputs 
of the XOR gate in the second stage are also equal to the outputs of the two first LUTs. 
The carry circuit is computing, hence, both the XNOR and XOR functions of X and Y, 
and these values can be connected in a similar manner to the third carry stage and so on, 
realizing the computation of the XOR and XNOR functions of the entire slice. One can 
configure the top two LUTs in the slice to compute the same functions of the bottom 
two. Thus, under normal circumstances, the output of the XOR gate at stage 4 will 
always be ‘0’. And if any LUT diverges from its correct value, the error signal will be 
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raised. Thereby, a slice-wise error detection signal is implemented completely avoiding 
the need to use LUTs to implement comparators. 

As the carry out bit at the top of the slice, shown in Figure 5.1, is connected directly 
to the carry in of the next slice in the same FPGA column, the amount of LUTs that can 
be compared this manner, by a single comparator, is limited only by the amount of rows 
in the device. The latency of such circuit, however, could be too large for the 
application at hand. Thus, several smaller checkers can be stacked in a same column to 
keep delay penalties to a minimum. This actually allows one to find the best trade-off 
for each application, regarding error detection granularity and delay penalty. The 
example in Figure 5.1 assumes that each slice will produce an individual error 
indication signal at the output of the topmost XOR gate. Also, as the last carry out of a 
checking group is actually the inverted error signal, it will always be ‘1’, unless a fault 
was already detected. This allows the stacking of arbitrarily long comparators in a same 
column even without respecting slice boundaries, since the only requirement is that the 
bottom carry in is equal to ‘1’. 

In order to minimize undetectable errors, it is crucial to maintain an appropriate 
routing between modules. Figure 5.2(a) shows an approach in which one of the modules 
drives both replicas of the following logic stage. There is a potentially critical routing 
segment created in between the two stages, shown by a dashed line. Faults on that 
segment may not be detected by e0, since it is past the point in which the comparator is 
connected, nor by e1, since whichever effect the fault has on the wire will be observed 
by both LUTs l1 and l1’ , leading to incorrect results on both. The scheme used in Figure 
5.2(b) removes that segment by connecting l0 to l1 and l0’  to l1’ . Thus, unless a single 
fault corrupts both nets, which can be minimized by using reliability-aware routing as in 
(STERPONE and VIOLANTE, 2006), faults affecting one of them will be detected by 
either e0 or e1. Similar situations occur to PIs and POs. The branching of PIs should be 
done as soon as possible, as shown in Figure 5.2(b). This is particularly important for 

 
Figure 5.1: Carry chain circuit applied to fine-grained comparison 
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fine-grained approaches, because an unaware routing algorithm could tend to split these 
nets near the modules, as in Figure 5.2(a), due to the closeness of the redundant 
modules. In this work we use duplicated PIs to eliminate these critical segments. 
Alternatively, a modified routing algorithm could force them to split as soon as possible 
to minimize undetectable faults. Reducing the length of PO routing is also an alternative 
to reduce the length of critical routing. Moreover, POs can be duplicated as well, if the 
module is followed by another duplicated circuit. 

There are some limitations to the applicability of the proposed comparison 
mechanism. If the carry chain is already occupied to perform another function, such as 
addition, then it naturally cannot be used for comparison. Furthermore, the extra slice 
inputs that are required to route the partial comparison signals (shown with dashed 
arrows in Figure 5.1) must be free. When the synthesis tool allocates them to other 
resources, such as the multiplexers that are used to implement arbitrary 7-input and 8-
input functions (MUXF7 and MUXF8, respectively), then regular LUT-based 
comparators must be instantiated. 

Once all comparators are defined, one is left with numerous error detection signals. 
If these signals are to be used to trigger a local scrubbing procedure, then they must be 
combined into a single bit. This is done by computing the OR function over all signals. 
We refer to this operation as error aggregation. In all results presented in this chapter, 
the existence of the error aggregation circuit is taken into account. 

When instantiating redundancy checkers, it is also always important to also take into 
account the reliability of the checker itself. The use of redundant checkers is a 
traditional approach to assert the detection of faults affecting the checking circuit 
(KUNDU and REDDY, 1990). Specifically for FPGAs, if a single checking bit is used, 
errors affecting the bitstream portion associated with the comparator may set its output 
to ‘0’ (assuming ‘1’ indicates an error). Such errors may stay dormant for a long period, 
affecting the overall reliability. In order to avoid this issue, redundant checkers may be 
used. Figure 5.3 shows how they are implemented in this work. In order to avoid the 
excessive area overheads of fine-grained LUT-based comparators, we implement a 
redundant checker that operates only on the primary outputs (POs) of the circuit, 
avoiding the propagation of the error to other modules in the system. The use of LUT-
based comparators for POs is also useful as it allows reducing the length of the critical 
PO routing segments shown in Figure 5.2 by placing them close the end of the net (an 
IOB, for example). 

 

5.2 Experimental setup 
Figure 5.4 shows the design flow used. It starts with an unhardened description of 

the user circuit in a standard hardware description language, which is synthesized using 

 
Figure 5.3: Redundant heterogeneous comparators 
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Xilinx Synthesis Technology (XST). The post-synthesis netlist is converted from its 
native format into a structural VHDL description using Xilinx netgen (XILINX, INC., 
2011c). At this point, the circuit is already described using the basic components found 
in the FPGA fabric, such as LUTs, flip-flops, carry chains and multiplexers. 

 

A redundancy insertion tool was developed in C++ to automatically apply the 
proposed technique. It parses the post-synthesis netlist and builds an internal 
representation of the circuit. Then, it duplicates all components and instantiates carry 
chain comparators that cover one slice for those LUTs that have available the required 
resources, as shown in Figure 5.1. All internal signals are duplicated as well, in order to 
maintain the routing redundancy shown in Figure 5.2. For those LUTs to which the 
technique is not applicable, regular LUT-based comparators are inserted. The error 
aggregation circuit is also introduced by the tool, if requested by the user. The tool 
generates a structural VHDL description of the hardened circuit, also using the, which 
goes through Xilinx standard flow to determine area and delay costs. 

The hardened circuit is then subject to fault injection, using the platform described 
in section 4.3. Exhaustive fault injection is used, i.e., every configuration bit associated 
with the CUT is flipped (2,628,288 bits). The AUT used is that described in section 
4.3.1.1 (2,000 slices on the top frame row). Circuits receive pseudo-random inputs, 
which are applied to a golden copy of the circuit as well. For each injected fault, 
100,000 input vectors are applied. And for each applied vector, the correctness of the 
outputs is verified, along with the state of the error detection bits. Each vector can be 
classified into one of four categories (shown here in ascending severity order): 

1. No event: the outputs are correct and the error detection bits are low. This occurs 
frequently, since not all configuration bits are able to corrupt the circuit 
operation. Furthermore, not all input vectors are able to stimulate an error, even 
when it indeed affected the circuit. 

2. Detected only: the outputs are correct but an error detection bit was raised. This 
happens mainly for one of three reasons: the secondary copy of the circuit was 
struck by the fault, i.e., the one not driving POs; the checking circuit was struck; 
the primary copy was hit and the error was detected by an internal comparator, 
but it did not yet propagate to a PO, i.e., it was masked by the circuit logic. 

3. Detected error: the outputs are incorrect and the error was detected. This is the 
straightforward situation in which the error propagated to a primary output and 
was detected by the comparators. 

4. Undetected error: the outputs are incorrect but the error detection bits remained 
low. This is by far the most severe case, which happens mainly when a PO is 
affected past the point in which it is compared to its copy. It may also happen 
due to single faults that affect multiple nets in both redundant circuits, (LIMA, 
CARMICHAEL, FABULA, et al., 2001). 

Figure 5.4: Experimental design flow 
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Each injected fault is classified into the highest severity category it presented among 
all applied input vectors, as is done in (BOLCHINI, CASTRO and MIELE, 2009). 
Figure 5.5 shows some of the most likely locations of faults in each category, in a 
simple coarse-grained DMR circuit for the sake of clarity. 

 

The platform monitors not only the specific outcome of each fault (i.e., if it caused 
errors in the circuit POs and/or if it was detected) but also the amount of cycles it takes 
for error detection to be triggered. This allows determining the average detection time, 
which is important for systems relying on triggered scrubbing to remove faults. 

5.3 Experimental results 
Table 5.1 characterizes the input benchmark circuits regarding the amount of LUTs, 

flip-flops, primary inputs (PIs), primary outputs (POs) and minimum clock period TClk. 
A set of 22 benchmark circuits was used, 20 of which are from the MCNC 

 
Figure 5.5: Locations of faults of each category 
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Table 5.1: Input benchmark circuits 

  LUTs FFs PIs POs TClk (ns) 
alu4 402 0 14 8 4.94 
alu_32b 342 0 69 33 6.77 
alu_64b 721 0 133 65 8.01 
apex2 798 0 39 3 6.26 
apex4 655 0 9 18 6.39 
bigkey 575 224 264 197 3.63 
clma 1269 34 384 82 7.25 
des 550 0 256 245 4.26 
diffeq 470 244 29 3 4.64 
dsip 635 224 230 197 2.78 
elliptic 143 71 20 2 3.46 
ex1010 487 0 10 10 4.59 
ex5p 128 0 8 63 2.99 
frisc 1718 853 21 116 8.30 
misex3 699 0 14 14 5.55 
pdc 1253 0 16 40 6.18 
s298 17 14 5 6 2.78 
s38417 1709 1447 30 106 5.26 
s38584.1 2001 1233 40 304 4.84 
seq 846 0 41 35 5.27 
spla 221 0 16 46 3.98 
tseng 598 260 53 122 5.17 
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(Microelectronics Center of North Carolina) benchmark suite and were obtained at 
(MINKOVICH, 2011). For all of these, described by means of boolean equations and 
flip-flops, the synthesis tool was unable to make any use of the carry propagation 
circuit. The other two circuits are ALUs with 32 and 64 bits (alu_32b and alu_64b), 
described with a higher level behavioral VHDL and explicitly using additions and 
subtractions. As a result, the synthesis tool was able to infer adders/subtracters for these 
circuits. However, even for such cases, only approximately 10% of the LUTs had their 
associated carry circuitry occupied. This shows that for many cases the carry 
propagation chain is highly unused, and can be available for the application of the 
proposed technique. 

In order to set baseline values for each evaluation axis presented herein, the 
proposed fine-grained DMR (FG-DMR) is compared to traditional coarse-grained DMR 
(CG-DMR). It consists in duplicating the entire circuit and comparing the primary 
outputs only, also with redundant comparators. The benchmark circuits can be viewed 
as individual modules in a larger system, in which case the baseline CG-DMR is in 
keeping with the approaches used in (BOLCHINI, MIELE and SANDIONIGI, 2011) 
and (PSARAKIS and APOSTOLAKIS, 2012). Note that the benchmark circuits have 
very diverse sizes and some of them have a large amount of POs compared to their own 
total sizes (such as ex5p, des and bigkey). For such cases, as a relevant amount of 
internal signals are also POs, the two approaches are likely to behave similarly on some 
of the comparison axes. All results are shown both in tables, with absolute values, and 
charts, in order to highlight the relations between techniques for different circuits. 

5.3.1 Area 

Since minimizing the area is among the motivations of the proposed FG-DMR 
technique, it is important to assess if the observed overhead is indeed comparable to that 
of standard CG-DMR. For both, the increase in number of flip-flops is exactly 100%, 
since these are used only in the payload circuit itself, i.e., the circuit computing the user-
specified function. Thus, we focus our analysis on the use of LUTs, which are the basic 
logic building blocks of FPGA circuits and are exactly the resource FG-DMR aims at 
saving. Table 5.2 shows the absolute costs, in number of LUTs. Figure 5.6 shows 
proportional overheads over the unhardened circuit, for both approaches, with CG-
DMR on the left and FG-DMR on the right for each circuit. 

 

Figure 5.6: Area overheads for CG-DMR (left-hand bar of each circuit) and FG-
DMR (right-hand bar) 
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The costs in Figure 5.6 and Table 5.2 are divided into the main components of each 
approach. CG-DMR comprises a 100% cost due to the copy of the circuit and, on 
average, additional 11.6% due to comparators, for a total of 111.6%. FG-DMR, on the 
other hand, introduces a 10.5% average overhead due to comparators and 8.3% to 
perform error aggregation, for a total of 118.8% overhead when considering the circuit 
replica as well. The comparator cost of FG-DMR comprises both the redundant output 
comparators and the fine-grained LUT comparators for situations in which carry chains 
could not be used. 

The CG-DMR costs are particularly more pronounced for those circuits with a high 
amount of POs compared to its total size. Most notably, des (550 LUTs and 245 POs) 
and ex5p (128 LUTs and 63 POs) present such high costs for CG-DMR that FG-DMR 
actually requires fewer LUTs. For s298 both approaches present exactly the same area. 
The costs of FG-DMR depend not only on the amount of POs (since it also has a PO-
only comparator) but also on the amount of LUTs to which the carry chain comparison 
is not applicable. For alu4, for example, 24.4% of the LUTs make use of their 
associated MUXF7 multiplexer, imposing the need for many LUT-based comparators 
and increasing the comparator costs of FG-DMR when compared to CG-DMR. For the 
remaining circuits, however, these situations occur more rarely. As a result, the average 

Table 5.2: Area costs in LUTs (comparators, error aggregation and total, including the 
two circuit copies) 

  
CG-DMR FG-DMR 

Comp. Total Comp Error Aggreg. Total 
alu4 8 812 51 32 887 
alu_32b 28 712 45 26 755 
alu_64b 55 1497 87 57 1586 
apex2 2 1598 10 66 1672 
apex4 14 1324 12 55 1377 
bigkey 154 1304 116 48 1314 
clma 65 2603 101 98 2737 
des 192 1292 100 46 1246 
diffeq 2 942 8 39 987 
dsip 154 1424 107 51 1428 
elliptic 2 288 5 12 303 
ex1010 10 984 70 36 1080 
ex5p 52 308 35 10 301 
frisc 92 3528 83 144 3663 
misex3 12 1410 18 58 1474 
pdc 34 2540 99 100 2705 
s298 6 40 4 2 40 
s38417 88 3506 60 143 3621 
s38584.1 224 4226 152 164 4318 
seq 30 1722 25 70 1787 
spla 40 482 40 17 499 
tseng 96 1292 59 50 1305 
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area overhead of FG-DMR over CG-DMR is 3.57%, showing that the proposition of 
maintaining a manageable overhead was achieved. 

5.3.2 Clock period 

Although usually smaller than that of temporal redundancy techniques, spatial 
redundancy techniques also introduce performance penalties.  For DMR, the delay 
overhead is caused mainly by the checking circuits that are introduced in series with the 
critical path of the original circuit. Table 5.3 shows the minimum clock period TClk, in 
nanoseconds, for each circuit. For the combinational circuits, TClk comprises the 
complete circuit delay. 

 

Figure 5.7 highlights that the two techniques have very diverse behaviors for each 
circuit. For example, for alu4 both present comparable costs (the delay of FG-DMR is 
14.8% longer than that of CG-DMR). For other circuits there may be more significant 
increases when introducing FG-DMR. For frisc, e.g., FG-DMR presents 81.1% 
overhead over CG-DMR. On average, FG-DMR presents an 86.3% TClk increase over 
the unhardened circuit and 48.7% over CG-DMR. The additional delay is due to the 
nature of the introduced comparators. When using the proposed FG-DMR with carry 
chain comparators, intermediate signals are routed through the global wires of the 
device, as was discussed in section 5.1, introducing additional delay. Moreover, since 

Table 5.3: Minimum clock period in nanoseconds 

  Unhardened CG-DMR FG-DMR 
alu4 4.94 6.55 7.52 
alu_32b 6.77 8.27 9.83 
alu_64b 8.01 9.59 11.98 
apex2 6.26 7.84 10.86 
apex4 6.39 7.79 9.78 
bigkey 3.63 4.56 8.12 
clma 7.25 7.29 11.87 
des 4.26 7.08 8.46 
diffeq 4.64 4.97 9.55 
dsip 2.78 4.14 8.26 
elliptic 3.46 3.50 6.91 
ex1010 4.59 6.61 7.59 
ex5p 2.99 4.83 5.59 
frisc 8.30 8.33 15.08 
misex3 5.55 7.37 10.03 
pdc 6.18 8.94 10.67 
s298 2.78 2.80 4.09 
s38417 5.26 5.61 12.11 
s38584.1 4.84 7.06 11.20 
seq 5.27 7.39 10.04 
spla 3.98 5.81 6.94 
tseng 5.17 5.77 9.11 
Average 5.15 6.46 9.34 
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many error signals are generated, the error aggregation circuit imposes further 
overheads. 

 

The fact that CG-DMR compares only POs further fuels this difference, especially 
for sequential circuits. For instance, if all primary outputs of the circuit are registered, 
then the introduction of output comparators may not change the critical path at all. 
Sequential circuits such as clma, frisc and s298 show negligible differences between the 
unhardened versions and CG-DMR. As a result, the increase in TClk of FG-DMR over 
CG-DMR is particularly more pronounced for sequential circuits (78.9%, on average) 
than for combinational ones (23.6%). However, when comparing only primary outputs, 
it may take longer to detect the occurrence of a fault, leaving the error latent for a longer 
time, as will be shown in section 5.3.4. Moreover, when the error reaches the 
comparators, internal registers are likely to be corrupted, increasing the complexity of 
checkpoint and rollback procedures, as discussed in (PSARAKIS and APOSTOLAKIS, 
2012). Finally, these measurements consider straightforward clock period, which may 
not reflect directly in the performance. The performance of the system may be limited 
by other modules, that may present clock period or throughput limitations, or by the 
input bandwidth. It can also be the case in which the system is able to meet the real-time 
deadlines with spare time. In such cases, it may be more relevant to provide fast error 
detection and correction than the fastest possible circuit operation. 

5.3.3 Error detection 

In this section we discuss the results of fault injection regarding the classification of 
faults into the categories described in section 5.2. Table 5.4 shows the absolute amount 
of faults in each category (category 1 is omitted for clarity). It can be seen that FG-
DMR shows a very significant increase in the amount of faults in category 2. This, in 
fact, is firstly related to the greatly increased observability that FG-DMR introduces. 
Since it compares individually the output of each and every LUT, it has a much 
increased probability of detecting the presence of an error. Therefore, there is an 
increased likelihood that an error effectively affecting the circuit is classified as “no 
event” for CG-DMR simply because it never propagated to a primary output. This is 
more pronounced for sequential circuits due to the increased difficulty in propagating 
faults in such circuits, a property long identified by researches on automated test pattern 
generation (ABRAMOVICI, BREUER and FRIEDMAN, 1990). Second, the fine-

 
Figure 5.7: Minimum clock period TClk for the unhardened circuit, CG-DMR and 
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grained comparators naturally demand additional configuration bits, which also impacts 
on the amount of faults observed on category 2. Fine-grained comparison also increases, 
but on a reduced scale, the amount of faults in category 3, which are output errors that 
were detected. This is due to the modified placement and routing that the proposed 
technique imposes, which can add sensitive bits to the primary circuit as well. 

Of special interest is the comparison on the amount of faults in category 4, which are 
those that caused a PO error and went undetected for at least one input vector. Figure 
5.8 presents the variation in the amount of undetected errors for the two techniques. 
Negative values indicate benchmark circuits for which FG-DMR had fewer such events, 
i.e., F4CG > F4FG. FG-DMR showed fewer faults in category 4 for 10 circuits, while CG-
DMR was better on the remaining 12. On average, FG-DMR presents 12.73% more 
undetected faults. 

Another, and also relevant, perspective on the meaning of these figures can be found 
by analyzing the fault coverage. As discussed in section A.5 of Appendix A, fault 
coverage is the fraction of total events that was appropriately handled by a given 
mechanism, being an important metric of its efficacy. It is usually calculated as the ratio 
between covered faults (detected, in this case) and total faults. The total amount of 
faults, however, can be defined in different ways for this kind of experiment. Simply 
taking into account the total amount of injected faults can be misleading, since most of 

Table 5.4: Amount of faults in each category 

  

CG-DMR FG-DMR 
2) Det. 
Only 

3) Det. 
Error 4) Undet 

2) Det. 
Only 

3) Det. 
Error 4) Undet 

alu4 29286 29199 156 55065 38414 83 
alu_32b 29892 27610 416 48210 33473 377 
alu_64b 62604 63174 749 104927 76443 557 
apex2 45437 45087 92 156147 59282 47 
apex4 57943 56686 197 90299 73852 196 
bigkey 67352 51496 1319 79904 56617 1225 
clma 4576 2770 185 98612 3469 213 
des 69231 52351 1366 88262 61817 1612 
diffeq 577 547 22 40749 747 12 
dsip 73524 62001 1394 105406 73560 975 
elliptic 300 245 16 13681 466 30 
ex1010 30077 29781 109 60643 39891 160 
ex5p 11185 8157 305 15753 9989 401 
frisc 63096 56604 407 203668 88283 864 
misex3 46839 46146 130 98855 67283 168 
pdc 106608 104191 356 197795 141581 434 
s298 848 740 27 1270 1059 33 
s38417 24744 19732 353 245031 27188 244 
s38584.1 168111 149026 1059 384042 230289 1161 
seq 71711 72449 242 136585 96316 368 
spla 17873 15631 203 28319 19371 405 
tseng 9236 4340 556 78902 6400 439 

 



67 

 

 

them did not actually hit the CUT. As discussed in (LESEA, DRIMER, FABULA, et 
al., 2005), most bits are bound to have no effect on the system, even in high occupation 
scenarios, due to the great over provisioning required from routing resources. Thus, we 
consider only sensitive bits, i.e., those that modified circuit behavior in some way. Let 
Fx denote the amount of faults in category x. The total amount FT can be calculated as 
FT = F2+F3+F4. However, when comparing two different techniques, the total amount of 
faults FT should ideally be the same for both. Otherwise, a technique with more 
uncovered faults could in fact present higher fault coverage simply because it presents a 
much higher FT. Note that the high fault masking observed for CG-DMR can 
significantly reduce its FT, leading to an apparent reduced coverage. Thus, in order to 
maintain a fair comparison, we use the FT values of FG-DMR also when calculating the 
fault coverage of CG-DMR. 

Figure 5.9 shows the obtained results, which are quite high for both techniques. CG-
DMR presents an average coverage of 99.62%, whereas for FG-DMR it is 99.58%, i.e., 
a 0.04% difference. The circuits with lower coverage are the ones with a large amount 
of primary outputs per LUT (mainly bigkey, des, ex5p and s298), which is in keeping 
with the discussions section 5.1, i.e., that POs introduce critical routing segments. If 
higher coverage is required, reliability-oriented routing can be used, such as the 
approaches presented in (KASTENSMIDT, FILHO and CARRO, 2006) and 
(STERPONE and VIOLANTE, 2006). 

 
Figure 5.8: Undetected error variation. Positive values indicate a smaller amount for 
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Figure 5.9: Fault coverage for FG-DMR and CG-DMR. 
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5.3.4 Detection acceleration 

As the reduction on error detection time is among the advantages of fine-grained 
techniques, in this section we compare the average time each technique requires to 
detect the presence of an error. Since many of the faults in category 2 observed for FG-
DMR were not detected by CG-DMR during the experiment due to the reduced 
observability, it is not possible to determine their detection time. Thus, we focus our 
analysis on those faults that indeed propagated to primary outputs (i.e., category 3). The 
developed fault injection tool monitors CDet, the amount of cycles required to detect the 
presence of each error, and reports it to the host PC. The fine-grained circuits, however, 
do not necessarily operate at the same frequency of the coarse-grained ones. When 
considering that each circuit operates at its maximum frequency, the average error 
detection time TDet is calculated as shown in (5.1), where TClk is the clock period and 
CDet is the average amount of cycles to detect. Table 5.5 shows the results. 

DetClkDet CTT ⋅=  

 

Figure 5.10 shows the reduction in CDet observed with the use of FG-DMR. Circuits 
display very diverse values as different functions have different masking probabilities. 
For example, the XOR function will always propagate an error on one of its inputs, 

Table 5.5: Average amount of cycles and associated time to detect an error 

  
CG-DMR FG-DMR 

CDet TDet (ns) CDet TDet (ns) 
alu4 1800.71 11791.02 42.66 320.73 
alu_32b 394.04 3259.90 110.59 1087.54 
alu_64b 387.05 3709.84 114.48 1370.93 
apex2 11482.31 89998.34 1099.86 11941.15 
apex4 211.61 1647.40 193.21 1889.43 
bigkey 37.19 169.67 15.71 127.53 
clma 20.13 146.64 12.66 150.31 
des 66.98 474.00 46.83 396.26 
diffeq 3708.65 18446.82 19.52 186.44 
dsip 92.91 384.66 45.84 378.40 
elliptic 2096.16 7342.85 5.63 38.88 
ex1010 480.60 3178.23 33.53 254.51 
ex5p 109.23 528.02 62.75 350.66 
frisc 11139.11 92766.53 5769.30 87024.11 
misex3 1327.88 9783.81 407.68 4090.67 
pdc 4655.00 41620.39 171.72 1832.23 
s298 2076.20 5802.97 2020.98 8255.69 
s38417 982.62 5512.52 289.59 3507.26 
s38584.1 5354.82 37794.30 648.89 7270.22 
seq 8187.95 60525.35 2200.91 22090.51 
spla 3724.51 21654.28 466.82 3237.39 
tseng 1985.94 11466.82 547.50 4985.54 
Average 2741.89 19454.74 651.21 7308.47 

 

(5.1)
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while the AND function will mask it as long as another input equals ‘0’. On average, a 
66.2% reduction was observed, with a maximum of 99.73% for elliptic.   

 

Figure 5.11 shows the reduction in error detection time made possible by FG-DMR. 
Negative values indicate situations for which the coarse-grained approach was faster, 
i.e., TDetCG < TDetFG.  This happens due to a combination of two factors: 1) the circuit 
masking probabilities are low, leaving small room for improvements on CDet; 2) the 
clock period is longer for FG-DMR, meaning that fewer input vectors are applied per 
unit of time. For the majority of circuits, however, the improvements in fault 
observability were able to significantly reduce the error detection time, with elliptic 
displaying once more the most significant reduction (99.47%). This is in agreement 
with other hints that this circuit had a high masking probability: it has only 2 PO bits, 
and its variation in F2 for CG-DMR and FG-DMR is very significant (~45×). On 
average, a 50.15% reduction was observed. 

 

5.4 Radiation Experiments 
With the purpose of evaluating the resilience of the proposed mechanism when 

subject to actual radiation and also of validating the conducted fault injection 
campaigns, radiation experiments were performed and are herein described and 
analyzed. Experiments took place at the VESUVIO facility in ISIS, Rutherford 
Appleton Laboratories in Didcot, United Kingdom. We irradiated the device with a 
fluence of approximately 1.5·1010 n/(cm2) with the available spectrum (shown in Figure 

 
Figure 5.11:  Reduction in error detection time 
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Figure 5.10:  Reduction in cycles to detect an error 
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compared to the other circuits of the suite. The reduced amount of inputs and outputs 
simplifies the routing of the multiple circuit instances, while the intermediate circuit 
size allows reaching a higher device occupation with fewer copies than with other 
circuits, simplifying the control circuitry and reducing its probability of being hit by 
faults. Each circuit with FG-DMR required 1377 LUTs, while those with standard CG-
DMR required 1324 LUTs. The circuits used in these experiments do not use duplicated 
primary inputs, in order to minimize the routing interference over the CUTs. 

Pseudo-random inputs are applied with a linear feedback shift register to all the 
CUTs and a “golden” instance. Each of the 26 CUT copies has the same 4 possible 
states described in section 5.2: 1) normal execution; 2) error in the configuration 
memory detected by the comparators but not observed at POs; 3) error detected and 
observed at POs; 4) error not detected but wrong POs. Whenever a CUT leaves the 
normal execution state, the transmission of a faulty state description (FSD) is triggered, 
informing the host PC about the current state of all CUT instances. It contains 2 bits per 
instance: one to indicate if the fault was detected and one to indicate if the fault 
manifested at a PO. Each FSD has, thus, 52 bits, which are transmitted in 7 bytes. Note 
that several upsets may occur in the configuration memory before an error is observed 
in the circuits, due to the single event upset probability impact (SEUPI) de-rating factor 
(LESEA, DRIMER, FABULA, et al., 2005). All cross-section and failure rate values 
measured in the radiation experiments, thus, are dynamic, and  reflect the susceptibility 
of the user circuit atop the FPGA fabric (FULLER, CAFFREY, SALAZAR, et al., 
2000). 

A control unit was added for applying input vectors to all the CUT copies, checking 
the correctness of the outputs and transmitting FSDs to the host PC through the serial 
cable. The control unit was positioned in the center of the FPGA (see Figure 5.13) so 
that it enclosed the clock and serial transmission I/O pins, located at that region. It uses 
1037 LUTs and 238 registers and comprises the golden instance of the original 
unhardened apex4, with 655 LUTs. Faults in the golden instance can be easily detected, 
as the system will inform that all the 26 CUTs have incorrect outputs, creating a FSD 
that differs radically from those received when a fault strikes one of the CUTs. The 
remaining 382 LUTs and 238 registers are responsible for monitoring and transmitting 
the FSDs. 

As the control unit is embedded on the same FPGA of the CUTs, it requires a 
mechanism to monitor its integrity. Therefore, it periodically transmits an “alive” signal 
to the host PC through the serial cable. We add a watchdog on the host PC that 
reprograms the FPGA if the alive signal is not received for more than 3 seconds, 
allowing the detection and removal of faults on the control state machine, clock 
distribution or transmission circuitry. Finally, if no FSD is received after 10 minutes, 
the device is preventively reprogrammed, even if the alive signals are being received 
properly. This allows avoiding situations in which the system is still sending the alive 
signal but is no longer checking the output of the CUTs or is unable to send a FSD. All 
reconfigurations are performed by the remote host PC over a USB cable. 

After the transmission of the FSD, the control unit waits 100,000 cycles, latching 
state changes that may occur for the CUTs during this period. A new FSD is then 
transmitted. This allows finding with greater accuracy if the fault could affect a primary 
output and is important especially when fine-grained detection schemes are used. If a 
scheme is able to perform early detection, then the first FSD may indicate it before error 
manifestation at a PO, while the second one, after 100,000 cycles, indicates if the fault 
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eventually propagated to a PO. As the system runs at 50 MHz, we consider the 
probability of another SEU occurring in the 2 ms waiting period to be negligible (P ≈ 
7·10-6). After the reception of the second FSD, the host PC reprograms the FPGA to 
initiate a new round of the experiment. 

5.4.2 Neutron experiments results 

Each of the events reported by the control unit was classified, according to its FSD, 
into the same categories described in section 5.2. Events of category 1 are not reported 
by the monitoring system, as FSD transmission is only triggered when one or more 
CUTs leave the normal execution state. Table 5.6 shows the amount of events reported 
for each category, for the two techniques. The results labeled “Pre” are those obtained 
by the FSD sent before the 100,000 cycles waiting period, and those labeled “Post” 
were obtained after it. 

 

For FG-DMR the amount of “Pre” errors in category 2 (detected but with correct 
output) is larger than that of “Post” errors in this same category. This is caused by the 
fact that the fine-grained comparators are frequently able to detect the error before it is 
present at a PO, signaling it to the control unit. Then, during the waiting period, 
different input vectors may make the error propagate to a PO, moving the event to 
category 3. As local repair procedures may commence after detection, this property is 
useful to reduce error removal times. And as a standard DMR scheme is only able to 
detect errors that have already propagated to a PO, a longer period of time has to be 
waited before starting repair procedures. The amount of errors in category 4 (error not 
detected but PO corrupted) does not present a statistically significant difference to allow 
comparing FG-DMR and CG-DMR, but was a small fraction of total amount of events 
for both approaches. 

The different response times of the circuits also explain the slight increase in the 
total amount of events between the “Pre” and “Post” results. This occurs due to faults 
that strike routing resources in the border regions between CUTs and that disrupt the 
operation of multiple instances. There were three such events, to which we refer as 
multi-CUT events, as more than one instance of the circuits under test manifested the 
occurrence of a fault. There is a probability that a multi-CUT event is actually triggered 
by multiple and independent SEUs. However, as all such events occurred with 
neighboring CUTs and due to the short duration of the waiting period (2 ms), compared 
to the observed error rates (around one error every 5 minutes), we attribute them to 
single errors that affect multiple circuits, which is, as mentioned, a well known and 
documented effect (LIMA, CARMICHAEL, FABULA, et al., 2001). Figure 5.14 shows 
the location of the multi-CUT events detected throughout the experiment. 

In the first of such events, in the “Pre” FSD, sent immediately after the event 
occurrence, only CUT #20 reported that a fault was detected. Hence, the error is 
classified into category 2 for “FG-DMR Pre”, since even numbered CUTs are the ones 
using the fine-grained scheme. In the “Post” FSD, sent after 100,000 cycles, CUT #20 

Table 5.6: Received events classification 

  2) Det. Only 3) Det & PO 4) PO Only 
CG-DMR “Pre” 244 221 6 
FG-DMR “Pre” 471 211 5 
CG-DMR “Post” 245 223 6 
FG-DMR “Post” 396 287 5 
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indicated that a fault was detected and that it manifested an error at a primary output. 
Thus, it is one of the events that shifted from category 2 to category 3 during the 
waiting period for FG-DMR. However, the “Post” FSD also indicated that an error was 
detected and present at a PO for CUT #21. These two CUTs are adjacent, as can be seen 
in Figure 5.14. 

The second multi-CUT event started with CUT #2 indicating the detection of an 
error. Then, after the waiting period, CUTs #1, #2 and #5 indicated error detection, 
while only CUTs #2 and #5 manifested an error at a PO. As shown in Figure 5.14, all 
three involved instances lie on the top right corner of the device. This event was 
probably triggered by an SEU that affected the original instances of CUTs #2 and #5 
and the redundant copy (or comparison circuit) of CUT #1. As occurred with the event 
described above, this event shifted from category 2 to category 3 for FG-DMR. 

Finally, the third event began with CUT #21 indicating error detection at the “Pre” 
FSD. In the “Post” FSD, CUT #24 also reported error detection. None of the CUTs 
presented error at a primary output, indicating that the SEU probably affected only 
redundant copies or comparison circuits. 

Table 5.7 shows the cross-sections found with the conducted experiments, 
considering the amount of undetected errors (category 4) of each technique. The cross-
section is the ratio of errors to fluence, as described in section A.4 of Appendix A. To 
evaluate the effectiveness of the proposed approach on a typical terrestrial application,  
Table 5.7 also reports the expected failures in time (FIT) at New York City considering 
a flux of 13 n/(cm2·h) (above 10MeV) (JEDEC, 2006). Results are shown both for all 
the 13 CUTs of each circuit type and for one single instance. 

Table 5.7 reports the cross-section and FIT figures for an unhardened circuit as well. 
As can be seen in Figure 5.5, the events in category 3 (errors detected and observed at a 
PO) of CG-DMR are likely to be the errors at the primary copies of coarse-grained 
circuits. Thus, we assume that they are a good estimate of the amount of failures that 

 
Figure 5.14: Disposition of multi-CUT events on the FPGA. All such events occurred 

with neighboring CUTs. 
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Table 5.7: Cross-section and failure in time at New York City 

  
Total Per Instance 

Cross-section (cm2) FIT  Cross-section (cm2) FIT 
CG-DMR 3.875·10-10 5.04 2.98·10-11 0.388 
FG-DMR 3.23·10-10 4.2 2.48·10-11 0.323 
Unhardened 1.44·10-8 187.25 1.11·10-9 14.4 
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would be observed in unmitigated circuits, thereby estimating their cross-section and 
FIT values. This assumption is based on the fact these are the faults that actually struck 
the original instance of the circuit, which is similar to the original circuit, since 
comparison is performed only at the POs. The FG-DMR technique was able to reduce 
the failure rate by 44.6 times, as the amount of undetected errors is much smaller than 
that of PO failures of the unmitigated design. Even when considering all circuit 
instances, the FIT values of DMR circuits are quite low, especially when compared to 
those of unmitigated designs. 

Figure 5.15 shows the total amount of events for each circuit. All copies were 
subject to a significant amount of events, showing that the FPGA was homogeneously 
struck by the neutron beam. The cell in dark grey in Figure 5.15 is the control unit, 
which presented 57 failures, 36 of which are due to watchdog timeouts. The remaining 
21 failures are due to invalid FSDs that indicate errors in the golden copy, as described 
in section 5.4.1. These FSDs indicate faults striking the golden instance or the FSD 
generation circuitry. 

 

5.4.3 Comparison to fault injection results 

As one of the purposes of the conducted experiments was to validate the accuracy of 
the fault injection tool, in this section we compare the results obtained with both 
evaluation approaches. Most specifically, we are interested in analyzing if the relations 
between FG-DMR and CG-DMR observed in fault injection are kept in the radiation 
experiments. For that purpose, fault injection experiments were conducted aiming at 
reproducing the radiation experiments. The apex4 circuit with FG-DMR was placed at 
the position of CUT #0, while the one with CG-DMR was placed at the position of CUT 
#1. Both circuits were subject to exhaustive fault injection, leading to a significantly 
larger amount of events, when compared to the radiation experiments. The injection tool 
informs which faults were first only detected and then propagated to a PO (i.e., faults 
that would be in category 2 for “Pre” FSD and in category 3 for “Post”) and which 
faults were only detected when they had already propagated to a PO (i.e., faults that 
would be in category 3 already in the “Pre” FSD). 

Table 5.8 shows the results for the “Pre” FSDs. For each of the experiments, the 
results for FG-DMR and CG-DMR are shown, as well as the ratio between them. For 
categories 2 and 3, as well as for the total amount of events, the ratios showed a strong 
similarity, with a maximum of 7.05% variation for category 2. Category 4 shows a very 
significant variation, confirming that the results found in radiation experiments were not 
sufficient to allow comparing both approaches regarding these ratios. 

 
Figure 5.15: Events reported at each instance. 
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Similarly, Table 5.9 shows the results for “Post” FSDs. The ratios for categories 2 
and 3 become even more similar, while category 4 remains the same, as expected. A 
small variation is observed in the total amount, due to the multi-CUT events that 
modifies the ratio for radiation experiments. A very strong similarity is maintained, 
showing that the fault injection and radiation experiments were consistent in those 
situations for which consistency was expected. 

 

  

Table 5.9: Fault injection and radiation results for “Post” FSDs 

  Radiation Injection 
Ratio 
Variation   

FG-
DMR 

CG-
DMR Ratio 

FG-
DMR 

CG-
DMR Ratio 

2) Det. Only 396 245 1.62 89872 57755 1.56 3.73% 
3) Det. & PO 287 223 1.29 69701 55706 1.25 2.86% 
4) PO Only 5 6 0.83 571 193 2.96 -71.83% 
Total 688 474 1.45 160144 113654 1.41 3.01% 

 

Table 5.8: Fault injection and radiation results for “Pre” FSDs 

  Radiation Fault Injection 
Ratio 
Variation   

FG-
DMR 

CG-
DMR Ratio 

FG-
DMR 

CG-
DMR Ratio 

2) Det. Only 471 244 1.93 103697 57797 1.79 7.05% 
3) Det. & PO 211 221 0.95 55876 55664 1.00 -4.89% 
4) PO Only 5 6 0.83 571 193 2.96 -71.83% 
Total 687 471 1.46 160144 113654 1.41 3.52% 
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6 FINE-GRAINED DIAGNOSIS AND LOCAL REPAIR 

As discussed previously, the main advantages of fine-grained redundancy are 
twofold: faster detection and more precise diagnosis. In chapter 5 we have estimated the 
reductions on detection times that a very fine-grained mechanism can provide. In this 
chapter, we focus on the how the fine-grained diagnosis can be used, in a scalable 
manner, to allow localized scrubbing with significantly reduced repair times. This task 
presents several challenges, as will be discussed in section 6.1. Section 6.2 presents the 
devised approach to tackle the challenges found, deemed Scrubbing Unit Repositioning 
for Fast Error Repair (SURFER). The experimental setup used to evaluate the SURFER 
mechanism is described in section 6.3. It is based on that presented in section 5.2, but 
includes several extensions in order to allow proper evaluation of the techniques herein 
discussed. Section 6.4 presents the results obtained with SURFER assuming a precise 
translation mechanism, which is valuable to estimate the potential of the technique. 
Finally, section 6.5 introduces a heuristic mechanism that aims at implementing 
SURFER with manageable costs and maintaining relevant gains in repair time. 

6.1 Challenges 
Among the most promising features of fine-grained error detection mechanisms is 

the possibility of using the precise diagnosis, provided by multiple error detection bits, 
to perform a local and fast repair procedure. All error indication signals can be 
concatenated and seen as an error signature, as shown in Figure 6.1. The signature 
contains all the raw diagnosis information provided by the detection mechanism, which 
must be translated into information useful for repair. As the granularity gets finer, the 
size of the redundant modules is reduced and the amount of error signals increases. 
Therefore, circuits with very fine granularities have the greatest potential of reducing 
the MTTR, but present very large signatures to be handled. And several challenges are 
found when aiming at translating large signatures into error locations. 

 

 
Figure 6.1: Fine-grained detection and the generated error signature 
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Firstly, the inputs of the two modules may present different values due to a fault in a 
preceding circuit. Such input difference may be propagated by the logic implemented in 
the module, thus also triggering its associated comparator. For example, a fault striking 
module m0,0 in Figure 6.1 will be detected by comparator e0 whenever it propagates to 
the module’s output. If the change in the output of m0,0 causes a change in the output of 
m0,1 (i.e., m0,1 propagated the error), then e1 will also be raised, and similarly for e2. 
Otherwise, i.e., if the error was masked by m0,1, e1 will remain low. The propagation or 
masking of an error by a module depends on many variables, both static, e.g., the logic 
function implemented by the module, and dynamic, e.g., the current value of the other 
inputs of the module or the state of internal registers. Thus, several different signatures 
are possible for a single fault, especially when complex circuit topologies and functions 
are considered, since dynamic factors may change which comparators are triggered. 
Assuming that [e0, e1, e2] is the error signature for this circuit, [1, 0, 0], [1, 1, 0] and [1, 
1, 1] are possible signatures for a fault in m0,0 (or in m1,0). 

Furthermore, unless the function of m0,0, m1,0 are entirely configured by one single 
configuration frame, there are multiple candidate frames once a given signature is 
generated. The reconfigurable routing resources of FPGAs also play an important role 
on this matter. For example, a fault in the routing between m0,0 and m0,1 may occur 
either before or after the branching point of the wire connected to the comparator. If it 
occurs before, then it will behave similarly to a fault in m0,0, as it will be detected also 
by e0. On the other hand, if it is located after this point, then it will only be detected by 
e1, provided m0,1 propagates it. Thus, signatures such as [1, 0, 0] and [0, 1, 0] can be 
associated with the routing between the two modules. Depending on the choices of 
placement and routing algorithms, this routing path may be arbitrarily long and span 
across several different configuration frames. Therefore, as a general rule, it cannot be 
assumed that it is possible to narrow a fault location down to a single configuration 
frame, even when the finest available granularities are employed. Note, however, that 
the probability of each frame generating a given signature is different, depending also 
on the static and dynamic factors involved. This property can be explored to overcome 
the challenges herein discussed and minimize repair time, as will be seen in section 6.2. 

To summarize, the problem at hand consists in identifying the most likely error 
locations for a given error signature, which may be very long for large circuits and fine 
granularities, and to make use of this information to reduce the MTTR. It must be also 
taken into account that: a same error may lead to different signatures depending on 
dynamic factors; a same signature may be caused by errors in different locations and 
with different probabilities. 

6.2 The SURFER approach 
6.2.1 Overview 

The proposed Scrubbing Unit Repositioning for Fast Error Repair (SURFER) 
technique uses a signature translation (ST) mechanism to convert the error signature 
into an indication of the error location. This indication is provided in the form of a 
frame address, chosen according to the methodology described in the sections 6.2.2 and 
6.2.3. As mentioned previously, the configuration of FPGAs is divided into frames, 
which are the smallest addressable units. For the Virtex 5 devices used as case studies in 
this work, addresses are composed of several subfields, such as the top/bottom bit, row 
number, major and minor addresses (XILINX, INC., 2011a). The ST mechanism is 
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defined in a manner that delivers the error location following this specification, in order 
to avoid additional complex post-processing that may increase the repair time. 

Figure 6.2 shows an overview of a system using SURFER. Similarly to 
(BOLCHINI, MIELE and SANDIONIGI, 2011), we assume the existence of an external 
configuration controller that interacts with the non-volatile memory that stores the 
configuration. Note that a non-volatile memory and a controller able to interact with it 
are already required by any system using SRAM-based FPGAs. As this controller is 
very simple, it can be implemented in a lower performance radiation-hardened FPGA or 
ASIC. Alternatively, in very low budget situations and when the reduction in reliability 
is acceptable, it can be implemented within the same FPGA, as in (STRAKA, KASTIL 
and KOTASEK, 2010). The ST mechanism, on the other hand, is performed in the same 
FPGA to minimize its delay and to avoid excessive pin use. 

 

In Figure 6.2, the FPGA design is divided into modules, each with its own ST block 
(we present only two modules for the sake of clarity). Each block generates an error 
detection bit and a frame address. Moreover, in order to provide fault isolation between 
the modules, they can be defined as reconfigurable partitions as well. However, 
developers are free to divide the system into modules as they see fit, following the good 
practices of design modularization, since the gains in repair time are not limited by their 
size. Thus, the costs of defining very small reconfigurable partition can be avoided. 

6.2.2 Reducing the MTTR through optimized starting frames 

In this work we exploit the fact that the scrubbing procedure does not need to begin 
at the first frame of the configuration, but instead an improved starting frame can be 
identified for each signature. If, for example, the signature indicates that there is a 
strong probability of the error being in the 300th frame of the partition, a shifted 
scrubbing procedure, starting closer to that position, can significantly reduce the 
MTTR. If the end of the partition is reached and the error is not removed, then the 
procedure returns to beginning of the partition and continues until the previous starting 
frame. As discussed in section 6.1, each signature may be associated with errors in 
different frames with different probabilities and pointing to a single frame once the error 
is detected can be infeasible. One must rely on the information of which are the most 
likely faulty frames for each signatures and give them some form of priority.  Thus, the 
first step to allow the use of SURFER is to measure the relations between errors in each 
frame and the generated signatures. Through fault injection experiments it is possible to 
identify which configuration bits are able to generate each signature when flipped. 
Thereby, one can build histograms that show, for each signature, which frames can lead 
to its occurrence and with which incidence. These histograms allow identifying the most 
likely error locations associated with each signature. Figure 6.3 shows two such 
histograms, for two different signatures of circuit pdc. More details on the conducted 
experiments will be provided in section 6.3. 

 
Figure 6.2: Overview of a system with SURFER 
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Once the relations between error locations and signatures are mapped, remains the 
problem of efficiently making use of this information. The histograms in Figure 6.3 
present clear peak regions, where the error is most likely located. However, if one were 
to scrub only these peak regions, there would be a probability (although small) of not 
correcting the fault, as it can be located outside peak regions. Furthermore, two frame 
addresses would have to be stored per signature (the first and the last addresses of the 
area), creating the need for large and costly tables. Errors and approximations in this 
table would also be critical, as they could lead to scrubbing the wrong area. When 
setting a shifted starting frame, on the other hand, even if the signature translation 
module makes a poor guess regarding the error location, the entire partition will 
eventually be scrubbed if needed, thereby maintaining the reliability of a standard 
scrubbing procedure. 

The user circuit can be halted when the error is detected, as in (PSARAKIS and 
APOSTOLAKIS, 2012), and scrubbing can ensue until the error is reached and 
removed. Correction can be detected, in many cases, by the lowering of error signals. 
Alternatively, it may be advantageous to perform a readback, comparing each frame to 
the expected value (or using redundancy codes) to first locate the error. The identified 
faulty frame is then solely scrubbed, similarly to (GOKHALE, GRAHAM, JOHNSON, 
et al., 2004). The proposed scheme remains identical regardless of these device and 
application specific implementation choices. Once the error is removed, scrubbing can 
be halted and execution can resume. 

The marks on the x axis of Figure 6.3 show the optimum starting frame for each of 
the two signatures. Note that, for both histograms in Figure 6.3, there is a possibility 
that the error is located before the chosen starting frame. These locations are only 
scrubbed after reaching the partition end and returning to its beginning. Placing the 
starting frame before those locations, however, would increase the time required to 
reach the highest concentration areas, increasing the average correction time. 

6.2.3 Optimum frame identification 

In order to identify the optimum starting frame for each signature s, we calculate the 
estimated MTTRs(f) for each possible starting frame f. It is defined as: 

( )( ).1,
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)( ∑
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Where f is the starting frame, FS is the frame size, BR is the configuration port bit 
rate, PB is the partition beginning and PE is the partition end. hs[i] is the histogram 
value for signature s for the i-th frame and Os is the total amount of occurrences of s. 
Therefore, hs[i]/Os is the probability that the error is located in the i-th frame, whenever 
signature s is received. dist(i, f) is the distance between f and the i-th frame, i.e., the 
amount of frames that have to be written before reaching the i-th. It is defined as: 

 
Figure 6.3: Histograms of two signatures for the pdc circuit 
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The sum in (6.1) is, therefore, the “mean frames to repair” when s is received and f 
is used as starting frame. It is converted to a time unit with the time required to write a 
frame (FS/BR). There may also be additional costs associated with interacting with the 
programming interface, such as issuing a write command. Such costs are device-
dependent and thus not shown in (6.1). Furthermore, they are usually negligible when 
compared to the time required to transmit the configuration data, but are nonetheless 
taken into account in the experimental results reported in this work. 

In (6.2), the first condition is the distance between f and i if f, the starting frame, is 
before i. In this case, the error is corrected before reaching the end of the partition. The 
second condition occurs when the error is only corrected after reaching the end of the 
partition and returning to its beginning. In this case, PE – f + 1 is the amount of frames 
written until the partition end and i – PB is the distance between the partition beginning 
and i. 

With (6.1) and (6.2) one can calculate the expected MTTR for each possible starting 
frame and select the smallest one as the optimum choice for signature s. This is repeated 
for all the different signatures that occurred for the circuit. Let O denote the total 
amount of received signatures, as shown in (6.3) and S the set of all different signatures. 
The overall MTTR is defined by the average of all signatures, weighted by their 
occurrences, as shown in (6.4). 

∑
∈

=
Ss

sOO  

∑
∈

⋅=
Ss

ss
s fMTTR

O

O
MTTR )(

 

One can then build a table that indicates, for each signature s, its optimum starting 
frame fs. This table provides the optimum ST mechanism for SURFER in terms of 
MTTR reduction. For this reason, we refer to it as perfect signature translation (PST), 
and it is a relevant mechanism to measure the maximum gains of SURFER. Its benefits 
and drawbacks are discussed in section 6.4, following the experimental setup described 
in section 6.3. 

6.3 Extended experimental setup 
The experimental setup presented here extends that described in section 5.2 and 

consists in several tools required to evaluate the proposed techniques, as shown in 
Figure 6.4. The entire setup is divided into macro-steps for the sake of clarity, which are 
detailed in the remainder of this section. 

The first step is the same performed in the setup described in section 5.2, i.e., a 
synthesized description of the original HDL design is generated with the standard 
synthesizer XST and netgen, which is then subject to the redundancy insertion tool that 
applies the carry chain-based fine-grained DMR. In this case, however, the error 
aggregation circuit is not instantiated, as we are interested in observing the individual 
error indication bits that form the error signature. Table 6.1 presents the total signature 
size Ssize for each circuit. 

(6.2)

(6.4)

(6.3)
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 The second step consists in extracting error signatures are associated with each 
injected fault. The injection tool described in section 4.3 was extended to transmit the 
generated signatures to the host PC, along with the frame address on which the fault 
was injected. We once more perform exhaustive injection, i.e., faults are injected on 
every bit associated with the CUT. As previously, 100,000 pseudo-random input vectors 
are applied to each circuit for each injected fault. However, as discussed in section 6.1, 
several different signatures may be generated for each fault, due to the dynamic factors 
that change propagation in the circuit. To maintain a tractable experiment time, we limit 
to 20 the amount of signatures transmitted per fault. Still, almost 3 million signatures 
were received per circuit, on average, as can be seen in Table 6.1. Table 6.1 shows, for 
each circuit, the total amount of signatures, i.e., O as seen in (6.3), and the total amount 
of different signatures, i.e., |S|. The experiment is therefore exhaustive only regarding 
the possible faulty bits and not regarding the possible generated signatures, since faults 
are injected on all bits but only up to 20 signatures are taken from each. 

It is important ensure that the signature sample is statistically significant and that the 
mechanism is not applicable only to that particular set of signatures. For that purpose, 
we use an approach similar to that traditionally used with neural networks (HAYKIN, 
1998). The signature division step shown in Figure 6.4 generates two non-overlapping 
signature lists, one to be used in the generation of the translation module (training list) 
and one to measure the obtained MTTR (testing list). Thus, the evaluation is performed 
on a list of signatures not available to the generation algorithm. The first 15 signatures 
received for each fault are placed on the training list and the rest on the test list. 

In the third step, the translation function is generated based on the signatures in the 
training list. It can either follow the straightforward PST mechanism described in 
section 6.2.3 or the heuristic signature translation (HST) algorithm, to be presented in 
section 6.5. Moreover, it calculates the expected MTTR for the signature distribution 
observed in the training list. This value, when compared to that obtained in the fourth 
step, i.e., when the test list is applied to the generated function, allows determining if 
the obtained signatures are representative of the error-to-signature relations for that 
circuit and if the generated mechanism is not strictly limited to signatures in the training 
list. All results assume the maximum operating speed of the Virtex 5 SelectMAP 
interface, which is a 32-bit wide port operating at 100 MHz. These figures can be 
converted if a reduced transfer rate is being used. We also take into account the time 
required to issue a write command to the interface (25 cycles in our implementation) 
and to write a dummy frame, which is required by SelectMAP (XILINX, INC., 2011a). 
Note that this must be done twice whenever a return to the partition beginning is 
required. 

 
Figure 6.4: Extended experimental setup 
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The fifth step consists in submitting the generated translation table, described in 
VHDL, along with the DMR circuit to the Xilinx standard design flow to determine area 
and performance overheads. We also evaluate the resilience of the generated translation 
tables to faults affecting their configuration, since they are also embedded in the FPGA. 
This is done through a second round of fault injection experiments, in the sixth step. 
Actual error signatures are used as stimuli and the faulty outputs are transmitted to the 
host PC for analysis. Each faulty event is then categorized as described in section 
6.5.1.2 and the increase it causes to the overall MTTR is computed. 

The generated signatures and the resulting ST mechanism are strictly related to the 
decisions made by the placement and routing algorithms, since components (and routed 
wires) that change place may also change their associated frames. Thus, for the 
generated ST mechanisms to be applicable to the final design, it is important to maintain 
the same placement and routing used for signature generation (second step). This can be 
accomplished through several means, such as through automatically generated fine-
grained placement and routing constraints (e.g., LOC, BEL and 
DIRECTED_ROUTING (XILINX, INC., 2011d)) or using an incremental design flow 
(ZEH, 2007), which allows creating partitions whose placement and routing are not 
modified by changes in other modules. 

Table 6.1: Total signature size Ssize, amount of received signatures (O) and of different 
signatures (|S|) for each circuit 

  Ssize Total Signatures Different signatures 
alu4 167 1,785,081 24,017 
alu_32b 359 1,756,168 48,215 
alu_64b 192 3,567,880 89,343 
apex2 395 3,819,021 25,941 
apex4 332 3,232,288 31,271 
bigkey 354 2,984,645 54,717 
clma 609 1,373,711 16,413 
des 355 2,962,133 57,043 
diffeq 234 740,011 9,928 
dsip 370 3,519,234 38,471 
elliptic 73 205,020 649 
ex1010 215 1,991,867 24,996 
ex5p 81 502,924 1,990 
frisc 894 4,412,457 54,924 
misex3 349 3,245,937 31,787 
pdc 603 6,588,236 64,214 
s298 11 44,865 84 
s38417 884 4,784,611 27,332 
s38584.1 1,080 11,681,701 38,573 
seq 430 4,215,089 22,344 
spla 114 928,254 5,525 
tseng 337 1,354,465 25,155 
Average 383.55 2,986,164 31,497 
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6.4 PST - Perfect Signature Translation 
The Perfect Signature Translation (PST) consists, as described in section 6.2.3, in a 

table that maps each and every generated signature to the optimum starting frame 
address that minimizes the MTTR. It is, thus, an important mechanism to estimate the 
maximum gains made possible by the SURFER mechanism. In this section we present 
these gains and also discuss the shortcomings of this approach. 

The extended experimental setup was applied to the same 22 benchmark circuits 
used in section 5.3. Table 6.2 shows the obtained MTTR results, in microseconds. The 
Standard approach consists in starting reconfiguration at the first frame of the circuit, 
i.e., it presents the MTTR obtained with straightforward partition-based scrubbing. PST 
Train is the MTTR associated with the signature list used in the generation of the 
translation circuit, whereas PST Test is that obtained when the testing signature list is 
applied to the translation function. 

Figure 6.5 emphasizes the reductions achieved in MTTR with PST. The average 
MTTR reduction provided by PST Test over standard scrubbing is of 79.65%. The 
circuit with least gains is s298, which showed a 52.9% reduction, due to its very small 
size which leaves a reduced room for improvements with fine-grained diagnosis. The 
testing and training results are very similar for all circuits, indicating that signatures 

Table 6.2: MTTR of standard scrubbing and SURFER with training and testing 
signatures (in µs) 

Circuit Standard PST Train PST Test 
alu4 172.29 31.07 33.59 
alu_32b 109.36 27.12 30.07 
alu_64b 220.71 39.84 45.52 
apex2 228.48 45.23 47.02 
apex4 239.74 38.86 40.85 
bigkey 194.87 36.28 38.42 
clma 325.43 47.39 50.92 
des 211.48 29.02 31.07 
diffeq 169.67 34.63 36.81 
dsip 342.18 52.67 55.85 
elliptic 118.08 23.94 24.04 
ex1010 196.57 40.55 42.93 
ex5p 78.91 18.36 18.69 
frisc 507 79.12 82.68 
misex3 251.42 44.4 47.16 
pdc 415.7 58.23 62 
s298 35.84 16.83 16.88 
s38417 436.67 74.37 76.34 
s38584.1 450.28 84.04 85.95 
seq 372.74 61.52 63.36 
spla 206.74 31.12 31.9 
tseng 137.49 28.36 30.85 
Average 246.44 42.86 45.13 
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used in the testing list were able to appropriately capture most of the error-to-signature 
relations for each circuit. The average error in PST Train relative to PST Test is of 
5.08%, with a maximum of 12.47% for alu_64b. 

Implementing PST tables in the FPGA substrate, however, can be very challenging. 
For s298, the smallest circuit (17 LUTs), direct implementation of its PST table requires 
119 LUTs, which is 7 times the size of the original circuit. In this case, due to its very 
small signature size, it is still possible to use BRAMs instead of LUTs to implement this 
direct translation. But it quickly becomes infeasible for circuits with larger signatures. 
Still among the smallest circuits (128 LUTs), ex5p has 1,990 different 81-bit signatures. 
Direct implementation of its PST table, however, required 25,290 LUTs (197.58 times 
the size of the original circuit), showing the poor scalability of this approach. In fact, the 
synthesis tool runs out of memory before being able to synthesize the PST table for 
even intermediate-sized circuits. Therefore, in order to provide a scalable variation of 
the SURFER approach, we propose a heuristic signature translation (HST) mechanism. 

6.5 HST - Heuristic Signature Translation 

6.5.1 Heuristic table generation 

The proposed Heuristic Signature Translation (HST) must be able to quickly provide 
an initial frame address to be used by the reconfiguration controller. It must also be as 
small as possible, in order to minimize the area overhead. The mechanism proposed 
herein works similarly to a hardware-implemented hash table, generating a compressed 
version of the signature that is then used to access a table containing the target frame 
addresses. Most of the effort goes into defining an appropriate hash function, which will 
in turn lead to an efficient table implementation. 

As occurs for any function to be used in a hash table, we want to minimize 
collisions, i.e., different signatures that are mapped to a same compressed counterpart. 
However, the algorithm should take into account the specific purpose and requirements 
of the translation being implemented. First of all, not all collisions have the same 
penalty in terms of the final overall MTTR. Several signatures may have neighboring 
starting frames, or even point to exactly the same frame. For these cases, collisions have 
a reduced penalty (or none at all). The hashing function should, therefore, give 
preference to causing this kind of collision rather than for signatures that point to far 
away locations. Second, the amount of occurrences Os is different for each signature s. 
It is more important to have a precise output for those signatures that are more frequent 

Figure 6.5: MTTR of standard scrubbing, PST with training and testing signatures 
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than for those that rarely occur. Finally, the signature translation (ST) block must also 
generate an error detection bit, as can be seen in Figure 6.2, in order to trigger repair 
procedures. This bit is basically the OR operation performed over the entire signature. If 
the hashed signature can also be used to generate this bit, then logic resources can be 
saved. 

The pseudo-code shown in Figure 6.6 presents the main steps of the proposed HST 
mechanism. It consists in first identifying those signature bits that, when active, have a 
high probability of being associated with the same area of the circuit. We consider that 
two signatures are in a same area whenever their optimum frames are in a same row and 
major column. A major column of frames is associated with a column of resources in 
the FPGA. For example, in Virtex 5 devices most of the major addresses are associated 
with slice columns, and have 36 frames each (with individual minor addresses) 
(XILINX, INC., 2011a). Bits that, when active, have a high probability of indicating 
errors in a same column are iteratively organized into groups. Over each group, the OR 
function is applied, generating a hashed signature that has one bit per group. Figure 6.7 
shows the logic schematic of the proposed mechanism compressing an 8-bit signature 
into a 2-bit one. And since the hash function is computed with ORs over the signature, 
the error detection bit e can be generated based on the hashed signature, as shown in 
Figure 6.7, saving resources. In the remainder of this section, we detail how the HST is 
generated. 

 

The first step of the algorithm (line 1) is to parse the signature list signList and to 
build an appropriate structure to store the information. The list contains all the 
signatures received by the host PC during the fault injection experiments. It also 
contains the frame address in which the fault was injected for each signature. These data 
are stored in the signature table signTable that maps each signature to its frame 
histogram. The histogram is a vector containing how many times that signature occurred 
for faults injected in each frame. 

Input: signList, a list of all occurring signatures and associated frame 
addresses, SSize, the size of uncompressed signatures, and maxSize, the maximum 
acceptable compressed signature size. 

Output: gb, a set of which bits must be grouped and compAddrTable, a table 
with the optimum frame address for each compressed signature 

1. signTable:= parse(signList); 

2. addrTable:= optimumTable(signTable); 

3. gb:= initialGrouping(SSize); 

4. while size(gb) >maxSize do 

5. G := buildGraph(gb, addrTable); 

6. maxMatch:= maxWeightedMatching(G); 

7. gb:= join(gb, maxMatch); 

8. end while; 

9. compSignTable:= compressTable(gb, signTable); 

10. compAddrTable:= optimumTable(compSignTable); 

Figure 6.6: HST Generation algorithm 
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The second step (line 2) is to identify the optimum starting frame for each signature, 
following the methodology described in section 6.2.3. The resulting address table 
addrTable maps each frame address f to a set of signatures that have f as their optimum 
starting point. 

The third step (line 3) initializes the set gb of grouped bits. This set contains the 
groups of bits that are going to be subject to the OR function, compressing them into a 
single bit. The initial grouping consists in creating one group for each bit, where that bit 
is placed alone. 

The steps in lines 4 through 8 are repeated until we reach the maximum acceptable 
compressed signature size maxSize. This parameter defines how much effort will be put 
into compression and will be discussed in greater detail in section 6.5.1.1. 

In line 5 the complete undirected group graph G = (gb, E), on which the grouping 
decisions are to be made, is built. Each set of grouped bits u ∈ gb is a vertex. As G is 
complete, there is an edge {u, v} in E for every pair of distinct groups u, v ∈ gb. Each 
edge {u, v} is weighted according to the frequency with which u and v are active for 
signatures that point to a same major address column. A group of bits u is said to be 
active for a given signature s if at least one of the bits in u is one in s, i.e., the OR over 
those bits would evaluate to one with s as input. Figure 6.8 describes how the weight of 
each edge {u, v} is calculated. It sums the occurrences of all signatures that point to a 

 

Figure 6.7: Schematic of a HST circuit 
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Input: An edge {u, v} ∈ E, the address table addrTable and the occurrence 
count Os for each signature s. 

Output: The weight w of edge {u, v}. 

1. w := 0; 
2. for each major column c 
3. ou := 0; ov := 0; 
4. for each frame f in c 
5. for each signature s in addrTable(f) 
6. if active(u, s) then ou := ou + Os; 
7. if  active(v, s) then ov := ov + Os; 
8. end for; 
9. end for; 
10. w := w + min(ou, ov); 
11. end for; 

Figure 6.8: The weight of an edge {u, v} 
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frame f in column c which u is active and does the same for v. Then, it adds the 
minimum of these values to the weight w. Thus, the increase in w will be zero if either u 
or v were never active for the signatures that point to c. Moreover, a large value will 
only be added to w when both groups are active for signatures with frequent occurrence. 
This may also be accomplished by a single signature in which both groups are active 
and that has a high occurrence count. 

Line 6 (Figure 6.6) computes the maximum weighted matching on G. It consists in 
choosing a subset of non-adjacent edges (i.e., that do not share vertices) from E that 
maximizes the sum of their weights. The maximum weighted matching can be 
computed in polynomial time (EDMONDS, 1965). We use the implementation 
available with the LEMON graph library (DEZSő, JÜTTNER and KOVÁCS, 2011). 
One can then join the groups (line 7) according to this matching, maximizing the total 
frequency with which they are active for signatures that point to a same major column. 
Thereby, the signature size (i.e., amount of groups in gb) is approximately divided in 
half at each iteration. These steps are repeated until the maximum signature size 
maxSize is reached. 

In line 9 the compressed table compSignTable is built. It is similar to signTable as it 
contains, for each compressed signature, its occurrence histogram. The compressed 
signature is computed by applying the OR function over the bits of each group in gb. Its 
histogram is the frame-wise sum of the histograms of all uncompressed signatures that 
are mapped to it when compressed. 

Finally, on line 10, the same calculation of optimum frame address for each 
signature can be repeated, this time over the compressed table. The resulting 
compressed address table compAddrTable allows mapping the compressed signatures to 
their corresponding optimum starting frames. 

6.5.1.1 The maxSize parameter 

The maxSize parameter tunes the HST algorithm effort and has significant impact on 
the resulting translation mechanism. High maxSize values reduce the amount iterations 
of the compression loop (lines 4-8 in Figure 6.6) and allow large compressed signatures. 
Consequently, the address table stores many different addresses for different 
compressed signatures, leading to more accurate results but with a higher cost in area. 
As one reduces the value of maxSize, fewer signatures remain due to more collisions 
that occur, leading to smaller translation tables with less precise results. The design 
space made available by this parameter will be explored in section 6.5.4. 

There are two corner cases that should be highlighted: if maxSize ≥ Ssize, where Ssize 
is the uncompressed signature size, then the HST and PST tables will be identical, as no 
compression will take place. Conversely, if maxSize = 1, then all bits will be grouped, 
leading to single-bit compressed signatures and an address table with a single entry. 
Thus, for any signature, the resulting frame address will be the same. We refer to this 
address as the best static address. Since all signatures will be mapped to the same 
compressed counterpart, the best static address points to that starting frame that 
minimizes the MTTR considering all signatures (and their incidence counts) at once. 
This statically shifted scrubbing, therefore, does not actually exploit fine-grained 
signatures. Instead, it solely uses the non-uniform distribution of sensitive bits over the 
frames and may still present reductions in the MTTR compared to the standard 
approach. 
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6.5.1.2 Dealing with faults in the translation table 

As the translation table is implemented in the same reconfigurable fabric of the 
circuit it is monitoring, it is also susceptible to the same faults. Thus, it is important to 
understand their possible effects, their impact in the overall MTTR and how can they be 
handled. For that purpose, we propose the use of a redundant error aggregation circuit, 
as shown in Figure 6.9. To minimize area overheads, this circuit does not generate a 
target frame address, but only the error detection bit (OR over all signature bits, as was 
done in chapter 5). This allows avoiding the most critical scenarios, as will be discussed 
herein. 

 

Two types of table faults are distinguishable: those that manifest themselves 
immediately and those that remain silent. The first type consists mostly in “false alarm” 
faults, i.e., faults that cause the error indication bit to be raised even though the input 
signature is zero. These may occur in the translation table or in the redundant copy, but 
are detectable, since they will diverge. Furthermore, some faults may cause the frame 
address output to change while the detection bits are kept low, thus also being 
detectable. Such faults must be removed upon detection to avoid accumulation. 

Faults that remain silent present more complex scenarios. As they are not 
immediately detected, they may accumulate with faults in the payload circuit. The most 
evident possible outcome is that an incorrect frame address may be generated. In this 
case, the generated address may or may not be valid, i.e., among those that the table 
would normally produce (note that it only generates a restricted set of addresses under 
normal operation). A silent fault may also prevent the error detection signal from being 
raised. In this case, upon occurrence of a payload fault, the redundant checkers will 
diverge. 

Considering the discussed scenarios, we propose the following approach. When both 
detection bits are raised and a valid frame address is generated, that address is used. If 
the generated address is invalid, the best static address is used instead. This avoids, for 
example, using addresses that are outside the configuration space of that particular 
partition. Whenever the detection bits diverge, the translation table is scrubbed first, 
returning it to correct behavior. Thereby the detection signal is lowered in case of false 
alarms. On the other hand, if it remains high then there is an error in the redundant 
checker preventing its triggering and an error in the payload circuit, which should be 
scrubbed with the current generated address. Finally, to avoid accumulation of faults, 
the translation circuitry should be scrubbed after every scrub of the payload circuit. 

One can evaluate the impact in MTTR of faults in the translation table considering 
the overheads introduced by each situation. False alarms require the scrubbing of the 
translation table to be identified and removed. Faults that cause valid but incorrect 
frame addresses will have the MTTR associated with the use of that sub-optimal starting 
frame. Silent faults that prevent error detection require the time to scrub the translation 
circuit plus the time to scrub payload circuit. By considering the amount of 
configuration bits (and input signatures) that lead to each situation, one can determine 

 
Figure 6.9: Redundant translation table 
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the total change expected in the MTTR. Moreover, the smaller the translation circuit is, 
in comparison to the payload, the less likely it is for it to be subject to faults. Thus, 
minimizing its area is also important to minimize its susceptibility to faults. 

6.5.2 Area and delay costs 

As discussed previously, the goal of SURFER is not only to provide MTTR 
reductions, but also to do so with manageable costs and in a scalable manner. In this 
section, we discuss the area and delay overheads of the proposed heuristic signature 
translation, considering maxSize = 7. The reason behind this choice and the impact of 
this parameter will be discussed in section 6.5.4. 

We take into account two variations of the technique. One attempts to minimize 
delay overheads by processing error signatures in a pipelined fashion. It first stores the 
generated error signature to process it in the following cycle. As a result, it requires the 
use of additional flip-flops. If these are a scarce resource in that particular design, then 
the alternative combinational approach may be more attractive. Moreover, there may be 
situations in which the performance is limited by other components of the design and 
improving the frequency of the module at hand is unnecessary. In such cases, the 
combinational approach could also be preferable. It calculates the target frame address 
directly from the comparators’ outputs. Therefore, it minimizes the use of flip-flops but 
introduces additional delay. Note that the single-cycle difference in MTTR observed 
between both approaches is negligible. 

Table 6.3 shows the absolute area occupied by the each circuit, separated into its 
individual components: comparators, HST table and the redundant error aggregation 
(EA) circuit. The total figures include the two copies of the original circuits. Figure 6.10 
shows the area overhead for each circuit, in terms of occupied LUTs. The results for 
CG-DMR are also included for comparison. For most circuits, the proposed translation 
mechanism was able to maintain low overheads. Those circuits with higher costs, s298 
and ex5p (212% and 154%, respectively), are also the ones with smallest areas. Most 
notably, the former has only 17 LUTs in its unhardened form, which leaves small room 
for the implementation of a translation mechanism with low relative costs. On average, 
only 15.5% of the amount of LUTs of the unhardened circuit is required to implement 
the HST translation mechanism. The average total SURFER overhead was 133.9% over 
the unhardened circuit and 10.5% over CG-DMR. 

 
Figure 6.10: Area overhead of circuits with standard CG-DMR (left-hand bars) and 

circuits with FG-DMR and HST tables (right-hand bars) 
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The use of flip-flops, on the other hand, depends on the applied variation of the 
technique. If we implement the translation mechanism as a purely combinational circuit, 
no flip-flops are introduced on combinational benchmarks, while sequential circuits 
have exactly 100% overheads, since flip-flops are also duplicated by FG-DMR. For the 
pipelined version, an amount of flip-flops equal to the signature size Ssize (found in 
Table 6.1) has to be introduced. These two approaches, however, are corner cases of 
several possibilities that may insert flip-flops to register partially compressed signatures 
and find improved design points in terms of used resources and delay overhead, 
depending on the specific constraints of each design. 

Figure 6.11 shows the minimum clock period for the two implementations of the 
HST mechanism and for CG-DMR for comparison. The introduction of the HST circuit 
directly after the comparators (i.e., the purely combinational approach) adds an average 
of 56.4% delay over standard DMR. As occurred for FG-DMR without SURFER, in 
section 5.3.2, this delay is particularly more pronounced for the sequential benchmarks 
(83.9%, on average) then for the combinational circuits (33.7%). This occurs mainly 
because internal flip-flops may divide the logic path in such a way as to hide the delay 
of the comparators. 

Table 6.3: Area and delay results for SURFER 

Circuit 
Area (LUTs) Clock Period (ns) 

Comparator HST Table Redund. EA Total Comb. Pipe. 
alu4 50 54 32 940 8.47 6.81 
alu_32b 43 49 28 804 9.83 8.21 
alu_64b 81 75 60 1658 12.27 9.25 
apex2 10 94 66 1766 11.63 10.39 
apex4 11 69 56 1446 10.65 9.19 
bigkey 88 72 59 1369 8.21 5.81 
clma 92 116 103 2849 12.42 9.6 
des 86 74 60 1320 9.25 6.02 
diffeq 8 48 39 1035 10.18 7.58 
dsip 96 76 62 1504 7.73 5.12 
elliptic 5 25 13 329 6.84 5.28 
ex1010 69 69 36 1148 8.92 6.43 
ex5p 30 25 14 325 6.39 4.42 
frisc 85 162 150 3833 15.56 14.65 
misex3 17 75 59 1549 10.45 7.67 
pdc 96 117 102 2821 11.67 9.5 
s298 3 14 2 53 4.58 3.41 
s38417 54 161 149 3782 12.16 10.41 
s38584.1 149 220 181 4552 11.21 7.23 
seq 22 103 72 1889 11.1 8.57 
spla 36 35 19 532 7.11 5.33 
tseng 51 71 57 1375 10.16 7.89 
Average 53.73 82.00 64.50 1676.32 9.85 7.67 
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Depending on the requirements of each specific design, the delay overhead of the 
combinational approach may or may not be acceptable. As an alternative to minimize its 
effects, we consider the use of a pipelined version, which reduces this overhead by 
dividing in two steps the generation of the target frame address. The reduction over the 
combinational approach is very significant for most cases, as can be seen on Figure 
6.11, leaving the pipelined version closer to CG-DMR. On average, pipelined HST 
presents a 20.5% delay increase over CG-DMR. As occurred for the combinational 
implementation, this difference is more significant for sequential benchmarks (40.8%) 
then for combinational ones (3.5%). Furthermore, in some cases, especially when the 
amount of primary outputs is very large compared to the circuit size (such as des and 
ex5p), the delay of comparing primary outputs may become very significant and the 
pipelined approach may even be faster than CG-DMR. 

6.5.3 MTTR Results 

Table 6.4 shows, in microseconds, the MTTR assuming a fault-free HST circuit (i.e., 
the results obtained at steps 3 and 4 of the experimental setup in Figure 6.4). It also 
contains the experimental results to evaluate the impact of faults in the translation table 
(i.e., obtained at step 6). Both scenarios are discussed in the following sub-sections. We 
set maxSize = 7 in this section as well.  

6.5.3.1 MTTR reduction with a fault-free table 

Figure 6.12 shows the MTTR obtained with HST for each circuit. It also shows 
those of standard scrubbing and of PST with testing signatures for the sake of 
comparison. Although unable to maintain the average gains of PST, as expected, HST 
presented only a 4.03% increase for the circuit with least gains, i.e., s298. As it presents 
very small signatures, the compression loop required one single iteration to reach the 
target maxSize for this circuit, leading to a very small difference between both 
techniques. On average, a 95.2% MTTR increase was observed due to the loss of 
precision caused by the compression heuristic. Nonetheless, HST was able to 
substantially accelerate repair, when compared to standard scrubbing. On average, a 
61.9% reduction was achieved (with the testing list), showing that the proposed 
heuristic maintains the ability to significantly minimize repair time. 

Figure 6.11: Minimum clock period TClk for CG-DMR and FG-DMR with pipelined and 
combinational HST 
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It is also important to evaluate the difference between results with training and 
testing signature lists. Figure 6.12 highlights that they are very similar for all circuits. 
The average variation is of 0.26%, with a maximum of 1.36% for tseng. Such a small 
difference indicates that the applicability of the HST mechanism is not restricted to the 

Table 6.4: MTTR (in µs) with fault-free table and with faults in the translation circuit 

Circuit 
Fault-free table Faulty table 

Train Test Golden Faulty 
alu4 57.04 57.06 56.41 58.55 
alu_32b 49.83 49.84 49.04 50.58 
alu_64b 86.25 86.28 90.45 91.66 
apex2 94.02 94.39 92.66 93.80 
apex4 89.35 89.37 88.08 89.36 
bigkey 60.06 60.06 59.31 61.30 
clma 139.31 138.74 138.04 139.82 
des 51.88 51.87 50.91 53.69 
diffeq 80.45 80.74 79.93 80.20 
dsip 105.62 105.69 104.37 106.08 
elliptic 50.50 50.60 50.52 51.55 
ex1010 60.96 60.99 60.06 61.90 
ex5p 33.77 33.85 33.73 36.64 
frisc 192.14 190.37 191.10 190.99 
misex3 105.93 105.61 104.47 105.72 
pdc 134.58 134.53 129.87 130.31 
s298 17.54 17.56 17.54 17.85 
s38417 207.81 207.35 206.88 212.26 
s38584.1 174.17 174.31 169.27 173.95 
seq 128.50 128.02 127.24 127.92 
spla 62.59 62.27 62.26 62.32 
tseng 50.36 51.05 49.53 53.77 
Average 92.39 92.30 91.44 93.19 

 

 
Figure 6.12: MTTR for the HST mechanism (with training and testing lists). PST and 

standard scrubbing are shown for comparison. 
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signatures used in its generation and that the experiments were able to adequately 
expose the error-to-signature relations for the circuits. Moreover, this difference is 
substantially smaller than that observed in for PST (5.08%, on average), showing that 
the HST mechanism is less susceptible to unexpected signatures or signature histograms 
that differ from those observed during table generation. 

6.5.3.2 The impact of faults in the translation table 

As discussed previously, it is important to assess the robustness of the proposed 
technique to faults in the translation table. For that purpose, faults are injected 
specifically on the translation table in step 6 (shown in Figure 6.4), which is stimulated 
with signatures obtained during the first injection campaign (step 2). Due to the large 
amount of signatures (shown in Table 6.1), which could not be stored within the FPGA 
memory, we limit the applied stimuli. For each injected fault, 1,000 different signatures 
are applied to the circuit, chosen as follows: 

1. The all-zero input is applied to detect false alarm faults and faults that change 
the frame address output without triggering detection (as described in section 
6.5.1.2); 

2. For each possible compressed signature sc, the most frequent signature that is 
mapped to sc is chosen. This aims at stimulating the different circuit paths. As 
maxSize = 7, this represents at most 128 different signatures; 

3. The remaining signature slots are filled with the most frequently occurring 
signatures that were not inserted during step 2, aiming at covering the most 
frequent signatures in the experiment. 

Signatures chosen this way cover 90% of all occurrences observed in the first 
injection campaign. Faulty outputs are sent to the host PC, which categorizes them and 
calculates their effect on the MTTR, following the approach described in section 
6.5.1.2. Table 6.4 shows, on the two rightmost columns, the MTTR associated with the 
chosen subset of signatures, assuming a fault-free (golden) table and when the effect of 
faults are included. Figure 6.13 shows the increase observed for each circuit, which had 
a 2.48% average. Overall, it can be seen that the technique is very robust to such faults. 
Even when their effects are considered, a 61.66% average reduction is maintained over 
standard scrubbing. First, because HST is able to significantly reduce the table size. 
Therefore, the amount of sensitive bits in the table is very small, compared to the 
payload circuit. Second, the redundant checker allows detecting those situations that 

Figure 6.13: MTTR increase due to faults affecting the translation table 
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would have the highest impact, such as mistaking a false alarm for an actual payload 
circuit fault. 

The values change significantly between each circuit as they are influenced by a 
number of factors. For example, the most significant increase is 8.6% for ex5p. For this 
case, the time required to repair the table when false alarms happen is particularly 
significant, for two reasons: the circuit has a low baseline MTTR (as can be seen in 
Figure 6.12) and the area occupied by the table is significant (shown in Figure 6.10). 
The short MTTR causes a small increase to be more significant, while the significant 
table area introduces more sensitive bits. This is also the case for tseng, which had a 
similar increase. For s298, on the other hand, even though it has the highest area 
overhead, it presents only moderate gains with SURFER, due to its reduced size. 
Moreover, its best static address presents comparable improvements, since the circuit 
area is very small. As a result, a reduced overhead is observed for those situations in 
which the table fault is detectable (e.g., invalid addresses). An interesting situation is 
also presented by frisc. As it is a large circuit with a longer MTTR and a relatively 
small table, the sensitive bits introduced by the table actually present a slightly reduced 
MTTR compared to the payload circuit. Thus, when all scenarios are considered, the 
overall MTTR remains virtually the same. 

6.5.4 Evaluating the impact of the maxSize parameter 

The maxSize parameter defines the maximum acceptable compressed signature 
length and is used to determine the heuristic compression effort.  Figure 6.14 shows its 
impact on table area and MTTR for a representative subset of the benchmark circuits 
(for the sake of clarity). Results are shown for each iteration of the compression loop of 
the HST algorithm, which stand for different target maxSize values. Appendix C 
presents the results for all circuits. The rightmost points in the curves are associated 
with large signatures, which are iteratively reduced in the compression loop. Each point 
is associated with one such iteration. For ex5p, the rightmost point stands for the PST 
table. For the other circuits in Figure 6.14, XST was unable to synthesize PST tables. 

 

 
Figure 6.14: MTTR and table area for different maxSize values 
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The heuristic is able to provide multiple Pareto points, i.e., points that are not 
surpassed by any other in both metrics at once. The only non-Pareto point occurs for 
ex5p, when one of the compression iterations actually increases the area. This is a 
situation in which the compression circuit becomes larger but the translation table is not 
reduced accordingly, leading to a larger total area. 

In general, there is a clear point up to which there are very significant area 
reductions. After this point, the MTTR continues to be increased, but the area is reduced 
less aggressively. This occurs when the compressed signature size approaches the 
amount of inputs in the device’s LUTs, allowing efficient implementations of the 
address table seen in Figure 6.7. For Virtex 5 devices, LUTs have 6 inputs, but there are 
multiplexers to allow implementing any 7 or 8 input function with 2 or 4 LUTs, 
respectively (XILINX, INC., 2010). Thus, signatures around these sizes can be seen as 
optimal spots for the heuristic, considering a cost-benefit metric such as “MTTR 
reduction per area”. The chosen value (maxSize = 7) for the experimental results in 
sections 6.5.2 and 6.5.3 is, therefore, in the middle of this space. The area reductions 
provided by further compression become less significant, as the compression circuitry 
starts to dominate the overall area. The leftmost point is associated with the circuit that 
compresses all bits into a single signature and responds with the best static address to all 
of them. 
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7 CONCLUSIONS 

In this work, we have presented a study on the dependability threats faced by state-
of-the-art FPGAs and on existing techniques aiming at mitigating them. Our attention 
was focused on a particular issue faced by such devices: with growing configuration 
memories, the time required to scrub away their transient errors becomes longer. And 
FPGAs tend become more and more susceptible to such errors, both due to the growing 
configuration size and the scaling of transistors. Thus, efficiently and quickly handling 
these errors becomes crucial to enable the use of FPGAs on critical systems, especially 
those on harsh environments, such as space applications. The use of fine-grained error 
detection techniques was put forth as a means to do so with manageable costs. We now 
summarize the main contributions of this work and the conclusions drawn, as well as 
possible future works. Publications achieved by the author both within the scope of this 
thesis and in cooperation with other researchers are listed in section 7.3. 

7.1 Summary of contributions 
7.1.1 Fault injection platform 

A new fault injection platform was developed to evaluate the techniques proposed in 
this work. As main features, it requires one single FPGA to operate, reducing the costs 
of setting up the experimental setup. Moreover, it operates directly on the internal 
configuration access port (ICAP), without using softcore or hardwired processors. This 
reduces the injection latency and generalizes the platform’s applicability, since it does 
not require special components, aside from LUTs, BRAMs, flip-flops and the ICAP. 
The modularity and extensibility of the injector allowed its adaptation to evaluate 
different attributes of circuits, such as fault coverage and detection latency. It was 
adapted to extract error signatures and to evaluate the susceptibility of the SURFER 
translation tables to faults, both being important aspects discussed in chapter 6. This 
platform is currently being used by other researchers to evaluate different mitigation 
mechanisms. 

7.1.2 Platform for radiation experiments 

The experiments conducted on ISIS, Rutherford Appleton Laboratories, required the 
development of a monitoring platform able to detect the occurrence of errors, to 
automatically reprogram the FPGA and to log all relevant events. This platform is 
described in section 5.4, along with the results that were obtained. As the fault injection 
system, this platform was developed in a modular and extensible manner. Both the on-
chip monitoring circuit and the scripts on the host PC have been successfully adapted to 
be used with different circuits and fault tolerance techniques in cooperation researches. 
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7.1.3 Carry chain circuits for fine-grained comparison 

The maintenance of low costs was among the main concerns of this work. And, 
since fine-grained redundancy typically demands additional area to implement the 
numerous required comparators, we have devised a method to use the abundant carry 
propagation chains found in FPGAs to implement these comparators. Thereby, the use 
of LUTs can be avoided. This translates to more LUTs being left available for other 
purposes (such as other functions to be integrated in the same FPGA) or even in the 
possibility to use a smaller (and lower cost) FPGA. 

A tool to automatically apply the proposed technique was developed. Numerous 
features are supported, such as the instantiation of error aggregation circuitry, the use of 
redundant comparators and the duplication granularity. The technique was extensively 
evaluated under several axes and compared to a traditional coarse-grained DMR, 
showing similar area and significant reductions on detection latency at the cost of a 
slightly reduced fault coverage and an increased clock period. 

7.1.4 Making use of fine-grained diagnosis with SURFER 

7.1.4.1 Shifted scrubbing 

The basic concept explored by SURFER is that one does not necessarily starts 
scrubbing an FPGA on the first configuration frame, i.e., it can be shifted in the 
addressing space. The idea to start scrubbing at a position closer to the actual error 
location was inspired by the rotational latency of hard disk drives: once the magnetic 
head reaches the desired track, it must wait for the disk rotation to bring the desired 
sector. If one could place the head just before this sector, then this time would be 
minimized. Similarly, the actual correction time of scrubbing depends on how far ahead 
the error is located, relative to the next frame to be accessed by the scrubbing unit. 
Therefore, one can choose a starting frame that minimizes the mean time to reach the 
actual error. This realization is, in fact, independent from fine-grained error detection 
mechanisms. Even without fine-grained diagnosis, one can estimate the areas with 
higher density of sensitive bits and start scrubbing immediately before that area. 

7.1.4.2 Shifted scrubbing guided by error signatures 

As discussed in section 6.1, several challenges are faced by systems aiming to 
explore very fine-grained diagnosis to accelerate repair. The dynamic factors that 
change masking and propagation through circuit logic cause multiple signatures to be 
generated by a same error. Furthermore, errors on different frames can cause a same 
signature, since a module’s functionality is not necessarily encompassed by a single 
frame and routing paths may cross long regions of the device. As a result, even when 
very fine-grained redundancy is used, it may not always be possible to narrow the error 
location down to a single frame. These signatures can, however, be used as meaningful 
hints for a shifted scrubbing system. The SURFER mechanism proposed herein was 
able to reduce the MTTR by 80% on average, when making use of a perfectly precise 
signature translation mechanism. This mechanism, however, turned out to have very 
high costs even for small circuits, creating the need for more efficient translation 
heuristics. It remains relevant, nonetheless, to show the maximum gains provided by 
SURFER, being useful as a goal for any such heuristic. 

7.1.4.3 Heuristic for efficient signature translation 

The heuristic signature translation (HST) proposed in this work is based on a 
compression circuit that joins signature bits with the OR function. It operates similarly 
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to a low cost hash table and heavily exploits the fact that not all collisions have the same 
impact on the final quality of the solution, since many signatures would be translated to 
neighboring frame addresses. By grouping those bits that are active (i.e., ‘1’) for 
signatures that frequently appear in a same region, it attempts maximize collisions 
between such signatures and to minimize them between those that appear in far away 
locations. It allowed creating translation tables that provide an average 61.9% MTTR 
reduction at cost of 15.5% of the unhardened circuit area. 

7.2 Future works 
7.2.1 Choosing intermediate redundancy grains 

In this work we have used a very fine granularity, since the outputs of all LUTs were 
compared to copies. This was made with reduced area costs by means of the carry 
propagation chains. But it did introduce delay penalties and generated very large error 
signatures, which increased the complexity of translating them to useful information. 
Therefore, identifying the most important observation nodes, both in terms of detection 
latency and of diagnosis, can be an interesting approach to reduce costs, similarly to 
what is done in partial redundancy works such as (PRATT, CAFFREY, GRAHAM, et 
al., 2006) and (SHE and SAMUDRALA, 2009). 

7.2.2 Further exploring the SURFER design space 

The concepts introduced by SURFER open an enormous design space, in which 
many different research directions are possible. We highlight the following as 
promising approaches to further improve the benefits of SURFER. 

7.2.2.1 Improved translation heuristics 

The HST mechanism proposed here is one of many possible and had the main 
purpose of showing the feasibility of the SURFER approach. Different weight functions 
or grouping heuristics (not based on iterative maximum weighted matching) can be 
devised. For example, the current version of the heuristic does not always fully exploit 
the chosen maximum signature size maxSize. Since it approximately divides in half the 
size at each iteration, there may be situations in which the final compressed signatures 
are substantially smaller than maxSize. A final “relaxation” step can be introduced to 
ungroup bits and meet maxSize precisely, leading to less collisions and improved 
translation precision with very small area costs. 

Other translation mechanisms can be found based on different paradigms as well. 
Meta-heuristics and neural networks, for example, may bring better results or at least 
interesting additional Pareto points. The time required to perform the translation, albeit 
relevant, can also be extended, if the quality of the chosen frame is improved 
substantially. 

7.2.2.2 Multiple starting frames 

The current SURFER mechanism points to one starting frame, based on the error 
probability distribution observed for that specific signature. It may be interesting in 
some situations to create multiple scrubbing areas, with different priorities, in order to 
skip “dead zones” in which the probability of finding an error, for that signature, is very 
small. This can be done with low costs if the compressed signatures are shared, at least 
partially, by the multiple translation tables. 
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7.2.2.3 Using other signals in the signature 

The error signatures used in this work comprise all individual error detection 
signals, but additional informational can be included. As was discussed in section 6.1, 
error signatures may vary depending of dynamic factors, such as primary inputs (PIs). 
Therefore, adding information on the current state of the circuit can aid in the location 
of the error. For example, an indication of the current operation mode, of the software 
being executed in a softcore processor or registers which are particularly relevant for the 
component’s operation can help improving the precision of the chosen frame address. 

7.2.3 Diagnosing permanent faults and aging 

This work focused primarily on locating and correcting soft errors. The improved 
diagnosis provided by fine-grained error detection, however, can also be used to identify 
areas of the FPGA which are subject to permanent faults or aging. If the incidence of a 
particular signature is significantly above its expected frequency, it may indicate that 
the associated FPGA area is facing aging or even a permanent fault. Alternative repair 
mechanisms, such as reallocating the module (or a part of it) to a spare area, can be 
adopted in this case. 

7.2.4 Performing radiation testing over a complete SURFER platform 

Implementing a complete SURFER platform for relevant applications, preferably 
with strict real-time restrictions, is an important step to validate the proposed flow. 
Once the complete system is implemented on a board with the required resources (i.e., 
an SRAM-based FPGA for payload application and a radiation-hardened device for 
scrubbing control) it can be subject to radiation testing, measuring the overall reliability 
of the entire platform. 

7.2.5 Finding other uses for the signature translation heuristic 

The HST algorithm proposed herein showed interesting results, being able to 
maintain repair acceleration with a very low area cost. It may be possible to apply this 
same heuristic (or variations of it) to other problems with the same requirements: large 
amount of inputs, small area, and approximate results. Comparing its performance with 
hardware-implemented neural networks, for example, is an interesting experiment to 
evaluate its efficiency. 

7.3 Publications 
The following publications were achieved by the author during this course. 

7.3.1 Book chapters 

BECK, A. C. S.; LISBÔA, C. A. L.; CARRO, L.; NAZAR, G. L. et al. Adaptability: 
The Key for Future Embedded Systems. In: BECK, A. C. S.; LISBÔA, C. A. L.; 
CARRO, L. Adaptable Embedded Systems. 1st. ed. New York: Springer, 2013. Cap. 
1, p. 1-12. 

NAZAR, G. L.; CARRO, L. Reconfigurable Memories. In: BECK, A. C. S.; 
LISBÔA, C. A. L.; CARRO, L. Adaptable Embedded Systems. 1st. ed. New York: 
Springer, 2013. Cap. 4, p. 95-117. 
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APPENDIX A – TAXONOMY OF DEPENDABLE 
SYSTEMS 

The taxonomy found in the field of dependable systems is vast and may vary from 
one work to another. Therefore, it is important to establish a common use of the 
definitions. In this appendix, we present the basic concepts related to dependable 
systems and discuss the nomenclature adopted in this work, based mainly on 
(AVIZIENIS, LAPRIE, RANDELL, et al., 2004) and (PRADHAN, 1996), which are 
good sources for further reading on this topic. 

A.1   Fault, Error and Failure 
The most basic definitions are those of fault, error and failure, which follow cause-

effect relations. A fault is defined as a cause of a possible error. It is, therefore, 
frequently associated with a physical phenomenon that may corrupt the system activity. 
Faults can also be human-made, such as mistakes during system design. Such faults, 
however, lie outside the scope of this work. An error, in turn, is defined as a divergence 
in the system state from the expected one, which may or may not lead to a service 
failure. Finally, a service failure (or simply failure) is defined as a deviation in the 
service provided by the system, as expected by a user or another system. This implies in 
the definition of system boundaries, which determine where the system being analyzed 
or developed begins and where it ends. If an error remains internal to the system 
boundaries and does not cause the system service to deviate, then no failure occurs. 
Similarly, if a fault never leads to an erroneous system state (it occurs in a component 
not in use, for example), then no error occurs. 

An example can be used to better explain these concepts. Let us assume that an 
energetic particle hits a processor’s arithmetic and logic unit (ALU) and temporarily 
changes the value of an internal wire, characterizing a fault. If that signal is in the shifter 
unit, for example, and this unit is not used, then no error occurs. Conversely, if a shift 
instruction is in execution when the fault occurs and it causes a register to receive an 
erroneous value, then an error takes place. Finally, if this error does not cause the 
service delivered by this program to deviate, then the system does not present failure. If 
the service differs, a failure occurs. Note that the placement of the system boundaries 
plays an important role at this point. If we consider the system as being strictly the 
processor, then the writing of an erroneous value to an external memory is considered a 
failure. If we place the off-chip memory within system boundaries, then a failure will 
only occur when there is a divergence in the service observed by external entities, e.g. 
another processor connected via network or a human user. 

Faults, errors and failures can be classified into many different categories, according 
to several and frequently orthogonal properties. A comprehensive discussion on the 
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matter is presented in (AVIZIENIS, LAPRIE, RANDELL, et al., 2004). Here, we focus 
on the aspects that are most relevant for the remainder of this work. 

One of the most important aspects of faults regards its duration or persistence. 
Transient faults are those whose presence is bounded in time. Thus, it may be possible 
to completely remove them from the system. In other words, transient faults are those 
that do not damage the component in a permanent manner, and that disturb its operation 
for a limited time. The errors due to transient faults are called soft errors. Conversely, 
permanent faults are those with continuous or unbounded duration. They are usually 
due to irreversible damage to a component. The errors caused by permanent faults are 
called hard errors. Finally, some faults may lie in between permanent and transient. 
Although the term intermittent is used with another purpose in (AVIZIENIS, LAPRIE, 
RANDELL, et al., 2004), we follow the taxonomy of (PRADHAN, 1996) on this 
matter. Thus, we refer to faults that appear and disappear repeatedly over time as 
intermittent faults. 

Service failures are also classified into a variety of categories. For instance, they can 
be separated into content and timing failures, with the former referring to when the 
delivered value differs from the correct one, whereas the latter refers to when the time in 
which the information is delivered does not follow specification. Timing failures are, 
thus, very relevant for real-time systems. Failures can also be classified as signaled, 
when the system raises a warning signal informing that a failure occurred, and 
unsignaled when it does not. 

A.2    Dependability and its features 
With the definitions of fault, error and failure at hand, dependability can be defined. 

In (AVIZIENIS, LAPRIE, RANDELL, et al., 2004) two definitions are presented. A 
dependable system can be considered as a system where trust can be justifiably placed. 
Alternatively, one can consider that a system is dependable when it can avoid failures 
that are more frequent or severe than is acceptable. The definition of acceptable is 
highly application-dependent. While a standard cell phone may acceptably fail once a 
year, an airplane engine cannot. Dependability envelops several other concepts: 

• Availability: “readiness for correct service”. Also defined as the probability that 
the system will be functional at a given time t. 

• Reliability: “continuity of correct service”. Also defined as the probability that 
the system will be functional during an interval [t0, t], provided it was functional 
at t0. 

• Safety: “absence of catastrophic consequences”. A failure may be catastrophic 
when it harms human lives, the environment or due to economical reasons. 

• Integrity: “absence of improper system alterations”. This means that the system 
will not be modified in a way that harms its overall dependability. 

• Maintainability: “ability to undergo modification and repairs”. In other words, 
how efficient is the system’s return to a functional state after a service failure. 

The concepts listed above are those presented in (AVIZIENIS, LAPRIE, 
RANDELL, et al., 2004). Other works include different sets of system features as part 
of dependability. In (PRADHAN, 1996), the concept of integrity is omitted, while two 
other features are included: 

• Performability: the probability that the system will present a specific 
performance level at a given time instant. 
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• Testability: how simple it is to test the system, where testing is an attempt to 
identify specific problems within the system. 

Just as the definition of an acceptable failure rate or severity is application-
dependent, so is the relevance of each of the concepts encompassed by dependability. 
For example, data servers are typically concerned with high availability: the likelihood 
of a user finding the service unavailable must be as low as possible. Maintainability is 
also crucial for a high availability, as it is directly related to how long the system 
remains offline after a failure. Alternatively, for a system that is used during a mission 
time, such as those used in an aircraft, high reliability is the greatest concern. For these 
applications, it is crucial that the system does not fail during a given period of time, 
namely the mission, and failures during off-mission time are not nearly as severe. 
Performability, on the other hand, is highly relevant for real-time systems, where the 
system is required to produce an output or take an action within a restricted timeframe 
in order to avoid timing failures. 

A.3   MTTF, MTBF, MTTR and FIT 
Other relevant metrics are frequently used to evaluate dependable systems, or 

populations of such systems, especially over long periods of operation. The mean time 
to failure (MTTF) is the average time required for a system to present a service failure. 
Therefore, being an average metric, it requires a population of systems in order to be 
accurately estimated. Let N be the amount of identical systems in the population and tfi 
the time that the i-th system took to present a service failure. The MTTF is defined in 
(A.1). 

∑
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Note that the MTTF is related to the first failure presented by the system. It is a very 
relevant metric when no repair is possible, i.e., once a failure occurs, the entire system 
must be replaced or removed from use. A slightly different metric, which is frequently 
used interchangeably with the MTTF, is the mean time between failures (MTBF). It is 
defined as the average time between two consecutive failures of a system. Assume that 
N instances of a system run for a time period T, with each system presenting, on 
average, navg failures. Equation (A.2) presents the definition of MTBF. 

avgn

T
MTBF =  

Let ni denote the amount of failures presented by the i-th system during the period T. 
The average amount of failures navg used in (A.2) is defined in (A.3). 
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The MTBF is frequently reported with a slightly different metric called failures in 
time (FIT), which expresses the expected amount of failures per 109 device-hours of 
operation. It can be calculated using (A.4), provided the MTBF is expressed in hours. 

910.
1

MTBF
FIT =  

(A.1)

(A.2)

(A.3)

(A.4)
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Another related metric is the mean time to repair (MTTR). It represents the average 
time required to take the system from a failure state back a functional one. It is, hence, 
tightly related to the concept of maintainability and severely constrained for high 
availability systems. Let M denote the amount of failures presented by a population of 
systems and tr i denote the time required to repair the i-th failure. The MTTR is defined 
in (A.5). 

∑
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A.4   Failure rate function, cross-section and the bathtub curve 
The failure rate function z(t), also called hazard function, represents the expected 

rate of failures of a population of systems at a given time t. In a population of N 
identical components, let No(t) denote the amount of components operating correctly at 
time t and Nf (t) the amount of components that have failed at time t. The derivative of 
Nf (t), dNf (t)/dt represents the instantaneous rate of failing components. The failure rate 
function is defined in (A.6). 
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When evaluating z(t) over electronic devices’ lifetime, a general trend is found. 
Figure A.1 shows the bathtub curve, which depicts the typical behavior of z(t). Shortly 
after manufacture, the failure rate is high due to “substandard” or “weak” components 
(PRADHAN, 1996). Manufacture faults which were not identified during testing may 
also contribute to this behavior. This period, called infant mortality phase, can be 
skipped by means of a burn-in process. Burn-in consists in operating the system, often 
under extreme conditions, in order to identify the weak components and to repair them 
or remove them from the population. Thus, when the components begin their actual 
service, they are already at the beginning of the useful life phase. 

 

The useful life is the period where the system presents its lowest failure rate and its 
most predictable behavior. Failures during this period are usually attributed to “random” 
effects, such as energetic  particles or electromagnetic noise. Particularly regarding the 
effects of radiation, the sensitivity of a component is measured by its cross-section, 
which has the dimension of area (usually cm2). It is defined as the area of the circuit that 
can lead to a given event (such as an error or a failure) if struck by a particle of a given 
energy. A good source for further reading on cross-section measurements is 

 

Figure A.1: The bathtub curve 

z(t)

t
Infant Mortality Useful life Wear-out

(A.5)

(A.6)



113 

 

 

(KARLSSON, LIDEN, DAHLGREN, et al., 1994). In this work, we calculate the cross-
section CS using (A.7). The fluence is the total amount of particles (e.g., neutrons, 
protons, etc.) per unit of area (cm2 most frequently) that went through the device during 
a given period of time. E is the total amount of events (such as errors or failures, 
depending of the type of measurement) that was observed during the same period of 
time. 

fluence

E
CS =  

After operating during its useful life, the wear-out phase begins. The components 
start to face aging effects that change their operating properties and that lead to an 
increase in the failure rate. It is, thus, very important to identify when a component is 
entering this phase, in order for it to be replaced. 

A.5    Fault model and coverage 
When developing dependable systems, or evaluating fault tolerance techniques to be 

used in such systems, one of the first questions that arise is: “what are the possible 
threats this system will face?” For example, a system operating in high altitudes, such as 
in space applications, needs to consider the impact of energetic particles on its 
operation, as it is not shielded by the atmosphere. Similarly, when a system is expected 
to be used for a long time, the effects of aging may have to be considered. In order to 
evaluate the resilience of a system against a given physical phenomenon, its impact on 
the system’s operation needs to be accurately understood and modeled. For a fault 
model to be relevant, thus, it must closely represent the effects of one or more physical 
phenomena on the system’s behavior. For example, transient and permanent faults will 
have different models and using one model to represent the other fault type is highly 
likely to lead to inaccurate results. 

Furthermore, if one intends to use such fault model in fault injection campaigns, it is 
important to maintain the model’s simplicity. As a statistically significant fault injection 
campaign for a complex system may take a long time, a complex fault model is likely to 
bring an undesirable computational burden to this task. Frequently used fault models 
include: single bit flip, in which one of the bits in the system’s storage has its value 
changed; multiple bit flip, which is similar to single bit flip, but applied to more than 
one bit at the same time; single stuck-at, in which a net of the circuit receives 
permanently a given logic value, among others. 

Once the relevant fault model(s) for the system at hand is defined, one can proceed 
to evaluate the fault coverage of the fault mitigation techniques available at the system. 
A fault is said to be covered depending on what the evaluated technique attempts to do. 
For example, all faults detected by a fault detection technique are considered covered, 
as are all faults masked by a fault masking technique. The fault coverage represents the 
probability that a fault of the evaluated model will be covered by the fault mitigation 
techniques. Parts of the system in which faults are not covered and may lead to a system 
failure are referred to as single points of failure (SPOFs). Let FT denote the total amount 
of considered faults in the system, under the assumed fault model, and FC denote the 
amount of covered faults. The fault coverage C is defined in (A.8). 
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APPENDIX B – USING NON-RANDOM INPUT VECTORS 

In the experimental results reported in chapters 5 and 6, we have made use of 
pseudo-random input vectors in order to stimulate the operation of circuits. This was 
done to emulate a scenario in which little information was available to designers 
regarding input distribution. However, as will be shown in here, some of the discussed 
metrics can be affected by a highly correlated set of input vectors. Correlated inputs are 
observed naturally on many applications, such as stages of a pipelined processor which 
repeatedly execute the same small set of instructions. 

The alu_32b circuit was used as a case study to evaluate some possible outcomes of 
changes in the properties of input vectors. For that purpose, we use vectors extracted 
from the execution of two pieces of software with the MIPS instruction set architecture, 
namely CRC32 and ins_sort. As their names suggest, CRC32 calculates the 32-bit 
cyclic redundancy check and ins_sort computes the insertion sort algorithm. These two 
algorithms stimulate the ALU very differently. CRC32 makes use of many different 
instructions, since it requires numerous shifting and logic operations for the CRC 
calculation itself, and also additions and subtractions for loop control. On the other 
hand, ins_sort performs mostly additions and subtractions to compare elements of the 
vector and for loop control as well. Therefore, CRC32 makes a much broader use of the 
ALU capabilities, selecting most of the operations available in the circuit. 

 Both algorithms were executed with two input instances, leading to different 
execution times (deemed short and long in the remainder of this appendix). For ins_sort 
a string with 8 characters and one with 43 were used, which led to execution times of 
approximately 2,500 and 28,300 cycles, respectively. For CRC32, a string with 43 
characters and one with 430 were used, which led to execution times of approximately 
3,900 and 29,800 cycles, respectively. 

B.1   Impact on detection latency 
As was discussed previously, an error can only be detected when its effects are 

stimulated and propagated to an observation point, i.e., a comparator. Therefore, input 
vectors heavily affect the observed detection latency. Figure B.1(a) shows the average 
required cycles for coarse- and fine-grained redundancies to detect errors. Figure B.1(b) 
shows the required time, assuming each circuit runs at its maximum frequency. Again, 
it is important to keep in mind that many errors affected the circuit but simply could not 
be detected at all, especially for coarse-grained redundancy, due to the limited amount 
of input vectors. Such errors could eventually be detected with a much longer latency, 
when appropriate vectors finally cause propagation to the primary outputs. However, 
since these latencies depend on what the ALU will compute afterwards, they cannot be 
estimated with a restricted set of vectors. Therefore, latencies for faults that only FG-
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DMR could detect with the chosen vectors are not taken into consideration in the 
results, as was done in chapter 5. 

Figure B.1 shows the results for the pseudo-random stimuli used in chapter 5 as 
well, labeled rand. It becomes clear that a highly correlated set of input vectors 
increases the average detection latency, since repeated (or similar) inputs do not aid in 
detection. This property therefore increases the relevance of having accelerated 
detection mechanisms for circuits to be used with highly correlated inputs. The short 
stimulus sets showed naturally reduced latencies compared to their long counterparts, as 
many errors remained silent during these limited testing scenarios but could be detected 
by the extended input sets. 

FG-DMR was able to accelerate detection for all input sets, but with diverse ratios. 
CRC32 showed more pronounced gains (31.4% and 35.9% for short and long 
executions, respectively) than ins_sort (19.2% and 18.8% for short and long executions, 
respectively). This is due to the poor stimulation provided by ins_sort, which makes no 
use of shift or logic functions. Since the ALU’s adder/subtracter presents a relatively 
easy propagation compared to more complex modules, the latencies observed for 
ins_sort are shorter than those for CRC32, making the two approaches more similar and 
leaving reduced room for improvements from fine granularities. Proportional reductions 
were less pronounced than with pseudo-random inputs, as these were very efficient to 
stimulate the FG-DMR circuit and led to very significant gains (71.9%). On the other 
hand, the absolute time reduction obtained for the most critical case (CRC32 long) was 
the most expressive (4.5 µs). 

 

B.2   Impact on SURFER repair time 
The experimental setup described in section 6.3 uses fault injection campaigns (and 

therefore also input vectors) to generate error signatures that are in turn used to build the 
SURFER translation tables. Thus, different input stimuli sets can generate different 
signature sets with varying distributions, leading to different translation tables with 
potentially different MTTR. Since the HST mechanism favors generating a translation 
table that is precise for signatures that are more frequent, it is important to validate that 
a short MTTR is maintained for input sets that differ from those used for the HST 

 
(a)                                                                 (b) 

Figure B.1: Average detection cycles (a) and detection time (b) for different input sets 
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algorithm. The approach used in chapter 6 to evaluate this aspect was to divide the 
generated signatures in two sets in order to train the table with a different set from that 
used to test it. Overall, very small variations were observed, as discussed in section 
6.5.3, showing that the generated table was applicable not only to the signatures in the 
train set. In this section, we further evaluate this property by generating signatures with 
the input vectors used in section B.1. With these varied signature distributions we 
generate HST tables (with maxSize = 7) and then test them with the signatures 
generated with other input sets, as shown in Figure B.2. Thus, tables are tested not only 
with signature lists not available during training but also with lists that were obtained 
with different input vector distributions. 

 

Figure B.3 shows the measured MTTR. Each entry in the x axis stands for one HST 
table generated with one training signature list while the data series (i.e., bar color) 
indicates the used test list. Overall, it can be seen that the input vectors had little effect, 
even when tables generated with one input set were used with signature distributions 
observed with others. Since the internal comparators assess the correctness of 
intermediate signals and not only of those that propagate to a primary output, they are 
able to detect errors even in modules not extensively used by the current input set (such 
as the shifter, which is not used in the ins_sort instances). Therefore, the generated 
translation tables captured approximately the same error-to-signature relations, showing 
little difference in terms of MTTR. The average over all results is 54.35 µs and the 
standard deviation is 2.13 µs, which results in a coefficient of variation of 0.04. 

 
 

Figure B.3: MTTR with different translation tables and signature sets 
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APPENDIX C – MAXSIZE EVALUATION RESULTS 

In this appendix, the impact of the maxSize parameter is measured for all benchmark 
circuits, regarding area and MTTR results. Results are presented for each iteration of the 
compression loop (shown in Figure 6.6). Each iteration stands for successively smaller 
maxSize values. Due to limitations in the synthesis tool, which is unable to handle tables 
with very large signatures, area results are reported only after a number of iterations of 
the compression loop for most circuits. 

The 22 benchmark circuits are divided into three sets, and for each set MTTR (in 
Table C.1, Table C.3 and Table C.5) and area (in Table C.2, Table C.4 and Table C.6) 
results are reported. Entries in boldface are the ones associated with maxSize=7, i.e., the 
one used in the experimental results in sections 6.5.2 and 6.5.3. 

 

Table C.1: MTTR (in µs) for the first set of circuits 

Iteration alu4 alu_32b alu_64b apex2 apex4 bigkey clma 
0 33.59 30.07 45.52 47.02 40.85 38.42 50.92 
1 34.50 31.08 47.60 48.27 43.22 39.18 54.87 
2 35.66 32.47 49.85 49.99 45.45 39.82 59.02 
3 37.34 34.47 53.97 53.24 50.49 41.67 64.49 
4 45.81 37.95 59.10 56.46 57.38 45.56 70.64 
5 57.06 49.84 68.57 71.06 74.90 50.39 85.55 
6 79.54 58.57 86.28 94.39 89.37 60.06 101.93 
7 97.47 60.56 109.27 113.97 120.96 68.80 138.74 
8 136.65 86.96 128.15 126.67 134.18 84.82 161.59 
9     189.96 171.71 160.58 117.38 195.52 

10             282.89 
11             282.89 
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Table C.4: Area (in LUTs) for the second set of circuits 

Iteration des diffeq dsip elliptic ex1010 ex5p frisc 
0 N/A N/A N/A 1831 N/A 25290 N/A 
1 N/A N/A N/A 1221 N/A 5049 N/A 
2 N/A 12022 N/A 713 N/A 2126 N/A 
3 N/A 4905 N/A 260 23113 563 N/A 
4 14968 1530 10530 25 4239 25 N/A 
5 1527 94 1979 24 69 28 21452 
6 74 48 76 17 49 22 3948 
7 71 45 73 13 40 14 193 
8 67 39 71   36   162 
9 60   62       153 

10             150 
 

Table C.3: MTTR (in µs) for the second set of circuits 

Iteration des diffeq dsip elliptic ex1010 ex5p frisc 
0 31.07 36.81 55.85 24.04 42.93 18.69 82.68 
1 32.18 38.80 56.23 26.60 43.83 19.54 86.58 
2 33.78 41.44 57.52 31.11 46.44 21.48 92.64 
3 35.41 47.56 59.96 37.14 48.60 25.06 100.18 
4 37.83 54.96 68.21 50.60 54.98 33.85 112.74 
5 44.24 65.78 77.92 67.39 60.99 41.25 130.16 
6 51.87 80.74 105.69 80.37 77.24 54.85 147.23 
7 67.24 91.48 162.54 93.48 104.52 63.10 170.65 
8 89.17 154.06 188.64   135.43   190.37 
9 111.00   266.22       262.43 

10             312.59 

Table C.2: Area (in LUTs) for the first set of circuits 

Iteration alu4 alu_32b alu_64b apex2 apex4 bigkey clma 
0 N/A N/A N/A N/A N/A N/A N/A 
1 N/A N/A N/A N/A N/A N/A N/A 
2 N/A N/A N/A N/A N/A N/A N/A 
3 12825 12259 N/A N/A 45315 N/A N/A 
4 1622 401 16011 14609 8647 13186 22869 
5 54 49 2147 3703 1198 1909 5169 
6 44 38 75 94 69 72 702 
7 39 36 73 79 67 69 116 
8 32 28 67 71 61 64 114 
9     60 66 56 59 110 

10             103 
11             103 
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Table C.6: Area (in LUTs) for the third set of circuits 

Iteration misex3 pdc s298 s38417 s38584.1 seq spla tseng 
0 N/A N/A 119 N/A N/A N/A N/A N/A 
1 N/A N/A 14 N/A N/A N/A 19466 N/A 
2 N/A N/A 9 N/A N/A N/A 5112 N/A 
3 57015 N/A 5 N/A N/A N/A 1701 11652 
4 15799 N/A 2 N/A N/A 15292 64 2433 
5 458 17355   13960 26621 4030 35 582 
6 75 299   2777 5944 103 24 71 
7 69 117   313 758 85 19 66 
8 64 114   161 220 76   63 
9 59 106   159 194 72   57 

10   102   157 193       
11       154 189       
12       149 185       
13         181       

 

Table C.5: MTTR (in µs) for the third set of circuits 

Iteration misex3 pdc s298 s38417 s38584.1 seq spla tseng 
0 47.16 62.00 16.88 76.34 85.95 63.36 31.90 30.85 
1 50.10 63.45 17.56 81.79 87.77 65.81 32.86 32.39 
2 52.63 64.80 20.08 90.21 89.77 68.78 34.56 34.06 
3 57.46 68.46 21.53 97.45 92.71 73.36 39.72 36.97 
4 67.88 75.46 24.05 112.71 96.41 82.86 50.54 39.51 
5 83.59 94.05   131.58 110.31 99.58 62.27 46.14 
6 105.61 110.31   156.53 123.36 128.02 85.25 51.05 
7 136.53 134.53   189.47 152.68 144.76 119.68 59.70 
8 170.15 156.38   207.35 174.31 181.55   72.70 
9 197.37 247.90   268.75 238.68 266.38   97.68 

10   296.78   388.22 371.55       
11       388.49 386.91       
12       388.55 386.91       
13         386.91       
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APPENDIX D – RESUMO EM PORTUGUÊS 

D.1 Introdução 
Field Programmable Gate Arrays (FPGAs) são circuitos integrados reconfiguráveis 

que podem desempenhar diferentes funções uma vez que apropriadamente 
programados. Trazem um conjunto relevante de vantagens para sistemas críticos, o que 
inclui alta performance, flexibilidade e a programabilidade pós-implantação, permitindo 
a alteração de funcionalidades dos sistema, ou mesmo o acréscimo de novas 
capacidades. Com os avanços oferecidos pela Lei de Moore, se tornam cada vez mais 
eficientes, rápidos e com maior capacidade lógica. 

Esse mesmo avanço nas técnicas de manufatura, entretanto, introduz um conjunto 
novo de desafios de confiabilidade a serem resolvidos. Em especial, destacamos a 
suscetibilidade da memória de configuração, responsável por armazenar a descrição do 
circuito desejado pelo usuário, a erros induzidos por partículas energéticas, como 
nêutrons, prótons e íons pesados. Essa tese versa sobre novas técnicas e mecanismos 
para prover confiabilidade a FPGAs, focando em falhas transitórias que afetam a 
memória de configuração, uma das principais ameaças a confiabilidade desses 
dispositivos (FULLER, CAFFREY, SALAZAR, et al., 2000), (LESEA, DRIMER, 
FABULA, et al., 2005). 

D.2 Técnicas propostas 
As técnicas aqui propostas têm por objetivo reduzir o tempo de reparo de FPGAs 

utilizados em aplicações críticas. Esse tempo é frequentemente bastante longo, pois a 
técnica mais amplamente usada, scrubbing (CARMICHAEL, CAFFREY and 
SALAZAR, 2000), acessa toda a memória de configuração de forma indiscriminada, o 
que se torna bastante lento à medida que essa se torna maior. Em especial, o foco é dado 
a técnicas de detecção de erro de grão fino baseadas em redundância modular dupla 
(FG-DMR). Essas técnicas intuitivamente reduzem a latência de erro, devido à maior 
quantidade de pontos de observação. Elas também proporcionam um diagnóstico mais 
detalhado, com o qual temos a possibilidade de identificar com maior precisão as 
possíveis localizações do erro. 

D.2.1 Detecção de erros com comparadores de cadeia de propagação de vai-um 

Uma das grandes desvantagens de técnicas de redundância de grão fino é a grande 
quantidade de comparadores que devem ser introduzidos. Propõe-se, visando a 
minimizar esses custos, uma forma de utilização alternativa dos circuitos propagadores 
de vai-um encontrados em profusão nos FPGAs modernos. Esse circuito, 
frequentemente subutilizado, pode ser empregado para comparar as saídas das LUTs. A 
técnica pode ser aplicada sempre que o propagador estiver disponível, juntamente com 
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entradas auxiliares do slice (bloco de elementos lógicos) necessárias para a aplicação da 
técnica. 

D.2.2 Reparo rápido com diagnóstico de grão fino 

Outro grande desafio encontrado ao se fazer uso de técnicas de diagnóstico de grão 
fino é como extrair, de forma eficiente, informações úteis para o reparo do sistema. 
Uma vez que temos uma grande quantidade de sinais de indicação de erro, precisamos 
de uma forma de mapeá-los para uma localização dentro da memória de configuração. 
Para esse propósito, é proposta a plataforma SURFER (Scrubbing Unit Repositioning 
for Fast Error Repair). Ela faz uso de um circuito que realiza a tradução das assinaturas 
de erros (ou seja, da concatenação de todos os sinais individuais de detecção de erro) em 
endereços de frame. É explorado ainda o conceito de que as operações de scrubbing não 
necessariamente iniciam na primeira posição da configuração. Assim, o endereço 
gerado pelo circuito de tradução indica o frame inicial das operações de reconfiguração, 
escolhido de forma a estatisticamente minimizar o tempo médio de reparo. Ainda foi 
proposta uma heurística para geração dos circuitos de tradução com custo reduzido, uma 
vez que, na sua forma mais precisa, os mesmos apresentavam custos muito altos em 
área ocupada. 

D.3 Metodologia 
As técnicas propostas foram desenvolvidas em ferramental de software integrado ao 

fluxo tradicional da Xilinx, fabricante dos FPGAs utilizados nessa tese. A partir de uma 
descrição do hardware sintetizado, já utilizando os componentes básicos do substrato do 
FPGA (LUTs, flip-flops, etc.), é criada uma versão do circuito que utiliza a variação de 
DMR proposta. A ferramenta identifica quais LUTs podem receber a comparação 
utilizando as cadeias de propagação de vai-um e, para as demais, instancia 
comparadores baseados em LUTs. 

Sobre esses circuitos são conduzidas campanhas de injeção de falhas, visando a 
medir a cobertura atingida. Além disso, o ferramental provido pela Xilinx é utilizado 
para obtenção de dados referentes à área ocupada e ao atraso dos circuitos, medido aqui 
em termos do período mínimo de relógio dos circuitos (TClk). Todos os resultados 
obtidos são comparados com aqueles associados a uma técnica tradicional de DMR em 
grão grosso (CG-DMR). Campanhas de injeção de falhas também são utilizadas para 
extração das assinaturas de erro, que permitem a construção das tabelas de tradução 
propostas pela plataforma SURFER. 

D.4 Resumo dos resultados 
O uso de circuitos de propagação de vai-um conseguiu evitar o uso de LUTs para a 

criação de comparadores de grão fino. Assim, o custo em área foi de 118.8% sobre o 
circuito original, em média, enquanto que para CG-DMR foi de 111.6%. Ou seja, os 
circuitos com FG-DMR são apenas 3.57% maiores que os com CG-DMR. Foi 
observada uma redução de 99.62% para 99.58% na cobertura de falhas média com o uso 
de FG-DMR, além de um aumento médio de 48.7% em TClk. A quantidade de ciclos 
para detecção de erros, entretanto, foi reduzida em 66%, em média. Essa redução 
traduz-se em uma diminuição de 50% no tempo médio de detecção, se levarmos em 
conta os diferentes TClk observados para cada circuito. 

Quando o circuito de tradução é utilizado, gerado através da heurística proposta, 
observou-se um custo total de 133.9% em área, o que representa um aumento de 10.5% 
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sobre CG-DMR. O tempo médio de reparo, entretanto, foi reduzido em 61.9%, em 
comparação com as abordagens tradicionais, ou seja, que iniciam o reparo sempre pela 
primeira posição da memória de configuração associada à partição com falha. 

D.5 Conclusões 
As técnicas propostas nesse trabalho permitiram o uso de redundância de grão fino 

de forma a acelerar o reparo de erros na memória de configuração de FPGAs com 
custos comparáveis aos de técnicas tradicionais de grão grosso. Portanto, os dois 
grandes objetivos desse trabalho foram atingidos. 

Como trabalho futuro, prevê-se a criação de heurísticas de tradução de assinaturas 
aprimoradas para obtenção de pontos mais vantajosos no espaço de projeto. O uso de 
granularidades intermediárias e a extensão das técnicas propostas para que cubram 
falhas permanentes também são possíveis trabalhos futuros. 


