
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

GABRIEL LUCA NAZAR

Fine-Grained Error Detection Techniques
for Fast Repair of FPGAs

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Computer Science

Prof. Dr. Luigi Carro
Advisor

Porto Alegre, July 2013.

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecário-Chefe do Instituto de Informática: Alexsander Borges Ribeiro

Nazar, Gabriel Luca

Fine-Grained Error Detection Techniques for Fast

Repair of FPGAs / Gabriel Luca Nazar. -- 2013.

125 f.

Orientador: Luigi Carro.

Tese (Doutorado) -- Universidade Federal do Rio Grande do Sul,
Instituto de Informática, Programa de Pós-Graduação em Computação,
Porto Alegre, BR-RS, 2013.

1. FPGA. 2. Detecção de erro. 3. Tempo médio de reparo. I.
Carro, Luigi, orient. II. Título.

TABLE OF CONTENTS

LIST OF ABBREVIATONS AND ACRONYMS 5

LIST OF FIGURES .. 7

LIST OF TABLES 9

RESUMO .. 11

ABSTRACT 13

1 INTRODUCTION ... 15

1.1 Main goals and contributions ... 20
1.2 Outline ... 22

2 FPGAS AND THEIR DEPENDABILITY THREATS 23

2.1 FPGA Architecture basics .. 23
2.2 Dependability threats for FPGAs .. 25

2.2.1 Radiation effects ... 26
2.2.2 Aging effects .. 29
2.2.3 Technology scaling and dependability metrics .. 30

3 FAULT TOLERANCE TECHNIQUES FOR FPGAS 33

3.1 Techniques based on redundancy .. 33
3.2 Techniques based on bitstream manipulation .. 39
3.3 Contributions of this thesis... 43

4 FAULT INJECTION FOR FPGAS.......................... 45

4.1 Fault injection Basics .. 45

4.2 Fault injection for FPGA-based systems ... 48
4.2.1 Radiation experiments .. 48
4.2.2 Artificial bitstream fault injection .. 50

4.3 Fault injection platform.. 51
4.3.1 Platform components.. 52
4.3.2 Area costs ... 54

4.3.3 Injection Rate ... 55

5 FINE-GRAINED ERROR DETECTION ... 57

5.1 Fine-grained detection with carry propagation chains .. 57
5.2 Experimental setup ... 59

5.3 Experimental results ... 61

5.3.1 Area .. 62

5.3.2 Clock period ... 64
5.3.3 Error detection .. 65

5.3.4 Detection acceleration .. 68

5.4 Radiation Experiments ... 69
5.4.1 Tested circuit .. 70

5.4.2 Neutron experiments results ... 72
5.4.3 Comparison to fault injection results .. 74

6 FINE-GRAINED DIAGNOSIS AND LOCAL REPAIR 77

6.1 Challenges .. 77

6.2 The SURFER approach .. 78
6.2.1 Overview .. 78

6.2.2 Reducing the MTTR through optimized starting frames .. 79

6.2.3 Optimum frame identification .. 80

6.3 Extended experimental setup ... 81
6.4 PST - Perfect Signature Translation ... 84
6.5 HST - Heuristic Signature Translation ... 85

6.5.1 Heuristic table generation ... 85
6.5.2 Area and delay costs ... 90
6.5.3 MTTR Results .. 92
6.5.4 Evaluating the impact of the maxSize parameter .. 95

7 CONCLUSIONS .. 97

7.1 Summary of contributions.. 97
7.1.1 Fault injection platform .. 97
7.1.2 Platform for radiation experiments ... 97
7.1.3 Carry chain circuits for fine-grained comparison ... 98
7.1.4 Making use of fine-grained diagnosis with SURFER .. 98

7.2 Future works ... 99

7.2.1 Choosing intermediate redundancy grains ... 99
7.2.2 Further exploring the SURFER design space ... 99
7.2.3 Diagnosing permanent faults and aging ... 100
7.2.4 Performing radiation testing over a complete SURFER platform 100

7.2.5 Finding other uses for the signature translation heuristic ... 100

7.3 Publications ... 100

7.3.1 Book chapters ... 100
7.3.2 Journal .. 101

7.3.3 Conferences and workshops ... 101

REFERENCES .. 103

APPENDIX A – TAXONOMY OF DEPENDABLE SYSTEMS 109

APPENDIX B – USING NON-RANDOM INPUT VECTORS 115

APPENDIX C – MAXSIZE EVALUATION RESULTS 119

APPENDIX D – RESUMO EM PORTUGUÊS ... 123

LIST OF ABBREVIATONS AND ACRONYMS

ALM Adaptive Logic Module

ALU Arithmetic and Logic Unit

ASIC Application Specific Integrated Circuit

AUT Area Under Test

BRAM Block Random Access Memory

BTI Bias Temperature Instability

CED Concurrent Error Detection

CG-DMR Coarse-Grained Dual Modular Redundancy

CLB Configurable Logic Block

CMOS Complementary Metal-Oxide-Semiconductor

CRC Cyclic Redundancy Check

CUT Circuit Under Test

DMR Dual Modular Redundancy

DSP Digital Signal Processing

DUT Device Under Test

DWC Duplication With Comparison

ECC Error Correcting Code

FG-DMR Fine-Grained Dual Modular Redundancy

FGTMR Fine-Grained Triple Modular Redundancy

FIT Failures In Time

FPGA Field Programmable Gate Array

FSD Faulty State Description

HCI Hot Carrier Injection

IC Integrated Circuit

ICAP Internal Configuration Access Port

IOB Input/Output Block

LFSR Linear Feedback Shift Register

LUT Lookup Table

MBU Multiple Bit Upset

MCNC Microelectronics Center of North Carolina

MTBF Mean Time Between Failures

MTTF Mean Time To Failure

MTTR Mean Time To Repair

NBTI Negative Bias Temperature Instability

NMOS N-type Metal-Oxide-Semiconductor

NMR N Modular Redundancy

PBTI Positive Bias Temperature Instability

PI Primary Input

PMOS P-type Metal-Oxide-Semiconductor

PO Primary Output

QFDR Quadruple Force Decide Redundancy

RAM Random Access Memory

ROM Read-Only Memory

RoRA Reliability-oriented place and Route Algorithm

SBU Single Bit Upset

SEB Single Event Burnout

SEE Single Event Effect

SEGR Single Event Gate Rupture

SEL Single Event Latchup

SES Single Event Snapback

SET Single Event Transient

SEU Single Event Upset

SEUPI Single Event Upset Probability Impact

SPOF Single Point Of Failure

SRAM Static Random Access Memory

STAR Self-Testing Area

SURFER Scrubbing Unit Repositioning for Fast Error Repair

TDDB Time-Dependent Dielectric Breakdown

TID Total Ionizing Dose

TMR Triple Modular Redundancy

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

XST Xilinx Synthesis Technology

LIST OF FIGURES

Figure 1.1: Fault-free circuit and its associated configuration bits (a) and faulty circuit
due to a configuration upset (b) .. 17
Figure 1.2: Fault-free output (a), one cycle error (b) and 56 cycles error (c). The
markings on the x axes show the fault duration.. 18

Figure 1.3: Iterative development cycle of dependable systems 19

Figure 1.4: Coarse-grained (a) and fine-grained (b) DMR ... 21

Figure 2.1: Example of a 3-input LUT implementing the XOR function 24

Figure 2.2: Schematic of a Virtex 5 slice (XILINX, INC., 2010) 24

Figure 2.3: Effects of an energetic ion on a silicon device... 26

Figure 2.4: Different outcomes of a single event transient (SET) 27

Figure 2.5: Single Event Upset on an SRAM cell .. 27

Figure 2.6: Technology scaling and the bathtub curve ... 30

Figure 3.1: DMR (a), TMR (b) and TMR with tripled voters (c)................................... 34

Figure 3.2: TMR, DMR and time-redundancy hybrid technique (LIMA, CARRO and
REIS, 2003) .. 35
Figure 3.3: 6-input LUT built with two 5-input LUTs (a), and with the XOR gate added
for comparison (b) (KYRIAKOULAKOS and PNEVMATIKATOS, 2009) 37

Figure 3.4: FPGA system with external reconfiguration controller (a) and partition
scrubbing mechanism (b) (BOLCHINI, MIELE and SANDIONIGI, 2011) 38
Figure 3.5: Total scrub time for the largest Xilinx FPGA of each family 41

Figure 3.6: The roving STARs approach with horizontal (H-STAR) and vertical (V-
STAR) testing areas (EMMERT, STROUD and ABRAMOVICI, 2007) 42

Figure 3.7: System with partial reconfiguration controller and multiple error signals
(STRAKA, KASTIL and KOTASEK, 2010) ... 43

Figure 4.1: Basic components of a fault injection platform ... 45

Figure 4.2: Static cross-section per configuration bit, as reported by (XILINX, INC.,
2012c) ... 49

Figure 4.3: Static cross-section for the configuration of the largest device of each family
 .. 50

Figure 4.4: Fault injection base architecture .. 52
Figure 5.1: Carry chain circuit applied to fine-grained comparison............................... 58

Figure 5.2: Incorrect (a) and correct (b) routing in FG-DMR. Dashed lines denote
critical routing paths ... 58
Figure 5.3: Redundant heterogeneous comparators ... 59

Figure 5.4: Experimental design flow .. 60
Figure 5.5: Locations of faults of each category .. 61
Figure 5.6: Area overheads for CG-DMR (left-hand bar of each circuit) and FG-DMR
(right-hand bar) ... 62

Figure 5.7: Minimum clock period TClk for the unhardened circuit, CG-DMR and FG-
DMR ... 65

Figure 5.8: Undetected error variation. Positive values indicate a smaller amount for
CG-DMR. ... 67
Figure 5.9: Fault coverage for FG-DMR and CG-DMR. ... 67

Figure 5.10: Reduction in cycles to detect an error ... 69
Figure 5.11: Reduction in error detection time ... 69
Figure 5.12: ISIS spectrum compared to those of the LANSCE and TRIUMF facilities
and to the terrestrial one at sea level multiplied by 107 and 108 (VIOLANTE,
STERPONE, MANUZZATO, et al., 2007) ... 70
Figure 5.13: Placement of replicas and control unit. Even numbered replicas (in light
gray) used the proposed FG-DMR while odd numbered ones used CG-DMR. 70

Figure 5.14: Disposition of multi-CUT events on the FPGA. All such events occurred
with neighboring CUTs. ... 73
Figure 5.15: Events reported at each instance. ... 74
Figure 6.1: Fine-grained detection and the generated error signature 77

Figure 6.2: Overview of a system with SURFER .. 79

Figure 6.3: Histograms of two signatures for the pdc circuit ... 80

Figure 6.4: Extended experimental setup ... 82
Figure 6.5: MTTR of standard scrubbing, PST with training and testing signatures 85

Figure 6.6: HST Generation algorithm ... 86
Figure 6.7: Schematic of a HST circuit .. 87
Figure 6.8: The weight of an edge {u, v} ... 87
Figure 6.9: Redundant translation table .. 89
Figure 6.10: Area overhead of circuits with standard CG-DMR (left-hand bars) and
circuits with FG-DMR and HST tables (right-hand bars) .. 90

Figure 6.11: Minimum clock period TClk for CG-DMR and FG-DMR with pipelined and
combinational HST ... 92
Figure 6.12: MTTR for the HST mechanism (with training and testing lists). PST and
standard scrubbing are shown for comparison. .. 93
Figure 6.13: MTTR increase due to faults affecting the translation table 94

Figure 6.14: MTTR and table area for different maxSize values.................................... 95

Figure A.1: The bathtub curve .. 112
Figure B.1: Average detection cycles (a) and detection time (b) for different input sets
 .. 116

Figure B.2: Experimental flow for testing SURFER with varied input vectors 117

Figure B.3: MTTR with different translation tables and signature sets 117

LIST OF TABLES

Table 4.1: Required resources and device occupation for a fault injection platform 54

Table 5.1: Input benchmark circuits ... 61
Table 5.2: Area costs in LUTs (comparators, error aggregation and total, including the
two circuit copies) .. 63
Table 5.3: Minimum clock period in nanoseconds... 64

Table 5.4: Amount of faults in each category .. 66
Table 5.5: Average amount of cycles and associated time to detect an error 68

Table 5.6: Received events classification ... 72
Table 5.7: Cross-section and failure in time at New York City 73

Table 5.8: Fault injection and radiation results for “Pre” FSDs 75

Table 5.9: Fault injection and radiation results for “Post” FSDs 75

Table 6.1: Total signature size Ssize, amount of received signatures (O) and of different
signatures (|S|) for each circuit ... 83
Table 6.2: MTTR of standard scrubbing and SURFER with training and testing
signatures (in µs) .. 84
Table 6.3: Area and delay results for SURFER ... 91
Table 6.4: MTTR (in µs) with fault-free table and with faults in the translation circuit 93
Table C.1: MTTR (in µs) for the first set of circuits .. 119

Table C.2: Area (in LUTs) for the first set of circuits .. 120
Table C.3: MTTR (in µs) for the second set of circuits ... 120

Table C.4: Area (in LUTs) for the second set of circuits ... 120

Table C.5: MTTR (in µs) for the third set of circuits ... 121

Table C.6: Area (in LUTs) for the third set of circuits ... 121

Técnicas de Grão Fino de Detecção de Erros para Reparo Rápido de
FPGAs

RESUMO

Field Programmable Gate Arrays (FPGAs) são componentes reconfiguráveis de
hardware que encontraram grande sucesso comercial ao longo dos últimos anos em uma
grande variedade de nichos de aplicação. Alta vazão de processamento, flexibilidade e
tempo de projeto reduzido estão entre os principais atrativos desses dispositivos, e são
essenciais para o seu sucesso comercial. Essas propriedades também são valiosas para
sistemas críticos, que frequentemente enfrentam restrições severas de desempenho.
Além disso, a possibilidade de reprogramação após implantação é relevante, uma vez
que permite a adição de novas funcionalidades ou a correção de erros de projeto,
estendendo a vida útil do sistema. Tais dispositivos, entretanto, dependem de grandes
memórias para armazenar o bitstream de configuração, responsável por definir a função
presente do FPGA. Assim, falhas afetando esta configuração são capazes de causar
defeitos funcionais, sendo uma grande ameaça à confiabilidade. A forma mais
tradicional de remover tais erros, isto é, scrubbing de configuração, consiste em
periodicamente sobrescrever a memória com o seu conteúdo desejado. Entretanto,
devido ao seu tamanho significativo e à banda de acesso limitada, scrubbing sofre de
um longo tempo médio de reparo, e que está aumentando à medida que FPGAs ficam
maiores e mais complexos a cada geração. Partições reconfiguráveis são úteis para
reduzir este tempo, já que permitem a execução de um procedimento local de reparo na
partição afetada. Para este propósito, mecanismos rápidos de detecção de erros são
necessários para rapidamente disparar este scrubbing localizado e reduzir a latência de
erro. Além disso, diagnóstico preciso é necessário para identificar a localização do erro
dentro do espaço de endereçamento da configuração. Técnicas de redundância de grão
fino têm o potencial de prover ambos, mas normalmente introduzem custos
significativos devido à necessidade de numerosos verificadores de redundância. Neste
trabalho, propomos uma técnica de detecção de erros de grão fino que utiliza recursos
abundantes e subutilizados encontrados em FPGAs do estado da arte, especificamente
as cadeias de propagação de vai-um. Assim, a técnica provê os principais benefícios da
redundância de grão fino enquanto minimiza sua principal desvantagem. Reduções
bastante significativas na latência de erro são atingíveis com a técnica proposta.
Também é proposto um mecanismo heurístico para explorar o diagnóstico provido por
técnicas desta natureza. Este mecanismo tem por objetivo identificar as localizações
mais prováveis do erro na memória de configuração, baseado no diagnóstico de grão
fino, e fazer uso dessa informação de forma a minimizar o tempo de reparo.

Palavras-chave: FPGA, detecção de erro, tempo médio de reparo.

ABSTRACT

Field Programmable Gate Arrays (FPGAs) are reconfigurable hardware components
that have found great commercial success over the past years in a wide variety of
application niches. High processing throughput, flexibility and reduced design time are
among the main assets of such devices, and are essential to their commercial success.
These features are also valuable for critical systems that often face stringent
performance constraints. Furthermore, the possibility to perform post-deployment
reprogramming is relevant, as it allows adding new functionalities or correcting design
mistakes, extending the system lifetime. Such devices, however, rely on large memories
to store the configuration bitstream, responsible for defining the current FPGA function.
Thus, faults affecting this configuration are able to cause functional failures, posing a
major dependability threat. The most traditional means to remove such errors, i.e.,
configuration scrubbing, consists in periodically overwriting the memory with its
desired contents. However, due to its significant size and limited access bandwidth,
scrubbing suffers from a long mean time to repair, and which is increasing as FPGAs
get larger and more complex after each generation. Reconfigurable partitions are useful
to reduce this time, as they allow performing a local repair procedure on the affected
partition. For that purpose, fast error detection mechanisms are required, in order to
quickly trigger this localized scrubbing and reduce error latency. Moreover, precise
diagnosis is necessary to identify the error location within the configuration addressing
space. Fine-grained redundancy techniques have the potential to provide both, but
usually introduce significant costs due to the need of numerous redundancy checkers. In
this work we propose a fine-grained error detection technique that makes use of
abundant and underused resources found in state-of-the-art FPGAs, namely the carry
propagation chains. Thereby, the technique provides the main benefits of fine-grained
redundancy while minimizing its main drawback. Very significant reductions in error
latency are attainable with the proposed approach. A heuristic mechanism to explore the
diagnosis provided by techniques of this nature is also proposed. This mechanism aims
at identifying the most likely error locations in the configuration memory, based on the
fine-grained diagnosis, and to make use of this information in order to minimize the
repair time of scrubbing.

Keywords: FPGA, error detection, mean time to repair.

15

1 INTRODUCTION

Over the past decades, the amount of transistors that can be placed within a single
silicon die has grown exponentially, as foreseen by Moore’s Law. These advances have
fueled an increase in the amount and complexity of functionalities one can integrate in a
single chip. Thereby, complex systems require only a small amount of Integrated
Circuits (ICs) to carry out their functions, reducing project costs and time. On the other
hand, the productivity of IC designers does not evolve at this same rate, leading to the
phenomenon known as the productivity gap (ITRS, 2011). In other words, the amount
of transistors made available by new manufacturing processes is so overwhelming that
designers are unable to make the most efficient use of them. Furthermore, the time
expected for the release of new products, known as time-to-market, becomes
progressively shorter for most application niches, reducing the time available for design
and further worsening the mentioned productivity gap.

To alleviate this problem, efficient design techniques that maximize the reuse of
modules, reducing the burden on designers, are desirable. Designs with high regularity,
i.e., that are mostly composed of replicas of smaller and simpler blocks, are therefore
very effective to tackle the productivity gap. Regularity is also a valuable feature to
reduce testing time and cost, as well as increasing the manufacture yield. The yield is
the fraction of fabricated chips that are usable (and sellable), being an important metric
to maintain profits. In this context, Field Programmable Gate Arrays (FPGAs) become a
viable alternative that has found great commercial success in the past years.

FPGAs are reconfigurable devices that contain large amounts of generic logic and
storage components, interconnected by flexible routing structures. On its own, an FPGA
performs no useful operation, much like a processor without instructions to execute.
This generic structure, however, can be programmed by uploading an appropriate
configuration stream of bits in order to behave as virtually any digital circuit, provided
it fits within the logic capacity limitations of the chosen device. Thus, FPGAs bring
benefits of general purpose processors, as they are able to perform virtually any required
function once properly programmed. And they also bring benefits of Application
Specific Integrated Circuits (ASICs), as the function is computed by a dedicated circuit
with potentially very high performance.

As FPGAs comprise thousands and even millions of identical generic logic, memory
and routing blocks, they intrinsically present high regularity. From the manufacturers’
point of view, this translates to the possibility of greatly simplifying the design of the
different models within a same FPGA family or even of new families. Thus,
manufacturers have been consistently able to release new products using very recent
technologies, such as Xilinx’s UltraScale architecture (XILINX, INC., 2013), expected
reach a 16 nm feature size, and Altera’s Stratix 10 (ALTERA CORPORATION, 2013),
using a 14 nm process. From the users’ perspective, an FPGA provides the ability to

16

quickly implement the desired circuit much faster than by manufacturing it as an ASIC,
which is also a precious asset in times of pressing time-to-market restrictions.

Evidently, these benefits come with costs. Due to its generic and flexible nature, a
circuit implemented in an FPGA is usually slower, larger and more power consuming
than its ASIC counterpart. Nonetheless, fueled by the advances in semiconductor
manufacturing technologies, FPGAs have shown a steady increase in their logic
capacity and throughput in the past years. State-of-the-art FPGAs may include over 1.2
million lookup tables (LUTs) (XILINX, INC., 2012a), which are the basic building
blocks for circuit logic in current devices. A better perspective on what this number
means may be obtained by considering that a 32-bit MIPS-compatible softcore1
processor requires approximately 2,750 LUTs to be implemented. Thus, such a device is
able to include over 400 processors, an unthinkable amount when FPGAs were first
created. The high throughput available in newer FPGA devices, coupled with the
offered flexibility and fast prototyping capabilities mentioned, made FPGAs very
successful in a variety of niches. Nowadays, FPGAs are used in military, automotive,
data center and telecommunication applications, among many others (ALTERA
CORPORATION, 2012), (XILINX, INC., 2012b).

The field programmability is also a very important feature in FPGAs, since it allows
the addition of new functionalities after deployment, increasing the system lifetime. It
also allows the correction of design mistakes with a much lower cost, when compared to
ASICs. These possibilities are very interesting for critical systems, where efficient and
high throughput computing may be required and a long lifetime is also desirable.
Moreover, as these systems are frequently difficult to reach physically after deployment
(e.g., space applications), the possibility to perform remote programming is of great
relevance.

A system is deemed critical when its malfunction may have severe adverse effects.
Such effects include, e.g., when human lives are at stake. The braking system of a car
and the control of airplane wings are examples of systems considered critical as human
lives are put in danger whenever they do not perform their operation properly. Other
systems are considered critical for environmental causes, such as the control of an oil
extraction platform. Finally, economic reasons may characterize a critical system. The
data base of a bank or a high throughput router in a network backbone may bring severe
losses to their owners and users if they fail to operate as expected.

Therefore, critical applications face stringent dependability2 constraints that must be
satisfied in order to minimize unwanted service failures. Unfortunately, the same
advances in semiconductor manufacturing processes that have allowed the continued
reduction in transistors’ feature sizes also bring dependability threats. They increase the
susceptibility of devices to several physical phenomena such as aging effects (e.g.,
negative bias temperature instability and hot carrier injection), which reduce the device
lifetime. Radiation-induced single event effects (SEEs) also become more frequent,
causing failures if not counteracted. Thus, efficient techniques able to tolerate hardware

1A softcore is a processor implemented in the reconfigurable fabric of an FPGA, i.e.,
with LUTs, flip-flops, etc.
2 Please see Appendix A or (AVIZIENIS, LAPRIE, RANDELL, et al., 2004) and
(PRADHAN, 1996) for a detailed description of dependability as well as other basic
concepts and terminology of dependable systems.

17

faults are required to achieve the expected dependability levels. Fault tolerance
techniques are traditionally based on some form of redundancy, which consists in
performing a computation in a manner that allows checking its correctness. The most
basic form of redundancy is repetition, either spatial or temporal. The regularity of
FPGAs may also aid in the provisioning of redundancy, especially of the spatial nature,
providing new possibilities for the designers of critical systems.

One of the first challenges faced when providing fault tolerance for FPGAs is to
understand the effects that faults have on such devices, which differ in many aspects
from those of traditional ASICs. As the device functionality is user-specified, it must be
stored in a special configuration memory. Figure 1.1(a) shows a simple circuit and the
configuration bits that describe its correct implementation. The configuration memory is
frequently implemented with cells that are susceptible to radiation-induced single event
upsets (SEUs). For example, SRAM cells, which are used for most high end devices,
may have their stored value flipped if hit by an energetic particle. Thus, SEUs can
modify the user circuit function, as shown in Figure 1.1(b), something that does not
occur for a hardwired ASIC. The effects that a flipped bit in the configuration memory
has on the user circuit are hard to predict, due to the complex effects that a
configuration pattern unforeseen by the manufacturer may have on the fabric.
Moreover, the lack of low level schematics available to users further increases the
complexity of developing (and evaluating) fault tolerance techniques for FPGAs.

Furthermore, as the routing between the logic components is also configurable,
faults in the configuration bitstream may affect it as well. This leads to soft errors that
modify how the components are interconnected, which does not occur for dedicated
hardwires. The example in Figure 1.1(b) shows the breaking of a routing wire caused by
a bitflip. This property has severe implications on well-established fault tolerance
techniques, since a single fault may even affect multiple independent user nets (LIMA,
CARMICHAEL, FABULA, et al., 2001).

It is also important to note that such faults remain in the system until explicitly
removed, since in a traditional FPGA-based system the configuration memory is only
loaded after power up. Thus, even when no actual permanent damage is caused to the
storage cell, the user circuit may present erroneous behavior for a long time. To
minimize this issue, one alternative is to periodically overwrite the configuration
memory, in a procedure called scrubbing (CARMICHAEL, CAFFREY and
SALAZAR, 2000). However, this approach may take a long time to reach the faulty bit,
due to the large size of the configuration memory and the limited bandwidth available to
access it. The mean time to repair (MTTR) is associated with how long it takes to
traverse the entire configuration, and it is in the order milliseconds even for mid-range

Figure 1.1: Fault-free circuit and its associated configuration bits (a) and faulty
circuit due to a configuration upset (b)

0 0 1 0 1 1 0 0 1
0 0 0 1 0 1 0 0 0
0 1 0 1 0 0 0 1 0
1 0 0 0 1 0 0 1 0
0 0 1 1 0 1 0 0 1
1 0 0 0 1 0 0 1 1
0 1 0 0 0 1 0 0 0
0 0 1 0 1 1 0 0 0

0 0 1 0 1 1 0 0 1
0 0 0 0 0 1 0 0 0
0 1 1 1 0 0 0 1 0
1 0 0 0 1 0 0 1 0
0 0 1 1 0 1 0 0 1
1 0 0 0 1 0 0 1 1
0 1 0 0 0 1 0 0 0
0 0 1 0 1 1 0 0 0

LUT

LUT

LUT FF LUT

LUT

LUT FF

(a) (b)

18

FPGAs (CHAPMAN, 2010). Thus, systems that must meet real-time deadlines, for
example, may find it insufficient to rely solely on configuration scrubbing, as the
system is likely to be unavailable during the presence of the fault.

Real-time systems require an answer that is both correct and within the expected
timeframe whenever possible, preferably even after the occurrence of a fault. Hence, for
such systems, the ability to detect and correct an error may not be sufficient if it takes
too long to recover and many deadlines are missed. Even more drastic effects can occur
in control or Digital Signal Processing (DSP) systems where the next output is highly
dependent on the previous states. Let us take, for example, a simple digital biquad filter
with an 8 KHz sampling frequency and with a 200 Hz sawtooth input. Figure 1.2(a)
shows the output of the filter without faults. Now let us assume that a fault occurs and it
modifies one of the coefficients from 0.9 to 1.9, leading the filter to a potentially
unstable behavior. If the error lasts for the time of one sample (125 µs), the output of the
filter becomes that shown in Figure 1.2(b), almost identical to the correct one. On the
other hand, if the error lasts for 7 ms (or 56 samples), which is a relatively short repair
time for a state-of-the-art FPGA, it causes the output to become that in Figure 1.2(c).
Note that it severely disrupts the output values far longer than the duration of the error,
a behavior that is typical in circuits with logic feedback (PRATT, CAFFREY,
GRAHAM, et al., 2006). Therefore, faster means to detect and remove errors are
required to allow the application of FPGAs in such systems.

Even in systems that do not necessarily have real-time constraints, fast error
detection and removal can be crucial. A softcore processor that has its program counter
moved to an unknown memory location, for example, may never recover if only
scrubbing is used, since removing the configuration error does not restore its execution
flow. Checkpoint and rollback procedures can be used for such cases. The former
consists in periodically saving the system state, while the latter is the action of returning
to one of these states once a fault is detected. The longer it takes to detect the
occurrence of a fault, the farther its effects may have propagated throughout the system.
Thus, it becomes more costly to maintain backup copies of the system state and to
return to one of these checkpoints if the system takes long to detect an error. For
example, if a processor is unable to detect the presence of an error before it propagates
to the main memory, rolling back to a safe state becomes very costly or even unfeasible,
as a backup of the entire memory is required. On the other hand, if an error is detected
while it is restricted to the register file, or even before it reaches a register, the rollback
is greatly simplified.

Figure 1.2: Fault-free output (a), one cycle error (b) and 56 cycles error (c). The
markings on the x axes show the fault duration

0 0.02 0.04 0.06
-1.5

-1

-0.5

0

0.5

1

1.5

0 0.02 0.04 0.06
-1.5

-1

-0.5

0

0.5

1

1.5

t(s) t(s) t(s)

y y y

(a) (b) (c)

error 0 0.02 0.04 0.06
-1.5

-1

-0.5

0

0.5

1

1.5

error

19

The specific properties of faults on FPGAs dictate that hardening techniques applied
to such devices must be specifically tailored to cope with faults that affect the
configuration memory. Moreover, it is crucial to keep in mind that the routing resources
are not reliable and that configuration faults last for long periods of time if only
straightforward scrubbing is applied. Therefore, other techniques must be applied in
conjunction, ensuring that the probability of service failure is kept at an acceptable
level. On the other hand, the system is still subject to the other constraints found in
embedded devices, such as performance, power, energy and area. As fault tolerance
techniques are traditionally based on redundancy, they will have a negative impact on at
least some of these parameters. For example, Triple Modular Redundancy (TMR)
consists in instantiating three replicas of the original design and performing a majority
vote on their results. Thereby, it allows masking errors on a single module, but comes
with area and power costs of approximately 200%. Such costs may be prohibitive for
systems with stringent budget or power constraints. Error detection alternatives with
lower costs, such as Dual Modular Redundancy (DMR) can become attractive in such
situations. DMR consists in duplicating the components to be hardened and in
comparing their outputs, thus presenting approximately 100% area and power costs.
Reaching the required dependability levels, while meeting the remaining design
constraints and minimizing costs, is a challenging task that frequently requires iterative
fine tuning, as shown in Figure 1.3. Several iterations may be required until all
constraints are met and costs are minimized, making it crucial to be able to quickly and
efficiently modify the design, as well as to quickly and accurately evaluate the
dependability and costs associated.

Therefore, just as important as providing efficient means to cope with faults is
evaluating the effectiveness of such means. A critical system specification should
include values for metrics that determine the desired level of dependability. For
example, “the system should not be offline for longer than 1 hour per year” or “the
probability of a mission failure should be below 1 in a million” are the kind of
specification that makes sense from the end user perspective. They must be
appropriately translated into metrics that can be measured during design time, so that
engineers are able to tune the techniques applied until the constraints are met with
minimum costs.

Traditional approaches include the use of mathematical models to estimate
reliability, which may become too complex or imprecise for large systems, and fault
injection, which may take a long time to become statistically significant, especially
when based on simulation software. Furthermore, due to the complex effects of faults in
FPGAs and the unavailability of low level schematics to the users, the evaluation of
fault tolerance techniques for FPGAs most frequently uses an actual device to perform
experiments. Doing so provides more precise results in a reduced time, compared to
simulation-based approaches. Experiments using radiation sources to stimulate the
occurrence of errors in the FPGA are also common and are valuable especially to
estimate the expected error rates for the system after deployment. They are important to

Figure 1.3: Iterative development cycle of dependable systems

Modify
design

Evaluate
dependability

and costs

20

perform the mentioned conversion of the dependability expected by the users into
metrics that are manageable by designers, as they allow estimating the fault rates that
would be observed in the deployment environment.

1.1 Main goals and contributions
The goal of this work is to tackle one of the main challenges found when providing

fault tolerance for FPGAs: the long time required to detect and remove a configuration
memory error. As discussed previously, this long repair latency can cause missed
deadlines in real-time systems and it increases the costs of performing checkpoint and
rollback procedures. It also increases the probability of faults accumulating in the
system, which may break techniques built upon the single-fault assumption. This thesis
focuses on soft errors, i.e., those that do not permanently damage the device and that
can be removed by overwriting the correct memory contents. Soft errors are a very
critical concern for digital systems with deeply scaled transistors, and for FPGAs the
configuration memory consists in a particular concern (FULLER, CAFFREY,
SALAZAR, et al., 2000). Other resources in FPGAs, such as internal block RAM
memories, are also susceptible to SEUs. Faults on these components, however, have a
similar behavior to that observed in ASICs and can be mitigated with the same
established techniques, such as error correcting codes (ECCs). Thus, in this work, we
focus on providing means to efficiently detect and remove soft errors from the
configuration memory of FPGAs.

In order to quickly detect and remove an error, one cannot rely solely on periodically
overwriting the contents of the configuration memory. As discussed previously, the time
required to do so is long enough for the error to cause missed deadlines and to
propagate throughout the system logic, making it very costly to return to a consistent
state. In this work, thus, we propose the use of techniques that allow fast error
detection, i.e., a short latency between fault occurrence and detection. Such techniques
can be used to perform a triggered scrubbing, i.e., one that ensues once an error is
effectively detected. Furthermore, it is preferable that an accurate fault location is
provided. With precise diagnosis, one can perform localized removal procedures in a
much shorter time than with global scrubbing. Furthermore, by repairing a smaller
portion of the memory, one can save energy, as fewer memory accesses are necessary.
The key concept explored in this work to achieve both fast error detection and precise
diagnosis is the granularity of the error detection mechanism.

The granularity of a fault tolerance mechanism determines how the system is
divided into modules for the sake of applying the technique. In other words, it
determines how large and complex one allows each of these modules to be. Let us take
DMR, one of the most traditional techniques, as an example. Figure 1.4(a) shows the
basic coarse-grained approach. It allows detecting any single fault that occurs in one of
the two copies and that propagates to the comparator. The latter condition, however, is
frequently non-trivial, as a fault may be masked by circuit logic for long periods of
time, depending on the nature of the function computed by the component. The
granularity of the modules plays a significant role on this error detection latency. Note
that small and simple components, as those shown in Figure 1.4(b), are more likely to
quickly propagate an error to one of its outputs. This will in turn trigger the associated
comparator, warning the system of the presence of an error. The approach in Figure
1.4(a), on the other hand, will only allow detecting the error once it has propagated to a
primary output. For FPGAs, the possible granularities range from single LUTs up to
entire complex modules, such as softcore processors.

21

The granularity also affects the precision with which the location of the detected
error is known. As the comparator is only able to indicate that the output of the modules
diverged, it cannot further specify the location of the error, which may be anywhere in
the two modules and also in the comparator itself. Thus, the smaller the modules are,
the more precise is the knowledge regarding fault location. In the example in Figure
1.4(a) a single bit of error detection is provided, which only allows indicating that a
fault was detected, with no information about is location. On the other hand, in Figure
1.4(b) we are able to narrow the fault location down to a smaller portion of the system,
depending on which signal was raised. Fine-grained error detection is, hence, an
important feature to reduce the error removal time, as it provides improved diagnosis,
allowing for localized repair procedures.

This thesis, thus, focuses on fine-grained error detection techniques for FPGAs and
how they may be applied to achieve fast error detection and removal. One of the
presented contributions is a technique that exploits abundant and underused resources
found in state-of-the-art FPGAs to perform fine-grained comparison of replicated LUTs.
As one of the main drawbacks of fine-grained fault tolerance is that it typically has an
increased cost in area due to additional comparators (or voters), finding alternative
mechanisms to implement them can help saving resources. Related works have even
proposed the insertion of hardwired comparators in the FPGA fabric to minimize this
area overhead (KYRIAKOULAKOS and PNEVMATIKATOS, 2009). Thus, the
technique proposed here allows providing the benefits of fine-grained DMR while
minimizing its main disadvantage, namely the increased area. It does not require any
modification in the FPGA substrate, being applicable to devices that contain carry
propagation chains, which are dedicated circuits for the efficient implementation of
adders found in many state-of-the-art devices.

The use of very fine-grained diagnosis to perform accelerated error removal is also a
challenging task, especially when one aims at doing so with acceptable costs. In this
thesis, an approach to deal with very large error signatures (i.e., numerous individual
error flags) is presented and evaluated. It relies on statistical information to build a
relation between error signatures and the most likely error locations. It then identifies
the optimum starting point of a scrubbing procedure aiming at minimizing the mean
time required to actually reach the erroneous frame and correct it.

As discussed previously, evaluating the effectiveness of fault tolerance techniques
for FPGAs is a demanding task as well. For this purpose, this work also presents a high
speed and low cost fault injection platform that allows performing extensive
experimental campaigns in a timely manner. The platform requires a single FPGA to
carry out all the required functions, reducing the complexity and cost of the
experimental setup, while avoiding off-chip accesses that reduce the injection rate.

Figure 1.4: Coarse-grained (a) and fine-grained (b) DMR

CG
Module

CG
Module

=?

Out

e
In

FG FG FG

FG FG FG

=? =?

e0

In
Out

e1 e2

=?

(a) (b)

22

Radiation experiments were also performed with a particle accelerator at the
VESUVIO facility in ISIS, Rutherford Appleton Laboratories in Didcot, United
Kingdom. The purpose of these experiments is twofold: first, asserting the effectiveness
of the proposed techniques in an actual radiation environment; second, validating that
the results attained with the fault injection tool accurately represent the effects of
radiation on the device.

1.2 Outline
This work is structured as follows. Chapter 2 describes a standard FPGA

architecture and discusses the main components found in current devices. It also
presents the dependability threats faced by FPGA-based systems. Related works on
fault tolerance techniques for FPGAs are discussed in chapter 3, while chapter 4 focuses
on radiation experiments and fault injection platforms. Chapter 4 also presents the fault
injection platform developed in the context of this work, describing its implementation
and presenting its costs and advantages. In chapter 5 we present the techniques required
to leverage fine-grained fault tolerance as a means for fast configuration error removal
in FPGAs. We also present experimental results, including the expected failure rates for
the proposed approaches. Chapter 6 presents the Scrubbing Unit Repositioning for Fast
Error Repair (SURFER) technique and evaluates it regarding area and delay costs, as
well as reductions on repair time. Conclusions drawn from the conducted work are
presented in chapter 7. Some of the most promising future works envisioned at this time
are also presented in chapter 7. Appendix A presents the taxonomy on dependable
systems adopted in this work. It is suggested especially for readers not familiar with the
nomenclature and basic concepts of this area. Appendix B discusses and evaluates the
impact of non-random input stimuli on the figures reported in chapters 5 and 6.
Appendix C presents additional experimental results exploring the design space offered
by the heuristic algorithm proposed in chapter 6.

23

2 FPGAS AND THEIR DEPENDABILITY THREATS

The configurability of FPGAs is, at the same time, the key to their commercial
success and the main source of area, delay and power costs. It must also be taken into
account when a critical FPGA-based system is being designed, as it provides new
possibilities, but also additional concerns. In this chapter we present the basic concepts
of FPGA architectures in section 2.1. Then, in section 2.2 we present the main
dependability threats for current FPGA devices.

2.1 FPGA Architecture basics
FPGAs are designed to be highly flexible, easily configurable and also to present

high performance. A good source for further reading on the basic concepts of FPGA
architecture is (KUON, TESSIER and ROSE, 2008). One of the most relevant aspects
of such architectures, from both design and reliability perspectives, is the existence of a
large configuration memory that stores the configuration bitstream. It is usually divided
into frames, which are the smallest addressable units of the bitstream. The contents of
this memory configure each and every element inside the device, including the behavior
of each logic circuit and the routing between them. Thus, it stores the entire circuit
functionality expected by the user, making its integrity a key requirement for the correct
behavior of the system. Moreover, the configuration memory may be implemented with
different manufacturing technologies, such as static RAM (SRAM) (LESEA, DRIMER,
FABULA, et al., 2005), flash (MICROSEMI CORPORATION, 2011) or antifuse
(MICROSEMI CORPORATION, 2012), each with its advantages and drawbacks, to be
discussed in more details section 2.2.

With regard to configuration memories, an important development of newer SRAM-
based FPGAs is the possibility to perform dynamic partial reconfiguration. It consists in
modifying the bitstream while the device operates normally, which has many
applications. The most straightforward is having a dynamically reconfigurable area that
has its behavior modified to assist the system in its current needs, avoiding the use of a
larger area. Many other applications exist, especially when considering the requirements
of fault tolerant systems. Devices also frequently provide special components to access
the configuration from within the FPGA logic, allowing the creation of self-modifying
designs and creating many new opportunities also for critical systems.

In order to be able to efficiently describe the required system function with the
configuration memory, a flexible and powerful logic component is required. For that
purpose, current FPGAs employ configurable lookup tables (LUTs) as their most basic
functional building block. A k-input LUT is basically a multiplexer that selects one3 out

3 Some devices contain multiple output LUTs that can implement two or more functions
that use the same input signals.

24

of 2k binary values which are stored in memory cells. It can implement, thus, any
boolean function with up to k inputs, with the configuration memory cells holding the
desired function’s truth table, as shown in Figure 2.1.

LUTs are combined, along with other basic components such as flip-flops, into
small modules called configurable logic blocks (CLBs). Xilinx 7-Series CLBs, for
example, are divided into two slices, with each slice containing four 6-input LUTs and
eight flip-flops (XILINX, INC., 2012a). Similarly, in an Altera’s Stratix V device, each
CLB (called ALM – Adaptive Logic Module by the manufacturer) contains two
adaptive LUT structures and four flip-flops (ALTERA CORPORATION, 2013). An
adaptive LUT is an 8-input structure that can implement two 4-input functions, any 6-
input function and certain 7-input ones. Furthermore, each CLB typically contains carry
propagation chains that greatly simplify the implementation of adders or subtracters in
the FPGA fabric. Inside each CLB there are also multiplexers able to realize
interconnections between the LUTs, the carry chain circuitry and the flip-flops. Figure
2.2 shows the schematic of a Virtex 5 slice, which comprises four 6-input LUTs and

Figure 2.1: Example of a 3-input LUT implementing the XOR function

LUT

0

1

1

0

1

0

0

1

I0

O0 = I0 ⊕ I1 ⊕ Ι2

I1 I2

Figure 2.2: Schematic of a Virtex 5 slice (XILINX, INC., 2010)

25

four flip-flops. Each LUT can also be used as a read-only memory (ROM) and flip-flops
have several configuration options, such as their initialization value and whether they
are sensitive to clock level (latch) or edge (actual flip-flop). Each LUT can also be used
to implement two different 5-input functions, as long as they share common inputs. The
multiplexers and XOR gates in the center compose the carry chain circuit.

Aside from the CLBs, FPGAs contain dedicated blocks that implement some
functions which are commonly required by the end users. For example, FPGAs are
frequently used in digital signal processing (DSP) applications and such algorithms
make heavy use of multiplication operations. Therefore, as multipliers are complex
blocks that would require many LUTs to be implemented, FPGAs usually include
hardwired DSP blocks. Each DSP block is able to compute a fixed point multiplication
which may or may not be followed by an accumulation (XILINX, INC., 2010). Other
more specific functions, such as dedicated transceivers and clock management units are
also found in state-of-the-art FPGAs.

Another important feature found in FPGAs is the embedded memory blocks. The
flip-flops found in the CLBs are very efficient to implement registers, such as counters
or timing barriers in a pipelined design. However, when larger random access memories
(RAMs) are required, flip-flops become inappropriate for two main reasons: 1) they are
not so abundant in the device and are commonly heavily used as purpose-specific
registers or pipeline barriers, leaving few spare resources and 2) their access is made by
general purpose routing wires, which means that the multiplexing required to make a
random access memory would have to be LUT-implemented, leading to further resource
waste. For this reason, FPGAs usually include block RAMs (BRAMs), which are
hardwired arrays of SRAM cells with dedicated access circuitry, much like a cache
inside a processor chip. They can be used as small instruction memories for simple
programs or as buffers for incoming or outgoing data frames of a specific application.

The communication with external components is done via FPGA pins, which are
connected to the internal circuit using configurable input/output blocks (IOBs). These
blocks can be configured to work as input, output or bidirectionally, according to
different coding and electrical standards (XILINX, INC., 2010). Since they are the
beginning and ending points of the system contained in the FPGA, these components
play a significant role in reaching high reliability levels. Some techniques make use of
pin redundancy to improve reliability (D'ANGELO, METRA, PASTORE, et al., 1998),
(LIMA, CARRO and REIS, 2003).

Finally, there is the great concern of interconnecting all the components of the
FPGA: CLBs, BRAMs, dedicated hardwired logic and IOBs. The need for flexible
routing resources, in the sense that they must be able to realize the interconnection
topologies required by the user, and that are efficient in terms of area, delay and power,
makes such resources a chief concern in FPGA design. The required flexibility imposes
the need for a large amount of configuration bits associated with routing. In fact, the
vast majority of the configuration bits actually configure how components are
interconnected and not their behavior (XILINX, INC., 2011a), making such resources
great concern regarding device reliability as well.

2.2 Dependability threats for FPGAs
The aggressive scaling of semiconductor devices, which leads to increased

performance and lower energy consumption, frequently has adverse effects on
dependability. The effects of energetic particles that may hit the silicon and disturb the

26

circuit operation, which are discussed in section 2.2.1, are of particular interest to this
work. We also briefly discuss the effects of the aging of devices in section 2.2.2.
Section 2.2.3 discusses the relation between dependability threats and the dependability
metrics for FPGAs.

2.2.1 Radiation effects

With the reduction of transistors’ dimensions and of supply voltage, the amount of
electrical charge in a transistor is significantly reduced. Thus, the critical charge, i.e.,
the electrical charge that needs to be collected after a radiation event in order to induce
an error, is also reduced. With reduced critical charge, the rate at which radiation-
induced errors are observed tends to increase.

Several different particle types may induce errors on silicon devices, by generating
energetic ions either directly or as a secondary effect. Alpha particles, neutrons, protons
and heavy ions are among the most commonly reported sources of errors. Figure 2.3
shows the effects of an ion in the silicon. As the energetic ion passes through the device,
it produces electron hole pairs (a), which are then rapidly collected in a funnel-like
shape (b) and then more slowly over a long period of time by a diffusion process (c). If
the amount of charge collected during this process exceeds the critical charge, then an
error may occur. More in-depth discussions on the interaction of energetic particles and
integrated circuits can be found at (SEXTON, 2003) and (BAUMANN, 2005). Of
greater relevance to this work are the effects of such particles on a higher abstraction
level, i.e., on circuit logic and on the service provided by the system. The current pulse
induced by the particle may lead to several different single event effects (SEEs),
especially when one considers the particular properties of FPGAs.

2.2.1.1 Single Event Transient (SET)

If the affected part of the circuit contains combinational logic, the fault may
manifest itself as a glitch on the output of a given logic gate. This phenomenon is
referred to as a single event transient (SET).

Let us consider the simple circuit shown in Figure 2.4(a), in which the OR gate is
subject to a fault that temporarily raises its output, n0, to a logic ‘1’. Figure 2.4(b) shows
the situation in which the SET propagates through the combinational logic and is stored
in a register, leading to the occurrence of a soft error. However, it may not lead to such
an error due to several reasons. First of all, it may be masked by circuit logic, as shown
in Figure 2.4(c) (note that the value of i2 has changed). Second, the storage cell may

Figure 2.3: Effects of an energetic ion on a silicon device

+ -
+ -+ -

+ -
+ -

+ -
+ -+ -

+ -
+ -

+ -
+ -+ -
+ -
+ -+ -

+ -n+

--
-
-

-

+

--
-

-

-

++

++

+

+

n+

p substratep substrate

+ ++

+

- --

Ion track

+
+

+ - + -

+ - -

+ -
+ -

-

+

-

+ -+ -
+ -

-

+

-

n+

p substrate

(a) (b) (c)

--

- -

27

have an “enable” input which, when deactivated, prevents the cell from reading its input
value, as depicted in Figure 2.4(d). Finally, the fault may not be present during the
occurrence of a latching window, as shown in Figure 2.4(e). The latching window is the
period of time in which the storage cell updates its output value. It comprises the time
when the clock is high (or low) for a latch or a narrow timeframe around the rising (or
falling) edge of the clock for flip-flops (defined by the setup and hold times of the cell).
With the reduction of the critical charge and with the increase of the operating
frequency of newer devices, there is a possibility that the SET will last for more than a
clock cycle. The impact of the long duration transient faults and several techniques to
mitigate these effects are presented in (LISBÔA, 2009).

Even though SETs on combinational logic should still be taken into consideration,
they are far less common in FPGAs than in traditional ASICs (LESEA, DRIMER,
FABULA, et al., 2005). This is mainly due to the higher capacitance found in the
routing of signals in an FPGA, which makes it much less likely that a particle will have
sufficient energy to induce an error.

2.2.1.2 Single Event Upset (SEU)

An energetic particle may also directly hit a storage element and potentially alter the
stored value. This phenomenon, called single event upset (SEU), most frequently affects
a single memory cell leading to a single bit upset (SBU). Due to the greater integration
and reduced dimensions of transistors, a single particle may also cause a multiple bit
upset (MBU), which may have undesirable effects on systems that rely on error
correcting codes (ECC), for example.

Figure 2.5 shows how a SEU occurs for a standard 6-transistor SRAM cell. Figure
2.5(a) shows the initial (correct) state of the cell, which is storing ‘1’. As shown in
Figure 2.5(b), the particle creates a pulse in the output of one of the cross-coupled
inverters that form the cell, similarly to a SET. In this case, however, if the pulse lasts
long enough, it drives the input of the other inverter, which in turn reinforces the effect

Figure 2.4: Different outcomes of a single event transient (SET)

i2

n1

n0

i1

i0

D Q

E

o0 i2

n1

n0

i1

i0

o0

e

clk

e

clk

i2

n1

n0

i1

i0

o0

e

clk

(a) (b) (c)

i2

n1

n0

i1

i0

o0

e

clk

(d)

i2

n1

n0

i1

i0

o0

e

clk

(e)

Figure 2.5: Single Event Upset on an SRAM cell

Bitline Bitline
Wordline

‘0’‘1’

Bitline Bitline
Wordline

Bitline Bitline
Wordline

‘1’‘0’

(a) (b) (c)

28

of the pulse on the first one through the feedback loop, altering the stored state, as
shown in Figure 2.5(c).

SEUs are of particular interest for FPGAs due to their reliance on a configuration
memory to store the desired circuit functionality. Thus, if such memory is subject to a
SEU, the circuit function may be modified until the memory is rewritten at that position.
As any configurable element is subject to this type of faults, both logic and routing
resources may be affected. For instance, a LUT may have its function altered, meaning
that it will yield a wrong output if the inputs choose that specific value. On the other
hand, as discussed in section 2.1, the majority of the configuration bits are related to the
routing resources. Therefore, faults affecting the configuration bitstream are likely to
affect the interconnection between the logic elements. Furthermore, the effects of such
faults on the user circuit behavior are not straightforward. For example, a single fault in
a routing configuration bit may corrupt multiple nets of the user design, with
undesirable effects on traditional error mitigation schemes (LIMA, CARMICHAEL,
FABULA, et al., 2001), (STERPONE and VIOLANTE, 2006). Such effects are a major
concern for error detection and/or correction techniques for FPGAs and represent a
major threat to the dependability of FPGA based systems.

The technology used to implement the configuration cells has significant impact on
the expected SEU rate. Flash-based FPGAs present, along with the non-volatility of
flashes, the advantage of a higher tolerance to radiation-induced SEUs. However, for
the most aggressively scaled technologies, even flash memories may be subject to such
faults (IROM, NGUYEN, HARBOE-SøRENSEN, et al., 2011), creating the need for
mitigation schemes even for such FPGAs. Furthermore, flash-based FPGAs present a
much reduced logic capacity, in comparison to the SRAM-based ones. For example, the
largest flash-based FPGA made available by Microsemi (formerly known as Actel)
presents a logic capacity of 75,264 VersaTiles (each VersaTile can be configured to
work as a D flip-flop or as a 3-input LUT) and 504Kb of BRAM (MICROSEMI
CORPORATION, 2011). The largest SRAM-based FPGA made available by Xilinx, on
the other hand, presents 1.22 million 6-input LUTs, over 45Mb of BRAM and 2.44
million flip-flops (XILINX, INC., 2012a).

Antifuse cells are also an alternative for the implementation of the configuration
memory. This technology is highly resistant against radiation-induced faults, but
presents the significant drawback of being programmable only once. This property
prevents designers from including new functionalities or correcting design mistakes
after the FPGA has been programmed. It also prevents the use of many techniques
based on partial reconfiguration to avoid permanent faults. Moreover, antifuse-based
FPGAs are also limited in terms of logic and embedded memory capacities, when
compared to the SRAM ones. The largest antifuse-based FPGA made available by
Microsemi contains 20,160 radiation-hardened flip-flops and 40,320 combinational
cells (C-cell) (MICROSEMI CORPORATION, 2012). Each C-cell can implement over
4,000 5-input functions (which are not all possible 5-input functions).

The non-configuration memory cells (mainly BRAMs and flip-flops), which are
usually implemented with SRAM cells, may also be subject to SEUs. However, as they
are similar in purpose to the cells found in an ASIC, they may rely on the same
traditional mitigation schemes, such as modular redundancy and ECCs. Such techniques
should be used together with those targeting the configuration bitstream in order to
provide comprehensive fault coverage.

29

2.2.1.3 Destructive Radiation Effects

Differently from what is observed with SETs and SEUs, there are also single event
effects that cause permanent, destructive damage to the system. These effects are much
rarer than SETs and SEUs, usually requiring more specific conditions and higher energy
particles to occur. In (SEXTON, 2003) a detailed discussion is presented for each of the
different mechanisms that may cause permanent damage, which is summarized here.

A single event latchup (SEL) occurs when a particle activates parasitic pnpn bipolar
structures found in CMOS devices. A low impedance path is created between supply
voltage and ground, though which a high current flows. As this effect can only be
removed through a power cycle, i.e., by completely powering off the circuit, there is a
high probability that the current will permanently destroy the affected region. Thus, the
latchup is not destructive by itself but the high current it creates may damage the device.
A SEL is similar in effect to a single event snapback (SES). SESs, however, do not
require the pnpn structure, occurring within a single transistor. Other destructive
phenomena are more common in power transistors, such as single event burnout (SEB)
and single event gate rupture (SEGR), being of less concern for FPGAs. A SEB is
caused by heavy ions that trigger an avalanche effect, that in turn create large currents,
potentially damaging the circuit. It may also cause a SEGR, a phenomenon in which the
particle causes the dielectric that separates gate and channel to fail, also permanently
damaging the transistor.

2.2.1.4 Cumulative Radiation Effects

The long term exposure to radiation may also have negative effects on the device
dependability. These effects, thus, are not due to a single particle that hits the device,
but due to the accumulated effects of radiation. The total ionizing dose (TID) over time
may cause charges to be trapped in the field and gate oxides, the latter causing changes
in the transistor’s threshold voltage (VTh) (SCHRIMPF, 2007). This in turn degrades the
transistor’s performance, until it eventually starts violating the timing constraints of the
design, leading to intermittent and even permanent errors. Energetic particles may also
cause displacement of atoms in the silicon lattice, also modifying its physical properties
and potentially leading to intermittent or permanent faults. The cumulative radiation
effects, due to their long term nature, are similar to aging effects, which are the subject
of section 2.2.2.

2.2.2 Aging effects

The continued use of silicon devices leads to several physical phenomena that may,
over time, cause intermittent or permanent faults. Such effects, collectively called aging
effects, are the main responsible for the increased failure rate during the wear-out phase
of semiconductor devices, as shown in the bathtub curve (Figure A.1 in Appendix A). In
this section we briefly review the main physical sources of integrated circuits aging
(BANSAL and RAO, 2011).

Among the most common sources of aging faults in recent technologies are those
related to bias temperature instability (BTI). The voltage and temperature stress of gate
dielectric (silicon oxide – SiO2) may cause charges to become trapped in the interface
between the silicon channel and the dielectric. BTI effects are divided into negative
(NBTI), which affects PMOS transistors, and positive (PBTI), which affects NMOS
transistors. Traditionally, due to the operating mode of CMOS gates, NBTI was of
greater concern. However, with the introduction o hafnium oxide (HfO2) in newer
technology nodes, PBTI may also become a concern (BANSAL and RAO, 2011).

30

SRAM cells are also susceptible to aging effects. NBTI reduces the static noise
margin of these cells and may increase the fault rates. Specifically for FPGAs, most of
the PMOS transistors are used in the configuration cells, as the LUTs and routing
resources are made mostly with NMOS pass transistors (MEHTA and DEHON, 2011).
The effect of NBTI on SRAM cells can be relevant for FPGAs, leading to configuration
cell instability (RAMAKRISHNAN, SURESH, VIJAYKRISHNAN, et al., 2007). This
may be observed as an increased SEU rate for FPGA devices that have been in use for a
long time.

Hot carrier injection (HCI) also creates charge traps in the SiO2-Si interface, but as a
direct consequence of the high kinetic energy electrons that occur near the drain
junction. These particles may also generate secondary particles through impact
ionization, which may also become trapped in the oxide. As HCI affects NMOS
transistors, in the case of FPGAs it may lead to faults in the routing pass transistors as
well. Both HCI and BTI effects cause an increase in the threshold voltage, leading to
slower device response and potential timing violations.

Time-dependent dielectric breakdown (TDDB) is another consequence of the traps
that occur in the gate oxide. These traps may accumulate until a conductive path is
formed between gate and channel, thus breaking the dielectric. The result of this
breakdown is a sudden increase in gate current and consequently in power consumption.

2.2.3 Technology scaling and dependability metrics

As discussed herein, technology scaling increases the susceptibility of integrated
circuits to many adverse phenomena that negatively affect dependability. The increased
susceptibility to radiation SEEs, for example, reduces the MTBF throughout the entire
lifetime of systems, while the accelerated aging anticipates the wear-out phase, where
the failure rate starts to increase severely. Other phenomena, such as process variability
and the increased complexity of testing and performing burn-in on manufactured
devices may extend the infant mortality phase as well (LI, KIM, MINTARNO, et al.,
2009), if not counteracted. Thus, the failure rate function z(t) gets higher at all phases of
the devices’ lifetime, modifying the bathtub curve described in section A.4 of Appendix
A, as shown in Figure 2.6. Note that the plateau region that defines the useful life of the
system gets shorter, due to early-life failures and the anticipated wear-out phase.
Furthermore, it gets higher, due to the increased susceptibility to random soft errors,
such as radiation induced SEUs.

Specifically for FPGAs, some efficient alternatives exist to mitigate manufacture
defects (HATORI, SAKURAI, NOGAMI, et al., 1993), (HOWARD, TYRRELL and
ALLINSON, 1994) and process variability (GOLSHAN, KHAJEH, HOMAYOUN, et
al., 2011), (MEHTA and DEHON, 2011), usually relying on the fabric’s regularity for

Figure 2.6: Technology scaling and the bathtub curve

z(t)

t

Scaling

31

this purpose. Furthermore, due to FPGAs’ improved energy efficiency when compared
to general purpose processors, they tend to operate on lower temperatures, which in turn
delays aging processes (MEHTA and DEHON, 2011). As discussed in section 2.2.2,
one of the most critical effects of aging on FPGAs is the increased susceptibility to soft
errors on the configuration cells (RAMAKRISHNAN, SURESH, VIJAYKRISHNAN,
et al., 2007). Thus, being able to efficiently mitigate the effects of SEUs on FPGAs is
crucial during all phases of the devices’ lifetime.

Another relevant side-effect of technology scaling observed in FPGAs is that, as a
general rule, the bitstream size increases faster than the configuration interface speed,
increasing the total programming time. As configuration scrubbing remains the main
alternative to remove errors from the bitstream, the MTTR attainable with this approach
tends to increase as technology advances. The probability of timing failures in real-time
systems is therefore also increased, as well as the downtime of systems with availability
constraints. A more in-depth analysis on configuration rates and bitstream sizes for
different device families (and manufacturing technologies) is presented in section 3.2.

32

33

3 FAULT TOLERANCE TECHNIQUES FOR FPGAS

The many advantages and new concerns brought by FPGAs to the field of
dependable systems have fueled a significant amount of works on fault tolerance
techniques for such devices. Some techniques are adaptations of traditional redundancy
schemes while others make explicit and intensive use of the underlying configuration
memory to detect and possibly correct faults. Frequently, techniques make use of both
approaches concurrently to provide a more comprehensive reliability solution. In
section 3.1 we review the main works on this area, focusing on those that are based on
redundancy schemes. Works that heavily exploit bitstream manipulation are discussed
in section 3.2. Works that combine both are discussed in the category where the most
significant contributions were made. The contributions of this thesis are contrasted with
related works in section 3.3.

3.1 Techniques based on redundancy
Redundancy is the repetition of information or computation. While minimizing it is

the goal in many situations (e.g., logic circuit minimization, data compression), it
remains an essential tool to provide fault tolerance. Earlier works, such as (HATORI,
SAKURAI, NOGAMI, et al., 1993) and (HOWARD, TYRRELL and ALLINSON,
1994) propose to introduce redundancy in the form of spare resources that are used to
improve the manufacture yield, i.e., the fraction of total produced chips that is usable.
These resources are activated if, and only if, the manufacture test detects a fault,
replacing the defective components in the chip. This approach allows maintaining the
total logic capacity of the device and increases the probability that each chip is usable.
Post-manufacture faults, however, were not a concern for these works. In the following
years, several other works were concerned with improving the yield of FPGA
architectures. Such techniques, however, are not the main concern of this work and we
focus on techniques able to tolerate faults occurring at runtime.

In (MOJOLI, SALVI, SAMI, et al., 1996) the importance of also mitigating post-
manufacture faults is presented. The work focuses on permanent faults. The authors
assume a non-reprogrammable FPGA, thus ignoring any possibility of run-time
reconfiguration. The proposed technique makes use of modular redundancy, i.e., the
replication logic blocks followed by comparison or voting, to provide fault tolerance.

Modular redundancy can be implemented with a varied number of replicas, with the
most common variations being dual modular redundancy (DMR) and triple modular
redundancy (TMR). As discussed previously, DMR allows the detection of single faults
by comparing the outputs of two circuit copies, thereby signaling possible failures to
other modules. TMR, on the other hand, allows masking single faults by voting the
value given by the majority of three replicas. Figure 3.1(a) and Figure 3.1(b) show the
basic DMR and TMR techniques, respectively. The reliability of the comparator or

34

voter component is also of critical concern for such systems. For this reason,
redundancy is also frequently applied to them. Figure 3.1(c) shows a frequently used
technique that triples the voters to avoid single points of failure (SPOFs). Modular
redundancy may be applied with an arbitrary amount N of replicas (NMR) as well.

Mojoli, Salvi, Sami, et al. (1996) make use of four replicas of each module, thus
allowing not only the correction of single faults but also the detection of double faults.
This technique is also able to correct two faults if they do not happen simultaneously.
The authors argue for the need of using placement constraints to ensure isolation
between the different replicas, even though the complex faults associated with routing
resources were not yet discussed. Furthermore, the authors present different
granularities of implementation. Previous works, which aimed at improving the
manufacture yield, required a very deep understanding of the FPGA fabric, which is not
always available or convenient for the end user. Hence, in (MOJOLI, SALVI, SAMI, et
al., 1996) redundancy is implemented with the granularity of functions that can be
handled by the user CAD tools. The presented results show that the technique has a high
probability of providing correct service. However, they were obtained by means of high
level equations that estimate the probability of faults affecting the control circuitry,
without any experiments on a real device.

Standard TMR is applied in (FULLER, CAFFREY, SALAZAR, et al., 2000). The
authors present extensive radiation experiments on a Virtex device, showing that
configuration upsets are a major concern in FPGAs. The addition of TMR combined
with configuration scrubbing showed a 15× improvement on proton fluence-to-failure
measurements. The authors also identified a critical component in the fabric of those
devices, called “weak-keepers”. They were responsible for driving constant values that
could be required by other components in the fabric and were susceptible to upsets that
were not detectable in the configuration bitstream. Replacing the use of these circuits
with other means to drive a constant value further improved the results. Very high
availability measures (up to 99.9998%) could be achieved with the use of such
techniques.

In (LIMA, CARMICHAEL, FABULA, et al., 2001) the authors also make use of
TMR on a Virtex device, which is evaluated through bitstream fault injection and
confirmed through radiation ground testing. Experiments showed that single bit flips
could lead to unexpected functional failures. Using proprietary tools, the source of such
situations was identified: a single bit flip could connect signals from independent
redundant modules, corrupting multiple nets and causing the voting scheme to fail. The
relevance this property led to several further researches on how to mitigate this issue
(STERPONE and VIOLANTE, 2006), (KASTENSMIDT, FILHO and CARRO, 2006).
A Reliability-oriented place and Route Algorithm (RoRA) is presented in (STERPONE
and VIOLANTE, 2006), with the purpose of deliberately avoiding the instantiation of
routing paths that can lead to such faults, relying on TMR as redundancy mechanism. In

Figure 3.1: DMR (a), TMR (b) and TMR with tripled voters (c)

Module

Module

Module

Voter
Module

Module Cmpr
In

In

In

In

In
Out

e
Out

(a) (b)

Module

Module

Module

Voter

In

In

In Out

Voter
Out

Voter
Out

(c)

35

(KASTENSMIDT, FILHO and CARRO, 2006), the proposed technique consists in
introducing redundant routing paths that are able to maintain a reliable connection
between the components in the presence of faults. Both approaches show very
significant reductions in the sensitivity to this kind of faults.

Besides spatial techniques, such as modular redundancy, time redundancy may also
be used for fault tolerance. It consists in computing repeatedly or with additional delay
in order to detect and/or mask errors. However, as all computations are performed on
the same hardware, permanent faults are likely to repeatedly produce the same
erroneous results, leading to undetectable situations and making time redundancy
techniques more suitable for transient fault detection. This problem is of special concern
for FPGAs, where faults affecting the bitstream linger until removed, which usually
takes at least milliseconds, as discussed previously.

In (LIMA, CARRO and REIS, 2003) a technique combining time redundancy, DMR
and TMR is proposed, aiming at reducing the hardware costs of TMR, especially
concerning the usage of IO pins. Figure 3.2 shows the proposed technique. During
normal operation, the combinational logic to be protected is duplicated in modules dr0
and dr1, following a standard DMR approach. Then, if the DMR comparator points out
the occurrence of a fault, one extra cycle is used to determine which of the modules is
faulty by means of time redundancy. In order to avoid the situations in which a
bitstream error is not detected, the circuits operate with encoded inputs and decoded
outputs. In the example in Figure 3.2, encoding consists in shifting the inputs 1 bit to the
left, while decoding shifts the result two bits to the right. This approach allows
stimulating the circuits differently, and potentially identifying which is the faulty one.
Note, however, that not all circuits allow simple encoding and decoding to perform this
kind of detection. Furthermore, there is no guarantee that the encoded inputs will
stimulate the present fault, as they activate different paths in the circuit. Still, for some

Figure 3.2: TMR, DMR and time-redundancy hybrid technique (LIMA, CARRO
and REIS, 2003)

36

classes of circuits, such as arithmetic functions, it is possible to achieve relevant gains.
The output flip-flops are tripled, with two of them receiving the outputs of dr0 and dr1
and the third one receiving the output of the module currently deemed fault-free. The
presented results show area reductions and high fault coverage for a multiplier example,
assuming a stuck-at fault model.

Another study concerning the use of TMR is presented in (KASTENSMIDT,
STERPONE, CARRO, et al., 2005). In this work, the authors evaluate the trade-offs
regarding different granularities of application. Entire large modules can be voted at
their primary outputs (i.e., a coarse granularity) or additional voters can be inserted at
the output of simpler modules (i.e., a fine granularity). The main drawback of fine TMR
granularities is that they cause additional area overhead, due to the extra voters,
similarly to what occurs with DMR and the additional comparators. On the other hand,
there is a reduced likelihood that faults will affect two redundant modules that share a
same voter, thus potentially improving the fault coverage. Kastensmidt, Sterpone,
Carro, et al. (2005) present a case study considering three different voting granularities
and performing fault injection on the bitstream of a Xilinx Spartan device. The results
showed that the intermediate granularity presents the best fault coverage (99.02%). All
uncovered faults were associated with routing bits, as expected.

In (PRATT, CAFFREY, GRAHAM, et al., 2006) an approach to reduce the costs of
applying TMR to a design is presented. The observation done in that work is that the
divergence of the system’s output from the expected one may persist even after the
configuration error is removed. This occurs mainly when the error modifies the
behavior of a feedback structure of the design, i.e., a structure whose current state
depends on its own previous state. For such parts of the design, simply removing the
configuration error is not sufficient, as this operation does not restore the system state to
a consistent one. The configuration bits that lead to this kind of situation are named
persistent bits by the authors. The proposed approach is to apply TMR only to those
parts of the design identified as feedback structures, aiming at reducing the amount of
persistent bits. This is a valid approach for those applications that may accept short
interruptions of service, but not a permanent one, such as audio or video decoding. The
presented results show that a DSP application kernel could benefit from the technique
more significantly than a synthetic design based on multiple linear feedback shift
registers (LFSRs), which had more feedback loops that required TMR, reducing the
gains of the technique.

TMR is also used in (GERICOTA, LEMOS, ALVES, et al., 2007), but with a coarse
granularity. The use of error detection to trigger configuration repair through partial
scrubbing is evaluated. Error detection is performed by means of a scan chain that
allows comparing internal signals of the TMR modules. Diagnosis information is not
used to further divide the TMR modules, i.e., once an error is detected, the entire
module is reconfigured. And, since coarse-grained TMR is used, large configuration
areas, associated with large modules, must be repaired. Moreover, the time required to
detect an error is associated with the time to sequentially compare the entire scan chain,
thus presenting a linear dependence with the circuit size that limits scalability, similar to
a global configuration readback mechanism.

Kyriakoulakos and Pnevmatikatos (2009) present another discussion regarding the
different granularities of implementation of modular redundancy. They argue for the use
of very fine grains, based on the fact that it is intuitively less likely that two faults will
strike a single comparison or voting domain. A domain comprises the original module,

37

its replica(s) and the comparator or voter responsible for its operation. More
specifically, they consider that each LUT is a module, thus making use of the finest
grain available for an FPGA. Furthermore, they exploit the fact in Virtex 5 devices,
each 6-input LUT can implement two different 5-input functions, as long as they share
the same set of inputs, as shown in Figure 3.3(a). Thus, if the original LUT has only 5
inputs, it is possible to implement two replicas of the same function on a single 6-input
LUT. They propose to modify the FPGA fabric to add a dedicated comparator to assess
that the two 5-input functions are equal, thereby detecting any fault directly affecting
one of them. Figure 3.3(b) shows the scheme, where a column fault wire is also added
to indicate that a fault occurred at that column. Moreover, they synthesize the circuit to
5-input LUTs, so that every LUT in the design can be mapped to this structure. They
present another modified substrate in which a voter is added, being able to realize a
TMR scheme in which every three 6-input LUTs of the fabric implement two tripled
functions.

No fault injection experiments were presented in (KYRIAKOULAKOS and
PNEVMATIKATOS, 2009). The faults associated with routing resources, which are
likely to pose significant threats to this technique, are also left unchecked. The input
signals of the replicas are the same, thus any fault affecting them is likely to remain
undetected (even faults that affect a single net). Moreover, as a single voter is used for
the TMR case, faults affecting the voter’s output may also disrupt the technique.
Additionally, no results on the area and latency costs of the proposed modifications
were presented. Nonetheless, the significant reduction in costs (1.76 instead of at least 3
times for fine-grained DMR, measured by number of LUTs), points out an interesting
research direction.

In (SHE and SAMUDRALA, 2009) the authors present an approach to minimize the
costs of TMR similar to that of (PRATT, CAFFREY, GRAHAM, et al., 2006). The idea
is to apply redundancy selectively, only on those parts of the design that are deemed
sensitive by a heuristic approach. The heuristic aims at maximizing the probability that
a fault is masked, either by circuit logic or by the inserted TMR parts. It relies on input
signal probabilities that state, for each primary input of the design, the likelihood of it
being ‘1’. These probabilities are propagated throughout the circuit, considering the
function computed by each LUT. Based on how likely it is for a LUT to propagate a
fault (i.e., none of its other inputs has a dominant value), the “SEU sensitive
probability” of each LUT is calculated. LUTs with a probability above a user-specified
threshold are considered sensitive and receive TMR. The threshold probability can be

(a) (b)

Figure 3.3: 6-input LUT built with two 5-input LUTs (a), and with the XOR gate
added for comparison (b) (KYRIAKOULAKOS and PNEVMATIKATOS, 2009)

38

used to increase or decrease the amount of redundancy inserted. Furthermore, all
computing NOT and XOR functions
faults, as well as those that generate the primary outputs of the circuit. The proposed
scheme was able to maintain high fault coverage with reduced overhead compared to
TMR. The evaluation, however, made use of gate
an actual FPGA, meaning that the employed fault model differs from what is observed
in practice. For instance, the duration of the injected fault is not specified, and it is
known that faults in FPGAs’ bitstream are likely to linger fo
explicitly removed).

Fine-grained redundancy schemes are also discussed in
and BECKER, 2011). The authors present two approaches
scenarios. One is fine-grained TM
flop and votes the output values with individual tripled voters. Thus, each LUT of the
original design becomes 6 (3 replicas and 3 voters) and each flip
requiring 3 additional LUTs for vo
affordable for systems with extremely high resilience requirements as well as sufficient
financial and power budgets available.
Decide Redundancy (QFDR), which requi
and each time with duplicated inputs. Thus, aside from the cost of instantiating each
LUT four times, they must use duplicated inputs. Assuming 6
function with more than 3 inputs will have to b
accommodate its version with duplicated inputs
area overhead of the QFDR approach is
the proposed techniques have a high impact on
additional layers of logic to the design. These costs, however, are not measured by the
authors. Still, both approaches are likely to be able to withstand very harsh scenarios
due to their multiple faults masking capabili

As shown in (NIKNAHAD, SANDER and BECKER, 2011)
approaches can introduce overwhelming costs. A design space exploration framework
is presented in (BOLCHINI, MIELE and SANDIO
identify the optimum partitioning granularity
set of system requirements.
area overheads and average configuration time, with
An external reconfiguration controller, shown in
signals that trigger scrubbing procedures.

(a) (b)

Figure 3.4: FPGA system with external reconfigurat
scrubbing mechanism (b)

used to increase or decrease the amount of redundancy inserted. Furthermore, all
NOT and XOR functions are considered sensitive, as they always propagate

, as well as those that generate the primary outputs of the circuit. The proposed
scheme was able to maintain high fault coverage with reduced overhead compared to
TMR. The evaluation, however, made use of gate-level fault injection instead of using
an actual FPGA, meaning that the employed fault model differs from what is observed

For instance, the duration of the injected fault is not specified, and it is
known that faults in FPGAs’ bitstream are likely to linger for a long time (until

grained redundancy schemes are also discussed in (NIKNAHAD, SANDER
. The authors present two approaches to tolerate massive fault
grained TMR (FGTMR), which triples each LUT and each flip

flop and votes the output values with individual tripled voters. Thus, each LUT of the
original design becomes 6 (3 replicas and 3 voters) and each flip-flop becomes 3, also
requiring 3 additional LUTs for voting. Such high overheads make this technique only
affordable for systems with extremely high resilience requirements as well as sufficient
financial and power budgets available. The other approach uses Quadruple Force
Decide Redundancy (QFDR), which requires each function to be computed fo
and each time with duplicated inputs. Thus, aside from the cost of instantiating each
LUT four times, they must use duplicated inputs. Assuming 6-inputs LUTs, every
function with more than 3 inputs will have to be split, since one LUT will not

with duplicated inputs. The experimental results show that the
area overhead of the QFDR approach is even larger than that of FGTMR. Furthermore,

techniques have a high impact on circuit latency, as they introduce several
additional layers of logic to the design. These costs, however, are not measured by the
authors. Still, both approaches are likely to be able to withstand very harsh scenarios

multiple faults masking capabilities.

(NIKNAHAD, SANDER and BECKER, 2011), very fine
approaches can introduce overwhelming costs. A design space exploration framework

(BOLCHINI, MIELE and SANDIONIGI, 2011) to automatically
partitioning granularity and hardening technique to satisfy

set of system requirements. The framework takes into account costs and goals such as
area overheads and average configuration time, with the purpose of accelerating
An external reconfiguration controller, shown in Figure 3.4(a), monitors detection
signals that trigger scrubbing procedures. Reconfigurable partitions with

(a) (b)

FPGA system with external reconfiguration controller (a) and partition
mechanism (b) (BOLCHINI, MIELE and SANDIONIGI, 2011)

used to increase or decrease the amount of redundancy inserted. Furthermore, all LUTs
hey always propagate

, as well as those that generate the primary outputs of the circuit. The proposed
scheme was able to maintain high fault coverage with reduced overhead compared to

ion instead of using
an actual FPGA, meaning that the employed fault model differs from what is observed

For instance, the duration of the injected fault is not specified, and it is
r a long time (until

(NIKNAHAD, SANDER
to tolerate massive fault

R (FGTMR), which triples each LUT and each flip-
flop and votes the output values with individual tripled voters. Thus, each LUT of the

flop becomes 3, also
Such high overheads make this technique only

affordable for systems with extremely high resilience requirements as well as sufficient
The other approach uses Quadruple Force
res each function to be computed four times

and each time with duplicated inputs. Thus, aside from the cost of instantiating each
inputs LUTs, every

e split, since one LUT will not
The experimental results show that the

larger than that of FGTMR. Furthermore,
latency, as they introduce several

additional layers of logic to the design. These costs, however, are not measured by the
authors. Still, both approaches are likely to be able to withstand very harsh scenarios

, very fine-grained
approaches can introduce overwhelming costs. A design space exploration framework

to automatically
to satisfy a given

The framework takes into account costs and goals such as
accelerating repair.

, monitors detection
Reconfigurable partitions with individual

ion controller (a) and partition
(BOLCHINI, MIELE and SANDIONIGI, 2011)

39

detection capabilities are defined to allow localized scrubbing, as shown in Figure
3.4(b) with the finest grains providing faster repair but increased area overhead. DMR
and TMR variations are considered as potential redundancy techniques in the presented
case study. Very significant MTTR reductions are achieved over global scrubbing (at
least 80%). The problem of mapping the error indication signals, which can become
numerous for fine granularities, is not addressed.

Psarakis and Apostolakis (2012) present a similar approach to exploit the benefits of
fine-grained redundancy. The goal of their work is to avoid the costly maintenance of
checkpoints to perform rollback procedures once an error is detected. The authors
propose to divide a design into smaller modules, such as pipeline stages of a processor,
and to apply a concurrent error detection technique to each of them individually. Thus,
they are able to detect the presence of an error before it has propagated to structures
such as the register file or the main memory and to indicate in which stage the error
occurred. Furthermore, each module is implemented in an individual reconfigurable
partition that includes spare resources to mitigate the effects of permanent faults. And as
each module is smaller than the total design, they are able to perform a localized
scrubbing to reduce the MTTR. When scrubbing is unable to restore the module’s
functionality, it is deemed as permanently faulty. In (PSARAKIS and APOSTOLAKIS,
2012), however, they assume the existence of additional pre-compiled configurations to
activate the spare resources and to avoid using the faulty ones within the module,
similarly to (LACH, MANGIONE-SMITH and POTKONJAK, 1998).

In their case study, they apply DMR to three modules of an OpenRISC processor,
namely instruction decode, execute and the multiply-accumulate module. These
modules represent only over 20% of the design, but the observed area overhead is
40.2%, showing that the proposed approach indeed causes significant costs due to the
addition of reconfigurable partitions and reconfiguration controllers. The authors do not
present any study regarding fault coverage. Also, the memory access and the writeback
stages are not addressed in the paper. They are very critical to the proposed technique,
since they have write access to the main memory and the register file, respectively, and
faults on these modules can lead to the introduction of errors in these storage structures.

A set of modifications on the carry chain-based comparison technique presented in
this thesis is proposed in (SONZA REORDA, STERPONE and ULLAH, 2013). The
presented mechanism performs fine-grained comparison with carry propagation chains
as well, and attempts to improve multiple-bit error detection properties. Since it is
applicable only to LUTs that have up to 5 inputs, those with this property are separated
from the rest and receive the technique, creating “multiple error regions”. All error flags
associated with one slice column in a frame row (i.e., 20 slices or 80 LUTs in height)
are joined into a single bit that indicates the presence of an error on that column. These
multiple error detection bits are then used to locate the error and perform local
correction. Experimental results showed promising gains on repair time, which was
reduced from 20.65 ms for global scrubbing to the order of tens to hundreds of
microseconds for a set of benchmark circuits.

3.2 Techniques based on bitstream manipulation
As discussed previously, FPGAs contain a configuration memory that stores the

circuit functionality and that is the basis of their flexibility. Especially for SRAM-based
devices, this memory can be manipulated during runtime in order to provide fault
tolerance. In this section, we briefly discuss the main approaches that heavily exploit

40

this feature. Features found in newer devices, such as partial reconfiguration, have
further expanded the possibilities offered by such techniques.

Perhaps the most basic and intuitive approach is the configuration readback
(CARMICHAEL, CAFFREY and SALAZAR, 2000), which consists in periodically
reading the configuration and comparing it to a golden copy, which may be stored in a
more reliable, off-chip medium. Doing so provides the ability to detect any fault striking
the bitstream. Note, however, that such approach is not without costs. First, there is the
energy consumed by the accesses performed to both memories (configuration and
golden copy). There is also the financial cost of the golden copy itself. However, since
the device needs to be programmed after power on, the system is likely to already
possess some sort of non-volatile off-chip storage. Alternatively, data redundancy
techniques may be employed, such as cyclic redundancy check (CRC) or checksum.
Such approaches allow the detection of most errors with very high probability. They do
not point, however, the error location. In (GOKHALE, GRAHAM, JOHNSON, et al.,
2004), a per-frame CRC calculation is performed, which allows locating the fault. The
faulty frame can then be solely repaired.

Error repair is usually performed through scrubbing (CARMICHAEL, CAFFREY
and SALAZAR, 2000). In its most basic form, instead of reading the bitstream in search
of errors, it consists in directly overwriting the current configuration with its desired
contents, regardless of the existence of errors. Errors may also be removed by means of
error correcting codes (ECCs). For Virtex 5 devices, for example, each configuration
frame, which comprises 1,312 bits, also contains 12 dedicated ECC bits that allow
correcting a single bit flip or detecting double flips in that frame (XILINX, INC.,
2011a). The device also includes a hardwired component that simplifies the verification
of the correctness of the ECC embedded in each frame. Error correction and removal
procedures must be performed by user-implemented circuitry. ECC-based approaches
are interesting as they avoid the need to constantly access an off-chip memory to scrub
the device.

Readback and scrubbing, even when based on ECC codes, suffer from long times to
detect (or remove) an error, which significantly increase the achievable MTTR. The
time required is associated with how long it takes to traverse the entire configuration
memory, which determines the worst case detection/correction time. This time tends to
get longer as devices get more complex and, consequently, with larger configuration
memories. For the largest Virtex 7 device, for instance, it can be as high as 125 ms.
Figure 3.5 shows the total scrub time for the largest device of each Xilinx family. Note
that there is a sharp increase in the latest families, since no improvement in the
configuration speed is observed since the Virtex 4 family, when the 100 MHz 32-bit
SelectMAP programming interface was first introduced (XILINX, INC., 2009a). This
development also explains the significant reduction from the scrubbing time observed in
comparison to Virtex II Pro devices, which relied on a 50 MHz 8-bit interface (XILINX,
INC., 2011b). Spartan devices show a similar trend, where the increase in the
configuration speed is unable to compensate the increased configuration size.

The average time for the readback or scrubbing mechanism to reach the fault in the
configuration is half of the worst case, assuming a uniform fault distribution over
configuration frames. Even the average time may be too long for some applications,
such as critical control loops. Furthermore, the circuit may not recover its functionality
even after fault removal (PRATT, CAFFREY, GRAHAM, et al., 2006). However, as
such approaches are among the few able to effectively remove the fault from the

41

bitstream, they are frequently used combined with redundancy approaches applied at the
user circuit level, as in (FULLER, CAFFREY, SALAZAR, et al., 2000), (LIMA,
CARRO and REIS, 2003) and (SHE and SAMUDRALA, 2009).

Aside from the basic approaches of readback, scrubbing and those based on data
redundancy codes, there are more complex schemes that periodically modify the
bitstream in order to find permanent errors on the reconfigurable fabric. As a common
drawback, these approaches usually present very high detection latencies, leading to a
higher MTTR. They are, however, very efficient approaches to bypass the faulty
components and eliminate them from the system, an important feature to avoid the
accumulation of permanent faults in modular redundancy schemes, for example.

In (SHNIDMAN, MANGIONE-SMITH and POTKONJAK, 1997) the authors
present a technique to perform on-line testing of the resources in the FPGA by means of
partial reconfiguration. The proposed approach consists in leaving one of the columns
of the FPGA offline, while its functionality is tested. The test is performed by
exhaustively stimulating all the resources of the column in parallel. The correctness of
the LUTs’ outputs is assessed by comparing them with dedicated configuration
memories that are included in the devices specifically for this purpose. Similarly,
additional flip-flops are included to work as replicas of the original ones. After the test
of that column is complete, the following one is tested, iteratively scanning the entire
device. In order for the system to remain functional, a free column in the device
computes the function of the column being tested.

Another approach that exploits partial reconfiguration to mitigate permanent faults is
presented in (LACH, MANGIONE-SMITH and POTKONJAK, 1998). In this work,
however, the authors focus on how to divide the design into clusters and to allocate
spare resource to each of them. Alternative configurations for each cluster are pre-
compiled, each using a different subset of the available resources and all of them
maintaining the same interface with regard to the inputs and outputs of the cluster. This
allows replacing the configuration of a cluster in order to avoid the use of a faulty
resource without modifying the entire design, as the interfaces between each cluster are
maintained. The technique had a very small impact in area (worst case 9.8%) and a
reasonable impact on delay (from 14% to 45%). The reliability results, estiamted
through probability equations, show that the technique is able to increase the reliability

Figure 3.5: Total scrub time for the largest Xilinx FPGA of each family

0

20

40

60

80

100

120

140

Virtex
(250nm)

Virtex E
(180nm)

Virtex-II
(150nm)

Virtex-II
Pro

(130nm)

Virtex-4
(90nm)

Virtex-5
(65nm)

Virtex-6
(40nm)

Virtex-7
(28nm)

Spartan-3
E/A

(90nm)

Spartan-3
(90nm)

Spartan-6
(45nm)

528 400 3200 528 640

F
ul

l d
ev

ic
e

sc
ru

b
tim

e
(m

s)

Maximum interface bitrate (Mbps)

42

considerably for different benchmark circuits. The equations, however, only consider
faults in the CLBs, and not in the routing resources. This is likely to pose a main
concern for the technique, as faults affecting the interfaces of the CLBs would make it
impossible to use the pre-compiled configurations. Furthermore, the task of detecting
the presence and the location of a fault remains an open question in (LACH,
MANGIONE-SMITH and POTKONJAK, 1998). The introduction of error detection
with the granularity demanded by the technique is likely to significantly increase the
presented area overhead.

An approach that combines both scan-based testing (SHNIDMAN, MANGIONE-
SMITH and POTKONJAK, 1997) and fault mitigation through spare resources (LACH,
MANGIONE-SMITH and POTKONJAK, 1998) is the roving self test areas (STARs)
technique, presented in (ABRAMOVICI, STROUD, HAMILTON, et al., 1999) and
(EMMERT, STROUD and ABRAMOVICI, 2007). The roving STARs technique also
provides other benefits, such as being able to detect faults affecting the routing
resources. Furthermore, it provides a very precise fault diagnosis, including the
identification of the failure mode of a resource. Thus, a faulty resource may still be used
if a function that is not affected by that particular fault can be mapped to it. It relies on
vertical (V-STAR) and horizontal (H-STAR) areas to identify faults in wires of both
directions. Figure 3.6 shows the proposed approach. The system state must be
transferred from a column (row) whenever it is about to be tested, in order for the
system to remain functional. Thus, the system function must be stopped for this
operation to take place. Moreover, routing wires must cross the STARs to allow for
communication between components on opposite sides, imposing delay overheads.
Finally, the times to transfer configuration and state while roving the STARs lead to
repair latencies in the order of seconds (estimated in 1.34s for an ORCA 2C15A, a very
small device by current standards). These times are likely to be even greater for newer
devices, as the size of configurations grew considerably more than the operating
frequency of the programming interfaces.

As discussed previously, one of the alternatives to reduce error detection and
correction times is to use detection techniques with fine granularities. In order to
effectively exploit the potential benefits, however, some challenges need to be
addressed not only from a redundancy point of view, but also from a configuration
perspective. In (STRAKA, KASTIL and KOTASEK, 2010) the authors focus providing
a generic controller to perform local reconfiguration of modules. This module receives
one error signaling bit from each of the reconfigurable partitions, as depicted in Figure
3.7, and upon detection accesses a table containing the initial and final addresses of the
faulty module, which is then scrubbed to remove soft errors. If the error persists after
reconfiguration, the fault is considered permanent. Thus, the proposed controller allows

Figure 3.6: The roving STARs approach with horizontal (H-STAR) and vertical
(V-STAR) testing areas (EMMERT, STROUD and ABRAMOVICI, 2007)

43

exploring the fault indication bits provided by each module to reduce the MTTR and the
probability of timing failures. The proposed approach does not specify a granularity of
operation, but is intrinsically limited to the finest grain available for dynamically
reconfigurable partitions. Furthermore, it requires the use of such partitions to identify
beforehand the configuration frame addresses associated with each module, which
imposes area and delay costs. The presented results concern only frequency of operation
and area occupied, not evaluating the possible gains on reliability or repair time.

3.3 Contributions of this thesis
Fine-grained redundancy has been explored in previous works with many different

goals. In (KASTENSMIDT, STERPONE, CARRO, et al., 2005), different TMR
granularities are evaluated in order to minimize the probability of a single fault affecting
multiple redundancy domains. In (NIKNAHAD, SANDER and BECKER, 2011), the
goal is to withstand very harsh environments, exploiting the fact that each individual
TMR domain can mask the presence of one error. Other works make use of fine-grained
partial fault tolerance (PRATT, CAFFREY, GRAHAM, et al., 2006) (SHE and
SAMUDRALA, 2009) to reduce the costs of full redundancy, compromising fault
coverage to reduce area costs.

In this work, we make use of fine-grained redundancy with the main purpose of
reducing repair time. When triggered repair procedures are used, which is the case in
here and in related works such as (STRAKA, KASTIL and KOTASEK, 2010),
(BOLCHINI, MIELE and SANDIONIGI, 2011), (PSARAKIS and APOSTOLAKIS,
2012) and (SONZA REORDA, STERPONE and ULLAH, 2013), two features of fine-
grained redundancy become particularly valuable: reduced detection latency and precise
diagnosis. The intuitive property is that the finest redundancy grains have the greatest
potential to minimize the MTTR, since smaller modules have reduced masking
probabilities and fewer associated configuration bits. But they also introduce the
greatest overheads, which stem from the need of additional comparators or voters.
Works such as (NIKNAHAD, SANDER and BECKER, 2011) present area costs that
surpass 6 times, while others try to avoid them with modifications in the underlying
fabric (KYRIAKOULAKOS and PNEVMATIKATOS, 2009). We propose a very fine-
grained error detection mechanism that relies on the carry propagation circuitry found in
current FPGAs to implement comparators. Since such resources are frequently
underused, as will be shown in the experiments discussed in chapter 5, they are likely to
not conflict excessively with the remainder of the design. Thus, a fine-grained

Figure 3.7: System with partial reconfiguration controller and multiple error
signals (STRAKA, KASTIL and KOTASEK, 2010)

44

redundancy mechanism with manageable area costs can be devised for unmodified
commercial FPGAs. Due to its very fine granularity, the technique is able to detect
errors in a reduced timeframe when compared to coarser approaches. Reducing this
error latency is important not only to minimize system downtime but to also to avoid the
accumulation of errors.

The fact that fine-grained diagnosis can be used to perform a localized repair
procedure is also explored in this work. In (LACH, MANGIONE-SMITH and
POTKONJAK, 1998), (STRAKA, KASTIL and KOTASEK, 2010), (BOLCHINI,
MIELE and SANDIONIGI, 2011) and (PSARAKIS and APOSTOLAKIS, 2012)
reconfigurable partitions are used to delimit the minimum scrubbed area. Each partition
has an individual error detection mechanism, which allows the use of partial scrubbing
on a reduced range of the configuration memory. However, the definition of partitions
has costs: they have a fixed interface with other modules, which restrict placement and
routing choices. Moreover, fragmentation due to unused components within the
partition space can also lead to wasted resources. Such costs tend to become more
significant as smaller partitions are defined. If the most significant gains are desired,
therefore, very small partitions have to be used, introducing additional costs.

In (SONZA REORDA, STERPONE and ULLAH, 2013) a modified version of the
carry chain-based comparison mechanism presented in this work is used to detect errors
as well. The fine-grained diagnosis is also used to accelerate repair, and differently from
the other mentioned works, the minimum scrubbed unit is independent from
reconfigurable partitions. The technique proposed in here also avoids the use of
reconfigurable partitions as minimum scrubbed area, but with a different approach: we
exploit the fact that the scrubbing does not necessarily start at the first configuration
frame of a partition, and that starting it closer to the actual error location can
significantly reduce repair time. As a result, partitions can be defined by designers as
they see fit, following the recommended practices for design modularization. Moreover,
when fine grains are used, the amount of error signals can increase quickly, and their
mapping to error locations can be challenging, as will be discussed in chapter 6. We aim
at providing a scalable mechanism able to handle numerous error detection bits and to
extract useful information from them in a low cost, fast and reliable manner.

45

4 FAULT INJECTION FOR FPGAS

Fault injection is an important and frequently used means to evaluate the
dependability of systems. Specifically for FPGAs, several challenges and opportunities
are found. In this chapter we first briefly discuss the basic aspects of fault injection
techniques, such as the desired features and the basic approaches. Section 4.1 presents
this discussion. In section 4.2 we present the particularities found in FPGA-based
systems, as well as the main fault injection platforms available in the literature. The
fault injection platform developed in this work is detailed in section 4.3.

4.1 Fault injection Basics
Fault injection consists in artificially inserting faults in a system or in a system

model in order to evaluate its response to faults of a particular model. Thus, in order to
do so, a fault injection platform typically requires the basic components shown in
Figure 4.1. First, an instance or model of the circuit being evaluated, often called circuit
or device under test (CUT or DUT, respectively), is required. The input generator unit
applies input vectors that stimulate the operation of the CUT. At some point during or
before the execution the fault injector disturbs the circuit behavior according to the
specified fault model. The output vectors produced by the CUT must be evaluated,
either by making use of a golden copy, i.e., a copy of the CUT that is kept free of faults,
or by some other means to determine whether they are correct or not. This task is
carried out by a fault classification unit, which determines what the effect of the injected
fault on circuit behavior was, i.e., if it caused a functional failure and/or if it was
detected by some sort of detection mechanism.

Fault injectors are frequently used to measure dependability metrics such as
reliability, availability and the fault coverage of a given fault tolerance technique. As
the results of fault injection campaigns are used to guide the following steps of a
project, the techniques and platforms used to perform such experiments play a critical

Figure 4.1: Basic components of a fault injection platform

CUT
010101101
100110110
...

000101010
001110010
...

Input
Generator

Fault
injector

Fault

Fault
classification

Experiment
results

Input
vectors

Output
vectors

ExperimentControl

46

role in the overall project costs, time and quality. Thus, several assets are expected from
such systems, from which we highlight the following:

• Accuracy: a fault injector should be able to accurately mimic the effects of the
faults that the system will be subject to after deployed. This includes the
definition of an appropriate fault model and the correct application of it to the
system instance or model being evaluated. The amount of faults applied also
plays an important role in the overall accuracy, as it should be statistically
significant and also able to identify unexpected faulty behaviors that may occur
under particular circumstances.

• Injection rate: as discussed, injecting a large amount of faults is important to
achieve accurate results. Thus, being able to inject many faults in a short time
interval is crucial to provide results quickly to designers, reducing the overall
design time. As the system must execute for some time after each injection in
order to observe its response to the fault, achieving high injection rates may be a
challenging task. The achievable injection rate is closely related to the
abstraction level adopted and to the complexity of the system being evaluated.

• Flexibility: designers frequently must inject faults following different models,
such as permanent and transient faults that may strike the system. Thus, a fault
injection platform which provides flexibility, allowing the modification of fault
models or other simulation parameters, such as initial and termination
conditions, allows a more comprehensive assessment of the system’s
dependability.

• Controllability and reproducibility: another important asset is that of being able
to inject faults at specific areas or components of the systems, which have
already been identified as critical, for example. Furthermore, it is frequently
important to reproduce an experiment, in order to evaluate if a system
modification was able to improve the dependability. Thus, being able to choose
exactly when, where and how to inject a fault is a relevant feature of a fault
injection mechanism.

• Cost: finally, but not less relevant, is the cost of the fault injection experiments.
Those requiring expensive components, powerful simulation mainframes or
several instances of the system under test may be unattractive for projects with a
lower budget.

Providing all of the above advantages at once is a complex task, as most approaches
present trade-off situations. Faults may be injected into a system by several different
means, depending on the current stage of the project and on the desired properties from
the experimental flow.

For the early stages of a project, when a hardware prototype is not yet available, a
simulation model may be used, such as done by the MEFISTO tool (JENN, ARLAT,
RIMEN, et al., 1994). The MEFISTO tool simulates a VHDL model of the system to
perform the required fault injection experiments. As the VHDL language allows the use
of different abstraction levels, it is possible to achieve higher accuracy with a reduced
injection rate when using a structural description, or the opposite when a behavioral
description is used. For the case study, a very simple 32-bit processor was used,
described in the two mentioned abstraction levels, showing a 3.2 times difference is
simulation time. The injections may be performed using commands of the simulation
software that artificially modify the values of the signals and variables of the system.
Alternatively, saboteur components or modified versions of system modules, called

47

mutants, may be used to inject faults. Such approaches allow the use of very complex
fault models. As is typical of simulation-based fault injection techniques, the MEFISTO
tool presents high flexibility, controllability and reproducibility, as well as a low cost, as
no hardware prototype or special components are required. On the other hand, the
achievable injection rate and accuracy are conflicting properties, which are tuned by the
chosen abstraction level and the amount of faults to be injected. Furthermore, even
when working on the lowest abstraction levels allowed by VHDL, complex electrical
phenomena, such as cross talking wires and overheating, are not detectable. Simulation-
based fault injection platforms are presented in several other works, such as (CHA,
RUDNICK, PATEL, et al., 1996), (AIDEMARK, VINTER, FOLKESSON, et al.,
2001) and (KAMMLER, GUAN, ASCHEID, et al., 2009).

FPGAs have brought an interesting opportunity for fault injection campaigns, even
those aiming at ASIC designs. Since FPGAs are easily configurable, they can be used to
emulate an ASIC design with a significantly increased speed compared to that of
software simulators. The emulated circuit can then be instrumented with additional
hardware in order to perform fault injection according to the specified fault model and
to assess the effects of each fault. Thus, FPGAs are able to greatly enhance the injection
rates of simulation based approaches. Note, however, that such approaches are limited
by the size circuit that fits the available FPGA device. Works such as (CIVERA,
MACCHIARULO, REBAUDENGO, et al., 2002), (DE ANDRES, RUIZ, GIL, et al.,
2008) and the FT-UNSHADES platform (AGUIRRE, TOMBS, MUOZ, et al., 2007)
are examples of fault injection platforms that use FPGAs to increase the injection rates.

Once designers are able to make use of a system prototype, several other approaches
become available, which allow overcoming some of the shortcomings found in
simulation-based techniques. In (HSUEH, TSAI and IYER, 1997) the basic aspects of
such approaches are presented, classified into hardware and software fault injection.
Hardware fault injection techniques are further divided into injection with contact and
injection without contact. Software-based approaches are divided into compile-time and
runtime injection.

Hardware fault injection without contact typically makes use of electromagnetic
fields or beams of energetic particles to interfere with the device’s operation. Such
approaches are valuable to measure not only the effectiveness of fault tolerance
techniques but also to characterize manufacturing processes regarding their sensibility
to the chosen source of faults. Thus, they present very high accuracy when the goal is to
evaluate the effects to such physical phenomena, being an important step to validate
systems that are to be used in harsh environments, such as space or industrial
applications. However, the achievable injection rate is very limited, usually being orders
of magnitude lower than that of simulation-based approaches, for example. Also, the
only fault model to be addressed is that of the chosen physical source, limiting the
flexibility. The controllability and reproducibility are also poor, as there is little choice
regarding which parts of the system will be affected. Finally, the costs associated with
such experiments may be high, due to the potentially expensive equipments that are
required.

Hardware fault injection with contact consists in the use of active probes or sockets
that intercept the communication between the circuit and its board. Thus, only the
values available at the external pins are accessible and/or modifiable. As the actual
system is running, such techniques have a possibility of presenting a higher accuracy
and injection rates than simulation-based approaches. On the other hand, the flexibility

48

is reduced, as only those faults applicable at the external pins are injectable, limiting the
possible fault models and also jeopardizing the accuracy. The use of scan chains may
improve such properties. Since engineers control precisely when and where faults are
injected, such techniques present good controllability and reproducibility. The cost of
these mechanisms may be high when very sensitive probes and sockets are required.

Compile-time software fault injection consists in modifying the software prior to
execution, either at the source code or at the executable binary. The main advantage of
this approach is the reduced cost, especially due to its simplicity that greatly reduces the
required engineering effort. They are useful to emulate permanent faults, as the
modifications embedded in the code linger throughout the entire execution. On the other
hand, the approach presents a low flexibility, being limited to those faults that can be
mimicked with static modifications in the code. Conversely, runtime software fault
injection is triggered by timers or exceptions and is able to model transient faults more
accurately than compile-time approaches. Common to both software fault injection
techniques are the limitations in the fault model, as not all parts of the hardware are
reachable from the software’s perspective. Furthermore, the accuracy may be threatened
by the intrusiveness of the injection and evaluation mechanisms. Also, they are only
applicable to processor-like systems, since the existence of software is required. Finally,
the controllability and reproducibility of both approaches are related to how much
influence those parts outside the designers’ control have on the experiments. For
example, the scheduler of the operating system may heavily modify the results of a fault
injection campaign, especially for multi-threaded applications.

4.2 Fault injection for FPGA-based systems
The techniques discussed in section 4.1 were thought as means to evaluate the

dependability of integrated circuits in general, regardless of whether they are FPGAs or
not. Therefore, some of them are not directly applicable for many FPGA-based systems.
For example, since software techniques require the existence of software in the first
place, many FPGA systems lie out of scope, as they do not necessarily contain a
processor.

Furthermore, simulation-based approaches require in-depth knowledge of how the
system works and, in order for them to achieve accurate results, the system should be
simulated in a low abstraction level. However, low level schematics of FPGA devices
are rarely available to the end-users, as this is not in the best interest of FPGA
manufacturers. This makes it nearly infeasible to evaluate the impact of SEUs affecting
the configuration memory by means of simulation. Moreover, the complex scenarios of
configurations unexpected by the manufacturer (such as two independent wires being in
short circuit) would have to be modeled in a very low abstraction level, such as using an
electrical simulator, in order for their outcome to be precisely determined. Working on
such low levels brings an enormous computational burden, especially when an entire
complex system needs to be simulated. Thus, it is nearly mandatory to use an actual
FPGA device to perform fault injection with satisfactory accuracy, especially when the
impact of SEUs in the configuration memory is to be evaluated. The use of hardware
fault injection techniques described in section 4.1 becomes, hence, not only very
attractive for FPGA devices but also one of the few remaining alternatives.

4.2.1 Radiation experiments

Experiments with particle accelerators are an important step to evaluate the impact
of radiation on these devices. Some of the works discussed in chapter 3 conducted such

49

experiments (FULLER, CAFFREY, SALAZAR, et al., 2000), (LIMA,
CARMICHAEL, FABULA, et al., 2001) to measure the reliability of circuits or to
validate results achieved with other fault injection approaches. Such works measure the
dynamic cross-section, which is related to the susceptibility to the effects of radiation on
the user design atop the fabric (FULLER, CAFFREY, SALAZAR, et al., 2000). It is an
important metric as it measures the effectiveness of any fault tolerance technique that
may be in use and is valuable to estimate the MTBF.

Fuller, Caffrey, Salazar, et al. (2000) also report static cross-sections for the
evaluated Virtex FPGA. This measurement is performed by reading back the device’s
configuration memory and comparing it to the expected value. It is, thus, not related to
the user circuit currently implemented, being an important metric to characterize the
manufacturing process and the cell design employed with regard to SEU susceptibility.
In (LESEA, DRIMER, FABULA, et al., 2005), a series of experiments called Rosetta
attempts to quantify the amount of faults to be observed in Xilinx FPGAs. Boards
consisting of a hundred devices are constantly monitored and left at different places and
altitudes. Accelerated experiments were also performed at the Los Alamos Neutron
Science Center (LANSCE). Quarterly updated results of the Rosetta experiment can be
found at (XILINX, INC., 2012c). Figure 4.2 shows the neutron cross-sections per
configuration bit measured at LANSCE for different FPGA families.

As the manufacturing technology scales, so does the capacitance of the transistors,
as well as the supply voltage Vdd. This in turn reduces the critical charge required to
change a storage cell’s state, as was discussed in section 2.2.1. On the other hand, a
smaller transistor is less likely to be struck by a particle. Furthermore, advances in the
design of the storage cell may also improve its resilience against such particles. The
result of these opposing factors is the non-monotonic variation of the cross-section per
bit observed across different technologies shown in Figure 4.2.

The cross-section per bit, however, is not the only information necessary to evaluate
the sensibility of a given device, as the amount of bits grows significantly from one
generation to another. When multiplying the cross-section per bit by the amount of
configuration bits in the largest device of each family, one gets a very different plot, as
can be seen in Figure 4.3. The coupled effect of a larger cross-section per bit and a
larger configuration size drove quickly the total cross-section until Virtex II Pro

Figure 4.2: Static cross-section per configuration bit, as reported by (XILINX, INC.,
2012c)

0.00E+00

1.00E-14

2.00E-14

3.00E-14

Virtex
(250nm)

Virtex E
(180nm)

Virtex-II
(150nm)

Virtex-II
Pro

(130nm)

Virtex-4
(90nm)

Virtex-5
(65nm)

Virtex-6
(40nm)

Virtex-7
(28nm)

Spartan-3
E/A

(90nm)

Spartan-3
(90nm)

Spartan-6
(45nm)

C
ro

ss
-s

ec
tio

n
pe

r
bi

t (
cm

2)

50

devices, which were manufactured with a 130 nm process. Then, Virtex 4 and Virtex 5
families were able to compensate the increase in configuration size, slightly reducing
the total cross-section. Until this point, a similar trend is observed for the Spartan series,
as the Spartan 6 shows approximately the same total cross-section as the Spartan 3.
However, Virtex 6 and Virtex 7 devices showed an aggressive increase in the total
configuration size, while not significantly reducing the cross-section per bit. This results
in a much larger total cross-section for these two families, reinforcing the need for fault
tolerance techniques able to mitigate the effects of configuration errors.

4.2.2 Artificial bitstream fault injection

The fast prototyping provided by FPGAs is a valuable asset for evaluating the
dependability of FPGA systems. As the chip is usually available at the early stages of
the project (unless a project is being developed for an unreleased device), designers
perform very accurate reliability estimations without waiting for the manufacture of the
chip at a foundry. The unlimited reconfigurability provided by SRAM-based FPGAs
allows one to perform efficient fault injection campaigns on the actual device, providing
timely and accurate results. As the configuration memory is programmable, one can
artificially flip one or more bits on its content, artificially emulating the effects of SEUs
that affect such memory.

Several platforms have been developed aiming at performing fault injection on the
configuration memory of FPGA devices. The experiments conducted in (LIMA,
CARMICHAEL, FABULA, et al., 2001) made use of a control panel and two FPGA
boards to inject bitflips in the configuration memory. The CUT is placed on one of the
FPGAs, while the other one, along with the control panel, controls the experiment and
communicates with a host PC. In (WIRTHLIN, JOHNSON, ROLLINS, et al., 2003) a
similar platform is presented, making use of three FPGAs. The first device contains the
CUT, while the second contains a golden copy of it. The third device is responsible for
applying the input vectors and checking the correctness of the CUT outputs. The fault
rate was approximately 100 µs per fault.

The FLIPPER platform is presented in (ALDERIGHI, CASINI, D'ANGELO, et al.,
2007). It uses two FPGA boards. One contains the management circuit, which flips
configuration bits and applies input vectors, while the other contains the CUT. The
reported fault injection time was 50 µs per fault. Both input vectors and golden outputs

Figure 4.3: Static cross-section for the configuration of the largest device of each

family

0.00E+00

5.00E-07

1.00E-06

1.50E-06

2.00E-06

2.50E-06

3.00E-06

Virtex
(250nm)

Virtex E
(180nm)

Virtex-II
(150nm)

Virtex-II
Pro

(130nm)

Virtex-4
(90nm)

Virtex-5
(65nm)

Virtex-6
(40nm)

Virtex-7
(28nm)

Spartan-3
E/A

(90nm)

Spartan-3
(90nm)

Spartan-6
(45nm)

C
on

fig
ur

at
io

n
cr

os
s-

se
ct

io
n

(c
m2

)

51

are derived from simulation software and stored in the on-board RAM before beginning
the injection campaign. A software application, running on a PC, allows configuring the
tests, choosing parameters such as clock rate, fault type (single or multiple bitflips) and
stop conditions.

The FT-UNSHADES-C platform used in (STERPONE, AGUIRRE, TOMBS, et al.,
2008), which is an extension of FT-UNSHADES (AGUIRRE, TOMBS, MUOZ, et al.,
2007) to perform fault injection in the configuration bits, makes use of a similar
approach. A control FPGA provides the interface between a host PC and the system
FPGA, which holds both the CUT and a golden copy. Input stimuli are also derived
from simulation hardware, as does the FLIPPER platform. No results were presented
regarding the possible injection rates.

The fault injection platforms discussed so far make use of multiple FPGAs and, in
some cases, of additional components, increasing the cost and complexity of the system.
Furthermore, due to the need of off-chip communication, the use of multiple FPGAs is
likely to also reduce the injection rate. A first system making use of a single FPGA was
presented in (BERNARDI, SONZA REORDA, STERPONE, et al., 2004). It relies on a
host PC, however, to inject a fault in the configuration bitstream and to reprogram the
device, increasing the injection time to approximately 6 s. Such long times make it
infeasible to use this system to perform exhaustive fault injection campaigns on current
FPGAs, due to the increased configuration sizes. This concern is addressed in
(STERPONE and VIOLANTE, 2007), which presents a platform that places all the
required components (CUT, input stimuli generation, fault injection and fault
classification) in a single FPGA. In this platform, the host PC is only responsible for
receiving and displaying the experiment results. The experiment control is implemented
in software and executes on a hardwired PowerPC processor that is available on some
Xilinx FPGAs. Fault injection is performed by writing a faulty configuration frame
through the internal configuration access port (ICAP), a component that allows
accessing the configuration memory from a user circuit in the same FPGA. The time
strictly required to inject a single bitflip with this platform is 10.1µs. A more detailed
classification framework was presented in (BOLCHINI, CASTRO and MIELE, 2009),
using the injector described in (STERPONE and VIOLANTE, 2007). It allows the
individual evaluation of the effects of each fault, which is a valuable resource when one
desires to improve the reliability of a design.

4.3 Fault injection platform
As was discussed in chapters 1 and 4, fault injection is among the most traditional

means to measure the dependability of systems. Furthermore, FPGAs present a very
particular fault model that requires dedicated experimental platforms to accurately
measure metrics such as fault coverage and failures in time. The most traditional
method is to flip configuration bits of an actual FPGA device to observe the effects on
the user circuit running on the reconfigurable fabric. Several approaches available in the
literature were discussed in section 4.2.2, and in this chapter we present the fault
injection platform developed in this work.

The main advantages of the proposed platform are:

• Low cost and low complexity, since it requires only a single FPGA and a host
computer to carry out its functions;

• High injection rate, as no external memories or controllers are required to inject
faults and to apply stimuli to the CUT;

52

• Applicability to other devices, as the system is composed only of LUTs, flip-
flops and a small memory, requiring no complex hardwired component, with the
exception of an internal configuration access port (ICAP);

• Modularity and extensibility, which allows adapting the system to different types
of circuits and different fault models.

4.3.1 Platform components

As for any fault injection platform, the basic components shown in Figure 4.1 must
be present in order to inject faults and to evaluate their effects on the operation of the
CUT. The components that form the proposed platform are shown in Figure 4.4 and
described in the following subsections. The function of each component may vary
depending on the specific needs of each experiment campaign. Thus, the components
described herein can be modified to satisfy different needs, and some of the possible
variations are described in the following subsections as well.

Furthermore, some adaptations are required to implement the platform in FPGAs
from different manufacturers or different families of the same manufacturer, especially
regarding the injector block, which must handle configuration addressing and interface
with the reconfiguration port available in the device. The platform herein described was
implemented and tested on Virtex 5 XC5VLX110T FPGA, and some of the details
provided focus on this device family. The proposed approach, however, remains
applicable to any device that allows the user circuit to access the configuration memory.

4.3.1.1 Injector

The injector unit is responsible for actually modifying the current bitstream
according to the specified fault model. For that purpose, it must first choose the specific
bit(s) of the configuration to be flipped. A bit is univocally identified by its frame
address and its position within the frame. As discussed in section 2.1, a frame is the
smallest addressable unit of the configuration memory. For example, a Virtex 5 frame is
composed of 41 words of 32 bits, for a total of 1,312 bits.

The frame address generation unit, thus, is responsible for choosing a valid frame
address for injection. This choice may be pseudo-random or sequential, if exhaustive
fault injection is to be performed. Frame addresses, however, are not organized in a
straightforward continuous fashion. Each frame address is divided into fields that may

Figure 4.4: Fault injection base architecture

ICAP

Injector F. Addr
GenBit flip

CUT I/O Ctrl

Report Unit System Control

Frame
data

Logs
to PC

I/O Vectors

Golden
Copy

Frame
Memory

CUTAUT

Input
Gen

Golden
Output

Input
Vectors

= =?

53

vary from one device family to the other. Virtex 5 devices divide their frame addresses
into block type (3 bits), top/bottom (1 bit), row address (5 bits), major address (8 bits)
and minor address (7 bits), for a total of 24 bits. More details regarding frame
addressing and organization can be found at (XILINX, INC., 2011a).

The choice of an appropriate frame address must also take into account that the fault
injection platform is on the same FPGA and it must not disturb its own operation. Thus,
the concept of area under test (AUT) is defined, which restricts which configuration
frames are eligible to suffer fault injection. The circuit under test must be placed within
the AUT and the experiment control circuitry out of it, to ensure that it will maintain its
own integrity. This is achieved by means of placement constraints. Using the address
fields to aid in this process can greatly simplify determining the frames associated with
the AUT. In this work, we use an AUT limited within the top frame row, comprising
2,000 slices (8,000 LUTs and 8,000 flip-flops) and with approximately 2.6 million
configuration bits. If larger circuits are to be tested, then larger AUTs can be defined.
Doing so, however, also extends the experiment time.

Once the injector has defined a target frame and bit, it must read the desired frame
from the configuration. The read frame is stored in the frame memory. Then, the chosen
bit is flipped and the frame is written back, thus corrupting the bitstream. The read
frame remains in the frame memory for the following fault removal, once requested by
the system control. Bits are flipped back to their original values and the correct frame
contents are restored.

 Interacting with ICAP requires the following of a specific protocol, that includes
issuing read and write commands. Moreover, the results of each read command are
preceded by a dummy frame. Likewise, after completing a write command, one dummy
frame must be pushed in the ICAP data port. The costs of these commands and the
dummy frames will be quantified and taken into account when estimating the reachable
injection rate, in section 4.3.3. It is also important to keep in mind that configuration
frames have addressable non-existing bits. In other words, there are, scattered
throughout the memory, addressable bits that have no actual associated memory cell
(XILINX, INC., 2011a). Such bits should not be considered by the injection platform.
Thus, each injection is followed by a frame read to confirm that the injection was
successful and that only real configuration cells will be taken into account.

4.3.1.2 CUT I/O Controller

The CUT I/O Controller is responsible for interfacing with the CUT in order to
stimulate its operation and evaluate the effects of each injected fault. Thus, it must be
able to generate input stimuli and to compare the circuit outputs to the expected values.
This can be achieved by different means. The controller shown in Figure 4.4 assumes
that inputs are generated and applied both to the CUT and to a golden copy of it, which
allows evaluating the correctness of outputs at each cycle. If the CUT is a softcore
processor, however, the developer may be interested in the final state of the memory,
instead of a cycle per cycle comparison. The system may perform an initial fault-free
run of the software and store the final (golden) state of the memory, which is then used
as a reference for the subsequent faulty executions. The system requires, in this case,
three memories: one stores the initial memory state, one stores the golden final state,
and one is used as work memory, i.e., the memory that the CUT uses during execution.

Several different options exist regarding the input stimuli generation as well. They
may be pseudo-random, generated by a linear feedback shift register (LFSR), for

54

example. Alternatively, the developer may be interested in a specific set of input vectors
that represent the typical use case of that hardware, which may be stored in a memory.

4.3.1.3 Report Unit

The report unit is responsible for transmitting the experimental results to the host PC
for analysis. The specific information transmitted may differ depending on the purpose
of the experiment and the nature of the CUT. If it possesses some sort of error detection
mechanism, for example, the developer may be interested in determining which faults
were detected and which were not. There may also be situations in which the developer
is interested in the specific output values the CUT generated when faulty. For such
situations, the transmission of results may become a serious bottleneck of the system.
For straightforward error detection evaluations, however, low speed interfaces, such as a
serial port, are sufficient.

4.3.1.4 System Control

The system control unit coordinates the operation of all other modules in order to
realize a complete fault injection campaign. It starts by requesting a fault injection from
the SEU injector unit (1). Once the fault is injected, it activates the I/O controller so that
it starts applying input vectors (2). For a pre-specified number of cycles it monitors the
correctness of outputs and any error detection signal that may be triggered (3). The
system control then halts the I/O controller and requests the fault removal (4). While the
fault is removed, the report unit transmits the outcome of that particular fault (5). Steps
(1) through (5) are repeated until the desired amount of faults is injected. Then, the
report unit transmits any final results that were obtained during the experiment (6) and
finishes the execution.

4.3.2 Area costs

In order to leave as many resources as possible available for the CUT, allowing
larger and more complex circuits, it is important to maintain the entire SEU injection
and control system as small as possible. Table 4.1 shows the amount of resources used
by each component and by the entire system as well as the proportional occupation of
the device, considering a Virtex 5 XC5VLX110T.

The exact area occupation depends on the specific version of the platform being
used. For example, if the input vectors are stored in BRAMs, then the occupation of this
type of component will be increased. If the system uses a LFSR to generate pseudo-
random inputs, then additional flip-flops and LUTs will be required instead. The area
results provided herein refer to a platform injecting faults in a 32-bit ALU, which has 69
input bits (two 32-bit operands and 5-bit operation code) and 33 output bits (the result
value and an overflow flag). The injection platform system requires 1122 LUTs and 685
flip-flops, occupying 1.62% and 0.99% of the total device respectively, which contains

Table 4.1: Required resources and device occupation for a fault injection platform

Module
Required resources Device Occupation

LUTs FFs BRAM LUTs FFs BRAM
SEU Injector 431 149 1 0.62% 0.22% 0.68%
CUT I/O Controller 14 137 0 0.02% 0.20% 0.00%
Report Unit 30 15 0 0.04% 0.02% 0.00%
System Control 647 384 0 0.94% 0.56% 0.00%
Total 1122 685 1 1.62% 0.99% 0.68%

55

69,120 of each. The BRAM occupied by the SEU Injector unit stores the read frames
before they are written back to the configuration. Note that, even though 98.38% of the
LUTs are still available, not all of them are usable by the CUT. Some extra areas are
required to ensure the isolation of the CUT and of the control system. Still, the vast
majority of the FPGA may be used to accommodate the CUT.

4.3.3 Injection Rate

Since current FPGAs allow multiple clock domains, the components shown in
Figure 4.4 do not need to run at the same frequency. In this work, the SEU injector and
the ICAP run at 50 MHz to ensure that there is no timing violation, as is done in
(CHAPMAN, 2010). If required, however, the ICAP can be used with frequencies up to
100 MHz, further accelerating the process.

As described in section 4.3.1.1, each fault is injected by reading the frame, applying
the required modification and then writing the frame back. The frame is then read back
to verify that the injection was successful. For each read command, one invalid dummy
frame must also be retrieved, due to the internal implementation of the ICAP. Similarly,
for each write command, one dummy frame must be inserted in the data input port of
the ICAP. As each frame contains 41 words, each read or write access requires 82
cycles to be completed. Furthermore, there is the action of sending the read or write
instructions, which require several smaller commands. More details about the write and
read sequences can be found at (XILINX, INC., 2011a). Thus, the total time to read or
write a frame is the sum of the time required to send the command, to read or write a
dummy frame and to read or write the actual data. For the implementation done in this
work, the total times are 108 cycles to read a frame and 107 cycles to write a frame.
Hence, the total time strictly required to inject a fault is 215 cycles (one frame read and
one frame write). When considering also the time required to confirm the injection (one
read operation) and to remove the fault (one write operation), 215 additional cycles are
required. Thus, the strict injection time is 430 cycles, or 8.6 µs, considering the 50 MHz
clock frequency.

This injection rate allows, for example, exhaustively injecting faults in an
intermediate-sized FPGA, such as the Virtex 5 XC5VLX110T used in this work (with
approximately 24 Mbits of configuration), in less than 4 minutes. Further optimizations
are possible, especially when performing sequential fault injection, since in such cases
the following injected fault is likely to be in the same frame of the previous one.
However, the injection latency is so short that the total campaign time is likely to be
dominated by the stimulation of the CUT or the transmission of results. Therefore,
further reducing injection time will have little impact on the final experiment for most
cases. For example, assuming the CUT will run for 100,000 cycles at 50 MHz for each
fault, injection time represents less than 0.5% of the total experiment time. The total
time, in this case, is approximately 1 hour and 30 minutes for the AUT described in
section 4.3.1.1 (2,000 slices on the top frame row of the device).

56

57

5 FINE-GRAINED ERROR DETECTION

In this chapter, we present the developed fine-grained error detection mechanism.
The basic approach is described in section 5.1 and in section 5.2 the experimental setup
and design flow used to evaluate the proposed technique are detailed. Experimental
results including area, delay, error detection and detection acceleration are presented
and discussed in section 5.3. The radiation experiments conducted are described and
discussed in section 5.4.

5.1 Fine-grained detection with carry propagation chains
When building an adder or a subtracter in a LUT-based FPGA, emerges the problem

of calculating the most significant bits of the output. As they depend on all the least
significant bits, the amount of LUTs required to compute each one increases
significantly. For this reason, FPGA manufacturers include, along with each LUT, a
small circuit that comprises basically a multiplexer and an XOR gate to compute both
the carry out and the sum bits. Even though this circuit can be used to compute other
functions (XILINX, INC., 2010), synthesis tools rarely use them, unless an adder is
explicitly declared.

Figure 5.1 shows a simplified view of a carry chain circuit and the LUTs coupled to
it, based on a slice of a Virtex 5 device (XILINX, INC., 2010), shown in Figure 2.2. A
Virtex 5 slice comprises 4 LUTs, 4 flip-flops, the carry chain circuit and some
multiplexers for internal routing. The labels in Figure 5.1 indicate how one may use the
carry circuit to compare two pairs of duplicated LUTs. At the first stage (the
bottommost one), the multiplexer inputs are set to constant values ‘1’ and ‘0’, forcing it
to propagate the output of LUT A, X, to the next stage. The first XOR gate has one input
set to ‘1’ and the other to X. It behaves, thereby, like an inverter. Through the internal
routing of the slice, the output of the first multiplexer is directly connected to the inputs
of the second stage’s multiplexer and XOR gate. Through the external routing, i.e., the
global routing wires of the FPGA, one may set the other input of the second multiplexer
to X , as shown by the dashed arrow Figure 5.1.

The two inputs of the multiplexer in the second stage are set to X andX , for when
the selection signal equals ‘1’ or ‘0’, respectively. As the selection signal is the output
of LUT B, Y, this is equivalent to calculating the XNOR function of X and Y. The inputs
of the XOR gate in the second stage are also equal to the outputs of the two first LUTs.
The carry circuit is computing, hence, both the XNOR and XOR functions of X and Y,
and these values can be connected in a similar manner to the third carry stage and so on,
realizing the computation of the XOR and XNOR functions of the entire slice. One can
configure the top two LUTs in the slice to compute the same functions of the bottom
two. Thus, under normal circumstances, the output of the XOR gate at stage 4 will
always be ‘0’. And if any LUT diverges from its correct value, the error signal will be

58

raised. Thereby, a slice-wise error detection signal is implemented completely avoiding
the need to use LUTs to implement comparators.

As the carry out bit at the top of the slice, shown in Figure 5.1, is connected directly
to the carry in of the next slice in the same FPGA column, the amount of LUTs that can
be compared this manner, by a single comparator, is limited only by the amount of rows
in the device. The latency of such circuit, however, could be too large for the
application at hand. Thus, several smaller checkers can be stacked in a same column to
keep delay penalties to a minimum. This actually allows one to find the best trade-off
for each application, regarding error detection granularity and delay penalty. The
example in Figure 5.1 assumes that each slice will produce an individual error
indication signal at the output of the topmost XOR gate. Also, as the last carry out of a
checking group is actually the inverted error signal, it will always be ‘1’, unless a fault
was already detected. This allows the stacking of arbitrarily long comparators in a same
column even without respecting slice boundaries, since the only requirement is that the
bottom carry in is equal to ‘1’.

In order to minimize undetectable errors, it is crucial to maintain an appropriate
routing between modules. Figure 5.2(a) shows an approach in which one of the modules
drives both replicas of the following logic stage. There is a potentially critical routing
segment created in between the two stages, shown by a dashed line. Faults on that
segment may not be detected by e0, since it is past the point in which the comparator is
connected, nor by e1, since whichever effect the fault has on the wire will be observed
by both LUTs l1 and l1’ , leading to incorrect results on both. The scheme used in Figure
5.2(b) removes that segment by connecting l0 to l1 and l0’ to l1’ . Thus, unless a single
fault corrupts both nets, which can be minimized by using reliability-aware routing as in
(STERPONE and VIOLANTE, 2006), faults affecting one of them will be detected by
either e0 or e1. Similar situations occur to PIs and POs. The branching of PIs should be
done as soon as possible, as shown in Figure 5.2(b). This is particularly important for

Figure 5.1: Carry chain circuit applied to fine-grained comparison

X

X

P1

LUT
A

LUT
B

LUT
C

LUT
D

0 1

0 1

0 1

0 1

X

X’

Y

Y’

10

X

P1

P2

P1

P2

error

Cin

Cout (error)

P2

Slice

Stage 1

Stage 2

Stage 3

Stage 4

Figure 5.2: Incorrect (a) and correct (b) routing in FG-DMR. Dashed lines denote

critical routing paths

l0’

=?l0 l1 =?

l1’

e0 e1

Out
In

l0’

=?l0 l1 =?

l1’
Out

In

(a) (b)

e0 e1

59

fine-grained approaches, because an unaware routing algorithm could tend to split these
nets near the modules, as in Figure 5.2(a), due to the closeness of the redundant
modules. In this work we use duplicated PIs to eliminate these critical segments.
Alternatively, a modified routing algorithm could force them to split as soon as possible
to minimize undetectable faults. Reducing the length of PO routing is also an alternative
to reduce the length of critical routing. Moreover, POs can be duplicated as well, if the
module is followed by another duplicated circuit.

There are some limitations to the applicability of the proposed comparison
mechanism. If the carry chain is already occupied to perform another function, such as
addition, then it naturally cannot be used for comparison. Furthermore, the extra slice
inputs that are required to route the partial comparison signals (shown with dashed
arrows in Figure 5.1) must be free. When the synthesis tool allocates them to other
resources, such as the multiplexers that are used to implement arbitrary 7-input and 8-
input functions (MUXF7 and MUXF8, respectively), then regular LUT-based
comparators must be instantiated.

Once all comparators are defined, one is left with numerous error detection signals.
If these signals are to be used to trigger a local scrubbing procedure, then they must be
combined into a single bit. This is done by computing the OR function over all signals.
We refer to this operation as error aggregation. In all results presented in this chapter,
the existence of the error aggregation circuit is taken into account.

When instantiating redundancy checkers, it is also always important to also take into
account the reliability of the checker itself. The use of redundant checkers is a
traditional approach to assert the detection of faults affecting the checking circuit
(KUNDU and REDDY, 1990). Specifically for FPGAs, if a single checking bit is used,
errors affecting the bitstream portion associated with the comparator may set its output
to ‘0’ (assuming ‘1’ indicates an error). Such errors may stay dormant for a long period,
affecting the overall reliability. In order to avoid this issue, redundant checkers may be
used. Figure 5.3 shows how they are implemented in this work. In order to avoid the
excessive area overheads of fine-grained LUT-based comparators, we implement a
redundant checker that operates only on the primary outputs (POs) of the circuit,
avoiding the propagation of the error to other modules in the system. The use of LUT-
based comparators for POs is also useful as it allows reducing the length of the critical
PO routing segments shown in Figure 5.2 by placing them close the end of the net (an
IOB, for example).

5.2 Experimental setup
Figure 5.4 shows the design flow used. It starts with an unhardened description of

the user circuit in a standard hardware description language, which is synthesized using

Figure 5.3: Redundant heterogeneous comparators

CMP

e0
LUTs
Carry chain

OR

l2

l3’

l3

l4

l4’

l5’

l5

l2’
CMP

POs

CMP

l0

l1’

l1

l0’

e1CMP

60

Xilinx Synthesis Technology (XST). The post-synthesis netlist is converted from its
native format into a structural VHDL description using Xilinx netgen (XILINX, INC.,
2011c). At this point, the circuit is already described using the basic components found
in the FPGA fabric, such as LUTs, flip-flops, carry chains and multiplexers.

A redundancy insertion tool was developed in C++ to automatically apply the
proposed technique. It parses the post-synthesis netlist and builds an internal
representation of the circuit. Then, it duplicates all components and instantiates carry
chain comparators that cover one slice for those LUTs that have available the required
resources, as shown in Figure 5.1. All internal signals are duplicated as well, in order to
maintain the routing redundancy shown in Figure 5.2. For those LUTs to which the
technique is not applicable, regular LUT-based comparators are inserted. The error
aggregation circuit is also introduced by the tool, if requested by the user. The tool
generates a structural VHDL description of the hardened circuit, also using the, which
goes through Xilinx standard flow to determine area and delay costs.

The hardened circuit is then subject to fault injection, using the platform described
in section 4.3. Exhaustive fault injection is used, i.e., every configuration bit associated
with the CUT is flipped (2,628,288 bits). The AUT used is that described in section
4.3.1.1 (2,000 slices on the top frame row). Circuits receive pseudo-random inputs,
which are applied to a golden copy of the circuit as well. For each injected fault,
100,000 input vectors are applied. And for each applied vector, the correctness of the
outputs is verified, along with the state of the error detection bits. Each vector can be
classified into one of four categories (shown here in ascending severity order):

1. No event: the outputs are correct and the error detection bits are low. This occurs
frequently, since not all configuration bits are able to corrupt the circuit
operation. Furthermore, not all input vectors are able to stimulate an error, even
when it indeed affected the circuit.

2. Detected only: the outputs are correct but an error detection bit was raised. This
happens mainly for one of three reasons: the secondary copy of the circuit was
struck by the fault, i.e., the one not driving POs; the checking circuit was struck;
the primary copy was hit and the error was detected by an internal comparator,
but it did not yet propagate to a PO, i.e., it was masked by the circuit logic.

3. Detected error: the outputs are incorrect and the error was detected. This is the
straightforward situation in which the error propagated to a primary output and
was detected by the comparators.

4. Undetected error: the outputs are incorrect but the error detection bits remained
low. This is by far the most severe case, which happens mainly when a PO is
affected past the point in which it is compared to its copy. It may also happen
due to single faults that affect multiple nets in both redundant circuits, (LIMA,
CARMICHAEL, FABULA, et al., 2001).

Figure 5.4: Experimental design flow

HDL
Design

XST +
netgen

Synth.
Circuit

Xilinx
Flow

Xilinx
Flow

Fault
Injector

Redundancy
Insertion

DMR
Design

FPGA

Area &
Performance

Error
detection

61

Each injected fault is classified into the highest severity category it presented among
all applied input vectors, as is done in (BOLCHINI, CASTRO and MIELE, 2009).
Figure 5.5 shows some of the most likely locations of faults in each category, in a
simple coarse-grained DMR circuit for the sake of clarity.

The platform monitors not only the specific outcome of each fault (i.e., if it caused
errors in the circuit POs and/or if it was detected) but also the amount of cycles it takes
for error detection to be triggered. This allows determining the average detection time,
which is important for systems relying on triggered scrubbing to remove faults.

5.3 Experimental results
Table 5.1 characterizes the input benchmark circuits regarding the amount of LUTs,

flip-flops, primary inputs (PIs), primary outputs (POs) and minimum clock period TClk.
A set of 22 benchmark circuits was used, 20 of which are from the MCNC

Figure 5.5: Locations of faults of each category

Secondary
Module

Inputs

OutputsPrimary
Module

Comparator Error

3

2

4
3

2

4

1

Table 5.1: Input benchmark circuits

 LUTs FFs PIs POs TClk (ns)
alu4 402 0 14 8 4.94
alu_32b 342 0 69 33 6.77
alu_64b 721 0 133 65 8.01
apex2 798 0 39 3 6.26
apex4 655 0 9 18 6.39
bigkey 575 224 264 197 3.63
clma 1269 34 384 82 7.25
des 550 0 256 245 4.26
diffeq 470 244 29 3 4.64
dsip 635 224 230 197 2.78
elliptic 143 71 20 2 3.46
ex1010 487 0 10 10 4.59
ex5p 128 0 8 63 2.99
frisc 1718 853 21 116 8.30
misex3 699 0 14 14 5.55
pdc 1253 0 16 40 6.18
s298 17 14 5 6 2.78
s38417 1709 1447 30 106 5.26
s38584.1 2001 1233 40 304 4.84
seq 846 0 41 35 5.27
spla 221 0 16 46 3.98
tseng 598 260 53 122 5.17

62

(Microelectronics Center of North Carolina) benchmark suite and were obtained at
(MINKOVICH, 2011). For all of these, described by means of boolean equations and
flip-flops, the synthesis tool was unable to make any use of the carry propagation
circuit. The other two circuits are ALUs with 32 and 64 bits (alu_32b and alu_64b),
described with a higher level behavioral VHDL and explicitly using additions and
subtractions. As a result, the synthesis tool was able to infer adders/subtracters for these
circuits. However, even for such cases, only approximately 10% of the LUTs had their
associated carry circuitry occupied. This shows that for many cases the carry
propagation chain is highly unused, and can be available for the application of the
proposed technique.

In order to set baseline values for each evaluation axis presented herein, the
proposed fine-grained DMR (FG-DMR) is compared to traditional coarse-grained DMR
(CG-DMR). It consists in duplicating the entire circuit and comparing the primary
outputs only, also with redundant comparators. The benchmark circuits can be viewed
as individual modules in a larger system, in which case the baseline CG-DMR is in
keeping with the approaches used in (BOLCHINI, MIELE and SANDIONIGI, 2011)
and (PSARAKIS and APOSTOLAKIS, 2012). Note that the benchmark circuits have
very diverse sizes and some of them have a large amount of POs compared to their own
total sizes (such as ex5p, des and bigkey). For such cases, as a relevant amount of
internal signals are also POs, the two approaches are likely to behave similarly on some
of the comparison axes. All results are shown both in tables, with absolute values, and
charts, in order to highlight the relations between techniques for different circuits.

5.3.1 Area

Since minimizing the area is among the motivations of the proposed FG-DMR
technique, it is important to assess if the observed overhead is indeed comparable to that
of standard CG-DMR. For both, the increase in number of flip-flops is exactly 100%,
since these are used only in the payload circuit itself, i.e., the circuit computing the user-
specified function. Thus, we focus our analysis on the use of LUTs, which are the basic
logic building blocks of FPGA circuits and are exactly the resource FG-DMR aims at
saving. Table 5.2 shows the absolute costs, in number of LUTs. Figure 5.6 shows
proportional overheads over the unhardened circuit, for both approaches, with CG-
DMR on the left and FG-DMR on the right for each circuit.

Figure 5.6: Area overheads for CG-DMR (left-hand bar of each circuit) and FG-
DMR (right-hand bar)

0%

20%

40%

60%

80%

100%

120%

140%

160%

LU
T

 A
re

a
O

ve
rh

ea
d

Copy Comparators Error Aggregation

63

The costs in Figure 5.6 and Table 5.2 are divided into the main components of each
approach. CG-DMR comprises a 100% cost due to the copy of the circuit and, on
average, additional 11.6% due to comparators, for a total of 111.6%. FG-DMR, on the
other hand, introduces a 10.5% average overhead due to comparators and 8.3% to
perform error aggregation, for a total of 118.8% overhead when considering the circuit
replica as well. The comparator cost of FG-DMR comprises both the redundant output
comparators and the fine-grained LUT comparators for situations in which carry chains
could not be used.

The CG-DMR costs are particularly more pronounced for those circuits with a high
amount of POs compared to its total size. Most notably, des (550 LUTs and 245 POs)
and ex5p (128 LUTs and 63 POs) present such high costs for CG-DMR that FG-DMR
actually requires fewer LUTs. For s298 both approaches present exactly the same area.
The costs of FG-DMR depend not only on the amount of POs (since it also has a PO-
only comparator) but also on the amount of LUTs to which the carry chain comparison
is not applicable. For alu4, for example, 24.4% of the LUTs make use of their
associated MUXF7 multiplexer, imposing the need for many LUT-based comparators
and increasing the comparator costs of FG-DMR when compared to CG-DMR. For the
remaining circuits, however, these situations occur more rarely. As a result, the average

Table 5.2: Area costs in LUTs (comparators, error aggregation and total, including the
two circuit copies)

CG-DMR FG-DMR

Comp. Total Comp Error Aggreg. Total
alu4 8 812 51 32 887
alu_32b 28 712 45 26 755
alu_64b 55 1497 87 57 1586
apex2 2 1598 10 66 1672
apex4 14 1324 12 55 1377
bigkey 154 1304 116 48 1314
clma 65 2603 101 98 2737
des 192 1292 100 46 1246
diffeq 2 942 8 39 987
dsip 154 1424 107 51 1428
elliptic 2 288 5 12 303
ex1010 10 984 70 36 1080
ex5p 52 308 35 10 301
frisc 92 3528 83 144 3663
misex3 12 1410 18 58 1474
pdc 34 2540 99 100 2705
s298 6 40 4 2 40
s38417 88 3506 60 143 3621
s38584.1 224 4226 152 164 4318
seq 30 1722 25 70 1787
spla 40 482 40 17 499
tseng 96 1292 59 50 1305

64

area overhead of FG-DMR over CG-DMR is 3.57%, showing that the proposition of
maintaining a manageable overhead was achieved.

5.3.2 Clock period

Although usually smaller than that of temporal redundancy techniques, spatial
redundancy techniques also introduce performance penalties. For DMR, the delay
overhead is caused mainly by the checking circuits that are introduced in series with the
critical path of the original circuit. Table 5.3 shows the minimum clock period TClk, in
nanoseconds, for each circuit. For the combinational circuits, TClk comprises the
complete circuit delay.

Figure 5.7 highlights that the two techniques have very diverse behaviors for each
circuit. For example, for alu4 both present comparable costs (the delay of FG-DMR is
14.8% longer than that of CG-DMR). For other circuits there may be more significant
increases when introducing FG-DMR. For frisc, e.g., FG-DMR presents 81.1%
overhead over CG-DMR. On average, FG-DMR presents an 86.3% TClk increase over
the unhardened circuit and 48.7% over CG-DMR. The additional delay is due to the
nature of the introduced comparators. When using the proposed FG-DMR with carry
chain comparators, intermediate signals are routed through the global wires of the
device, as was discussed in section 5.1, introducing additional delay. Moreover, since

Table 5.3: Minimum clock period in nanoseconds

 Unhardened CG-DMR FG-DMR
alu4 4.94 6.55 7.52
alu_32b 6.77 8.27 9.83
alu_64b 8.01 9.59 11.98
apex2 6.26 7.84 10.86
apex4 6.39 7.79 9.78
bigkey 3.63 4.56 8.12
clma 7.25 7.29 11.87
des 4.26 7.08 8.46
diffeq 4.64 4.97 9.55
dsip 2.78 4.14 8.26
elliptic 3.46 3.50 6.91
ex1010 4.59 6.61 7.59
ex5p 2.99 4.83 5.59
frisc 8.30 8.33 15.08
misex3 5.55 7.37 10.03
pdc 6.18 8.94 10.67
s298 2.78 2.80 4.09
s38417 5.26 5.61 12.11
s38584.1 4.84 7.06 11.20
seq 5.27 7.39 10.04
spla 3.98 5.81 6.94
tseng 5.17 5.77 9.11
Average 5.15 6.46 9.34

65

many error signals are generated, the error aggregation circuit imposes further
overheads.

The fact that CG-DMR compares only POs further fuels this difference, especially
for sequential circuits. For instance, if all primary outputs of the circuit are registered,
then the introduction of output comparators may not change the critical path at all.
Sequential circuits such as clma, frisc and s298 show negligible differences between the
unhardened versions and CG-DMR. As a result, the increase in TClk of FG-DMR over
CG-DMR is particularly more pronounced for sequential circuits (78.9%, on average)
than for combinational ones (23.6%). However, when comparing only primary outputs,
it may take longer to detect the occurrence of a fault, leaving the error latent for a longer
time, as will be shown in section 5.3.4. Moreover, when the error reaches the
comparators, internal registers are likely to be corrupted, increasing the complexity of
checkpoint and rollback procedures, as discussed in (PSARAKIS and APOSTOLAKIS,
2012). Finally, these measurements consider straightforward clock period, which may
not reflect directly in the performance. The performance of the system may be limited
by other modules, that may present clock period or throughput limitations, or by the
input bandwidth. It can also be the case in which the system is able to meet the real-time
deadlines with spare time. In such cases, it may be more relevant to provide fast error
detection and correction than the fastest possible circuit operation.

5.3.3 Error detection

In this section we discuss the results of fault injection regarding the classification of
faults into the categories described in section 5.2. Table 5.4 shows the absolute amount
of faults in each category (category 1 is omitted for clarity). It can be seen that FG-
DMR shows a very significant increase in the amount of faults in category 2. This, in
fact, is firstly related to the greatly increased observability that FG-DMR introduces.
Since it compares individually the output of each and every LUT, it has a much
increased probability of detecting the presence of an error. Therefore, there is an
increased likelihood that an error effectively affecting the circuit is classified as “no
event” for CG-DMR simply because it never propagated to a primary output. This is
more pronounced for sequential circuits due to the increased difficulty in propagating
faults in such circuits, a property long identified by researches on automated test pattern
generation (ABRAMOVICI, BREUER and FRIEDMAN, 1990). Second, the fine-

Figure 5.7: Minimum clock period TClk for the unhardened circuit, CG-DMR and

FG-DMR

0

2

4

6

8

10

12

14

16
al

u4

al
u_

32
b

al
u_

64
b

ap
ex

2

ap
ex

4

bi
gk

ey

cl
m

a

de
s

di
ffe

q

ds
ip

el
lip

tic

ex
10

10

ex
5p

fr
is

c

m
is

ex
3

pd
c

s2
98

s3
84

17

s3
85

84
.1

se
q

sp
la

ts
en

g

A
vg

.

T
C

lk
(n

s)

Unhardened CG-DMR FG-DMR

66

grained comparators naturally demand additional configuration bits, which also impacts
on the amount of faults observed on category 2. Fine-grained comparison also increases,
but on a reduced scale, the amount of faults in category 3, which are output errors that
were detected. This is due to the modified placement and routing that the proposed
technique imposes, which can add sensitive bits to the primary circuit as well.

Of special interest is the comparison on the amount of faults in category 4, which are
those that caused a PO error and went undetected for at least one input vector. Figure
5.8 presents the variation in the amount of undetected errors for the two techniques.
Negative values indicate benchmark circuits for which FG-DMR had fewer such events,
i.e., F4CG > F4FG. FG-DMR showed fewer faults in category 4 for 10 circuits, while CG-
DMR was better on the remaining 12. On average, FG-DMR presents 12.73% more
undetected faults.

Another, and also relevant, perspective on the meaning of these figures can be found
by analyzing the fault coverage. As discussed in section A.5 of Appendix A, fault
coverage is the fraction of total events that was appropriately handled by a given
mechanism, being an important metric of its efficacy. It is usually calculated as the ratio
between covered faults (detected, in this case) and total faults. The total amount of
faults, however, can be defined in different ways for this kind of experiment. Simply
taking into account the total amount of injected faults can be misleading, since most of

Table 5.4: Amount of faults in each category

CG-DMR FG-DMR
2) Det.
Only

3) Det.
Error 4) Undet

2) Det.
Only

3) Det.
Error 4) Undet

alu4 29286 29199 156 55065 38414 83
alu_32b 29892 27610 416 48210 33473 377
alu_64b 62604 63174 749 104927 76443 557
apex2 45437 45087 92 156147 59282 47
apex4 57943 56686 197 90299 73852 196
bigkey 67352 51496 1319 79904 56617 1225
clma 4576 2770 185 98612 3469 213
des 69231 52351 1366 88262 61817 1612
diffeq 577 547 22 40749 747 12
dsip 73524 62001 1394 105406 73560 975
elliptic 300 245 16 13681 466 30
ex1010 30077 29781 109 60643 39891 160
ex5p 11185 8157 305 15753 9989 401
frisc 63096 56604 407 203668 88283 864
misex3 46839 46146 130 98855 67283 168
pdc 106608 104191 356 197795 141581 434
s298 848 740 27 1270 1059 33
s38417 24744 19732 353 245031 27188 244
s38584.1 168111 149026 1059 384042 230289 1161
seq 71711 72449 242 136585 96316 368
spla 17873 15631 203 28319 19371 405
tseng 9236 4340 556 78902 6400 439

67

them did not actually hit the CUT. As discussed in (LESEA, DRIMER, FABULA, et
al., 2005), most bits are bound to have no effect on the system, even in high occupation
scenarios, due to the great over provisioning required from routing resources. Thus, we
consider only sensitive bits, i.e., those that modified circuit behavior in some way. Let
Fx denote the amount of faults in category x. The total amount FT can be calculated as
FT = F2+F3+F4. However, when comparing two different techniques, the total amount of
faults FT should ideally be the same for both. Otherwise, a technique with more
uncovered faults could in fact present higher fault coverage simply because it presents a
much higher FT. Note that the high fault masking observed for CG-DMR can
significantly reduce its FT, leading to an apparent reduced coverage. Thus, in order to
maintain a fair comparison, we use the FT values of FG-DMR also when calculating the
fault coverage of CG-DMR.

Figure 5.9 shows the obtained results, which are quite high for both techniques. CG-
DMR presents an average coverage of 99.62%, whereas for FG-DMR it is 99.58%, i.e.,
a 0.04% difference. The circuits with lower coverage are the ones with a large amount
of primary outputs per LUT (mainly bigkey, des, ex5p and s298), which is in keeping
with the discussions section 5.1, i.e., that POs introduce critical routing segments. If
higher coverage is required, reliability-oriented routing can be used, such as the
approaches presented in (KASTENSMIDT, FILHO and CARRO, 2006) and
(STERPONE and VIOLANTE, 2006).

Figure 5.8: Undetected error variation. Positive values indicate a smaller amount for

CG-DMR.

-60%
-40%
-20%

0%
20%
40%
60%
80%

100%
120%
140%

al
u4

al
u_

3
2

b

al
u_

6
4

b

ap
ex

2

ap
ex

4

b
ig

ke
y

cl
m

a

d
es

d
iff

eq

d
si

p

el
lip

tic

ex
1

0
1

0

ex
5

p

fr
is

c

m
is

ex
3

p
d

c

s2
9

8

s3
8

4
1

7

s3
8

5
8

4
.1

se
q

sp
la

ts
en

g

A
vg

U
nd

ec
te

d
er

ro
rs

 v
ar

ia
tio

n
F

4
C

G
<

 F
4

F
G

F
4

C
G

>
 F

4
F

G

Figure 5.9: Fault coverage for FG-DMR and CG-DMR.

97.5%

98.0%

98.5%

99.0%

99.5%

100.0%

al
u4

al
u_

3
2

b
al

u_
6

4
b

ap
ex

2
ap

ex
4

b
ig

ke
y

cl
m

a
d

es
d

iff
eq

d
si

p
el

lip
tic

ex
1

0
1

0
ex

5
p

fr
is

c
m

is
ex

3
p

d
c

s2
9

8
s3

8
4

1
7

s3
8

5
8

4
.1

se
q

sp
la

ts
en

g
A

vg

F
au

lt
C

ov
er

ag
e

FG-DMR CG-DMR

68

5.3.4 Detection acceleration

As the reduction on error detection time is among the advantages of fine-grained
techniques, in this section we compare the average time each technique requires to
detect the presence of an error. Since many of the faults in category 2 observed for FG-
DMR were not detected by CG-DMR during the experiment due to the reduced
observability, it is not possible to determine their detection time. Thus, we focus our
analysis on those faults that indeed propagated to primary outputs (i.e., category 3). The
developed fault injection tool monitors CDet, the amount of cycles required to detect the
presence of each error, and reports it to the host PC. The fine-grained circuits, however,
do not necessarily operate at the same frequency of the coarse-grained ones. When
considering that each circuit operates at its maximum frequency, the average error
detection time TDet is calculated as shown in (5.1), where TClk is the clock period and
CDet is the average amount of cycles to detect. Table 5.5 shows the results.

DetClkDet CTT ⋅=

Figure 5.10 shows the reduction in CDet observed with the use of FG-DMR. Circuits
display very diverse values as different functions have different masking probabilities.
For example, the XOR function will always propagate an error on one of its inputs,

Table 5.5: Average amount of cycles and associated time to detect an error

CG-DMR FG-DMR

CDet TDet (ns) CDet TDet (ns)
alu4 1800.71 11791.02 42.66 320.73
alu_32b 394.04 3259.90 110.59 1087.54
alu_64b 387.05 3709.84 114.48 1370.93
apex2 11482.31 89998.34 1099.86 11941.15
apex4 211.61 1647.40 193.21 1889.43
bigkey 37.19 169.67 15.71 127.53
clma 20.13 146.64 12.66 150.31
des 66.98 474.00 46.83 396.26
diffeq 3708.65 18446.82 19.52 186.44
dsip 92.91 384.66 45.84 378.40
elliptic 2096.16 7342.85 5.63 38.88
ex1010 480.60 3178.23 33.53 254.51
ex5p 109.23 528.02 62.75 350.66
frisc 11139.11 92766.53 5769.30 87024.11
misex3 1327.88 9783.81 407.68 4090.67
pdc 4655.00 41620.39 171.72 1832.23
s298 2076.20 5802.97 2020.98 8255.69
s38417 982.62 5512.52 289.59 3507.26
s38584.1 5354.82 37794.30 648.89 7270.22
seq 8187.95 60525.35 2200.91 22090.51
spla 3724.51 21654.28 466.82 3237.39
tseng 1985.94 11466.82 547.50 4985.54
Average 2741.89 19454.74 651.21 7308.47

(5.1)

69

while the AND function will mask it as long as another input equals ‘0’. On average, a
66.2% reduction was observed, with a maximum of 99.73% for elliptic.

Figure 5.11 shows the reduction in error detection time made possible by FG-DMR.
Negative values indicate situations for which the coarse-grained approach was faster,
i.e., TDetCG < TDetFG. This happens due to a combination of two factors: 1) the circuit
masking probabilities are low, leaving small room for improvements on CDet; 2) the
clock period is longer for FG-DMR, meaning that fewer input vectors are applied per
unit of time. For the majority of circuits, however, the improvements in fault
observability were able to significantly reduce the error detection time, with elliptic
displaying once more the most significant reduction (99.47%). This is in agreement
with other hints that this circuit had a high masking probability: it has only 2 PO bits,
and its variation in F2 for CG-DMR and FG-DMR is very significant (~45×). On
average, a 50.15% reduction was observed.

5.4 Radiation Experiments
With the purpose of evaluating the resilience of the proposed mechanism when

subject to actual radiation and also of validating the conducted fault injection
campaigns, radiation experiments were performed and are herein described and
analyzed. Experiments took place at the VESUVIO facility in ISIS, Rutherford
Appleton Laboratories in Didcot, United Kingdom. We irradiated the device with a
fluence of approximately 1.5·1010 n/(cm2) with the available spectrum (shown in Figure

Figure 5.11: Reduction in error detection time

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

al
u4

al
u_

3
2

b
al

u_
6

4
b

ap
ex

2
ap

ex
4

b
ig

ke
y

cl
m

a
d

es
d

iff
eq

d
si

p
el

lip
tic

ex
1

0
1

0
ex

5
p

fr
is

c
m

is
ex

3
p

d
c

s2
9

8
s3

8
4

1
7

s3
8

5
8

4
.1

se
q

sp
la

ts
en

g
A

vg
.

R
ed

uc
tio

n
on

 d
et

ec
tio

n
tim

e T
D

e
tC

G
>

 T
D

e
tF

G
T

D
e
tC

G
<

 T
D

e
tF

G

Figure 5.10: Reduction in cycles to detect an error

0%

20%

40%

60%

80%

100%

al
u4

al
u_

3
2

b
al

u_
6

4
b

ap
ex

2
ap

ex
4

b
ig

ke
y

cl
m

a
d

es
d

iff
eq

d
si

p
el

lip
tic

ex
1

0
1

0
ex

5
p

fr
is

c
m

is
ex

3
p

d
c

s2
9

8
s3

8
4

1
7

s3
8

5
8

4
.1

se
q

sp
la

ts
en

g
A

vg
.

R
ed

uc
tio

n
in

 d
et

ec
tio

n
cy

cl
es

70

5.12), which has already been demonstrated to be suitable to emulate t
neutron flux (VIOLANTE, STERPONE, MANUZZATO,
flux was of approximately 4.5
focused on a spot with a diameter of 3 cm plus 1
cover the whole FPGA chi
normal incidence.

5.4.1 Tested circuit

The experiments were conducted on a XUPV5
Xilinx Virtex 5 XC5VLX110T FPGA
fault injection experiments were conducted
process (XILINX, INC., 2009b)
and a USB cable, needed for experimental result tra
reprogramming, respectively.

The design implemented in the FPGA comprises a control unit and 26 copies of the
circuit under test (CUT), aiming at increasing
amount of observed events. The CUT used was
placement of the modules, with individual CUT identifiers, as well as of the control unit
(in dark grey). The even numbered CUTs
while the odd numbered ones

The apex4 circuit was chosen among other benchmarks due to its intermediate size
(655 LUTs) and relative small amount of inputs and outputs (9 and 18, respectively)

Figure 5.12: ISIS spectrum compared to t
facilities and to the terrestrial one at sea level multiplied by 10

STERPONE, MANUZZATO,

Figure 5.13: Placement
light gray) used the proposed FG

), which has already been demonstrated to be suitable to emulate t
(VIOLANTE, STERPONE, MANUZZATO, et al., 2007)

flux was of approximately 4.5·104 n/(cm2·s) for energies above 10 MeV. The beam was
focused on a spot with a diameter of 3 cm plus 1 cm of penumbra, which is enough to
cover the whole FPGA chip. Irradiation was performed at room temperature with

The experiments were conducted on a XUPV5-LX110T board, which contains a
Xilinx Virtex 5 XC5VLX110T FPGA, i.e., the same device and board on
fault injection experiments were conducted. This FPGA is manufactured with a 65

(XILINX, INC., 2009b). The board was connected to a host PC with a serial
and a USB cable, needed for experimental result transmission and FPGA
reprogramming, respectively.

The design implemented in the FPGA comprises a control unit and 26 copies of the
rcuit under test (CUT), aiming at increasing the device occupation and, thus, the

amount of observed events. The CUT used was the apex4 circuit. Figure
placement of the modules, with individual CUT identifiers, as well as of the control unit

. The even numbered CUTs (in light grey) are hardened with
bered ones (in white) use the standard CG-DMR.

circuit was chosen among other benchmarks due to its intermediate size
small amount of inputs and outputs (9 and 18, respectively)

spectrum compared to those of the LANSCE and TRIUMF
facilities and to the terrestrial one at sea level multiplied by 107 and 108

STERPONE, MANUZZATO, et al., 2007)

Placement of replicas and control unit. Even numbered replicas

used the proposed FG-DMR while odd numbered ones used CG

0 1 2
3 4 5
6 7 8
9 10 11
12 13 14
15 CTRL 16
17 18 19
20 21 22
23 24 25

), which has already been demonstrated to be suitable to emulate the atmospheric
, 2007). The available

s) for energies above 10 MeV. The beam was
cm of penumbra, which is enough to

p. Irradiation was performed at room temperature with

LX110T board, which contains a
board on which the

. This FPGA is manufactured with a 65 nm
. The board was connected to a host PC with a serial

nsmission and FPGA

The design implemented in the FPGA comprises a control unit and 26 copies of the
the device occupation and, thus, the

Figure 5.13 shows the
placement of the modules, with individual CUT identifiers, as well as of the control unit

are hardened with FG-DMR,

circuit was chosen among other benchmarks due to its intermediate size
small amount of inputs and outputs (9 and 18, respectively)

hose of the LANSCE and TRIUMF
8 (VIOLANTE,

of replicas and control unit. Even numbered replicas (in
DMR while odd numbered ones used CG-DMR.

71

compared to the other circuits of the suite. The reduced amount of inputs and outputs
simplifies the routing of the multiple circuit instances, while the intermediate circuit
size allows reaching a higher device occupation with fewer copies than with other
circuits, simplifying the control circuitry and reducing its probability of being hit by
faults. Each circuit with FG-DMR required 1377 LUTs, while those with standard CG-
DMR required 1324 LUTs. The circuits used in these experiments do not use duplicated
primary inputs, in order to minimize the routing interference over the CUTs.

Pseudo-random inputs are applied with a linear feedback shift register to all the
CUTs and a “golden” instance. Each of the 26 CUT copies has the same 4 possible
states described in section 5.2: 1) normal execution; 2) error in the configuration
memory detected by the comparators but not observed at POs; 3) error detected and
observed at POs; 4) error not detected but wrong POs. Whenever a CUT leaves the
normal execution state, the transmission of a faulty state description (FSD) is triggered,
informing the host PC about the current state of all CUT instances. It contains 2 bits per
instance: one to indicate if the fault was detected and one to indicate if the fault
manifested at a PO. Each FSD has, thus, 52 bits, which are transmitted in 7 bytes. Note
that several upsets may occur in the configuration memory before an error is observed
in the circuits, due to the single event upset probability impact (SEUPI) de-rating factor
(LESEA, DRIMER, FABULA, et al., 2005). All cross-section and failure rate values
measured in the radiation experiments, thus, are dynamic, and reflect the susceptibility
of the user circuit atop the FPGA fabric (FULLER, CAFFREY, SALAZAR, et al.,
2000).

A control unit was added for applying input vectors to all the CUT copies, checking
the correctness of the outputs and transmitting FSDs to the host PC through the serial
cable. The control unit was positioned in the center of the FPGA (see Figure 5.13) so
that it enclosed the clock and serial transmission I/O pins, located at that region. It uses
1037 LUTs and 238 registers and comprises the golden instance of the original
unhardened apex4, with 655 LUTs. Faults in the golden instance can be easily detected,
as the system will inform that all the 26 CUTs have incorrect outputs, creating a FSD
that differs radically from those received when a fault strikes one of the CUTs. The
remaining 382 LUTs and 238 registers are responsible for monitoring and transmitting
the FSDs.

As the control unit is embedded on the same FPGA of the CUTs, it requires a
mechanism to monitor its integrity. Therefore, it periodically transmits an “alive” signal
to the host PC through the serial cable. We add a watchdog on the host PC that
reprograms the FPGA if the alive signal is not received for more than 3 seconds,
allowing the detection and removal of faults on the control state machine, clock
distribution or transmission circuitry. Finally, if no FSD is received after 10 minutes,
the device is preventively reprogrammed, even if the alive signals are being received
properly. This allows avoiding situations in which the system is still sending the alive
signal but is no longer checking the output of the CUTs or is unable to send a FSD. All
reconfigurations are performed by the remote host PC over a USB cable.

After the transmission of the FSD, the control unit waits 100,000 cycles, latching
state changes that may occur for the CUTs during this period. A new FSD is then
transmitted. This allows finding with greater accuracy if the fault could affect a primary
output and is important especially when fine-grained detection schemes are used. If a
scheme is able to perform early detection, then the first FSD may indicate it before error
manifestation at a PO, while the second one, after 100,000 cycles, indicates if the fault

72

eventually propagated to a PO. As the system runs at 50 MHz, we consider the
probability of another SEU occurring in the 2 ms waiting period to be negligible (P ≈
7·10-6). After the reception of the second FSD, the host PC reprograms the FPGA to
initiate a new round of the experiment.

5.4.2 Neutron experiments results

Each of the events reported by the control unit was classified, according to its FSD,
into the same categories described in section 5.2. Events of category 1 are not reported
by the monitoring system, as FSD transmission is only triggered when one or more
CUTs leave the normal execution state. Table 5.6 shows the amount of events reported
for each category, for the two techniques. The results labeled “Pre” are those obtained
by the FSD sent before the 100,000 cycles waiting period, and those labeled “Post”
were obtained after it.

For FG-DMR the amount of “Pre” errors in category 2 (detected but with correct
output) is larger than that of “Post” errors in this same category. This is caused by the
fact that the fine-grained comparators are frequently able to detect the error before it is
present at a PO, signaling it to the control unit. Then, during the waiting period,
different input vectors may make the error propagate to a PO, moving the event to
category 3. As local repair procedures may commence after detection, this property is
useful to reduce error removal times. And as a standard DMR scheme is only able to
detect errors that have already propagated to a PO, a longer period of time has to be
waited before starting repair procedures. The amount of errors in category 4 (error not
detected but PO corrupted) does not present a statistically significant difference to allow
comparing FG-DMR and CG-DMR, but was a small fraction of total amount of events
for both approaches.

The different response times of the circuits also explain the slight increase in the
total amount of events between the “Pre” and “Post” results. This occurs due to faults
that strike routing resources in the border regions between CUTs and that disrupt the
operation of multiple instances. There were three such events, to which we refer as
multi-CUT events, as more than one instance of the circuits under test manifested the
occurrence of a fault. There is a probability that a multi-CUT event is actually triggered
by multiple and independent SEUs. However, as all such events occurred with
neighboring CUTs and due to the short duration of the waiting period (2 ms), compared
to the observed error rates (around one error every 5 minutes), we attribute them to
single errors that affect multiple circuits, which is, as mentioned, a well known and
documented effect (LIMA, CARMICHAEL, FABULA, et al., 2001). Figure 5.14 shows
the location of the multi-CUT events detected throughout the experiment.

In the first of such events, in the “Pre” FSD, sent immediately after the event
occurrence, only CUT #20 reported that a fault was detected. Hence, the error is
classified into category 2 for “FG-DMR Pre”, since even numbered CUTs are the ones
using the fine-grained scheme. In the “Post” FSD, sent after 100,000 cycles, CUT #20

Table 5.6: Received events classification

 2) Det. Only 3) Det & PO 4) PO Only
CG-DMR “Pre” 244 221 6
FG-DMR “Pre” 471 211 5
CG-DMR “Post” 245 223 6
FG-DMR “Post” 396 287 5

73

indicated that a fault was detected and that it manifested an error at a primary output.
Thus, it is one of the events that shifted from category 2 to category 3 during the
waiting period for FG-DMR. However, the “Post” FSD also indicated that an error was
detected and present at a PO for CUT #21. These two CUTs are adjacent, as can be seen
in Figure 5.14.

The second multi-CUT event started with CUT #2 indicating the detection of an
error. Then, after the waiting period, CUTs #1, #2 and #5 indicated error detection,
while only CUTs #2 and #5 manifested an error at a PO. As shown in Figure 5.14, all
three involved instances lie on the top right corner of the device. This event was
probably triggered by an SEU that affected the original instances of CUTs #2 and #5
and the redundant copy (or comparison circuit) of CUT #1. As occurred with the event
described above, this event shifted from category 2 to category 3 for FG-DMR.

Finally, the third event began with CUT #21 indicating error detection at the “Pre”
FSD. In the “Post” FSD, CUT #24 also reported error detection. None of the CUTs
presented error at a primary output, indicating that the SEU probably affected only
redundant copies or comparison circuits.

Table 5.7 shows the cross-sections found with the conducted experiments,
considering the amount of undetected errors (category 4) of each technique. The cross-
section is the ratio of errors to fluence, as described in section A.4 of Appendix A. To
evaluate the effectiveness of the proposed approach on a typical terrestrial application,
Table 5.7 also reports the expected failures in time (FIT) at New York City considering
a flux of 13 n/(cm2·h) (above 10MeV) (JEDEC, 2006). Results are shown both for all
the 13 CUTs of each circuit type and for one single instance.

Table 5.7 reports the cross-section and FIT figures for an unhardened circuit as well.
As can be seen in Figure 5.5, the events in category 3 (errors detected and observed at a
PO) of CG-DMR are likely to be the errors at the primary copies of coarse-grained
circuits. Thus, we assume that they are a good estimate of the amount of failures that

Figure 5.14: Disposition of multi-CUT events on the FPGA. All such events occurred

with neighboring CUTs.

0 1 2
3 4 5
6 7 8
9 10 11
12 13 14
15 CTRL 16
17 18 19
20 21 22
23 24 25

Table 5.7: Cross-section and failure in time at New York City

Total Per Instance

Cross-section (cm2) FIT Cross-section (cm2) FIT
CG-DMR 3.875·10-10 5.04 2.98·10-11 0.388
FG-DMR 3.23·10-10 4.2 2.48·10-11 0.323
Unhardened 1.44·10-8 187.25 1.11·10-9 14.4

74

would be observed in unmitigated circuits, thereby estimating their cross-section and
FIT values. This assumption is based on the fact these are the faults that actually struck
the original instance of the circuit, which is similar to the original circuit, since
comparison is performed only at the POs. The FG-DMR technique was able to reduce
the failure rate by 44.6 times, as the amount of undetected errors is much smaller than
that of PO failures of the unmitigated design. Even when considering all circuit
instances, the FIT values of DMR circuits are quite low, especially when compared to
those of unmitigated designs.

Figure 5.15 shows the total amount of events for each circuit. All copies were
subject to a significant amount of events, showing that the FPGA was homogeneously
struck by the neutron beam. The cell in dark grey in Figure 5.15 is the control unit,
which presented 57 failures, 36 of which are due to watchdog timeouts. The remaining
21 failures are due to invalid FSDs that indicate errors in the golden copy, as described
in section 5.4.1. These FSDs indicate faults striking the golden instance or the FSD
generation circuitry.

5.4.3 Comparison to fault injection results

As one of the purposes of the conducted experiments was to validate the accuracy of
the fault injection tool, in this section we compare the results obtained with both
evaluation approaches. Most specifically, we are interested in analyzing if the relations
between FG-DMR and CG-DMR observed in fault injection are kept in the radiation
experiments. For that purpose, fault injection experiments were conducted aiming at
reproducing the radiation experiments. The apex4 circuit with FG-DMR was placed at
the position of CUT #0, while the one with CG-DMR was placed at the position of CUT
#1. Both circuits were subject to exhaustive fault injection, leading to a significantly
larger amount of events, when compared to the radiation experiments. The injection tool
informs which faults were first only detected and then propagated to a PO (i.e., faults
that would be in category 2 for “Pre” FSD and in category 3 for “Post”) and which
faults were only detected when they had already propagated to a PO (i.e., faults that
would be in category 3 already in the “Pre” FSD).

Table 5.8 shows the results for the “Pre” FSDs. For each of the experiments, the
results for FG-DMR and CG-DMR are shown, as well as the ratio between them. For
categories 2 and 3, as well as for the total amount of events, the ratios showed a strong
similarity, with a maximum of 7.05% variation for category 2. Category 4 shows a very
significant variation, confirming that the results found in radiation experiments were not
sufficient to allow comparing both approaches regarding these ratios.

Figure 5.15: Events reported at each instance.

59 48 46
31 44 45
41 47 50
36 48 28
51 25 42
35 57 68
33 59 32
60 41 70
39 50 35

75

Similarly, Table 5.9 shows the results for “Post” FSDs. The ratios for categories 2
and 3 become even more similar, while category 4 remains the same, as expected. A
small variation is observed in the total amount, due to the multi-CUT events that
modifies the ratio for radiation experiments. A very strong similarity is maintained,
showing that the fault injection and radiation experiments were consistent in those
situations for which consistency was expected.

Table 5.9: Fault injection and radiation results for “Post” FSDs

 Radiation Injection
Ratio
Variation

FG-
DMR

CG-
DMR Ratio

FG-
DMR

CG-
DMR Ratio

2) Det. Only 396 245 1.62 89872 57755 1.56 3.73%
3) Det. & PO 287 223 1.29 69701 55706 1.25 2.86%
4) PO Only 5 6 0.83 571 193 2.96 -71.83%
Total 688 474 1.45 160144 113654 1.41 3.01%

Table 5.8: Fault injection and radiation results for “Pre” FSDs

 Radiation Fault Injection
Ratio
Variation

FG-
DMR

CG-
DMR Ratio

FG-
DMR

CG-
DMR Ratio

2) Det. Only 471 244 1.93 103697 57797 1.79 7.05%
3) Det. & PO 211 221 0.95 55876 55664 1.00 -4.89%
4) PO Only 5 6 0.83 571 193 2.96 -71.83%
Total 687 471 1.46 160144 113654 1.41 3.52%

76

77

6 FINE-GRAINED DIAGNOSIS AND LOCAL REPAIR

As discussed previously, the main advantages of fine-grained redundancy are
twofold: faster detection and more precise diagnosis. In chapter 5 we have estimated the
reductions on detection times that a very fine-grained mechanism can provide. In this
chapter, we focus on the how the fine-grained diagnosis can be used, in a scalable
manner, to allow localized scrubbing with significantly reduced repair times. This task
presents several challenges, as will be discussed in section 6.1. Section 6.2 presents the
devised approach to tackle the challenges found, deemed Scrubbing Unit Repositioning
for Fast Error Repair (SURFER). The experimental setup used to evaluate the SURFER
mechanism is described in section 6.3. It is based on that presented in section 5.2, but
includes several extensions in order to allow proper evaluation of the techniques herein
discussed. Section 6.4 presents the results obtained with SURFER assuming a precise
translation mechanism, which is valuable to estimate the potential of the technique.
Finally, section 6.5 introduces a heuristic mechanism that aims at implementing
SURFER with manageable costs and maintaining relevant gains in repair time.

6.1 Challenges
Among the most promising features of fine-grained error detection mechanisms is

the possibility of using the precise diagnosis, provided by multiple error detection bits,
to perform a local and fast repair procedure. All error indication signals can be
concatenated and seen as an error signature, as shown in Figure 6.1. The signature
contains all the raw diagnosis information provided by the detection mechanism, which
must be translated into information useful for repair. As the granularity gets finer, the
size of the redundant modules is reduced and the amount of error signals increases.
Therefore, circuits with very fine granularities have the greatest potential of reducing
the MTTR, but present very large signatures to be handled. And several challenges are
found when aiming at translating large signatures into error locations.

Figure 6.1: Fine-grained detection and the generated error signature

m0,0

m1,0

m0,1

m1,1

m0,2

m1,2

In
Out

=? =? =?

e0 e1 e2

Error signature

78

Firstly, the inputs of the two modules may present different values due to a fault in a
preceding circuit. Such input difference may be propagated by the logic implemented in
the module, thus also triggering its associated comparator. For example, a fault striking
module m0,0 in Figure 6.1 will be detected by comparator e0 whenever it propagates to
the module’s output. If the change in the output of m0,0 causes a change in the output of
m0,1 (i.e., m0,1 propagated the error), then e1 will also be raised, and similarly for e2.
Otherwise, i.e., if the error was masked by m0,1, e1 will remain low. The propagation or
masking of an error by a module depends on many variables, both static, e.g., the logic
function implemented by the module, and dynamic, e.g., the current value of the other
inputs of the module or the state of internal registers. Thus, several different signatures
are possible for a single fault, especially when complex circuit topologies and functions
are considered, since dynamic factors may change which comparators are triggered.
Assuming that [e0, e1, e2] is the error signature for this circuit, [1, 0, 0], [1, 1, 0] and [1,
1, 1] are possible signatures for a fault in m0,0 (or in m1,0).

Furthermore, unless the function of m0,0, m1,0 are entirely configured by one single
configuration frame, there are multiple candidate frames once a given signature is
generated. The reconfigurable routing resources of FPGAs also play an important role
on this matter. For example, a fault in the routing between m0,0 and m0,1 may occur
either before or after the branching point of the wire connected to the comparator. If it
occurs before, then it will behave similarly to a fault in m0,0, as it will be detected also
by e0. On the other hand, if it is located after this point, then it will only be detected by
e1, provided m0,1 propagates it. Thus, signatures such as [1, 0, 0] and [0, 1, 0] can be
associated with the routing between the two modules. Depending on the choices of
placement and routing algorithms, this routing path may be arbitrarily long and span
across several different configuration frames. Therefore, as a general rule, it cannot be
assumed that it is possible to narrow a fault location down to a single configuration
frame, even when the finest available granularities are employed. Note, however, that
the probability of each frame generating a given signature is different, depending also
on the static and dynamic factors involved. This property can be explored to overcome
the challenges herein discussed and minimize repair time, as will be seen in section 6.2.

To summarize, the problem at hand consists in identifying the most likely error
locations for a given error signature, which may be very long for large circuits and fine
granularities, and to make use of this information to reduce the MTTR. It must be also
taken into account that: a same error may lead to different signatures depending on
dynamic factors; a same signature may be caused by errors in different locations and
with different probabilities.

6.2 The SURFER approach
6.2.1 Overview

The proposed Scrubbing Unit Repositioning for Fast Error Repair (SURFER)
technique uses a signature translation (ST) mechanism to convert the error signature
into an indication of the error location. This indication is provided in the form of a
frame address, chosen according to the methodology described in the sections 6.2.2 and
6.2.3. As mentioned previously, the configuration of FPGAs is divided into frames,
which are the smallest addressable units. For the Virtex 5 devices used as case studies in
this work, addresses are composed of several subfields, such as the top/bottom bit, row
number, major and minor addresses (XILINX, INC., 2011a). The ST mechanism is

79

defined in a manner that delivers the error location following this specification, in order
to avoid additional complex post-processing that may increase the repair time.

Figure 6.2 shows an overview of a system using SURFER. Similarly to
(BOLCHINI, MIELE and SANDIONIGI, 2011), we assume the existence of an external
configuration controller that interacts with the non-volatile memory that stores the
configuration. Note that a non-volatile memory and a controller able to interact with it
are already required by any system using SRAM-based FPGAs. As this controller is
very simple, it can be implemented in a lower performance radiation-hardened FPGA or
ASIC. Alternatively, in very low budget situations and when the reduction in reliability
is acceptable, it can be implemented within the same FPGA, as in (STRAKA, KASTIL
and KOTASEK, 2010). The ST mechanism, on the other hand, is performed in the same
FPGA to minimize its delay and to avoid excessive pin use.

In Figure 6.2, the FPGA design is divided into modules, each with its own ST block
(we present only two modules for the sake of clarity). Each block generates an error
detection bit and a frame address. Moreover, in order to provide fault isolation between
the modules, they can be defined as reconfigurable partitions as well. However,
developers are free to divide the system into modules as they see fit, following the good
practices of design modularization, since the gains in repair time are not limited by their
size. Thus, the costs of defining very small reconfigurable partition can be avoided.

6.2.2 Reducing the MTTR through optimized starting frames

In this work we exploit the fact that the scrubbing procedure does not need to begin
at the first frame of the configuration, but instead an improved starting frame can be
identified for each signature. If, for example, the signature indicates that there is a
strong probability of the error being in the 300th frame of the partition, a shifted
scrubbing procedure, starting closer to that position, can significantly reduce the
MTTR. If the end of the partition is reached and the error is not removed, then the
procedure returns to beginning of the partition and continues until the previous starting
frame. As discussed in section 6.1, each signature may be associated with errors in
different frames with different probabilities and pointing to a single frame once the error
is detected can be infeasible. One must rely on the information of which are the most
likely faulty frames for each signatures and give them some form of priority. Thus, the
first step to allow the use of SURFER is to measure the relations between errors in each
frame and the generated signatures. Through fault injection experiments it is possible to
identify which configuration bits are able to generate each signature when flipped.
Thereby, one can build histograms that show, for each signature, which frames can lead
to its occurrence and with which incidence. These histograms allow identifying the most
likely error locations associated with each signature. Figure 6.3 shows two such
histograms, for two different signatures of circuit pdc. More details on the conducted
experiments will be provided in section 6.3.

Figure 6.2: Overview of a system with SURFER

Frame addr.
Error det.

FPGA

Config. data

Config.
data

ST

ST

e

e

Frame addr.

Frame
addr.

=?

=?

=?=?

=?

=?

=?

Config.
Ctrl

Non-
Volatile
Memory

80

Once the relations between error locations and signatures are mapped, remains the
problem of efficiently making use of this information. The histograms in Figure 6.3
present clear peak regions, where the error is most likely located. However, if one were
to scrub only these peak regions, there would be a probability (although small) of not
correcting the fault, as it can be located outside peak regions. Furthermore, two frame
addresses would have to be stored per signature (the first and the last addresses of the
area), creating the need for large and costly tables. Errors and approximations in this
table would also be critical, as they could lead to scrubbing the wrong area. When
setting a shifted starting frame, on the other hand, even if the signature translation
module makes a poor guess regarding the error location, the entire partition will
eventually be scrubbed if needed, thereby maintaining the reliability of a standard
scrubbing procedure.

The user circuit can be halted when the error is detected, as in (PSARAKIS and
APOSTOLAKIS, 2012), and scrubbing can ensue until the error is reached and
removed. Correction can be detected, in many cases, by the lowering of error signals.
Alternatively, it may be advantageous to perform a readback, comparing each frame to
the expected value (or using redundancy codes) to first locate the error. The identified
faulty frame is then solely scrubbed, similarly to (GOKHALE, GRAHAM, JOHNSON,
et al., 2004). The proposed scheme remains identical regardless of these device and
application specific implementation choices. Once the error is removed, scrubbing can
be halted and execution can resume.

The marks on the x axis of Figure 6.3 show the optimum starting frame for each of
the two signatures. Note that, for both histograms in Figure 6.3, there is a possibility
that the error is located before the chosen starting frame. These locations are only
scrubbed after reaching the partition end and returning to its beginning. Placing the
starting frame before those locations, however, would increase the time required to
reach the highest concentration areas, increasing the average correction time.

6.2.3 Optimum frame identification

In order to identify the optimum starting frame for each signature s, we calculate the
estimated MTTRs(f) for each possible starting frame f. It is defined as:

()().1,
][

)(∑
=

+⋅=
PE

PBi s

s
s fidist

O

ih

BR

FS
fMTTR

Where f is the starting frame, FS is the frame size, BR is the configuration port bit
rate, PB is the partition beginning and PE is the partition end. hs[i] is the histogram
value for signature s for the i-th frame and Os is the total amount of occurrences of s.
Therefore, hs[i]/Os is the probability that the error is located in the i-th frame, whenever
signature s is received. dist(i, f) is the distance between f and the i-th frame, i.e., the
amount of frames that have to be written before reaching the i-th. It is defined as:

Figure 6.3: Histograms of two signatures for the pdc circuit

0

20

40

60

1 7
6

1
5

1
2

2
6

3
0

1
3

7
6

4
5

1
5

2
6

6
0

1
6

7
6

7
5

1
8

2
6

9
0

1
9

7
6

1
0

5
1

1
1

2
6

1
2

0
1

1
2

7
6

1
3

5
1

1
4

2
6

1
5

0
1

1
5

7
6

1
6

5
1S

ig
na

tu
re

 in
ci

de
nc

e
Frame index

(6.1)

81





−++−
≥−

=
otherwise. ,1

 if ,
),(

PBifPE

fifi
fidist

The sum in (6.1) is, therefore, the “mean frames to repair” when s is received and f
is used as starting frame. It is converted to a time unit with the time required to write a
frame (FS/BR). There may also be additional costs associated with interacting with the
programming interface, such as issuing a write command. Such costs are device-
dependent and thus not shown in (6.1). Furthermore, they are usually negligible when
compared to the time required to transmit the configuration data, but are nonetheless
taken into account in the experimental results reported in this work.

In (6.2), the first condition is the distance between f and i if f, the starting frame, is
before i. In this case, the error is corrected before reaching the end of the partition. The
second condition occurs when the error is only corrected after reaching the end of the
partition and returning to its beginning. In this case, PE – f + 1 is the amount of frames
written until the partition end and i – PB is the distance between the partition beginning
and i.

With (6.1) and (6.2) one can calculate the expected MTTR for each possible starting
frame and select the smallest one as the optimum choice for signature s. This is repeated
for all the different signatures that occurred for the circuit. Let O denote the total
amount of received signatures, as shown in (6.3) and S the set of all different signatures.
The overall MTTR is defined by the average of all signatures, weighted by their
occurrences, as shown in (6.4).

∑
∈

=
Ss

sOO

∑
∈

⋅=
Ss

ss
s fMTTR

O

O
MTTR)(

One can then build a table that indicates, for each signature s, its optimum starting
frame fs. This table provides the optimum ST mechanism for SURFER in terms of
MTTR reduction. For this reason, we refer to it as perfect signature translation (PST),
and it is a relevant mechanism to measure the maximum gains of SURFER. Its benefits
and drawbacks are discussed in section 6.4, following the experimental setup described
in section 6.3.

6.3 Extended experimental setup
The experimental setup presented here extends that described in section 5.2 and

consists in several tools required to evaluate the proposed techniques, as shown in
Figure 6.4. The entire setup is divided into macro-steps for the sake of clarity, which are
detailed in the remainder of this section.

The first step is the same performed in the setup described in section 5.2, i.e., a
synthesized description of the original HDL design is generated with the standard
synthesizer XST and netgen, which is then subject to the redundancy insertion tool that
applies the carry chain-based fine-grained DMR. In this case, however, the error
aggregation circuit is not instantiated, as we are interested in observing the individual
error indication bits that form the error signature. Table 6.1 presents the total signature
size Ssize for each circuit.

(6.2)

(6.4)

(6.3)

82

 The second step consists in extracting error signatures are associated with each
injected fault. The injection tool described in section 4.3 was extended to transmit the
generated signatures to the host PC, along with the frame address on which the fault
was injected. We once more perform exhaustive injection, i.e., faults are injected on
every bit associated with the CUT. As previously, 100,000 pseudo-random input vectors
are applied to each circuit for each injected fault. However, as discussed in section 6.1,
several different signatures may be generated for each fault, due to the dynamic factors
that change propagation in the circuit. To maintain a tractable experiment time, we limit
to 20 the amount of signatures transmitted per fault. Still, almost 3 million signatures
were received per circuit, on average, as can be seen in Table 6.1. Table 6.1 shows, for
each circuit, the total amount of signatures, i.e., O as seen in (6.3), and the total amount
of different signatures, i.e., |S|. The experiment is therefore exhaustive only regarding
the possible faulty bits and not regarding the possible generated signatures, since faults
are injected on all bits but only up to 20 signatures are taken from each.

It is important ensure that the signature sample is statistically significant and that the
mechanism is not applicable only to that particular set of signatures. For that purpose,
we use an approach similar to that traditionally used with neural networks (HAYKIN,
1998). The signature division step shown in Figure 6.4 generates two non-overlapping
signature lists, one to be used in the generation of the translation module (training list)
and one to measure the obtained MTTR (testing list). Thus, the evaluation is performed
on a list of signatures not available to the generation algorithm. The first 15 signatures
received for each fault are placed on the training list and the rest on the test list.

In the third step, the translation function is generated based on the signatures in the
training list. It can either follow the straightforward PST mechanism described in
section 6.2.3 or the heuristic signature translation (HST) algorithm, to be presented in
section 6.5. Moreover, it calculates the expected MTTR for the signature distribution
observed in the training list. This value, when compared to that obtained in the fourth
step, i.e., when the test list is applied to the generated function, allows determining if
the obtained signatures are representative of the error-to-signature relations for that
circuit and if the generated mechanism is not strictly limited to signatures in the training
list. All results assume the maximum operating speed of the Virtex 5 SelectMAP
interface, which is a 32-bit wide port operating at 100 MHz. These figures can be
converted if a reduced transfer rate is being used. We also take into account the time
required to issue a write command to the interface (25 cycles in our implementation)
and to write a dummy frame, which is required by SelectMAP (XILINX, INC., 2011a).
Note that this must be done twice whenever a return to the partition beginning is
required.

Figure 6.4: Extended experimental setup

XST +
netgen

HDL
Design

Synth.
Circuit

Redundancy
Insertion

Fault
Injector

Xilinx
Flow

DMR
Circuit

FPGA Sign.
List

Config.
file HDL

ST

Signature
Division

Train
List

Test
List

MTTR
Eval.

1

3

4

Xilinx
Flow

5

2

ST
Generation

6

Xilinx
Flow

FPGA

Fault
Injector

83

The fifth step consists in submitting the generated translation table, described in
VHDL, along with the DMR circuit to the Xilinx standard design flow to determine area
and performance overheads. We also evaluate the resilience of the generated translation
tables to faults affecting their configuration, since they are also embedded in the FPGA.
This is done through a second round of fault injection experiments, in the sixth step.
Actual error signatures are used as stimuli and the faulty outputs are transmitted to the
host PC for analysis. Each faulty event is then categorized as described in section
6.5.1.2 and the increase it causes to the overall MTTR is computed.

The generated signatures and the resulting ST mechanism are strictly related to the
decisions made by the placement and routing algorithms, since components (and routed
wires) that change place may also change their associated frames. Thus, for the
generated ST mechanisms to be applicable to the final design, it is important to maintain
the same placement and routing used for signature generation (second step). This can be
accomplished through several means, such as through automatically generated fine-
grained placement and routing constraints (e.g., LOC, BEL and
DIRECTED_ROUTING (XILINX, INC., 2011d)) or using an incremental design flow
(ZEH, 2007), which allows creating partitions whose placement and routing are not
modified by changes in other modules.

Table 6.1: Total signature size Ssize, amount of received signatures (O) and of different
signatures (|S|) for each circuit

 Ssize Total Signatures Different signatures
alu4 167 1,785,081 24,017
alu_32b 359 1,756,168 48,215
alu_64b 192 3,567,880 89,343
apex2 395 3,819,021 25,941
apex4 332 3,232,288 31,271
bigkey 354 2,984,645 54,717
clma 609 1,373,711 16,413
des 355 2,962,133 57,043
diffeq 234 740,011 9,928
dsip 370 3,519,234 38,471
elliptic 73 205,020 649
ex1010 215 1,991,867 24,996
ex5p 81 502,924 1,990
frisc 894 4,412,457 54,924
misex3 349 3,245,937 31,787
pdc 603 6,588,236 64,214
s298 11 44,865 84
s38417 884 4,784,611 27,332
s38584.1 1,080 11,681,701 38,573
seq 430 4,215,089 22,344
spla 114 928,254 5,525
tseng 337 1,354,465 25,155
Average 383.55 2,986,164 31,497

84

6.4 PST - Perfect Signature Translation
The Perfect Signature Translation (PST) consists, as described in section 6.2.3, in a

table that maps each and every generated signature to the optimum starting frame
address that minimizes the MTTR. It is, thus, an important mechanism to estimate the
maximum gains made possible by the SURFER mechanism. In this section we present
these gains and also discuss the shortcomings of this approach.

The extended experimental setup was applied to the same 22 benchmark circuits
used in section 5.3. Table 6.2 shows the obtained MTTR results, in microseconds. The
Standard approach consists in starting reconfiguration at the first frame of the circuit,
i.e., it presents the MTTR obtained with straightforward partition-based scrubbing. PST
Train is the MTTR associated with the signature list used in the generation of the
translation circuit, whereas PST Test is that obtained when the testing signature list is
applied to the translation function.

Figure 6.5 emphasizes the reductions achieved in MTTR with PST. The average
MTTR reduction provided by PST Test over standard scrubbing is of 79.65%. The
circuit with least gains is s298, which showed a 52.9% reduction, due to its very small
size which leaves a reduced room for improvements with fine-grained diagnosis. The
testing and training results are very similar for all circuits, indicating that signatures

Table 6.2: MTTR of standard scrubbing and SURFER with training and testing
signatures (in µs)

Circuit Standard PST Train PST Test
alu4 172.29 31.07 33.59
alu_32b 109.36 27.12 30.07
alu_64b 220.71 39.84 45.52
apex2 228.48 45.23 47.02
apex4 239.74 38.86 40.85
bigkey 194.87 36.28 38.42
clma 325.43 47.39 50.92
des 211.48 29.02 31.07
diffeq 169.67 34.63 36.81
dsip 342.18 52.67 55.85
elliptic 118.08 23.94 24.04
ex1010 196.57 40.55 42.93
ex5p 78.91 18.36 18.69
frisc 507 79.12 82.68
misex3 251.42 44.4 47.16
pdc 415.7 58.23 62
s298 35.84 16.83 16.88
s38417 436.67 74.37 76.34
s38584.1 450.28 84.04 85.95
seq 372.74 61.52 63.36
spla 206.74 31.12 31.9
tseng 137.49 28.36 30.85
Average 246.44 42.86 45.13

85

used in the testing list were able to appropriately capture most of the error-to-signature
relations for each circuit. The average error in PST Train relative to PST Test is of
5.08%, with a maximum of 12.47% for alu_64b.

Implementing PST tables in the FPGA substrate, however, can be very challenging.
For s298, the smallest circuit (17 LUTs), direct implementation of its PST table requires
119 LUTs, which is 7 times the size of the original circuit. In this case, due to its very
small signature size, it is still possible to use BRAMs instead of LUTs to implement this
direct translation. But it quickly becomes infeasible for circuits with larger signatures.
Still among the smallest circuits (128 LUTs), ex5p has 1,990 different 81-bit signatures.
Direct implementation of its PST table, however, required 25,290 LUTs (197.58 times
the size of the original circuit), showing the poor scalability of this approach. In fact, the
synthesis tool runs out of memory before being able to synthesize the PST table for
even intermediate-sized circuits. Therefore, in order to provide a scalable variation of
the SURFER approach, we propose a heuristic signature translation (HST) mechanism.

6.5 HST - Heuristic Signature Translation

6.5.1 Heuristic table generation

The proposed Heuristic Signature Translation (HST) must be able to quickly provide
an initial frame address to be used by the reconfiguration controller. It must also be as
small as possible, in order to minimize the area overhead. The mechanism proposed
herein works similarly to a hardware-implemented hash table, generating a compressed
version of the signature that is then used to access a table containing the target frame
addresses. Most of the effort goes into defining an appropriate hash function, which will
in turn lead to an efficient table implementation.

As occurs for any function to be used in a hash table, we want to minimize
collisions, i.e., different signatures that are mapped to a same compressed counterpart.
However, the algorithm should take into account the specific purpose and requirements
of the translation being implemented. First of all, not all collisions have the same
penalty in terms of the final overall MTTR. Several signatures may have neighboring
starting frames, or even point to exactly the same frame. For these cases, collisions have
a reduced penalty (or none at all). The hashing function should, therefore, give
preference to causing this kind of collision rather than for signatures that point to far
away locations. Second, the amount of occurrences Os is different for each signature s.
It is more important to have a precise output for those signatures that are more frequent

Figure 6.5: MTTR of standard scrubbing, PST with training and testing signatures

0

100

200

300

400

500

600

al
u4

al
u_

3
2

b

al
u_

6
4

b

ap
ex

2

ap
ex

4

b
ig

ke
y

cl
m

a

d
es

d
iff

eq

d
si

p

el
lip

tic

ex
1

0
1

0

ex
5

p

fr
is

c

m
is

ex
3

p
d

c

s2
9

8

s3
8

4
1

7

s3
8

5
8

4
.1

se
q

sp
la

ts
en

g

A
vg

.

M
T

T
R

 (
µ

s)

Standard PST Train PST Test

86

than for those that rarely occur. Finally, the signature translation (ST) block must also
generate an error detection bit, as can be seen in Figure 6.2, in order to trigger repair
procedures. This bit is basically the OR operation performed over the entire signature. If
the hashed signature can also be used to generate this bit, then logic resources can be
saved.

The pseudo-code shown in Figure 6.6 presents the main steps of the proposed HST
mechanism. It consists in first identifying those signature bits that, when active, have a
high probability of being associated with the same area of the circuit. We consider that
two signatures are in a same area whenever their optimum frames are in a same row and
major column. A major column of frames is associated with a column of resources in
the FPGA. For example, in Virtex 5 devices most of the major addresses are associated
with slice columns, and have 36 frames each (with individual minor addresses)
(XILINX, INC., 2011a). Bits that, when active, have a high probability of indicating
errors in a same column are iteratively organized into groups. Over each group, the OR
function is applied, generating a hashed signature that has one bit per group. Figure 6.7
shows the logic schematic of the proposed mechanism compressing an 8-bit signature
into a 2-bit one. And since the hash function is computed with ORs over the signature,
the error detection bit e can be generated based on the hashed signature, as shown in
Figure 6.7, saving resources. In the remainder of this section, we detail how the HST is
generated.

The first step of the algorithm (line 1) is to parse the signature list signList and to
build an appropriate structure to store the information. The list contains all the
signatures received by the host PC during the fault injection experiments. It also
contains the frame address in which the fault was injected for each signature. These data
are stored in the signature table signTable that maps each signature to its frame
histogram. The histogram is a vector containing how many times that signature occurred
for faults injected in each frame.

Input: signList, a list of all occurring signatures and associated frame
addresses, SSize, the size of uncompressed signatures, and maxSize, the maximum
acceptable compressed signature size.

Output: gb, a set of which bits must be grouped and compAddrTable, a table
with the optimum frame address for each compressed signature

1. signTable:= parse(signList);

2. addrTable:= optimumTable(signTable);

3. gb:= initialGrouping(SSize);

4. while size(gb) >maxSize do

5. G := buildGraph(gb, addrTable);

6. maxMatch:= maxWeightedMatching(G);

7. gb:= join(gb, maxMatch);

8. end while;

9. compSignTable:= compressTable(gb, signTable);

10. compAddrTable:= optimumTable(compSignTable);

Figure 6.6: HST Generation algorithm

87

The second step (line 2) is to identify the optimum starting frame for each signature,
following the methodology described in section 6.2.3. The resulting address table
addrTable maps each frame address f to a set of signatures that have f as their optimum
starting point.

The third step (line 3) initializes the set gb of grouped bits. This set contains the
groups of bits that are going to be subject to the OR function, compressing them into a
single bit. The initial grouping consists in creating one group for each bit, where that bit
is placed alone.

The steps in lines 4 through 8 are repeated until we reach the maximum acceptable
compressed signature size maxSize. This parameter defines how much effort will be put
into compression and will be discussed in greater detail in section 6.5.1.1.

In line 5 the complete undirected group graph G = (gb, E), on which the grouping
decisions are to be made, is built. Each set of grouped bits u ∈ gb is a vertex. As G is
complete, there is an edge {u, v} in E for every pair of distinct groups u, v ∈ gb. Each
edge {u, v} is weighted according to the frequency with which u and v are active for
signatures that point to a same major address column. A group of bits u is said to be
active for a given signature s if at least one of the bits in u is one in s, i.e., the OR over
those bits would evaluate to one with s as input. Figure 6.8 describes how the weight of
each edge {u, v} is calculated. It sums the occurrences of all signatures that point to a

Figure 6.7: Schematic of a HST circuit

01: 0x002010

11: 0x00231F

s3
s1
s7
s0
s2
s4
s5
s6

Grouped
bits

Address Table

e

Frame
Address10: 0x002400

Grouped
bits

Compression Circuit

Input: An edge {u, v} ∈ E, the address table addrTable and the occurrence
count Os for each signature s.

Output: The weight w of edge {u, v}.

1. w := 0;
2. for each major column c
3. ou := 0; ov := 0;
4. for each frame f in c
5. for each signature s in addrTable(f)
6. if active(u, s) then ou := ou + Os;
7. if active(v, s) then ov := ov + Os;
8. end for;
9. end for;
10. w := w + min(ou, ov);
11. end for;

Figure 6.8: The weight of an edge {u, v}

88

frame f in column c which u is active and does the same for v. Then, it adds the
minimum of these values to the weight w. Thus, the increase in w will be zero if either u
or v were never active for the signatures that point to c. Moreover, a large value will
only be added to w when both groups are active for signatures with frequent occurrence.
This may also be accomplished by a single signature in which both groups are active
and that has a high occurrence count.

Line 6 (Figure 6.6) computes the maximum weighted matching on G. It consists in
choosing a subset of non-adjacent edges (i.e., that do not share vertices) from E that
maximizes the sum of their weights. The maximum weighted matching can be
computed in polynomial time (EDMONDS, 1965). We use the implementation
available with the LEMON graph library (DEZSő, JÜTTNER and KOVÁCS, 2011).
One can then join the groups (line 7) according to this matching, maximizing the total
frequency with which they are active for signatures that point to a same major column.
Thereby, the signature size (i.e., amount of groups in gb) is approximately divided in
half at each iteration. These steps are repeated until the maximum signature size
maxSize is reached.

In line 9 the compressed table compSignTable is built. It is similar to signTable as it
contains, for each compressed signature, its occurrence histogram. The compressed
signature is computed by applying the OR function over the bits of each group in gb. Its
histogram is the frame-wise sum of the histograms of all uncompressed signatures that
are mapped to it when compressed.

Finally, on line 10, the same calculation of optimum frame address for each
signature can be repeated, this time over the compressed table. The resulting
compressed address table compAddrTable allows mapping the compressed signatures to
their corresponding optimum starting frames.

6.5.1.1 The maxSize parameter

The maxSize parameter tunes the HST algorithm effort and has significant impact on
the resulting translation mechanism. High maxSize values reduce the amount iterations
of the compression loop (lines 4-8 in Figure 6.6) and allow large compressed signatures.
Consequently, the address table stores many different addresses for different
compressed signatures, leading to more accurate results but with a higher cost in area.
As one reduces the value of maxSize, fewer signatures remain due to more collisions
that occur, leading to smaller translation tables with less precise results. The design
space made available by this parameter will be explored in section 6.5.4.

There are two corner cases that should be highlighted: if maxSize ≥ Ssize, where Ssize
is the uncompressed signature size, then the HST and PST tables will be identical, as no
compression will take place. Conversely, if maxSize = 1, then all bits will be grouped,
leading to single-bit compressed signatures and an address table with a single entry.
Thus, for any signature, the resulting frame address will be the same. We refer to this
address as the best static address. Since all signatures will be mapped to the same
compressed counterpart, the best static address points to that starting frame that
minimizes the MTTR considering all signatures (and their incidence counts) at once.
This statically shifted scrubbing, therefore, does not actually exploit fine-grained
signatures. Instead, it solely uses the non-uniform distribution of sensitive bits over the
frames and may still present reductions in the MTTR compared to the standard
approach.

89

6.5.1.2 Dealing with faults in the translation table

As the translation table is implemented in the same reconfigurable fabric of the
circuit it is monitoring, it is also susceptible to the same faults. Thus, it is important to
understand their possible effects, their impact in the overall MTTR and how can they be
handled. For that purpose, we propose the use of a redundant error aggregation circuit,
as shown in Figure 6.9. To minimize area overheads, this circuit does not generate a
target frame address, but only the error detection bit (OR over all signature bits, as was
done in chapter 5). This allows avoiding the most critical scenarios, as will be discussed
herein.

Two types of table faults are distinguishable: those that manifest themselves
immediately and those that remain silent. The first type consists mostly in “false alarm”
faults, i.e., faults that cause the error indication bit to be raised even though the input
signature is zero. These may occur in the translation table or in the redundant copy, but
are detectable, since they will diverge. Furthermore, some faults may cause the frame
address output to change while the detection bits are kept low, thus also being
detectable. Such faults must be removed upon detection to avoid accumulation.

Faults that remain silent present more complex scenarios. As they are not
immediately detected, they may accumulate with faults in the payload circuit. The most
evident possible outcome is that an incorrect frame address may be generated. In this
case, the generated address may or may not be valid, i.e., among those that the table
would normally produce (note that it only generates a restricted set of addresses under
normal operation). A silent fault may also prevent the error detection signal from being
raised. In this case, upon occurrence of a payload fault, the redundant checkers will
diverge.

Considering the discussed scenarios, we propose the following approach. When both
detection bits are raised and a valid frame address is generated, that address is used. If
the generated address is invalid, the best static address is used instead. This avoids, for
example, using addresses that are outside the configuration space of that particular
partition. Whenever the detection bits diverge, the translation table is scrubbed first,
returning it to correct behavior. Thereby the detection signal is lowered in case of false
alarms. On the other hand, if it remains high then there is an error in the redundant
checker preventing its triggering and an error in the payload circuit, which should be
scrubbed with the current generated address. Finally, to avoid accumulation of faults,
the translation circuitry should be scrubbed after every scrub of the payload circuit.

One can evaluate the impact in MTTR of faults in the translation table considering
the overheads introduced by each situation. False alarms require the scrubbing of the
translation table to be identified and removed. Faults that cause valid but incorrect
frame addresses will have the MTTR associated with the use of that sub-optimal starting
frame. Silent faults that prevent error detection require the time to scrub the translation
circuit plus the time to scrub payload circuit. By considering the amount of
configuration bits (and input signatures) that lead to each situation, one can determine

Figure 6.9: Redundant translation table

Signature
Translation

Redundant
Error. Aggreg.

Frame address
error0

error1

Error
signature

90

the total change expected in the MTTR. Moreover, the smaller the translation circuit is,
in comparison to the payload, the less likely it is for it to be subject to faults. Thus,
minimizing its area is also important to minimize its susceptibility to faults.

6.5.2 Area and delay costs

As discussed previously, the goal of SURFER is not only to provide MTTR
reductions, but also to do so with manageable costs and in a scalable manner. In this
section, we discuss the area and delay overheads of the proposed heuristic signature
translation, considering maxSize = 7. The reason behind this choice and the impact of
this parameter will be discussed in section 6.5.4.

We take into account two variations of the technique. One attempts to minimize
delay overheads by processing error signatures in a pipelined fashion. It first stores the
generated error signature to process it in the following cycle. As a result, it requires the
use of additional flip-flops. If these are a scarce resource in that particular design, then
the alternative combinational approach may be more attractive. Moreover, there may be
situations in which the performance is limited by other components of the design and
improving the frequency of the module at hand is unnecessary. In such cases, the
combinational approach could also be preferable. It calculates the target frame address
directly from the comparators’ outputs. Therefore, it minimizes the use of flip-flops but
introduces additional delay. Note that the single-cycle difference in MTTR observed
between both approaches is negligible.

Table 6.3 shows the absolute area occupied by the each circuit, separated into its
individual components: comparators, HST table and the redundant error aggregation
(EA) circuit. The total figures include the two copies of the original circuits. Figure 6.10
shows the area overhead for each circuit, in terms of occupied LUTs. The results for
CG-DMR are also included for comparison. For most circuits, the proposed translation
mechanism was able to maintain low overheads. Those circuits with higher costs, s298
and ex5p (212% and 154%, respectively), are also the ones with smallest areas. Most
notably, the former has only 17 LUTs in its unhardened form, which leaves small room
for the implementation of a translation mechanism with low relative costs. On average,
only 15.5% of the amount of LUTs of the unhardened circuit is required to implement
the HST translation mechanism. The average total SURFER overhead was 133.9% over
the unhardened circuit and 10.5% over CG-DMR.

Figure 6.10: Area overhead of circuits with standard CG-DMR (left-hand bars) and

circuits with FG-DMR and HST tables (right-hand bars)

0%

50%

100%

150%

200%

250%

al
u4

al
u_

3
2

b

al
u_

6
4

b

ap
ex

2

ap
ex

4

b
ig

ke
y

cl
m

a

d
es

d
iff

eq

d
si

p

el
lip

tic

ex
1

0
1

0

ex
5

p

fr
is

c

m
is

ex
3

p
d

c

s2
9

8

s3
8

4
1

7

s3
8

5
8

4
.1

se
q

sp
la

ts
en

g

A
vg

A
re

a
ov

er
he

ad
 (

LU
T

 u
sa

ge
)

Copy Comparators HST Table Redundant EA

91

The use of flip-flops, on the other hand, depends on the applied variation of the
technique. If we implement the translation mechanism as a purely combinational circuit,
no flip-flops are introduced on combinational benchmarks, while sequential circuits
have exactly 100% overheads, since flip-flops are also duplicated by FG-DMR. For the
pipelined version, an amount of flip-flops equal to the signature size Ssize (found in
Table 6.1) has to be introduced. These two approaches, however, are corner cases of
several possibilities that may insert flip-flops to register partially compressed signatures
and find improved design points in terms of used resources and delay overhead,
depending on the specific constraints of each design.

Figure 6.11 shows the minimum clock period for the two implementations of the
HST mechanism and for CG-DMR for comparison. The introduction of the HST circuit
directly after the comparators (i.e., the purely combinational approach) adds an average
of 56.4% delay over standard DMR. As occurred for FG-DMR without SURFER, in
section 5.3.2, this delay is particularly more pronounced for the sequential benchmarks
(83.9%, on average) then for the combinational circuits (33.7%). This occurs mainly
because internal flip-flops may divide the logic path in such a way as to hide the delay
of the comparators.

Table 6.3: Area and delay results for SURFER

Circuit
Area (LUTs) Clock Period (ns)

Comparator HST Table Redund. EA Total Comb. Pipe.
alu4 50 54 32 940 8.47 6.81
alu_32b 43 49 28 804 9.83 8.21
alu_64b 81 75 60 1658 12.27 9.25
apex2 10 94 66 1766 11.63 10.39
apex4 11 69 56 1446 10.65 9.19
bigkey 88 72 59 1369 8.21 5.81
clma 92 116 103 2849 12.42 9.6
des 86 74 60 1320 9.25 6.02
diffeq 8 48 39 1035 10.18 7.58
dsip 96 76 62 1504 7.73 5.12
elliptic 5 25 13 329 6.84 5.28
ex1010 69 69 36 1148 8.92 6.43
ex5p 30 25 14 325 6.39 4.42
frisc 85 162 150 3833 15.56 14.65
misex3 17 75 59 1549 10.45 7.67
pdc 96 117 102 2821 11.67 9.5
s298 3 14 2 53 4.58 3.41
s38417 54 161 149 3782 12.16 10.41
s38584.1 149 220 181 4552 11.21 7.23
seq 22 103 72 1889 11.1 8.57
spla 36 35 19 532 7.11 5.33
tseng 51 71 57 1375 10.16 7.89
Average 53.73 82.00 64.50 1676.32 9.85 7.67

92

Depending on the requirements of each specific design, the delay overhead of the
combinational approach may or may not be acceptable. As an alternative to minimize its
effects, we consider the use of a pipelined version, which reduces this overhead by
dividing in two steps the generation of the target frame address. The reduction over the
combinational approach is very significant for most cases, as can be seen on Figure
6.11, leaving the pipelined version closer to CG-DMR. On average, pipelined HST
presents a 20.5% delay increase over CG-DMR. As occurred for the combinational
implementation, this difference is more significant for sequential benchmarks (40.8%)
then for combinational ones (3.5%). Furthermore, in some cases, especially when the
amount of primary outputs is very large compared to the circuit size (such as des and
ex5p), the delay of comparing primary outputs may become very significant and the
pipelined approach may even be faster than CG-DMR.

6.5.3 MTTR Results

Table 6.4 shows, in microseconds, the MTTR assuming a fault-free HST circuit (i.e.,
the results obtained at steps 3 and 4 of the experimental setup in Figure 6.4). It also
contains the experimental results to evaluate the impact of faults in the translation table
(i.e., obtained at step 6). Both scenarios are discussed in the following sub-sections. We
set maxSize = 7 in this section as well.

6.5.3.1 MTTR reduction with a fault-free table

Figure 6.12 shows the MTTR obtained with HST for each circuit. It also shows
those of standard scrubbing and of PST with testing signatures for the sake of
comparison. Although unable to maintain the average gains of PST, as expected, HST
presented only a 4.03% increase for the circuit with least gains, i.e., s298. As it presents
very small signatures, the compression loop required one single iteration to reach the
target maxSize for this circuit, leading to a very small difference between both
techniques. On average, a 95.2% MTTR increase was observed due to the loss of
precision caused by the compression heuristic. Nonetheless, HST was able to
substantially accelerate repair, when compared to standard scrubbing. On average, a
61.9% reduction was achieved (with the testing list), showing that the proposed
heuristic maintains the ability to significantly minimize repair time.

Figure 6.11: Minimum clock period TClk for CG-DMR and FG-DMR with pipelined and
combinational HST

0

2

4

6

8

10

12

14

16

18
T

C
lk

(n
s)

CG-DMR FG-DMR + Pipe. HST FG-DMR + Comb. HST

93

It is also important to evaluate the difference between results with training and
testing signature lists. Figure 6.12 highlights that they are very similar for all circuits.
The average variation is of 0.26%, with a maximum of 1.36% for tseng. Such a small
difference indicates that the applicability of the HST mechanism is not restricted to the

Table 6.4: MTTR (in µs) with fault-free table and with faults in the translation circuit

Circuit
Fault-free table Faulty table

Train Test Golden Faulty
alu4 57.04 57.06 56.41 58.55
alu_32b 49.83 49.84 49.04 50.58
alu_64b 86.25 86.28 90.45 91.66
apex2 94.02 94.39 92.66 93.80
apex4 89.35 89.37 88.08 89.36
bigkey 60.06 60.06 59.31 61.30
clma 139.31 138.74 138.04 139.82
des 51.88 51.87 50.91 53.69
diffeq 80.45 80.74 79.93 80.20
dsip 105.62 105.69 104.37 106.08
elliptic 50.50 50.60 50.52 51.55
ex1010 60.96 60.99 60.06 61.90
ex5p 33.77 33.85 33.73 36.64
frisc 192.14 190.37 191.10 190.99
misex3 105.93 105.61 104.47 105.72
pdc 134.58 134.53 129.87 130.31
s298 17.54 17.56 17.54 17.85
s38417 207.81 207.35 206.88 212.26
s38584.1 174.17 174.31 169.27 173.95
seq 128.50 128.02 127.24 127.92
spla 62.59 62.27 62.26 62.32
tseng 50.36 51.05 49.53 53.77
Average 92.39 92.30 91.44 93.19

Figure 6.12: MTTR for the HST mechanism (with training and testing lists). PST and

standard scrubbing are shown for comparison.

0

100

200

300

400

500

600

M
T

T
R

 (
µ

s)

Standard HST Train HST Test PST Test

94

signatures used in its generation and that the experiments were able to adequately
expose the error-to-signature relations for the circuits. Moreover, this difference is
substantially smaller than that observed in for PST (5.08%, on average), showing that
the HST mechanism is less susceptible to unexpected signatures or signature histograms
that differ from those observed during table generation.

6.5.3.2 The impact of faults in the translation table

As discussed previously, it is important to assess the robustness of the proposed
technique to faults in the translation table. For that purpose, faults are injected
specifically on the translation table in step 6 (shown in Figure 6.4), which is stimulated
with signatures obtained during the first injection campaign (step 2). Due to the large
amount of signatures (shown in Table 6.1), which could not be stored within the FPGA
memory, we limit the applied stimuli. For each injected fault, 1,000 different signatures
are applied to the circuit, chosen as follows:

1. The all-zero input is applied to detect false alarm faults and faults that change
the frame address output without triggering detection (as described in section
6.5.1.2);

2. For each possible compressed signature sc, the most frequent signature that is
mapped to sc is chosen. This aims at stimulating the different circuit paths. As
maxSize = 7, this represents at most 128 different signatures;

3. The remaining signature slots are filled with the most frequently occurring
signatures that were not inserted during step 2, aiming at covering the most
frequent signatures in the experiment.

Signatures chosen this way cover 90% of all occurrences observed in the first
injection campaign. Faulty outputs are sent to the host PC, which categorizes them and
calculates their effect on the MTTR, following the approach described in section
6.5.1.2. Table 6.4 shows, on the two rightmost columns, the MTTR associated with the
chosen subset of signatures, assuming a fault-free (golden) table and when the effect of
faults are included. Figure 6.13 shows the increase observed for each circuit, which had
a 2.48% average. Overall, it can be seen that the technique is very robust to such faults.
Even when their effects are considered, a 61.66% average reduction is maintained over
standard scrubbing. First, because HST is able to significantly reduce the table size.
Therefore, the amount of sensitive bits in the table is very small, compared to the
payload circuit. Second, the redundant checker allows detecting those situations that

Figure 6.13: MTTR increase due to faults affecting the translation table

0%
1%
2%
3%
4%
5%
6%
7%
8%
9%

10%

M
T

T
R

 In
cr

ea
se

95

would have the highest impact, such as mistaking a false alarm for an actual payload
circuit fault.

The values change significantly between each circuit as they are influenced by a
number of factors. For example, the most significant increase is 8.6% for ex5p. For this
case, the time required to repair the table when false alarms happen is particularly
significant, for two reasons: the circuit has a low baseline MTTR (as can be seen in
Figure 6.12) and the area occupied by the table is significant (shown in Figure 6.10).
The short MTTR causes a small increase to be more significant, while the significant
table area introduces more sensitive bits. This is also the case for tseng, which had a
similar increase. For s298, on the other hand, even though it has the highest area
overhead, it presents only moderate gains with SURFER, due to its reduced size.
Moreover, its best static address presents comparable improvements, since the circuit
area is very small. As a result, a reduced overhead is observed for those situations in
which the table fault is detectable (e.g., invalid addresses). An interesting situation is
also presented by frisc. As it is a large circuit with a longer MTTR and a relatively
small table, the sensitive bits introduced by the table actually present a slightly reduced
MTTR compared to the payload circuit. Thus, when all scenarios are considered, the
overall MTTR remains virtually the same.

6.5.4 Evaluating the impact of the maxSize parameter

The maxSize parameter defines the maximum acceptable compressed signature
length and is used to determine the heuristic compression effort. Figure 6.14 shows its
impact on table area and MTTR for a representative subset of the benchmark circuits
(for the sake of clarity). Results are shown for each iteration of the compression loop of
the HST algorithm, which stand for different target maxSize values. Appendix C
presents the results for all circuits. The rightmost points in the curves are associated
with large signatures, which are iteratively reduced in the compression loop. Each point
is associated with one such iteration. For ex5p, the rightmost point stands for the PST
table. For the other circuits in Figure 6.14, XST was unable to synthesize PST tables.

Figure 6.14: MTTR and table area for different maxSize values

0

20

40

60

80

100

120

140

160

180

10 100 1000 10000 100000

M
T

T
R

 (
µ

s)

Area (LUTs)

alu4 apex2 apex4 bigkey tseng diffeq ex5p

96

The heuristic is able to provide multiple Pareto points, i.e., points that are not
surpassed by any other in both metrics at once. The only non-Pareto point occurs for
ex5p, when one of the compression iterations actually increases the area. This is a
situation in which the compression circuit becomes larger but the translation table is not
reduced accordingly, leading to a larger total area.

In general, there is a clear point up to which there are very significant area
reductions. After this point, the MTTR continues to be increased, but the area is reduced
less aggressively. This occurs when the compressed signature size approaches the
amount of inputs in the device’s LUTs, allowing efficient implementations of the
address table seen in Figure 6.7. For Virtex 5 devices, LUTs have 6 inputs, but there are
multiplexers to allow implementing any 7 or 8 input function with 2 or 4 LUTs,
respectively (XILINX, INC., 2010). Thus, signatures around these sizes can be seen as
optimal spots for the heuristic, considering a cost-benefit metric such as “MTTR
reduction per area”. The chosen value (maxSize = 7) for the experimental results in
sections 6.5.2 and 6.5.3 is, therefore, in the middle of this space. The area reductions
provided by further compression become less significant, as the compression circuitry
starts to dominate the overall area. The leftmost point is associated with the circuit that
compresses all bits into a single signature and responds with the best static address to all
of them.

97

7 CONCLUSIONS

In this work, we have presented a study on the dependability threats faced by state-
of-the-art FPGAs and on existing techniques aiming at mitigating them. Our attention
was focused on a particular issue faced by such devices: with growing configuration
memories, the time required to scrub away their transient errors becomes longer. And
FPGAs tend become more and more susceptible to such errors, both due to the growing
configuration size and the scaling of transistors. Thus, efficiently and quickly handling
these errors becomes crucial to enable the use of FPGAs on critical systems, especially
those on harsh environments, such as space applications. The use of fine-grained error
detection techniques was put forth as a means to do so with manageable costs. We now
summarize the main contributions of this work and the conclusions drawn, as well as
possible future works. Publications achieved by the author both within the scope of this
thesis and in cooperation with other researchers are listed in section 7.3.

7.1 Summary of contributions
7.1.1 Fault injection platform

A new fault injection platform was developed to evaluate the techniques proposed in
this work. As main features, it requires one single FPGA to operate, reducing the costs
of setting up the experimental setup. Moreover, it operates directly on the internal
configuration access port (ICAP), without using softcore or hardwired processors. This
reduces the injection latency and generalizes the platform’s applicability, since it does
not require special components, aside from LUTs, BRAMs, flip-flops and the ICAP.
The modularity and extensibility of the injector allowed its adaptation to evaluate
different attributes of circuits, such as fault coverage and detection latency. It was
adapted to extract error signatures and to evaluate the susceptibility of the SURFER
translation tables to faults, both being important aspects discussed in chapter 6. This
platform is currently being used by other researchers to evaluate different mitigation
mechanisms.

7.1.2 Platform for radiation experiments

The experiments conducted on ISIS, Rutherford Appleton Laboratories, required the
development of a monitoring platform able to detect the occurrence of errors, to
automatically reprogram the FPGA and to log all relevant events. This platform is
described in section 5.4, along with the results that were obtained. As the fault injection
system, this platform was developed in a modular and extensible manner. Both the on-
chip monitoring circuit and the scripts on the host PC have been successfully adapted to
be used with different circuits and fault tolerance techniques in cooperation researches.

98

7.1.3 Carry chain circuits for fine-grained comparison

The maintenance of low costs was among the main concerns of this work. And,
since fine-grained redundancy typically demands additional area to implement the
numerous required comparators, we have devised a method to use the abundant carry
propagation chains found in FPGAs to implement these comparators. Thereby, the use
of LUTs can be avoided. This translates to more LUTs being left available for other
purposes (such as other functions to be integrated in the same FPGA) or even in the
possibility to use a smaller (and lower cost) FPGA.

A tool to automatically apply the proposed technique was developed. Numerous
features are supported, such as the instantiation of error aggregation circuitry, the use of
redundant comparators and the duplication granularity. The technique was extensively
evaluated under several axes and compared to a traditional coarse-grained DMR,
showing similar area and significant reductions on detection latency at the cost of a
slightly reduced fault coverage and an increased clock period.

7.1.4 Making use of fine-grained diagnosis with SURFER

7.1.4.1 Shifted scrubbing

The basic concept explored by SURFER is that one does not necessarily starts
scrubbing an FPGA on the first configuration frame, i.e., it can be shifted in the
addressing space. The idea to start scrubbing at a position closer to the actual error
location was inspired by the rotational latency of hard disk drives: once the magnetic
head reaches the desired track, it must wait for the disk rotation to bring the desired
sector. If one could place the head just before this sector, then this time would be
minimized. Similarly, the actual correction time of scrubbing depends on how far ahead
the error is located, relative to the next frame to be accessed by the scrubbing unit.
Therefore, one can choose a starting frame that minimizes the mean time to reach the
actual error. This realization is, in fact, independent from fine-grained error detection
mechanisms. Even without fine-grained diagnosis, one can estimate the areas with
higher density of sensitive bits and start scrubbing immediately before that area.

7.1.4.2 Shifted scrubbing guided by error signatures

As discussed in section 6.1, several challenges are faced by systems aiming to
explore very fine-grained diagnosis to accelerate repair. The dynamic factors that
change masking and propagation through circuit logic cause multiple signatures to be
generated by a same error. Furthermore, errors on different frames can cause a same
signature, since a module’s functionality is not necessarily encompassed by a single
frame and routing paths may cross long regions of the device. As a result, even when
very fine-grained redundancy is used, it may not always be possible to narrow the error
location down to a single frame. These signatures can, however, be used as meaningful
hints for a shifted scrubbing system. The SURFER mechanism proposed herein was
able to reduce the MTTR by 80% on average, when making use of a perfectly precise
signature translation mechanism. This mechanism, however, turned out to have very
high costs even for small circuits, creating the need for more efficient translation
heuristics. It remains relevant, nonetheless, to show the maximum gains provided by
SURFER, being useful as a goal for any such heuristic.

7.1.4.3 Heuristic for efficient signature translation

The heuristic signature translation (HST) proposed in this work is based on a
compression circuit that joins signature bits with the OR function. It operates similarly

99

to a low cost hash table and heavily exploits the fact that not all collisions have the same
impact on the final quality of the solution, since many signatures would be translated to
neighboring frame addresses. By grouping those bits that are active (i.e., ‘1’) for
signatures that frequently appear in a same region, it attempts maximize collisions
between such signatures and to minimize them between those that appear in far away
locations. It allowed creating translation tables that provide an average 61.9% MTTR
reduction at cost of 15.5% of the unhardened circuit area.

7.2 Future works
7.2.1 Choosing intermediate redundancy grains

In this work we have used a very fine granularity, since the outputs of all LUTs were
compared to copies. This was made with reduced area costs by means of the carry
propagation chains. But it did introduce delay penalties and generated very large error
signatures, which increased the complexity of translating them to useful information.
Therefore, identifying the most important observation nodes, both in terms of detection
latency and of diagnosis, can be an interesting approach to reduce costs, similarly to
what is done in partial redundancy works such as (PRATT, CAFFREY, GRAHAM, et
al., 2006) and (SHE and SAMUDRALA, 2009).

7.2.2 Further exploring the SURFER design space

The concepts introduced by SURFER open an enormous design space, in which
many different research directions are possible. We highlight the following as
promising approaches to further improve the benefits of SURFER.

7.2.2.1 Improved translation heuristics

The HST mechanism proposed here is one of many possible and had the main
purpose of showing the feasibility of the SURFER approach. Different weight functions
or grouping heuristics (not based on iterative maximum weighted matching) can be
devised. For example, the current version of the heuristic does not always fully exploit
the chosen maximum signature size maxSize. Since it approximately divides in half the
size at each iteration, there may be situations in which the final compressed signatures
are substantially smaller than maxSize. A final “relaxation” step can be introduced to
ungroup bits and meet maxSize precisely, leading to less collisions and improved
translation precision with very small area costs.

Other translation mechanisms can be found based on different paradigms as well.
Meta-heuristics and neural networks, for example, may bring better results or at least
interesting additional Pareto points. The time required to perform the translation, albeit
relevant, can also be extended, if the quality of the chosen frame is improved
substantially.

7.2.2.2 Multiple starting frames

The current SURFER mechanism points to one starting frame, based on the error
probability distribution observed for that specific signature. It may be interesting in
some situations to create multiple scrubbing areas, with different priorities, in order to
skip “dead zones” in which the probability of finding an error, for that signature, is very
small. This can be done with low costs if the compressed signatures are shared, at least
partially, by the multiple translation tables.

100

7.2.2.3 Using other signals in the signature

The error signatures used in this work comprise all individual error detection
signals, but additional informational can be included. As was discussed in section 6.1,
error signatures may vary depending of dynamic factors, such as primary inputs (PIs).
Therefore, adding information on the current state of the circuit can aid in the location
of the error. For example, an indication of the current operation mode, of the software
being executed in a softcore processor or registers which are particularly relevant for the
component’s operation can help improving the precision of the chosen frame address.

7.2.3 Diagnosing permanent faults and aging

This work focused primarily on locating and correcting soft errors. The improved
diagnosis provided by fine-grained error detection, however, can also be used to identify
areas of the FPGA which are subject to permanent faults or aging. If the incidence of a
particular signature is significantly above its expected frequency, it may indicate that
the associated FPGA area is facing aging or even a permanent fault. Alternative repair
mechanisms, such as reallocating the module (or a part of it) to a spare area, can be
adopted in this case.

7.2.4 Performing radiation testing over a complete SURFER platform

Implementing a complete SURFER platform for relevant applications, preferably
with strict real-time restrictions, is an important step to validate the proposed flow.
Once the complete system is implemented on a board with the required resources (i.e.,
an SRAM-based FPGA for payload application and a radiation-hardened device for
scrubbing control) it can be subject to radiation testing, measuring the overall reliability
of the entire platform.

7.2.5 Finding other uses for the signature translation heuristic

The HST algorithm proposed herein showed interesting results, being able to
maintain repair acceleration with a very low area cost. It may be possible to apply this
same heuristic (or variations of it) to other problems with the same requirements: large
amount of inputs, small area, and approximate results. Comparing its performance with
hardware-implemented neural networks, for example, is an interesting experiment to
evaluate its efficiency.

7.3 Publications
The following publications were achieved by the author during this course.

7.3.1 Book chapters

BECK, A. C. S.; LISBÔA, C. A. L.; CARRO, L.; NAZAR, G. L. et al. Adaptability:
The Key for Future Embedded Systems. In: BECK, A. C. S.; LISBÔA, C. A. L.;
CARRO, L. Adaptable Embedded Systems. 1st. ed. New York: Springer, 2013. Cap.
1, p. 1-12.

NAZAR, G. L.; CARRO, L. Reconfigurable Memories. In: BECK, A. C. S.;
LISBÔA, C. A. L.; CARRO, L. Adaptable Embedded Systems. 1st. ed. New York:
Springer, 2013. Cap. 4, p. 95-117.

101

7.3.2 Journal

NAZAR, G. L.; RECH, P.; FROST, C.; CARRO, L. Radiation and Fault Injection
Testing of a Fine-Grained Error Detection Technique for FPGAs. IEEE Transactions
on Nuclear Science, Piscataway, (in press) 2013.

7.3.3 Conferences and workshops

AZAMBUJA, J. R.; NAZAR, G. L.; RECH, P.; CARRO, L. et al. Combining
Hardware- and Software-Based Techniques to Detect and Diagnose Neutron Induced
Single Event Effects in SRAM-Based FPGA. NUCLEAR AND SPACE RADIATION
EFFECTS CONFERENCE (NSREC). San Francisco: [s.n.]. 2013.

ANJAM, F.; WONG, S.; CARRO, L.; NAZAR, G. L. et al. Simultaneous
Reconfiguration of Issue-width and Instruction Cache for a VLIW Processor.
INTERNATIONAL CONFERENCE ON EMBEDDED COMPUTER SYSTEMS:
ARCHITECTURES, MODELING AND SIMULATION (SAMOS). Proceedings...
Piscataway: IEEE. 2012. p. 183-192.

ITTURRIET, F. P.; NAZAR, G. L.; FERREIRA, R. R.; MOREIRA, A. F. et al.
Adaptive parallelism exploitation under physical and real-time constraints for resilient
systems. INTERNATIONAL WORKSHOP ON RECONFIGURABLE
COMMUNICATION-CENTRIC SYSTEMS-ON-CHIP (ReCoSoC). Proceedings...
Piscataway: IEEE. 2012. p. 1-8.

ITTURRIET, F.; FERREIRA, R.; GIRÃO, G.; NAZAR, G. et al. Resilient Adaptive
Algebraic Architecture for Parallel Detection and Correction of Soft-Errors.
EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD).
Proceedings... Los Alamitos: IEEE CS. 2012. p. 136-139.

NAZAR, G. L.; CARRO, L. An Area Effective Parity-based Fault Detection
Technique for FPGAs. INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT
TOLERANCE IN VLSI AND NANOTECHNOLOGY SYSTEMS (DFT).
Proceedings... Piscataway: IEEE. 2011. p. 27-33.

NAZAR, G. L.; CARRO, L. Energy Efficient Pseudo-Cache Architecture Through
Fine-Grained Reconfigurability. INTERNATIONAL SYMPOSIUM ON CIRCUITS
AND SYSTEMS (ISCAS). Proceedings... Piscataway: IEEE. 2011. p. 2317-2320.

NAZAR, G. L.; CARRO, L. Exploiting Modified Placement and Hardwired
Resources to Provide High Reliability in FPGAs. ANNUAL INTERNATIONAL
SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING
MACHINES (FCCM). Proceedings... Los Alamitos: IEEE CS. 2012. p. 149-152.

NAZAR, G. L.; CARRO, L. Fast error detection through efficient use of hardwired
resources in FPGAs. EUROPEAN TEST SYMPOSIUM (ETS). Proceedings... Los
Alamitos: IEEE CS. 2012.

NAZAR, G. L.; CARRO, L. Fast Single-FPGA Fault Injection Platform.
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN
VLSI AND NANOTECHNOLOGY SYSTEMS (DFT). Proceedings... Piscataway:
IEEE. 2012. p. 152-157.

NAZAR, G. L.; RECH, P.; FROST, C.; CARRO, L. Experimental Evaluation of an
Efficient Error Detection Technique for FPGAs. EUROPEAN CONFERENCE ON
RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS (RADECS).
Proceedings... Piscataway: IEEE. 2012.

102

NAZAR, G. L.; SANTOS, L. P.; CARRO, L. Accelerated FPGA Repair through
Shifted Scrubbing. INTERNATIONAL CONFERENCE ON FIELD
PROGRAMMABLE LOGIC AND APPLICATIONS (FPL). Proceedings...
Piscataway: IEEE (in press). 2013.

NAZAR, G. L.; SANTOS, L. P.; CARRO, L. Scrubbing Unit Repositioning for Fast
Error Repair in FPGAs. INTERNATIONAL CONFERENCE ON COMPILERS
ARCHITECTURE AND SYNTHESIS FOR EMBEDDED SYSTEMS (CASES).
Proceedings... New York: ACM (in press). 2013.

SANTOS, P. C.; NAZAR, G. L.; ANJAM, F.; WONG, S. et al. A Fully Dynamic
Reconfigurable NoC-based MPSoC: The Advantages of a Multi-Level Reconfiguration.
WORKSHOP ON DESIGN TOOLS AND ARCHITECTURES FOR MULTI-CORE
EMBEDDED COMPUTING PLATFORMS (DITAM). Proceedings... Berlin: [s.n.].
2013.

SANTOS, P. C.; NAZAR, G. L.; ANJAM, F.; WONG, S. et al. A Fully Dynamic
Reconfigurable NoC-based MPSoC: The Advantages of Total Reconfiguration.
WORKSHOP ON RECONFIGURABLE COMPUTING (WRC). Berlin: [s.n.]. 2013.

SANTOS, P. C.; NAZAR, G. L.; CARRO, L.; ANJAM, F. et al. Adapting
Communication for Adaptable Processors: A Multi-Axis Reconfiguration Approach.
INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTING AND
FPGAS (ReConFig). Proceedings... Red Hook: IEEE. 2012. p. 1-6.

TABORDA, T. B.; NAZAR, G. L.; CARRO, L. Evaluating the Weighted Fault
Sensitivity of the Components of a VLIW Architecture. WORKSHOP ON DESIGN
TOOLS AND ARCHITECTURES FOR MULTI-CORE EMBEDDED COMPUTING
PLATFORMS (DITAM). Berlin: [s.n.]. 2013.

TABORDA, T. B.; NAZAR, G. L.; CARRO, L. Investigating Reliability-Critical
Components of VLIW Processors. WORKSHOP ON DESIGN FOR RELIABILITY
(DFR). Berlin: [s.n.]. 2013.

TAMBARA, L.; KASTENSMIDT, F. L.; AZAMBUJA, J. R.; CHIELLE, E. et al.
Evaluating the Effectiveness of a Diversity TMR Scheme under Neutrons.
CONFERENCE ON RADIATION EFFECTS ON COMPONENTS AND SYSTEMS
(RADECS). Proceedings... Piscataway: IEEE (in press). 2013.

TONFAT, J.; AZAMBUJA, J. R.; NAZAR, G. L; RECH, P. et al. Analyzing the
Influence of Voltage Scaling for Soft Errors in SRAM-based FPGAs. DATA
WORKSHOP OF THE CONFERENCE ON RADIATION EFFECTS ON
COMPONENTS AND SYSTEMS (RADECS). Proceedings... Piscataway: IEEE (in
press). 2013.

103

REFERENCES

ABRAMOVICI, M.; BREUER, M.; FRIEDMAN, A. Digital systems testing and
testable design. 1st. ed. New Jersey: Wiley-IEEE Press, 1990.

ABRAMOVICI, M.; STROUD, C.; HAMILTON, C.; WIJESURIYA, S. et al. Using
roving STARs for on-line testing and diagnosis of FPGAs in fault-tolerant applications.
INTERNATIONAL TEST CONFERENCE (ITC). Proceedings... Washington: IEEE
Press. 1999. p. 973-982.

AGUIRRE, M. A.; TOMBS, J. N.; MUOZ, F.; BAENA, V. et al. Selective
Protection Analysis Using a SEU Emulator: Testing Protocol and Case Study Over the
Leon2 Processor. IEEE Transactions on Nuclear Science, Piscataway, v. 54, n. 4, p.
951-956, August 2007.

AIDEMARK, J.; VINTER, J.; FOLKESSON, P.; KARLSSON, J. GOOFI: Generic
Object-Oriented Fault Injection Tool. INTERNATIONAL CONFERENCE ON
DEPENDABLE SYSTEMS AND NETWORKS (DSN). Proceedings... Los Alamitos:
IEEE CS Press. 2001. p. 83-88.

ALDERIGHI, M.; CASINI, F.; D'ANGELO, S.; MANCINI, M. et al. Evaluation of
Single Event Upset Mitigation Schemes for SRAM based FPGAs using the FLIPPER
Fault Injection Platform. IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND
FAULT-TOLERANCE IN VLSI SYSTEMS (DFT). Proceedings... Los Alamitos:
IEEE CS Press. 2007. p. 105-113.

ALTERA CORPORATION. Altera End Markets. Altera , 2012. Available at:
<http://www.altera.com/end-markets/end-index.html>. Accessed in: 17 October 2012.

ALTERA CORPORATION. About Stratix Family High-End FPGAs and SoCs.
Altera , San Jose, p. 580, 2013. Available at:
<http://www.altera.com/devices/fpga/stratix-fpgas/about/stx-about.html>. Accessed in:
22 July 2013.

AVIZIENIS, A.; LAPRIE, J.; RANDELL, B.; LANDWEHR, C. Basic Concepts and
Taxonomy of Dependable and Secure Computing. IEEE Transactions on Dependable
and Secure Computing, Los Alamitos, v. 1, n. 1, p. 11-33, January-March 2004.

BANSAL, A.; RAO, R. M. Variations: Sources and Characterization. In: BHUNIA,
S.; MUKHOPADHYAY, S. Low-Power Variation-Tolerant Design in Nanometer
Silicon. 1st. ed. Dordrecht: Springer, 2011. p. 3-39.

BAUMANN, R. C. Radiation-Induced Soft Errors in Advanced Semiconductor
Technologies. IEEE Transactions on Device and Materials Reliability, Piscataway,
v. 5, n. 3, p. 305-316, September 2005.

104

BERNARDI, P.; SONZA REORDA, M.; STERPONE, L.; VIOLANTE, M. On the
evaluation of SEU sensitiveness in SRAM-based FPGAs. IEEE INTERNATIONAL
ON-LINE TESTING SYMPOSIUM (IOLTS). Proceedings... Los Alamitos: IEEE CS
Press. 2004. p. 115-120.

BOLCHINI, C.; CASTRO, F.; MIELE, A. A Fault Analysis and Classifier
Framework for Reliability-aware SRAM-based FPGA Systems. INTERNATIONAL
SYMPOSIUM ON ON DEFECT AND FAULT TOLERANCE IN VLSI AND
NANOTECHNOLOGY SYSTEMS. Proceedings... Los Alamitos: IEEE CS. 2009. p.
173-181.

BOLCHINI, C.; MIELE, A.; SANDIONIGI, C. A Novel Design Methodology for
Implementing Reliability-Aware Systems on SRAM-Based FPGAs. IEEE
Transactions on Computers, Los Alamitos, v. 60, n. 12, p. 1744-1758, Dec 2011.

CARMICHAEL, C.; CAFFREY, M.; SALAZAR, S. Correcting Single-Event
Upsets Through Virtex Partial Configuration. Xilinx, Inc. San Jose, 12 p. 2000.

CHA, H.; RUDNICK, E. M.; PATEL, J. H.; IYER, R. K. et al. A Gate-Level
Simulation Environment for Alpha-Particle-Induced Transient Faults. IEEE
Transactions on Computers, Los Alamitos, v. 45, n. 11, p. 1248-1256, Nov 1996.

CHAPMAN, K. SEU Strategies for Virtex-5 Devices. Xilinx, Inc. San Jose, 16 p.
2010.

CIVERA, P.; MACCHIARULO, L.; REBAUDENGO, M.; SONZA REORDA, M.
et al. An FPGA-Based Approach for Speeding-Up Fault Injection Campaigns on Safety-
Critical Circuits. Journal of Electronic Testing, Dordrecht, v. 18, n. 3, p. 261-271, Jun
2002.

D'ANGELO, S.; METRA, C.; PASTORE, S.; POGUTZ, A. et al. Fault-Tolerant
Voting Mechanism and Recovery Scheme for TMR FPGA-based Systems. IEEE
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN
VLSI SYSTEMS (DFT). Proceedings... Los Alamitos: IEEE CS Press. 1998. p. 233-
240.

DE ANDRES, D.; RUIZ, J. C.; GIL, D.; GIL, P. Fault Emulation for Dependability
Evaluation of VLSI Systems. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Piscataway, v. 16, n. 4, p. 422-431, Apr 2008.

DEZSő, B.; JÜTTNER, B.; KOVÁCS, P. LEMON – an Open Source C++ Graph
Template Library. Electronic Notes in Theoretical Computer Science, v. 264, n. 5, p.
23-45, July 2011.

EDMONDS, J. Paths, Trees and Flowers. Canadian Journal of Mathematics, v.
17, p. 449-467, February 1965.

EMMERT, J. M.; STROUD, C. E.; ABRAMOVICI, M. Online Fault Tolerance for
FPGA Logic Blocks. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, Piscataway, v. 15, n. 2, p. 216-226, Feb 2007.

FULLER, E.; CAFFREY, M.; SALAZAR, A.; CARMICHAEL, C. et al. Radiation
Testing Update, SEU Mitigation, and Availability Analysis of the Virtex FPGA for
Space Reconfigurable Computing. MILITARY AND AEROSPACE APPLICATIONS
OF PROGRAMMABLE DEVICES AND TECHNOLOGIES INTERNATIONAL
CONFERENCE (MAPLD). Proceedings... Laurel: [s.n.]. 2000. p. 1-11.

105

GERICOTA, M. G.; LEMOS, L. F.; ALVES, G. R.; FERREIRA, J. M. On-Line
Self-Healing of Circuits Implemented on Reconfigurable FPGAs. IEEE
INTERNATIONAL ON-LINE TESTING SYMPOSIUM (IOLTS). Proceedings... Los
Alamitos: IEEE CS. 2007. p. 217-222.

GOKHALE, M.; GRAHAM, P.; JOHNSON, E.; ROLLINS, N. et al. Dynamic
reconfiguration for management of radiation-induced faults in FPGAs.
INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM
(IPDPS). Proceedings... Los Alamitos: IEEE. 2004. p. 1-6.

GOLSHAN, S.; KHAJEH, A.; HOMAYOUN, H.; BOZORGZADEH, E. et al.
Reliability-aware placement in SRAM-based FPGA for voltage scaling realization in
the presence of process variations. IEEE/ACM/IFIP INTERNATIONAL
CONFERENCE ON HARDWARE/SOFTWARE CODESIGN AND SYSTEM
SYNTHESIS (CODES+ISSS). Proceedings... New York: ACM. 2011. p. 257-266.

HATORI, F.; SAKURAI, T.; NOGAMI, K.; SAWADA, K. et al. Introducing
redundancy in field programmable gate arrays. CUSTOM INTEGRATED CIRCUITS
CONFERENCE (CICC). Proceedings... Los Alamitos: IEEE Press. 1993. p. 7.1.1-
7.1.4.

HAYKIN, S. Neural Networks - A Comprehensive Foundation. 2nd. ed. Upper
Saddle River: Prentice Hall, 1998.

HOWARD, N. J.; TYRRELL, A. M.; ALLINSON, N. M. The yield enhancement of
field-programmable gate arrays. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Piscataway, v. 2, n. 1, p. 115-123, Mar 1994.

HSUEH, M. C.; TSAI, T. K.; IYER, R. K. Fault Injection Techniques and Tools.
Computer, Los Alamitos, v. 30, n. 4, p. 75-82, Apr 1997.

IROM, F.; NGUYEN, D. N.; HARBOE-SøRENSEN, R.; VIRTANEN, A.
Evaluation of Mechanisms in TID Degradation and SEE Susceptibility of Single- and
Multi-Level High Density NAND Flash Memories. IEEE Transactions on Nuclear
Science, Piscataway, v. 58, n. 5, p. 2477-2482, October 2011.

ITRS. International Technology Roadmap for Semiconductos 2011 Edition -
Design. ITRS. [S.l.], 48 p. 2011.

JEDEC. Measurement and Reporting of Alpha Particle and Terrestrial Cosmic
Ray-Induced Soft Errors in Semiconductor Devices. JEDEC. Arlington, 84 p. 2006.

JENN, E.; ARLAT, J.; RIMEN, M.; OHLSSON, J. et al. Fault injection into VHDL
models: the MEFISTO tool. TWENTY-FOURTH INTERNATIONAL SYMPOSIUM
ON FAULT-TOLERANT COMPUTING (FTCS). Proceedings... Los Alamitos: IEEE
CS Press. 1994. p. 66-75.

KAMMLER, D.; GUAN, J.; ASCHEID, G.; LEUPERS, R. et al. A Fast and
Flexible Platform for Fault Injection and Evaluation in Verilog-Based Simulations.
THIRD IEEE INTERNATIONAL CONFERENCE ON SECURE SOFTWARE
INTEGRATION AND RELIABILITY IMPROVEMENT (SSIRI). Proceedings... Los
Alamitos: IEEE CS Press. 2009. p. 309-314.

KARLSSON, J.; LIDEN, P.; DAHLGREN, P.; JOHANSSON, R. et al. Using
heavy-ion radiation to validate fault-handling mechanisms. IEEE Micro , Los Alamitos,
v. 14, n. 1, p. 8-23, February 1994.

106

KASTENSMIDT, F. L.; FILHO, C. K.; CARRO, L. Improving Reliability of
SRAM-Based FPGAs by Inserting Redundant Routing. IEEE Transactions on
Nuclear Science, Piscataway, v. 53, n. 4, p. 2060-2068, Aug 2006.

KASTENSMIDT, F. L.; STERPONE, L.; CARRO, L.; SONZA REORDA, M. On
the Optimal Design of Triple Modular Redundancy Logic for SRAM-based FPGAs.
DESIGN AUTOMATION AND TEST IN EUROPE (DATE). Proceedings... Los
Alamitos: IEEE CS Press. 2005. p. 1290-1295.

KUNDU, S.; REDDY, S. M. Embedded totally self-checking checkers: a practical
design. IEEE Design & Test of Computers, Los Alamitos, v. 7, n. 4, p. 5-12, Aug
1990.

KUON, I.; TESSIER, R.; ROSE, J. FPGA Architecture: Survey and Challenges.
Foundation and Trends in Electronic Design Automation, Delft, v. 2, n. 2, p. 135-
253, April 2008.

KYRIAKOULAKOS, K.; PNEVMATIKATOS, D. A Novel SRAM-based FPGA
Architecture for Efficient TMR Fault Tolerance Support. INTERNATIONAL
CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICATIONS
(FPL). Proceedings... Los Alamitos: IEEE Press. 2009. p. 193-198.

LACH, J.; MANGIONE-SMITH, W. H.; POTKONJAK, M. Low Overhead Fault-
Tolerant FPGA Systems. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, Piscataway, v. 6, n. 2, p. 212-221, Jun 1998.

LESEA, A.; DRIMER, S.; FABULA, J. J.; CARMICHAEL, C. et al. The Rosetta
Experiment: Atmospheric Soft Error Rate Testing in Differing Technology FPGAs.
IEEE Transactions on Device and Materials Reliability, Piscataway, v. 5, n. 3, p.
317-328, September 2005.

LI, Y.; KIM, Y. M.; MINTARNO, E.; GARDNER, D. S. et al. Overcoming Early-
Life Failure and Aging for Robust Systems. IEEE Design and Test of Computers,
Piscataway, v. 26, n. 6, p. 28-39, November/December 2009.

LIMA, F.; CARMICHAEL, C.; FABULA, J.; PADOVANI, R. et al. A Fault
Injection Analysis of Virtex FPGA TMR Design Methodology. 6TH EUROPEAN
CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND
SYSTEMS (RADECS). Proceedings... Los Alamitos: IEEE Computer Society. 2001. p.
275-282.

LIMA, F.; CARRO, L.; REIS, R. Designing Fault Tolerant Systems into SRAM-
based FPGAs. DESIGN AUTOMATION CONFERENCE (DAC). Proceedings... New
York: ACM. 2003. p. 650-655.

LISBÔA, C. A. L. Dealing with Radiation Induced Long Duration Transient
Faults in Future Technologies. Thesis (Doctoral Degree in Computing), Instituto de
Informática - UFRGS. Porto Alegre, 113 p. 2009.

MEHTA, N.; DEHON, A. Variation and Aging Tolerance in FPGAs. In: BHUNIA,
S.; MUKHOPADHYAY, S. Low-Power Variation-Tolerant Design in Nanometer
Silicon. 1st. ed. Dordrecht: Springer, 2011. p. 365-380.

MICROSEMI CORPORATION. Radiation-Tolerant ProASIC3 Low Power
Spaceflight Flash FPGAs with Flash*Freeze Technology. Microsemi Corporation.
Aliso Viejo, 170 p. 2011.

107

MICROSEMI CORPORATION. RTAX-S/SL and RTAX-DSP Radiation-
Tolerant FPGAs. Microsemi Corporation. Aliso Viejo, 278 p. 2012.

MINKOVICH, K. Kirill Minkovich's Home Page, 2011. Available at:
<http://cadlab.cs.ucla.edu/~kirill/>. Accessed in: 10 October 2011.

MOJOLI, G. A.; SALVI, D.; SAMI, M. G.; SECHI, G. R. et al. KITE: A
Behavioural Approach to Fault-Tolerance in FPGA-Based Systems.
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN
VLSI SYSTEMS (DFT). Proceedings... Los Alamitos: IEEE Press. 1996. p. 327-334.

NIKNAHAD, M.; SANDER, O.; BECKER, J. A study on fine granular fault
tolerance methodologies for FPGAs. 2011 6TH INTERNATIONAL WORKSHOP ON
RECONFIGURABLE COMMUNICATION-CENTRIC SYSTEMS-ON-CHIP
(RECOSOC). Proceedings... Piscataway: IEEE Press. 2011. p. 1-5.

PRADHAN, D. K. Fault-tolerant computer system design. 1st. ed. Englewood
Cliffs: Prentice Hall Publisher, 1996.

PRATT, B.; CAFFREY, M.; GRAHAM, P.; MORGAN, K. et al. Improving FPGA
Design Robustness with Partial TMR. IEEE INTERNATIONAL RELIABILITY
PHYSICS SYMPOSIUM. Proceedings... Piscataway: IEEE Press. 2006. p. 226-232.

PSARAKIS, M.; APOSTOLAKIS, A. Fault Tolerant FPGA Processor Based on
Runtime Reconfigurable Modules. 2012 17th IEEE EUROPEAN TEST SYMPOSIUM
(ETS). Proceedings... Los Alamitos: IEEE CS Press. 2012. p. 38-43.

RAMAKRISHNAN, K.; SURESH, S.; VIJAYKRISHNAN, N.; IRWIN, M. J. et al.
Impact of NBTI on FPGAs. 20TH INTERNATIONAL CONFERENCE ON VLSI
DESIGN. Proceedings... Los Alamitos: IEEE CS Press. 2007. p. 717-722.

SCHRIMPF, R. D. Radiation Effects in Microelectronics. In: VELAZCO, R.;
FOUILLAT, P.; REIS, R. Radiation Effects on Embedded Systems. 1st. ed.
Dordrecht: Springer, 2007. p. 11-29.

SEXTON, F. W. Destructive Single-Event Effects in Semiconductor Devices and
ICs. IEEE Transactions on Nuclear Science, Piscataway, v. 50, n. 3, p. 603-621, June
2003.

SHE, X.; SAMUDRALA, P. K. Selective Triple Modular Redundancy for Single
Event Upset (SEU) Mitigation. NASA/ESA CONFERENCE ON ADAPTIVE
HARDWARE AND SYSTEMS (AHS). Proceedings... Los Alamitos: IEEE CS Press.
2009. p. 344-350.

SHNIDMAN, N. R.; MANGIONE-SMITH, W. H.; POTKONJAK, M. Fault
Scanner for Reconfigurable Logic. Advanced Research in VLSI. Proceedings... Los
Alamitos: IEEE CS Press. 1997. p. 238-255.

SONZA REORDA, M.; STERPONE, L.; ULLAH, A. An Error-Detection and Self-
Repairing Method for Dynamically and Partially Reconfigurable Systems. 18th IEEE
EUROPEAN TEST SYMPOSIUM (ETS). Proceedings... Los Alamitos: IEEE CS.
2013. p. 149-155.

STERPONE, L.; AGUIRRE, M.; TOMBS, J.; GUZMAN-MIRANDA, H. On the
design of tunable fault tolerant circuits on SRAM-based FPGAs for safety critical
applications. DESIGN AUTOMATION AND TEST IN EUROPE (DATE).
Proceedings... New York: ACM. 2008. p. 336-341.

108

STERPONE, L.; VIOLANTE, M. A New Reliability-Oriented Place and Route
Algorithm for SRAM-Based FPGAs. IEEE Transactions on Computers, Los
Alamitos, v. 55, n. 6, p. 732-744, April 2006.

STERPONE, L.; VIOLANTE, M. A New Partial Reconfiguration-Based Fault-
Injection System to Evaluate SEU Effects in SRAM-Based FPGAs. IEEE
Transactions on Nuclear Science, Piscataway, v. 54, n. 2, p. 965-970, August 2007.

STRAKA, M.; KASTIL, J.; KOTASEK, Z. Generic partial dynamic reconfiguration
controller for fault tolerant designs based on FPGA. NORCHIP. Proceedings...
Piscataway: IEEE. 2010. p. 1-4.

VIOLANTE, M.; STERPONE, L.; MANUZZATO, A.; GERARDIN, S. et al. A
New Hardware/Software Platform and a New 1/E Neutron Source for Soft Error
Studies: Testing FPGAs at the ISIS Facility. IEEE Transaction on Nuclear Science,
Piscataway, v. 54, n. 4, p. 1184-1189, August 2007.

WIRTHLIN, M.; JOHNSON, E.; ROLLINS, N.; CAFFREY, M. et al. The
reliability of FPGA circuit designs in the presence of radiation induced configuration
upsets. ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM
COMPUTING MACHINES (FCCM). Proceedings... Los Alamitos: IEEE CS Press.
2003. p. 133-142.

XILINX, INC. Virtex-4 FPGA Configuration User Guide. Xilinx, Inc. San Jose,
114 p. 2009a.

XILINX, INC. Virtex-5 Family Overview. Xilinx, Inc. San Jose, 13 p. 2009b.

XILINX, INC. Virtex 5 FPGA User Guide. Xilinx Inc. San Jose, 385 p. 2010.

XILINX, INC. Virtex-5 FPGA Configuration User Guide. Xilinx, Inc. San Jose,
166 p. 2011a.

XILINX, INC. Virtex-II Pro and Virtex-II Pro X Platform FPGAs . Xilinx, Inc.
San Jose, 302 p. 2011b.

XILINX, INC. Command Line Tools User Guide. Xilinx, Inc. San Jose, 413 p.
2011c.

XILINX, INC. Constraints Guide. Xilinx, Inc. San Jose, 325 p. 2011d.

XILINX, INC. 7 Series FPGAs Overview. Xilinx, Inc. San Jose, 15 p. 2012a.

XILINX, INC. Applications. Xilinx , 2012b. Available at:
<http://www.xilinx.com/applications/index.htm>. Accessed in: 17 October 2012.

XILINX, INC. Device Reliability Report. Xilinx, Inc. San Jose, 118 p. 2012c.

XILINX, INC. ultrascale. Xilinx , 2013. Available at:
<http://www.xilinx.com/products/technology/ultrascale/index.htm>. Accessed in: 22
July 2013.

ZEH, C. Incremental Design Reuse with Partitions. Xilinx, Inc. San Jose, 17 p.
2007.

109

APPENDIX A – TAXONOMY OF DEPENDABLE
SYSTEMS

The taxonomy found in the field of dependable systems is vast and may vary from
one work to another. Therefore, it is important to establish a common use of the
definitions. In this appendix, we present the basic concepts related to dependable
systems and discuss the nomenclature adopted in this work, based mainly on
(AVIZIENIS, LAPRIE, RANDELL, et al., 2004) and (PRADHAN, 1996), which are
good sources for further reading on this topic.

A.1 Fault, Error and Failure
The most basic definitions are those of fault, error and failure, which follow cause-

effect relations. A fault is defined as a cause of a possible error. It is, therefore,
frequently associated with a physical phenomenon that may corrupt the system activity.
Faults can also be human-made, such as mistakes during system design. Such faults,
however, lie outside the scope of this work. An error, in turn, is defined as a divergence
in the system state from the expected one, which may or may not lead to a service
failure. Finally, a service failure (or simply failure) is defined as a deviation in the
service provided by the system, as expected by a user or another system. This implies in
the definition of system boundaries, which determine where the system being analyzed
or developed begins and where it ends. If an error remains internal to the system
boundaries and does not cause the system service to deviate, then no failure occurs.
Similarly, if a fault never leads to an erroneous system state (it occurs in a component
not in use, for example), then no error occurs.

An example can be used to better explain these concepts. Let us assume that an
energetic particle hits a processor’s arithmetic and logic unit (ALU) and temporarily
changes the value of an internal wire, characterizing a fault. If that signal is in the shifter
unit, for example, and this unit is not used, then no error occurs. Conversely, if a shift
instruction is in execution when the fault occurs and it causes a register to receive an
erroneous value, then an error takes place. Finally, if this error does not cause the
service delivered by this program to deviate, then the system does not present failure. If
the service differs, a failure occurs. Note that the placement of the system boundaries
plays an important role at this point. If we consider the system as being strictly the
processor, then the writing of an erroneous value to an external memory is considered a
failure. If we place the off-chip memory within system boundaries, then a failure will
only occur when there is a divergence in the service observed by external entities, e.g.
another processor connected via network or a human user.

Faults, errors and failures can be classified into many different categories, according
to several and frequently orthogonal properties. A comprehensive discussion on the

110

matter is presented in (AVIZIENIS, LAPRIE, RANDELL, et al., 2004). Here, we focus
on the aspects that are most relevant for the remainder of this work.

One of the most important aspects of faults regards its duration or persistence.
Transient faults are those whose presence is bounded in time. Thus, it may be possible
to completely remove them from the system. In other words, transient faults are those
that do not damage the component in a permanent manner, and that disturb its operation
for a limited time. The errors due to transient faults are called soft errors. Conversely,
permanent faults are those with continuous or unbounded duration. They are usually
due to irreversible damage to a component. The errors caused by permanent faults are
called hard errors. Finally, some faults may lie in between permanent and transient.
Although the term intermittent is used with another purpose in (AVIZIENIS, LAPRIE,
RANDELL, et al., 2004), we follow the taxonomy of (PRADHAN, 1996) on this
matter. Thus, we refer to faults that appear and disappear repeatedly over time as
intermittent faults.

Service failures are also classified into a variety of categories. For instance, they can
be separated into content and timing failures, with the former referring to when the
delivered value differs from the correct one, whereas the latter refers to when the time in
which the information is delivered does not follow specification. Timing failures are,
thus, very relevant for real-time systems. Failures can also be classified as signaled,
when the system raises a warning signal informing that a failure occurred, and
unsignaled when it does not.

A.2 Dependability and its features
With the definitions of fault, error and failure at hand, dependability can be defined.

In (AVIZIENIS, LAPRIE, RANDELL, et al., 2004) two definitions are presented. A
dependable system can be considered as a system where trust can be justifiably placed.
Alternatively, one can consider that a system is dependable when it can avoid failures
that are more frequent or severe than is acceptable. The definition of acceptable is
highly application-dependent. While a standard cell phone may acceptably fail once a
year, an airplane engine cannot. Dependability envelops several other concepts:

• Availability: “readiness for correct service”. Also defined as the probability that
the system will be functional at a given time t.

• Reliability: “continuity of correct service”. Also defined as the probability that
the system will be functional during an interval [t0, t], provided it was functional
at t0.

• Safety: “absence of catastrophic consequences”. A failure may be catastrophic
when it harms human lives, the environment or due to economical reasons.

• Integrity: “absence of improper system alterations”. This means that the system
will not be modified in a way that harms its overall dependability.

• Maintainability: “ability to undergo modification and repairs”. In other words,
how efficient is the system’s return to a functional state after a service failure.

The concepts listed above are those presented in (AVIZIENIS, LAPRIE,
RANDELL, et al., 2004). Other works include different sets of system features as part
of dependability. In (PRADHAN, 1996), the concept of integrity is omitted, while two
other features are included:

• Performability: the probability that the system will present a specific
performance level at a given time instant.

111

• Testability: how simple it is to test the system, where testing is an attempt to
identify specific problems within the system.

Just as the definition of an acceptable failure rate or severity is application-
dependent, so is the relevance of each of the concepts encompassed by dependability.
For example, data servers are typically concerned with high availability: the likelihood
of a user finding the service unavailable must be as low as possible. Maintainability is
also crucial for a high availability, as it is directly related to how long the system
remains offline after a failure. Alternatively, for a system that is used during a mission
time, such as those used in an aircraft, high reliability is the greatest concern. For these
applications, it is crucial that the system does not fail during a given period of time,
namely the mission, and failures during off-mission time are not nearly as severe.
Performability, on the other hand, is highly relevant for real-time systems, where the
system is required to produce an output or take an action within a restricted timeframe
in order to avoid timing failures.

A.3 MTTF, MTBF, MTTR and FIT
Other relevant metrics are frequently used to evaluate dependable systems, or

populations of such systems, especially over long periods of operation. The mean time
to failure (MTTF) is the average time required for a system to present a service failure.
Therefore, being an average metric, it requires a population of systems in order to be
accurately estimated. Let N be the amount of identical systems in the population and tfi
the time that the i-th system took to present a service failure. The MTTF is defined in
(A.1).

∑
=

=
N

i

i

N

tf
MTTF

1

Note that the MTTF is related to the first failure presented by the system. It is a very
relevant metric when no repair is possible, i.e., once a failure occurs, the entire system
must be replaced or removed from use. A slightly different metric, which is frequently
used interchangeably with the MTTF, is the mean time between failures (MTBF). It is
defined as the average time between two consecutive failures of a system. Assume that
N instances of a system run for a time period T, with each system presenting, on
average, navg failures. Equation (A.2) presents the definition of MTBF.

avgn

T
MTBF =

Let ni denote the amount of failures presented by the i-th system during the period T.
The average amount of failures navg used in (A.2) is defined in (A.3).

∑
=

=
N

i

i
avg N

n
n

1

The MTBF is frequently reported with a slightly different metric called failures in
time (FIT), which expresses the expected amount of failures per 109 device-hours of
operation. It can be calculated using (A.4), provided the MTBF is expressed in hours.

910.
1

MTBF
FIT =

(A.1)

(A.2)

(A.3)

(A.4)

112

Another related metric is the mean time to repair (MTTR). It represents the average
time required to take the system from a failure state back a functional one. It is, hence,
tightly related to the concept of maintainability and severely constrained for high
availability systems. Let M denote the amount of failures presented by a population of
systems and tr i denote the time required to repair the i-th failure. The MTTR is defined
in (A.5).

∑
=

=
M

i

i

M

tr
MTTR

1

A.4 Failure rate function, cross-section and the bathtub curve
The failure rate function z(t), also called hazard function, represents the expected

rate of failures of a population of systems at a given time t. In a population of N
identical components, let No(t) denote the amount of components operating correctly at
time t and Nf (t) the amount of components that have failed at time t. The derivative of
Nf (t), dNf (t)/dt represents the instantaneous rate of failing components. The failure rate
function is defined in (A.6).

dt

tdN

tN
tz

f

o

)(

)(

1
)(=

When evaluating z(t) over electronic devices’ lifetime, a general trend is found.
Figure A.1 shows the bathtub curve, which depicts the typical behavior of z(t). Shortly
after manufacture, the failure rate is high due to “substandard” or “weak” components
(PRADHAN, 1996). Manufacture faults which were not identified during testing may
also contribute to this behavior. This period, called infant mortality phase, can be
skipped by means of a burn-in process. Burn-in consists in operating the system, often
under extreme conditions, in order to identify the weak components and to repair them
or remove them from the population. Thus, when the components begin their actual
service, they are already at the beginning of the useful life phase.

The useful life is the period where the system presents its lowest failure rate and its
most predictable behavior. Failures during this period are usually attributed to “random”
effects, such as energetic particles or electromagnetic noise. Particularly regarding the
effects of radiation, the sensitivity of a component is measured by its cross-section,
which has the dimension of area (usually cm2). It is defined as the area of the circuit that
can lead to a given event (such as an error or a failure) if struck by a particle of a given
energy. A good source for further reading on cross-section measurements is

Figure A.1: The bathtub curve

z(t)

t
Infant Mortality Useful life Wear-out

(A.5)

(A.6)

113

(KARLSSON, LIDEN, DAHLGREN, et al., 1994). In this work, we calculate the cross-
section CS using (A.7). The fluence is the total amount of particles (e.g., neutrons,
protons, etc.) per unit of area (cm2 most frequently) that went through the device during
a given period of time. E is the total amount of events (such as errors or failures,
depending of the type of measurement) that was observed during the same period of
time.

fluence

E
CS =

After operating during its useful life, the wear-out phase begins. The components
start to face aging effects that change their operating properties and that lead to an
increase in the failure rate. It is, thus, very important to identify when a component is
entering this phase, in order for it to be replaced.

A.5 Fault model and coverage
When developing dependable systems, or evaluating fault tolerance techniques to be

used in such systems, one of the first questions that arise is: “what are the possible
threats this system will face?” For example, a system operating in high altitudes, such as
in space applications, needs to consider the impact of energetic particles on its
operation, as it is not shielded by the atmosphere. Similarly, when a system is expected
to be used for a long time, the effects of aging may have to be considered. In order to
evaluate the resilience of a system against a given physical phenomenon, its impact on
the system’s operation needs to be accurately understood and modeled. For a fault
model to be relevant, thus, it must closely represent the effects of one or more physical
phenomena on the system’s behavior. For example, transient and permanent faults will
have different models and using one model to represent the other fault type is highly
likely to lead to inaccurate results.

Furthermore, if one intends to use such fault model in fault injection campaigns, it is
important to maintain the model’s simplicity. As a statistically significant fault injection
campaign for a complex system may take a long time, a complex fault model is likely to
bring an undesirable computational burden to this task. Frequently used fault models
include: single bit flip, in which one of the bits in the system’s storage has its value
changed; multiple bit flip, which is similar to single bit flip, but applied to more than
one bit at the same time; single stuck-at, in which a net of the circuit receives
permanently a given logic value, among others.

Once the relevant fault model(s) for the system at hand is defined, one can proceed
to evaluate the fault coverage of the fault mitigation techniques available at the system.
A fault is said to be covered depending on what the evaluated technique attempts to do.
For example, all faults detected by a fault detection technique are considered covered,
as are all faults masked by a fault masking technique. The fault coverage represents the
probability that a fault of the evaluated model will be covered by the fault mitigation
techniques. Parts of the system in which faults are not covered and may lead to a system
failure are referred to as single points of failure (SPOFs). Let FT denote the total amount
of considered faults in the system, under the assumed fault model, and FC denote the
amount of covered faults. The fault coverage C is defined in (A.8).

T

C

F

F
C =

(A.8)

(A.7)

114

115

APPENDIX B – USING NON-RANDOM INPUT VECTORS

In the experimental results reported in chapters 5 and 6, we have made use of
pseudo-random input vectors in order to stimulate the operation of circuits. This was
done to emulate a scenario in which little information was available to designers
regarding input distribution. However, as will be shown in here, some of the discussed
metrics can be affected by a highly correlated set of input vectors. Correlated inputs are
observed naturally on many applications, such as stages of a pipelined processor which
repeatedly execute the same small set of instructions.

The alu_32b circuit was used as a case study to evaluate some possible outcomes of
changes in the properties of input vectors. For that purpose, we use vectors extracted
from the execution of two pieces of software with the MIPS instruction set architecture,
namely CRC32 and ins_sort. As their names suggest, CRC32 calculates the 32-bit
cyclic redundancy check and ins_sort computes the insertion sort algorithm. These two
algorithms stimulate the ALU very differently. CRC32 makes use of many different
instructions, since it requires numerous shifting and logic operations for the CRC
calculation itself, and also additions and subtractions for loop control. On the other
hand, ins_sort performs mostly additions and subtractions to compare elements of the
vector and for loop control as well. Therefore, CRC32 makes a much broader use of the
ALU capabilities, selecting most of the operations available in the circuit.

 Both algorithms were executed with two input instances, leading to different
execution times (deemed short and long in the remainder of this appendix). For ins_sort
a string with 8 characters and one with 43 were used, which led to execution times of
approximately 2,500 and 28,300 cycles, respectively. For CRC32, a string with 43
characters and one with 430 were used, which led to execution times of approximately
3,900 and 29,800 cycles, respectively.

B.1 Impact on detection latency
As was discussed previously, an error can only be detected when its effects are

stimulated and propagated to an observation point, i.e., a comparator. Therefore, input
vectors heavily affect the observed detection latency. Figure B.1(a) shows the average
required cycles for coarse- and fine-grained redundancies to detect errors. Figure B.1(b)
shows the required time, assuming each circuit runs at its maximum frequency. Again,
it is important to keep in mind that many errors affected the circuit but simply could not
be detected at all, especially for coarse-grained redundancy, due to the limited amount
of input vectors. Such errors could eventually be detected with a much longer latency,
when appropriate vectors finally cause propagation to the primary outputs. However,
since these latencies depend on what the ALU will compute afterwards, they cannot be
estimated with a restricted set of vectors. Therefore, latencies for faults that only FG-

116

DMR could detect with the chosen vectors are not taken into consideration in the
results, as was done in chapter 5.

Figure B.1 shows the results for the pseudo-random stimuli used in chapter 5 as
well, labeled rand. It becomes clear that a highly correlated set of input vectors
increases the average detection latency, since repeated (or similar) inputs do not aid in
detection. This property therefore increases the relevance of having accelerated
detection mechanisms for circuits to be used with highly correlated inputs. The short
stimulus sets showed naturally reduced latencies compared to their long counterparts, as
many errors remained silent during these limited testing scenarios but could be detected
by the extended input sets.

FG-DMR was able to accelerate detection for all input sets, but with diverse ratios.
CRC32 showed more pronounced gains (31.4% and 35.9% for short and long
executions, respectively) than ins_sort (19.2% and 18.8% for short and long executions,
respectively). This is due to the poor stimulation provided by ins_sort, which makes no
use of shift or logic functions. Since the ALU’s adder/subtracter presents a relatively
easy propagation compared to more complex modules, the latencies observed for
ins_sort are shorter than those for CRC32, making the two approaches more similar and
leaving reduced room for improvements from fine granularities. Proportional reductions
were less pronounced than with pseudo-random inputs, as these were very efficient to
stimulate the FG-DMR circuit and led to very significant gains (71.9%). On the other
hand, the absolute time reduction obtained for the most critical case (CRC32 long) was
the most expressive (4.5 µs).

B.2 Impact on SURFER repair time
The experimental setup described in section 6.3 uses fault injection campaigns (and

therefore also input vectors) to generate error signatures that are in turn used to build the
SURFER translation tables. Thus, different input stimuli sets can generate different
signature sets with varying distributions, leading to different translation tables with
potentially different MTTR. Since the HST mechanism favors generating a translation
table that is precise for signatures that are more frequent, it is important to validate that
a short MTTR is maintained for input sets that differ from those used for the HST

(a) (b)

Figure B.1: Average detection cycles (a) and detection time (b) for different input sets

0

500

1000

1500

2000

2500

CRC32
short

ins_sort
short

CRC32
long

ins_sort
long

rand

A
ve

ra
ge

 d
et

ec
tio

n
cy

cl
es

CG-DMR FG-DMR

0

2

4

6

8

10

12

14

16

18

20

CRC32
short

ins_sort
short

CRC32
long

ins_sort
long

rand

A
ve

ra
ge

 d
et

ec
tio

n
tim

e
(in

 µs
)

CG-DMR FG-DMR

117

algorithm. The approach used in chapter 6 to evaluate this aspect was to divide the
generated signatures in two sets in order to train the table with a different set from that
used to test it. Overall, very small variations were observed, as discussed in section
6.5.3, showing that the generated table was applicable not only to the signatures in the
train set. In this section, we further evaluate this property by generating signatures with
the input vectors used in section B.1. With these varied signature distributions we
generate HST tables (with maxSize = 7) and then test them with the signatures
generated with other input sets, as shown in Figure B.2. Thus, tables are tested not only
with signature lists not available during training but also with lists that were obtained
with different input vector distributions.

Figure B.3 shows the measured MTTR. Each entry in the x axis stands for one HST
table generated with one training signature list while the data series (i.e., bar color)
indicates the used test list. Overall, it can be seen that the input vectors had little effect,
even when tables generated with one input set were used with signature distributions
observed with others. Since the internal comparators assess the correctness of
intermediate signals and not only of those that propagate to a primary output, they are
able to detect errors even in modules not extensively used by the current input set (such
as the shifter, which is not used in the ins_sort instances). Therefore, the generated
translation tables captured approximately the same error-to-signature relations, showing
little difference in terms of MTTR. The average over all results is 54.35 µs and the
standard deviation is 2.13 µs, which results in a coefficient of variation of 0.04.

Figure B.3: MTTR with different translation tables and signature sets

0

10

20

30

40

50

60

Rand CRC32 CRC32 long ins_sort ins_sort long

M
T

T
R

 (
µ

s)

HST Table

Rand CRC32 CRC32 long ins_sort ins_sort longTest signatures:

Figure B.2: Experimental flow for testing SURFER with varied input vectors

rand
CRC32
short

CRC32
long

ins_sort
short

ins_sort
long

FPGA

alu_32b
input vectors

rand
CRC32
short

CRC32
long

ins_sort
short

ins_sort
long

Train
signatures

rand
CRC32
short

CRC32
long

ins_sort
short

ins_sort
long

Test
signatures

rand
CRC32
short

CRC32
long

ins_sort
short

ins_sort
long

HST
tables

ST
Generation

Signature
Division

Fault
Injector

FG-DMR
alu_32b

118

119

APPENDIX C – MAXSIZE EVALUATION RESULTS

In this appendix, the impact of the maxSize parameter is measured for all benchmark
circuits, regarding area and MTTR results. Results are presented for each iteration of the
compression loop (shown in Figure 6.6). Each iteration stands for successively smaller
maxSize values. Due to limitations in the synthesis tool, which is unable to handle tables
with very large signatures, area results are reported only after a number of iterations of
the compression loop for most circuits.

The 22 benchmark circuits are divided into three sets, and for each set MTTR (in
Table C.1, Table C.3 and Table C.5) and area (in Table C.2, Table C.4 and Table C.6)
results are reported. Entries in boldface are the ones associated with maxSize=7, i.e., the
one used in the experimental results in sections 6.5.2 and 6.5.3.

Table C.1: MTTR (in µs) for the first set of circuits

Iteration alu4 alu_32b alu_64b apex2 apex4 bigkey clma
0 33.59 30.07 45.52 47.02 40.85 38.42 50.92
1 34.50 31.08 47.60 48.27 43.22 39.18 54.87
2 35.66 32.47 49.85 49.99 45.45 39.82 59.02
3 37.34 34.47 53.97 53.24 50.49 41.67 64.49
4 45.81 37.95 59.10 56.46 57.38 45.56 70.64
5 57.06 49.84 68.57 71.06 74.90 50.39 85.55
6 79.54 58.57 86.28 94.39 89.37 60.06 101.93
7 97.47 60.56 109.27 113.97 120.96 68.80 138.74
8 136.65 86.96 128.15 126.67 134.18 84.82 161.59
9 189.96 171.71 160.58 117.38 195.52

10 282.89
11 282.89

120

Table C.4: Area (in LUTs) for the second set of circuits

Iteration des diffeq dsip elliptic ex1010 ex5p frisc
0 N/A N/A N/A 1831 N/A 25290 N/A
1 N/A N/A N/A 1221 N/A 5049 N/A
2 N/A 12022 N/A 713 N/A 2126 N/A
3 N/A 4905 N/A 260 23113 563 N/A
4 14968 1530 10530 25 4239 25 N/A
5 1527 94 1979 24 69 28 21452
6 74 48 76 17 49 22 3948
7 71 45 73 13 40 14 193
8 67 39 71 36 162
9 60 62 153

10 150

Table C.3: MTTR (in µs) for the second set of circuits

Iteration des diffeq dsip elliptic ex1010 ex5p frisc
0 31.07 36.81 55.85 24.04 42.93 18.69 82.68
1 32.18 38.80 56.23 26.60 43.83 19.54 86.58
2 33.78 41.44 57.52 31.11 46.44 21.48 92.64
3 35.41 47.56 59.96 37.14 48.60 25.06 100.18
4 37.83 54.96 68.21 50.60 54.98 33.85 112.74
5 44.24 65.78 77.92 67.39 60.99 41.25 130.16
6 51.87 80.74 105.69 80.37 77.24 54.85 147.23
7 67.24 91.48 162.54 93.48 104.52 63.10 170.65
8 89.17 154.06 188.64 135.43 190.37
9 111.00 266.22 262.43

10 312.59

Table C.2: Area (in LUTs) for the first set of circuits

Iteration alu4 alu_32b alu_64b apex2 apex4 bigkey clma
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A N/A N/A N/A N/A N/A
3 12825 12259 N/A N/A 45315 N/A N/A
4 1622 401 16011 14609 8647 13186 22869
5 54 49 2147 3703 1198 1909 5169
6 44 38 75 94 69 72 702
7 39 36 73 79 67 69 116
8 32 28 67 71 61 64 114
9 60 66 56 59 110

10 103
11 103

121

Table C.6: Area (in LUTs) for the third set of circuits

Iteration misex3 pdc s298 s38417 s38584.1 seq spla tseng
0 N/A N/A 119 N/A N/A N/A N/A N/A
1 N/A N/A 14 N/A N/A N/A 19466 N/A
2 N/A N/A 9 N/A N/A N/A 5112 N/A
3 57015 N/A 5 N/A N/A N/A 1701 11652
4 15799 N/A 2 N/A N/A 15292 64 2433
5 458 17355 13960 26621 4030 35 582
6 75 299 2777 5944 103 24 71
7 69 117 313 758 85 19 66
8 64 114 161 220 76 63
9 59 106 159 194 72 57

10 102 157 193
11 154 189
12 149 185
13 181

Table C.5: MTTR (in µs) for the third set of circuits

Iteration misex3 pdc s298 s38417 s38584.1 seq spla tseng
0 47.16 62.00 16.88 76.34 85.95 63.36 31.90 30.85
1 50.10 63.45 17.56 81.79 87.77 65.81 32.86 32.39
2 52.63 64.80 20.08 90.21 89.77 68.78 34.56 34.06
3 57.46 68.46 21.53 97.45 92.71 73.36 39.72 36.97
4 67.88 75.46 24.05 112.71 96.41 82.86 50.54 39.51
5 83.59 94.05 131.58 110.31 99.58 62.27 46.14
6 105.61 110.31 156.53 123.36 128.02 85.25 51.05
7 136.53 134.53 189.47 152.68 144.76 119.68 59.70
8 170.15 156.38 207.35 174.31 181.55 72.70
9 197.37 247.90 268.75 238.68 266.38 97.68

10 296.78 388.22 371.55
11 388.49 386.91
12 388.55 386.91
13 386.91

122

123

APPENDIX D – RESUMO EM PORTUGUÊS

D.1 Introdução
Field Programmable Gate Arrays (FPGAs) são circuitos integrados reconfiguráveis

que podem desempenhar diferentes funções uma vez que apropriadamente
programados. Trazem um conjunto relevante de vantagens para sistemas críticos, o que
inclui alta performance, flexibilidade e a programabilidade pós-implantação, permitindo
a alteração de funcionalidades dos sistema, ou mesmo o acréscimo de novas
capacidades. Com os avanços oferecidos pela Lei de Moore, se tornam cada vez mais
eficientes, rápidos e com maior capacidade lógica.

Esse mesmo avanço nas técnicas de manufatura, entretanto, introduz um conjunto
novo de desafios de confiabilidade a serem resolvidos. Em especial, destacamos a
suscetibilidade da memória de configuração, responsável por armazenar a descrição do
circuito desejado pelo usuário, a erros induzidos por partículas energéticas, como
nêutrons, prótons e íons pesados. Essa tese versa sobre novas técnicas e mecanismos
para prover confiabilidade a FPGAs, focando em falhas transitórias que afetam a
memória de configuração, uma das principais ameaças a confiabilidade desses
dispositivos (FULLER, CAFFREY, SALAZAR, et al., 2000), (LESEA, DRIMER,
FABULA, et al., 2005).

D.2 Técnicas propostas
As técnicas aqui propostas têm por objetivo reduzir o tempo de reparo de FPGAs

utilizados em aplicações críticas. Esse tempo é frequentemente bastante longo, pois a
técnica mais amplamente usada, scrubbing (CARMICHAEL, CAFFREY and
SALAZAR, 2000), acessa toda a memória de configuração de forma indiscriminada, o
que se torna bastante lento à medida que essa se torna maior. Em especial, o foco é dado
a técnicas de detecção de erro de grão fino baseadas em redundância modular dupla
(FG-DMR). Essas técnicas intuitivamente reduzem a latência de erro, devido à maior
quantidade de pontos de observação. Elas também proporcionam um diagnóstico mais
detalhado, com o qual temos a possibilidade de identificar com maior precisão as
possíveis localizações do erro.

D.2.1 Detecção de erros com comparadores de cadeia de propagação de vai-um

Uma das grandes desvantagens de técnicas de redundância de grão fino é a grande
quantidade de comparadores que devem ser introduzidos. Propõe-se, visando a
minimizar esses custos, uma forma de utilização alternativa dos circuitos propagadores
de vai-um encontrados em profusão nos FPGAs modernos. Esse circuito,
frequentemente subutilizado, pode ser empregado para comparar as saídas das LUTs. A
técnica pode ser aplicada sempre que o propagador estiver disponível, juntamente com

124

entradas auxiliares do slice (bloco de elementos lógicos) necessárias para a aplicação da
técnica.

D.2.2 Reparo rápido com diagnóstico de grão fino

Outro grande desafio encontrado ao se fazer uso de técnicas de diagnóstico de grão
fino é como extrair, de forma eficiente, informações úteis para o reparo do sistema.
Uma vez que temos uma grande quantidade de sinais de indicação de erro, precisamos
de uma forma de mapeá-los para uma localização dentro da memória de configuração.
Para esse propósito, é proposta a plataforma SURFER (Scrubbing Unit Repositioning
for Fast Error Repair). Ela faz uso de um circuito que realiza a tradução das assinaturas
de erros (ou seja, da concatenação de todos os sinais individuais de detecção de erro) em
endereços de frame. É explorado ainda o conceito de que as operações de scrubbing não
necessariamente iniciam na primeira posição da configuração. Assim, o endereço
gerado pelo circuito de tradução indica o frame inicial das operações de reconfiguração,
escolhido de forma a estatisticamente minimizar o tempo médio de reparo. Ainda foi
proposta uma heurística para geração dos circuitos de tradução com custo reduzido, uma
vez que, na sua forma mais precisa, os mesmos apresentavam custos muito altos em
área ocupada.

D.3 Metodologia
As técnicas propostas foram desenvolvidas em ferramental de software integrado ao

fluxo tradicional da Xilinx, fabricante dos FPGAs utilizados nessa tese. A partir de uma
descrição do hardware sintetizado, já utilizando os componentes básicos do substrato do
FPGA (LUTs, flip-flops, etc.), é criada uma versão do circuito que utiliza a variação de
DMR proposta. A ferramenta identifica quais LUTs podem receber a comparação
utilizando as cadeias de propagação de vai-um e, para as demais, instancia
comparadores baseados em LUTs.

Sobre esses circuitos são conduzidas campanhas de injeção de falhas, visando a
medir a cobertura atingida. Além disso, o ferramental provido pela Xilinx é utilizado
para obtenção de dados referentes à área ocupada e ao atraso dos circuitos, medido aqui
em termos do período mínimo de relógio dos circuitos (TClk). Todos os resultados
obtidos são comparados com aqueles associados a uma técnica tradicional de DMR em
grão grosso (CG-DMR). Campanhas de injeção de falhas também são utilizadas para
extração das assinaturas de erro, que permitem a construção das tabelas de tradução
propostas pela plataforma SURFER.

D.4 Resumo dos resultados
O uso de circuitos de propagação de vai-um conseguiu evitar o uso de LUTs para a

criação de comparadores de grão fino. Assim, o custo em área foi de 118.8% sobre o
circuito original, em média, enquanto que para CG-DMR foi de 111.6%. Ou seja, os
circuitos com FG-DMR são apenas 3.57% maiores que os com CG-DMR. Foi
observada uma redução de 99.62% para 99.58% na cobertura de falhas média com o uso
de FG-DMR, além de um aumento médio de 48.7% em TClk. A quantidade de ciclos
para detecção de erros, entretanto, foi reduzida em 66%, em média. Essa redução
traduz-se em uma diminuição de 50% no tempo médio de detecção, se levarmos em
conta os diferentes TClk observados para cada circuito.

Quando o circuito de tradução é utilizado, gerado através da heurística proposta,
observou-se um custo total de 133.9% em área, o que representa um aumento de 10.5%

125

sobre CG-DMR. O tempo médio de reparo, entretanto, foi reduzido em 61.9%, em
comparação com as abordagens tradicionais, ou seja, que iniciam o reparo sempre pela
primeira posição da memória de configuração associada à partição com falha.

D.5 Conclusões
As técnicas propostas nesse trabalho permitiram o uso de redundância de grão fino

de forma a acelerar o reparo de erros na memória de configuração de FPGAs com
custos comparáveis aos de técnicas tradicionais de grão grosso. Portanto, os dois
grandes objetivos desse trabalho foram atingidos.

Como trabalho futuro, prevê-se a criação de heurísticas de tradução de assinaturas
aprimoradas para obtenção de pontos mais vantajosos no espaço de projeto. O uso de
granularidades intermediárias e a extensão das técnicas propostas para que cubram
falhas permanentes também são possíveis trabalhos futuros.

