UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

GABRIEL LUCA NAZAR

Fine-Grained Error Detection Techniques
for Fast Repair of FPGASs

Thesis presented in partial fulfillment of the
requirements for the degree of Doctor of
Computer Science

Prof. Dr. Luigi Carro
Advisor

Porto Alegre, July 2013.

CIP — CATALOGACAO NA PUBLICACAO

Nazar, Gabriel Luca

Fine-Grained Error Detection Techniques for Fast
Repair of FPGAs / Gabriel Luca Nazar. -- 2013.

125 1.

Orientador: Luigi Carro.

Tese (Doutorado) -- Universidade Federal do Rimm@eado Sul,
Instituto de Informética, Programa de Pos-Graduagd@&omputacao,
Porto Alegre, BR-RS, 2013.

1. FPGA. 2. Deteccéao de erro. 3. Tempo médio daroepb.
Carro, Luigi, orient. Il. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pro-Reitor de Pos-Graduacéao: Prof. Vladimir Pirdhdim Nascimento
Diretor do Instituto de Informatica: Prof. Luis @Ganha Lamb
Coordenador do PPGC: Prof. Luigi Carro

Bibliotecario-Chefe do Instituto de Informatica:eXbander Borges Ribeiro

TABLE OF CONTENTS

LIST OF ABBREVIATONS AND ACRONYMS ...t e 5
LIST OF FIGURES. o e 7
LIST OF TABLES ... e e e 9
RESUMO .o 11
AB ST RACT e e 13
1 INTRODUCTION ...t e e e e 15
1.1 Main goals and CONtrDULIONS.........ooiiiii e e 20
1.2 OULIINE ettt e e e e 22
2 FPGAS AND THEIR DEPENDABILITY THREATS......ccooovv i, 23
2.1 FPGA ArChiteCtUre DASICS........eeeiiiiiiiiiiime ettt e e rb e e e e e aaes 23
2.2 Dependability threats for FPGASccoo it 25
2.2.1 Radiation ffECTS......iiiiiiiii it 26
2.2.2 AQING EFfECES it 29
2.2.3 Technology scaling and dependability MetriCS..........uuviriieiriiiieeeeeeeeeiee e, 30
3 FAULT TOLERANCE TECHNIQUES FOR FPGAS.........ccoet ciiviiies 33
3.1 Techniques based 0N redUNdanCyccuuuuiiiiiiiiiiii e 33
3.2 Techniques based on bitstream manipulation ... 39
3.3 Contributions Of thiS tNESIS..........uuiiiiiiii e 43
4 FAULT INJECTION FOR FPGAS...... s e 45
4.1 FaUlt iNJECHION BASICS ...iiiiiiiiiiieeeee e e commit et e et e e e e e e e e e e s s e s e e e e e eaaaaaaaaaaeaees 45
4.2 Fault injection for FPGA-based SYyStemMS........ccci oo 48
4.2.1 Radiation eXPEeriMENTS.......ooiiiiiiii ettt et e e e e e e e e e e e e e e e nnneeneeeee 48
4.2.2 Artificial bitstream fault iNJECHONcee i 50
4.3 Fault injection Platform... ... e e e e e 51
4.3.1 Platform COMPONENTS......coiiiiii it eeeeee ettt eaaae e e e eeaaaaaaaaans 52
4.3.2 ATA COSES ..oiiiiiiiiieee ettt e e e e e 54
4.3.3 INJECHON RALE ...ttt ettt ettt e e e e e e e e e e s st bbb b et e eeeaaaaaaaaeas 55
5 FINE-GRAINED ERROR DETECTION.....cocviiiiiiieie e 57
5.1 Fine-grained detection with carry propagation Chairs.................eeeeiiiiiiiiiee, 57
5.2 EXPEriMENTAl SELUD ...uuuiitiiiiiiiiiieiet ettt ettt e e e e e e e e e e e s b beb b e e e e e eeeeeeeas 59
5.3 EXPEriMENtal FESUILSeeeeiiiiiiiiiiiee e ettt e et e e e e e e e e eeeeeeeas 61
5.3.0 AT it 62
5.3.2 ClOCK PEIOA ...ttt et e e e e e e e e e e e e e e st e e e e e e e e e aaaaaaaaeas 64

LS TRC RC T 1 (o T g0 (] (Y110 o [65

ST T/ B 1=1 (<101 (o] g IRz T oLl (=T 2= 110 o 68

5.4 Radiation EXPeriMENTScoiiiiiiiii ettt et e et e e e e e e e e e e eaaaenanebeneeeeeeees 69
Lot R =21 (=0 [o3 o | TSRS 70
5.4.2 Neutron eXperiments rESUISeuiiircccccciiiiiie e e e e e e e e e e s s eee e 72
5.4.3 Comparison to fault iNJeCtION rESUILS.......cceeccviii i 74

6 FINE-GRAINED DIAGNOSIS AND LOCAL REPAIR........... eeeinnne. 77

0 A O T= 1 =T T T USROS 77

6.2 The SURFER @PPIrOACHuuiiiiiiiiiiieiii ettt e e eee e 78
B.2.1 OVBIVIBW ...ttt e e ettt ettt e e e e e e e e e e e e e e e e e e e nnnbeaeeeeaeaaaaaaaaeaaaeaaan 78
6.2.2 Reducing the MTTR through optimized starting frames...........ccccccceeiiinnnilld 79.
6.2.3 Optimum frame identificationcooieeeeei e 80

6.3 Extended experimental SEIUPuuuuueeiriiieeeeiiiiieiie e e e et e e e e e e e e e s s e s rrr e e e e e e e e e e 81

6.4 PST - Perfect Signature TransIationccueueeeiiriiiiiieeee e e e e 84

6.5 HST - Heuristic Signature TransIationcccccccuiiiiiiiiiiiiireere e e eee e 85
6.5.1 Heuristic table generation..............co oo 85
6.5.2 Area and delay COSES.........ciiiiiiiiiitcrrrree e e e e e e e e e e e e e s e e s e 90
6.5.3 MTTR RESUILScoiiiiiiiiiiie e eeemet ettt e e e e e et e e e e e e e aaaaaaaeaeas 92
6.5.4 Evaluating the impact of theaxSizgarameter..........ccccccovieiiiiiiiiiiiiiccc e 95

7 CONCLUSIONS ... e 97

7.1 Summary of CONtHBULIONS.........cooi it ee e 97
7.1.1 Fault injection PlatformMciiiiie e 97
7.1.2 Platform for radiation eXperimentS..........cccceuiriiiiiiiiiriiee e 97
7.1.3 Carry chain circuits for fine-grained compariSQmn...........cccccuuuiimiiiiiiiiiieiieeee s 98
7.1.4 Making use of fine-grained diagnosis with SURFERcccciiiiiiiiiiiiin. 98

7.2 FULUFE WOTKS ..ottt et e e e e e e e e e e e e e e e neanebeeeeeeeeee 99
7.2.1 Choosing intermediate redundancCy grains ..o 99
7.2.2 Further exploring the SURFER deSign SPacCe...cccceeiviiiiiiiiiiiiiieaeeaeeee e 99
7.2.3 Diagnosing permanent faults and agingcceee oo 100
7.2.4 Performing radiation testing over a complete SURBERform..................ccceeevvnnnnns 100
7.2.5 Finding other uses for the signature translatiaumiBaCcccoooeevieiiivviene 100

%S T =¥ o] o%= 4o o U UPRT 100
4 T N = o To | Qo - o (= PSS 100
FARS T N [0 11 1 o= | PP RRPR 101
7.3.3 Conferences and WOrKSNOPS o s e eenrrerireeeeeeereeeaaeeeeeeeeessasssnneeeeneees 101

REFERENGCES.o e 103

APPENDIX A — TAXONOMY OF DEPENDABLE SYSTEMS........ 109

APPENDIX B — USING NON-RANDOM INPUT VECTORS....... cccccevvnnnens 115

APPENDIX C — MAXSIZE EVALUATION RESULTS........... i 119

APPENDIX D — RESUMO EM PORTUGUES.........cccooeve e, 123

LIST OF ABBREVIATONS AND ACRONYMS

ALM
ALU
ASIC
AUT
BRAM
BTI
CED
CG-DMR
CLB
CMOS
CRC
CuUT
DMR
DSP
DUT
DWC
ECC
FG-DMR
FGTMR
FIT
FPGA
FSD
HCI

ICAP
0B
LFSR
LUT
MBU
MCNC
MTBF
MTTF

Adaptive Logic Module

Arithmetic and Logic Unit

Application Specific Integrated Circuit
Area Under Test

Block Random Access Memory

Bias Temperature Instability
Concurrent Error Detection
Coarse-Grained Dual Modular Redundancy
Configurable Logic Block

Complementary Metal-Oxide-Semiconductor

Cyclic Redundancy Check

Circuit Under Test

Dual Modular Redundancy

Digital Signal Processing

Device Under Test

Duplication With Comparison

Error Correcting Code

Fine-Grained Dual Modular Redundancy
Fine-Grained Triple Modular Redundancy
Failures In Time

Field Programmable Gate Array

Faulty State Description

Hot Carrier Injection

Integrated Circuit

Internal Configuration Access Port
Input/Output Block

Linear Feedback Shift Register

Lookup Table

Multiple Bit Upset

Microelectronics Center of North Carolina
Mean Time Between Failures

Mean Time To Failure

MTTR
NBTI
NMOS
NMR
PBTI
PI
PMOS
PO
QFDR
RAM
ROM
RORA
SBU
SEB
SEE
SEGR
SEL
SES
SET
SEU
SEUPI
SPOF
SRAM
STAR
SURFER
TDDB
TID
TMR
VHDL
VHSIC
XST

Mean Time To Repair

Negative Bias Temperature Instability
N-type Metal-Oxide-Semiconductor

N Modular Redundancy

Positive Bias Temperature Instability
Primary Input

P-type Metal-Oxide-Semiconductor
Primary Output

Quadruple Force Decide Redundancy
Random Access Memory

Read-Only Memory
Reliability-oriented place and Route Algorithm
Single Bit Upset

Single Event Burnout

Single Event Effect

Single Event Gate Rupture

Single Event Latchup

Single Event Snapback

Single Event Transient

Single Event Upset

Single Event Upset Probability Impact
Single Point Of Failure

Static Random Access Memory
Self-Testing Area

Scrubbing Unit Repositioning for Fast ERepair
Time-Dependent Dielectric Breakdown
Total lonizing Dose

Triple Modular Redundancy
VHSIC Hardware Description Language
Very High Speed Integrated Circuit
Xilinx Synthesis Technology

LIST OF FIGURES

Figure 1.1: Fault-free circuit and its associatedfiguration bits (a) and faulty circuit

due to a configuration UPSEt (D) oo e e e eeeeeiiiiiiiee e e e e e e e e e e e e e e e e eee e eeeennees 17
Figure 1.2: Fault-free output (a), one cycle eflrand 56 cycles error (c). The
markings on the axes show the fault dUuration...............coeeeeennnee e eeee e, 18
Figure 1.3: Iterative development cycle of depet@lapstems ..., 19
Figure 1.4: Coarse-grained (a) and fine-grainedMR...............oeviiiiiiiiiiieeeeennnn. 21
Figure 2.1: Example of a 3-input LUT implementihg XOR function 24
Figure 2.2: Schematic of a Virtex 5 slice (XILINKNC., 2010)........cccevvvvvrrrrrrniieennnn. 24
Figure 2.3: Effects of an energetic ion on a SHOBVICE.............coeeeeeiiiiiiiiiiiiiiiiiams 26
Figure 2.4: Different outcomes of a single eveahsient (SET).........cccovvvvviviiniiinennnn. 27
Figure 2.5: Single Event Upset on an SRAM Celloe .o, 27
Figure 2.6: Technology scaling and the bathtub&ury...............oooeviiiiiiiie s 30
Figure 3.1: DMR (a), TMR (b) and TMR with triple@trs (C).........ccceeeeeeririiireiriinnnns 34
Figure 3.2: TMR, DMR and time-redundancy hybridhteique (LIMA, CARRO and
REIS, 2003) ...uuiiiiiiiiiiieiieeieieeeeee e e s s e e e e e e e e e e sassaassesaeebeeessseeeeeeenaaaasssnnssnsnsssnnnnees 35
Figure 3.3: 6-input LUT built with two 5-input LUT(®), and with the XOR gate added
for comparison (b) (KYRIAKOULAKOS and PNEVMATIKATOS2009) 37
Figure 3.4: FPGA system with external reconfigunattontroller (a) and partition
scrubbing mechanism (b) (BOLCHINI, MIELE and SANING5I, 2011) 38
Figure 3.5: Total scrub time for the largest XiliRRGA of each family...................... 41
Figure 3.6: The roving STARs approach with horiabiiH-STAR) and vertical (V-
STAR) testing areas (EMMERT, STROUD and ABRAMOVIRQQO7)ccceeerrnn... 42
Figure 3.7: System with partial reconfiguration tolter and multiple error signals
(STRAKA, KASTIL and KOTASEK, 2010)cccceeeeeeeeieeeeee e 34
Figure 4.1: Basic components of a fault injectidatformccoiiiiiiiiiiinnn, 45
Figure 4.2: Static cross-section per configurabidnas reported by (XILINX, INC.,

12 0 2 o) PP PPPPPRRR 49
Figure 4.3: Static cross-section for the configorabf the largest device of each family
.. 50
Figure 4.4: Fault injection base architeCture...............ccoovvviviiiiiicicccie e, 52
Figure 5.1: Carry chain circuit applied to finedged comparison..............ccccceeeeeeeennn. 58
Figure 5.2: Incorrect (a) and correct (b) routing-G-DMR. Dashed lines denote
CritiCal FOULING PALNS ... ee e e e e e e e eeee e 58
Figure 5.3: Redundant heterogeneous COMPAaratOrScceeeeeeeeeeeeeeeereeeeeeenannns 59
Figure 5.4: Experimental design flOW ..o 60
Figure 5.5: Locations of faults of each category.............ciiiiiiiiieeeeeeeeeeeevieeeee, 61

Figure 5.6: Area overheads for CG-DMR (left-hand difeeach circuit) and FG-DMR
(e 1t =T o 1 o = T 62

Figure 5.7: Minimum clock periodlci for the unhardened circuit, CG-DMR and FG-

DM R e e r e aa 65
Figure 5.8: Undetected error variation. Positivkiga indicate a smaller amount for
CG-DIMR. e 67
Figure 5.9: Fault coverage for FG-DMR and CG-DMR.............ccccvvvvviviiiiineniinnenn. 67
Figure 5.10: Reduction in cycles to detect anrerrQ............ccceeeeeeeveeieccciiiinnnnne. 69
Figure 5.11: Reduction in error deteCtion tiMe. m....vevveeerveriiiiiiiee e eeeeeeeeeeeeeeeeee, 69

Figure 5.12: ISIS spectrum compared to those oL &MSCE and TRIUMF facilities
and to the terrestrial one at sea level multipbigd.0' and 18 (VIOLANTE,

STERPONE, MANUZZATOEt @l, 2007) ...uvrriiiiiiiiiiieieieeeaeeeeeaeessssmmmms s eeeeeeeeaaaeaeens 70
Figure 5.13: Placement of replicas and control. wen numbered replicas (in light
gray) used the proposed FG-DMR while odd numberes aised CG-DMR.............. 70
Figure 5.14: Disposition of multi-CUT events on #RRGA. All such events occurred
With NEIGNDONNG CUTS. ..ot 73
Figure 5.15: Events reported at each iNStaNCe. . .vveeieeeeeieeeeieeeieeee s 74
Figure 6.1: Fine-grained detection and the geneératr signature................ceeeennnnn. 77
Figure 6.2: Overview of a system With SURFER wevvvvvviiiiiiiieiieeeeeeeeeceeieeiiiies 79
Figure 6.3: Histograms of two signatures for i CirCuitcceeevvenneeeiiiinnnnene. 08
Figure 6.4: Extended experimental setup .. crrrenrnnnnneens 32
Figure 6.5: MTTR of standard scrubbing, PST W|Ehmng and testlng S|gnatures 85
Figure 6.6: HST Generation algorithm........cccciee e, 86
Figure 6.7: Schematic of @ HST CIrCUItocoiiiiiiiiiiiiii e 87
Figure 6.8: The weight of an edge, §/}vvvveiiiiiiiii e 87
Figure 6.9: Redundant translation table.........cc.....uuuiiiiiiieeeeeeeeeeeeees 89
Figure 6.10: Area overhead of circuits with staddaG-DMR (left-hand bars) and
circuits with FG-DMR and HST tables (right-handdjar..............ccccvviiiiiiiiiin 09
Figure 6.11: Minimum clock perio@ck for CG-DMR and FG-DMR with pipelined and
COMDBINALIONAI HST ... e e e e e e e e et e bbb nas e as 92
Figure 6.12: MTTR for the HST mechanism (with traghand testing lists). PST and
standard scrubbing are shown for COMPAariSON..............uuuiiiiiiiieieeiieiieeeeeiiiiieees 93
Figure 6.13: MTTR increase due to faults affectimgtranslation table..................... 94
Figure 6.14: MTTR and table area for differemixSize/alues..............ccccvvveeveeninnnenn. 95
Figure A.1: The bathtub CUIVe............em 112
Figure B.1: Average detection cycles (a) and detedime (b) for different input sets
.. 116
Figure B.2: Experimental flow for testing SURFERwaried input vectors........... 117

Figure B.3: MTTR with different translation tablasd signature sets 117

LIST OF TABLES

Table 4.1: Required resources and device occupfdranfault injection platform..... 54
Table 5.1: Input benchmark CIFCUILSeeeemmririiiiiiiiiiii e e eeee e 61
Table 5.2: Area costs in LUTs (comparators, erggregation and total, including the
(0T I o (ol W] o] o] =) P 63
Table 5.3: Minimum clock period in NAN0SECONAS..........ccoeeviiiiiiiiiiiiiieeee e, 64
Table 5.4: Amount of faults in each CAtEQOIY . iveeeeeeeiiiiiieiiiiee e, 66
Table 5.5: Average amount of cycles and assoctatezlto detect an error................. 68
Table 5.6: Received events Classification...........cccccuiiiiiiiiiiiiiiiiee e 72
Table 5.7: Cross-section and failure in time at NEwWK Citycooovvvviiiiivininnnn. 73
Table 5.8: Fault injection and radiation results“®re” FSDS.............cccevvvvvvvvinnnns 75
Table 5.9: Fault injection and radiation results“f0ost” FSDSccccceeeeveeeeennnnn. 57
Table 6.1: Total signature si&g,e amount of received signaturé3)(@nd of different
signatures|S|) for @ach CIrCUIL..........oovviiiii i 83
Table 6.2: MTTR of standard scrubbing and SURFER taining and testing
SIGNALUIES (IMUS) -.ueeeeeeeeeee e e ee ettt e e s et e et e e eee bbb e s e e e e e e e e eeeeaeeeeeessannnnneees 84
Table 6.3: Area and delay results for SURFER. ccae...ccooiiiiiiieeciiee e, 91
Table 6.4: MTTR (irus) with fault-free table and with faults in thertstéation circuit 93
Table C.1: MTTR (irus) for the first set of CIrCUItSooeveeeceiiiiieeeeeii, 119
Table C.2: Area (in LUTS) for the first set of QISccoeeeeiiiiiiiiiiiiiiie, 120
Table C.3: MTTR (irus) for the second set Of CIrCUItScommmmeeeeieeeeeeeeeennnnnn. 120
Table C.4: Area (in LUTSs) for the second set OfW@iltscccoeeevviiiiiiiniernnnnnnn. 120
Table C.5: MTTR (irus) for the third set of CIFCUItSuvmmmeiiiiiiiiiiieee e, 121

Table C.6: Area (in LUTS) for the third set of GitS...........ccooeeiiiiiiiiiie e, 121

Técnicas de Gréo Fino de Deteccao de Erros para Rap Rapido de
FPGAs

RESUMO

Field Programmable Gate Array§~PGAsS) sdo componentes reconfiguraveis de
hardware que encontraram grande sucesso comerdimhgo dos ultimos anos em uma
grande variedade de nichos de aplicacdo. Alta vdedarocessamento, flexibilidade e
tempo de projeto reduzido estdo entre os princigiagdivos desses dispositivos, e séo
essenciais para 0 seu sucesso comercial. Essatedenies também séo valiosas para
sistemas criticos, que frequentemente enfrentamnic@ess severas de desempenho.
Além disso, a possibilidade de reprogramacéo ap@$antacdo € relevante, uma vez
que permite a adicdo de novas funcionalidades @oreecdo de erros de projeto,
estendendo a vida (til do sistema. Tais dispostiemtretanto, dependem de grandes
memodrias para armazenabitstreamde configuragéo, responsével por definir a funcéo
presente do FPGA. Assim, falhas afetando esta qumaitdo sdo capazes de causar
defeitos funcionais, sendo uma grande ameaca daabdidfade. A forma mais
tradicional de remover tais erros, isto serubbing de configuracdo, consiste em
periodicamente sobrescrever a memoria com o setelmm desejado. Entretanto,
devido ao seu tamanho significativo e & banda dssaclimitadascrubbingsofre de
um longo tempo médio de reparo, e que esta auntEntamedida que FPGAs ficam
maiores e mais complexos a cada geracdo. Partie@esfiguraveis sao Uteis para
reduzir este tempo, ja que permitem a execucaardpracedimento local de reparo na
particdo afetada. Para este propoésito, mecanisamdos de detec¢do de erros sao
necessarios para rapidamente dispararsestébinglocalizado e reduzir a laténcia de
erro. Além disso, diagnostico preciso é necessfia identificar a localizagdo do erro
dentro do espaco de enderecamento da configurdéé@nicas de redundancia de gréo
fino tém o potencial de prover ambos, mas normaleneintroduzem custos
significativos devido a necessidade de numerosafcaelores de redundancia. Neste
trabalho, propomos uma técnica de deteccdo de @ergsdo fino que utiliza recursos
abundantes e subutilizados encontrados em FPG/Astddo da arte, especificamente
as cadeias de propagacao de vai-um. Assim, a éépniwé os principais beneficios da
redundancia de grdo fino enquanto minimiza suacipah desvantagem. Reducdes
bastante significativas na laténcia de erro saong@is com a técnica proposta.
Também é proposto um mecanismo heuristico paramxpb diagndstico provido por
técnicas desta natureza. Este mecanismo tem petivabjdentificar as localiza¢des
mais provaveis do erro na memoria de configurabaseeado no diagnostico de gréo
fino, e fazer uso dessa informacao de forma a nwaino tempo de reparo.

Palavras-chave:FPGA, deteccéo de erro, tempo médio de reparo.

ABSTRACT

Field Programmable Gate Arrays (FPGAS) are recardigle hardware components
that have found great commercial success over #s¢ years in a wide variety of
application niches. High processing throughputifigity and reduced design time are
among the main assets of such devices, and arstieste their commercial success.
These features are also valuable for critical systethat often face stringent
performance constraints. Furthermore, the possgibildb perform post-deployment
reprogramming is relevant, as it allows adding tiemctionalities or correcting design
mistakes, extending the system lifetime. Such @esyibowever, rely on large memories
to store the configuration bitstream, responsibledefining the current FPGA function.
Thus, faults affecting this configuration are atdecause functional failures, posing a
major dependability threat. The most traditionalame to remove such errors, i.e.,
configuration scrubbing, consists in periodicallyeowriting the memory with its
desired contents. However, due to its significané and limited access bandwidth,
scrubbing suffers from a long mean time to repang which is increasing as FPGAs
get larger and more complex after each generaRenonfigurable partitions are useful
to reduce this time, as they allow performing aalaepair procedure on the affected
partition. For that purpose, fast error detectioechanisms are required, in order to
quickly trigger this localized scrubbing and redwereor latency. Moreover, precise
diagnosis is necessary to identify the error laratvithin the configuration addressing
space. Fine-grained redundancy techniques havepdbential to provide both, but
usually introduce significant costs due to the nefedumerous redundancy checkers. In
this work we propose a fine-grained error detectieohnique that makes use of
abundant and underused resources found in stateafrt FPGAs, namely the carry
propagation chains. Thereby, the technique providesmain benefits of fine-grained
redundancy while minimizing its main drawback. Veignificant reductions in error
latency are attainable with the proposed approadteuristic mechanism to explore the
diagnosis provided by techniques of this naturalse proposed. This mechanism aims
at identifying the most likely error locations imet configuration memory, based on the
fine-grained diagnosis, and to make use of thisrmation in order to minimize the
repair time of scrubbing.

Keywords: FPGA, error detection, mean time to repair.

15

1 INTRODUCTION

Over the past decades, the amount of transistatscn be placed within a single
silicon die has grown exponentially, as foreseeMipre’s Law. These advances have
fueled an increase in the amount and complexifyidtionalities one can integrate in a
single chip. Thereby, complex systems require amlgmall amount of Integrated
Circuits (ICs) to carry out their functions, redugiproject costs and time. On the other
hand, the productivity of IC designers does nothevat this same rate, leading to the
phenomenon known as tipeoductivity gap(ITRS, 2011). In other words, the amount
of transistors made available by new manufactupragesses is so overwhelming that
designers are unable to make the most efficientafistnem. Furthermore, the time
expected for the release of new products, known tiae-to-market becomes
progressively shorter for most application nichreducing the time available for design
and further worsening the mentioned productivitg.ga

To alleviate this problem, efficient design techugg that maximize the reuse of
modules, reducing the burden on designers, areathsi Designs with high regularity,
l.e., that are mostly composed of replicas of senahd simpler blocks, are therefore
very effective to tackle the productivity gap. Riagity is also a valuable feature to
reduce testing time and cost, as well as increagsiagnanufacture yield. The yield is
the fraction of fabricated chips that are usabial (sellable), being an important metric
to maintain profits. In this context, Field Prograable Gate Arrays (FPGAS) become a
viable alternative that has found great commeastiatess in the past years.

FPGAs are reconfigurable devices that contain lamgeunts of generic logic and
storage components, interconnected by flexibleimguttructures. On its own, an FPGA
performs no useful operation, much like a processgtiout instructions to execute.
This generic structure, however, can be programimgdiploading an appropriate
configuration stream of bits in order to behavevigsially any digital circuit, provided
it fits within the logic capacity limitations of ¢hchosen device. Thus, FPGAs bring
benefits of general purpose processors, as thegbdaeeo perform virtually any required
function once properly programmed. And they alssdrbenefits of Application
Specific Integrated Circuits (ASICs), as the fuoctis computed by a dedicated circuit
with potentially very high performance.

As FPGAs comprise thousands and even millionseaftidal generic logic, memory
and routing blocks, they intrinsically present higlgularity. From the manufacturers’
point of view, this translates to the possibiliygrveatly simplifying the design of the
different models within a same FPGA family or eveh new families. Thus,
manufacturers have been consistently able to melaaw products using very recent
technologies, such as Xilinx’s UltraScale architeet(XILINX, INC., 2013), expected
reach a 16 nm feature size, and Altera’s StratiYALOTERA CORPORATION, 2013),
using a 14 nm process. From the users’ perspedaivdsPGA provides the ability to

16

quickly implement the desired circuit much fasteart by manufacturing it as an ASIC,
which is also a precious asset in times of pressneg-to-market restrictions.

Evidently, these benefits come with costs. Duetisayeneric and flexible nature, a
circuit implemented in an FPGA is usually slowerger and more power consuming
than its ASIC counterpart. Nonetheless, fueled Iy &dvances in semiconductor
manufacturing technologies, FPGAs have shown adgteacrease in their logic
capacity and throughput in the past years. Statbesairt FPGAs may include over 1.2
million lookup tables (LUTs) (XILINX, INC., 2012a)which are the basic building
blocks for circuit logic in current devices. A lattperspective on what this number
means may be obtained by considering that a 3M#RS-compatible softcoré
processor requires approximately 2,750 LUTs tonfg@émented. Thus, such a device is
able to include over 400 processors, an unthinkableunt when FPGAs were first
created. The high throughput available in newer &Pd&vices, coupled with the
offered flexibility and fast prototyping capabii8 mentioned, made FPGAs very
successful in a variety of niches. Nowadays, FP@#sused in military, automotive,
data center and telecommunication applications, lgmmany others (ALTERA
CORPORATION, 2012), (XILINX, INC., 2012b).

The field programmability is also a very importéeature in FPGAS, since it allows
the addition of new functionalities after deployryencreasing the system lifetime. It
also allows the correction of design mistakes w&ithuch lower cost, when compared to
ASICs. These possibilities are very interestingdatical systemswhere efficient and
high throughput computing may be required and & lofetime is also desirable.
Moreover, as these systems are frequently diffimuteach physically after deployment
(e.g., space applications), the possibility to @erf remote programming is of great
relevance.

A system is deemeckitical when its malfunction may have severe adverse tstfec
Such effects include, e.g., when human lives artakte. The braking system of a car
and the control of airplane wings are examplesysfesns considered critical as human
lives are put in danger whenever they do not perftreir operation properly. Other
systems are considered critical for environmengaises, such as the control of an oil
extraction platform. Finally, economic reasons nochgracterize a critical system. The
data base of a bank or a high throughput routarnetwork backbone may bring severe
losses to their owners and users if they fail terafe as expected.

Therefore, critical applications face stringelependability constraints that must be
satisfied in order to minimize unwanted servicdufas. Unfortunately, the same
advances in semiconductor manufacturing processdshaive allowed the continued
reduction in transistors’ feature sizes also bdegendability threats. They increase the
susceptibility of devices to several physical phmeapa such as aging effects (e.g.,
negative bias temperature instability and hot eainjection), which reduce the device
lifetime. Radiation-induced single event effectE€ES) also become more frequent,
causing failures if not counteracted. Thus, effitiechniques able to tolerate hardware

A softcoreis a processor implemented in the reconfigurabteié of an FPGA, i.e.,
with LUTSs, flip-flops, etc.

2 Please see Appendix A or (AVIZIENIS, LAPRIE, RANDE et al, 2004) and
(PRADHAN, 1996) for a detailed description of degahbility as well as other basic
concepts and terminology of dependable systems.

17

faults are required to achieve the expected depditgalevels. Fault tolerance
techniques are traditionally based on some fornreoiundancy, which consists in
performing a computation in a manner that allowscking its correctness. The most
basic form of redundancy is repetition, either gpadr temporal. The regularity of
FPGAs may also aid in the provisioning of redungamespecially of the spatial nature,
providing new possibilities for the designers afical systems.

One of the first challenges faced when providingltféolerance for FPGAS is to
understand the effects that faults have on suclcevwhich differ in many aspects
from those of traditional ASICs. As the device ftiocality is user-specified, it must be
stored in a special configuration memory. Figurg(d). shows a simple circuit and the
configuration bits that describe its correct impégrtation. The configuration memory is
frequently implemented with cells that are susd#gtio radiation-induced single event
upsets (SEUs). For example, SRAM cells, which aedufor most high end devices,
may have their stored value flipped if hit by aremyetic particle. Thus, SEUs can
modify the user circuit function, as shown in Figur.1(b), something that does not
occur for a hardwired ASIC. The effects that agéd bit in the configuration memory
has on the user circuit are hard to predict, dueth® complex effects that a
configuration pattern unforeseen by the manufacturay have on the fabric.
Moreover, the lack of low level schematics avagalbd users further increases the
complexity of developing (and evaluating) faultai@nce techniques for FPGAs.

(a) (b)

Figure 1.1: Fault-free circuit and its associatedfiguration bits (a) and faulty
circuit due to a configuration upset

Furthermore, as the routing between the logic camapts is also configurable,
faults in the configuration bitstream may affecast well. This leads to soft errors that
modify how the components are interconnected, wiicbs not occur for dedicated
hardwires. The example in Figure 1.1(b) shows tiealing of a routing wire caused by
a bitflip. This property has severe implications well-established fault tolerance
techniques, since a single fault may even affedtiphe independent user nets (LIMA,
CARMICHAEL, FABULA, et al, 2001).

It is also important to note that such faults remia the system until explicitly
removed, since in a traditional FPGA-based systeencbnfiguration memory is only
loaded after power up. Thus, even when no actumhgeent damage is caused to the
storage cell, the user circuit may present erroseoehavior for a long time. To
minimize this issue, one alternative is to periatlic overwrite the configuration
memory, in a procedure -callegcrubbing (CARMICHAEL, CAFFREY and
SALAZAR, 2000). However, this approach may takergltime to reach the faulty bit,
due to the large size of the configuration memany the limited bandwidth available to
access it. The mean time to repair (MTTR) is asgedi with how long it takes to
traverse the entire configuration, and it is in timder milliseconds even for mid-range

18

FPGAs (CHAPMAN, 2010). Thus, systems that must nreat-time deadlines, for
example, may find it insufficient to rely solely aonfiguration scrubbing, as the
system is likely to be unavailable during the preseof the fault.

Real-time systems require an answer that is botreciband within the expected
timeframe whenever possible, preferably even #fieioccurrence of a fault. Hence, for
such systems, the ability to detect and correctraor may not be sufficient if it takes
too long to recover and many deadlines are midSeeh more drastic effects can occur
in control or Digital Signal Processing (DSP) systewhere the next output is highly
dependent on the previous states. Let us takexample, a simple digital biquad filter
with an 8 KHz sampling frequency and with a 200 $#&vtooth input. Figure 1.2(a)
shows the output of the filter without faults. Né&t us assume that a fault occurs and it
modifies one of the coefficients from 0.9 to 1.8ading the filter to a potentially
unstable behavior. If the error lasts for the tmhene sample (125 us), the output of the
filter becomes that shown in Figure 1.2(b), almdshtical to the correct one. On the
other hand, if the error lasts for 7 ms (or 56 sasjp which is a relatively short repair
time for a state-of-the-art FPGA, it causes thgwouto become that in Figure 1.2(c).
Note that it severely disrupts the output valueddager than the duration of the error,
a behavior that is typical in circuits with logieddback (PRATT, CAFFREY,
GRAHAM, et al, 2006). Therefore, faster means to detect and venswrors are
required to allow the application of FPGASs in sggistems.

15 15 15

1

0.5t | [
V‘ﬂﬂﬂﬂ
AN

VOJHMHM

1

lH\,,}“\/\:\w\"

/
N\Myo \‘r’l\‘.\‘\“”‘yo

) ool ‘Hv v‘T ol
LfMN""MH’V lfN'(H”HMW
T e e

(@) (b)

Figure 1.2: Fault-free output (a), one cycle eflgrand 56 cycles error (c). The
markings on the& axes show the fault duration

o
4]

-0

4]

-1

-1.5

Even in systems that do not necessarily have meal-tconstraints, fast error
detection and removal can be crucial. A softcome@ssor that has its program counter
moved to an unknown memory location, for exampl@ynmever recover if only
scrubbing is used, since removing the configuradioor does not restore its execution
flow. Checkpointand rollback procedures can be used for such cases. The former
consists in periodically saving the system statd|eanthe latter is the action of returning
to one of these states once a fault is detected. [dhger it takes to detect the
occurrence of a fault, the farther its effects rhaye propagated throughout the system.
Thus, it becomes more costly to maintain backupiesopf the system state and to
return to one of these checkpoints if the systekegdong to detect an error. For
example, if a processor is unable to detect thegmee of an error before it propagates
to the main memory, rolling back to a safe statemhees very costly or even unfeasible,
as a backup of the entire memory is required. @nother hand, if an error is detected
while it is restricted to the register file, or evikefore it reaches a register, the rollback
is greatly simplified.

19

The specific properties of faults on FPGAs dicthet hardening techniques applied
to such devices must be specifically tailored tgecowith faults that affect the
configuration memory. Moreover, it is crucial toelein mind that the routing resources
are not reliable and that configuration faults l&st long periods of time if only
straightforward scrubbing is applied. Thereforeheottechniques must be applied in
conjunction, ensuring that the probability of seevifailure is kept at an acceptable
level. On the other hand, the system is still sttbie the other constraints found in
embedded devices, such as performance, power, yeaed) area. As fault tolerance
techniques are traditionally based on redundamey; will have a negative impact on at
least some of these parameters. For example, Thjgdular Redundancy (TMR)
consists in instantiating three replicas of thgioal design and performing a majority
vote on their results. Thereby, it allows maskimges on a single module, but comes
with area and power costs of approximately 200%ehStosts may be prohibitive for
systems with stringent budget or power constraitsor detection alternatives with
lower costs, such as Dual Modular Redundancy (DIg®) become attractive in such
situations. DMR consists in duplicating the compueeto be hardened and in
comparing their outputs, thus presenting approxitgat00% area and power COSts.
Reaching the required dependability levels, whileeting the remaining design
constraints and minimizing costs, is a challendagk that frequently requires iterative
fine tuning, as shown in Figure 1.3. Several tters may be required until all
constraints are met and costs are minimized, makiowicial to be able to quickly and
efficiently modify the design, as well as to quickind accurately evaluate the
dependability and costs associated.

~ N

g . -~ Evaluate
Q '\éIOd.'fy)erendabilityj
esign /

and costs

Figure 1.3: Iterative development cycle of depeielapstems

Therefore, just as important as providing efficienéans to cope with faults is
evaluating the effectiveness of such means. Acatitsystem specification should
include values for metrics that determine the eéesitevel of dependability. For
example, “the system should not be offline for lenghan 1 hour per year” or “the
probability of a mission failure should be belowirl a million” are the kind of
specification that makes sense from the end usespeetive. They must be
appropriately translated into metrics that can leasared during design time, so that
engineers are able to tune the techniques apphitl the constraints are met with
minimum costs.

Traditional approaches include the use of mathealatmodels to estimate
reliability, which may become too complex or impsecfor large systems, and fault
injection, which may take a long time to becomeistiaally significant, especially
when based on simulation software. Furthermore tdualee complex effects of faults in
FPGAs and the unavailability of low level schematio the users, the evaluation of
fault tolerance techniques for FPGAs most freqyemsles an actual device to perform
experiments. Doing so provides more precise resualts reduced time, compared to
simulation-based approaches. Experiments usingatiadi sources to stimulate the
occurrence of errors in the FPGA are also commanh ame valuable especially to
estimate the expected error rates for the systésn @éployment. They are important to

20

perform the mentioned conversion of the dependgbdkpected by the users into
metrics that are manageable by designers, as tloey estimating the fault rates that
would be observed in the deployment environment.

1.1 Main goals and contributions

The goal of this work is to tackle one of the melrallenges found when providing
fault tolerance for FPGAs: the long time requireddetect and remove a configuration
memory error. As discussed previously, this longare latency can cause missed
deadlines in real-time systems and it increasesdles of performing checkpoint and
rollback procedures. It also increases the proibabaf faults accumulating in the
system, which may break techniques built upon thgles-fault assumption. This thesis
focuses orsoft errors i.e., those that do not permanently damage theelend that
can be removed by overwriting the correct memomgteats. Soft errors are a very
critical concern for digital systems with deephaksd transistors, and for FPGAs the
configuration memory consists in a particular conc§FULLER, CAFFREY,
SALAZAR, et al, 2000). Other resources in FPGAs, such as intesldk RAM
memories, are also susceptible to SEUs. Faulthesetcomponents, however, have a
similar behavior to that observed in ASICs and d&en mitigated with the same
established techniques, such as error correctidgsc@ECCs). Thus, in this work, we
focus on providing means to efficiently detect ammmove soft errors from the
configuration memory of FPGAs.

In order to quickly detect and remove an error, cax@anot rely solely on periodically
overwriting the contents of the configuration memdks discussed previously, the time
required to do so is long enough for the error émse missed deadlines and to
propagate throughout the system logic, making it/ w®stly to return to a consistent
state. In this work, thus, we propose the use ohrtigues that allowfast error
detection i.e., a short latency between fault occurrenak @detection. Such techniques
can be used to performtaggered scrubbingi.e., one that ensues once an error is
effectively detected. Furthermore, it is preferabidat an accurate fault location is
provided. Withprecise diagnosisone can perform localized removal procedures in a
much shorter time than with global scrubbing. Femhore, by repairing a smaller
portion of the memory, one can save energy, asrfevgnory accesses are necessary.
The key concept explored in this work to achievéhlfast error detection and precise
diagnosis is thgranularity of the error detection mechanism.

The granularity of a fault tolerance mechanism mheilges how the system is
divided into modules for the sake of applying tleehnique. In other words, it
determines how large and complex one allows eathesie modules to be. Let us take
DMR, one of the most traditional techniques, asegample. Figure 1.4(a) shows the
basic coarse-grained approach. It allows deteetimgsingle fault that occurs in one of
the two copies and that propagates to the comparEte latter condition, however, is
frequently non-trivial, as a fault may be maskeddguit logic for long periods of
time, depending on the nature of the function cameghuby the component. The
granularity of the modules plays a significant rotethis error detection latency. Note
that small and simple components, as those shoviagure 1.4(b), are more likely to
quickly propagate an error to one of its outputsiswill in turn trigger the associated
comparator, warning the system of the presencenadéreor. The approach in Figure
1.4(a), on the other hand, will only allow detegtihe error once it has propagated to a
primary output. For FPGAs, the possible granulssitiange from single LUTs up to
entire complex modules, such as softcore processors

21

—{FG}{Feh-{Fe}+out
[

FG FG]L
DS
€ € €
(a) (b)

Figure 1.4: Coarse-grained (a) and fine-grained{dR

The granularity also affects the precision with ethihe location of the detected
error is known. As the comparator is only ableni¢ate that the output of the modules
diverged, it cannot further specify the locationtleé error, which may be anywhere in
the two modules and also in the comparator itSéifis, the smaller the modules are,
the more precise is the knowledge regarding faadation. In the example in Figure
1.4(a) a single bit of error detection is providedhich only allows indicating that a
fault was detected, with no information about isalion. On the other hand, in Figure
1.4(b) we are able to narrow the fault location ddw a smaller portion of the system,
depending on which signal was raised. Fine-graiegor detection is, hence, an
important feature to reduce the error removal tiasejt provides improved diagnosis,
allowing for localized repair procedures.

This thesis, thus, focuses on fine-grained erroedmn techniques for FPGAs and
how they may be applied to achieve fast error diet@cand removal. One of the
presented contributions is a technique that explatundant and underused resources
found in state-of-the-art FPGAs to perform finetgeal comparison of replicated LUTS.
As one of the main drawbacks of fine-grained faolérance is that it typically has an
increased cost in area due to additional compargimr voters), finding alternative
mechanisms to implement them can help saving ressuiRelated works have even
proposed the insertion of hardwired comparatorhénFPGA fabric to minimize this
area overhead (KYRIAKOULAKOS and PNEVMATIKATOS, 290 Thus, the
technique proposed here allows providing the beneaiff fine-grained DMR while
minimizing its main disadvantage, namely the insesharea. It does not require any
modification in the FPGA substrate, being applieatd devices that contain carry
propagation chains, which are dedicated circuitstfi@ efficient implementation of
adders found in many state-of-the-art devices.

The use of very fine-grained diagnosis to perfooteterated error removal is also a
challenging task, especially when one aims at dsmgvith acceptable costs. In this
thesis, an approach to deal with very large engmatures(i.e., numerous individual
error flags) is presented and evaluated. It retiesstatistical information to build a
relation between error signatures and the moslyligeror locations. It then identifies
the optimum starting point of a scrubbing procedairaing at minimizing the mean
time required to actually reach the erroneous frantecorrect it.

As discussed previously, evaluating the effectigenef fault tolerance techniques
for FPGAs is a demanding task as well. For thippse, this work also presents a high
speed and low cost fault injection platform thatowk performing extensive
experimental campaigns in a timely manner. Thefqrak requires a single FPGA to
carry out all the required functions, reducing tbemplexity and cost of the
experimental setup, while avoiding off-chip accesbat reduce the injection rate.

22

Radiation experiments were also performed with aigh@ accelerator at the
VESUVIO facility in ISIS, Rutherford Appleton Labatories in Didcot, United
Kingdom. The purpose of these experiments is tvdofidist, asserting the effectiveness
of the proposed techniques in an actual radiatmonrenment; second, validating that
the results attained with the fault injection taaicurately represent the effects of
radiation on the device.

1.2 Outline

This work is structured as follows. Chapter 2 diéss a standard FPGA
architecture and discusses the main componentsd fauncurrent devices. It also
presents the dependability threats faced by FPG&dasystems. Related works on
fault tolerance techniques for FPGAs are discussetiapter 3, while chapter 4 focuses
on radiation experiments and fault injection platis. Chapter 4 also presents the fault
injection platform developed in the context of thisrk, describing its implementation
and presenting its costs and advantages. In chapterpresent the techniques required
to leverage fine-grained fault tolerance as a méanfast configuration error removal
in FPGAs. We also present experimental result$udneg the expected failure rates for
the proposed approaches. Chapter 6 presents thbb8ty Unit Repositioning for Fast
Error Repair (SURFER) technique and evaluatesganding area and delay costs, as
well as reductions on repair time. Conclusions ardvom the conducted work are
presented in chapter 7. Some of the most promisituge works envisioned at this time
are also presented in chapter 7. Appendix A presdrg taxonomy on dependable
systems adopted in this work. It is suggested esibetor readers not familiar with the
nomenclature and basic concepts of this area. Appdh discusses and evaluates the
impact of non-random input stimuli on the figuresported in chapters 5 and 6.
Appendix C presents additional experimental resetfsoring the design space offered
by the heuristic algorithm proposed in chapter 6.

23

2 FPGAS AND THEIR DEPENDABILITY THREATS

The configurability of FPGAs is, at the same tintee key to their commercial
success and the main source of area, delay andr posts. It must also be taken into
account when a critical FPGA-based system is beiegigned, as it provides new
possibilities, but also additional concerns. Irstbinapter we present the basic concepts
of FPGA architectures in section 2.1. Then, in isac2.2 we present the main
dependability threats for current FPGA devices.

2.1 FPGA Architecture basics

FPGAs are designed to be highly flexible, easilpfigurable and also to present
high performance. A good source for further readingthe basic concepts of FPGA
architecture is (KUON, TESSIER and ROSE, 2008). Ohthe most relevant aspects
of such architectures, from both design and rdligtperspectives, is the existence of a
large configuration memory that stores the configjon bitstream. It is usually divided
into frames which are the smallest addressable units of itstréam. The contents of
this memory configure each and every element ingidelevice, including the behavior
of each logic circuit and the routing between théus, it stores the entire circuit
functionality expected by the user, making its gnity a key requirement for the correct
behavior of the system. Moreover, the configuratitemory may be implemented with
different manufacturing technologies, such ascsfRAM (SRAM) (LESEA, DRIMER,
FABULA, et al, 2005), flash (MICROSEMI CORPORATION, 2011) or i&ue
(MICROSEMI CORPORATION, 2012), each with its adweggs and drawbacks, to be
discussed in more details section 2.2.

With regard to configuration memories, an impor@evelopment of newer SRAM-
based FPGAs is the possibility to perform dynanaidipl reconfiguration. It consists in
modifying the bitstream while the device operatesrnmally, which has many
applications. The most straightforward is havindyaamically reconfigurable area that
has its behavior modified to assist the systentsicurrent needs, avoiding the use of a
larger area. Many other applications exist, esfigaidnen considering the requirements
of fault tolerant systems. Devices also frequeptiyvide special components to access
the configuration from within the FPGA logic, allow the creation of self-modifying
designs and creating many new opportunities alsorftical systems.

In order to be able to efficiently describe theuiegd system function with the
configuration memory, a flexible and powerful logiomponent is required. For that
purpose, current FPGAs employ configurable loolalpets (LUTS) as their most basic
functional building block. A«-input LUT is basically a multiplexer that seleotse’ out

3 Some devices contain multiple output LUTs that ipaplement two or more functions
that use the same input signals.

24

of 2¢ binary values which are stored in memory cellscdh implement, thus, any
boolean function with up t& inputs, with the configuration memory cells holglithe
desired function’s truth table, as shown in Figauke

] LUT &: |0D |1D |2

[»[e]e]~]o]r]r]e]

Figure2.1: Example of a -input LUT implementing the XOR functic

LUTs are combined, along with other basic companentch as flip-flops, into
small modules called configurable logic blocks (G)BXilinx 7-Series CLBs, for
example, are divided into two slices, with eacheskontaining four 6-input LUTs and
eight flip-flops (XILINX, INC., 2012a). Similarlyin an Altera’s Stratix V device, each
CLB (called ALM — Adaptive Logic Module by the mamaaturer) contains two
adaptive LUT structures and four flip-flops (ALTERBORPORATION, 2013). An
adaptive LUT is an 8-input structure that can imgpdat two 4-input functions, any 6-
input function and certain 7-input ones. Furthemmaach CLB typically contains carry
propagation chains that greatly simplify the impéartation of adders or subtracters in
the FPGA fabric. Inside each CLB there are also tiplakers able to realize
interconnections between the LUTS, the carry clearuitry and the flip-flops. Figure
2.2 shows the schematic of a Virtex 5 slice, whomprises four 6-input LUTs and

cout Resat Typs

O Sync
O Async

£ DMUX
Do D
DE[D—A5 Shoy = —0
D4 | ad o L N o
5 OLATCH
D3[>—A3 [T o o a——ooe
D2 oAz D gINITO
Dt >—A1 —{ CE oSRHIGH
| o osRLOW
DX > D— SR REV
Th— '
> CMUX
csD—a D___ _r/
s O
& = pg CROM o 5 TF =t
= 05 11 TLATCH
c3ro>—|A3 5 X omT ef—1Ioca
cz[>—{a2 D oo
c1 —{At +——CE DSRHIGH
| | o osaLow
x> SR REV
N '
£ BMUX
Py
e o A D_
- = O
Bs [>—{as Sp0T, {; = -
B4 CO—|Ad 06 1 T
B2 o>—|aa 05 BX oinTt 91280
B2 [>— A2 D Dg;‘umer-c
—— *—|CE DO
cL il | | cx osALow
B> SR AEV
T
—
5 AMUX
Ll = D___']
- O
as>—{as BRIT {; —a
A D—|ad 06 T OFF
Az >—a3 os X i ap—oan
Az A2 D omm
a1 +—{ce osaHIGH
M i = | |cx oSALOW
X SR REV
SR U") 1
CE> CJ E
CLK > { !

UG1BO_5_04 032000

Figure2.2: Schematic of Virtex 5 slice(XILINX, INC., 2010)

25

four flip-flops. Each LUT can also be used as a+ealy memory (ROM) and flip-flops
have several configuration options, such as thwiralization value and whether they
are sensitive to clock level (latch) or edge (actiyaflop). Each LUT can also be used
to implement two different 5-input functions, asdpas they share common inputs. The
multiplexers and XOR gates in the center composedhnry chain circuit.

Aside from the CLBs, FPGAs contain dedicated blothkat implement some
functions which are commonly required by the endrsisFor example, FPGAs are
frequently used in digital signal processing (D@Pplications and such algorithms
make heavy use of multiplication operations. Thaef as multipliers are complex
blocks that would require many LUTs to be impleneentFPGAs usually include
hardwired DSP blocks. Each DSP block is able toputma fixed point multiplication
which may or may not be followed by an accumulat®IiLINX, INC., 2010). Other
more specific functions, such as dedicated tramsceiand clock management units are
also found in state-of-the-art FPGAs.

Another important feature found in FPGAs is the edded memory blocks. The
flip-flops found in the CLBs are very efficient implement registers, such as counters
or timing barriers in a pipelined design. Howewenen larger random access memories
(RAMs) are required, flip-flops become inappropei&dr two main reasons: 1) they are
not so abundant in the device and are commonlyilyeaged as purpose-specific
registers or pipeline barriers, leaving few spasources and 2) their access is made by
general purpose routing wires, which means thatibé#iplexing required to make a
random access memory would have to be LUT-impleetgriéading to further resource
waste. For this reason, FPGAs usually include blBzkMs (BRAMSs), which are
hardwired arrays of SRAM cells with dedicated ascescuitry, much like a cache
inside a processor chip. They can be used as snsatliction memories for simple
programs or as buffers for incoming or outgoingadeames of a specific application.

The communication with external components is deiaeFPGA pins, which are
connected to the internal circuit using configuealiput/output blocks (IOBs). These
blocks can be configured to work as input, outputbairectionally, according to
different coding and electrical standards (XILINWNC., 2010). Since they are the
beginning and ending points of the system containeithe FPGA, these components
play a significant role in reaching high relialylievels. Some techniques make use of
pin redundancy to improve reliability (D'ANGELO, MRA, PASTORE gt al, 1998),
(LIMA, CARRO and REIS, 2003).

Finally, there is the great concern of interconmgctall the components of the
FPGA: CLBs, BRAMSs, dedicated hardwired logic andB¥O The need for flexible
routing resources, in the sense that they mustble ta realize the interconnection
topologies required by the user, and that areiefftan terms of area, delay and power,
makes such resources a chief concern in FPGA deBignrequired flexibility imposes
the need for a large amount of configuration b#soaiated with routing. In fact, the
vast majority of the configuration bits actually nfigure how components are
interconnected and not their behavior (XILINX, IN@0O11a), making such resources
great concern regarding device reliability as well.

2.2 Dependability threats for FPGAs

The aggressive scaling of semiconductor devicesichwheads to increased
performance and lower energy consumption, frequehths adverse effects on
dependability. The effects of energetic particlest tmay hit the silicon and disturb the

26

circuit operation, which are discussed in sectidh1? are of particular interest to this
work. We also briefly discuss the effects of thenggof devices in section 2.2.2.
Section 2.2.3 discusses the relation between dapéitd threats and the dependability
metrics for FPGAs.

2.2.1 Radiation effects

With the reduction of transistors’ dimensions amdupply voltage, the amount of
electrical charge in a transistor is significanégluced. Thus, theritical charge i.e.,
the electrical charge that needs to be collectest afradiation event in order to induce
an error, is also reduced. With reduced criticahrgh, the rate at which radiation-
induced errors are observed tends to increase.

Several different particle types may induce eranrssilicon devices, by generating
energetic ions either directly or as a seconddscefAlpha particles, neutrons, protons
and heavy ions are among the most commonly repsadedces of errors. Figure 2.3
shows the effects of an ion in the silicon. As ¢nergetic ion passes through the device,
it produces electron hole pairs (a), which are tregnidly collected in a funnel-like
shape (b) and then more slowly over a long peridihee by a diffusion process (c). If
the amount of charge collected during this pro@s®eds the critical charge, then an
error may occur. More in-depth discussions on theraction of energetic particles and
integrated circuits can be found at (SEXTON, 2088 (BAUMANN, 2005). Of
greater relevance to this work are the effectsushgarticles on a higher abstraction
level, i.e., on circuit logic and on the serviceyded by the system. The current pulse
induced by the particle may lead to several difiergeingle event effect§SEES),
especially when one considers the particular ptaseof FPGAS.

lon track/

psubstrate psubstrate p substrate
(@) (b) (©)
Figure 2.3: Effects of an energetic ion on a silidevice

2.2.1.1 Single Event Transient (SET)

If the affected part of the circuit contains condtional logic, the fault may
manifest itself as a glitch on the output of a gilegic gate. This phenomenon is
referred to as aingle event transieSET).

Let us consider the simple circuit shown in Figdré(a), in which the OR gate is
subject to a fault that temporarily raises its otitpo, to a logic ‘1'. Figure 2.4(b) shows
the situation in which the SET propagates throlghcdombinational logic and is stored
in a register, leading to the occurrence of a sofir. However, it may not lead to such
an error due to several reasons. First of all,ay e masked by circuit logic, as shown
in Figure 2.4(c) (note that the value ipfhas changed). Second, the storage cell may

27

have an “enable” input which, when deactivatedygnes the cell from reading its input

value, as depicted in Figure 2.4(d). Finally, tlaelf may not be present during the
occurrence of a latching window, as shown in Figure). The latching window is the

period of time in which the storage cell updatesoitput value. It comprises the time
when the clock is high (or low) for a latch or anoav timeframe around the rising (or

falling) edge of the clock for flip-flops (definday the setup and hold times of the cell).
With the reduction of the critical charge and wite increase of the operating

frequency of newer devices, there is a possibihgt the SET will last for more than a

clock cycle. The impact of the long duration tramsifaults and several techniques to
mitigate these effects are presented in (LISBOAR0

cI_kJ_I_I_l_I_I C!k_f_LI_I_I_I clk T clk T LI LTI

i i i i i
io Ny lo lo lo lo
i || 1 I1 Iy Iy

D QY NN

Pl e e e e
€E No [N1l = ng No

I ng | ny Ny [Ny

clk O [] 0 0o 0y

(a) (b) (€) (d) (e)

Figure 2.4: Different outcomes of a single eveahsient (SET)

Even though SETs on combinational logic should bgl taken into consideration,
they are far less common in FPGAs than in tradatioASICs (LESEA, DRIMER,
FABULA, et al, 2005). This is mainly due to the higher capaciéafound in the
routing of signals in an FPGA, which makes it miess likely that a particle will have
sufficient energy to induce an error.

2.2.1.2 Single Event Upset (SEU)

An energetic particle may also directly hit a sggra&lement and potentially alter the
stored value. This phenomenon, caligagle event ups€¢SEU), most frequently affects
a single memory cell leading tosangle bit upse{SBU). Due to the greater integration
and reduced dimensions of transistors, a singlacfg|may also cause raultiple bit
upset (MBU), which may have undesirable effects on gystethat rely on error
correcting codes (ECC), for example.

Figure 2.5 shows how a SEU occurs for a standdrdr&istor SRAM cell. Figure
2.5(a) shows the initial (correct) state of thel,cehich is storing ‘1'. As shown in
Figure 2.5(b), the particle creates a pulse indbgut of one of the cross-coupled
inverters that form the cell, similarly to a SETN.this case, however, if the pulse lasts
long enough, it drives the input of the other itggrwhich in turn reinforces the effect

Bitline . Bitline Bitline . Bitline Bitline . Bitline
| Wordline | | Wordline | | Wordline |
S || (]| (Lo
(a) (b) (c)

Figure 2.5: Single Event Upset on an SRAM cell

28

of the pulse on the first one through the feedblaclp, altering the stored state, as
shown in Figure 2.5(c).

SEUs are of particular interest for FPGAs due ®&irtheliance on a configuration
memory to store the desired circuit functionalithus, if such memory is subject to a
SEU, the circuit function may be modified until tmemory is rewritten at that position.
As any configurable element is subject to this tgbdaults, both logic and routing
resources may be affected. For instance, a LUT maag its function altered, meaning
that it will yield a wrong output if the inputs obge that specific value. On the other
hand, as discussed in section 2.1, the majorith@tonfiguration bits are related to the
routing resources. Therefore, faults affecting ¢oafiguration bitstream are likely to
affect the interconnection between the logic elemsmdrurthermore, the effects of such
faults on the user circuit behavior are not stréiggivard. For example, a single fault in
a routing configuration bit may corrupt multiple teeof the user design, with
undesirable effects on traditional error mitigatischemes (LIMA, CARMICHAEL,
FABULA, et al, 2001), (STERPONE and VIOLANTE, 2006). Such effemte a major
concern for error detection and/or correction téqies for FPGAs and represent a
major threat to the dependability of FPGA basedesys.

The technology used to implement the configuratielts has significant impact on
the expected SEU rate. Flash-based FPGAs predeng with the non-volatility of
flashes, the advantage of a higher tolerance tmatrad-induced SEUs. However, for
the most aggressively scaled technologies, eveh fl@emories may be subject to such
faults (IROM, NGUYEN, HARBOE-SgRENSEM:t al, 2011), creating the need for
mitigation schemes even for such FPGAs. Furthermtash-based FPGAs present a
much reduced logic capacity, in comparison to tRAM-based ones. For example, the
largest flash-based FPGA made available by Microgdonmerly known as Actel)
presents a logic capacity of 75,264rsaTiles(each VersaTile can be configured to
work as a D flip-flop or as a 3-input LUT) and 503Kf BRAM (MICROSEMI
CORPORATION, 2011). The largest SRAM-based FPGAearadiilable by Xilinx, on
the other hand, presents 1.22 million 6-input LU®ger 45Mb of BRAM and 2.44
million flip-flops (XILINX, INC., 2012a).

Antifuse cells are also an alternative for the iempéntation of the configuration
memory. This technology is highly resistant agairatliation-induced faults, but
presents the significant drawback of being prograiim only once. This property
prevents designers from including new functioneditior correcting design mistakes
after the FPGA has been programmed. It also prevér@ use of many techniques
based on partial reconfiguration to avoid permariantts. Moreover, antifuse-based
FPGAs are also limited in terms of logic and emlseddnemory capacities, when
compared to the SRAM ones. The largest antifusecbddPGA made available by
Microsemi contains 20,160 radiation-hardened flgp$ and 40,320 combinational
cells (C-cell) (MICROSEMI CORPORATION, 2012). Ea€icell can implement over
4,000 5-input functions (which are not all possimput functions).

The non-configuration memory cells (mainly BRAMsdaflip-flops), which are
usually implemented with SRAM cells, may also bbjsat to SEUs. However, as they
are similar in purpose to the cells found in an @Sthey may rely on the same
traditional mitigation schemes, such as modulaumedncy and ECCs. Such techniques
should be used together with those targeting thdiguration bitstream in order to
provide comprehensive fault coverage.

29

2.2.1.3 Destructive Radiation Effects

Differently from what is observed with SETs and SEthere are also single event
effects that cause permanent, destructive damatje teystem. These effects are much
rarer than SETs and SEUSs, usually requiring moeeifip conditions and higher energy
particles to occur. In (SEXTON, 2003) a detailescdssion is presented for each of the
different mechanisms that may cause permanent damaduch is summarized here.

A single event latchugSEL) occurs when a particle activates parapitipnbipolar
structures found in CMOS devices. A low impedanathps created between supply
voltage and ground, though which a high currentvfio As this effect can only be
removed through a power cycle, i.e., by complepelwering off the circuit, there is a
high probability that the current will permanentlgstroy the affected region. Thus, the
latchup is not destructive by itself but the higirent it creates may damage the device.
A SEL is similar in effect to &ingle event snapbadSES). SESs, however, do not
require thepnpn structure, occurring within a single transistorth€ destructive
phenomena are more common in power transistork, asgingle event burnoW{SEB)
and single event gate ruptur€SEGR), being of less concern for FPGAs. A SEB is
caused by heavy ions that trigger an avalanchetetfeat in turn create large currents,
potentially damaging the circuit. It may also caaseEGR, a phenomenon in which the
particle causes the dielectric that separates gatechannel to fail, also permanently
damaging the transistor.

2.2.1.4 Cumulative Radiation Effects

The long term exposure to radiation may also haagative effects on the device
dependability. These effects, thus, are not dua single particle that hits the device,
but due to the accumulated effects of radiatiore tokal ionizing dos€TID) over time
may cause charges to be trapped in the field atedayades, the latter causing changes
in the transistor’s threshold voltagérf) (SCHRIMPF, 2007). This in turn degrades the
transistor’'s performance, until it eventually ssariolating the timing constraints of the
design, leading to intermittent and even permaeenmtrs. Energetic particles may also
cause displacement of atoms in the silicon latets®y modifying its physical properties
and potentially leading to intermittent or permangults. The cumulative radiation
effects, due to their long term nature, are sintilaaging effects, which are the subject
of section 2.2.2.

2.2.2 Aging effects

The continued use of silicon devices leads to st\@rysical phenomena that may,
over time, cause intermittent or permanent fadtgch effects, collectively calleafjing
effects are the main responsible for the increased faitate during the wear-out phase
of semiconductor devices, as shown in the bathimbec(Figure Al in Appendix A). In
this section we briefly review the main physicausies of integrated circuits aging
(BANSAL and RAO, 2011).

Among the most common sources of aging faults aeme technologies are those
related tobias temperature instabilitgBTI). The voltage and temperature stress of gate
dielectric (silicon oxide — Si¢) may cause charges to become trapped in the anterf
between the silicon channel and the dielectric. Bifécts are divided into negative
(NBTI), which affects PMOS transistors, and po&tiiPBTI), which affects NMOS
transistors. Traditionally, due to the operatingdemaf CMOS gates, NBTI was of
greater concern. However, with the introduction afnfum oxide (HfQ) in newer
technology nodes, PBTI may also become a concesN@AL and RAO, 2011).

30

SRAM cells are also susceptible to aging effectBTNreduces the static noise
margin of these cells and may increase the fatdsréspecifically for FPGAs, most of
the PMOS transistors are used in the configuratielts, as the LUTs and routing
resources are made mostly with NMOS pass transi$ddEHTA and DEHON, 2011).
The effect of NBTI on SRAM cells can be relevant [GAs, leading to configuration
cell instability (RAMAKRISHNAN, SURESH, VIJAYKRISHMN, et al, 2007). This
may be observed as an increased SEU rate for FR@i8ed that have been in use for a
long time.

Hot carrier injection (HCI) also creates charg@sran the Si@-Si interface, but as a
direct consequence of the high kinetic energy edest that occur near the drain
junction. These particles may also generate secgngarticles through impact
ionization, which may also become trapped in thédexAs HCI affects NMOS
transistors, in the case of FPGAs it may lead tit$an the routing pass transistors as
well. Both HCI and BTI effects cause an increas¢him threshold voltage, leading to
slower device response and potential timing viotzi

Time-dependent dielectric breakdown (TDDB) is arotbonsequence of the traps
that occur in the gate oxide. These traps may aclaieuntil a conductive path is
formed between gate and channel, thus breakingdiblectric. The result of this
breakdown is a sudden increase in gate current@msequently in power consumption.

2.2.3 Technology scaling and dependability metrics

As discussed herein, technology scaling increalsesstisceptibility of integrated
circuits to many adverse phenomena that negatafégt dependability. The increased
susceptibility to radiation SEESs, for example, re@ekithe MTBF throughout the entire
lifetime of systems, while the accelerated aginticgrates the wear-out phase, where
the failure rate starts to increase severely. Qthenomena, such as process variability
and the increased complexity of testing and periognburn-in on manufactured
devices may extend the infant mortality phase a$ (iue KIM, MINTARNO, et al,
2009), if not counteracted. Thus, the failure fatectionz(t) gets higher at all phases of
the devices’ lifetime, modifying the bathtub cudescribed in section A.4 of Appendix
A, as shown in Figure 2.6. Note that the plategiorethat defines the useful life of the
system gets shorter, due to early-life failures d@hne anticipated wear-out phase.
Furthermore, it gets higher, due to the increasexteptibility to random soft errors,
such as radiation induced SEUs.

2(t)

Scaling
N

= t

Figure 2.6: Technology scaling and the bathtubeurv

Specifically for FPGAs, some efficient alternativesist to mitigate manufacture
defects (HATORI, SAKURAI, NOGAMI.et al, 1993), (HOWARD, TYRRELL and
ALLINSON, 1994) and process variability (GOLSHANHAJEH, HOMAYOUN, et
al., 2011), (MEHTA and DEHON, 2011), usually relying the fabric’s regularity for

31

this purpose. Furthermore, due to FPGAs’ improveergy efficiency when compared
to general purpose processors, they tend to opendtaver temperatures, which in turn
delays aging processes (MEHTA and DEHON, 2011).d&sussed in section 2.2.2,
one of the most critical effects of aging on FPG#\the increased susceptibility to soft
errors on the configuration cells (RAMAKRISHNAN, 8ESH, VIJAYKRISHNAN,

et al, 2007). Thus, being able to efficiently mitigahe teffects of SEUs on FPGAS is
crucial during all phases of the devices’ lifetime.

Another relevant side-effect of technology scalofgerved in FPGAs is that, as a
general rule, the bitstream size increases fakter the configuration interface speed,
increasing the total programming time. As configiara scrubbing remains the main
alternative to remove errors from the bitstreara, MTTR attainable with this approach
tends to increase as technology advances. Thelpliopaf timing failures in real-time
systems is therefore also increased, as well adawatime of systems with availability
constraints. A more in-depth analysis on configoratrates and bitstream sizes for
different device families (and manufacturing tedog@s) is presented in section 3.2.

32

33

3 FAULT TOLERANCE TECHNIQUES FOR FPGAS

The many advantages and new concerns brought byA&RG the field of
dependable systems have fueled a significant amotinworks on fault tolerance
techniques for such devices. Some techniques a@attbns of traditional redundancy
schemes while others make explicit and intensiwve afsthe underlying configuration
memory to detect and possibly correct faults. Featly, techniques make use of both
approaches concurrently to provide a more compghenreliability solution. In
section 3.1 we review the main works on this afeeysing on those that are based on
redundancy schemes. Works that heavily exploitre#ésn manipulation are discussed
in section 3.2. Works that combine both are disedise the category where the most
significant contributions were made. The contribn$ of this thesis are contrasted with
related works in section 3.3.

3.1 Techniques based on redundancy

Redundancy is the repetition of information or comation. While minimizing it is
the goal in many situations (e.g., logic circuitnimization, data compression), it
remains an essential tool to provide fault toleeart€arlier works, such as (HATORI,
SAKURAI, NOGAMI, et al, 1993) and (HOWARD, TYRRELL and ALLINSON,
1994) propose to introduce redundancy in the fofrapare resources that are used to
improve the manufacture yield, i.e., the fractidrtatal produced chips that is usable.
These resources are activated if, and only if, tienufacture test detects a fault,
replacing the defective components in the chipsTpproach allows maintaining the
total logic capacity of the device and increasespiobability that each chip is usable.
Post-manufacture faults, however, were not a conferthese works. In the following
years, several other works were concerned with onipg the yield of FPGA
architectures. Such techniques, however, are mom&in concern of this work and we
focus on techniques able to tolerate faults ocegrat runtime.

In (MOJOLI, SALVI, SAMI, et al, 1996) the importance of also mitigating post-
manufacture faults is presented. The work focusepermanent faults. The authors
assume a non-reprogrammable FPGA, thus ignoring @ossibility of run-time
reconfiguration. The proposed technique makes @iseanular redundancy, i.e., the
replication logic blocks followed by comparisonvarting, to provide fault tolerance.

Modular redundancy can be implemented with a vamigtiber of replicas, with the
most common variations being dual modular redunggdbdR) and triple modular
redundancy (TMR). As discussed previously, DMRwafidhe detection of single faults
by comparing the outputs of two circuit copies,réiiy signaling possible failures to
other modules. TMR, on the other hand, allows nraglkingle faults by voting the
value given by the majority of three replicas. F&8.1(a) and Figure 3.1(b) show the
basic DMR and TMR techniques, respectively. Thealbdity of the comparator or

34

voter component is also of critical concern for lsusystems. For this reason,
redundancy is also frequently applied to them. FEd8L1(c) shows a frequently used
technique that triples the voters to avoid singbénts of failure (SPOFs). Modular
redundancy may be applied with an arbitrary améuat replicas (NMR) as well.

Figure3.1: DMR (a), TMR (b) and TMR with tripled voters

Mojoli, Salvi, Sami,et al. (1996) make use of four replicas of each modiias t
allowing not only the correction of single faultstlalso the detection of double faults.
This technique is also able to correct two faultheéy do not happen simultaneously.
The authors argue for the need of using placemenstraints to ensure isolation
between the different replicas, even though theptemfaults associated with routing
resources were not yet discussed. Furthermore, athhors present different
granularities of implementation. Previous works, ickih aimed at improving the
manufacture yield, required a very deep understandi the FPGA fabric, which is not
always available or convenient for the end usenddein (MOJOLI, SALVI, SAMI.et
al., 1996) redundancy is implemented with the gramylaf functions that can be
handled by the user CAD tools. The presented eshtiw that the technique has a high
probability of providing correct service. Howevérey were obtained by means of high
level equations that estimate the probability afltea affecting the control circuitry,
without any experiments on a real device.

Standard TMR is applied in (FULLER, CAFFREY, SALARAet al, 2000). The
authors present extensive radiation experimentsaovirtex device, showing that
configuration upsets are a major concern in FPGA® addition of TMR combined
with configuration scrubbing showed a 15x improvatmen proton fluence-to-failure
measurements. The authors also identified a dribemponent in the fabric of those
devices, called “weak-keepers”. They were respdaddy driving constant values that
could be required by other components in the fadnid were susceptible to upsets that
were not detectable in the configuration bitstre&waplacing the use of these circuits
with other means to drive a constant value furiingoroved the results. Very high
availability measures (up to 99.9998%) could beiedd with the use of such
techniques.

In (LIMA, CARMICHAEL, FABULA, et al, 2001) the authors also make use of
TMR on a Virtex device, which is evaluated throulgitstream fault injection and
confirmed through radiation ground testing. Expeniis showed that single bit flips
could lead to unexpected functional failures. Ugangprietary tools, the source of such
situations was identified: a single bit flip coutnnect signals from independent
redundant modules, corrupting multiple nets andicguthe voting scheme to fail. The
relevance this property led to several further asseges on how to mitigate this issue
(STERPONE and VIOLANTE, 2006), (KASTENSMIDT, FILH&nd CARRO, 2006).
A Reliability-oriented place and Route AlgorithmaRA) is presented in (STERPONE
and VIOLANTE, 2006), with the purpose of delibefgtavoiding the instantiation of
routing paths that can lead to such faults, relging’ MR as redundancy mechanism. In

35

(KASTENSMIDT, FILHO and CARRO, 2006), the proposethnique consists in
introducing redundant routing paths that are ablemiintain a reliable connection
between the components in the presence of faultgh Bypproaches show very
significant reductions in the sensitivity to thisid of faults.

Besides spatial techniques, such as modular redagdéime redundancy may also
be used for fault tolerance. It consists in comqmutiepeatedly or with additional delay
in order to detect and/or mask errors. Howeveralsomputations are performed on
the same hardware, permanent faults are likely eqpeatedly produce the same
erroneous results, leading to undetectable sitositiand making time redundancy
technigues more suitable for transient fault detectThis problem is of special concern
for FPGAs, where faults affecting the bitstreangdin until removed, which usually
takes at least milliseconds, as discussed prewiousl|

In (LIMA, CARRO and REIS, 2003) a technique combgtime redundancy, DMR
and TMR is proposed, aiming at reducing the hardwaosts of TMR, especially
concerning the usage of IO pins. Figure 3.2 shdves groposed technique. During
normal operation, the combinational logic to betgcted is duplicated in modules drO
and drl, following a standard DMR approach. Théthe DMR comparator points out
the occurrence of a fault, one extra cycle is usedetermine which of the modules is
faulty by means of time redundancy. In order toi@dvihne situations in which a
bitstream error is not detected, the circuits ojgeraith encoded inputs and decoded
outputs. In the example in Figure 3.2, encodingsiia in shifting the inputs 1 bit to the
left, while decoding shifts the result two bits tee right. This approach allows
stimulating the circuits differently, and potentyaidentifying which is the faulty one.
Note, however, that not all circuits allow simpleceding and decoding to perform this
kind of detection. Furthermore, there is no guaanthat the encoded inputs will
stimulate the present fault, as they activate ifie paths in the circuit. Still, for some

DB DA DB DA
DB shifted DA shifted DB shifted DA shifted

b4 ! |

§T0 1 0. N0 1 §T0 ST1 10/ N0 1 ST1
Mult_dr0 Mult_dr1

dr0 shifted drt shifted

c\k_E dr0 clk dr1
oy Ty =Y
L '\I/‘ s .
Hc Tc0 Tet
1TCO Hc D i Tel lli
— T N e
‘ ‘ ST
| 0 <] 1 4| tr2 < cked

MAJ MAJ MAJ

Figure 3.2: TMR, DMR and time-redundancy hybridhteique (LIMA, CARRO
and REIS, 2003)

36

classes of circuits, such as arithmetic functidins, possible to achieve relevant gains.
The output flip-flops are tripled, with two of theraceiving the outputs of drO and drl
and the third one receiving the output of the medturrently deemed fault-free. The
presented results show area reductions and hidihciaterage for a multiplier example,

assuming a stuck-at fault model.

Another study concerning the use of TMR is presente (KASTENSMIDT,
STERPONE, CARROet al, 2005). In this work, the authors evaluate thedraffs
regarding different granularities of applicatiomtite large modules can be voted at
their primary outputs (i.e., a coarse granulardgy)additional voters can be inserted at
the output of simpler modules (i.e., a fine grantya The main drawback of fine TMR
granularities is that they cause additional areartead, due to the extra voters,
similarly to what occurs with DMR and the additibemamparators. On the other hand,
there is a reduced likelihood that faults will atféwo redundant modules that share a
same voter, thus potentially improving the faulve@ge. Kastensmidt, Sterpone,
Carro,et al. (2005) present a case study considering threeréliffesoting granularities
and performing fault injection on the bitstreamaoKilinx Spartan device. The results
showed that the intermediate granularity presdmsoest fault coverage (99.02%). All
uncovered faults were associated with routing bgsexpected.

In (PRATT, CAFFREY, GRAHAM et al, 2006) an approach to reduce the costs of
applying TMR to a design is presented. The obsenvatone in that work is that the
divergence of the system’s output from the expectee may persist even after the
configuration error is removed. This occurs mainen the error modifies the
behavior of a feedback structure of the design, aestructure whose current state
depends on its own previous state. For such périseodesign, simply removing the
configuration error is not sufficient, as this agtésn does not restore the system state to
a consistent one. The configuration bits that leadhis kind of situation are named
persistent bits by the authors. The proposed apprsato apply TMR only to those
parts of the design identified as feedback strestuaiming at reducing the amount of
persistent bits. This is a valid approach for thapelications that may accept short
interruptions of service, but not a permanent eneh as audio or video decoding. The
presented results show that a DSP application keméd benefit from the technique
more significantly than a synthetic design basednautiple linear feedback shift
registers (LFSRs), which had more feedback loops$ tbquired TMR, reducing the
gains of the technique.

TMR is also used in (GERICOTA, LEMOS, ALVESt al, 2007), but with a coarse
granularity. The use of error detection to triggenfiguration repair through partial
scrubbing is evaluated. Error detection is perfatrby means of a scan chain that
allows comparing internal signals of the TMR mogulBiagnosis information is not
used to further divide the TMR modules, i.e., omge error is detected, the entire
module is reconfigured. And, since coarse-grain®tRTis used, large configuration
areas, associated with large modules, must beregpbaloreover, the time required to
detect an error is associated with the time to eetially compare the entire scan chain,
thus presenting a linear dependence with the tisize that limits scalability, similar to
a global configuration readback mechanism.

Kyriakoulakos and Pnevmatikatos (2009) presentharadiscussion regarding the
different granularities of implementation of moduladundancy. They argue for the use
of very fine grains, based on the fact that inisiitively less likely that two faults will
strike a single comparison or voting domain. A don@mprises the original module,

37

its replica(s) and the comparator or voter resgmasifor its operation. More
specifically, they consider that each LUT is a medahus making use of the finest
grain available for an FPGA. Furthermore, they eitpthe fact in Virtex 5 devices,
each 6-input LUT can implement two different 5-ibfunctions, as long as they share
the same set of inputs, as shown in Figure 3.3f@)s, if the original LUT has only 5
inputs, it is possible to implement two replicaglué same function on a single 6-input
LUT. They propose to modify the FPGA fabric to addedicated comparator to assess
that the two 5-input functions are equal, therebtedting any fault directly affecting
one of them. Figure 3.3(b) shows the scheme, wha@umn fault wire is also added
to indicate that a fault occurred at that colummr&bver, they synthesize the circuit to
5-input LUTSs, so that every LUT in the design canrbapped to this structure. They
present another modified substrate in which a visteadded, being able to realize a
TMR scheme in which every three 6-input LUTs of tabric implement two tripled
functions.

Column fault
A8 [

Al

V) i S D

c— - -
A3 > i 5-LUT R
A > Atk — ‘
ASL—— ™ K =" 5-LUT
Lﬁ —w SR B
> 05

L] sLUT —

\/

L
T/‘

5-LUT

6-LUT 6-LUT

(@) (b)

Figure 3.3: 6-input LUT built with two 5-input LUT(®), and with the XOR gate
added for comparison) (KYRIAKOULAKOS and PNEVMATIKATOS, 2009

No fault injection experiments were presented inYRKAKOULAKOS and
PNEVMATIKATOS, 2009). The faults associated withuting resources, which are
likely to pose significant threats to this techregare also left unchecked. The input
signals of the replicas are the same, thus any &didcting them is likely to remain
undetected (even faults that affect a single Mébreover, as a single voter is used for
the TMR case, faults affecting the voter's outpusymalso disrupt the technique.
Additionally, no results on the area and latencgtemf the proposed modifications
were presented. Nonetheless, the significant remtuat costs (1.76 instead of at least 3
times for fine-grained DMR, measured by number OfTE), points out an interesting
research direction.

In (SHE and SAMUDRALA, 2009) the authors presenapproach to minimize the
costs of TMR similar to that of (PRATT, CAFFREY, BRAM, et al, 2006). The idea
is to apply redundancy selectively, only on thosetgpof the design that are deemed
sensitive by a heuristic approach. The heuristitsaat maximizing the probability that
a fault is masked, either by circuit logic or by timserted TMR parts. It relies on input
signal probabilities that state, for each primargut of the design, the likelihood of it
being ‘1. These probabilities are propagated tghmut the circuit, considering the
function computed by each LUT. Based on how likielis for a LUT to propagate a
fault (i.e., none of its other inputs has a dominaalue), the “SEU sensitive
probability” of each LUT is calculated. LUTs withpaiobability above a user-specified
threshold are considered sensitive and receive TMR. threshold probability can be

38

used to increase or decrease the amount of redeydaserted. Furthermore, L UTs
computingNOT and XOR functior are considered sensitive, &gy always propaga
faults as well as those that generate the primary asitpluithe circuit. The propos¢
scheme was able to maintain high fault coveragé vatluced overhead comparec
TMR. The evaluation, however, made use of -level fault injecion instead of usin
an actual FPGA, meaning that the employed faultehddfers from what is observe
in practice.For instance, the duration of the injected faulhat specified, and it i
known that faults in FPGAS’ bitstream are likely liager fcr a long time (unti
explicitly removed).

Fine-grained redundancy schemes are also discuss(NIKNAHAD, SANDER
and BECKER, 2011)The authors present two approa« to tolerate massive fat
scenarios. One is fingrained TMNR (FGTMR), which triples each LUT and each -
flop and votes the output values with individu@bled voters. Thus, each LUT of t
original design becomes 6 (3 replicas and 3 votans)) each fli-flop becomes 3, als
requiring 3 additional LUTs for \ting. Such high overheads make this technique
affordable for systems with extremely high resiiemequirements as well as suffici
financial and power budgets availabThe other approach uses Quadruple F
Decide Redundancy (QFDR), which reres each function to be computewr times
and each time with duplicated inputs. Thus, asrdenfthe cost of instantiating ea
LUT four times, they must use duplicated inputssuaing tinputs LUTs, even
function with more than 3 inputs will have tce split, since one LUT will n
accommodate its versiomith duplicated inpui. The experimental results show that
area overhead of the QFDR approacevenlarger than that of FGTMR. Furthermo
the proposedechniques have a high impaci circuit latency, as they introduce seve
additional layers of logic to the design. Thesetgosowever, are not measured by
authors. Still, both approaches are likely to bk @b withstand very harsh scenar
due to theimultiple faults masking capatlties.

As shown in(NIKNAHAD, SANDER and BECKER, 201: very fine-grained
approaches can introduce overwhelming costs. Agdespace exploration framewao
is presented in(BOLCHINI, MIELE and SANDICNIGI, 2011) to automatically
identify the optimunpartitioning granularityand hardening technique satisf a given
set of system requiremer The framework takes into account costs and goalk as
area overheads and average configuration time the purpose oécceleratin repair.
An external reconfiguration controller, shown Figure 3.4(a) monitors detectio
signals that trigger scrubbing procedurReconfigurable partitions witlindividual

e
o
vy vy v ‘bitstream‘ kS §
r—&—T—N—T—M—T—IM—‘ i
(T T RETTITININD .E‘n E
£k
. . o
47 primary inputs T g8
< g1l @l s « © «
& hardened La e e s = -
) ; <l <'< ! < | < < <
w reconfiguration i] I
systems <t c,xc,c, x o o o
B VeI commands fault manager S IR = =
b with &] 1 |
] i " i | I |
8| fault detection reconfiguration _ .
1 E =l (%)
=| fault masking »| controller ==
é properties error signals — >
L rad-hard FPGA 5
$ primary outputs SRAM-based FPGA 5
\
(a) (b;

Figure 3.4FPGA system with external reconfigtion controller (a) and partitio
scrubbingmechanism (b(BOLCHINI, MIELE and SANDIONIGI, 2011

39

detection capabilities are defined to allow locadizscrubbing, as shown in Figure
3.4(b) with the finest grains providing faster redaut increased area overhead. DMR
and TMR variations are considered as potentialmddacy techniques in the presented
case study. Very significant MTTR reductions aréieeed over global scrubbing (at

least 80%). The problem of mapping the error inibecasignals, which can become

numerous for fine granularities, is not addressed.

Psarakis and Apostolakis (2012) present a simparaach to exploit the benefits of
fine-grained redundancy. The goal of their workdsavoid the costly maintenance of
checkpoints to perform rollback procedures onceemwor is detected. The authors
propose to divide a design into smaller modulesh s pipeline stages of a processor,
and to apply a concurrent error detection techniqueach of them individually. Thus,
they are able to detect the presence of an erfordé@ has propagated to structures
such as the register file or the main memory andhdicate in which stage the error
occurred. Furthermore, each module is implementedn individual reconfigurable
partition that includes spare resources to mitigfaeeeffects of permanent faults. And as
each module is smaller than the total design, tuey able to perform a localized
scrubbing to reduce the MTTR. When scrubbing isbismdo restore the module’s
functionality, it is deemed as permanently faulty(PSARAKIS and APOSTOLAKIS,
2012), however, they assume the existence of additipre-compiled configurations to
activate the spare resources and to avoid usingainéy ones within the module,
similarly to (LACH, MANGIONE-SMITH and POTKONJAK, 998).

In their case study, they apply DMR to three moslldé an OpenRISC processor,
namely instruction decode, execute and the mulaglyjumulate module. These
modules represent only over 20% of the design,tbetobserved area overhead is
40.2%, showing that the proposed approach indeesesasignificant costs due to the
addition of reconfigurable partitions and reconfajion controllers. The authors do not
present any study regarding fault coverage. Alse,mhemory access and the writeback
stages are not addressed in the paper. They arengcal to the proposed technique,
since they have write access to the main memortlamdegister file, respectively, and
faults on these modules can lead to the introdaaifcerrors in these storage structures.

A set of modifications on the carry chain-based ganson technique presented in
this thesis is proposed in (SONZA REORDA, STERPC&E ULLAH, 2013). The
presented mechanism performs fine-grained comparigth carry propagation chains
as well, and attempts to improve multiple-bit erdetection properties. Since it is
applicable only to LUTs that have up to 5 inpultgsie with this property are separated
from the rest and receive the technique, creatngltiple error regions”. All error flags
associated with one slice column in a frame row.,(RO slices or 80 LUTs in height)
are joined into a single bit that indicates thespreee of an error on that column. These
multiple error detection bits are then used to tecthe error and perform local
correction. Experimental results showed promisiagng on repair time, which was
reduced from 20.65 ms for global scrubbing to thdeo of tens to hundreds of
microseconds for a set of benchmark circuits.

3.2 Techniques based on bitstream manipulation

As discussed previously, FPGAs contain a configumatnemory that stores the
circuit functionality and that is the basis of thigexibility. Especially for SRAM-based
devices, this memory can be manipulated duringimentin order to provide fault
tolerance. In this section, we briefly discuss thain approaches that heavily exploit

40

this feature. Features found in newer devices, aglpartial reconfiguration, have
further expanded the possibilities offered by stedhniques.

Perhaps the most basic and intuitive approach és dbnfiguration readback
(CARMICHAEL, CAFFREY and SALAZAR, 2000), which coisss in periodically
reading the configuration and comparing it to adgal copy, which may be stored in a
more reliable, off-chip medium. Doing so providks ability to detect any fault striking
the bitstream. Note, however, that such approaciotisvithout costs. First, there is the
energy consumed by the accesses performed to bethorres (configuration and
golden copy). There is also the financial costhef golden copy itself. However, since
the device needs to be programmed after powerhensystem is likely to already
possess some sort of non-volatile off-chip storafjkernatively, data redundancy
techniqgues may be employed, such as cyclic redwydaheck (CRC) or checksum.
Such approaches allow the detection of most ewdlsvery high probability. They do
not point, however, the error location. In (GOKHALGRAHAM, JOHNSON.et al,
2004), a per-frame CRC calculation is performedictvtallows locating the fault. The
faulty frame can then be solely repaired.

Error repair is usually performed througbrubbing(CARMICHAEL, CAFFREY
and SALAZAR, 2000). In its most basic form, insteddeading the bitstream in search
of errors, it consists in directly overwriting tleerrent configuration with its desired
contents, regardless of the existence of errorer&may also be removed by means of
error correcting codes (ECCs). For Virtex 5 devjides example, each configuration
frame, which comprises 1,312 bits, also containsdé@icated ECC bits that allow
correcting a single bit flip or detecting doublépdl in that frame (XILINX, INC.,
2011a). The device also includes a hardwired compiothat simplifies the verification
of the correctness of the ECC embedded in eachefr&rror correction and removal
procedures must be performed by user-implementedity. ECC-based approaches
are interesting as they avoid the need to congtactiess an off-chip memory to scrub
the device.

Readback and scrubbing, even when based on ECG,cdéer from long times to
detect (or remove) an error, which significantlgrease the achievable MTTR. The
time required is associated with how long it takedraverse the entire configuration
memory, which determines the worst case detectorgction time. This time tends to
get longer as devices get more complex and, coesdgu with larger configuration
memories. For the largest Virtex 7 device, for anse, it can be as high as 125 ms.
Figure 3.5 shows the total scrub time for the largkevice of each Xilinx family. Note
that there is a sharp increase in the latest fagjilsince no improvement in the
configuration speed is observed since the Virtebamily, when the 100 MHz 32-bit
SelectMAP programming interface was first introdi¢XILINX, INC., 2009a). This
development also explains the significant reductiom the scrubbing time observed in
comparison to Virtex Il Pro devices, which relied @50 MHz 8-bit interface (XILINX,
INC., 2011b). Spartan devices show a similar tremthere the increase in the
configuration speed is unable to compensate theased configuration size.

The average time for the readback or scrubbing am@sh to reach the fault in the
configuration is half of the worst case, assumingngorm fault distribution over
configuration frames. Even the average time mayooelong for some applications,
such as critical control loops. Furthermore, threwst may not recover its functionality
even after fault removal (PRATT, CAFFREY, GRAHAMLt al, 2006). However, as
such approaches are among the few able to efféctreenove the fault from the

41

140

120

100

[e]
o

D
o

N b
o O

Full device scrub time (ms)

Virtex | Virtex E | Virtex-Il | Virtex-Il | Virtex-4 | Virtex-5 | Virtex-6 | Virtex-7 |Spartan-8Spartan-3Spartan-
(250nm)| (180nm)| (150nm)| Pro (90nm) | (65nm) | (40nm) | (28nm) | E/A (90nm) | (45nm)
(130nm) (90nm)

o

528 400 3200 528 640

Maximum interface bitrate (Mbps)

Figure3.5: Total scrub time for the largest Xilinx FPGA of édamily

bitstream, they are frequently used combined vatlundancy approaches applied at the
user circuit level, as in (FULLER, CAFFREY, SALAZAFRet al, 2000), (LIMA,
CARRO and REIS, 2003) and (SHE and SAMUDRALA, 2009)

Aside from the basic approaches of readback, sorgbénd those based on data
redundancy codes, there are more complex schenagsp#riodically modify the
bitstream in order to find permanent errors onrgmnfigurable fabric. As a common
drawback, these approaches usually present vehydatgction latencies, leading to a
higher MTTR. They are, however, very efficient aggwhes to bypass the faulty
components and eliminate them from the system,ngwoitant feature to avoid the
accumulation of permanent faults in modular redmeglaschemes, for example.

In (SHNIDMAN, MANGIONE-SMITH and POTKONJAK, 1997)he authors
present a technique to perform on-line testindhefresources in the FPGA by means of
partial reconfiguration. The proposed approach istsisn leaving one of the columns
of the FPGA offline, while its functionality is tesl. The test is performed by
exhaustively stimulating all the resources of tb&imn in parallel. The correctness of
the LUTSs’ outputs is assessed by comparing thenh wigdicated configuration
memories that are included in the devices spedifidar this purpose. Similarly,
additional flip-flops are included to work as repls of the original ones. After the test
of that column is complete, the following one isté#l, iteratively scanning the entire
device. In order for the system to remain functipraafree column in the device
computes the function of the column being tested.

Another approach that exploits partial reconfigiorato mitigate permanent faults is
presented in (LACH, MANGIONE-SMITH and POTKONJAK948). In this work,
however, the authors focus on how to divide thegiesto clusters and to allocate
spare resource to each of them. Alternative cordiions for each cluster are pre-
compiled, each using a different subset of the labk resources and all of them
maintaining the same interface with regard to tipuis and outputs of the cluster. This
allows replacing the configuration of a clusterarder to avoid the use of a faulty
resource without modifying the entire design, asititerfaces between each cluster are
maintained. The technique had a very small impacirea (worst case 9.8%) and a
reasonable impact on delay (from 14% to 45%). Tdlealility results, estiamted
through probability equations, show that the tegbeiis able to increase the reliability

42

considerably for different benchmark circuits. Témguations, however, only consider
faults in the CLBs, and not in the routing resoarcéhis is likely to pose a main
concern for the technique, as faults affectingititerfaces of the CLBs would make it
impossible to use the pre-compiled configuratidagithermore, the task of detecting
the presence and the location of a fault remainsopen question in (LACH,
MANGIONE-SMITH and POTKONJAK, 1998). The introduati of error detection
with the granularity demanded by the techniquakisly to significantly increase the
presented area overhead.

An approach that combines both scan-based tes8RNIDMAN, MANGIONE-
SMITH and POTKONJAK, 1997) and fault mitigation digh spare resources (LACH,
MANGIONE-SMITH and POTKONJAK, 1998) is the rovinglstest areas (STARS)
technique, presented in (ABRAMOVICI, STROUD, HAMIDN, et al, 1999) and
(EMMERT, STROUD and ABRAMOVICI, 2007). The rovingT8Rs technique also
provides other benefits, such as being able toctdeults affecting the routing
resources. Furthermore, it provides a very predadt diagnosis, including the
identification of the failure mode of a resourcéus, a faulty resource may still be used
if a function that is not affected by that parteufault can be mapped to it. It relies on
vertical (V-STAR) and horizontal (H-STAR) areasitentify faults in wires of both
directions. Figure 3.6 shows the proposed approddte system state must be
transferred from a column (row) whenever it is dbtwbe tested, in order for the
system to remain functional. Thus, the system foncimust be stopped for this
operation to take place. Moreover, routing wiressintross the STARs to allow for
communication between components on opposite sidgsosing delay overheads.
Finally, the times to transfer configuration andtstwhile roving the STARs lead to
repair latencies in the order of seconds (estimaidd34s for an ORCA 2C15A, a very
small device by current standards). These timedileely to be even greater for newer
devices, as the size of configurations grew comaldg more than the operating
frequency of the programming interfaces.

_V-STAR
Z----
H-STAR
A N 1S ¢
e 1N
~ > Q'
~ - \
N _‘»Working
—-zzP
&-=F-1 & Areas

Figure 3.6: The roving STARSs approach with horizabiH-STAR) and vertical
(V-STAR) testing areas (EMMERT, STROUD and ABRAM@3I) 2007)

As discussed previously, one of the alternativesreduce error detection and
correction times is to use detection techniqued iihe granularities. In order to
effectively exploit the potential benefits, howevesome challenges need to be
addressed not only from a redundancy point of vibut, also from a configuration
perspective. In (STRAKA, KASTIL and KOTASEK, 201f)e authors focus providing
a generic controller to perform local reconfigunatiof modules. This module receives
one error signaling bit from each of the reconfafle partitions, as depicted in Figure
3.7, and upon detection accesses a table contaimenigitial and final addresses of the
faulty module, which is then scrubbed to remové eafors. If the error persists after
reconfiguration, the fault is considered perman&htis, the proposed controller allows

43

exploring the fault indication bits provided by banodule to reduce the MTTR and the
probability of timing failures. The proposed approaloes not specify a granularity of
operation, but is intrinsically limited to the fistegrain available for dynamically

reconfigurable partitions. Furthermore, it requites use of such partitions to identify
beforehand the configuration frame addresses adedciwith each module, which

imposes area and delay costs. The presented resattern only frequency of operation
and area occupied, not evaluating the possiblesgairreliability or repair time.

out
FT architecture n)

PRM PRM
errors

Partial
arlla . ICAP
) T —— T Reconfiguration "=y
in s H
' Others Controller '
] -) unit 1 FPGA
: STATIC PART ¢ I_-l- ;

v out (Bitstreams storage)

Figure 3.7: System with partial reconfiguration ttoller and multiple error
signals (STRAKA, KASTIL and KOTASEK, 2010)

FT architecture 2

— _) FT architecture 1

3.3 Contributions of this thesis

Fine-grained redundancy has been explored in pusweorks with many different
goals. In (KASTENSMIDT, STERPONE, CARRGet al, 2005), different TMR
granularities are evaluated in order to minimize phobability of a single fault affecting
multiple redundancy domains. In (NIKNAHAD, SANDERG BECKER, 2011), the
goal is to withstand very harsh environments, ekplp the fact that each individual
TMR domain can mask the presence of one error.r@tbeks make use of fine-grained
partial fault tolerance (PRATT, CAFFREY, GRAHAMgt al, 2006) (SHE and
SAMUDRALA, 2009) to reduce the costs of full redamdy, compromising fault
coverage to reduce area costs.

In this work, we make use of fine-grained redungawtth the main purpose of
reducing repair time. When triggered repair procesllare used, which is the case in
here and in related works such as (STRAKA, KASTIhdaKOTASEK, 2010),
(BOLCHINI, MIELE and SANDIONIGI, 2011), (PSARAKIS el APOSTOLAKIS,
2012) and (SONZA REORDA, STERPONE and ULLAH, 2018)o features of fine-
grained redundancy become patrticularly valuabl@éuced detection latency and precise
diagnosis. The intuitive property is that the finesdundancy grains have the greatest
potential to minimize the MTTR, since smaller maulhave reduced masking
probabilities and fewer associated configuratiots.bBut they also introduce the
greatest overheads, which stem from the need oitiaaa comparators or voters.
Works such as (NIKNAHAD, SANDER and BECKER, 201Xegent area costs that
surpass 6 times, while others try to avoid themhwatodifications in the underlying
fabric (KYRIAKOULAKOS and PNEVMATIKATOS, 2009). Weropose a very fine-
grained error detection mechanism that relies erc#iry propagation circuitry found in
current FPGAs to implement comparators. Since stedources are frequently
underused, as will be shown in the experimentsudsed in chapter 5, they are likely to
not conflict excessively with the remainder of tdhesign. Thus, a fine-grained

44

redundancy mechanism with manageable area costbeatevised for unmodified
commercial FPGAs. Due to its very fine granularitye technique is able to detect
errors in a reduced timeframe when compared toseoapproaches. Reducing this
error latency is important not only to minimize ®m downtime but to also to avoid the
accumulation of errors.

The fact that fine-grained diagnosis can be usegheidorm a localized repair
procedure is also explored in this work. In (LACMANGIONE-SMITH and
POTKONJAK, 1998), (STRAKA, KASTIL and KOTASEK, 2010 (BOLCHINI,
MIELE and SANDIONIGI, 2011) and (PSARAKIS and APOSIAKIS, 2012)
reconfigurable partitions are used to delimit theimum scrubbed area. Each partition
has an individual error detection mechanism, whildbws the use of partial scrubbing
on a reduced range of the configuration memory. &l the definition of partitions
has costs: they have a fixed interface with othedutes, which restrict placement and
routing choices. Moreover, fragmentation due to s@&su components within the
partition space can also lead to wasted resoufgash costs tend to become more
significant as smaller partitions are defined.hé tmost significant gains are desired,
therefore, very small partitions have to be usetipducing additional costs.

In (SONZA REORDA, STERPONE and ULLAH, 2013) a maelif version of the
carry chain-based comparison mechanism presentidsimork is used to detect errors
as well. The fine-grained diagnosis is also useattelerate repair, and differently from
the other mentioned works, the minimum scrubbedt usi independent from
reconfigurable partitions. The technique proposedhere also avoids the use of
reconfigurable partitions as minimum scrubbed ape with a different approach: we
exploit the fact that the scrubbing does not newé@gsstart at the first configuration
frame of a partition, and that starting it closer the actual error location can
significantly reduce repair time. As a result, gems can be defined by designers as
they see fit, following the recommended practic@sdesign modularization. Moreover,
when fine grains are used, the amount of erroratsgoan increase quickly, and their
mapping to error locations can be challenging, il discussed in chapter 6. We aim
at providing a scalable mechanism able to handieenaus error detection bits and to
extract useful information from them in a low cdast and reliable manner.

45

4 FAULT INJECTION FOR FPGAS

Fault injection is an important and frequently usedtans to evaluate the
dependability of systems. Specifically for FPGAsyeral challenges and opportunities
are found. In this chapter we first briefly discubge basic aspects of fault injection
techniques, such as the desired features and e dggproaches. Section 4.1 presents
this discussion. In section 4.2 we present theiquéarities found in FPGA-based
systems, as well as the main fault injection platf® available in the literature. The
fault injection platform developed in this workdstailed in section 4.3.

4.1 Fault injection Basics

Fault injection consists in artificially insertinigqults in a system or in a system
model in order to evaluate its response to fadlts particular model. Thus, in order to
do so, a fault injection platform typically requsréhe basic components shown in
Figure 4.1. First, an instance or model of thewtirbeing evaluated, often called circuit
or device under test (CUT or DUT, respectively)raquired. The input generator unit
applies input vectors that stimulate the operatibthe CUT. At some point during or
before the execution the fault injector disturbe thrcuit behavior according to the
specified fault model. The output vectors produbgdthe CUT must be evaluated,
either by making use ofgolden copyi.e., a copy of the CUT that is kept free of faul
or by some other means to determine whether theycarrect or not. This task is
carried out by a fault classification unit, whichtermines what the effect of the injected
fault on circuit behavior was, i.e., if it causedfumctional failure and/or if it was
detected by some sort of detection mechanism.

/' Experiment Control
iresults

Input Fault Fault
.| Generator injector classification:

fﬁb'll't"l """""""""" F }3{[,]1'"""""""6Ut'|£{dt' """""
vector vectors

010101101 000101010
100110120~ (CUT | == oo1110010

Figure 4.1: Basic components of a fault injectitetfprm

iExperiment

Fault injectors are frequently used to measure mtgdality metrics such as
reliability, availability and the fault coverage afgiven fault tolerance technique. As
the results of fault injection campaigns are usedjuide the following steps of a
project, the techniques and platforms used to parfeuch experiments play a critical

46

role in the overall project costs, time and qualitiilus, several assets are expected from
such systems, from which we highlight the following

* Accuracy a fault injector should be able to accurately mithe effects of the
faults that the system will be subject to after Idged. This includes the
definition of an appropriate fault model and thereot application of it to the
system instance or model being evaluated. The amoufaults applied also
plays an important role in the overall accuracy,itashould be statistically
significant and also able to identify unexpectedtiabehaviors that may occur
under particular circumstances.

* Injection rate as discussed, injecting a large amount of fasltsnportant to
achieve accurate results. Thus, being able totimemy faults in a short time
interval is crucial to provide results quickly tegigners, reducing the overall
design time. As the system must execute for some tfter each injection in
order to observe its response to the fault, achgekigh injection rates may be a
challenging task. The achievable injection rate clesely related to the
abstraction level adopted and to the complexitthefsystem being evaluated.

» Flexibility: designers frequently must inject faults followidgferent models,
such as permanent and transient faults that mée dtve system. Thus, a fault
injection platform which provides flexibility, aleing the modification of fault
models or other simulation parameters, such adgalinéand termination
conditions, allows a more comprehensive assessnoéntthe system’s
dependability.

e Controllability and reproducibility another important asset is that of being able
to inject faults at specific areas or componentsthaf systems, which have
already been identified as critical, for examplertRermore, it is frequently
important to reproduce an experiment, in order t@leate if a system
modification was able to improve the dependabilithius, being able to choose
exactly when, where and how to inject a fault isekevant feature of a fault
injection mechanism.

» Cost finally, but not less relevant, is the cost o flault injection experiments.
Those requiring expensive components, powerful Eititmm mainframes or
several instances of the system under test may&gractive for projects with a
lower budget.

Providing all of the above advantages at oncecsmaplex task, as most approaches
present trade-off situations. Faults may be incteo a system by several different
means, depending on the current stage of the prapeton the desired properties from
the experimental flow.

For the early stages of a project, when a hardwesttype is not yet available, a
simulation model may be used, such as done by tBEISTO tool (JENN, ARLAT,
RIMEN, et al, 1994). The MEFISTO tool simulates a VHDL modeltioé system to
perform the required fault injection experiments.the VHDL language allows the use
of different abstraction levels, it is possibleachieve higher accuracy with a reduced
injection rate when using a structural descriptionthe opposite when a behavioral
description is used. For the case study, a verylsin32-bit processor was used,
described in the two mentioned abstraction leveéi®wing a 3.2 times difference is
simulation time. The injections may be performethgscommands of the simulation
software that artificially modify the values of tisggnals and variables of the system.
Alternatively, saboteurcomponents or modified versions of system modutedied

47

mutants may be used to inject faults. Such approachesvathe use of very complex
fault models. As is typical of simulation-basedIfamjection techniques, the MEFISTO
tool presents high flexibility, controllability arméproducibility, as well as a low cost, as
no hardware prototype or special components arairext] On the other hand, the
achievable injection rate and accuracy are comnfticproperties, which are tuned by the
chosen abstraction level and the amount of fawltéd injected. Furthermore, even
when working on the lowest abstraction levels aldwy VHDL, complex electrical
phenomena, such as cross talking wires and ovéngeate not detectable. Simulation-
based fault injection platforms are presented weis other works, such as (CHA,
RUDNICK, PATEL, et al, 1996), (AIDEMARK, VINTER, FOLKESSONget al,
2001) and (KAMMLER, GUAN, ASCHEIDet al, 2009).

FPGAs have brought an interesting opportunity artfinjection campaigns, even
those aiming at ASIC designs. Since FPGAs areyeeailfigurable, they can be used to
emulate an ASIC design with a significantly inceshsspeed compared to that of
software simulators. The emulated circuit can theninstrumented with additional
hardware in order to perform fault injection acdongdto the specified fault model and
to assess the effects of each fault. Thus, FPGAalae to greatly enhance the injection
rates of simulation based approaches. Note, howévar such approaches are limited
by the size circuit that fits the available FPGAvide. Works such as (CIVERA,
MACCHIARULO, REBAUDENGO, et al, 2002), (DE ANDRES, RUIZ, GlLet al,
2008) and the FT-UNSHADES platform (AGUIRRE, TOMB8UOZ, et al, 2007)
are examples of fault injection platforms that B8 As to increase the injection rates.

Once designers are able to make use of a systdotype, several other approaches
become available, which allow overcoming some of ghortcomings found in
simulation-based techniques. In (HSUEH, TSAI an&RY 1997) the basic aspects of
such approaches are presented, classified intovaeedand software fault injection.
Hardware fault injection techniques are furtheridid into injection with contact and
injection without contact. Software-based approadre divided into compile-time and
runtime injection.

Hardware fault injection without contact typicaligakes use of electromagnetic
fields or beams of energetic particles to interfetith the device’s operation. Such
approaches are valuable to measure not only thecteféness of fault tolerance
techniques but also to characterize manufacturmggsses regarding their sensibility
to the chosen source of faults. Thus, they pregamthigh accuracy when the goal is to
evaluate the effects to such physical phenomenag @ important step to validate
systems that are to be used in harsh environmewnish as space or industrial
applications. However, the achievable injectior iatvery limited, usually being orders
of magnitude lower than that of simulation-base@raaches, for example. Also, the
only fault model to be addressed is that of thesehophysical source, limiting the
flexibility. The controllability and reproducibiltare also poor, as there is little choice
regarding which parts of the system will be affdctiinally, the costs associated with
such experiments may be high, due to the poteptedpensive equipments that are
required.

Hardware fault injection with contact consists e use of active probes or sockets
that intercept the communication between the diramid its board. Thus, only the
values available at the external pins are accessibt/or modifiable. As the actual
system is running, such techniques have a posgibilipresenting a higher accuracy
and injection rates than simulation-based apprcadda the other hand, the flexibility

48

is reduced, as only those faults applicable ae#tternal pins are injectable, limiting the
possible fault models and also jeopardizing theussry. The use of scan chains may
improve such properties. Since engineers contretipely when and where faults are
injected, such techniques present good controitglahd reproducibility. The cost of
these mechanisms may be high when very sensitoleeprand sockets are required.

Compile-time software fault injection consists irodifying the software prior to
execution, either at the source code or at theuwtable binary. The main advantage of
this approach is the reduced cost, especially alits simplicity that greatly reduces the
required engineering effort. They are useful to kteu permanent faults, as the
modifications embedded in the code linger througllog entire execution. On the other
hand, the approach presents a low flexibility, gdimited to those faults that can be
mimicked with static modifications in the code. @ersely, runtime software fault
injection is triggered by timers or exceptions @dble to model transient faults more
accurately than compile-time approaches. Commoihaih software fault injection
techniques are the limitations in the fault model,not all parts of the hardware are
reachable from the software’s perspective. Furtibeemthe accuracy may be threatened
by the intrusiveness of the injection and evaluatimechanisms. Also, they are only
applicable to processor-like systems, since thstemxce of software is required. Finally,
the controllability and reproducibility of both amaches are related to how much
influence those parts outside the designers’ corteve on the experiments. For
example, the scheduler of the operating systemhmeayily modify the results of a fault
injection campaign, especially for multi-threadggbléecations.

4.2 Fault injection for FPGA-based systems

The techniques discussed in section 4.1 were thoaghmeans to evaluate the
dependability of integrated circuits in generagardless of whether they are FPGAs or
not. Therefore, some of them are not directly ayayblie for many FPGA-based systems.
For example, since software techniques requireethstence of software in the first
place, many FPGA systems lie out of scope, as theyot necessarily contain a
processor.

Furthermore, simulation-based approaches requitdeth knowledge of how the
system works and, in order for them to achieve @ateuresults, the system should be
simulated in a low abstraction level. However, l@wvel schematics of FPGA devices
are rarely available to the end-users, as thisoisim the best interest of FPGA
manufacturers. This makes it nearly infeasiblevialigate the impact of SEUs affecting
the configuration memory by means of simulation.réwer, the complex scenarios of
configurations unexpected by the manufacturer (sisctwo independent wires being in
short circuit) would have to be modeled in a vewy hbstraction level, such as using an
electrical simulator, in order for their outcomeh® precisely determined. Working on
such low levels brings an enormous computationatldiy especially when an entire
complex system needs to be simulated. Thus, ie&ly mandatory to use an actual
FPGA device to perform fault injection with satisary accuracy, especially when the
impact of SEUs in the configuration memory is todwaluated. The use of hardware
fault injection techniques described in section Becomes, hence, not only very
attractive for FPGA devices but also one of the femaining alternatives.

4.2.1 Radiation experiments

Experiments with particle accelerators are an ingmarstep to evaluate the impact
of radiation on these devices. Some of the workesudised in chapter 3 conducted such

49

experiments (FULLER, CAFFREY, SALAZAR, et al, 2000), (LIMA,
CARMICHAEL, FABULA, et al, 2001) to measure the reliability of circuits ar t
validate results achieved with other fault injecte&pproaches. Such works measure the
dynamiccross-section, which is related to the suscefiyilio the effects of radiation on
the user design atop the fabric (FULLER, CAFFREXLAZAR, et al, 2000). It is an
important metric as it measures the effectivendsang fault tolerance technique that
may be in use and is valuable to estimate the MTBF.

Fuller, Caffrey, Salazaret al. (2000) also reporstatic cross-sections for the
evaluated Virtex FPGA. This measurement is perfarimg reading back the device’s
configuration memory and comparing it to the expdoatalue. It is, thus, not related to
the user circuit currently implemented, being amanmant metric to characterize the
manufacturing process and the cell design empleyiddregard to SEU susceptibility.
In (LESEA, DRIMER, FABULA, et al, 2005), a series of experiments called Rosetta
attempts to quantify the amount of faults to beeobsd in Xilinx FPGAs. Boards
consisting of a hundred devices are constantly raged and left at different places and
altitudes. Accelerated experiments were also peddr at the Los Alamos Neutron
Science Center (LANSCE). Quarterly updated rexflthe Rosetta experiment can be
found at (XILINX, INC., 2012c). Figure 4.2 showsetmeutron cross-sections per
configuration bit measured at LANSCE for differ&RGA families.

2.00E-14

1.00E14-] I I I I I I I [
0.00E+00 - T T T T T I T T I T T

Virtex Virtex E Virtex-Il Virtex-Il Virtex-4 Virtex-5 Virtex-6 Virtex-7 Spartan-Bpartan-BSpartané
(250nm) (180nm) (150nm) Pro (90nm) (65nm) (40nm) (28nm) E/A (90nm) (45nm)
(130nm) (90nm)

3.00E-14

Cross-section per bit (crf)

Figure 4.2: Static cross-section per configurabinas reported b@XILINX, INC.,
2012c)

As the manufacturing technology scales, so doegdpacitance of the transistors,
as well as the supply voltag&q This in turn reduces the critical charge requited
change a storage cell’s state, as was discusssédction 2.2.1. On the other hand, a
smaller transistor is less likely to be struck bgaaticle. Furthermore, advances in the
design of the storage cell may also improve itdieese against such particles. The
result of these opposing factors is the non-monoteariation of the cross-section per
bit observed across different technologies showkigare 4.2.

The cross-section per bit, however, is not the amflyrmation necessary to evaluate
the sensibility of a given device, as the amounbité grows significantly from one
generation to another. When multiplying the crosstien per bit by the amount of
configuration bits in the largest device of eaamifg, one gets a very different plot, as
can be seen in Figure 4.3. The coupled effect lafrger cross-section per bit and a
larger configuration size drove quickly the totabgs-section until Virtex Il Pro

50

devices, which were manufactured with a 130 nmgsscThen, Virtex 4 and Virtex 5
families were able to compensate the increase migrioration size, slightly reducing
the total cross-section. Until this point, a simii@nd is observed for the Spartan series,
as the Spartan 6 shows approximately the same datak-section as the Spartan 3.
However, Virtex 6 and Virtex 7 devices showed agragsive increase in the total
configuration size, while not significantly redugithe cross-section per bit. This results
in a much larger total cross-section for these favoilies, reinforcing the need for fault
tolerance techniques able to mitigate the effect®ofiguration errors.

3.00E-06

2.50E-06

2.00E-06

1.50E-06

1.00E-06

RN
0.00E+00 e WL : : : :
Virtex Virtex E Virtex-1l Virtex-1I Virtex-4 Virtex-5 Virtex-6 Virtex-7 Spartan-$partan-$partan-6

(250nm) (180nm) (150nm) Pro (90nm) (65nm) (40nm) (28nm) E/A (90nm) (45nm)
(130nm) (90nm)

Configuration cross-section (crf)

Figure 4.3: Static cross-section for the configoraof the largest device of each
family

4.2.2 Atrtificial bitstream fault injection

The fast prototyping provided by FPGAs is a valeabkset for evaluating the
dependability of FPGA systems. As the chip is Uguabailable at the early stages of
the project (unless a project is being developedafo unreleased device), designers
perform very accurate reliability estimations wihavaiting for the manufacture of the
chip at a foundry. The unlimited reconfigurabilppyovided by SRAM-based FPGAs
allows one to perform efficient fault injection cpaigns on the actual device, providing
timely and accurate results. As the configuratioenmary is programmable, one can
artificially flip one or more bits on its contemttificially emulating the effects of SEUs
that affect such memory.

Several platforms have been developed aiming donmeing fault injection on the
configuration memory of FPGA devices. The experiteenonducted in (LIMA,
CARMICHAEL, FABULA, et al, 2001) made use of a control panel and two FPGA
boards to inject bitflips in the configuration memoThe CUT is placed on one of the
FPGAs, while the other one, along with the conpanhel, controls the experiment and
communicates with a host PC. In (WIRTHLIN, JOHNSQROLLINS, et al, 2003) a
similar platform is presented, making use of tHf@&As. The first device contains the
CUT, while the second contains a golden copy offie third device is responsible for
applying the input vectors and checking the comess$ of the CUT outputs. The fault
rate was approximately 1Q® per fault.

The FLIPPER platform is presented in (ALDERIGHI, SNI, D'ANGELO, et al,
2007). It uses two FPGA boards. One contains theagement circuit, which flips
configuration bits and applies input vectors, whihe other contains the CUT. The
reported fault injection time was 3@ per fault. Both input vectors and golden outputs

51

are derived from simulation software and storethenon-board RAM before beginning
the injection campaign. A software application,mmg on a PC, allows configuring the
tests, choosing parameters such as clock rate,tfgnd (single or multiple bitflips) and
stop conditions.

The FT-UNSHADES-C platform used in (STERPONE, AGBIR TOMBS, et al,
2008), which is an extension of FT-UNSHADES (AGUIRRTOMBS, MUOZ,et al,
2007) to perform fault injection in the configuti bits, makes use of a similar
approach. A control FPGA provides the interfacereen a host PC and the system
FPGA, which holds both the CUT and a golden copput stimuli are also derived
from simulation hardware, as does the FLIPPER qiatf No results were presented
regarding the possible injection rates.

The fault injection platforms discussed so far make of multiple FPGAs and, in
some cases, of additional components, increasangdbt and complexity of the system.
Furthermore, due to the need of off-chip commurocaithe use of multiple FPGAs is
likely to also reduce the injection rate. A firgsgeem making use of a single FPGA was
presented in (BERNARDI, SONZA REORDA, STERPON¥EAal, 2004). It relies on a
host PC, however, to inject a fault in the confagion bitstream and to reprogram the
device, increasing the injection time to approxiehat6 s. Such long times make it
infeasible to use this system to perform exhaugaué injection campaigns on current
FPGAs, due to the increased configuration sizess Tdoncern is addressed in
(STERPONE and VIOLANTE, 2007), which presents atfpten that places all the
required components (CUT, input stimuli generatidault injection and fault
classification) in a single FPGA. In this platforthe host PC is only responsible for
receiving and displaying the experiment resultee €kperiment control is implemented
in software and executes on a hardwired PowerP€epsor that is available on some
Xilinx FPGAs. Fault injection is performed by wng a faulty configuration frame
through the internal configuration access port (BJAa component that allows
accessing the configuration memory from a usentiio the same FPGA. The time
strictly required to inject a single bitflip witthis platform is 10.4s. A more detailed
classification framework was presented in (BOLCHISASTRO and MIELE, 2009),
using the injector described in (STERPONE and VIOOA, 2007). It allows the
individual evaluation of the effects of each fawich is a valuable resource when one
desires to improve the reliability of a design.

4.3 Fault injection platform

As was discussed in chapters 1 and 4, fault igeds among the most traditional
means to measure the dependability of systemshémnbre, FPGAs present a very
particular fault model that requires dedicated expental platforms to accurately
measure metrics such as fault coverage and failuresme. The most traditional
method is to flip configuration bits of an actu&®A device to observe the effects on
the user circuit running on the reconfigurable i@b8everal approaches available in the
literature were discussed in section 4.2.2, andhia chapter we present the fault
injection platform developed in this work.

The main advantages of the proposed platform are:

* Low cost and low complexity, since it requires oalgingle FPGA and a host
computer to carry out its functions;

* High injection rate, as no external memories ortrdiers are required to inject
faults and to apply stimuli to the CUT;

52

» Applicability to other devices, as the system isnposed only of LUTSs, flip-
flops and a small memory, requiring no complex hared component, with the
exception of an internal configuration access (QAP);

* Modularity and extensibility, which allows adaptitige system to different types
of circuits and different fault models.

4.3.1 Platform components

As for any fault injection platform, the basic coomgnts shown in Figure 4.1 must
be present in order to inject faults and to evalubeir effects on the operation of the
CUT. The components that form the proposed platfarer shown in Figure 4.4 and
described in the following subsections. The functaf each component may vary
depending on the specific needs of each experimemipaign. Thus, the components
described herein can be modified to satisfy difieneeeds, and some of the possible
variations are described in the following subsexias well.

Furthermore, some adaptations are required to mmgade the platform in FPGAs
from different manufacturers or different familiesthe same manufacturer, especially
regarding the injector block, which must handlefmguration addressing and interface
with the reconfiguration port available in the dmziThe platform herein described was
implemented and tested on Virtex 5 XC5VLX110T FPGhd some of the details
provided focus on this device family. The proposggproach, however, remains
applicable to any device that allows the user ditcuaccess the configuration memory.

4.3.1.1 Injector

The injector unit is responsible for actually mgtfy the current bitstream
according to the specified fault model. For thaipese, it must first choose the specific
bit(s) of the configuration to be flipped. A bit imivocally identified by its frame
address and its position within the frame. As dised in section 2.1, a frame is the
smallest addressable unit of the configuration nrgnféor example, a Virtex 5 frame is
composed of 41 words of 32 bits, for a total ofl2, Bits.

The frame address generation unit, thus, is redplenfor choosing a valid frame
address for injection. This choice may be pseuddaom or sequential, if exhaustive
fault injection is to be performed. Frame addresbkesvever, are not organized in a
straightforward continuous fashion. Each frame asklis divided into fields that may

AUT([cuT
i I/Q Vectors
/CUT I/O Ctrl Injector F. Addr
Input
Bit flip Gen
= —>()
rame |Framg
Memory data ICAP
~——
4 . '
Logs | Report Unit System Control
to PC| L
-

Figure 4.4: Fault injection base architecture

53

vary from one device family to the other. Virtexdvices divide their frame addresses
into block type (3 bits), top/bottom (1 bit), rowdress (5 bits), major address (8 bits)
and minor address (7 bits), for a total of 24 bitore details regarding frame
addressing and organization can be found at (XILINNC., 2011a).

The choice of an appropriate frame address musttake into account that the fault
injection platform is on the same FPGA and it matdisturb its own operation. Thus,
the concept of area under test (AUT) is definedictvhrestricts which configuration
frames are eligible to suffer fault injection. Teiecuit under test must be placed within
the AUT and the experiment control circuitry outipto ensure that it will maintain its
own integrity. This is achieved by means of placetreonstraints. Using the address
fields to aid in this process can greatly simptistermining the frames associated with
the AUT. In this work, we use an AUT limited withthe top frame row, comprising
2,000 slices (8,000 LUTs and 8,000 flip-flops) amdh approximately 2.6 million
configuration bits. If larger circuits are to bested, then larger AUTs can be defined.
Doing so, however, also extends the experiment time

Once the injector has defined a target frame apdtbnust read the desired frame
from the configuration. The read frame is storethmframe memory. Then, the chosen
bit is flipped and the frame is written back, themrupting the bitstream. The read
frame remains in the frame memory for the followfaglt removal, once requested by
the system control. Bits are flipped back to tleiginal values and the correct frame
contents are restored.

Interacting with ICAP requires the following ofspecific protocol, that includes
issuing read and write commands. Moreover, thelteesii each read command are
preceded by a dummy frame. Likewise, after commiesi write command, one dummy
frame must be pushed in the ICAP data port. Théscokthese commands and the
dummy frames will be quantified and taken into asdovhen estimating the reachable
injection rate, in section 4.3.3. It is also import to keep in mind that configuration
frames have addressable non-existing bits. In otherds, there are, scattered
throughout the memory, addressable bits that havaatual associated memory cell
(XILINX, INC., 2011a). Such bits should not be cmesed by the injection platform.
Thus, each injection is followed by a frame readctmfirm that the injection was
successful and that only real configuration ceils ve taken into account.

4.3.1.2 CUT I/O Controller

The CUT I/O Controller is responsible for interiagi with the CUT in order to
stimulate its operation and evaluate the effecteamh injected fault. Thus, it must be
able to generate input stimuli and to compare thaiit outputs to the expected values.
This can be achieved by different means. The ctetrshown in Figure 4.4 assumes
that inputs are generated and applied both to th€ &nhd to a golden copy of it, which
allows evaluating the correctness of outputs aheacle. If the CUT is a softcore
processor, however, the developer may be interestéae final state of the memory,
instead of a cycle per cycle comparison. The systeay perform an initial fault-free
run of the software and store the final (goldenjesbof the memory, which is then used
as a reference for the subsequent faulty executibms system requires, in this case,
three memories: one stores the initial memory state stores the golden final state,
and one is used as work memory, i.e., the memanytile CUT uses during execution.

Several different options exist regarding the ingtinuli generation as well. They
may be pseudo-random, generated by a linear fekdblaift register (LFSR), for

54

example. Alternatively, the developer may be irgeé in a specific set of input vectors
that represent the typical use case of that haelwarich may be stored in a memory.

4.3.1.3 Report Unit

The report unit is responsible for transmitting éx@erimental results to the host PC
for analysis. The specific information transmittedy differ depending on the purpose
of the experiment and the nature of the CUT. fassesses some sort of error detection
mechanism, for example, the developer may be istiedein determining which faults
were detected and which were not. There may alsatbations in which the developer
is interested in the specific output values the CyéEherated when faulty. For such
situations, the transmission of results may becanserious bottleneck of the system.
For straightforward error detection evaluationsyéweer, low speed interfaces, such as a
serial port, are sufficient.

4.3.1.4 System Control

The system control unit coordinates the operatiballoother modules in order to
realize a complete fault injection campaign. Irtstdy requesting a fault injection from
the SEU injector unit (1). Once the fault is inggttit activates the I/O controller so that
it starts applying input vectors (2). For a preesfied number of cycles it monitors the
correctness of outputs and any error detectionasigrat may be triggered (3). The
system control then halts the I/O controller arglests the fault removal (4). While the
fault is removed, the report unit transmits thecouate of that particular fault (5). Steps
(1) through (5) are repeated until the desired arhad faults is injected. Then, the
report unit transmits any final results that webtatned during the experiment (6) and
finishes the execution.

4.3.2 Area costs

In order to leave as many resources as possibléalleafor the CUT, allowing
larger and more complex circuits, it is importamtnhaintain the entire SEU injection
and control system as small as possible. Tablslofvs the amount of resources used
by each component and by the entire system asasdhe proportional occupation of
the device, considering a Virtex 5 XC5VLX110T.

Table 4.1: Required resources and device occuphdranfault injection platform

Required resources Device Occupation
Module LUTs | FFs BRAM| LUTs | FFs BRAM
SEU Injector 431 149 1| 0.62% 0.22% 0.68%
CUT /O Controller 14 137 0| 0.02%| 0.20%| 0.00%
Report Unit 3@ 15 0| 0.04% 0.02% 0.00%
System Control 647 384 0| 0.94% 0.56% 0.00%
Total 1122 685 1| 1.62% 0.99% 0.68%

The exact area occupation depends on the spe@f&on of the platform being
used. For example, if the input vectors are statdBRAMS, then the occupation of this
type of component will be increased. If the systeses a LFSR to generate pseudo-
random inputs, then additional flip-flops and LUW8I be required instead. The area
results provided herein refer to a platform injegtfaults in a 32-bit ALU, which has 69
input bits (two 32-bit operands and 5-bit operatimae) and 33 output bits (the result
value and an overflow flag). The injection platfosystem requires 1122 LUTs and 685
flip-flops, occupying 1.62% and 0.99% of the tadalice respectively, which contains

55

69,120 of each. The BRAM occupied by the SEU Imgjecinit stores the read frames

before they are written back to the configuratidote that, even though 98.38% of the
LUTs are still available, not all of them are usably the CUT. Some extra areas are
required to ensure the isolation of the CUT andhef control system. Still, the vast

majority of the FPGA may be used to accommodate€Ctie.

4.3.3 Injection Rate

Since current FPGAs allow multiple clock domainise tcomponents shown in
Figure 4.4 do not need to run at the same frequdndfis work, the SEU injector and
the ICAP run at 50 MHz to ensure that there is inung violation, as is done in
(CHAPMAN, 2010). If required, however, the ICAP dag& used with frequencies up to
100 MHz, further accelerating the process.

As described in section 4.3.1.1, each fault isctaié by reading the frame, applying
the required modification and then writing the featmack. The frame is then read back
to verify that the injection was successful. Fotleeead command, one invalid dummy
frame must also be retrieved, due to the intemalementation of the ICAP. Similarly,
for each write command, one dummy frame must beried in the data input port of
the ICAP. As each frame contains 41 words, eacl orawrite access requires 82
cycles to be completed. Furthermore, there is tt®ra of sending the read or write
instructions, which require several smaller comnsadiore details about the write and
read sequences can be found at (XILINX, INC., 201Thus, the total time to read or
write a frame is the sum of the time required todsthe command, to read or write a
dummy frame and to read or write the actual data.tfe implementation done in this
work, the total times are 108 cycles to read a &and 107 cycles to write a frame.
Hence, the total time strictly required to injedialt is 215 cycles (one frame read and
one frame write). When considering also the tingrined to confirm the injection (one
read operation) and to remove the fault (one vageration), 215 additional cycles are
required. Thus, the strict injection time is 43@leg, or 8.6 us, considering the 50 MHz
clock frequency.

This injection rate allows, for example, exhaudtivénjecting faults in an
intermediate-sized FPGA, such as the Virtex 5 XCEBY10T used in this work (with
approximately 24 Mbits of configuration), in les&h 4 minutes. Further optimizations
are possible, especially when performing sequefdidt injection, since in such cases
the following injected fault is likely to be in theame frame of the previous one.
However, the injection latency is so short that tibi@l campaign time is likely to be
dominated by the stimulation of the CUT or the srarssion of results. Therefore,
further reducing injection time will have little pact on the final experiment for most
cases. For example, assuming the CUT will run @,000 cycles at 50 MHz for each
fault, injection time represents less than 0.5%hef total experiment time. The total
time, in this case, is approximately 1 hour andndf@utes for the AUT described in
section 4.3.1.1 (2,000 slices on the top frame abthe device).

56

57

5 FINE-GRAINED ERROR DETECTION

In this chapter, we present the developed finengihierror detection mechanism.
The basic approach is described in section 5.lirasdction 5.2 the experimental setup
and design flow used to evaluate the proposed iggbrare detailed. Experimental
results including area, delay, error detection detection acceleration are presented
and discussed in section 5.3. The radiation exparismconducted are described and
discussed in section 5.4.

5.1 Fine-grained detection with carry propagation chairs

When building an adder or a subtracter in a LUTeddSPGA, emerges the problem
of calculating the most significant bits of the puit As they depend on all the least
significant bits, the amount of LUTs required tongmte each one increases
significantly. For this reason, FPGA manufacturexdude, along with each LUT, a
small circuit that comprises basically a multiplead an XOR gate to compute both
the carry out and the sum bits. Even though thisuitican be used to compute other
functions (XILINX, INC., 2010), synthesis tools edy use them, unless an adder is
explicitly declared.

Figure 5.1shows a simplified view of a carry chain circuidahe LUTs coupled to
it, based on a slice of a Virtex 5 device (XILINKC., 2010), shown in Figure 2.2. A
Virtex 5 slice comprises 4 LUTs, 4 flip-flops, thearry chain circuit and some
multiplexers for internal routing. The labels irg&ie 5.lindicate how one may use the
carry circuit to compare two pairs of duplicated TdJ At the first stage (the
bottommost one), the multiplexer inputs are setaiostant values ‘1’ and ‘0’, forcing it
to propagate the output of LUT X, to the next stage. The first XOR gate has onatinp
set to ‘1’ and the other t&. It behaves, thereby, like an inverter. Through ititernal
routing of the slice, the output of the first mpléxer is directly connected to the inputs
of the second stage’s multiplexer and XOR gateodigh the external routing, i.e., the
global routing wires of the FPGA, one may set ttieepinput of the second multiplexer

to X, as shown by the dashed arrow Figure 5.1.

The two inputs of the multiplexer in the secondystare set tX andX, for when
the selection signal equals ‘1’ or ‘0’, respectiveAs the selection signal is the output
of LUT B, Y, this is equivalent to calculating the XNOR fuoctiof X andY. The inputs
of the XOR gate in the second stage are also ¢qubé outputs of the two first LUTSs.
The carry circuit is computing, hence, both the XX@nd XOR functions oX andY,
and these values can be connected in a similar enaonhe third carry stage and so on,
realizing the computation of the XOR and XNOR fumas of the entire slice. One can
configure the top two LUTs in the slice to compthe same functions of the bottom
two. Thus, under normal circumstances, the outpuhe XOR gate at stage 4 will
always be ‘0’. And if any LUT diverges from its cect value, the error signal will be

58

1 C,. (error
St 4§ LUT]’/%h—m;g_ro)r
age) !
¢§@ D ﬁ2 P
FESTTV At S
Stage 3? c X =2 .
e " | p 'Slice
*%‘Lu‘f“‘y 01" p, |
Stage 2% B X %
e X X
AD_ N =~ - _
o LUT T X
Stage 1D_ A A .
\:/D— DCIH

Figure 5.1: Carry chain circuit applied to flne-lgﬁsd comparison

raised. Thereby, a slice-wise error detection signanplemented completely avoiding
the need to use LUTSs to implement comparators.

As the carry out bit at the top of the slice, shawifrigure 5.1, is connected directly
to the carry in of the next slice in the same FR®AIMn, the amount of LUTs that can
be compared this manner, by a single comparatbmited only by the amount of rows
in the device. The latency of such circuit, howeveould be too large for the
application at hand. Thus, several smaller cheakansbe stacked in a same column to
keep delay penalties to a minimum. This actuallgved one to find the best trade-off
for each application, regarding error detectionngtarity and delay penalty. The
example in Figure 5.Jassumes that each slice will produce an individesbr
indication signal at the output of the topmost X@d&e. Also, as the last carry out of a
checking group is actually the inverted error sigiawill always be ‘1’, unless a fault
was already detected. This allows the stackinglatrarily long comparators in a same
column even without respecting slice boundarigs;esthe only requirement is that the
bottom carry in is equal to ‘1.

In order to minimize undetectable errors, it isctal to maintain an appropriate
routing between modules. Figure 5.2(a) shows anoagp in which one of the modules
drives both replicas of the following logic staddwere is a potentially critical routing
segment created in between the two stages, showa dgshed line. Faults on that
segment may not be detecteddgysince it is past the point in which the compar&o
connected, nor bg, since whichever effect the fault has on the wiik be observed
by both LUTsl; andly’, leading to incorrect results on both. The schesesl in Figure
5.2(b) removes that segment by connectinp |1 andly’ to I;’. Thus, unless a single
fault corrupts both nets, which can be minimizedibing reliability-aware routing as in
(STERPONE and VIOLANTE, 2006), faults affecting oofethem will be detected by
eitherey or ;. Similar situations occur to Pls and POs. The ¢harg of Pls should be
done as soon as possible, as shown in Figure 5.y is particularly important for

(a) (b)
Figure 5.2: Incorrect (a) and correct (b) routing-G-DMR. Dashed lines denote
critical routing paths

59

fine-grained approaches, because an unaware ralgjogthm could tend to split these

nets near the modules, as in Figure 5.2(a), duthdocloseness of the redundant
modules. In this work we use duplicated Pls to elate these critical segments.

Alternatively, a modified routing algorithm couldrte them to split as soon as possible
to minimize undetectable faults. Reducing the IeraftPO routing is also an alternative

to reduce the length of critical routing. Moreovef)s can be duplicated as well, if the
module is followed by another duplicated circuit.

There are some limitations to the applicability thfe proposed comparison
mechanism. If the carry chain is already occupeegdrform another function, such as
addition, then it naturally cannot be used for carmgon. Furthermore, the extra slice
inputs that are required to route the partial camspa signals (shown with dashed
arrows in Figure 5.1) must be free. When the ssish&ool allocates them to other
resources, such as the multiplexers that are wsedplement arbitrary 7-input and 8-
input functions (MUXF7 and MUXF8, respectively), eth regular LUT-based
comparators must be instantiated.

Once all comparators are defined, one is left witmerous error detection signals.
If these signals are to be used to trigger a lscalbbing procedure, then they must be
combined into a single bit. This is done by compgitihe OR function over all signals.
We refer to this operation @&ror aggregation In all results presented in this chapter,
the existence of the error aggregation circuiikeh into account.

When instantiating redundancy checkers, it is ala@ys important to also take into
account the reliability of the checker itself. Tlhise of redundant checkers is a
traditional approach to assert the detection oftdaaffecting the checking circuit
(KUNDU and REDDY, 1990). Specifically for FPGAs,afsingle checking bit is used,
errors affecting the bitstream portion associatétl the comparator may set its output
to ‘0’ (assuming ‘1’ indicates an error). Such esrmay stay dormant for a long period,
affecting the overall reliability. In order to adothis issue, redundant checkers may be
used.Figure 5.3shows how they are implemented in this work. Ineortb avoid the
excessive area overheads of fine-grained LUT-basedparators, we implement a
redundant checker that operates only on the prinoatputs (POs) of the circuit,
avoiding the propagation of the error to other meslun the system. The use of LUT-
based comparators for POs is also useful as Wwalleducing the length of the critical
PO routing segments shown in Figure 5.2 by plathegn close the end of the net (an

IOB, for example).
OLUTs
@cCarry chain eo
—— —

CMP

} @ CMP @ CMP
- @;/ ||@;/ POs

Figure 5.3: Redundant heterogeneous comparators

5.2 Experimental setup

Figure 5.4shows the design flow used. It starts with an utkd¥aed description of
the user circuit in a standard hardware descrigaaguage, which is synthesized using

60

Xilinx Synthesis Technology (XST). The post-syniBesetlist is converted from its
native format into a structural VHDL descriptionings Xilinx netgen(XILINX, INC.,
2011c). At this point, the circuit is already delsed using the basic components found
in the FPGA fabric, such as LUTSs, flip-flops, cadtyains and multiplexers.

A4 -
HDL | XST + = Synth. -» DMR mp Xilinx N
Design " [netge Circuit Insertion Design Flow Performance
fauT‘ Xilinx Error .
Injector Flow |£. 7 /" detection

Figure 5.4: Experimental design flow

A redundancy insertion tool was developed in C++atdomatically apply the
proposed technique. It parses the post-synthestistn@and builds an internal
representation of the circuit. Then, it duplicaédiscomponents and instantiates carry
chain comparators that cover one slice for thos@d that have available the required
resources, as shown in Figure 5.1. All internahalg are duplicated as well, in order to
maintain the routing redundancy shown in Figure %@ those LUTs to which the
technique is not applicable, regular LUT-based carajprs are inserted. The error
aggregation circuit is also introduced by the tabkequested by the user. The tool
generates a structural VHDL description of the kagdl circuit, also using the, which
goes through Xilinx standard flow to determine axad delay costs.

The hardened circuit is then subject to fault iigtg using the platform described
in section 4.3. Exhaustive fault injection is useel, every configuration bit associated
with the CUT s flipped (2,628,288 bits). The AUBad is that described in section
4.3.1.1 (2,000 slices on the top frame row). Cicuieceive pseudo-random inputs,
which are applied to a golden copy of the circigtveell. For each injected fault,
100,000 input vectors are applied. And for eachiapprector, the correctness of the
outputs is verified, along with the state of theoeidetection bits. Each vector can be
classified into one of four categories (shown herascending severity order):

1. No eventthe outputs are correct and the error detectitsndbe low. This occurs
frequently, since not all configuration bits arelealto corrupt the circuit
operation. Furthermore, not all input vectors drke @ stimulate an error, even
when it indeed affected the circuit.

2. Detected onlythe outputs are correct but an error detectionvbs raised. This
happens mainly for one of three reasons: the sexgrabpy of the circuit was
struck by the fault, i.e., the one not driving P@& checking circuit was struck;
the primary copy was hit and the error was detebiedn internal comparator,
but it did not yet propagate to a PO, i.e., it wassked by the circuit logic.

3. Detected errorthe outputs are incorrect and the error was tededhis is the
straightforward situation in which the error proptegl to a primary output and
was detected by the comparators.

4. Undetected errarthe outputs are incorrect but the error detedbibs remained
low. This is by far the most severe case, whichpbap mainly when a PO is
affected past the point in which it is comparedtsocopy. It may also happen
due to single faults that affect multiple nets othoredundant circuits, (LIMA,
CARMICHAEL, FABULA, et al, 2001).

61

Each injected fault is classified into the highesterity category it presented among
all applied input vectors, as is done in (BOLCHINDASTRO and MIELE, 2009).
Figure 5.5shows some of the most likely locations of fauhliseiach category, in a
simple coarse-grained DMR circuit for the sakelafity.

Secondar
Modules
Figure 5.5: Locations of faults of each category

The platform monitors not only the specific outcoafesach fault (i.e., if it caused
errors in the circuit POs and/or if it was detegtedt also the amount of cycles it takes
for error detection to be triggered. This allowsedmining the average detection time,
which is important for systems relying on triggesedubbing to remove faults.

5.3 Experimental results

Table 5.1characterizes the input benchmark circuits regarthie amount of LUTS,
flip-flops, primary inputs (PIs), primary outputB@s) and minimum clock periotkk.
A set of 22 benchmark circuits was used, 20 of Wwhare from the MCNC

Table 5.1: Input benchmark circuits

LUTs FFs Pls POs dk (ns)
alu4 402 0 14 8 4.94
alu_32b 342 0 69 33 6.77
alu_64b 721 0 133 65 8.01
apex2 798 0 39 3 6.26
apex4 655 0 9 18 6.39
bigkey 575 224 264 197 3.63
clma 1269 34 384 82 7.25
des 55(0 256 245 4.26
diffeq 470 244 29 3 4.64
dsip 635 224 230 197 2.78
elliptic 143 71 20 2 3.46
ex1010 487 0 10 10 4.59
ex5p 128 0 8 63 2.99
frisc 1718 853 21 116 8.30
misex3 699 0 14 14 5.55
pdc 1253 0 16 40 6.18
s298 17 14 5 6 2.78
s38417 1709 1447 30 106 5.26
$38584.1 2001 1233 40 304 4.84
seq 844 0 41 35 5.27
spla 221 0 16 46 3.98
tseng 598 260 53 122 5.17

62

(Microelectronics Center of North Carolina) benchknguite and were obtained at
(MINKOVICH, 2011). For all of these, described byams of boolean equations and
flip-flops, the synthesis tool was unable to make aise of the carry propagation
circuit. The other two circuits are ALUs with 32daB4 bits alu_32bandalu_64D,
described with a higher level behavioral VHDL ampleitly using additions and
subtractions. As a result, the synthesis tool vides @ infer adders/subtracters for these
circuits. However, even for such cases, only apprately 10% of the LUTs had their
associated carry circuitry occupied. This showst tf@ many cases the carry
propagation chain is highly unused, and can belablai for the application of the
proposed technique.

In order to set baseline values for each evaluatgis presented herein, the
proposed fine-grained DMR (FG-DMR) is comparedr&alitional coarse-grained DMR
(CG-DMR). It consists in duplicating the entire atiit and comparing the primary
outputs only, also with redundant comparators. B&echmark circuits can be viewed
as individual modules in a larger system, in whiase the baseline CG-DMR is in
keeping with the approaches used in (BOLCHINI, MEEAnd SANDIONIGI, 2011)
and (PSARAKIS and APOSTOLAKIS, 2012). Note that tienchmark circuits have
very diverse sizes and some of them have a largeiainof POs compared to their own
total sizes (such aex5p desand bigkey. For such cases, as a relevant amount of
internal signals are also POs, the two approadteckkaly to behave similarly on some
of the comparison axes. All results are shown lottables, with absolute values, and
charts, in order to highlight the relations betwé&sshniques for different circuits.

5.3.1 Area

Since minimizing the area is among the motivatiohshe proposed FG-DMR
technique, it is important to assess if the obskoxerhead is indeed comparable to that
of standard CG-DMR. For both, the increase in nundbdlip-flops is exactly 100%,
since these are used only in the payload cirastfiti.e., the circuit computing the user-
specified function. Thus, we focus our analysidl@use of LUTs, which are the basic
logic building blocks of FPGA circuits and are ethathe resource FG-DMR aims at
saving. Table 5.2 shows the absolute costs, in eumb LUTs. Figure 5.6hows
proportional overheads over the unhardened cirdait,both approaches, with CG-
DMR on the left and FG-DMR on the right for eactcait.

160%

d

'—\
I
2
>

e
[
N
3
>

!

|

]

£100%
g 80%
< 60%
|_

2 40%
20%
0%

60

6@6/07

Sl m——
%
o
S rrrrrocmrrrrees
U Tl e

D@ R EN R g WO S & Y
2O TSI S D x> IR L
» R Kge © b{&’ 62}\&6& © K‘&% < e’é\,%g)oo‘)% S Y

B Copy E Comparatorst Error Aggregation
Figure 5.6: Area overheads for CG-DMR (left-hand dfeeach circuit) and FG-
DMR (right-hand bar)

63

Table 5.2: Area costs in LUTs (comparators, erggragation and total, including the
two circuit copies)

CG-DMR FG-DMR
Comp. Total Comp Error Aggreg. Total
alu4 8 812 51 32 887
alu_32b 28 712 45 26 755
alu_64b 59 1497 87 57 1586
apex2 2 1598 10 66 1672
apex4 14 1324 12 55 1377
bigkey 154 1304 116 48 1314
clma 65 2603 101 98 2737
des 1972 1292 100 46 1246
diffeq 2 942 8 39 987
dsip 154 1424 107 51 1428
elliptic 2 288 5 12 303
ex1010 1C 984 70 36 1080
ex5p 52 308 35 10 301
frisc 92 3528 83 144 3663
misex3 12 1410 18 58 1474
pdc 34 2540 99 100 2705
s298 6 40 4 2 40
s38417 88 3506 60 143 3621
$38584.1 224 4226 152 164 4318
seq 30 1722 25 70 1787
spla 40 482 40 17 499
tseng 96 1292 59 50 1305

The costs in Figure 5.8nd Table 5.2 are divided into the main componehtsach
approach. CG-DMR comprises a 100% cost due to tpy of the circuit and, on
average, additional 11.6% due to comparators, fiotad of 111.6%. FG-DMR, on the
other hand, introduces a 10.5% average overheadtawemparators and 8.3% to
perform error aggregation, for a total of 118.8%nwead when considering the circuit
replica as well. The comparator cost of FG-DMR casgs both the redundant output
comparators and the fine-grained LUT comparatarsitaations in which carry chains
could not be used.

The CG-DMR costs are particularly more pronouneedliose circuits with a high
amount of POs compared to its total size. Mosthigfales (550 LUTs and 245 POs)
andex5p(128 LUTs and 63 POs) present such high cost€@&DMR that FG-DMR
actually requires fewer LUTs. Fe298both approaches present exactly the same area.
The costs of FG-DMR depend not only on the amo@ifR@s (since it also has a PO-
only comparator) but also on the amount of LUTsvtoch the carry chain comparison
is not applicable. Fomlu4, for example, 24.4% of the LUTs make use of their
associated MUXF7 multiplexer, imposing the needrfany LUT-based comparators
and increasing the comparator costs of FG-DMR wtwnpared to CG-DMR. For the
remaining circuits, however, these situations ocnare rarely. As a result, the average

64

area overhead of FG-DMR over CG-DMR is 3.57%, showthat the proposition of
maintaining a manageable overhead was achieved.

5.3.2 Clock period

Although usually smaller than that of temporal mediancy techniques, spatial
redundancy techniques also introduce performancelpes. For DMR, the delay
overhead is caused mainly by the checking cir¢has are introduced in series with the
critical path of the original circuit. Table 5.3asfs the minimum clock period@c, in
nanoseconds, for each circuit. For the combinakiamauits, Tcx comprises the
complete circuit delay.

Table 5.3: Minimum clock period in hanoseconds

Unhardened CG-DMR | FG-DMR
alu4 4.94 6.55 7.52
alu_32b 6.77 8.27 9.83
alu_64b 8.01 9.59 11.98
apex2 6.26 7.84 10.86
apex4 6.39 7.79 9.78
bigkey 3.63 4.56 8.12
clma 7.29 7.29 11.87
des 4.26 7.08 8.46
diffeq 4.64 4.97 9.55
dsip 2.78 4.14 8.26
elliptic 3.46 3.50 6.91
ex1010 4.59 6.61 7.59
ex5p 2.99 4.83 5.59
frisc 8.30 8.33 15.08
misex3 5.55 7.37 10.03
pdc 6.18 8.94 10.67
s298 2.79 2.80 4.09
s$38417 5.26 5.61 12.11
$38584.1 4.84 7.06 11.20
seq 5.27 7.39 10.04
spla 3.98 5.81 6.94
tseng 5.17 5.77 9.11
Average 5.1% 6.46 9.34

Figure 5.7highlights that the two techniques have very digdvehaviors for each
circuit. For example, foalu4 both present comparable costs (the delay of FG-D#$MR
14.8% longer than that of CG-DMR). For other citsuthere may be more significant
increases when introducing FG-DMR. Fisc, e.g., FG-DMR presents 81.1%
overhead over CG-DMR. On average, FG-DMR presemt86a3%T¢i increase over
the unhardened circuit and 48.7% over CG-DMR. Thditeonal delay is due to the
nature of the introduced comparators. When usiegpttoposed FG-DMR with carry
chain comparators, intermediate signals are rothedugh the global wires of the
device, as was discussed in section 5.1, introguadditional delay. Moreover, since

65

many error signals are generated, the error aggoegaircuit imposes further
overheads.

16
14
12 -
=10 o .
=
~ 8 - i
O
— 6 - -
4 i
5 | i
0-]
T == == Y N A © v (&R ~ S S - e (O R
28I ELETEEL2383FF8a5 9
T)12 S > o E T 29 0 & 0 » X o " 9L
EECG(UE o] EX = ™ ©
T © o o @

B Unhardened BCG-DMR OFG-DMR

Figure 5.7: Minimum clock periodlci for the unhardened circuit, CG-DMR and
FG-DMR

The fact that CG-DMR compares only POs furtherdubis difference, especially
for sequential circuits. For instance, if all primmautputs of the circuit are registered,
then the introduction of output comparators may clwdnge the critical path at all.
Sequential circuits such abna, frisc ands298show negligible differences between the
unhardened versions and CG-DMR. As a result, theease infck of FG-DMR over
CG-DMR is particularly more pronounced for sequantircuits (78.9%, on average)
than for combinational ones (23.6%). However, wbemparing only primary outputs,
it may take longer to detect the occurrence olu#t,fleaving the error latent for a longer
time, as will be shown in section 5.3.4. Moreoveihen the error reaches the
comparators, internal registers are likely to bewgaed, increasing the complexity of
checkpoint and rollback procedures, as discuss@@dSARAKIS and APOSTOLAKIS,
2012). Finally, these measurements consider stfamgfard clock period, which may
not reflect directly in the performance. The pariance of the system may be limited
by other modules, that may present clock periodhovughput limitations, or by the
input bandwidth. It can also be the case in whinghdystem is able to meet the real-time
deadlines with spare time. In such cases, it magnbee relevant to provide fast error
detection and correction than the fastest possibteit operation.

5.3.3 Error detection

In this section we discuss the results of faukatipn regarding the classification of
faults into the categories described in section bable 5.4 shows the absolute amount
of faults in each category (category 1 is omitted dlarity). It can be seen that FG-
DMR shows a very significant increase in the amafrfiaults in category 2. This, in
fact, is firstly related to the greatly increasduservability that FG-DMR introduces.
Since it compares individually the output of eacid a&very LUT, it has a much
increased probability of detecting the presenceamferror. Therefore, there is an
increased likelihood that an error effectively affieg the circuit is classified as “no
event” for CG-DMR simply because it never propaddie a primary output. This is
more pronounced for sequential circuits due toitiseeased difficulty in propagating
faults in such circuits, a property long identifieg researches on automated test pattern
generation (ABRAMOVICI, BREUER and FRIEDMAN, 1990%econd, the fine-

66

Table 5.4: Amount of faults in each category

CG-DMR FG-DMR

2) Det. |3) Det. 2) Det. 3) Det.

Only Error 4) Undet Only Error 4) Undet
alu4 29286 29199 156 55065 38414 83
alu_32b 29892 27610 416 48210 33473 377
alu_64b 62604 63174 749 104927 76443 557
apex2 45437 45087 92 156147 59282 47
apex4 57948 56686 197 90299 73852 196
bigkey 67352 51496 1319 79904 56617 1225
clma 4576 2770 185 98612 3469 213
des 69231 52351 1366 88262 61817 1612
diffeq 577 547 22 40749 747 12
dsip 73524 62001 1394 105406 73560 975
elliptic 300 245 16 13681 466 30
ex1010 30077 29781 109 60643 39891 160
ex5p 1118% 8157 305 15753 9989 401
frisc 63096 56604 407 203668 88283 864
misex3 46839 46146 130 98855 67283 168
pdc 106608 104191 356 197795 141581 434
s298 848 740 27 1270 1059 33

s38417 24744 19732 353 245031 27188 244
s38584.1 168111 149026 1059 384042 230289 1161

seq 71711 72449 242 136585 96316 368
spla 17873 15631 203 28319 19371 405
tseng 9236 4340 556 78902 6400 439

grained comparators naturally demand additionafigoration bits, which also impacts
on the amount of faults observed on category 2-gnained comparison also increases,
but on a reduced scale, the amount of faults iagmay 3, which are output errors that
were detected. This is due to the modified placenasia routing that the proposed
technique imposes, which can add sensitive bitsggrimary circuit as well.

Of special interest is the comparison on the amotifgults in category 4, which are
those that caused a PO error and went undetecteat feast one input vector. Figure
5.8 presents the variation in the amount of undeteerrors for the two techniques.
Negative values indicate benchmark circuits forclHrG-DMR had fewer such events,
I.e., Face> Fsrc. FG-DMR showed fewer faults in category 4 for 1@uts, while CG-
DMR was better on the remaining 12. On average,DIMR presents 12.73% more
undetected faults.

Another, and also relevant, perspective on the mgaof these figures can be found
by analyzing the fault coverage. As discussed utige A.5 of Appendix A, fault
coverage is the fraction of total events that wpprepriately handled by a given
mechanism, being an important metric of its efficdtis usually calculated as the ratio
between covered faults (detected, in this case)tatad faults. The total amount of
faults, however, can be defined in different wags this kind of experiment. Simply
taking into account the total amount of injectedltacan be misleading, since most of

67

140%
[y
oS 120%
=
8 100% -
S 80% 5
0 60% ®
S 40% n
Q 20% B
© (0]
% 0% -
2 -20% - N
2 -40% - e
-60% o v
T == == W\ N A © Vv o 2 oY QO WL W 2 WL o M
283 ILESTL2TESL25333F3 %282 5
S 112 2DT ET 290 E 0 » QX B » g < g
= @ @© a © e X = M 0
3 © o ¢ @

Figure 5.8:Undetected error variation. Positive values indiaasmaller amount f
CG-DMR.

them did not actually hit the CUT. As discussedqLBSEA, DRIMER, FABULA, et
al., 2005), most bits are bound to have no effecthensiystem, even in high occupation
scenarios, due to the great over provisioning reguirom routing resources. Thus, we
consider only sensitive bits, i.e., those that redicircuit behavior in some way. Let
Fx denote the amount of faults in categaryl'he total amounEt can be calculated as
Fr = FotFs+F4. However, when comparing two different techniquks,total amount of
faults Fr should ideally be the same for both. Otherwisete@nique with more
uncovered faults could in fact present higher faaiterage simply because it presents a
much higherFt. Note that the high fault masking observed for BDER can
significantly reduce it$-, leading to an apparent reduced coverage. Thusider to
maintain a fair comparison, we use thevalues of FG-DMR also when calculating the
fault coverage of CG-DMR.

Figure 5.9 shows the obtained results, which are dugh for both techniques. CG-
DMR presents an average coverage of 99.62%, whée&$-DMR it is 99.58%, i.e.,
a 0.04% difference. The circuits with lower coverage the ones with a large amount
of primary outputs per LUT (mainligigkey des ex5pands29§, which is in keeping
with the discussions section 5.1, i.e., that P@sduce critical routing segments. If
higher coverage is required, reliability-orienteduting can be used, such as the
approaches presented in (KASTENSMIDT, FILHO and ®&R 2006) and
(STERPONE and VIOLANTE, 2006).

100.0%
o 99.5% -
(@]
@©
p .
S 99.0% -
o
O
= 98.5% -
>
&
98.0% -
97.5% - 1
q-a.‘a.‘\vxg)‘QVIO-Q_OVLJ_Q\'JUQ)"';Ulu\-”@
N < X X [} = .= o x o < = <
Emomwﬁgbgmaoﬂgmgmv§$%w>
T 112920 =T =9 o E 0 » 0 5 n <
S5 5 ® ®© 7 © T = k= M 0 e
S © ()] w%

BFG-DMR OCG-DMR
Figure5.9: Fault coverage for F-DMR and C(-DMR.

68

5.3.4 Detection acceleration

As the reduction on error detection time is amdmg advantages of fine-grained
techniques, in this section we compare the avetmge each technique requires to
detect the presence of an error. Since many ofatlies in category 2 observed for FG-
DMR were not detected by CG-DMR during the experimdue to the reduced
observability, it is not possible to determine th@etection time. Thus, we focus our
analysis on those faults that indeed propagatgxiin@ary outputs (i.e., category 3). The
developed fault injection tool monitoGe;, the amount of cycles required to detect the
presence of each error, and reports it to the RGstThe fine-grained circuits, however,
do not necessarily operate at the same frequendiheoftoarse-grained ones. When
considering that each circuit operates at its marinfrequency, the average error
detection timeTpg is calculated as shown in (5.1), whéigx is the clock period and
Cpet is the average amount of cycles to detect. Tallsiows the results.

Tpet =Tcik [Cpet (5.1)

Table 5.5: Average amount of cycles and associatesito detect an error

CG-DMR FG-DMR
Choe Tpet (NS) et Tpet (NS)
alu4 1800.71 11791.02 42.66 320.73
alu_32b 394.04 3259.90 110.59 1087.54
alu_64b 387.05 3709.84 114.48 1370.93
apex2 11482.3[1 89998.34 1099.86 11941.15
apex4 211.61 1647.40 193.21 1889.43
bigkey 37.19 169.67 15.71 127.53
clma 20.13 146.64 12.66 150.31
des 66.98 474.00 46.83 396.26
diffeq 3708.65 18446.82 19.52 186.44
dsip 92.91 384.66 45.84 378.40
elliptic 2096.1§ 7342.85 5.63 38.88
ex1010 480.60 3178.23 33.53 254,51
ex5p 109.23 528.02 62.75 350.66
frisc 11139.11 92766.53 5769.30 87024.11
misex3 1327.88 9783.81 407.68 4090.67
pdc 4655.00 41620.39 171.72 1832.23
s$298 2076.20 5802.97 2020.98 8255.69
s38417 982.62 5512.52 289.59 3507.26
s38584.1 5354.82 37794.3Q0 648.89 7270.22
seq 8187.95 60525.35 2200.91] 22090.51
spla 372451 21654.28 466.82 3237.39
tseng 1985.94 11466.82 547.50 4985.54
Average 2741.89 19454.74 651.21) 7308.47

Figure 5.10 shows the reduction@ge; observed with the use of FG-DMR. Circuits
display very diverse values as different functibiase different masking probabilities.
For example, the XOR function will always propagate error on one of its inputs,

69

while the AND function will mask it as long as ahet input equals ‘0’. On average, a
66.2% reduction was observed, with a maximum of 3% forelliptic.

@ 100%
S
o 80% -
c
S
2 60% -
(0]
©
-040%'
£
c 20% -
S
©
5 0% - o
T = e Ay N > vy [N - [R A T S B (R
2 2833238888859 2388Y%855°
x ST TIa95c "TETES95EL 20 R Y90 <g
El S ® 3 € B R
© © %

Fioure5.10: Reduction in cvcles to detect an e

Figure 5.11 shows the reduction in error detectilme made possible by FG-DMR.
Negative values indicate situations for which tlearse-grained approach was faster,
I.e., Toetce < Tpoetre. This happens due to a combination of two factbyshe circuit
masking probabilities are low, leaving small rooar improvements orCpe; 2) the
clock period is longer for FG-DMR, meaning that &wnput vectors are applied per
unit of time. For the majority of circuits, howeyethe improvements in fault
observability were able to significantly reduce #rmeor detection time, witkelliptic
displaying once more the most significant reduct{8.47%). This is in agreement
with other hints that this circuit had a high maskprobability: it has only 2 PO bits,
and its variation inF, for CG-DMR and FG-DMR is very significant (~45xQn
average, a 50.15% reduction was observed.

o 100%
= _
‘580%- g
o 0
5 60% - ®
& \Y;
0]
820%- Ig’
S 0% -
= —
§-20% lg
0
& -40% ©
A
-60% S o
T e = Y A0 Y OoOLOoY 20w UWwW: YWY .
3N<r><><q_;EdJm——H|_nm><'cCDH<rGJ—CCD,‘R
= MmN O 0 v o 0w = -l <t [o T =
s V285 ETLITERCUIR Y232 &
0 5 ® ® 3§ © D X% = ™M 0 e
T o ? @

Figure5.11: Reduction in error detection tit

5.4 Radiation Experiments

With the purpose of evaluating the resilience & ffroposed mechanism when
subject to actual radiation and also of validatitige conducted fault injection
campaigns, radiation experiments were performed arel herein described and
analyzed. Experiments took place at the VESUVIOQilifgcin ISIS, Rutherford
Appleton Laboratories in Didcot, United Kingdom. Vifeadiated the device with a
fluence of approximately 1.5-4n/(cnf) with the available spectrum (shown in Figure

70

5.12, which has already been demonstrated to be $mitabemulatehe atmospheric
neutron flux(VIOLANTE, STERPONE, MANUZZATO,et al, 2007. The available
flux was of approximately 4-1¢* n/(cnf-s) for energies above 10 MeV. The beam
focused on a spot with a diameter of 3 cm pl cm of penumbra, which is enough
cover the whole FPGA cp. Irradiation was performed at room temperaturéh
normal incidence.

-
(=)
-}

-
o
th

-
[=
S

-
(=]
()

R, -
sealevel x 107 / —— DN

-
(=]
N

Neutron Flux [n/cm’/s/MeV]

7 7 X 2
sea level x 10 \\ S
10° ISIS \
] .
1 10 100 1000
Energy [MeV]

Figure 5.12: ISISpectrum compared those of the LANSCE and TRIUM
facilities and to the terrestrial one at sea leweltiplied by 1(’ and 1€ (VIOLANTE,
STERPONE, MANUZZATOet al, 2007

5.4.1 Tested circuit

The experiments were conducted on a XU-LX110T board, which contains
Xilinx Virtex 5 XC5VLX110T FPG/, i.e., the same device amard or which the
fault injection experiments were conduc. This FPGA is manufactured with a nm
process(XILINX, INC., 2009b). The board was connected to a host PC with al:
and a USB cable, needed for experimental resulnsmission and FPG
reprogramming, respective

The design implemented in the FPGA comprises arabuhit and 26 copies of tf
circuit under test (CUT), aiming at increas the device occupation and, thus,
amount of observed events. The CUT usec theapex4circuit. Figure5.13 shows the
placement of the modules, with individual CUT id&ets, as well as of the control u
(in dark grey) The even numbered CU(in light grey)are hardened witFG-DMR,
while the odd nurpered one(in white) use the standard CG-DMR.

The apex4circuit was chosen among other benchmarks dues totiérmediate siz
(655 LUTSs) and relativesmall amount of inputs and outputs (9 and 18, rspy)

0 1. 2
3 4 5
6 7 | 8
9 10 11
12 13| 14
15 CIRE 16 |
17 | 18 @ 19
20 21 22
23 | 24| 25

Figure 5.13Placemer of replicas and control unit. Even numbered regl(in
light gray)used the proposed I-DMR while odd numbered ones used-DMR.

71

compared to the other circuits of the suite. Triduced amount of inputs and outputs
simplifies the routing of the multiple circuit irstces, while the intermediate circuit
size allows reaching a higher device occupatiorh iéwer copies than with other
circuits, simplifying the control circuitry and redng its probability of being hit by
faults. Each circuit with FG-DMR required 1377 LU ghile those with standard CG-
DMR required 1324 LUTSs. The circuits used in thesperiments do not use duplicated
primary inputs, in order to minimize the routingearference over the CUTSs.

Pseudo-random inputs are applied with a linear daekl shift register to all the
CUTs and a golderi instance. Each of the 26 CUT copies has the sérpessible
states described in section 5.2: 1) normal exeeut®) error in the configuration
memory detected by the comparators but not obsemvd®lOs; 3) error detected and
observed at POs; 4) error not detected but wrong. Rthenever a CUT leaves the
normal execution state, the transmission tdudty state descriptio(FSD) is triggered,
informing the host PC about the current state lo€BIT instances. It contains 2 bits per
instance: one to indicate if the fault was detecdd one to indicate if the fault
manifested at a PO. Each FSD has, thus, 52 biishvane transmitted in 7 bytes. Note
that several upsets may occur in the configurati@mory before an error is observed
in the circuits, due to the single event upset gbdily impact (SEUPI) de-rating factor
(LESEA, DRIMER, FABULA, et al, 2005). All cross-section and failure rate values
measured in the radiation experiments, thus, anardic, and reflect the susceptibility
of the user circuit atop the FPGA fabric (FULLERARFREY, SALAZAR, et al,
2000).

A control unit was added for applying input vecttwsall the CUT copies, checking
the correctness of the outputs and transmitting &=8Dthe host PC through the serial
cable. The control unit was positioned in the ceofethe FPGA (see Figure 5.13) so
that it enclosed the clock and serial transmis$iOmpins, located at that region. It uses
1037 LUTs and 238 registers and comprises the goidstance of the original
unhardene@pex4 with 655 LUTSs. Faults in the golden instance bareasily detected,
as the system will inform that all the 26 CUTs haweorrect outputs, creating a FSD
that differs radically from those received whenaalf strikes one of the CUTs. The
remaining 382 LUTs and 238 registers are respams$dyl monitoring and transmitting
the FSDs.

As the control unit is embedded on the same FPGAhefCUTSs, it requires a
mechanism to monitor its integrity. Therefore, eripdically transmits andlive” signal
to the host PC through the serial cable. We addaschdog on the host PC that
reprograms the FPGA if thalive signal is not received for more than 3 seconds,
allowing the detection and removal of faults on ttwntrol state machine, clock
distribution or transmission circuitry. Finally, ifo FSD is received after 10 minutes,
the device is preventively reprogrammed, even éfdlive signals are being received
properly. This allows avoiding situations in whitlfe system is still sending tladive
signal but is no longer checking the output of @éTs or is unable to send a FSD. All
reconfigurations are performed by the remote h@sofer a USB cable.

After the transmission of the FSD, the control uméits 100,000 cycles, latching
state changes that may occur for the CUTs durimg pleriod. A new FSD is then
transmitted. This allows finding with greater aamy if the fault could affect a primary
output and is important especially when fine-grdimietection schemes are used. If a
scheme is able to perform early detection, therfitteFSD may indicate it before error
manifestation at a PO, while the second one, af#€000 cycles, indicates if the fault

12

eventually propagated to a PO. As the system riunSOaMHz, we consider the
probability of another SEU occurring in the 2 mstimg period to be negligibleA(=
7-10°%. After the reception of the second FSD, the HRGtreprograms the FPGA to
initiate a new round of the experiment.

5.4.2 Neutron experiments results

Each of the events reported by the control unit @lassified, according to its FSD,
into the same categories described in sectionEx@nts of category 1 are not reported
by the monitoring system, as FSD transmission iy tniggered when one or more
CUTs leave the normal execution state. Table 5a8vsithe amount of events reported
for each category, for the two techniques. Theltedabeled “Pre” are those obtained
by the FSD sent before the 100,000 cycles waitiagod, and those labeled “Post”
were obtained after it.

Table 5.6: Received events classification

2) Det. Only| 3) Det & PO4) PO Only
CG-DMR “Pre” 244 221 6
FG-DMR “Pre” 471 211 5
CG-DMR “Post” 245 223 6
FG-DMR “Post” 396 287 5

For FG-DMR the amount of “Pre” errors in categoryd2tected but with correct
output) is larger than that of “Post” errors instlsiame category. This is caused by the
fact that the fine-grained comparators are frequeatile to detect the error before it is
present at a PO, signaling it to the control ufitien, during the waiting period,
different input vectors may make the error propagat a PO, moving the event to
category 3. As local repair procedures may commeifieg detection, this property is
useful to reduce error removal times. And as adstahDMR scheme is only able to
detect errors that have already propagated to aaF@nger period of time has to be
waited before starting repair procedures. The amoftierrors in category 4 (error not
detected but PO corrupted) does not present atstatly significant difference to allow
comparing FG-DMR and CG-DMR, but was a small factof total amount of events
for both approaches.

The different response times of the circuits algplan the slight increase in the
total amount of events between the “Pre” and “Possults. This occurs due to faults
that strike routing resources in the border regibesveen CUTs and that disrupt the
operation of multiple instances. There were thrngehsevents, to which we refer as
multi-CUT events, as more than one instance ofctrmiits under test manifested the
occurrence of a fault. There is a probability thahulti-CUT event is actually triggered
by multiple and independent SEUs. However, as atthsevents occurred with
neighboring CUTs and due to the short duratiorhefwaiting period (2 ms), compared
to the observed error rates (around one error eyemjinutes), we attribute them to
single errors that affect multiple circuits, whi@) as mentioned, a well known and
documented effect (LIMA, CARMICHAEL, FABULAe¢t al, 2001). Figure 5.14 shows
the location of the multi-CUT events detected tigloout the experiment.

In the first of such events, in the “Pre” FSD, sénimediately after the event
occurrence, only CUT #20 reported that a fault wasected. Hence, the error is
classified into category 2 for “FG-DMR Pre”, sineeen numbered CUTs are the ones
using the fine-grained scheme. In the “Post” FSEht aafter 100,000 cycles, CUT #20

73

O 1 i 2

3 _____ 4 5
6 7 8
9 _______ 10 11
12 13 14
15 [CTRE 16 |
17 18 19
20% 21 22
23 24 25

Figure 5.14: Disposition of multi-CUT events on #RGA. All such events occurred
with neighboring CUTSs.

indicated that a fault was detected and that itifested an error at a primary output.
Thus, it is one of the events that shifted fromegaty 2 to category 3 during the
waiting period for FG-DMR. However, the “Post” F&ixo indicated that an error was
detected and present at a PO for CUT #21. Thes€tWwits are adjacent, as can be seen
in Figure 5.14.

The second multi-CUT event started with CUT #2 ¢ating the detection of an
error. Then, after the waiting period, CUTs #1, &l #5 indicated error detection,
while only CUTs #2 and #5 manifested an error BICa As shown in Figure 5.14, all
three involved instances lie on the top right coro€k the device. This event was
probably triggered by an SEU that affected theioalinstances of CUTs #2 and #5
and the redundant copy (or comparison circuit) BfTGt1. As occurred with the event
described above, this event shifted from categdrycéategory 3 for FG-DMR.

Finally, the third event began with CUT #21 indingterror detection at the “Pre”
FSD. In the “Post” FSD, CUT #24 also reported exetection. None of the CUTs
presented error at a primary output, indicating tihe SEU probably affected only
redundant copies or comparison circuits.

Table 5.7 shows the cross-sections found with tleedected experiments,
considering the amount of undetected errors (cayegjpof each technique. The cross-
section is the ratio of errors to fluence, as dbedrin section A.4 of Appendix A. To
evaluate the effectiveness of the proposed approadh typical terrestrial application,
Table 5.7 also reports the expected failures i fFT) at New York City considering
a flux of 13 n/(cri-h) (above 10MeV) (JEDEC, 2006). Results are shbath for all
the 13 CUTs of each circuit type and for one simgstance.

Table 5.7 reports the cross-section and FIT figimesan unhardened circuit as well.
As can be seen in Figure 5.5, the events in cage®)¢errors detected and observed at a
PO) of CG-DMR are likely to be the errors at thénary copies of coarse-grained
circuits. Thus, we assume that they are a goodhasdi of the amount of failures that

Table 5.7: Cross-section and failure in time at Néwk City

Total Per Instance
Cross-section (cA) | FIT Cross-section (cfj | FIT
CG-DMR 3.875-108° 5.04 2.98-10"| 0.388
FG-DMR 3.23-10° 4.2 2.48-10"| 0.323
Unhardened 1.44.1¢| 187.25 1.11-10| 14.4

74

would be observed in unmitigated circuits, therelsyimating their cross-section and
FIT values. This assumption is based on the fadelare the faults that actually struck
the original instance of the circuit, which is dianito the original circuit, since
comparison is performed only at the POs. The FG-Diglthinique was able to reduce
the failure rate by 44.6 times, as the amount afetected errors is much smaller than
that of PO failures of the unmitigated design. Ewehen considering all circuit
instances, the FIT values of DMR circuits are qlot®, especially when compared to
those of unmitigated designs.

Figure 5.15 shows the total amount of events farhearcuit. All copies were
subject to a significant amount of events, showhg the FPGA was homogeneously
struck by the neutron beam. The cell in dark greyigure 5.15 is the control unit,
which presented 57 failures, 36 of which are duevatchdog timeouts. The remaining
21 failures are due to invalid FSDs that indicaters in the golden copy, as described
in section 5.4.1. These FSDs indicate faults stgkihe golden instance or the FSD
generation circuitry.

59 48 46|
31 . 44 45
41 47 | 50|
36 48 28|
51 25 42|
35 [I57. 68
33 | 59 32|
60 41 70|
39 50 : 35

Figure5.15: Events reported at each instau

5.4.3 Comparison to fault injection results

As one of the purposes of the conducted experimeassto validate the accuracy of
the fault injection tool, in this section we compaihe results obtained with both
evaluation approaches. Most specifically, we aterested in analyzing if the relations
between FG-DMR and CG-DMR observed in fault inctare kept in the radiation
experiments. For that purpose, fault injection expents were conducted aiming at
reproducing the radiation experiments. Epex4circuit with FG-DMR was placed at
the position of CUT #0, while the one with CG-DMRswlaced at the position of CUT
#1. Both circuits were subject to exhaustive fanjiction, leading to a significantly
larger amount of events, when compared to the tiadiaxperiments. The injection tool
informs which faults were first only detected aheért propagated to a PO (i.e., faults
that would be in category 2 for “Pre” FSD and iregry 3 for “Post”) and which
faults were only detected when they had alreadypgmyated to a PO (i.e., faults that
would be in category 3 already in the “Pre” FSD).

Table 5.8 shows the results for the “Pre” FSDs. é&aech of the experiments, the
results for FG-DMR and CG-DMR are shown, as weltres ratio between them. For
categories 2 and 3, as well as for the total amotievents, the ratios showed a strong
similarity, with a maximum of 7.05% variation foategory 2. Category 4 shows a very
significant variation, confirming that the resuibsind in radiation experiments were not
sufficient to allow comparing both approaches rdomay these ratios.

Table 5.8: Fault injection and radiation results“fere” FSDs

75

Radiation Fault Injection
FG- CG- FG- CG- Ratio
DMR |DMR |Ratio |DMR |DMR Ratio | Variation
2) Det. Only 471 244 1.93| 103697, 57797, 1.79] 7.05%
3) Det. & PO 211 221 0.95| 55876 55664 1.00, -4.89%
4) PO Only 5 6 0.83 571 193] 2.96| -71.83%
Total 687 471 1.46| 160144 113654 1.41] 3.52%

Similarly, Table 5.9 shows the results for “Pos8[s. The ratios for categories 2
and 3 become even more similar, while categoryrdams the same, as expected. A
small variation is observed in the total amounte da the multi-CUT events that
modifies the ratio for radiation experiments. A yestrong similarity is maintained,
showing that the fault injection and radiation expents were consistent in those

situations for which consistency was expected.

Table 5.9: Fault injection and radiation results“f®ost” FSDs

Radiation Injection
FG- CG- FG- CG- Ratio
DMR DMR Ratio |DMR DMR Ratio| Variation
2) Det. Only 396 245 1.62| 89872 57755 1.56 3.73%
3) Det. & PO 287 223 1.29] 69701 55706/ 1.25 2.86%
4) PO Only 5 6| 0.83 571 193| 2.96| -71.83%
Total 688 474| 1.45| 160144 113654 1.41 3.01%

76

77

6 FINE-GRAINED DIAGNOSIS AND LOCAL REPAIR

As discussed previously, the main advantages d-dmained redundancy are
twofold: faster detection and more precise diaghdsichapter 5 we have estimated the
reductions on detection times that a very finesrgrdimechanism can provide. In this
chapter, we focus on the how the fine-grained diagncan be used, in a scalable
manner, to allow localized scrubbing with signifitlg reduced repair times. This task
presents several challenges, as will be discusseddtion 6.1. Section 6.2 presents the
devised approach to tackle the challenges foureindd Scrubbing Unit Repositioning
for Fast Error Repair (SURFER). The experimentaleised to evaluate the SURFER
mechanism is described in section 6.3. It is basethat presented in section 5.2, but
includes several extensions in order to allow prewaluation of the techniques herein
discussed. Section 6.4 presents the results obtawte SURFER assuming a precise
translation mechanism, which is valuable to esw@nthie potential of the technique.
Finally, section 6.5 introduces a heuristic meckianithat aims at implementing
SURFER with manageable costs and maintaining reteyans in repair time.

6.1 Challenges

Among the most promising features of fine-grainewredetection mechanisms is
the possibility of using the precise diagnosis,vmted by multiple error detection bits,
to perform a local and fast repair procedure. Afloe indication signals can be
concatenated and seen asegror signature as shown in Figure 6.1. The signature
contains all the raw diagnosis information providgdthe detection mechanism, which
must be translated into information useful for iepas the granularity gets finer, the
size of the redundant modules is reduced and theuaihof error signals increases.
Therefore, circuits with very fine granularitiesvieathe greatest potential of reducing
the MTTR, but present very large signatures to dedted. And several challenges are
found when aiming at translating large signatunés error locations.

Error signature
Figure 6.1: Fine-grained detection and the genérmater signature

78

Firstly, the inputs of the two modules may pres#fierent values due to a fault in a
preceding circuit. Such input difference may beppgated by the logic implemented in
the module, thus also triggering its associatedparator. For example, a fault striking
modulemy o in Figure 6.1 will be detected by comparaggmwhenever it propagates to
the module’s output. If the change in the outputngf causes a change in the output of
mp 1 (i.e., My 1 propagated the error), then will also be raised, and similarly f@s.
Otherwise, i.e., if the error was maskedriy, 1 will remain low. The propagation or
masking of an error by a module depends on manghblas, bottstatic, e.g., the logic
function implemented by the module, atighamic e.g., the current value of the other
inputs of the module or the state of internal reggs Thus, several different signatures
are possible for a single fault, especially whemplex circuit topologies and functions
are considered, since dynamic factors may changehwdomparators are triggered.
Assuming thatdy, e, €] is the error signature for this circuit, [1, Q, [, 1, 0] and [1,

1, 1] are possible signatures for a faultigy (or inmy g).

Furthermore, unless the function o§ o, My o are entirely configured by one single
configuration frame, there are multiple candidatemies once a given signature is
generated. The reconfigurable routing resourceSREAs also play an important role
on this matter. For example, a fault in the routbeyweenm, o and mp 1 may occur
either before or after the branching point of theeveonnected to the comparator. If it
occurs before, then it will behave similarly toaalt inmy o, as it will be detected also
by ep. On the other hand, if it is located after thisnpothen it will only be detected by
e, providedmy ; propagates it. Thus, signatures such as [1, @n@][0, 1, O] can be
associated with the routing between the two modubeEpending on the choices of
placement and routing algorithms, this routing patdy be arbitrarily long and span
across several different configuration frames. &faee, as a general rule, it cannot be
assumed that it is possible to narrow a fault locatiown to a single configuration
frame, even when the finest available granularitiess employed. Note, however, that
the probability of each frame generating a given signature iedfft, depending also
on the static and dynamic factors involved. Thisparty can be explored to overcome
the challenges herein discussed and minimize répag; as will be seen in section 6.2.

To summarize, the problem at hand consists in ityemg the most likely error
locations for a given error signature, which maywbey long for large circuits and fine
granularities, and to make use of this informatomeduce the MTTR. It must be also
taken into account that: a same error may leadiftereint signatures depending on
dynamic factors; a same signature may be causestrbys in different locations and
with different probabilities.

6.2 The SURFER approach
6.2.1 Overview

The proposed Scrubbing Unit Repositioning for Fastor Repair (SURFER)
technique uses a signature translation (ST) meshatd convert the error signature
into an indication of the error location. This iadiion is provided in the form of a
frame address, chosen according to the methodaleggribed in the sections 6.2.2 and
6.2.3. As mentioned previously, the configuratidnF®GAs is divided into frames,
which are the smallest addressable units. For tiexX/5 devices used as case studies in
this work, addresses are composed of several siffisuch as the top/bottom bit, row
number, major and minor addresses (XILINX, INC.128). The ST mechanism is

79

defined in a manner that delivers the error locat@lowing this specification, in order
to avoid additional complex post-processing thay marease the repair time.

Figure 6.2 shows an overview of a system using SERF Similarly to
(BOLCHINI, MIELE and SANDIONIGI, 2011), we assumgetexistence of an external
configuration controller that interacts with thenmaeolatile memory that stores the
configuration. Note that a non-volatile memory andontroller able to interact with it
are already required by any system using SRAM-b&$e@As. As this controller is
very simple, it can be implemented in a lower periance radiation-hardened FPGA or
ASIC. Alternatively, in very low budget situatioasd when the reduction in reliability
is acceptable, it can be implemented within thees&RGA, as in (STRAKA, KASTIL
and KOTASEK, 2010). The ST mechanism, on the dilaed, is performed in the same
FPGA to minimize its delay and to avoid excessiveyse.

Non-
Volatile
(Memory
Config.
Config. data—vdata_

Errordet. .| Config.
Frameaddr| Ctrl

Figure 6.2: Overview of a system with SURFER

In Figure 6.2, the FPGA design is divided into mledueach with its own ST block
(we present only two modules for the sake of glariEach block generates an error
detection bit and a frame address. Moreover, it provide fault isolation between
the modules, they can be defined as reconfigurglaleitions as well. However,
developers are free to divide the system into nexlak they see fit, following the good
practices of design modularization, since the gaingpair time are not limited by their
size. Thus, the costs of defining very small remurhble partition can be avoided.

6.2.2 Reducing the MTTR through optimized starting frames

In this work we exploit the fact that the scrubbprgcedure does not need to begin
at the first frame of the configuration, but ingten improvedstarting framecan be
identified for each signature. If, for example, thignature indicates that there is a
strong probability of the error being in the 80@ame of the partition, ®hifted
scrubbing procedure, starting closer to that position, camicantly reduce the
MTTR. If the end of the partition is reached ane #rror is not removed, then the
procedure returns to beginning of the partition aodtinues until the previous starting
frame. As discussed in section 6.1, each signahag be associated with errors in
different frames with different probabilities andipting to a single frame once the error
is detected can be infeasible. One must rely onrtftemation of which are the most
likely faulty frames for each signatures and givenh some form of priority. Thus, the
first step to allow the use of SURFER is to meashieerelations between errors in each
frame and the generated signatures. Through figelttion experiments it is possible to
identify which configuration bits are able to geater each signature when flipped.
Thereby, one can build histograms that show, fohedgnature, which frames can lead
to its occurrence and with which incidence. Thastobrams allow identifying the most
likely error locations associated with each sigraturigure 6.3 shows two such
histograms, for two different signatures of cirgpiic More details on the conducted
experiments will be provided in section 6.3.

80

60

40

20

Signature incidence

0 H@ﬁwﬁwﬁwl‘;wﬂwﬂw
NONONUONONLN O
ANOMOMNMTOHDOONWOWO O

Frame index
Figure 6.3: Histograms of two signatures for pigie circuit

Once the relations between error locations andasigas are mapped, remains the
problem of efficiently making use of this informati The histograms in Figure 6.3
present clear peak regions, where the error is fikety located. However, if one were
to scrub only these peak regions, there would peobability (although small) of not
correcting the fault, as it can be located outgidak regions. Furthermore, two frame
addresses would have to be stored per signatwedi(gh and the last addresses of the
area), creating the need for large and costly saliferors and approximations in this
table would also be critical, as they could leadstoubbing the wrong area. When
setting a shifted starting frame, on the other hann if the signature translation
module makes a poor guess regarding the erroridocathe entire partition will
eventually be scrubbed if needed, thereby mainmtgirthe reliability of a standard
scrubbing procedure.

The user circuit can be halted when the error ieaded, as in (PSARAKIS and
APOSTOLAKIS, 2012), and scrubbing can ensue urté error is reached and
removed. Correction can be detected, in many cése)e lowering of error signals.
Alternatively, it may be advantageous to performe@dback, comparing each frame to
the expected value (or using redundancy codesjdbldcate the error. The identified
faulty frame is then solely scrubbed, similarlif@OKHALE, GRAHAM, JOHNSON,
et al, 2004). The proposed scheme remains identicalrdbgs of these device and
application specific implementation choices. Orfee érror is removed, scrubbing can
be halted and execution can resume.

The marks on th& axis of Figure 6.3 show the optimum starting fraimreeach of
the two signatures. Note that, for both histogram&igure 6.3, there is a possibility
that the error is located before the chosen startiame. These locations are only
scrubbed after reaching the partition end and metgrto its beginning. Placing the
starting frame before those locations, however, ldvoncrease the time required to
reach the highest concentration areas, increalsegwuerage correction time.

6.2.3 Optimum frame identification

In order to identify the optimum starting frame &ach signaturg we calculate the
estimatedVTTR(f) for each possible starting frarhdt is defined as:

MTTR,(f) :;—ifhg—[i][ﬂdist(i, f)+1) (6.1)

i=PB s

Wheref is the starting frame;Sis the frame sizeBR is the configuration port bit
rate, PB is the partition beginning andE is the partition endhdi] is the histogram
value for signature for thei-th frame andOs is the total amount of occurrencessof
Therefore h{i]/Os is the probability that the error is located ie tih frame, whenever
signatures is receiveddist(i, f) is the distance betwednand thei-th frame, i.e., the
amount of frames that have to be written beforehiggy thei-th. It is defined as:

81

i—f,ifix>f

. . (6.2)
PE-f +1+i —PB, otherwise

mmjp{

The sum in (6.1) is, therefore, the “mean framesefmir” whens is received and
is used as starting frame. It is converted to & timit with the time required to write a
frame FSBR). There may also be additional costs associatéd inieracting with the
programming interface, such as issuing a write camin Such costs are device-
dependent and thus not shown in (6.1). Furtherntbey, are usually negligible when
compared to the time required to transmit the gumétion data, but are nonetheless
taken into account in the experimental results ntgplan this work.

In (6.2), the first condition is the distance betwé andi if f, the starting frame, is
beforei. In this case, the error is corrected before negcthe end of the partition. The
second condition occurs when the error is onlyesied after reaching the end of the
partition and returning to its beginning. In these,PE —f + 1 is the amount of frames
written until the partition end and- PB is the distance between the partition beginning
andi.

With (6.1) and (6.2) one can calculate the expeb@&dR for each possible starting
frame and select the smallest one as the optimuncelfor signaturs. This is repeated
for all the different signatures that occurred the circuit. LetO denote the total
amount of received signatures, as shown in (6.8)Sthe set of altlifferentsignatures.
The overall MTTR is defined by the average of all signatures, weighby their
occurrences, as shown in (6.4).

0=> 0O (6.3)

$1S

®)
MTTR=) —SIMTTR(f 6.4
2o MTTR(f) (6.4

One can then build a table that indicates, for esaghatures, its optimum starting
frame fs. This table provides the optimum ST mechanism S&RFER in terms of
MTTR reduction. For this reason, we refer to itpgsfect signature translation (PST),
and it is a relevant mechanism to measure the marigains of SURFER. Its benefits
and drawbacks are discussed in section 6.4, fallgwhe experimental setup described
in section 6.3.

6.3 Extended experimental setup

The experimental setup presented here extendsd#saribed in section 5.2 and
consists in several tools required to evaluate greposed techniques, as shown in
Figure 6.4. The entire setup is divided into masteps for the sake of clarity, which are
detailed in the remainder of this section.

The first stepis the same performed in the setup described ¢tiose5.2, i.e., a
synthesized description of the original HDL designgenerated with the standard
synthesizer XST andetgen which is then subject to the redundancy insertam that
applies the carry chain-based fine-grained DMR.tHrs case, however, the error
aggregation circuit is not instantiated, as weiaterested in observing the individual
error indication bits that form the error signatufable 6.1 presents the total signature
sizeS;izefor each circuit.

82

HDL A (Sign i :
@ M/ [Train e ST | FPG
a List | \Generatior

e N ‘ f S ‘ 3 ‘ 1
‘1 (XST+ . |gnatur: :,» ---------- N e
t Division % €St HDL | sy Xilinx
netge file T | List ST Flow
2

. :
K Xilinx | o Fault | | MTTR ”' """"" \
Synth. . : ‘
m _Flow -Injecto A Eval §5 Xilinx i [Fault
S 8 Z'{ Flow J i |Injecto

Redundanc W_fﬁ """""""" T
Insertion J: " |Circui

Figure 6.4: Extended experimental setup

The second steponsists in extracting error signatures are aagedtiwith each
injected fault. The injection tool described in &t 4.3 was extended to transmit the
generated signatures to the host PC, along withHrdmee address on which the fault
was injected. We once more perform exhaustive figeci.e., faults are injected on
every bit associated with the CUT. As previousl§),000 pseudo-random input vectors
are applied to each circuit for each injected fadtiwever, as discussed in section 6.1,
several different signatures may be generateddohn éault, due to the dynamic factors
that change propagation in the circuit. To maintainactable experiment time, we limit
to 20 the amount of signatures transmitted pert.f&tlll, almost 3 million signatures
were received per circuit, on average, as can ée seTable 6.1. Table 6.1 shows, for
each circuit, the total amount of signatures, Oeas seen in (6.3), and the total amount
of different signatures, i.e|S| The experiment is therefore exhaustive only reigar
the possible faulty bits and not regarding the fbsgenerated signatures, since faults
are injected on all bits but only up to 20 signatuare taken from each.

It is important ensure that the signature sampgtasstically significant and that the
mechanism is not applicable only to that particglar of signatures. For that purpose,
we use an approach similar to that traditionallgdugvith neural networks (HAYKIN,
1998). Thesignature divisionstep shown in Figure 6.4 generates two non-ovpitap
signature lists, one to be used in the generatidheotranslation moduldréining list)
and one to measure the obtained MTT&sting lis). Thus, the evaluation is performed
on a list of signatures not available to the get@maalgorithm. The first 15 signatures
received for each fault are placed on the traifistgand the rest on the test list.

In thethird step the translation function is generated based erstgnatures in the
training list. It can either follow the straightfeard PST mechanism described in
section 6.2.3 or the heuristic signature transhafidST) algorithm, to be presented in
section 6.5. Moreover, it calculates the expectedl'® for the signature distribution
observed in the training list. This value, when pamned to that obtained in tHeurth
step i.e., when the test list is applied to the getesrdunction, allows determining if
the obtained signatures are representative of tre-®-signature relations for that
circuit and if the generated mechanism is nottgrlonited to signatures in the training
list. All results assume the maximum operating dpeé the Virtex 5 SelectMAP
interface, which is a 32-bit wide port operating 180 MHz. These figures can be
converted if a reduced transfer rate is being ugée.also take into account the time
required to issue a write command to the interf@e cycles in our implementation)
and to write a dummy frame, which is required bieS®AP (XILINX, INC., 2011a).
Note that this must be done twice whenever a retarthe partition beginning is
required.

83

Table 6.1: Total signature si&g,, amount of received signaturé&d)(and of different
signatures|§| for each circuit

Size Total Signatures Different signatures
alu4 167 1,785,081 24,017
alu_32b 359 1,756,168 48,215
alu_64b 192 3,567,880 89,343
apex2 39% 3,819,021 25,941
apex4 332 3,232,288 31,271
bigkey 354 2,984,645 54,717
clma 609 1,373,711 16,413
des 355 2,962,133 57,043
diffeq 234 740,011 9,928
dsip 370 3,519,234 38,471
elliptic 73 205,020 649
ex1010 21% 1,991,861 24,996
ex5p 81 502,924 1,990
frisc 894 4,412,457 54,924
misex3 349 3,245,937 31,787
pdc 603 6,588,236 64,214
s298 11 44,865 84
s38417 884 4,784,611 27,332
s$38584.1 1,080 11,681,701 38,573
seq 43(4,215,089 22,344
spla 114 928,254 5,525
tseng 337 1,354,465 25,155
Average 383.55 2,986,164 31,497

The fifth step consists in submitting the generated translatadriet described in
VHDL, along with the DMR circuit to the Xilinx stalard design flow to determine area
and performance overheads. We also evaluate tiiemes of the generated translation
tables to faults affecting their configuration,@rthey are also embedded in the FPGA.
This is done through a second round of fault inggcexperiments, in theixth step
Actual error signatures are used as stimuli anddbiy outputs are transmitted to the
host PC for analysis. Each faulty event is theregaized as described in section
6.5.1.2 and the increase it causes to the over&llRlis computed.

The generated signatures and the resulting ST meshaare strictly related to the
decisions made by the placement and routing algust since components (and routed
wires) that change place may also change theircegsd frames. Thus, for the
generated ST mechanisms to be applicable to thédesign, it is important to maintain
the same placement and routing used for signaemergtion (second step). This can be
accomplished through several means, such as thraugimatically generated fine-
grained placement and routing constraints (e.g., CLO BEL and
DIRECTED_ROUTING (XILINX, INC., 2011d)) or using aimcremental design flow
(ZEH, 2007), which allows creating partitions whqgdacement and routing are not
modified by changes in other modules.

84

6.4 PST - Perfect Signature Translation

The Perfect Signature Translation (PST) consistslescribed in section 6.2.3, in a
table that maps each and every generated signaiutke optimum starting frame
address that minimizes the MTTR. It is, thus, apontant mechanism to estimate the
maximum gains made possible by the SURFER mecharisthis section we present
these gains and also discuss the shortcomingssodpiproach.

The extended experimental setup was applied tos#mee 22 benchmark circuits
used in section 5.3. Table 6.2 shows the obtain@d RIresults, in microseconds. The
Standardapproach consists in starting reconfigurationhat first frame of the circuit,
l.e., it presents the MTTR obtained with straightfard partition-based scrubbingST
Train is the MTTR associated with the signature listduge the generation of the
translation circuit, whereaBST Tesis that obtained when the testing signature §st i
applied to the translation function.

Figure 6.5 emphasizes the reductions achieved iTRIWith PST. The average
MTTR reduction provided byST Testover standard scrubbing is of 79.65%. The
circuit with least gains is298 which showed a 52.9% reduction, due to its vengals
size which leaves a reduced room for improvemeritis fine-grained diagnosis. The
testing and training results are very similar fdrcrcuits, indicating that signatures

Table 6.2: MTTR of standard scrubbing and SURFER taining and testing
signatures (imus)

Circuit |Standard| PST Train| PST Test
alu4 172.29 31.07 33.59
alu_32b 109.36 27.12 30.07
alu_64b 220.71 39.84 45,52
apex2 228.48 45.23 47.02
apex4 239.74 38.86 40.85
bigkey 194.87 36.28 38.42
clma 325.43 47.39 50.92
des 211.48 29.02 31.07
diffeq 169.67 34.63 36.81
dsip 342.1¢ 52.67 55.85
elliptic 118.08 23.94 24.04
ex1010 196.57 40.55 42.93
ex5p 78.91 18.36 18.69
frisc 507 79.12 82.68
misex3 251.42 44.4 47.16
pdc 415.7 58.23 62
s298 35.84 16.83 16.88
s38417 436.67 74.37 76.34
s38584.1 450.28 84.04 85.95
seq 372.74 61.52 63.36
spla 206.74 31.12 31.9
tseng 137.49 28.36 30.85
Average 246.44 42.86 45.13

85

MTTR (ps)

D S o
o ZF o >
2 <

B Standard ®PST Train [PST Test
Figure 6.5: MTTR of standard scrubbing, PST withirting and testing signatures

used in the testing list were able to appropriatagture most of the error-to-signature
relations for each circuit. The average erroPi®T Trainrelative toPST Tests of
5.08%, with a maximum of 12.47% falu_64b

Implementing PST tables in the FPGA substrate, lrewecan be very challenging.
Fors298 the smallest circuit (17 LUTSs), direct implemeida of its PST table requires
119 LUTSs, which is 7 times the size of the originatuit. In this case, due to its very
small signature size, it is still possible to useA/s instead of LUTs to implement this
direct translation. But it quickly becomes infedsibor circuits with larger signatures.
Still among the smallest circuits (128 LUTex5phas 1,990 different 81-bit signatures.
Direct implementation of its PST table, howevequieed 25,290 LUTs (197.58 times
the size of the original circuit), showing the pseaalability of this approach. In fact, the
synthesis tool runs out of memory before being dablsynthesize the PST table for
even intermediate-sized circuits. Therefore, ineorh provide a scalable variation of
the SURFER approach, we propose a heuristic signatanslation (HST) mechanism.

6.5 HST - Heuristic Signature Translation
6.5.1 Heuristic table generation

The proposed Heuristic Signature Translation (H@U¥t be able to quickly provide
an initial frame address to be used by the recardigon controller. It must also be as
small as possible, in order to minimize the arearle®ad. The mechanism proposed
herein works similarly to a hardware-implementedhtable, generating a compressed
version of the signature that is then used to aceetwble containing the target frame
addresses. Most of the effort goes into definingapropriate hash function, which will
in turn lead to an efficient table implementation.

As occurs for any function to be used in a hasHetatve want to minimize
collisions, i.e., different signatures that are peghto a same compressed counterpart.
However, the algorithm should take into accountdpecific purpose and requirements
of the translation being implemented. First of agt all collisions have the same
penalty in terms of the final overall MTTR. Sevesagnatures may have neighboring
starting frames, or even point to exactly the sénaxme. For these cases, collisions have
a reduced penalty (or none at all). The hashingctfon should, therefore, give
preference to causing this kind of collision ratktegin for signatures that point to far
away locations. Second, the amount of occurre@gas different for each signatuse
It is more important to have a precise output fmse signatures that are more frequent

86

than for those that rarely occur. Finally, the sigme translation (ST) block must also
generate an error detection bit, as can be seé&igure 6.2, in order to trigger repair
procedures. This bit is basically the OR operatierformed over the entire signature. If
the hashed signature can also be used to genaratbit then logic resources can be
saved.

The pseudo-code shown in Figure 6.6 presents tlhie sbeps of the proposed HST
mechanism. It consists in first identifying thosgnsiture bits that, when active, have a
high probability of being associated with the saanea of the circuit. We consider that
two signatures are in a same area whenever theinom frames are in a same row and
major column. A major column of frames is assodatgth a column of resources in
the FPGA. For example, in Virtex 5 devices mosthaf major addresses are associated
with slice columns, and have 36 frames each (witividual minor addresses)
(XILINX, INC., 2011a). Bits that, when active, haaehigh probability of indicating
errors in a same column are iteratively organized groups. Over each group, the OR
function is applied, generating a hashed signatlehas one bit per group. Figure 6.7
shows the logic schematic of the proposed mechan@mpressing an 8-bit signature
into a 2-bit one. And since the hash function impated with ORs over the signature,
the error detection bit e can be generated basetieohashed signature, as shown in
Figure 6.7, saving resources. In the remaindehigfgection, we detail how the HST is
generated.

Input: signList a list of all occurring signatures and associaleine
addressesSs,e the size of uncompressed signatures, raadSizethe maximum
acceptable compressed signature size.

Output: gb, a set of which bits must be grouped anchpAddrTablea table
with the optimum frame address for each compresggtture

1. signTable= parsésignLis);

2. addrTable= optimumTablésignTable;

3. gb:=initialGroupindSs;zJ;

4. while sizggb) >maxSizelo

5. G := buildGrapligb, addrTablsg;

6 maxMatch= maxWeightedMatchin@);

7 gh:= join(gb, maxMatch;

8. end while

9. compSignTabte compressTab(gb, signTablé;

10.compAddrTable= optimumTablécompSignTable
Figure 6.6: HST Generation algorithm

The first step of the algorithm (line 1) is to pauthe signature lissignListand to
build an appropriate structure to store the infdrama The list contains all the
signatures received by the host PC during the fanéction experiments. It also
contains the frame address in which the fault wgected for each signature. These data
are stored in the signature taldggnTablethat maps each signature to its frame
histogram. The histogram is a vector containing noany times that signature occurred
for faults injected in each frame.

87

Compression Circuit Address Table

Groupe Zi
bits | S7 01:0x0020107 Frame
22 10: 0x002400| Address
Grouped s, 11: Ox00231F
bits | S5
S

Figure 6.7: Schematic of a HST circuit

The second step (line 2) is to identify the optimssarting frame for each signature,
following the methodology described in section 8.2The resulting address table
addrTablemaps each frame addrde® a set of signatures that hdvas their optimum
starting point.

The third step (line 3) initializes the sghb of grouped bits. This set contains the
groups of bits that are going to be subject to@fefunction, compressing them into a
single bit. The initial grouping consists in cregtione group for each bit, where that bit
is placed alone.

The steps in lines 4 through 8 are repeated udite@ach the maximum acceptable
compressed signature sim@xSizeThis parameter defines how much effort will bé pu
into compression and will be discussed in greag¢aitlin section 6.5.1.1.

In line 5 the complete undirected group gr&phk= (gb, E), on which the grouping
decisions are to be made, is built. Each set afifged bitsu [J gb is a vertex. AG is
complete, there is an edgs, {} in E for every pair of distinct groupsg v [J gh. Each
edge {, v} is weighted according to the frequency with whigtandv are active for
signatures that point to a same major address coldngroup of bitsu is said to be
active for a given signatureif at least one of the bits imis one ins, i.e., the OR over
those bits would evaluate to one watls input. Figure 6.8 describes how the weight of
each edge, v} is calculated. It sums the occurrences of alhaigres that point to a

Input: An edge {1, } O E, the address tabbddrTableand the occurrence
countQ; for each signaturg

Output: The weightw of edge {1, .
w = 0;
for each major columrc
0y :=0;0,:=0;
for eachframefin c
for each signatures in addrTabl€f)
if activgu, s) theno, :=0o, + Oy
if activgyv, s) theno, :=o, + O
end for;
end for;
10. w:=w+ min(y, 0));
11. end for;
Figure 6.8: The weight of an edge, {/}

©oNOOAODE

88

frame f in columnc which u is active and does the same forThen, it adds the
minimum of these values to the weightThus, the increase im will be zero if eitheu
or v were never active for the signatures that point.tMoreover, a large value will
only be added tav when both groups are active for signatures wiglqdient occurrence.
This may also be accomplished by a single signdturghich both groups are active
and that has a high occurrence count.

Line 6 (Figure 6.6) computes the maximum weightetaming onG. It consists in
choosing a subset of non-adjacent edges (i.e.,dihatot share vertices) from that
maximizes the sum of their weights. The maximum ghegd matching can be
computed in polynomial time (EDMONDS, 1965). We udee implementation
available with the LEMON graph library (DEZSJUTTNER and KOVACS, 2011).
One can then join the groups (line 7) accordinghts matching, maximizing the total
frequency with which they are active for signatuttest point to a same major column.
Thereby, the signature size (i.e., amount of granpgb) is approximately divided in
half at each iteration. These steps are repeatéitl the maximum signature size
maxSizes reached.

In line 9 the compressed taldempSignTablés built. It is similar tosignTableas it
contains, for each compressed signature, its oecoer histogram. The compressed
signature is computed by applying the OR functivardhe bits of each group gb. Its
histogram is the frame-wise sum of the histogramallaouncompressed signatures that
are mapped to it when compressed.

Finally, on line 10, the same calculation of optimurame address for each
signature can be repeated, this time over the oesspd table. The resulting
compressed address tablampAddrTablallows mapping the compressed signatures to
their corresponding optimum starting frames.

6.5.1.1 The maxSize parameter

ThemaxSizeparameter tunes the HST algorithm effort and mgEfecant impact on
the resulting translation mechanism. HiglaxSizevalues reduce the amount iterations
of the compression loop (lines 4-8 in Figure 61&) allow large compressed signatures.
Consequently, the address table stores many ditfesddresses for different
compressed signatures, leading to more accuratésdrit with a higher cost in area.
As one reduces the value wfaxSize fewer signatures remain due to more collisions
that occur, leading to smaller translation tablethess precise results. The design
space made available by this parameter will beargdlin section 6.5.4.

There are two corner cases that should be higlelight maxSize> Si;e whereS;ize

is the uncompressed signature size, then the HEP&T tables will be identical, as no
compression will take place. ConverselyméxSize= 1, then all bits will be grouped,
leading to single-bit compressed signatures anaduress table with a single entry.
Thus, for any signature, the resulting frame adkliedl be the same. We refer to this
address as thbest static addressSince all signatures will be mapped to the same
compressed counterpart, the best static addresssptm that starting frame that
minimizes the MTTR considering all signatures (dhdir incidence counts) at once.
This statically shifted scrubbing, therefore, dasst actually exploit fine-grained
signatures. Instead, it solely uses the non-unifdistribution of sensitive bits over the
frames and may still present reductions in the MTéémpared to the standard
approach.

89

6.5.1.2 Dealing with faults in the translation table

As the translation table is implemented in the saseonfigurable fabric of the
circuit it is monitoring, it is also susceptible ttee same faults. Thus, it is important to
understand their possible effects, their impat¢h&overall MTTR and how can they be
handled. For that purpose, we propose the useredandant error aggregation circuit,
as shown in Figure 6.9. To minimize area overhe#dus,circuit does not generate a
target frame address, but only the error detediib{OR over all signature bits, as was
done in chapter 5). This allows avoiding the magical scenarios, as will be discussed

herein.
Signature Frame address
Error Translation — €rrolp
signature Redundant |, error
Error. Aggreg

Figure6.9: Redundant translation tal

Two types of table faults are distinguishable: thdbkat manifest themselves
immediately and those that remain silent. The fiype consists mostly in “false alarm”
faults, i.e., faults that cause the error indicatint to be raised even though the input
signature is zero. These may occur in the tramsiable or in the redundant copy, but
are detectable, since they will diverge. Furtheen@ome faults may cause the frame
address output to change while the detection hiés kept low, thus also being
detectable. Such faults must be removed upon dateict avoid accumulation.

Faults that remain silent present more complex @tes As they are not
immediately detected, they may accumulate withtéauml the payload circuit. The most
evident possible outcome is that an incorrect fradéress may be generated. In this
case, the generated address may or may not be ualidamong those that the table
would normally produce (note that it only generade®stricted set of addresses under
normal operation). A silent fault may also prevt@ error detection signal from being
raised. In this case, upon occurrence of a payfaall, the redundant checkers will
diverge.

Considering the discussed scenarios, we propodeltbwing approach. When both
detection bits are raised and a valid frame addeegenerated, that address is used. If
the generated address is invalid, best static address used instead. This avoids, for
example, using addresses that are outside thegowafion space of that particular
partition. Whenever the detection bits diverge, ttanslation table is scrubbed first,
returning it to correct behavior. Thereby the detecsignal is lowered in case of false
alarms. On the other hand, if it remains high tllegre is an error in the redundant
checker preventing its triggerirand an error in the payload circuit, which should be
scrubbed with the current generated address. jnallavoid accumulation of faults,
the translation circuitry should be scrubbed aftezry scrub of the payload circuit.

One can evaluate the impact in MTTR of faults ia thanslation table considering
the overheads introduced by each situation. Fdésena require the scrubbing of the
translation table to be identified and removed. IfSathat cause valid but incorrect
frame addresses will have the MTTR associated thigluse of that sub-optimal starting
frame. Silent faults that prevent error detectiequire the time to scrub the translation
circuit plus the time to scrub payload circuit. Byonsidering the amount of
configuration bits (and input signatures) that léadach situation, one can determine

90

the total change expected in the MTTR. Moreoves,dmaller the translation circuit is,
in comparison to the payload, the less likely ifas it to be subject to faults. Thus,
minimizing its area is also important to minimite susceptibility to faults.

6.5.2 Area and delay costs

As discussed previously, the goal of SURFER is aoly to provide MTTR
reductions, but also to do so with manageable carstsin a scalable manner. In this
section, we discuss the area and delay overheatisegbroposed heuristic signature
translation, consideringraxSize= 7. The reason behind this choice and the impact
this parameter will be discussed in section 6.5.4.

We take into account two variations of the techeig@ne attempts to minimize
delay overheads by processing error signaturespipelined fashion. It first stores the
generated error signature to process it in theotig cycle. As a result, it requires the
use of additional flip-flops. If these are a scaresource in that particular design, then
the alternative combinational approach may be ratiractive. Moreover, there may be
situations in which the performance is limited ihey components of the design and
improving the frequency of the module at hand ismagessary. In such cases, the
combinational approach could also be preferablealitulates the target frame address
directly from the comparators’ outputs. Therefateninimizes the use of flip-flops but
introduces additional delay. Note that the singlele difference in MTTR observed
between both approaches is negligible.

Table 6.3 shows the absolute area occupied by dhk eircuit, separated into its
individual components: comparators, HST table dmal redundant error aggregation
(EA) circuit. The total figures include the two ¢ep of the original circuits. Figure 6.10
shows the area overhead for each circuit, in tesfnsccupied LUTs. The results for
CG-DMR are also included for comparison. For mastudts, the proposed translation
mechanism was able to maintain low overheads. Thseits with higher costs298
andex5p (212% and 154%, respectively), are also the on#ds smallest areas. Most
notably, the former has only 17 LUTSs in its unhareld form, which leaves small room
for the implementation of a translation mechanisitinyow relative costs. On average,
only 15.5% of the amount of LUTs of the unhardeniduit is required to implement
the HST translation mechanism. The average tot&FFER overhead was 133.9% over
the unhardened circuit and 10.5% over CG-DMR.

250%

200%

150%

Area overhead (LUT usage)
'_\
a1 o
o o
X X

o
X
]

ECopy BEComparators DHST Table ORedundant EA
Figure 6.10: Area overhead of circuits with staddaG-DMR (left-hand bars) and
circuits with FG-DMR and HST tables (right-hand $)ar

91

Table 6.3: Area and delay results for SURFER

Area (LUTS) Clock Period (ns)
Circuit | Comparatol HST Table| Redund. EA otal Comb. Pipe.

alu4 50 54 32 940 8.47 6.81
alu_32b 43 49 28 804 9.83 8.21
alu_64b 81 75 60| 1658 12.27 9.25
apex2 1(94 66| 1766 11.63 10.39
apex4 11 69 56| 1446 10.65 9.19
bigkey 88 72 59| 1369 8.21 5.81
clma 92 116 103| 2849 12.42 9.6
des 86 74 60| 1320 9.25 6.02
diffeq 8 48 39| 1035 10.18 7.58
dsip 96 76 62| 1504 7.73 5.12
elliptic 5 25 13 329 6.84 5.28
ex1010 69 69 36| 1148 8.92 6.43
ex5p 30 25 14 325 6.39 4.42
frisc 85 162 150, 3833 15.56 14.65
misex3 17 75 59| 1549 10.45 7.67
pdc 96 117 102 2821 11.67 9.5
s298 3 14 2 53 4.58 3.41
s38417 54 161 149| 3782 12.16 10.41
$38584.1 149 220 181 4552 11.21 7.23
seq 22 103 72 1889 11.1 8.57
spla 36 35 19 532 7.11 5.33
tseng 51 71 57 1375 10.16 7.89
Average 53.73 82.00 64.50/1676.32 9.85 7.67

The use of flip-flops, on the other hand, dependshe applied variation of the
technique. If we implement the translation mechangs a purely combinational circuit,
no flip-flops are introduced on combinational bemeinks, while sequential circuits
have exactly 100% overheads, since flip-flops #se duplicated by FG-DMR. For the
pipelined version, an amount of flip-flops equaltte signature siz&,. (found in
Table 6.1) has to be introduced. These two appesdmowever, are corner cases of
several possibilities that may insert flip-flopsregister partially compressed signatures
and find improved design points in terms of usedoveces and delay overhead,
depending on the specific constraints of each desig

Figure 6.11 shows the minimum clock period for tiv® implementations of the
HST mechanism and for CG-DMR for comparison. Theootuction of the HST circuit
directly after the comparators (i.e., the purelynbmnational approach) adds an average
of 56.4% delay over standard DMR. As occurred f@&-PMR without SURFER, in
section 5.3.2, this delay is particularly more gronced for the sequential benchmarks
(83.9%, on average) then for the combinationaludisc(33.7%). This occurs mainly
because internal flip-flops may divide the logidlpa such a way as to hide the delay
of the comparators.

92

18
16
14
12 I 1 1

[E=Y

o
]
]

Tek (ns)

O N M OO
I

X O 0 D X AR DR DR D NN S Yy
¥ & FF @ TGS S T S S
> OEES) 3 ‘@\QJ%\% Q%%%OO %.@,Vv
T NS TS § S

ECG-DMR ®EFG-DMR + Pipe. HST OFG-DMR + Comb. HST

Figure 6.11: Minimum clock perio@ck for CG-DMR and FGODMR with pipelined anc
combinational HST

Depending on the requirements of each specificgdeshe delay overhead of the
combinational approach may or may not be acceptaslan alternative to minimize its
effects, we consider the use of a pipelined verswinich reduces this overhead by
dividing in two steps the generation of the tarfgame address. The reduction over the
combinational approach is very significant for moases, as can be seen on Figure
6.11, leaving the pipelined version closer to CGRMONn average, pipelined HST
presents a 20.5% delay increase over CG-DMR. Asiroed for the combinational
implementation, this difference is more significdot sequential benchmarks (40.8%)
then for combinational ones (3.5%). Furthermoresame cases, especially when the
amount of primary outputs is very large comparedht circuit size (such agesand
ex5p, the delay of comparing primary outputs may beeorary significant and the
pipelined approach may even be faster than CG-DMR.

6.5.3 MTTR Results

Table 6.4 shows, in microseconds, the MTTR assumifagilt-free HST circuit (i.e.,
the results obtained at steps 3 and 4 of the axpetal setup in Figure 6.4). It also
contains the experimental results to evaluatertipgact of faults in the translation table
(i.e., obtained at step 6). Both scenarios areudsad in the following sub-sections. We
setmaxSize= 7 in this section as well.

6.5.3.1 MTTR reduction with a fault-free table

Figure 6.12 shows the MTTR obtained with HST focleaircuit. It also shows
those of standard scrubbing and of PST with tessignatures for the sake of
comparison. Although unable to maintain the avergagjes of PST, as expected, HST
presented only a 4.03% increase for the circuith Watist gains, i.es298 As it presents
very small signatures, the compression loop requarge single iteration to reach the
target maxSizefor this circuit, leading to a very small differendoetween both
techniques. On average, a 95.2% MTTR increase \wasreed due to the loss of
precision caused by the compression heuristic. Mehess, HST was able to
substantially accelerate repair, when comparedtdondsrd scrubbing. On average, a
61.9% reduction was achieved (with the testing),lishowing that the proposed
heuristic maintains the ability to significantly mmize repair time.

93

Table 6.4: MTTR (irus) with fault-free table and with faults in thertstation circuit

Fault-free table Faulty table
Circuit | Train Test Golden Faulty
alu4 57.04 57.06 56.41 58.55

alu_32b 49.8]
alu_64b 86.21

49.84 49.04 50.58
86.28 90.45 91.66

VT IV UTT W

apex2 94.02 94.39 92.66 93.80
apex4 89.35 89.37 88.08 89.36
bigkey 60.06 60.06 59.31 61.30
clma 139.31 138.74 138.04 139.82
des 51.88 51.87 50.91 53.69
diffeq 80.45 80.74 79.93 80.20
dsip 105.62 105.69 104.37, 106.08

elliptic 50.50 50.60 50.52 51.55
ex1010 60.96 60.99 60.06 61.90
ex5p 33.77 33.85 33.73 36.64
frisc 192.14 190.37 191.10 190.99
misex3 105.93 105.61 104.47, 105.72
pdc 134.58 134.53 129.87, 130.31
s298 17.54 17.56 17.54 17.85
s38417 207.81 207.35 206.88 212.26
s38584.1 174.17) 174.3] 169.27, 173.95

seq 128.50 128.02 127.24 127.92
spla 62.59 62.27 62.26 62.32
tseng 50.36 51.05 49.53 53.77

Average 92.39 92.30 91.44 93.19

It is also important to evaluate the differencewssn results with training and
testing signature lists. Figure 6.12 highlightstttieey are very similar for all circuits.
The average variation is of 0.26%, with a maximuimi.86% fortseng Such a small
difference indicates that the applicability of tH8T mechanism is not restricted to the

600

0 0 D N D o™ QR ¥ N Q.8 DD NN
ﬁ@a&@@&@§°®ﬁe+&§@@

® Standard EHST Train OHST Test OPST Test
Figure 6.12: MTTR for the HST mechanism (with tiaghand testing lists). PST and
standard scrubbing are shown for comparison.

94

signatures used in its generation and that the rempats were able to adequately
expose the error-to-signature relations for theuiis. Moreover, this difference is
substantially smaller than that observed in for K508%, on average), showing that
the HST mechanism is less susceptible to unexpsugeatures or signature histograms
that differ from those observed during table getena

6.5.3.2 The impact of faults in the translation table

As discussed previously, it is important to asséesrobustness of the proposed
technigue to faults in the translation table. Fbattpurpose, faults are injected
specifically on the translation table in step 6o{gh in Figure 6.4), which is stimulated
with signatures obtained during the first injecticeampaign (step 2). Due to the large
amount of signatures (shown in Table 6.1), whictld@dmot be stored within the FPGA
memory, we limit the applied stimuli. For each otgd fault, 1,000 different signatures
are applied to the circuit, chosen as follows:

1. The all-zero input is applied to detect false aldaumlts and faults that change
the frame address output without triggering detecifas described in section

6.5.1.2);

2. For each possible compressed signatgreéhe most frequent signature that is
mapped tos; is chosen. This aims at stimulating the differeintuit paths. As
maxSize= 7, this represents at most 128 different sigestu

3. The remaining signature slots are filled with th@sinfrequently occurring
signatures that were not inserted during step jng at covering the most
frequent signatures in the experiment.

Signatures chosen this way cover 90% of all ocowees observed in the first
injection campaign. Faulty outputs are sent tohtbst PC, which categorizes them and
calculates their effect on the MTTR, following tleg@proach described in section
6.5.1.2. Table 6.4 shows, on the two rightmost mols, the MTTR associated with the
chosen subset of signatures, assuming a faultt@@eden) table and when the effect of
faults are included. Figure 6.13 shows the incredoserved for each circuit, which had
a 2.48% average. Overall, it can be seen thateittentque is very robust to such faults.
Even when their effects are considered, a 61.668tage reduction is maintained over
standard scrubbing. First, because HST is ablagmficantly reduce the table size.
Therefore, the amount of sensitive bits in the daisl very small, compared to the
payload circuit. Second, the redundant checkemalldetecting those situations that

10%
9%
o 8%
@ 7%
2 6%
< 5%
4%
= 3% -
2% -
1% -
0%
XA D > AR FAREN R F D PN SNy
W P F S SN T B F T S
%‘D\Qn/)q}\&(s «D.Qz @QQ\Q\; P b& & N P &> \g,@ QL b‘°)% S .%Q\%'Za

Figure 6.13: MTTR increase due to faults affectimg translation table

95

would have the highest impact, such as mistakifiglse alarm for an actual payload
circuit fault.

The values change significantly between each dirasithey are influenced by a
number of factors. For example, the most significaarease is 8.6% fagx5p For this
case, the time required to repair the table whésefalarms happen is particularly
significant, for two reasons: the circuit has a lbaseline MTTR (as can be seen in
Figure 6.12) and the area occupied by the tabigisificant (shown inFigure 6.10).
The short MTTR causes a small increase to be migrefisant, while the significant
table area introduces more sensitive bits. Thiglse the case faiseng which had a
similar increase. Fos298 on the other hand, even though it has the highesh
overhead, it presents only moderate gains with SERRFdue to its reduced size.
Moreover, itsbest static addrespresents comparable improvements, since the tircui
area is very small. As a result, a reduced overheadserved for those situations in
which the table fault is detectable (e.g., invalidresses). An interesting situation is
also presented biyisc. As it is a large circuit with a longer MTTR andrelatively
small table, the sensitive bits introduced by thieldé actually present a slightly reduced
MTTR compared to the payload circuit. Thus, wheinsaknarios are considered, the
overall MTTR remains virtually the same.

6.5.4 Evaluating the impact of themaxSize parameter

The maxSizeparameter defines the maximum acceptable comptesgmature
length and is used to determine the heuristic cesgon effort. Figure 6.14 shows its
impact on table area and MTTR for a representativeset of the benchmark circuits
(for the sake of clarity). Results are shown fazrereration of the compression loop of
the HST algorithm, which stand for different targetxSizevalues. Appendix C
presents the results for all circuits. The righttpsints in the curves are associated
with large signatures, which are iteratively rediige the compression loop. Each point
is associated with one such iteration. Eabp the rightmost point stands for the PST
table. For the other circuits in Figure 6.14, XSaswinable to synthesize PST tables.

180

160 A
140 ‘
120

v

MTTR (us)
(0]
o

[*)]
o
I

N
o

N
o

o

10 100 1000 10000 100000
Area (LUTS)
—o—alu4d apex2 —k—apex4 —*—bigkey —¥—tseng diffeq ex5p

Figure 6.14: MTTR and table area for differemixSizesalues

96

The heuristic is able to provide multipleareto points i.e., points that are not
surpassed by any other in both metrics at once.ohiye nonPareto point occurs for
ex5p when one of the compression iterations actualtyraases the area. This is a
situation in which the compression circuit becoraeger but the translation table is not
reduced accordingly, leading to a larger total area

In general, there is a clear point up to which ¢hare very significant area
reductions. After this point, the MTTR continues® increased, but the area is reduced
less aggressively. This occurs when the compressgpthture size approaches the
amount of inputs in the device’'s LUTs, allowing ient implementations of the
address table seen in Figure 6.7. For Virtex 5aeyiLUTs have 6 inputs, but there are
multiplexers to allow implementing any 7 or 8 inpwinction with 2 or 4 LUTS,
respectively (XILINX, INC., 2010). Thus, signaturasound these sizes can be seen as
optimal spots for the heuristic, considering a dmstefit metric such as “MTTR
reduction per area”. The chosen valmeakSize= 7) for the experimental results in
sections 6.5.2 and 6.5.3 is, therefore, in the teidd this space. The area reductions
provided by further compression become less sicanifi, as the compression circuitry
starts to dominate the overall area. The leftmosttgs associated with the circuit that
compresses all bits into a single signature angloregs with the best static address to all
of them.

97

7 CONCLUSIONS

In this work, we have presented a study on the mtigdglity threats faced by state-
of-the-art FPGAs and on existing techniques ainangnitigating them. Our attention
was focused on a particular issue faced by suclcegvwith growing configuration
memories, the time required to scrub away themsient errors becomes longer. And
FPGAs tend become more and more susceptible toesuots, both due to the growing
configuration size and the scaling of transistditsus, efficiently and quickly handling
these errors becomes crucial to enable the us®G#S on critical systems, especially
those on harsh environments, such as space appticafhe use of fine-grained error
detection techniques was put forth as a means sodeith manageable costs. We now
summarize the main contributions of this work ahed tonclusions drawn, as well as
possible future works. Publications achieved byat#or both within the scope of this
thesis and in cooperation with other researcherdisted in section 7.3.

7.1 Summary of contributions
7.1.1 Fault injection platform

A new fault injection platform was developed to lexade the techniques proposed in
this work. As main features, it requires one sSifgRGA to operate, reducing the costs
of setting up the experimental setup. Moreoverpperates directly on the internal
configuration access port (ICAP), without usingtsofe or hardwired processors. This
reduces the injection latency and generalizes tatopm’s applicability, since it does
not require special components, aside from LUTSABR, flip-flops and the ICAP.
The modularity and extensibility of the injectorloaved its adaptation to evaluate
different attributes of circuits, such as fault emage and detection latency. It was
adapted to extract error signatures and to evaltnesusceptibility of the SURFER
translation tables to faults, both being importaspects discussed in chapter 6. This
platform is currently being used by other reseaiche evaluate different mitigation
mechanisms.

7.1.2 Platform for radiation experiments

The experiments conducted on ISIS, Rutherford Applé.aboratories, required the
development of a monitoring platform able to detdw® occurrence of errors, to
automatically reprogram the FPGA and to log alevaht events. This platform is
described in section 5.4, along with the resuléd there obtained. As the fault injection
system, this platform was developed in a modular extensible manner. Both the on-
chip monitoring circuit and the scripts on the hie&t have been successfully adapted to
be used with different circuits and fault tolerateehniques in cooperation researches.

98

7.1.3 Carry chain circuits for fine-grained comparison

The maintenance of low costs was among the maireras of this work. And,
since fine-grained redundancy typically demandsitemichl area to implement the
numerous required comparators, we have devisedtlaoohéo use the abundant carry
propagation chains found in FPGAs to implementdéhssmparators. Thereby, the use
of LUTs can be avoided. This translates to more &£We&ing left available for other
purposes (such as other functions to be integratétde same FPGA) or even in the
possibility to use a smaller (and lower cost) FPGA.

A tool to automatically apply the proposed techeiguas developed. Numerous
features are supported, such as the instantiafierrar aggregation circuitry, the use of
redundant comparators and the duplication granylarhe technique was extensively
evaluated under several axes and compared to #@idradl coarse-grained DMR,
showing similar area and significant reductionsdatection latency at the cost of a
slightly reduced fault coverage and an increaseckgberiod.

7.1.4 Making use of fine-grained diagnosis with SURFER
7.1.4.1 Shifted scrubbing

The basic concept explored by SURFER is that ones dwt necessarily starts
scrubbing an FPGA on the first configuration frame,, it can beshifted in the
addressing space. The idea to start scrubbing pdsdion closer to the actual error
location was inspired by the rotational latencyhafd disk drives: once the magnetic
head reaches the desired track, it must wait ferdisk rotation to bring the desired
sector. If one could place the head just before #actor, then this time would be
minimized. Similarly, the actual correction timesufrubbing depends on how far ahead
the error is located, relative to the next frameb&accessed by the scrubbing unit.
Therefore, one can choose a starting frame thainmzas the mean time to reach the
actual error. This realization is, in fact, indegent from fine-grained error detection
mechanisms. Even without fine-grained diagnosi® oan estimate the areas with
higher density of sensitive bits and start scruplmmediately before that area.

7.1.4.2 Shifted scrubbing guided by error signatures

As discussed in section 6.1, several challengesfared by systems aiming to
explore very fine-grained diagnosis to accelerapair. The dynamic factors that
change masking and propagation through circuitclagiuse multiple signatures to be
generated by a same error. Furthermore, errorsifeeretht frames can cause a same
signature, since a module’s functionality is notessarily encompassed by a single
frame and routing paths may cross long regiondhefdevice. As a result, even when
very fine-grained redundancy is used, it may naiagb be possible to narrow the error
location down to a single frame. These signatuees bowever, be used as meaningful
hints for a shifted scrubbing system. The SURFERharism proposed herein was
able to reduce the MTTR by 80% on average, wheninmgakse of a perfectly precise
signature translation mechanism. This mechanisrekier, turned out to have very
high costs even for small circuits, creating theechdor more efficient translation
heuristics. It remains relevant, nonetheless, tmwsthe maximum gains provided by
SURFER, being useful as a goal for any such heairist

7.1.4.3 Heuristic for efficient signature translation

The heuristic signature translation (HST) proposedhis work is based on a
compression circuit that joins signature bits wvitk OR function. It operates similarly

99

to a low cost hash table and heavily exploits #et that not all collisions have the same
impact on the final quality of the solution, sinoany signatures would be translated to
neighboring frame addresses. By grouping those thidé are active (i.e., ‘1’) for
signatures that frequently appear in a same regtoattempts maximize collisions
between such signatures and to minimize them betwlsese that appear in far away
locations. It allowed creating translation tablbattprovide an average 61.9% MTTR
reduction at cost of 15.5% of the unhardened dilanga.

7.2 Future works
7.2.1 Choosing intermediate redundancy grains

In this work we have used a very fine granulaipce the outputs of all LUTs were
compared to copies. This was made with reduced emsts by means of the carry
propagation chains. But it did introduce delay pes and generated very large error
signatures, which increased the complexity of tietimgy them to useful information.
Therefore, identifying the most important obsematnodes, both in terms of detection
latency and of diagnosis, can be an interestingcaah to reduce costs, similarly to
what is done in partial redundancy works such &A(PT, CAFFREY, GRAHAM, et
al., 2006) and (SHE and SAMUDRALA, 2009).

7.2.2 Further exploring the SURFER design space

The concepts introduced by SURFER open an enorrdeagn space, in which
many different research directions are possible. Wighlight the following as
promising approaches to further improve the besnefitSURFER.

7.2.2.1 Improved translation heuristics

The HST mechanism proposed here is one of manylp@sand had the main
purpose of showing the feasibility of the SURFERrapach. Different weight functions
or grouping heuristics (not based on iterative mmxn weighted matching) can be
devised. For example, the current version of thaikgc does not always fully exploit
the chosen maximum signature smaxSizeSince it approximately divides in half the
size at each iteration, there may be situationshich the final compressed signatures
are substantially smaller thanaxSize A final “relaxation” step can be introduced to
ungroup bits and meanaxSizeprecisely, leading to less collisions and improved
translation precision with very small area costs.

Other translation mechanisms can be found basedifterent paradigms as well.
Meta-heuristics and neural networks, for examplay raring better results or at least
interesting additional Pareto points. The time nexluto perform the translation, albeit
relevant, can also be extended, if the quality loé thosen frame is improved
substantially.

7.2.2.2 Multiple starting frames

The current SURFER mechanism pointsotee starting frame, based on the error
probability distribution observed for that speciBgynature. It may be interesting in
some situations to create multiple scrubbing areds$, different priorities, in order to
skip “dead zones” in which the probability of findi an error, for that signature, is very
small. This can be done with low costs if the coasged signatures are shared, at least
partially, by the multiple translation tables.

100

7.2.2.3 Using other signals in the signature

The error signatures used in this work comprise iradlividual error detection
signals, but additional informational can be indddAs was discussed in section 6.1,
error signatures may vary depending of dynamicofactsuch as primary inputs (PIs).
Therefore, adding information on the current st#téhe circuit can aid in the location
of the error. For example, an indication of thereat operation mode, of the software
being executed in a softcore processor or registhish are particularly relevant for the
component’s operation can help improving the preoisf the chosen frame address.

7.2.3 Diagnosing permanent faults and aging

This work focused primarily on locating and cornegtsoft errors. The improved
diagnosis provided by fine-grained error detectlomyever, can also be used to identify
areas of the FPGA which are subject to permaneiisfar aging. If the incidence of a
particular signature is significantly above its egfed frequency, it may indicate that
the associated FPGA area is facing aging or evearmanent fault. Alternative repair
mechanisms, such as reallocating the module (caregd it) to a spare area, can be
adopted in this case.

7.2.4 Performing radiation testing over a complete SURFERplatform

Implementing a complete SURFER platform for reldévapplications, preferably
with strict real-time restrictions, is an importastep to validate the proposed flow.
Once the complete system is implemented on a bedhdthe required resources (i.e.,
an SRAM-based FPGA for payload application and diateon-hardened device for
scrubbing control) it can be subject to radiatiesting, measuring the overall reliability
of the entire platform.

7.2.5 Finding other uses for the signature translation haristic

The HST algorithm proposed herein showed intergstiesults, being able to
maintain repair acceleration with a very low areatclt may be possible to apply this
same heuristic (or variations of it) to other pehk with the same requirements: large
amount of inputs, small area, and approximate t®sGlomparing its performance with
hardware-implemented neural networks, for examiglean interesting experiment to
evaluate its efficiency.

7.3 Publications
The following publications were achieved by thehautduring this course.
7.3.1 Book chapters

BECK, A. C. S.; LISBOA, C. A. L.; CARRO, L.; NAZARG. L. et al. Adaptability:
The Key for Future Embedded Systems. In: BECK, A.SC LISBOA, C. A. L;
CARRO, L.Adaptable Embedded Systemslst. ed. New York: Springer, 2013. Cap.
1, p. 1-12.

NAZAR, G. L.; CARRO, L. Reconfigurable Memories.: BECK, A. C. S;
LISBOA, C. A. L.; CARRO, L.Adaptable Embedded Systemslst. ed. New York:
Springer, 2013. Cap. 4, p. 95-117.

101

7.3.2 Journal

NAZAR, G. L.; RECH, P.; FROST, C.; CARRO, L. Radit and Fault Injection
Testing of a Fine-Grained Error Detection TechnifpreFPGAS.IEEE Transactions
on Nuclear SciencgPiscataway, (in press) 2013.

7.3.3 Conferences and workshops

AZAMBUJA, J. R.; NAZAR, G. L.; RECH, P.; CARRO, Let al. Combining
Hardware- and Software-Based Techniques to Detattlmagnose Neutron Induced
Single Event Effects in SRAM-Based FPGA. NUCLEAR BNSPACE RADIATION
EFFECTS CONFERENCE (NSREC). San Francisco: [220]3.

ANJAM, F.; WONG, S.; CARRO, L.; NAZAR, G. L. et alSimultaneous
Reconfiguration of Issue-width and Instruction Gaclfor a VLIW Processor.
INTERNATIONAL CONFERENCE ON EMBEDDED COMPUTER SYSMS:
ARCHITECTURES, MODELING AND SIMULATION (SAMOS).Proceedings...
Piscataway: IEEE. 2012. p. 183-192.

ITTURRIET, F. P.; NAZAR, G. L.; FERREIRA, R. R.; MREIRA, A. F. et al.
Adaptive parallelism exploitation under physicablameal-time constraints for resilient
systems. INTERNATIONAL WORKSHOP ON RECONFIGURABLE
COMMUNICATION-CENTRIC SYSTEMS-ON-CHIP (ReCoSoC)Proceedings...
Piscataway: IEEE. 2012. p. 1-8.

ITTURRIET, F.; FERREIRA, R.; GIRAO, G.; NAZAR, Gt al. Resilient Adaptive
Algebraic Architecture for Parallel Detection andorfgction of Soft-Errors.
EUROMICRO CONFERENCE ON DIGITAL SYSTEM DESIGN (DSD)
Proceedings..Los Alamitos: IEEE CS. 2012. p. 136-139.

NAZAR, G. L.; CARRO, L. An Area Effective Parity-bad Fault Detection
Technique for FPGAs. INTERNATIONAL SYMPOSIUM ON DEET AND FAULT
TOLERANCE IN VLSI AND NANOTECHNOLOGY SYSTEMS (DFT).
Proceedings..Piscataway: IEEE. 2011. p. 27-33.

NAZAR, G. L.; CARRO, L. Energy Efficient Pseudo-@a&cArchitecture Through
Fine-Grained Reconfigurability. INTERNATIONAL SYMP®IUM ON CIRCUITS
AND SYSTEMS (ISCAS)Proceedings..Piscataway: IEEE. 2011. p. 2317-2320.

NAZAR, G. L.; CARRO, L. Exploiting Modified Placemeé and Hardwired
Resources to Provide High Reliability in FPGAs. ANAL INTERNATIONAL
SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING
MACHINES (FCCM).Proceedings..Los Alamitos: IEEE CS. 2012. p. 149-152.

NAZAR, G. L.; CARRO, L. Fast error detection thrdugfficient use of hardwired
resources in FPGAs. EUROPEAN TEST SYMPOSIUM (ETBjoceedings...Los
Alamitos: IEEE CS. 2012.

NAZAR, G. L.; CARRO, L. Fast Single-FPGA Fault Iof®on Platform.
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERAICE IN
VLSI AND NANOTECHNOLOGY SYSTEMS (DFT).Proceedings... Piscataway:
IEEE. 2012. p. 152-157.

NAZAR, G. L.; RECH, P.; FROST, C.; CARRO, L. Expeental Evaluation of an
Efficient Error Detection Technique for FPGAs. EUREAN CONFERENCE ON
RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEM&RADECS).
Proceedings..Piscataway: IEEE. 2012.

102

NAZAR, G. L.; SANTOS, L. P.; CARRO, L. AcceleratdePGA Repair through
Shifted Scrubbing. INTERNATIONAL CONFERENCE ON FIBL
PROGRAMMABLE LOGIC AND APPLICATIONS (FPL). Proceedings...
Piscataway: IEEE (in press). 2013.

NAZAR, G. L.; SANTOS, L. P.; CARRO, L. Scrubbing WWiRepositioning for Fast
Error Repair in FPGAs. INTERNATIONAL CONFERENCE ONMOMPILERS
ARCHITECTURE AND SYNTHESIS FOR EMBEDDED SYSTEMS (GKS).
Proceedings..New York: ACM (in press). 2013.

SANTOS, P. C.; NAZAR, G. L.; ANJAM, F.; WONG, S. at. A Fully Dynamic
Reconfigurable NoC-based MPSoC: The Advantages\iléi-Level Reconfiguration.
WORKSHOP ON DESIGN TOOLS AND ARCHITECTURES FOR MULTORE
EMBEDDED COMPUTING PLATFORMS (DITAM).Proceedings...Berlin: [s.n.].
2013.

SANTOS, P. C.; NAZAR, G. L.; ANJAM, F.; WONG, S. at. A Fully Dynamic
Reconfigurable NoC-based MPSoC: The Advantages ofalT Reconfiguration.
WORKSHOP ON RECONFIGURABLE COMPUTING (WRC). Berlifs.n.]. 2013.

SANTOS, P. C.; NAZAR, G. L.; CARRO, L.; ANJAM, F.teal. Adapting
Communication for Adaptable Processors: A Multi-&xReconfiguration Approach.
INTERNATIONAL CONFERENCE ON RECONFIGURABLE COMPUTII AND
FPGAS (ReConFigProceedings..Red Hook: IEEE. 2012. p. 1-6.

TABORDA, T. B.; NAZAR, G. L.; CARRO, L. Evaluatinghe Weighted Fault
Sensitivity of the Components of a VLIW Architea@urWWORKSHOP ON DESIGN
TOOLS AND ARCHITECTURES FOR MULTI-CORE EMBEDDED CORUTING
PLATFORMS (DITAM). Berlin: [s.n.]. 2013.

TABORDA, T. B.; NAZAR, G. L.; CARRO, L. Investigatg Reliability-Critical
Components of VLIW Processors. WORKSHOP ON DESIGDIRFRELIABILITY
(DFR). Berlin: [s.n.]. 2013.

TAMBARA, L.; KASTENSMIDT, F. L.; AZAMBUJA, J. R.; GHIELLE, E. et al.
Evaluating the Effectiveness of a Diversity TMR 8gfe under Neutrons.
CONFERENCE ON RADIATION EFFECTS ON COMPONENTS ANDYSTEMS
(RADECS).Proceedings..Piscataway: IEEE (in press). 2013.

TONFAT, J.; AZAMBUJA, J. R.; NAZAR, G. L; RECH, Ret al. Analyzing the
Influence of Voltage Scaling for Soft Errors in SRAased FPGAs. DATA
WORKSHOP OF THE CONFERENCE ON RADIATION EFFECTS ON
COMPONENTS AND SYSTEMS (RADECSProceedings...Piscataway: IEEE (in
press). 2013.

103

REFERENCES

ABRAMOVICI, M.; BREUER, M.; FRIEDMAN, A. Digital systems testing and
testable designlst. ed. New Jersey: Wiley-IEEE Press, 1990.

ABRAMOVICI, M.; STROUD, C.; HAMILTON, C.; WIJESURIMW, S. et al. Using
roving STARSs for on-line testing and diagnosis 8GAs in fault-tolerant applications.
INTERNATIONAL TEST CONFERENCE (ITC)Proceedings...Washington: IEEE
Press. 1999. p. 973-982.

AGUIRRE, M. A.; TOMBS, J. N.; MUOZ, F.; BAENA, V. teal. Selective
Protection Analysis Using a SEU Emulator: Testimgtécol and Case Study Over the
Leon2 ProcessoftEEE Transactions on Nuclear SciencePiscataway, v. 54, n. 4, p.
951-956, August 2007.

AIDEMARK, J.; VINTER, J.; FOLKESSON, P.; KARLSSON, GOOFI: Generic
Object-Oriented Fault Injection Tool. INTERNATIONALCONFERENCE ON
DEPENDABLE SYSTEMS AND NETWORKS (DSNProceedings..Los Alamitos:
IEEE CS Press. 2001. p. 83-88.

ALDERIGHI, M.; CASINI, F.; D'ANGELO, S.; MANCINI, M et al. Evaluation of
Single Event Upset Mitigation Schemes for SRAM lbaB® GAs using the FLIPPER
Fault Injection Platform. IEEE INTERNATIONAL SYMPQOSBM ON DEFECT AND
FAULT-TOLERANCE IN VLSI SYSTEMS (DFT).Proceedings...Los Alamitos:
IEEE CS Press. 2007. p. 105-113.

ALTERA CORPORATION. Altera End MarketsAltera, 2012. Available at:
<http://www.altera.com/end-markets/end-index.htnfiecessed in: 17 October 2012.

ALTERA CORPORATION. About Stratix Family High-EndPiGAs and SoCs.
Altera, San Jose, p. 580, 2013. Available at:
<http://www.altera.com/devices/fpga/stratix-fpgdeat/stx-about.html>. Accessed in:
22 July 2013.

AVIZIENIS, A.; LAPRIE, J.; RANDELL, B.; LANDWEHR, C Basic Concepts and
Taxonomy of Dependable and Secure ComputiBBE Transactions on Dependable
and Secure Computing Los Alamitos, v. 1, n. 1, p. 11-33, January-Ma2€i94.

BANSAL, A.; RAO, R. M. Variations: Sources and Caeterization. In: BHUNIA,
S.; MUKHOPADHYAY, S. Low-Power Variation-Tolerant Design in Nanometer
Silicon. 1st. ed. Dordrecht: Springer, 2011. p. 3-39.

BAUMANN, R. C. Radiation-Induced Soft Errors in Aalwced Semiconductor
TechnologieslEEE Transactions on Device and Materials Reliabily, Piscataway,
v. 5, n. 3, p. 305-316, September 2005.

104

BERNARDI, P.; SONZA REORDA, M.; STERPONE, L.; VIOIMTE, M. On the
evaluation of SEU sensitiveness in SRAM-based FRGBEE INTERNATIONAL
ON-LINE TESTING SYMPOSIUM (IOLTS)Proceedings...Los Alamitos: IEEE CS
Press. 2004. p. 115-120.

BOLCHINI, C.; CASTRO, F.; MIELE, A. A Fault Analysi and Classifier
Framework for Reliability-aware SRAM-based FPGA 8yss. INTERNATIONAL
SYMPOSIUM ON ON DEFECT AND FAULT TOLERANCE IN VLSIAND
NANOTECHNOLOGY SYSTEMS Proceedings...Los Alamitos: IEEE CS. 2009. p.
173-181.

BOLCHINI, C.; MIELE, A.; SANDIONIGI, C. A Novel Deign Methodology for
Implementing Reliability-Aware Systems on SRAM-BaseFPGAs. |IEEE
Transactions on Computers Los Alamitos, v. 60, n. 12, p. 1744-1758, Dec201

CARMICHAEL, C.; CAFFREY, M.; SALAZAR, S.Correcting Single-Event
Upsets Through Virtex Partial Configuration. Xilinx, Inc. San Jose, 12 p. 2000.

CHA, H.; RUDNICK, E. M.; PATEL, J. H.; IYER, R. Ket al. A Gate-Level
Simulation Environment for Alpha-Particle-Induced ramsient Faults. IEEE
Transactions on Computers Los Alamitos, v. 45, n. 11, p. 1248-1256, Nov 899

CHAPMAN, K. SEU Strategies for Virtex-5 DevicesXilinx, Inc. San Jose, 16 p.
2010.

CIVERA, P.; MACCHIARULO, L.; REBAUDENGO, M.; SONZAREORDA, M.
et al. An FPGA-Based Approach for Speeding-Up Fenjdiction Campaigns on Safety-
Critical Circuits.Journal of Electronic Testing, Dordrecht, v. 18, n. 3, p. 261-271, Jun
2002.

D'ANGELO, S.; METRA, C.; PASTORE, S.; POGUTZ, A. at Fault-Tolerant
Voting Mechanism and Recovery Scheme for TMR FPG@Aed Systems. IEEE
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANE IN
VLS| SYSTEMS (DFT).Proceedings...Los Alamitos: IEEE CS Press. 1998. p. 233-
240.

DE ANDRES, D.; RUIZ, J. C.; GIL, D.; GIL, P. Fauimulation for Dependability
Evaluation of VLSI SystemdEEE Transactions on Very Large Scale Integration
(VLSI) Systems Piscataway, v. 16, n. 4, p. 422-431, Apr 2008.

DEZSS, B.; JUTTNER, B.; KOVACS, P. LEMON — an Open Sai€++ Graph
Template LibraryElectronic Notes in Theoretical Computer Sciengev. 264, n. 5, p.
23-45, July 2011.

EDMONDS, J. Paths, Trees and Flowetsinadian Journal of Mathematics v.
17, p. 449-467, February 1965.

EMMERT, J. M.; STROUD, C. E.; ABRAMOVICI, M. Onlin€ault Tolerance for
FPGA Logic Blocks.IEEE Transactions on Very Large Scale Integration YLSI)
Systems Piscataway, v. 15, n. 2, p. 216-226, Feb 2007.

FULLER, E.; CAFFREY, M.; SALAZAR, A.; CARMICHAEL, Cet al. Radiation
Testing Update, SEU Mitigation, and Availability alysis of the Virtex FPGA for
Space Reconfigurable Computing. MILITARY AND AEROSPE APPLICATIONS
OF PROGRAMMABLE DEVICES AND TECHNOLOGIES INTERNATINAL
CONFERENCE (MAPLD)Proceedings..Laurel: [s.n.]. 2000. p. 1-11.

105

GERICOTA, M. G.; LEMOS, L. F.; ALVES, G. R.; FERREA, J. M. On-Line
Self-Healing of Circuits Implemented on Reconfiddlea FPGAs. |IEEE
INTERNATIONAL ON-LINE TESTING SYMPOSIUM (IOLTS).Proceedings...Los
Alamitos: IEEE CS. 2007. p. 217-222.

GOKHALE, M.; GRAHAM, P.; JOHNSON, E.; ROLLINS, N.teal. Dynamic
reconfiguration for management of radiation-inducethults in FPGAs.
INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING $MPOSIUM
(IPDPS).Proceedings..Los Alamitos: IEEE. 2004. p. 1-6.

GOLSHAN, S.; KHAJEH, A.; HOMAYOUN, H.; BOZORGZADEHE. et al.
Reliability-aware placement in SRAM-based FPGA voitage scaling realization in
the presence of process variations. |IEEE/ACM/IFIENTERNATIONAL
CONFERENCE ON HARDWARE/SOFTWARE CODESIGN AND SYSTEM
SYNTHESIS (CODES+ISSSProceedings..New York: ACM. 2011. p. 257-266.

HATORI, F.; SAKURAI, T.; NOGAMI, K.; SAWADA, K. etal. Introducing
redundancy in field programmable gate arrays. CUBTINTEGRATED CIRCUITS
CONFERENCE (CICC)Proceedings...Los Alamitos: IEEE Press. 1993. p. 7.1.1-
7.1.4.

HAYKIN, S. Neural Networks - A Comprehensive Foundation2nd. ed. Upper
Saddle River: Prentice Hall, 1998.

HOWARD, N. J.; TYRRELL, A. M.; ALLINSON, N. M. Thejield enhancement of
field-programmable gate array&EEE Transactions on Very Large Scale Integration
(VLSI) Systems Piscataway, v. 2, n. 1, p. 115-123, Mar 1994.

HSUEH, M. C.; TSAI, T. K.; IYER, R. K. Fault Injecin Techniques and Tools.
Computer, Los Alamitos, v. 30, n. 4, p. 75-82, Apr 1997.

IROM, F.; NGUYEN, D. N.; HARBOE-SgRENSEN, R.; VIRTNEN, A.
Evaluation of Mechanisms in TID Degradation and Skksceptibility of Single- and
Multi-Level High Density NAND Flash MemoriedEEE Transactions on Nuclear
Science Piscataway, v. 58, n. 5, p. 2477-2482, Octobé&d20

ITRS. International Technology Roadmap for Semiconducto2011 Edition -
Design ITRS. [S.l.], 48 p. 2011.

JEDEC.Measurement and Reporting of Alpha Particle and Terestrial Cosmic
Ray-Induced Soft Errors in Semiconductor DevicesJEDEC. Arlington, 84 p. 2006.

JENN, E.; ARLAT, J.; RIMEN, M.; OHLSSON, J. et &ault injection into VHDL
models: the MEFISTO tool. TWENTY-FOURTH INTERNATION. SYMPOSIUM
ON FAULT-TOLERANT COMPUTING (FTCS)Proceedings...Los Alamitos: IEEE
CS Press. 1994. p. 66-75.

KAMMLER, D.; GUAN, J.; ASCHEID, G.; LEUPERS, R. dl. A Fast and
Flexible Platform for Fault Injection and Evaluation Verilog-Based Simulations.
THIRD IEEE INTERNATIONAL CONFERENCE ON SECURE SOFTARE
INTEGRATION AND RELIABILITY IMPROVEMENT (SSIRI). Proceedings...Los
Alamitos: IEEE CS Press. 2009. p. 309-314.

KARLSSON, J.; LIDEN, P.; DAHLGREN, P.; JOHANSSON,. Rt al. Using
heavy-ion radiation to validate fault-handling mastsmsIEEE Micro , Los Alamitos,
v. 14, n. 1, p. 8-23, February 1994.

106

KASTENSMIDT, F. L.; FILHO, C. K.; CARRO, L. Improvig Reliability of
SRAM-Based FPGAs by Inserting Redundant Routil§EE Transactions on
Nuclear SciencePiscataway, v. 53, n. 4, p. 2060-2068, Aug 2006.

KASTENSMIDT, F. L.; STERPONE, L.; CARRO, L.; SONZREORDA, M. On
the Optimal Design of Triple Modular Redundancy lcogpr SRAM-based FPGAs.
DESIGN AUTOMATION AND TEST IN EUROPE (DATE).Proceedings...Los
Alamitos: IEEE CS Press. 2005. p. 1290-1295.

KUNDU, S.; REDDY, S. M. Embedded totally self-cheuk checkers: a practical
design.IEEE Design & Test of Computers Los Alamitos, v. 7, n. 4, p. 5-12, Aug
1990.

KUON, I.; TESSIER, R.; ROSE, J. FPGA Architectuurvey and Challenges.
Foundation and Trends in Electronic Design Automain, Delft, v. 2, n. 2, p. 135-
253, April 2008.

KYRIAKOULAKOS, K.; PNEVMATIKATOS, D. A Novel SRAM-tased FPGA
Architecture for Efficient TMR Fault Tolerance Supp INTERNATIONAL
CONFERENCE ON FIELD PROGRAMMABLE LOGIC AND APPLICADNS
(FPL).Proceedings..Los Alamitos: IEEE Press. 2009. p. 193-198.

LACH, J.; MANGIONE-SMITH, W. H.; POTKONJAK, M. LowOverhead Fault-
Tolerant FPGA SystemdEEE Transactions on Very Large Scale Integration
(VLSI) Systems Piscataway, v. 6, n. 2, p. 212-221, Jun 1998.

LESEA, A.; DRIMER, S.; FABULA, J. J.; CARMICHAEL, Cet al. The Rosetta
Experiment: Atmospheric Soft Error Rate TestingDiifering Technology FPGAs.
IEEE Transactions on Device and Materials Reliabily, Piscataway, v. 5, n. 3, p.
317-328, September 2005.

LI, Y.; KIM, Y. M.; MINTARNO, E.; GARDNER, D. S. etal. Overcoming Early-
Life Failure and Aging for Robust SystemEEE Design and Test of Computers
Piscataway, v. 26, n. 6, p. 28-39, November/Decer20@9.

LIMA, F.; CARMICHAEL, C.; FABULA, J.; PADOVANI, R. et al. A Fault
Injection Analysis of Virtex FPGA TMR Design Metholdgy. 6TH EUROPEAN
CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONER AND
SYSTEMS (RADECS)Proceedings..Los Alamitos: IEEE Computer Society. 2001. p.
275-282.

LIMA, F.; CARRO, L.; REIS, R. Designing Fault Tolet Systems into SRAM-
based FPGAs. DESIGN AUTOMATION CONFERENCE (DA®Yoceedings..New
York: ACM. 2003. p. 650-655.

LISBOA, C. A. L. Dealing with Radiation Induced Long Duration Transient
Faults in Future Technologies Thesis (Doctoral Degree in Computing), Institdi®
Informatica - UFRGS. Porto Alegre, 113 p. 20009.

MEHTA, N.; DEHON, A. Variation and Aging Toleran@e FPGAs. In: BHUNIA,
S.; MUKHOPADHYAY, S. Low-Power Variation-Tolerant Design in Nanometer
Silicon. 1st. ed. Dordrecht: Springer, 2011. p. 365-380.

MICROSEMI CORPORATION. Radiation-Tolerant ProASIC3 Low Power
Spaceflight Flash FPGAs with Flash*Freeze Technolgg Microsemi Corporation.
Aliso Viejo, 170 p. 2011.

107

MICROSEMI CORPORATION. RTAX-S/SL and RTAX-DSP Radiation-
Tolerant FPGAs. Microsemi Corporation. Aliso Viejo, 278 p. 2012.

MINKOVICH, K. Kirill Minkovich's Home Page, 2011. vailable at:
<http://cadlab.cs.ucla.edu/~kirill/>. Accessedif: October 2011.

MOJOLI, G. A.; SALVI, D.; SAMI, M. G.; SECHI, G. Ret al. KITE: A
Behavioural Approach to Fault-Tolerance in FPGAdhs Systems.
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERAICE IN
VLSI SYSTEMS (DFT).Proceedings..Los Alamitos: IEEE Press. 1996. p. 327-334.

NIKNAHAD, M.; SANDER, O.; BECKER, J. A study on fen granular fault
tolerance methodologies for FPGAs. 2011 6TH INTERNANAL WORKSHOP ON
RECONFIGURABLE COMMUNICATION-CENTRIC SYSTEMS-ON-CHM
(RECOSOC)Proceedings..Piscataway: IEEE Press. 2011. p. 1-5.

PRADHAN, D. K. Fault-tolerant computer system design 1st. ed. Englewood
Cliffs: Prentice Hall Publisher, 1996.

PRATT, B.; CAFFREY, M.; GRAHAM, P.; MORGAN, K. et.amproving FPGA
Design Robustness with Partial TMR. IEEE INTERNANGL RELIABILITY
PHYSICS SYMPOSIUMProceedings..Piscataway: IEEE Press. 2006. p. 226-232.

PSARAKIS, M.; APOSTOLAKIS, A. Fault Tolerant FPGArd¢essor Based on
Runtime Reconfigurable Modules. 2012 17th IEEE EBPR®AN TEST SYMPOSIUM
(ETS).Proceedings..Los Alamitos: IEEE CS Press. 2012. p. 38-43.

RAMAKRISHNAN, K.; SURESH, S.; VIJAYKRISHNAN, N.; IRVIN, M. J. et al.
Impact of NBTI on FPGAs. 20TH INTERNATIONAL CONFEREE ON VLSI
DESIGN.Proceedings..Los Alamitos: IEEE CS Press. 2007. p. 717-722.

SCHRIMPF, R. D. Radiation Effects in Microelectrosi In: VELAZCO, R,
FOUILLAT, P.; REIS, R.Radiation Effects on Embedded Systemslst. ed.
Dordrecht: Springer, 2007. p. 11-29.

SEXTON, F. W. Destructive Single-Event Effects ien8conductor Devices and
ICs. IEEE Transactions on Nuclear SciencePiscataway, v. 50, n. 3, p. 603-621, June
2003.

SHE, X.; SAMUDRALA, P. K. Selective Triple ModuldRedundancy for Single
Event Upset (SEU) Mitigation. NASA/ESA CONFERENCENOADAPTIVE
HARDWARE AND SYSTEMS (AHS).Proceedings..Los Alamitos: IEEE CS Press.
2009. p. 344-350.

SHNIDMAN, N. R.; MANGIONE-SMITH, W. H.; POTKONJAK,M. Fault
Scanner for Reconfigurable Logic. Advanced ReseamcKLSI. Proceedings...Los
Alamitos: IEEE CS Press. 1997. p. 238-255.

SONZA REORDA, M.; STERPONE, L.; ULLAH, A. An Errddetection and Self-
Repairing Method for Dynamically and Partially Refigurable Systems. 18th IEEE
EUROPEAN TEST SYMPOSIUM (ETS)Proceedings...Los Alamitos: IEEE CS.
2013. p. 149-155.

STERPONE, L.; AGUIRRE, M.; TOMBS, J.; GUZMAN-MIRANAB, H. On the
design of tunable fault tolerant circuits on SRABIsbd FPGAs for safety critical
applications. DESIGN AUTOMATION AND TEST IN EUROPE(DATE).
Proceedings..New York: ACM. 2008. p. 336-341.

108

STERPONE, L.; VIOLANTE, M. A New Reliability-Orieetd Place and Route
Algorithm for SRAM-Based FPGASIEEE Transactions on Computers Los
Alamitos, v. 55, n. 6, p. 732-744, April 2006.

STERPONE, L.; VIOLANTE, M. A New Partial Reconfiqation-Based Fault-
Injection System to Evaluate SEU Effects in SRAMs8& FPGASs. IEEE
Transactions on Nuclear SciengePiscataway, v. 54, n. 2, p. 965-970, August 2007.

STRAKA, M.; KASTIL, J.; KOTASEK, Z. Generic partialynamic reconfiguration
controller for fault tolerant designs based on FPGYORCHIP. Proceedings...
Piscataway: IEEE. 2010. p. 1-4.

VIOLANTE, M.; STERPONE, L.; MANUZZATO, A.; GERARDINS. et al. A
New Hardware/Software Platform and a New 1/E Neut&purce for Soft Error
Studies: Testing FPGAs at the ISIS FacilitgEE Transaction on Nuclear Science
Piscataway, v. 54, n. 4, p. 1184-1189, August 2007.

WIRTHLIN, M.; JOHNSON, E.; ROLLINS, N.; CAFFREY, Met al. The
reliability of FPGA circuit designs in the presenakeradiation induced configuration
upsets. ANNUAL IEEE SYMPOSIUM ON FIELD-PROGRAMMABLECUSTOM
COMPUTING MACHINES (FCCM).Proceedings...Los Alamitos: IEEE CS Press.
2003. p. 133-142.

XILINX, INC. Virtex-4 FPGA Configuration User Guide. Xilinx, Inc. San Jose,
114 p. 2009a.

XILINX, INC. Virtex-5 Family Overview. Xilinx, Inc. San Jose, 13 p. 2009b.
XILINX, INC. Virtex 5 FPGA User Guide Xilinx Inc. San Jose, 385 p. 2010.

XILINX, INC. Virtex-5 FPGA Configuration User Guide. Xilinx, Inc. San Jose,
166 p. 2011a.

XILINX, INC. Virtex-Il Pro and Virtex-lIl Pro X Platform FPGAs . Xilinx, Inc.
San Jose, 302 p. 2011b.

XILINX, INC. Command Line Tools User Guide Xilinx, Inc. San Jose, 413 p.
2011c.

XILINX, INC. Constraints Guide. Xilinx, Inc. San Jose, 325 p. 2011d.
XILINX, INC. 7 Series FPGAs OverviewXilinx, Inc. San Jose, 15 p. 2012a.

XILINX, INC. Applications. Xilinx , 2012b. Available at:
<http://www.xilinx.com/applications/index.htm>. Aessed in: 17 October 2012.

XILINX, INC. Device Reliability Report Xilinx, Inc. San Jose, 118 p. 2012c.

XILINX, INC. ultrascale. Xilinx, 2013. Available at:
<http://www.xilinx.com/products/technology/ultraseéndex.htm>. Accessed in: 22
July 2013.

ZEH, C.Incremental Design Reuse with Partitions Xilinx, Inc. San Jose, 17 p.
2007.

109

APPENDIX A — TAXONOMY OF DEPENDABLE
SYSTEMS

The taxonomy found in the field of dependable systés vast and may vary from
one work to another. Therefore, it is importantestablish a common use of the
definitions. In this appendix, we present the basinicepts related to dependable
systems and discuss the nomenclature adopted s wlork, based mainly on
(AVIZIENIS, LAPRIE, RANDELL, et al, 2004) and (PRADHAN, 1996), which are
good sources for further reading on this topic.

A.1 Fault, Error and Failure

The most basic definitions are those of fault, eemed failure, which follow cause-
effect relations. Afault is defined as a cause of a possible error. Itthsrefore,
frequently associated with a physical phenomenanriay corrupt the system activity.
Faults can also be human-made, such as mistakegydiystem design. Such faults,
however, lie outside the scope of this work. &mor, in turn, is defined as a divergence
in the system state from the expected one, whicli aramay not lead to a service
failure. Finally, aservice failure(or simply failure) is defined as a deviation in the
service provided by the system, as expected bgrarsanother system. This implies in
the definition ofsystem boundariesvhich determine where the system being analyzed
or developed begins and where it ends. If an emonains internal to the system
boundaries and does not cause the system servideviate, then no failure occurs.
Similarly, if a fault never leads to an erroneoystem state (it occurs in a component
not in use, for example), then no error occurs.

An example can be used to better explain theseemsicLet us assume that an
energetic particle hits a processor’s arithmetid &gic unit (ALU) and temporarily
changes the value of an internal wire, charactagiai fault. If that signal is in the shifter
unit, for example, and this unit is not used, tin@nerror occurs. Conversely, if a shift
instruction is in execution when the fault occursl at causes a register to receive an
erroneous value, then an error takes place. Findllthis error does not cause the
service delivered by this program to deviate, ttiensystem does not present failure. If
the service differs, a failure occurs. Note tha ghlacement of the system boundaries
plays an important role at this point. If we comsidhe system as being strictly the
processor, then the writing of an erroneous vatuant external memory is considered a
failure. If we place the off-chip memory within $gs boundaries, then a failure will
only occur when there is a divergence in the seroigserved by external entities, e.g.
another processor connected via network or a hurean

Faults, errors and failures can be classified mémy different categories, according
to several and frequently orthogonal propertiescomprehensive discussion on the

110

matter is presented in (AVIZIENIS, LAPRIE, RANDELEt al, 2004). Here, we focus
on the aspects that are most relevant for the raeaiof this work.

One of the most important aspects of faults regatsisgiuration or persistence.
Transient faultsaare those whose presence is bounded in time. Ttwongy be possible
to completely remove them from the system. In otherds, transient faults are those
that do not damage the component in a permanemenaand that disturb its operation
for a limited time. The errors due to transientlfaare calledsoft errors Conversely,
permanent faultare those with continuous or unbounded duratioreyTére usually
due to irreversible damage to a component. Theasrgaused by permanent faults are
called hard errors Finally, some faults may lie in between permaremd transient.
Although the term intermittent is used with anotparpose in (AVIZIENIS, LAPRIE,
RANDELL, et al, 2004), we follow the taxonomy of (PRADHAN, 1996j this
matter. Thus, we refer to faults that appear arghppear repeatedly over time as
intermittent faults

Service failures are also classified into a varadtgategories. For instance, they can
be separated intoontentand timing failures with the former referring to when the
delivered value differs from the correct one, wiasrthe latter refers to when the time in
which the information is delivered does not foll@pecification. Timing failures are,
thus, very relevant for real-time systems. Failutaa also be classified aggnaled
when the system raises a warning signal informihgt ta failure occurred, and
unsignaledwhen it does not.

A.2 Dependability and its features

With the definitions of fault, error and failure land,dependabilitycan be defined.
In (AVIZIENIS, LAPRIE, RANDELL, et al, 2004) two definitions are presented. A
dependable system can be considered as a systera i can be justifiably placed.
Alternatively, one can consider that a system igedéelable when it can avoid failures
that are more frequent or severe than is acceptdlble definition ofacceptableis
highly application-dependent. While a standard pélbne may acceptably fail once a
year, an airplane engine cannot. Dependability lepgeseveral other concepts:

« Availability: “readiness for correct service”. Also definedtlas probability that
the system will be functional at a given time

* Reliability: “continuity of correct service”. Also defined #se probability that
the system will be functional during an intervi| f], provided it was functional
atto.

« Safety “absence of catastrophic consequences”. A faituey becatastrophic
when it harms human lives, the environment or duecbnomical reasons.

* Integrity. “absence of improper system alterations”. Thisangethat the system
will not be modified in a way that harms its ovéddpendability.

* Maintainability: “ability to undergo modification and repairs”. bther words,
how efficient is the system’s return to a functiostate after a service failure.

The concepts listed above are those presented MIZ(ENIS, LAPRIE,
RANDELL, et al, 2004). Other works include different sets of egstfeatures as part
of dependability. In (PRADHAN, 1996), the conceptirtegrity is omitted, while two
other features are included:

e Performability the probability that the system will present aedfic
performance level at a given time instant.

111

« Testability how simple it is to test the system, where tgsisran attempt to
identify specific problems within the system.

Just as the definition of an acceptable failuree rat severity is application-
dependent, so is the relevance of each of the ptsmi@compassed by dependability.
For example, data servers are typically concernigdd fvigh availability: the likelihood
of a user finding the service unavailable must $éoa as possible. Maintainability is
also crucial for a high availability, as it is ditlyy related to how long the system
remains offline after a failure. Alternatively, farsystem that is used during a mission
time, such as those used in an aircraft, highb#iia is the greatest concern. For these
applications, it is crucial that the system does fad during a given period of time,
namely the mission, and failures during off-missiime are not nearly as severe.
Performability, on the other hand, is highly relev#or real-time systems, where the
system is required to produce an output or takaction within a restricted timeframe
in order to avoid timing failures.

A.3 MTTF, MTBF, MTTR and FIT

Other relevant metrics are frequently used to eataludependable systems, or
populations of such systems, especially over losxgogs of operation. Theean time
to failure (MTTF) is the average time required for a systerpresent a service failure.
Therefore, being an average metric, it require®pufation of systems in order to be
accurately estimated. L&t be the amount of identical systems in the popamaaindtf;
the time that the-th system took to present a service failure. THETM is defined in
(A.1).

N tf;
MTTF=> — (A.1)
iz N
Note that the MTTF is related to the first failymeesented by the system. It is a very
relevant metric when no repair is possible, i.ageoa failure occurs, the entire system
must be replaced or removed from use. A slightffedent metric, which is frequently
used interchangeably with the MTTF, is tmean time between failuré ITBF). It is
defined as the average time between two consecistivges of a system. Assume that
N instances of a system run for a time peridwith each system presenting, on
averagenayg failures. Equation (A.2) presents the definitidrv BF.

T

Navg

MTBF = (A.2)

Let n; denote the amount of failures presented by-thesystem during the peridd
The average amount of failureg,gused in (A.2) is defined in (A.3).

Sl
I’-lavg :ZN (A.3)
i=1

The MTBF is frequently reported with a slightly féifent metric calledailures in
time (FIT), which expresses the expected amount ofifesl per 19 device-hours of
operation. It can be calculated using (A.4), predidhe MTBF is expressed in hours.

FIT =—= 10° (A.4)
MTBF

112

Another related metric is thaean time to repai(MTTR). It represents the average
time required to take the system from a failuréesbmck a functional one. It is, hence,
tightly related to the concept of maintainabilitydaseverely constrained for high
availability systems. LeM denote the amount of failures presented by a poipal of
systems antk; denote the time required to repair thé failure. The MTTR is defined
in (A.5).

M tl’i
MTTR=) — (A.5)
i=1 M

A.4 Failure rate function, cross-section and theathtub curve

The failure rate functiorz(t), also called hazard function, represents the erge
rate of failures of a population of systems at @egitimet. In a population ofN
identical components, |1&4,(t) denote the amount of components operating cdyratt
time t andN; (t) the amount of components that have failed at tinfidhe derivative of
N: (), dN; (t)/dt represents the instantaneous rate of failing corapts. The failure rate
function is defined in (A.6).

1 dN¢ ()

D=0

(A.6)

When evaluatingz(t) over electronic devices’ lifetime, a general tteis found.
Figure A.1 shows the bathtub curve, which depikéstypical behavior of(t). Shortly
after manufacture, the failure rate is high duéstabstandard” or “weak” components
(PRADHAN, 1996). Manufacture faults which were madé¢ntified during testing may
also contribute to this behavior. This period, @dllinfant mortality phase, can be
skipped by means of a burn-in process. Burn-in ist&1$n operating the system, often
under extreme conditions, in order to identify theak components and to repair them
or remove them from the population. Thus, when ¢bmponents begin their actual
service, they are already at the beginning of geful life phase.

z(t

Infant Mortality Useful life Wear-out

Figure A.1: The bathtub curve

The useful life is the period where the system gmésits lowest failure rate and its
most predictable behavior. Failures during thisqueare usually attributed to “random”
effects, such as energetic particles or electromthg noise. Particularly regarding the
effects of radiation, the sensitivity of a componen measured by itsross-section
which has the dimension of area (usuallycrtt is defined as the area of the circuit that
can lead to a given event (such as an error oitladaif struck by a particle of a given
energy. A good source for further reading on clEstion measurements is

113

(KARLSSON, LIDEN, DAHLGREN,et al, 1994). In this work, we calculate the cross-
sectionCS using (A.7). Thefluenceis the total amount of particles (e.g., neutrons,
protons, etc.) per unit of area (tmost frequently) that went through the device migiri

a given period of timeE is the total amount of events (such as errorsadures,
depending of the type of measurement) that wasreddeduring the same period of
time.

g-_ E (A.7)
fluence

After operating during its useful life, the weartquhase begins. The components
start to faceaging effects that change their operating properties tad lead to an
increase in the failure rate. It is, thus, very artpnt to identify when a component is
entering this phase, in order for it to be replaced

A.5 Fault model and coverage

When developing dependable systems, or evaluailg tolerance techniques to be
used in such systems, one of the first questioas dhise is: “what are the possible
threats this system will face?” For example, aaysbperating in high altitudes, such as
in space applications, needs to consider the impécenergetic particles on its
operation, as it is not shielded by the atmosptteirailarly, when a system is expected
to be used for a long time, the effects of aging fave to be considered. In order to
evaluate the resilience of a system against a giwwssical phenomenon, its impact on
the system’s operation needs to be accurately stotel and modeled. For fault
modelto be relevant, thus, it must closely representefifiects of one or more physical
phenomena on the system’s behavior. For examplesient and permanent faults will
have different models and using one model to remtethe other fault type is highly
likely to lead to inaccurate results.

Furthermore, if one intends to use such fault madé&ult injection campaigns, it is
important to maintain the model’s simplicity. Asttistically significant fault injection
campaign for a complex system may take a long taregmplex fault model is likely to
bring an undesirable computational burden to thgk.t Frequently used fault models
include: single bit flip, in which one of the biils the system’s storage has its value
changed; multiple bit flip, which is similar to gile bit flip, but applied to more than
one bit at the same time; single stuck-at, in wh&chnhet of the circuit receives
permanently a given logic value, among others.

Once the relevant fault model(s) for the systerhaaid is defined, one can proceed
to evaluate the fault coverage of the fault miigatechniques available at the system.
A fault is said to be covered depending on whatetveduated technique attempts to do.
For example, all faults detected by a fault detectechnique are considered covered,
as are all faults masked by a fault masking tealmidhe fault coverage represents the
probability that a fault of the evaluated modellvoié covered by the fault mitigation
techniques. Parts of the system in which faultshatecovered and may lead to a system
failure are referred to asngle points of failurdSPOFs). LeFt denote the total amount
of considered faults in the system, under the asdufault model, andrc denote the
amount of covered faults. The fault cover&yes defined in (A.8).

C_
(.8)

114

115

APPENDIX B — USING NON-RANDOM INPUT VECTORS

In the experimental results reported in chapteran8 6, we have made use of
pseudo-random input vectors in order to stimullte aperation of circuits. This was
done to emulate a scenario in which little inforimatwas available to designers
regarding input distribution. However, as will beos/n in here, some of the discussed
metrics can be affected by a highly correlatedo$@tput vectors. Correlated inputs are
observed naturally on many applications, such agest of a pipelined processor which
repeatedly execute the same small set of instmtio

Thealu_32bcircuit was used as a case study to evaluate possble outcomes of
changes in the properties of input vectors. Fot thapose, we use vectors extracted
from the execution of two pieces of software witle MIPS instruction set architecture,
namely CRC32 and ins_sort As their names suggedfRC32 calculates the 32-bit
cyclic redundancy check armds_sortcomputes the insertion sort algorithm. These two
algorithms stimulate the ALU very differentlCRC32makes use of many different
instructions, since it requires numerous shiftimgl dogic operations for the CRC
calculation itself, and also additions and subtoast for loop control. On the other
hand,ins_sortperforms mostly additions and subtractions to campelements of the
vector and for loop control as well. Therefo@RC32makes a much broader use of the
ALU capabilities, selecting most of the operatiavailable in the circuit.

Both algorithms were executed with two input ins&s, leading to different
execution times (deemesthortandlong in the remainder of this appendix). kos_sort
a string with 8 characters and one with 43 weralusdich led to execution times of
approximately 2,500 and 28,300 cycles, respectivElyr CRC32 a string with 43
characters and one with 430 were used, which lezkézution times of approximately
3,900 and 29,800 cycles, respectively.

B.1 Impact on detection latency

As was discussed previously, an error can only &eated when its effects are
stimulated and propagated to an observation po@f,a comparator. Therefore, input
vectors heavily affect the observed detection katefrigure B.1(a) shows the average
required cycles for coarse- and fine-grained reduniks to detect errors. Figure B.1(b)
shows the required time, assuming each circuit airits maximum frequency. Again,
it is important to keep in mind that many errorieetied the circuit but simply could not
be detected at all, especially for coarse-grairmeiimdancy, due to the limited amount
of input vectors. Such errors could eventually kb&dted with a much longer latency,
when appropriate vectors finally cause propagatmihe primary outputs. However,
since these latencies depend on what the ALU withjgute afterwards, they cannot be
estimated with a restricted set of vectors. Thesftatencies for faults that only FG-

116

DMR could detect with the chosen vectors are nkenainto consideration in the
results, as was done in chapter 5.

Figure B.1 shows the results for the pseudo-randomuli used in chapter 5 as
well, labeledrand. It becomes clear that a highly correlated setingfut vectors
increases the average detection latency, sinceteg€or similar) inputs do not aid in
detection. This property therefore increases thievamce of having accelerated
detection mechanisms for circuits to be used wighlly correlated inputs. Thehort
stimulus sets showed naturally reduced latenciegpaoed to theitong counterparts, as
many errors remained silent during these limitexfing scenarios but could be detected
by the extended input sets.

FG-DMR was able to accelerate detection for alutngets, but with diverse ratios.
CRC32 showed more pronounced gains (31.4% and 35.9%shart and long
executions, respectively) thams_sort(19.2% and 18.8% for short and long executions,
respectively). This is due to the poor stimulatmovided byins_sort which makes no
use of shift or logic functions. Since the ALU’sdad/subtracter presents a relatively
easy propagation compared to more complex modules,latencies observed for
ins_sortare shorter than those f6RC32 making the two approaches more similar and
leaving reduced room for improvements from finengdarities. Proportional reductions
were less pronounced than with pseudo-random inpstshese were very efficient to
stimulate the FG-DMR circuit and led to very sigraint gains (71.9%). On the other
hand, the absolute time reduction obtained fomtlost critical caseGRC32 lony was
the most expressive (415).

2500 20
0 —
2 g1
> 2000 = 16
©)
S E 14
§ 1500 _5 12
S 3 10
%1000 g 8
5)
2 2> 61
<< 500 - 5 4 -
>
5 L <2
O = T T T T O i
CRC32 ins_sort CRC32ins_sort rand CRC32 ins sort CRC32 ins sort rand
short short long long short short long Iong
BECG-DMR OFG-DMR BCG-DMR OFG-DMR
(a) (b)

Figure B.1: Average detection cycles (a) and detedtme (b) for different input sets

B.2 Impact on SURFER repair time

The experimental setup described in section 6.8 tadt injection campaigns (and
therefore also input vectors) to generate erraragigres that are in turn used to build the
SURFER translation tables. Thus, different inpumnati sets can generate different
signature sets with varying distributions, leadiogdifferent translation tables with
potentially different MTTR. Since the HST mechanifamors generating a translation
table that is precise for signatures that are Mraeguent, it is important to validate that
a short MTTR is maintained for input sets that afiffrom those used for the HST

117

algorithm. The approach used in chapter 6 to ewaltlas aspect was to divide the

generated signatures in two sets in orddram the table with a different set from that

used totestit. Overall, very small variations were observeg, discussed in section

6.5.3, showing that the generated table was apyicaot only to the signatures in the

train set. In this section, we further evaluate fioperty by generating signatures with
the input vectors used in section B.1. With theseed signature distributions we

generate HST tables (witmaxSize =7) and then test them with the signatures
generated with other input sets, as shown in Figu2e Thus, tables are tested not only
with signature lists not available during trainibgt also with lists that were obtained

with different input vector distributions.

alu 325 ﬁRCBZ ﬁRC% fs_sor ﬁs_sort
. —~"| rand ;
input vectors short | [long hort | llong
FPGA
FG-DMR = | Fautt
alu_32b Signature Injector
Division
_ . A 14 14 14 14
Train | ond ‘CRCSZ CRC32 |ns_sort [ins_sort Test | 1and CRC32 |CRC32 ins_sort ins_sorf
signatures short | [long hort | llong | signatures short | llong_| short | llon |
! o i
] ——— HST§ rand CRC32 |CRC32 |ins_sort ns_sort
Generatio tables short | llong | short |llong | |

Figure B.2: Experimental flow for testing SURFERhwaried input vectors

Figure B.3 shows the measured MTTR. Each entrp@niaxis stands for one HST
table generated with one training signature listlevthe data series (i.e., bar color)
indicates the used test list. Overall, it can bengbat the input vectors had little effect,
even when tables generated with one input set weed with signature distributions
observed with others. Since the internal compasatassess the correctness of
intermediate signals and not only of those thapagate to a primary output, they are
able to detect errors even in modules not extelysised by the current input set (such
as the shifter, which is not used in tims_sortinstances). Therefore, the generated
translation tables captured approximately the sarm@-to-signature relations, showing
little difference in terms of MTTR. The average ol results is 54.35 ps and the
standard deviation is 2.13 ps, which results ineffecient of variation of 0.04.

60

50 - — — -

MTTR (ps)
N w N
o o o

I

-
o
Il
I

o
!

Rand CRC32 CRC32 long ins_sort ins_sort long
HST Table

Test signatures:mRand mCRC32 BCRC32long Tins_sort Oins_sort long

FigureB.3: MTTR with different translation tables and signatset

118

119

APPENDIX C — MAXSIZE EVALUATION RESULTS

In this appendix, the impact of tneaxSizgparameter is measured for all benchmark
circuits, regarding area and MTTR results. Resaréspresented for each iteration of the
compression loop (shown in Figure 6.6). Each itenastands for successively smaller
maxSizevalues. Due to limitations in the synthesis todijch is unable to handle tables
with very large signatures, area results are repoonly after a number of iterations of
the compression loop for most circuits.

The 22 benchmark circuits are divided into threts,send for each set MTTR (in
Table C.1, Table C.3 and Table C.5) and area (lef&€.2, Table C.4 and Table C.6)
results are reported. Entries in boldface are tres@ssociated witinaxSize7, i.e., the
one used in the experimental results in sectichf &nd 6.5.3.

Table C.1: MTTR (irus) for the first set of circuits

Iteration| alu4 alu_32b alu_64bjapex2 | apex4 | bigkey| clma
0| 33.59 30.07] 45.52] 47.02] 40.85| 38.42 50.92
1| 3450 31.08 47.60, 48.27| 43.22] 39.18 54.87
2| 35.66] 32.47] 49.85 49.99] 4545 39.82] 59.02
3| 37.34 34.47 53.97] 53.24/ 50.49 41.67| 64.49
4| 4581 37.95 59.100 56.46/ 57.38/ 4556 70.64
5| 57.06] 49.84/ 68.57, 71.06f 7490 50.39] 85.55
6| 79.54 58.57] 86.28 94.39] 89.37/ 60.06f 101.93
7 97.47) 60.56] 109.27] 113.97| 120.96f 68.80] 138.74
8| 136.65 86.96] 128.15 126.67| 134.18 84.82 161.59
9 189.96 171.71 160.58 117.38 195.52

10 282.89
11 282.89

120

Table C.2: Area (in LUTSs) for the first set of ailits

Iteration| alu4 alu_32bjalu_64bjapex2 | apex4 | bigkey| clma
0 N/A N/A N/A N/A N/A N/A N/A
1 N/A N/A N/A N/A N/A N/A N/A
2 N/A N/A N/A N/A N/A N/A N/A
3| 12825 12259 N/A N/A| 45315 N/A N/A
4 1622 401 16011 14609 8647 13186 22869
5 54 49 2147 3703 1198 1909 5169
6 44 38 75 94 69 72 702
7 39 36 73 79 67 69 116
8 32 28 67 71 61 64 114
9 60 66 56 59 110

10 103
11 103
Table C.3: MTTR (irus) for the second set of circuits

Iteration|des diffeq | dsip elliptic/ ex1010 ex5p frisc
0| 31.07] 36.81 55.85 24.04 4293 18.69 82.68
1| 32.18 38.80] 56.23] 26.60, 43.83 19.54] 86.58
2| 33.78 41.44) 57.52 31.11 46.44) 21.48 92.64
3| 35.41 4756 59.96 37.14 48.60, 25.06 100.18
4| 37.83 54.96/ 68.21 50.60F 54.98 33.85 112.74
5| 44.24 65.78 7792 67.39 60.99] 41.25 130.16
6| 51.87] 80.74] 105.69 80.37] 77.24 54.85 147.23
7| 67.24) 91.48 16254 93.48 104.52 63.10, 170.65
8| 89.17] 154.06f 188.64 135.43 190.37
9| 111.00 266.22 262.43

10 312.59
Table C.4: Area (in LUTSs) for the second set ofwits

Iteration|des diffeq | dsip elliptic| ex1010 ex5p frisc
0 N/A N/A N/A 1831 N/A| 25290 N/A
1 N/A N/A N/A 1221 N/A 5049 N/A
2 N/A| 12022 N/A 713 N/A 2126 N/A
3 N/A 4905 N/A 260| 23113 563 N/A
4| 14968 1530 10530 25 4239 25 N/A
5 1527 94 1979 24 69 28| 21452
6 74 48 76 17 49 22 3948
7 71 45 73 13 40 14 193
8 67 39 71 36 162
9 60 62 153

10 150

Table C.5: MTTR (irus) for the third set of circuits

121

Iteration| misex3 | pdc s298 s$384(1538584.1seq spla tseng
0| 47.16) 62.00f 16.88| 76.34] 85.95 63.36/ 31.90 30.85
1 50.100 63.45 17.56| 81.79] 87.77| 65.81] 32.86 32.39
2 52.63] 64.80, 20.08/ 90.21] 89.77| 68.78 34.56 34.06
3 57.46) 68.46| 21.53| 97.45 92.71 73.36| 39.72 36.97
4| 67.88 75.46| 24.05) 112.71] 96.41 82.86| 50.54| 39.51
5 83.59, 94.05 131.58 110.31 99.58 62.27 46.14
6| 105.61 110.31 156.53 123.36(128.02] 85.25| 51.05
7| 136.53 134.53 189.47 152.68 144.76/ 119.68 59.70
8| 170.15 156.38 207.35 174.31] 181.55 72.70
9| 197.37] 247.90 268.75 238.68 266.38 97.68
10 296.78 388.22 371.55
11 388.49 386.91
12 388.55 386.91
13 386.91

Table C.6: Area (in LUTS) for the third set of airts
Iteration| misex3 | pdc s298 s3841y s38584.1 seq spla tseng
0 N/A N/A| 119 N/A N/A N/A N/A N/A
1 N/A N/A 14 N/A N/A N/A | 19466 N/A
2 N/A N/A 9 N/A N/A N/A| 5112 N/A
3| 57015 N/A 5 N/A N/A N/A| 1701 11652
4| 15799 N/A 2 N/A N/A | 15292 64 2433
5 458| 17355 13960 26621 4030 35 582
6 75 299 2777 5944 103 24 71
7 69 117 313 758 85 19 66
8 64 114 161 220 76 63
9 59 106 159 194 72 57
10 102 157 193
11 154 189
12 149 185
13 181

122

123

APPENDIX D - RESUMO EM PORTUGUES

D.1 Introducéo

Field Programmable Gate Array$PGAs) sdo circuitos integrados reconfiguraveis
que podem desempenhar diferentes fungbes uma vez apropriadamente
programados. Trazem um conjunto relevante de vangagara sistemas criticos, o que
inclui alta performance, flexibilidade e a progrdnitidade pds-implantacdo, permitindo
a alteracdo de funcionalidades dos sistema, ou mesmacréscimo de novas
capacidades. Com os avancos oferecidos pela LBlatee, se tornam cada vez mais
eficientes, rapidos e com maior capacidade légica.

Esse mesmo avanco nas técnicas de manufaturataetdteintroduz um conjunto
novo de desafios de confiabilidade a serem resmdvidEm especial, destacamos a
suscetibilidade da memoria de configuracéo, respahgpor armazenar a descricdo do
circuito desejado pelo usuario, a erros induzidos particulas energéticas, como
néutrons, protons e ions pesados. Essa tese \a¢iysa reovas técnicas e mecanismos
para prover confiabilidade a FPGAs, focando emafallransitorias que afetam a
memoria de configuracdo, uma das principais ameacasonfiabilidade desses
dispositivos (FULLER, CAFFREY, SALAZARgt al, 2000), (LESEA, DRIMER,
FABULA, et al, 2005).

D.2 Técnicas propostas

As técnicas aqui propostas tém por objetivo redazZiempo de reparo de FPGAs
utilizados em aplicacdes criticas. Esse tempo guéetemente bastante longo, pois a
técnica mais amplamente usadagrubbing (CARMICHAEL, CAFFREY and
SALAZAR, 2000), acessa toda a memoria de configdwade forma indiscriminada, o
gue se torna bastante lento a medida que essmaentaior. Em especial, o foco é dado
a técnicas de deteccdo de erro de gréo fino baseadaredundancia modular dupla
(FG-DMR). Essas técnicas intuitivamente reduzerat@nktia de erro, devido a maior
quantidade de pontos de observacao. Elas tambéporpronam um diagndstico mais
detalhado, com o qual temos a possibilidade detifde®m com maior precisdo as
possiveis localizacdes do erro.

D.2.1 Deteccéo de erros com comparadores de caddepropagacao de vai-um

Uma das grandes desvantagens de técnicas de redimdé gréo fino € a grande
guantidade de comparadores que devem ser intramhuziBropde-se, visando a
minimizar esses custos, uma forma de utilizac&aradtiva dos circuitos propagadores
de vai-um encontrados em profusdo nos FPGAs moserigsse circuito,
frequentemente subutilizado, pode ser empregadoquemparar as saidas das LUTs. A
técnica pode ser aplicada sempre que o propagatieeredisponivel, juntamente com

124

entradas auxiliares dslice (bloco de elementos l6gicos) necessérias paréicagdo da
técnica.

D.2.2 Reparo rapido com diagnostico de grao fino

Outro grande desafio encontrado ao se fazer usécdecas de diagndstico de grao
fino € como extrair, de forma eficiente, informag@éeis para o reparo do sistema.
Uma vez que temos uma grande quantidade de siearslttacdo de erro, precisamos
de uma forma de mapeda-los para uma localizacdsoddatmemoria de configuracao.
Para esse proposito, é proposta a plataforma SURBERbbing Unit Repositioning
for Fast Error Repaiy. Ela faz uso de um circuito que realiza a tradudd@s assinaturas
de erros (ou seja, da concatenacgéo de todos as sidwiduais de deteccao de erro) em
enderecos dffame E explorado ainda o conceito de que as operai@®subbingnéo
necessariamente iniciam na primeira posicdo daigumaicdo. Assim, o endereco
gerado pelo circuito de traducéo indickameinicial das operacdes de reconfiguracéo,
escolhido de forma a estatisticamente minimizaeropp médio de reparo. Ainda foi
proposta uma heuristica para geracao dos ciradéasaducdo com custo reduzido, uma
vez que, na sua forma mais precisa, 0S mesmoseapagam custos muito altos em
area ocupada.

D.3 Metodologia

As técnicas propostas foram desenvolvidas em femgahde software integrado ao
fluxo tradicional da Xilinx, fabricante dos FPGASlizados nessa tese. A partir de uma
descri¢cdo do hardware sintetizado, ja utilizando@maponentes bésicos do substrato do
FPGA (LUTs, flip-flops, etc.), é criada uma versfocircuito que utiliza a variacao de
DMR proposta. A ferramenta identifica quais LUTsdpm receber a comparacgéo
utilizando as cadeias de propagacdo de vai-um ea @& demais, instancia
comparadores baseados em LUTSs.

Sobre esses circuitos sao conduzidas campanhaged@dd de falhas, visando a
medir a cobertura atingida. Além disso, o ferrarmkeptovido pela Xilinx é utilizado
para obtencdo de dados referentes a area ocupedateaso dos circuitos, medido aqui
em termos do periodo minimo de reldgio dos cireuiff). Todos os resultados
obtidos sdo comparados com aqueles associados tomea tradicional de DMR em
gréo grosso (CG-DMR). Campanhas de injecao de dailsabém sao utilizadas para
extracdo das assinaturas de erro, que permitermstragdo das tabelas de traducéo
propostas pela plataforma SURFER.

D.4 Resumo dos resultados

O uso de circuitos de propagacdo de vai-um congegyiiar o uso de LUTs para a
criacdo de comparadores de gréo fino. Assim, coceist area foi de 118.8% sobre o
circuito original, em média, enquanto que para Q@RDfoi de 111.6%. Ou seja, 0s
circuitos com FG-DMR sdo apenas 3.57% maiores gslecan CG-DMR. Foi
observada uma reducédo de 99.62% para 99.58% newabée falhas média com o uso
de FG-DMR, além de um aumento médio de 48.7%Teim A quantidade de ciclos
para deteccdo de erros, entretanto, foi reduzida6é#, em média. Essa reducao
traduz-se em uma diminuicdo de 50% no tempo médidaleccdo, se levarmos em
conta os diferentekcx observados para cada circuito.

Quando o circuito de traducdo é utilizado, geranlavés da heuristica proposta,
observou-se um custo total de 133.9% em éarea, oeguesenta um aumento de 10.5%

125

sobre CG-DMR. O tempo médio de reparo, entretafioiofeduzido em 61.9%, em
comparagao com as abordagens tradicionais, oucgeganiciam o reparo sempre pela
primeira posicdo da memoaria de configuracdo assdadcgarticdo com falha.

D.5 Conclusoes

As técnicas propostas nesse trabalho permitirarsoode redundéancia de grao fino
de forma a acelerar o reparo de erros na memdérieodguracdo de FPGAs com
custos comparaveis aos de técnicas tradicionaigrde grosso. Portanto, os dois
grandes objetivos desse trabalho foram atingidos.

Como trabalho futuro, prevé-se a criacdo de hécagstde traducdo de assinaturas
aprimoradas para obtencao de pontos mais vantajmsespaco de projeto. O uso de
granularidades intermediarias e a extensdo dascéécpropostas para que cubram
falhas permanentes também sao possiveis trabaihwss.

