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Abstract - The RPN indicates how potentially difficult it is for a given system to achieve the desired
performance robustly. It reflects both the attainable performance of a system and its degree of directionality.
Two new indices, RPN ratio and RPN difference are introduced to quantify how realizable a given desired
performance can be. The predictions made by RPN are verified by closed-loop simulations. These indices are
applied to quantify the IO-controllability of the quadruple-tank process.
Keywords: controllability measures, RPN, the quadruple-tank system, controller design.

INTRODUCTION

Quantitative input-output controllability measures
are key ingredients of a systematic control structure
design (CSD) procedure. Many different aspects
(e.g., model uncertainties, nonlinearity of the
process, input saturation, interactions between the
control loops) must be taken into account. In
Trierweiler (1997) and Trierweiler and Engell
(1997a) the Robust Performance Number (RPN) and
the Robust Performance Number with constant
scalings (RPNLR) were introduced to characterize the
IO-controllability of a system.  Here two new indices
based on the RPN concept are proposed: RPN ratio
and RPN difference. These new indices allow us to
quantify how far the attainable performance is from
the desired one.

In this paper, we apply these indices to analyze
the quadruple-tank process proposed by Johansson
(2000). The   quadruple-tank  process  is a laboratory

process that consists of four interconnected water
tanks. The linearized dynamic model of the system
has a real multivariable transmission zero which can
change its sign depending on operating conditions.
In this way, the quadruple-tank process is ideal for
illustrating many concepts in multivariable control,
particularly performance limitations due to
multivariable RHP zeros. In the paper, both
nonminimum- and minimum-phase operating points
are analyzed and systematically compared using the
RPN concept. The paper also shows how the RPN
methodology can be applied to controller design.

The paper is structured as follows: in section 2,
the RPN concept and the new indices are introduced.
In section 3, the quadruple-tank process is described.
In section 4, the IO-controllability analysis is
performed using RPN, RPNLR, RPN ratio, and RPN
difference indices. In section 5, the predictions based
on the RPN concept are confirmed by closed-loop
simulations.

RPN - A CRITERION FOR CONTROL
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STRUCTURE SELECTION

The Robust Performance Number (RPN) was
introduced in Trierweiler (1997) and Trierweiler and
Engell (1997a) as a measure to characterize the IO-
controllability of a system. The RPN indicates how
potentially difficult it is for a given system to
achieve the desired performance robustly. The RPN
is influenced by both the desired performance of a
system and its degree of directionality.

The Robust Performance Number

Definiton: The Robust Performance Number ( RPN,
Γ ) of a multivariable plant with transfer matrix G(s)
is defined as

( ) ( ){ }supRPN = G,T, sup G,T,
∆

ω ∈
Γ ω = Γ ω
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where γ*(G(jω)) is the minimized condition number
of G(jω) and )Τ]Τ−Ι([σ  is the maximal singular
value of the transfer function [I T]T− . T is the
(attainable) desired output complementary sensitivity
function, which is determined for the nominal model
G(s). !

The minimized condition number, γ*(G(jω), is

defined by ( )( ) ( )( )RjGLminjG
R,L

* ωγ=ωγ
∆

, where L

and R are real, diagonal, and nonsingular scaling
matrices and γ is the Euclidean condition number.
The Euclidean condition number γ of a complex
matrix M is defined as the ratio between the maximal
and minimal singular values, i.e.,

( ) ( )
( )
M

M
M

∆ σ
γ =

σ
.

The RPN consists of two factors:

 1) )Τ]Τ−Ι([σ . This term acts as a weighting
function and emphasizes the more important region
(i.e., the crossover frequency range) for robust

stability and robust performance relative to the low
and high frequency regions that are less important
for feedback control. For example, a system
can have a high degree of uncertainty at low
frequencies, but nevertheless show no stability and
performance problems. This fact is automatically
taken into account by the function )Τ]Τ−Ι([σ ,
which has its peak value in the crossover frequency
range. The choice of T depends on the desired
closed-loop bandwidth, sensor noise, input
constraints, and in particular the nonminimum-phase
part of G, i.e., RHP zeros, RHP poles, and pure time
delays.
2) (G) 1/ (G)γ∗ + γ∗ . The origin of this term is the
result of computation of the robust performance (RP)
of inverse-based controllers (see Trierweiler and
Engell, 1997a).

The RPN is a measure of how potentially difficult
it is for a given system to achieve the desired
performance robustly. The easiest way to design a
controller is to use the inverse of process model. An
inverse-based controller will have potentially good
performance robustness only when the RPN is small.
As inverse-based controllers are simple and
effective, it can be concluded that a good control
structure selection is one with a small (< 5) RPN
(Trierweiler and Engell, 2000).

RPN-Scaling Procedure

The scaling of the transfer matrix is very
important for the correct analysis of the
controllability of a system and for controller
design. In the definition of γ*(G(jω)), L and R are
frequency dependent; however, in the design stage
L and R are usually constant. The following
procedure based on the RPN is recommended for
use in optimal scaling of a system, G.

RPN-scaling procedure:

1. Determine the frequency, ωsup, where
Γ(G,T,ω) achieves its maximal value.

2. Calculate the scaling matrices, LS and RS,
such that γ(LSG(jωsup)RS) achieves its minimal
value, γ*(G(jωsup)).

3. Scale the system with the scaling matrices, LS
and RS, i.e., GS(s) = LS G(s) RS

Analysis and controller design should then be
performed with the scaled system, GS.
RPN with Constant Scalings
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Definition: The robust performance number with
constant scalings ( RPNLR , ΓLR ) of a multivariable
plant with transfer matrix G(s) is defined as

( ) ( )( )
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Γ ω
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where LS and RS are fixed scaling matrices
corresponding to the scaling matrices that make γ
(LS G(jωsup) RS) minimal, i.e., LS and RS are the
scaling matrices calculated by the RPN-scaling
procedure. !

Attainable Performance

In this section, it is discussed how the attainable
closed-loop performance can be characterized for
systems with RHP transmission zeros.

(a) Specification of the Desired Performance

We specify the desired performance by the (output)
complementary sensitivity function, T, which relates
the reference signal, r, and the output signal, y, in the
one degree of freedom (DOF) control configuration
( see Fig. 1 ). For the SISO case, specifications such as
settling time, rise time, maximal overshoot, and
steady-state error can be mapped into the choice of a
transfer function of the form

d 2

n n

1T
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∆
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   (3)

where ε∞ is the tolerated offset (steady-state error).
The parameters of equation (3), ωn (undamped
natural frequency) and ζ (damping ratio), can be
easily calculated from the time-domain
specifications.

For the MIMO case, a straightforward extension
of this specification is to prescribe a decoupled
response with possibly different parameters for
each output, i.e., Td = diag(Td,1,...,Td,no ), where each
Td,i corresponds to a SISO time-domain

specification.

(b) RHP-Zero Constraint and Factorization

If G(s) has a RHP zero at z with output direction
yz, then for internal stability of the feedback system
the controller must not cancel the RHP zero. Thus
L=GK must also have a RHP zero in the same
direction as G, i.e., yz

HG(z) = 0 ⇒  yz
HG(z)K(z) = 0.

It follows from T=LS that the interpolation
constraints

( ) ( )H H H
z z zy T z 0 ; y S z y= = (4)

must be satisfied.
When the plant G(s) is asymptotically stable and

has at least as many inputs as outputs, G(s) can be
factored as G(s) = BO,z(s)Gm(s). The possible closed-
loop transfer functions T can then be factored to
satisfy the interpolation constraint (4) as

( ) �
O,z dO,z T s  = B (s) B (0) T (s) (5)

where Td(s) is the ideal desired closed-loop transfer
function and BO,z(s) is the output Blaschke
factorization for the zeros (for the definition of the
Blaschke factorization and an algorithm to calculate
it, see, e.g., Havre and Skogestad (1996) or
Trierweiler (1997)). BO,z

� denotes the pseudo-inverse
of BO,z , and BO,z(0) BO,z

�(0) = I. It is easy to verify
that (5) implies (4).

T(s) is different from the original desired transfer
function Td(s), but has the same singular values. The
factor BO,z

�(0) ensures that T(0) = Td(0) so that the
steady-state characteristics ( usually Td(0) = I ) are
preserved.

(c) Remarks about the Blaschke Factorization:

1) An alternative to the Blaschke factorization is to
solve a standard optimal LQ control problem. This
procedure is implemented in Chiang and Safonov
(1992, see functions iofr and iofc). This inner-outer
factorization requires system G(s) to be stable and to
have no jω-axis or infinite poles or transmission
zeros. In particular, D must have full rank. This
means that for stable strictly proper systems
replacing the matrix D by Dε=εI is necessary if we
want to apply this factorization. Therefore, we prefer
not to use this method and consequently it is not
presented here. The interested reader will find further
discussion and references to this procedure in Chiang
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and Safonov (1992).
2) For complex RHP zeros, the corresponding
Blaschke factorization assumes a complex state-
space model realization (Havre and Skogestad,
1996). Since the RPN analysis is based on the
frequency response, this kind of representation does
not impose any kind of limitation on the system
analysis.

Minimum Possible RPN (RPNMIN )

When the system has a strong nonminimum-
phase behavior (e.g., RHP zero close to origin, large
pure time delays), the attainable and the desired
performances can be considerably different.
Therefore, it is interesting to know the minimum
possible RPN for a given desired performance. It can

be calculated as follows:

( ) ( ) ( )( )

( ){ }
d d dMIN

MIN dMIN

T , I T j T j 2

RPN sup T ,

∆

∆

ω

Γ ω = σ  − ω  ω × 

= Γ ω

   (6)

Note that RPNMIN and ΓMIN are only a function of
the desired performance, Td. The minimum possible
condition number for any system is γ*(G(jω)) = 1;
thus the minimum possible value for

(G) 1/ (G)γ∗ + γ∗  is 2. This value is substituted into
equation (1) and is used as the basis for the
definition of RPNMIN.

Figure 2 shows an example of RPN, RPNLR, and
RPNMIN plots. The larger the difference between
RPN and RPNMIN plots,  the more unrealizable the
desired performance.

Figure 1: Standard feedback configuration
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Figure 2: An example of RPN plot (solid line), RPNLR plot (dashed line), and RPNMIN plot (dashdot
line). Note that the frequency is on a logarithmic scale so that -4 should be understood as 10-4.

RPN Ratio and RPN Difference
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If the areas under the RPNMIN and RPN curves are
calculated, i.e.,

( )

( )

max

min

max

min

MIN dMINA T , d log

A G,T, d log

∆ ω
ω

∆ ω
ω

= Γ ω ω

= Γ ω ω

∫

∫
   (7)

it is easy to measure how far the curves are from
each other. Based on these areas, the RPN ratio
(RPNRATIO) and RPN difference (RPNDIFF) are
defined as follows:

RATIO
MIN

DIFF MIN

ARPN
A

RPN A A

=

= −
(8)

Figure 3 gives a graphical interpretation of areas
AMIN and A. Note that the areas were calculated for a
given frequency range, [ωmin, ωmax], on a  logarithmic
scale. The frequency range must be large enough to
capture the important region. When RPNRATIO and
RPNDIFF  are used as relative measures, a simple
finite interval can be used. But if an absolute
measurement is required, then ωmin and ωmax must
tend to 0 and ∝ , respectively.

CASE STUDY: THE QUADRUPLE �
TANK PROCESS

Process Description

The  quadruple-tank  process  (see  Figure  4) is a

laboratory process that consists of four
interconnected water tanks. The linearized dynamic
model of the system has a real multivariable zero,
whose sign can be changed depending on operating
conditions. In this way, the quadruple-tank process is
ideal for illustrating many concepts in multivariable
control, particularly performance limitations due to
multivariable RHP zeros. The location and the
direction of zero have an appealing physical
interpretation. The target is to control the level in the
lower two tanks with the inlet flowrates, F1 and F2.

Process Model

The process model consists of the mass balance
around each tank and is given by

( )

( )

1
1 1 1 3 3 1 1

2
2 2 2 4 4 2 2

3
3 2 2 3 3

4
4 1 1 4 4

dhA x F R h R h
dt

dhA x F R h R h
dt

dh
A 1 x F R h

dt

dhA 1 x F R h
dt

= ⋅ + −

= ⋅ + −

= − ⋅ −

= − ⋅ −

   (9)

where Ai is the cross-section area of Tank i, Ri is the
outlet flow coefficient of Tank i, hi is the water level
of Tank i, F1 and F2 are the manipulated inlet
flowrates and  x1 and x2 are the valve distribution
flow factors  0 ≤ xi ≤ 1.

The parameters used in this work are basically the
same as those in Johansson (2000) and are given by
A1 = A3 = 28 cm2, A2 = A4 = 32 cm2,
R1 = R3 = 3.145 cm2.5/s  and R2 = R4 = 2.525 cm2.5/s.
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Figure 3: Schematic representation of AMIN and A- AMIN.  Note that the frequency
is on a logarithmic scale so that -4 should be understood as 10-4.
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Figure 4: Schematic diagram of the quadruple-tank process. The water
levels in Tank 1 and Tank 2 are controlled by the flow rates F1 and F2.

Operating Points

The quadruple-tank process is studied at a
minimum-phase operating point (MOP) and at a
nonminimum-phase operating point (NMOP), due to
the presence of the RHP transmission zero. Table 1
summarizes the operating conditions of MOP and
NMOP. Note that the main difference between the
OPs is the valve distribution flow factors, x1 and x2,
which are responsible for the difference in h3 and h4
levels. All other variables are almost the same for
both OPs.

RPN ANALYSIS FOR THE QUADRUPLE
TANK

RHP Zero and RGA

Johansson (2000) shows that the quadruple-tank
system always has two transmission zeros, whose
locations can be classified based on the x1 + x2 value.
When 0 < x1 + x2 <1, one of the transmission zeros is
located in RHP. For the case                 where
 x1 + x2 = 1, the system has a transmission zero at the
origin, whereas for 1 < x1 + x2 < 2 no RHP zero
occurs. Table 2 shows the RHP zero for both OPs.
For NMOP, the input zero direction,       uZ, and
output zero direction, yZ, were also included in the
table. The steady-state RGA (see Table 2) clearly
shows that the pairing used for MOP        (i.e., (F1,
h1) and (F2, h2)) should not be applied to NMOP.

Table 1: Definition of the Operating Points

Variables MOP NMOP

h1, h2 [cm]  12.26,   12.78  12.44,    13.16
h3, h4 [cm]    1.63,     1.41    4.73,      4.99
F1, F2 [cm3/s]    9.99,   10.05    9.89,    10.36
x1, x2 [-]    0.70,     0.60    0.43,      0.34
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Table 2: RHP zero and RGA

MOP NMOP

RHP zero none 0.0128

RHP zero input direction _   uz = 0.7326
0.6806

 
 − 

RHP zero output direction _
0.7743

yz
0.6329
− 

=  
 

RGA(0)
1.4 0.4
0.4 1.4

− 
 − 

0.64 1.64
1.64 0.64
− 

 − 

Dynamic RGA and Minimized Condition Number

The transfer matrices for MOP and NMOP are
respectively given by

( ) ( )( )

( )( )
M

4.89 2.93
62s 1 23s 1 62s 1

G s
2.67 5.59

30s 1 90s 1 90s 1

 
 + + + =
 
 + + +  

(10)

( ) ( )( )

( )( )
NM

3.03 4.87
63s 1 39s 1 63s 1

G s
5.14 3.22

56s 1 91s 1 91s 1

 
 + + + =
 
 + + +  

(11)

Here the inputs are (F1, F2) and (h1, h2). Using
these transfer matrices the minimum condition
number and the element (1,1) of the dynamic RGA
were calculated. These results are shown in Figure 5.
Note that for MOP the interaction disappears at high
frequencies. This means that if the controller can be
fast tuned, the control loops will behave like a
completely non interacting system. For NMOP, the
pairing (F1, h2) and (F2, h1) was used in the
calculation. Note that the interaction pattern changes
at around a frequency of 10-2 rad/s. At low
frequencies the best pairing is (F1, h2), but for high
frequencies the pairing (F1, h1) will be much better.
The minimum condition number shows that both
OPs are well conditioned, especially at high
frequencies.
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Figure 5: Dynamic RGA and Minimal Condition Number for MOP and NMOP
RPN Analysis
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Table 3 shows the values of RPN, RPNRATIO, and
RPNDIFF calculated for MOP using several rise times
and 5% overshoot. The corresponding RPN, RPNLR
and RPNMIN plots are shown in Figure 6. Based on
these results, it can be concluded that for MOP the
faster the closed loop, the better the system
performance. The closed-loop response is only
limited by saturation of manipulated variables.

Similarly to Table 3, Table 4 shows the values of
RPN, RPNRATIO, and  RPNDIFF  calculated for NMOP

using several rise times and 5% overshoot. The
corresponding RPN, RPNLR and RPNMIN plots are
shown in Figure 7. Based on these results, it can be
concluded that for NMOP the faster the closed loop,
the more unrealizable the desired performance. Here,
the closed-loop performance is limited by the RHP
zero at 0.0128. Note that all the peaks of RPN curves
are at around a frequency equal to the RHP zero, i.e.,
ω=0.0128. If the peak of the desired performance
(i.e., peak of )Τ]Τ−Ι([σ dd ) is above this frequency,
the RPN curve shows a flat region up to the peak of
the desired performance.

Table 3: RPN indices for MOP

Rise
Time [s] RPN RPNRATIO RPNDIFF

1 1.377 1.0239 0.4472
10 1.378 1.0715 1.4153
50 1.474 1.1588 3.1000
100 1.638 1.2119 4.0806
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Figure 6: RPN plot (solid lines), RPNLR plot (dashed lines), and RPNMIN plot
(dashdot lines) for MOP calculated using several rise times and 5% overshoot.

Table 4: RPN indices for NMOP

Rise
Time [s] RPN RPNRATIO RPNDIFF

1 2.227 3.765 51.84

10 2.265 2.679 33.22

50 2.411 2.135 22.17

100 2.498 1.952 18.33



Application of the RPN Methodology for Quantification                                                                         203

Brazilian Journal of Chemical Engineering, Vol. 19,  No. 02,  pp. 195 - 206,  April - June  2002

−4 −3 −2 −1 0 1
0

0.5

1

1.5

2

2.5

Frequency [rad/s]

RPN−, RPN
LR

−, RPN
MIN

 − PLOTS

t
rise

= 1 s

t
rise

= 10s

t
rise

= 50s
t
rise

= 100s

Figure 7: RPN plot (solid lines), RPNLR plot (dashed lines), and RPNMIN plot
(dashdot lines) for MOP calculated using several rise times and 5% overshoot.

It is important to mention that the RPN does not
give a clear idea of the control difficulties for either
OP. But on the other hand, RPNRATIO and RPNDIFF
can do this very well. The closer RPNRATIO and
RPNDIFF  are to 1 and 0, respectively, the more
realizable the desired performance is.

Usually one is interested in using simple low-
order controllers. When the system�s directionality
varies strongly with frequency, a higher order
controller must be used. To determine how strong
this dependence is, we use the RPNLR plot. Small
differences between RPNLR  and RPN plots indicate
that a low-order controller will probably produce
good results. The crossover frequency range (i.e., the
region of the RPN peak) is especially important in
this analysis. The dashed lines in Figures 6 and 7
correspond to the RPNLR plots. It is very difficult to
distinguish them from the RPN plots. Therefore, we
can conclude that good performance can be achieved
by a low-order controller. In fact, increasing the
controller order will not provide any improvement in
control.

VERIFICATION OF THE PREDICTIONS BY
CLOSED-LOOP SIMULATIONS

The controllers used in the simulations in Figures
8, 9, and 10 were obtained by applying the frequency
response approximation method described in
Trierweiler et al. (2000) and Engell and Müller
(1993) to the optimally RPN-scaled system (see
section RPN-Scaling Procedure). The specified
closed-loop responses used in the controller design
correspond to the same attainable performances used
to calculate the RPN curves.

The simulations confirm the predictions made by
RPN, RPNLR , RPNRATIO, and RPNDIFF. Figure 8
shows that for MOP faster responses produce an
almost decoupled setpoint change. For this OP, the
only restriction on attainable performance is the
power of the control action. If the control action is
not fast enough, the levels of the tank start interacting
with each other. This behavior has already been
predicted by the dynamic RGA (cf. Figure 5).

Figures 9 and 10 show the closed-loop simulation
for NMOP. In these figures, first the setpoint is
changed in the worst possible direction, which
corresponds to the output RHP zero direction (yz),
and the disturbance rejection capacity is tested
against the worst possible direction, which is given
by the input RHP zero direction (uz). Both yz and uz
are given in Table 2. Figure 9 clearly shows that it is
not possible to have a rise time faster than 100 s.
Here the RHP zero at 0.0128 restricts the attainable
performance of the closed loop. Figure 10 analyzes
the effect of the controller structure (i.e., full or
decentralized) and order (i.e., PI or PID) in the
performance of the closed loop. This result confirms
our prediction that increasing the controller order
does not improve the closed-loop performance for
the quadruple-tank system.

To simplify the comparison between the
attainable performances of the MOP and the NMOP,
Figure 11 shows the simulation results obtained by
the MOP with a decentralized PI controller and  by
the NMPO with a full PI controller. Note that MOP
can be more than 10 times faster than NMOP.

The RPN methodology is also applied to tune
MPC  (Trierweiler et al., 2001) and multivariable
controllers in general. All these methods are
implemented in the RPN Toolbox (Farina, 2000).
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Figure 8: Setpoint change in h1 and disturbance rejection capacity for MOP: decentralized PI controller with
10 s rise time (solid line), full PI controller with 50 s rise time (dashed line), decentralized PI controller with 50 s

rise time (dashdot line), and decentralized PI controller with 100 s rise time (dotted line).
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Figure 9: Setpoint change and disturbance rejection capacity for NMOP using full PI
controller with 100 s (solid line), 50 s (dashdot line), and 10 s (dashed line) rise time.
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Figure 10: Setpoint change and disturbance rejection capacity for NMOP: full PI controller (solid line),
decentralized PI controller (dashdot line), and decentralized PID controller (dashed line). All controllers were

designed for a 100 s rise time.
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Figure 11: Setpoint change and disturbance rejection capacity for MOP with decentralized PI controller
with 10 s rise time (solid line) and for NMOP with full PI controller with 100 s rise time (dashed line).

CONCLUSIONS

This paper demonstrated the application of the
RPN concept in the IO-controllability analysis of the
quadruple-tank system. It is shown that the RHP
transmission zero put fundamental limitations on the
performance of the system.  Because of its
dependence on attainable closed-loop performance,
the RPN takes the effect of nonminimum-phase
behavior and the desired performance of the closed
loop into account. In addition, the frequency-
dependent directionality of the system is quantified
correctly. Based solely on RPN, it is not possible to
differentiate the effect of the desired performance on
the closed-loop response, but using two new indices,
RPNRATIO and RPNDIFF, it is possible to see
clearly how realizable a given desired performance
is.

The analysis was performed using a linear
nominal model, but it can be extended to include
nonlinearities and uncertainties, as shown in
Trierweiler (1997) and Trierweiler and Engell
(1997b). In a subsequent step, structures with small
RPN values can be analyzed further by the RPPN
criterion or by a nonlinear simulation with a linear
controller. RPPN (robust performance number of a
plant set) is an extension of RPN and it is influenced
by both the plant nonlinearities and the plant
uncertainties. For the quadruple-tank system, the
nonlinear analysis just confirms the conclusions and
results obtained with simple linearized models, but
for strong nonlinear systems, the nonlinear analysis
must be performed.
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