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ABSTRACT

Melanoma is a type of malignant pigmented skin lesion, and currently is among the
most dangerous existing cancers. However, differentiating malignant and benign cases is
a hard task even for experienced specialists, and a computer-aided diagnosis system can
be an useful tool. Usually, the system starts by pre-processing the image, i.e. removing
undesired artifacts such as hair, freckles or shading effects. Next, the system performs
a segmentation step to identify the lesion boundaries. Finally, based on the image area
identified as lesion, several features are computed and a classification is provided.

In this Thesis, presented as a collection of published papers, we detail approaches to
automatically execute all these steps, resulting in a pre-diagnosis for a pigmented skin
lesion based only in a standard camera image (i.e. a simple color photograph). We tested
our methods on publicly available datasets and achieved better segmentation and classifi-
cation results than methods previously proposed in the literature.

Keywords: Melanocytic skin lesions classification, Image processing, Melanoma.



RESUMO

Análise Automática de Lesões de Pele Melanocíticas Utilizando Imagens de
Câmeras Convencionais

Melanoma é um tipo maligno de lesão de pele pigmentada, e atualmente está entre
os tipos de câncer existentes mais perigosos. Entretanto, diferenciar casos malignos de
benignos é uma tarefa difícil mesmo para experientes especialistas, e um sistema de diag-
nóstico auxiliado por computador pode ser uma ferramenta bastante útil. Normalmente,
este sistema inicia por um pré-processamento da imagem, isto é, remoção de artefatos
indesejados, como pelos, sardas ou efeitos de sombreamento. A seguir, o sistema executa
uma etapa de segmentação, identificando as bordas da lesão. Por fim, baseando-se na área
da imagem identificada como lesão, diversas feições são computadas e uma classificação
é gerada.

Neste tese, apresentada na forma de uma coleção de artigos publicados, nós apre-
sentamos técnicas para automaticamente executar todos estes passos, resultando em um
pré-diagnóstico para uma lesão de pele pigmentada baseado apenas em uma imagem con-
vencional (uma simples fotografia). Nós testamos nossos métodos em bases de imagens
públicas e atingimos melhores resultados de segmentação e classificação que os demais
métodos presentes na literatura.

Palavras-chave: classificação de lesões de pele melanocíticas, processamento de ima-
gens, melanoma.
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1 INTRODUCTION

Melanocytes, cells located in the bottom layer of the skin’s epidermis, are responsi-
ble for the production of melanin, the pigment responsible for skin colour. Neoplastic
transformation of melanocytes results in a tumor known as a melanocytic lesion, usually
visible as a pigmented growth on the skin. The benign type is called melanocytic nevus
(also referred to as a “mole”) and tends to appear in anyone’s skin without being danger-
ous. The malignant type is called a melanoma and it is among the most dangerous forms
of cancer.

The early diagnosis of melanomas is essential for patient prognosis since most ma-
lignant skin lesion can be treated successfully in their initial stages. However, there is a
benign melanocytic lesion know as atypical nevus or dysplastic nevus that shares at least
some, and sometimes all, of the clinical characteristics of a malignant melanoma. Conse-
quently, discriminating benign from malignant lesions is often challenging, sometimes in
the extreme (RAO et al., 1997; FIKRLE; PIZINGER, 2007).

Currently, the most reliable method for identifying malignant melanomas is histopathol-
ogy analysis - requiring surgical excision. While this is not a significant problem in most
cases, it is problem for patients with the atypical-mole syndrome, presenting many me-
lanocytic nevi (i.e. 100 nevi or more (RAO et al., 1997)). In these cases histopathology is
a time consuming, expensive, and uncompfortable option.

According to World Health Organization (2011), approximately 132,000 melanoma
cases occur globally each year. In Brazil, according to the Ministry of Health, the inci-
dence was 6 cases per 100 thousand inhabitants in 2008 and 2009 (DATASUS, 2011).
Table 1.1 presents the average numbers of cases by regions in Brazil. The South region
has the highest incidence and according to (BAKOS et al., 2002) and (BONFÁ et al.,
2011), a combination of three factors is responsible:

• The population of the South region is predominantly light-skinned. Light-skinned
people are at greater risk of developing melanomas;

• Lower latitudes present higher levels of UVA (Ultraviolet A), known risk factor for
melanoma;

• Cultural practices such sun-bathing and working, without the use of sunscreen or
other protection.

Inhabitants in other regions of the world with low latitudes and high percentages of
light-skinned people, such as Scandinavia and Oceania, also have higher probabilities of
developing with malignant melanomas (PEREZ-GOMEZ et al., 2004; CUST et al., 2009).
The highest incidence is in Queensland, Australia (BAXTER et al., 2008).
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Table 1.1: Malignant melanoma incidence in the regions of Brazil (cases for each 100
thousand inhabitants).

Region Males Females
North 0.68 0.38
Northeast 0.86 0.89
Southeast 3.76 3.88
South 7.31 6.58
Central-West 1.88 1.84

1.1 Diagnosis of Melanocytic Skin Lesions

Initial diagnosis of melanomas is most commonly done by visual appraisal of a me-
lanocytic lesion (WURM; SOYER, 2010). Since dysplastic nevi and melanomas can
occur on any skin area, it is essential that a full body examination is done on every pa-
tient, regardless of age (KOPF, 2007). The appraisal is performed based on the ABCD
rule, a simple mnemonic that was created to alert both the general community and health
care professionals of the main features of malignant melanomas (FRIEDMAN; RIGEL;
KOPF, 1985) :

• A = Asymmetry. Independently where the lesion is bisected, one half of the lesion
does not match the other in terms of shape and/or lesion content.

• B = Border irregularity. The perimeter of the lesion is uneven, undulating, ragged,
notched, or blurred.

• C = Colour. The lesion presents a mixture of brown, black, red, white and blue,
producing a mottled appearance.

• D = Diameter > 6 mm. This is not an inviolate rule, and currently a significant
portion of melanomas are diagnosed by experts when these cancers are < 6 mm in
diameter.

Beyond the ABCD characteristics, the E letter may be added when the patient has
a history of melanocytic lesions. The E stands for Evolving, since melanomas usually
melanomas usually change in size, shape, colour, symmetry, etc., while common melan-
ocytic nevi evolve slowly and reach a final stage of growth usually within the first few
decades of life.

There are other visual methods, such as the Menzies Scoring Method or the 7-point
Checklist (JOHR, 2002), that specialists use to identify malignant lesions. Both of these
these methods help the physician to identify the characteristic features of melanomas.

Based on visual examination, other methods can be applied to provide a more defini-
tive diagnosis. Dermoscopy (also known as epiluminescence microscopy, dermatoscopy,
and amplified surface microscopy) is frequently to magnify submascroscopic lesion struc-
tures. The ABCD rule of dermoscopy (NACHBAR et al., 1994), changes the D letter to
Differential structures since the diameter is, at this stage in the diagnosing process, not
a reliable parameter. Dermatologists look for the submacroscopic morphologic and vas-
cular structures that are only visible using a dermoscope and are typical of malignant
melanomas.
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Dermoscopy can increase the diagnostic sensitivity by 10-27% compared to simple
visual appraisal according to MAYER (1997). However, even with the assistance of der-
moscopy, differentiating malignant and benign lesions is difficult. Some specialists claim
that in the early stages of malignant lesions, dermoscopy does not improve the diagnosis
accuracy (SKVARA et al., 2005).

Other methods, based on emerging imaging technologies, are being developed. While
some of these methods show promise, the diagnostic reliability of most of them has
yet to be demonstrated. These methods include: multispectral analysis (GUTKOWICZ-
KRUSIN; RABINOVITZ, 2007), reflectance spectroscopy MARCHESINI; BONO; CAR-
RARA (2009); ZONIOS et al. (2010); MATTHEWS et al. (2011), confocal laser scanning
microscopy and optical coherence tomography (SMOLLE, 2007).

1.2 Automated Melanocytic Skin Lesions Screening Systems

The work presented in this thesis is based on the proposal that computational analysis
of melanocytic skin lesions images could approximate, or even exceed, the accuracy of
that done by a dermatologist using dermoscopic analysis. Such a system must, a priori,
be based on what characteristics dermatologists use diagnose melanomas, and how the
characteristics are used in the diagnostic process. Such a system could, a posteriori, ex-
ceed the accuracy of the human diagnostician by enhancing detection and discrimination
beyond the limits of the human visual system. Having proposed this, this, or any other,
system must be considered as a tool that contributes to diagnostic accuracy and not as a
replacement for the diagnostic process.

An automated screening system must provide the same, or better, sensitivity (signal
detection) and specificity (signal descrimination) as the best human diagnostician using
dermoscopy, and, consequently, a high degree of accuracy (RAO et al., 1997). This does
not mean that a screening system needs to achieve 100% accuracy. Even experienced
dermatologists do not obtain 100% of accuracy, independent of the method in use (AR-
GENZIANO; ZALAUDEK; SOYER, 2004).

Many approaches for classifying lesion images as malignant or benign have been pro-
posed in the last decades. Although most of these approaches were proposed as computer-
aided diagnosis systems, the resultant diagnoses were not entirely reliable. These systems
are more appropriate as screening or triage tools, i.e. as an aid in determining the proba-
bility malignancy, and subsequent order and priority of treatment.

Screening systems for melanocytic skin lesions usually include the following steps:

• Preprocessing: this initial stage is responsible by removing image artifacts that may
complicate the subsequent steps. For instance, the presence of hair and/or shading
effects may decrease the discrimination of the lesion border, and consequently in-
terfere with lesion classification;

• Segmentation: partitioning of the image into healthy skin and lesion areas, deter-
mining the lesion boundaries and identifying the regions of interest;

• Feature extraction: quantification of important lesion characteristics used for clas-
sification;

• Classification: an algorithm that uses the identified features computed to classify
the lesion as malignant or benign.
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The performance of these systems is usually based on three statistical measures: (1)
Sensitivity, i.e. the percentage of malignant (melanomas) cases correctly classified; (2)
Specificity, i.e. the percentage of benign (nevi) cases correctly classified; and, (3) Accu-
racy, i.e. the overall percentage of cases correctly classified.

Efforts to develop a screening system for melanocytic skin lesions started in the
90s. SCHINDEWOLF et al. (1994) were the first to report on an automated analysis
system using digital cameras, which were not very common at the time. The use of a
classification and regression tree (CART) (BREIMAN et al., 1984) resulted in 91% sen-
sitivity, 83% specificity and, 85% accuracy. In subsequent years, the use of dermoscopy
became more widespread, and most of the screening systems proposed in the literature
rely on dermoscopy images.

Several approaches have already been proposed for the segmentation step, usually
including preprocessing. These approaches are based on different types of algorithms,
such as: region-based, usually region growing (IYATOMI et al., 2008) (CELEBI et al.,
2008); clustering techniques (GOMEZ et al., 2008); thresholding algorithms (GANSTER
et al., 2001) (GARNAVI et al., 2011); iterative procedures, such as active-contours or
snakes (SILVEIRA et al., 2009); and combinations of the above (ZHOU et al., 2011;
WANG et al., 2011).

Complete systems for the analysis of melanocytic skin lesions have been proposed.
However, many of these systems, described in the medical literature, do not provide de-
tails about the algorithms used. For example SEIDENARI; PELLACANI; PEPE (1998)
compared the results of examination by two physicians with the results from an automated
analysis system using 90 dermoscopy images. The non-experienced physician achieved
74% sensitivity and 75% specificity. The experienced physician achieved 81% sensitivity
and 95% specificity, and the automated system achieved 93% sensitivity and 95% speci-
ficity. However, no processing details were presented and, as such, the publication could
not be considered as a reference in later works. FIKRLE; PIZINGER (2007) report 91.3%
sensitivity and 80.8% specificity using a system called microDERM. Again, processing
details were not provided.

Approches proposed in the informatics literature normally detail all of the process-
ing steps used for the classification of dermoscopic lesion images. IYATOMI et al. (2008)
were the first to present an online system (http://dermoscopy.k.hosei.ac.jp) to which regis-
tered users can send an image and receive an classification. After a region-based segmen-
tation step, their system computes 428 features (80 relying on symmetry, 32 on border
definition, 140 on colour, and 176 on texture). Next, a feature selection step reduces
the data dimensionality, and a Neural Network is used for the classification. According to
their experiments using 1258 dermoscopy images, their system achieves 85.9% sensitivity
and 86% specificity.

CELEBI et al. (2007) proposed a system based on the extraction of 437 features (11
based on lesion shape, 354 on colour and 72 on texture). After feature normalization and
selection, a Support Vector Machine classifier produced results with 92.34% sensitivity
and 93.33% specificity.

Most of the proposed approaches are based on the ABCD rule of dermoscopy. How-
ever, WADHAWAN et al. (2011) choose the 7-point Checklist as reference for the com-
puted features. Using a linear Support Vector Machine, their experiment with 347 der-
moscopy images resulted in 87.27% sensitivity and 71.31% specificity.

The Internet provides an opportunity to acquire images locally and submit them for
remote classification, by a dermatologist or a screening system. This dimension of tele-
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medicine would benefit both patient and physician: providing remote access to expert
knowledge, reducing the inconvenience of travel, reducing the wait times for exam pro-
cedures and providing results in a short time (MASSONE et al., 2008; WHITED, 2006).

SCHINDEWOLF et al. (1994) experimented with high resolution images acquired
using commercially available digital cameras, including cameras present in tablets and
smartphones. The use of such devices for imaging would certainly facilitate access to
automated screening systems. However, preprocessing and segmentation of melanocytic
skin lesions in standard camera images has not received much attention in the literature.

Most of the proposed segmentation techniques convert the original colour image to
a monochromatic image, and use a thresholding algorithm to identify the lesion area
(MANOUSAKI et al., 2006; RUIZ et al., 2008; TABATABAIE; ESTEKI; TOOSSI, 2009;
ALCON et al., 2009). Recently, the use of active-contours segmentation algorithms has
been proposed in some approaches (PAROLIN; HERZER; JUNG, 2010; TANG, 2009).

Feature extraction is usually based on the ABCD rule of dermoscopy. However, sys-
tems that use standard camera images cannot measure lesion diameter because image
acquisition standards do not exist, yet. Consequently, systems usually try to identify the
differential structures using texture descriptors. MANOUSAKI et al. (2006) proposed to
extract 43 features to characterize the lesions: 9 related to its geometry, 28 to its colours,
2 to its borders, and 4 based on texture. Using logistic regression, their experiments with
132 images obtained 89.4% accuracy, 60.9% sensitivity and 95.4% specificity.

TABATABAIE; ESTEKI; TOOSSI (2009) proposed using Independent Component
Analysis (ICA) to quantify lesion texture information. Based on image samples (sub-
images of 16× 16 pixels), they extracted the 100 most frequent independent components
from images of benign and malignant lesions. Next, they performed feature selection
based on the t-test separability criterion, and classified the images using Support Vector
Machines. Using only those ICA-based texture data, their experiments achieved 73.7%
accuracy. Next, they included colour features (average and standard deviation of each
RGB channel), and increased the accuracy to 88.7%.

Another important screening system for melanocytic skin lesions using standard cam-
era images has been proposed by ALCON et al. (2009). They proposed a set of 55 lesion
features: 12 based on lesion shape, 2 on border discrimination, 21 on colour, and 20 on
texture. After feature selection to identify only the 5 most significant features, a Logistic
Model Tree provide lesion classification. Their experiments with 152 images achieved
86.84% accuracy. Then, including the Adaboost meta-classifier (FREUND; SCHAPIRE,
1997), their system achieved 89.72% accuracy. The accuracies obtained by those pro-
posed approaches are usually higher than the diagnostic accuracy obtained by trained
physicians, which range between 31% and 85% according to the literature (WHITED,
2006).

With this in mind, the objective of the current work was to automate and integrate the
four processing stages and to develop a an automated melanocytic lesion classification
system, using conventional digital camera images, that provides the same or better sensi-
tivity and specificity than that provided by experienced dermatologists. Further, that the
system be usable locally or remotely, via telemedicine systems, by persons with little or
no diagnostic experience.
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2 THESIS OBJECTIVES

This Thesis is was developed and published as a set of papers, and this document is
organized as a collection of papers. Each one of the Sections of Chapter 3 is, in fact, a
paper that has already been published. Every paper is self-contained and consequently
can be read independently. The order of presentation is chronological, so the Sections
show papers in the same order they have been published.

The objective of these papers is to present a framework for the automated prescreen-
ing of melanocytic skin lesions, trying to differentiate malignant from benign cases using
only standard camera images (i.e., simple photographs). As described in Section 1.2,
an automated prescreening system for melanocytic skin lesions requires sequential steps
that preprocess, segment, extract features and classify the images. Accordingly, the ap-
proaches presented next were proposed to address at least one of these steps.

The goals and contributions of each one of these published papers are:

• Section 3.1: we present a preprocessing procedure to attenuate shading effects in
human skin color images. Specially in melanocytic skin lesion images, if used
directly in the segmentation process, shading and lesion regions could be confused.
So, we proposed in this paper an automatic method to prevent this possibility. We
also present experiments attenuating shading effects in face images.

• Section 3.2: this paper presents a complete automated prescreening system. It starts
with the preprocessing method presented in Section 3.1. Then, a new multi-channel
representation is created to better differentiate healthy skin and lesion areas, and
this representation is used to generate a segmentation mask. Next, we extract a set
of 52 features based on the ABCD rule of dermoscopy. Using the Nearest Neighbor
Classifier, and a combination of this classifier with a Decision Tree, this system
obtained highly accurate classification results.

• Section 3.3: the image segmentation is an important task in a screening system, and
in this paper we presented a parameter-free segmentation method that in our experi-
ments resulted in lower average segmentation error in comparison to state-of-the-art
methods proposed in literature. The method starts using Independent Component
Analysis to locate skin lesions in the image, and this location information is further
refined by an active-contours segmentation method.

• Section 3.4: we propose in this paper novel lesion features based on the melanin
information of lesion areas. According to recent studies, the melanin quantity in
malignant melanomas may vary in comparison to benign lesions. Our approach
tries to determine this variation using only standard camera images. We included
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those features in a second classification stage to the system proposed in Section 3.2,
and our preliminary experiments indicate that this two-stage approach can achieve
accuracy levels near to 100% with adequate training.

After these Sections detailing the four most important papers published during the
Doctorate, we also included Section 3.5 detailing other publications of the author of this
Thesis.

It is important to observe that the paper in Section 3.3 about image segmentation is
presented between two papers about complete screening systems (Sections 3.2 and 3.4),
including feature extraction and classification steps. Ideally, a image segmentation tech-
nique should have been presented before these steps. However, the order of presentation
is chronological, as already mentioned, and we decided to include the paper in Section 3.3
in this Thesis since this method achieved improved segmentation results in comparison to
the method used in Section 3.2. Meantime, after proposing this segmentation method pre-
sented in Section 3.3, we performed some experiments comparing this technique to other
techniques proposed for melanocytic skin lesions segmentation and how the segmenta-
tion results influence on the final classification result. These experiments are described
in a published book chapter, and the obtained results indicate that the features usually
extracted based on the ABCD rule are not significantly influenced by the segmentation
step (for more details about these experiments, we included the referred book chapter as
Appendix A of this Thesis). Consequently, we decided to use in the paper presented in
Section 3.4 the same segmentation method used in Section 3.2, since this technique is less
complex and usually also very efficient. Moreover, in this way the potential of the sec-
ond classification stage based on melanin features presented in Section 3.4 can be easier
analyzed.
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3 COLLECTION OF PUBLISHED PAPERS IN JOURNALS
AND CONFERENCES PRESENTING THE DEVELOPMENT
OF THIS THESIS

3.1 Shading Attenuation in Human Skin Color Images

Cavalcanti, P. G. ; Scharcanski, J. ; Lopes, C. B. O. . Shading Attenuation in Human
Skin Color Images. In: 6th International Symposium on Visual Computing (ISVC), 2010,
Las Vegas. Lecture Notes in Computer Science: Advances in Visual Computing, 2010. v.
6453. p. 190-198.

Abstract

This paper presents a new automatic method to significantly attenuate the color degra-
dation due to shading in color images of the human skin. Shading is caused by illu-
mination variation across the scene due to changes in local surface orientation, lighting
conditions, and other factors. Our approach is to estimate the illumination variation by
modeling it with a quadric function, and then relight the skin pixels with a simple oper-
ation. Therefore, the subsequent color skin image processing and analysis is simplified
in several applications. We illustrate our approach in two typical color imaging problems
involving human skin, namely: (a) pigmented skin lesion segmentation, and (b) face de-
tection. Our preliminary experimental results show that our shading attenuation approach
helps reducing the complexity of the color image analysis problem in these applications.

3.1.1 Introduction

Interpret the shading of objects is a important task in computer vision. This is spe-
cially true when dealing with human skin images, because the color of structures can be
significantly distorted by shading effects. The occurrence of shading depends mainly on
the color of the object and the light illuminating them. However, roughness of the surface,
the angles between the surface and both the light sources and the camera, and the distance
of the surface from both the light sources and the camera, can also significantly influence
the way the scene is processed (SHAPIRO; STOCKMAN, 2001). Specifically, human
skin images are impacted by these factors and the analysis of these images can become
difficult if the uneven illumination is not correctly understood and corrected.

In teledermatology, for example, often a standard camera color image containing a
skin lesion is transmitted to a specialist, or analyzed by a pre-diagnosis system, with-
out special attention to the illumination conditions (WHITED, 2006)(MASSONE et al.,
2008). However, these conditions can affect the quality of the visualization, and impact
on the physician diagnosis, or limit the efficiency of the pre-screening system. Pigmented
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skin lesions typically have low diagnosis accuracy if the illumination condition is insuf-
ficient. These lesions usually are darker than healthy skin, and automatic approaches to
segment such lesions tend to confuse shading areas with lesion areas. As a consequence,
the early detection of malignant cases is more difficult without removing shading effects
from the images. Considering that melanoma is the most dangerous type of pigmented
skin lesion, and that this disease results in about 10000 deaths in 40000 to 50000 diag-
nosed cases per year (only considering the United States of America (Melanoma Research
Project, 2010)), any contribution to improve the quality of these images can be an impor-
tant step to increase the efficiency of pre-diagnosis systems, and to help to detect cases in
their early-stages.

Another important human skin color imaging application that is severely affected by
shading effects is face detection. In this case, color images containing human skin are used
in head pose estimation or in face recognition systems, and shading effects may occlude
some important features of the face (e.g., eyes, nose, head geometry). Usually, it is not
feasible to control the illumination condition during image acquisition, and an automatic
preprocessing step to mitigate these effects is an important contribution to these systems
efficiency, as will be illustrated later.

In this paper, we propose an new automatic approach to attenuate the shading effects
in human skin images. In Section 3.1.2, we describe the algorithm that executes this
operation. In Section 3.1.3, some preliminary experimental results of our method are
shown, focusing on the benefits of this operation for the color image analysis of pigmented
skin lesions and face images. Finally, in Section 3.1.4 we present our conclusions.

3.1.2 Our Proposed Shading Attenuation Method

Our method for shading effect attenuation improves on the approach proposed by
Soille (SOILLE, 1999). He proposed to correct the uneven illumination in monochromatic
images with a simple operation:

R(x, y) = I(x, y) / M(x, y), (3.1)

where, R is the resultant image, I is the original image, M = I • s is the morphological
closing of I by the structuring element s, and (x, y) represents a pixel in these images.
The main idea behind Soille method is to use the closing operator to estimate the local
illumination, and then correct the illumination variation by normalizing the original im-
age I by the local illumination estimate M . The division in Eq. 3.1 relights unevenly
illuminated areas, without affecting the original image characteristics. Unfortunately, it
is often difficult to determine an efficient structuring element for a given image, specially
for human skin images that have so many distinct features, such as hair, freckles, face
structures, etc. In this way, the results tends to be unsatisfactory for this type of images,
as can be seen in Figs. 3.1(b)-(c).

Our method modifies the Soille approach by providing a better local illumination es-
timate M . In order to provide this local illumination estimate, we start by converting
the input image from the original RGB color space to the HSV color space, and retain
the Value channel V . This channel presents a higher visibility of the shading effects, as
proposed originally by Soille.

We propose an approach inspired on the computation of shape from shading (SHAPIRO;
STOCKMAN, 2001). The human body is assumed to be constituted by curved surfaces
(e.g. arms, back, faces, etc.) and, in the same way humans see, digital images present a
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Figure 3.1: Shading attenuation in a pigmented skin lesion image : (a) Input image; (b)
Morphological closing of Value channel by a disk (radius = 30 pixels); (c) Unsatisfactory
shading attenuation after replacing the Value channel by R(x, y), as suggested by Soille
(SOILLE, 1999); (d) Local illumination based on the obtained quadric function; (e) 3D
plot of the obtained quadric function; (f) Shading attenuation by using our approach.
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smoothly darkening surface as one that is turning away from the view direction. How-
ever, instead of using this illumination variation to model the surface shape, we use this
information to relight the image itself.

Let S be a set of known skin pixels (more details in Section 3.1.3). We use this pixel
set to adjust the following quadric function z(x, y):

z(x, y) = P1x
2 + P2y

2 + P3xy + P4x+ P5y + P6, (3.2)

where the six quadric function parameters Pi (i = 1, ..., 6) are chosen to minimize the
error ε:

ε =
N∑
j=1

[V (Sj,x, Sj,y)− z(Sj,x, Sj,y)]
2 , (3.3)

where, N is the number of pixels in the set S, and Sj,x and Sj,y are the x and y coordinates
of the jth element of the set S, respectively.

Calculating the quadric function z(x, y) for each image spatial location (x, y), we have
an estimate z of the local illumination intensity in the image V . Replacing M(x, y) by
z(x, y), and I(x, y) by V (x, y) in Eq. 3.1, we obtain the image R(x, y) normalized with
respect to the local illumination estimate z(x, y). The final step is to replace the original
Value channel by this new Value channel, and convert the image from the HSV color
space to the original RGB color space. As a consequence of this image relighting, the
shading effects are significantly attenuated in the color image. Figs. 3.1(d)-(e) illustrate
the results obtained with our shading attenuation method.

3.1.3 Experimental Results and Discussion

As mentioned before, our method is initialized by a set of pixels S known to be as-
sociated with skin areas. In this section, we discuss how to select this set of pixels S in
two typical applications of human skin color image analysis, namely, the segmentation of
pigmented skin lesions and of faces in color images. Our goal is to show that our shading
attenuation approach helps in the analysis of these images, making the processing steps
simpler.

3.1.3.1 Pigmented Skin Lesion Segmentation in Color Images

In this application, the focus is in the image skin area that contains the lesion. As
consequence, during image acquisition, the lesion is captured in the central portion of the
image, and is surrounded by healthy skin. Therefore, we assume the four image corners
to contain healthy skin. This assumption is common in dermatological imaging, and also
has been made by other researchers in this field (CELEBI et al., 2008) (MELLI; GRANA;
CUCCHIARA, 2006). Therefore, we use 20 × 20 pixel sets around each image corner,
and determine S as the union of these 1600 pixels (i.e. the four pixel sets).

Many methods have been proposed for analyzing pigmented skin lesions in dermo-
scopic images (MAGLOGIANNIS; DOUKAS, 2009). However, dermoscopes are tools
used by experts, and there are practical situations where a non-specialist wishes to have a
qualified opinion about a suspect pigmented skin lesion, but only standard camera imag-
ing is available on site (i.e., telemedicine applications). In the following discussion we
focus in this situation that justifies the use of telemedicine and standard camera imaging.
To illustrate the effectiveness of our method, we compare the segmentation results in pig-
mented skin lesions with and without the application of our method. Usually, pigmented
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Figure 3.2: Examples of pigmented skin lesion segmentation. In the first and second
columns, the original images and their respective segmentation results. The third and
fourth columns show the resulting images after the application of our shading attenuation
method, and the respective segmentation results.

skin lesions correspond to local darker skin discolorations. The segmentation method
used is a well known thresholding procedure based on Otsu’s method (OTSU, 1979). This
algorithm assumes two pixel classes, usually background and foreground pixels (specif-
ically in our case, healthy and unhealthy skin pixels), and searches exhaustively for the
threshold th that maximizes the inter-class variance σ2

b (th):

σ2
b (th) = ω1(th)ω2(th) [µ1(th)− µ2(th)]2 , (3.4)

where, ωi are the a priori probabilities of the two classes separated by the threshold th,
and µi are the class means. To segment the input color images, we determine a threshold
th for each one of the RGB channels, and establish a pixel as lesion if at least two of its
RGB values are lower than the computed thresholds. At the end, we eliminate possible
small segmented regions filtering the thresholding result with a 15× 15 median filter.

In Fig. 3.2, we present some pigmented skin image segmentation examples. These
pigmented skin lesions images are publicly available in the Dermnet dataset (DERM-
NET, 2010). Although our segmentation method is very simple, the application of the
shading attenuation method increases its efficacy. In this way, the feature extraction and
the classification procedure (typically the next steps in pre-diagnosis systems) have higher
probability to produce accurate results.

Our method may fail in some situations, as illustrated in Fig. 3.3. The situations
illustrated in Fig. 3.3 are: (a) our method is adequate to model and attenuate the global
illumination variation (which changes slowly), but tends to have limited effect on local
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Figure 3.3: Illustrations of cases where our shading attenuation method tends to fail, such
as cast shadows (first line) and surface shapes not well modeled by quadric functions
(second line). The first and second columns show the original images and their respective
segmentation results. The third and fourth columns show the resulting images after the
application of our shading attenuation method, and the respective segmentation results.

(a) (b) (c)

Figure 3.4: Illustration of skin pixels localization using Eq. 3.5 : (a) Input image; (b)
Binary mask; and (c) adjacent pixels identified as human skin.

cast shadows; and (b) our approach tends to fail on surface shapes that are not locally
smooth, since the quadric function is not able to capture the local illumination variation
in this case. In such cases, the segmentation method may confuse healthy and unhealthy
skin areas. Possibly, better results could be achieved in such cases by acquiring the images
in a way that surface shapes are smoother and illumination varies slowly across the scene.

3.1.3.2 Face Segmentation in Color Images

A face can be found in virtually any image location. In this case, the selection of the
initialization pixel set S it is not as trivial as in the pigmented skin lesion segmentation
problem. Therefore, we obtain the initialization pixel set S based on previously known
color information (VASSILI; SAZONOV; ANDREEVA, 2003). A pixel is considered to
be associated to a skin region in an RGB face image if :

R > 95 ∧ G > 40 ∧ B > 20 ∧ (3.5)
max(R,G,B)−min(R,G,B) > 15 ∧
|R−G| > 15 ∧ R > G ∧ R > B,

where, ∧ denotes the logical operator and.
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In Fig. 3.4, we present an example of the initialization skin pixels set S obtained
with Eq. 3.5. Although this criterion to determine pixels associated to skin color is used
often (VASSILI; SAZONOV; ANDREEVA, 2003), it can be very imprecise in practical
situations, specially when there is image shading. However, its use here is justifiable since
all we need is a set of adjacent image pixels with skin color (i.e. likely to be located in
skin regions) to initialize our error minimization operation (see Eqs. 3.2 and 3.3), and
erroneous pixels should not influence significantly the final result.

Once S has been determined, the shading effects in the face image can be attenuated.
To demonstrate the efficacy of our method in this application, we show the face segmenta-
tions with, and without, shading attenuation using a known Bayes Classifier for the pixels
based on their corrected colors (VASSILI; SAZONOV; ANDREEVA, 2003). A pixel is
considered skin if:

P (c|skin)

P (c|¬skin)
> θ, (3.6)

where θ = κ× 1− P (skin)

P (skin)
. (3.7)

In Eq. 3.6, the a priori probability P (skin) is set to 0.5, since we use the same number
of samples for each class (i.e. 12800 skin pixels and 12800 non-skin pixels). The constant
κ also is set to 0.5, increasing the chance of a pixel be classified as skin, and P (c|skin)
and P (c|¬skin) are modeled by Gaussian joint probability density functions, defined as:

P =
1

2π|
∑
|1/2
× e−

1
2
(c−µ)T

∑−1(c−µ), (3.8)

where, c is the color vector of the tested pixel, and µ and
∑

are the distribution parameters
(i.e., the mean vector and covariance matrix, respectively) estimated based on the training
set of each class (skin and non-skin).

Figs. 3.5 and 3.6 illustrate some face segmentation examples. These face images are
publicly available in the Pointing’04 dataset (GOURIER; HALL; CROWLEY, 2004).
The images in Fig. 3.5 show four different persons, with different physical characteris-
tics and different poses (i.e. angles between their view direction and the light source),
resulting in different shading effects. Clearly, the skin pixels, and consequently the face,
is better segmented after we apply our shading attenuation method in all these different
situations. In Fig. 3.6, we present four examples of the same person, just varying her head
pose (the angle between her view direction and the light source). It shall be observed
that even when the face is evenly illuminated, the face is better segmented after using
our shading attenuation method. However, inaccuracies may occur near facial features
partially occluded by cast shadows (e.g. near the nose and the chin). Based on these
results, it should be expected that algorithms that extract facial features (e.g., eyes, mouth
and nose) would perform their tasks more effectively, which helps in typical color image
analysis problems such as head pose estimation or face recognition.

3.1.4 Conclusions

This paper presented a method for attenuating the shading effects in human skin im-
ages. Our preliminary experimental results indicate that the proposed method is applica-
ble in at least two typical color image analysis problems where human skin imaging is
of central importance. In the case of pigmented skin lesion segmentation, our shading
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Figure 3.5: Face segmentation examples. In the first and second columns are shown
the original images, and their respective segmentation results. In the third and fourth
columns, are shown images after the application of our shading attenuation method, and
their respective segmentation results.
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Figure 3.6: Face segmentation examples for the same person varying its head pose. In the
first and second columns are shown the original images, and their respective segmentation
results. In the third and fourth columns, are shown images after the application of our
shading attenuation method, and their respective segmentation results.
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attenuation method helps improving the lesion detection, and, hopefully, contributes for
the early identification of skin cancer cases. We also studied the application of our shad-
ing attenuation method as a tool to increase the robustness of face segmentation, and our
experiments suggest that potentially it can contribute to improve the efficiency of head
pose estimation and facial recognition systems. We plan to further develop our approach
using more complex quadric functions, and do a more extensive testing of our shading
attenuation method in typical color imaging applications.

References

See the unified bibliography of the thesis.
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3.2 Automated Prescreening of Pigmented Skin Lesions Using Stan-
dard Cameras

Cavalcanti, Pablo G. ; Scharcanski, Jacob . Automated prescreening of pigmented skin
lesions using standard cameras. Computerized Medical Imaging and Graphics, v. 35, p.
481-491, 2011.

Abstract

This paper describes a new method for classifying pigmented skin lesions as benign or
malignant. The skin lesion images are acquired with standard cameras, and our method
can be used in telemedicine by non-specialists. Each acquired image undergoes a se-
quence of processing steps, namely: (1) preprocessing, where shading effects are atten-
uated; (2) segmentation, where a 3-channel image representation is generated and later
used to distinguish between lesion and healthy skin areas; (3) feature extraction, where
a quantitative representation for the lesion area is generated; and (4) lesion classifica-
tion, producing an estimate if the lesion is benign or malignant (melanoma). Our method
was tested on two publicly available datasets of pigmented skin lesion images. The pre-
liminary experimental results are promising, and suggest that our method can achieve a
classification accuracy of 96.71%, which is significantly better than the accuracy of com-
parable methods available in the literature.

3.2.1 Introduction

Pigmented skin lesions include both, benign and malignant forms. Melanoma is a kind
of malignant pigmented skin lesion, and currently is among the most dangerous existing
cancers, resulting in about 10000 deaths from the 40000 to 50000 diagnosed cases per
year, just in United States of America (Melanoma Research Project, 2010). According
to World Health Organization (World Health Organization, 2011), about 132000 melan-
oma cases occur globally each year. Benign pigmented skin lesions are called moles, or
nevi. However, differentiating benign and malignant lesions can be challenging. For ex-
ample, there are nevi known as Clark Nevi (also referred as Dysplastic or Atypical Nevi)
that present similar characteristics to melanomas (The Skin Site, 2010). It is consensual
that the early diagnosis of malignant skin lesions (melanomas) is essential for the patient
prognosis.

Recently, telemedicine techniques have been studied as a resource to obtain an early
diagnosis of skin lesions. Besides the fact that dermatology probably is the most visual
specialty in medicine, the teledermatology consultation brings some benefits, like easier
access to health care and faster clinical results (MASSONE et al., 2008). Comparing
the physical examination (face-to-face diagnosis) with the remote diagnosis, experiments
indicate that teledermatology is effective and reliable (WHITED, 2006). Teledermatology
can benefit from image prescreening to help identify potentially malignant cases in their
early stages.

To help distinguishing between benign and malignant cases, dermatologists often an-
alyze each lesion with a dermoscope, which is a noninvasive tool that facilitates the evalu-
ation of submacroscopic morphologic and vascular structures. As can be seen in Fig. 3.7,
dermoscopy enables the generation of images with constant illumination, different tex-
ture patterns, and characteristics that are not measurable in standard camera images, such
as lesion area and perimeter. In this way, many research groups developed digital der-
moscopy image analysis schemes to help in skin lesion diagnosis (BLUM; ZALAUDEK;
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ARGENZIANO, 2008).
In an attempt to prescreen/classify dermoscopy images, Celebi et al. (CELEBI et al.,

2007) achieved 92.34% and 93.33% of specificity and sensitivity, respectively, using a
JSEG-based segmentation algorithm and Support Vector Machines in the classification.
More recently, Iyatomi et al. (IYATOMI et al., 2008) proposed, to the best of our knowl-
edge, the first publicly accessible system (“Dermatologist-like”), based on a region grow-
ing segmentation method and an Artificial Neural Network classifier. The user can upload
an image at their website ‘http://dermoscopy.k.hosei.ac.jp’ and obtain a
prescreening result. This system achieved a sensitivity of 85.9% and a specificity of
86.0% for a set of 1258 dermoscopy images (IYATOMI et al., 2008).

Despite the importance of these efforts, a disadvantage of these methods is that they
require dermoscopy images, and dermoscopes are not common among non-specialists.
Moreover, studies indicate that dermoscopy images do not increase diagnosis accuracy
in early stages (SKVARA et al., 2005). So, with the proposal to facilitate the access to
health care, also have been developed teledermatology systems making use of images
acquired with standard cameras. In this way, patients do not need to go physically to a
hospital or a clinic for a preliminary evaluation (even in benign cases), specially in remote
areas. However, due to the already mentioned different visible characteristics in standard
camera images and in dermoscopy images (see Fig. 3.7), these systems require different
segmentation methods and feature extraction techniques.

A recent approach proposed by Alcon et al. (ALCON et al., 2009) is an easy-to-use
melanoma prescreening system based on standard camera images. A skin lesion pho-
tograph is provided as an input, and its prescreening is automatically produced, using
segmentation and classification algorithms. However, often the acquired images contain
artifacts, such as uneven illumination, which causes difficulties in the lesion segmentation
stage, therefore their system initially corrects the image background. Afterwards, 55 fea-
tures are extracted and the ABCD rule (Asymmetry, Border irregularity, Color variation
and Differential structures) is employed to classify the lesion image as benign or malig-
nant. Their system reaches an accuracy of 86.64% in its best performance (ALCON et al.,
2009).

This paper describes a new melanoma prescreening method using standard camera
images and new techniques to improve the processing and analysis of such images, which

(a) (b)

Figure 3.7: Different visualizations of the same lesion using : (a) macroscopic image
acquired with a standard camera; and (b) microscopic image acquired with a dermoscope.
(Courtesy of Eric Ehrsam, MD (EHRSAM, 2010)).

http://dermoscopy.k.hosei.ac.jp
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were designed to be used remotely by non-specialists. In our experiments (see Section
3.2.6), we used 220 images obtained from two websites, with no special care in image
acquisition or postprocessing. Each one of these images was submitted to a sequence
of processing steps, namely: (1) preprocessing, where shading effects are attenuated by a
new method proposed in this paper, as described in Section 3.2.2; (2) segmentation, where
a new 3-channel image representation is proposed and used to discriminate between le-
sion and healthy skin areas, as described in Section 3.2.3; (3) feature extraction, where
a quantitative lesion description containing new features extracted from our 3-channel
representation is generated, as described in Section 3.2.4; and finally (4) lesion classifi-
cation provides a lesion pre-diagnosis (using a hybrid classifier proposed in this paper);
this processing step was designed to reduce the number of false negatives in the clas-
sification of skin lesion images as malignant or non-malignant, as described in Section
3.2.5. In Section 3.2.6, experimental results are presented, and Section 3.2.7 we present
our conclusions.

3.2.2 Preprocessing

As mentioned before, the input image may be affected by illumination artifacts, and if
used directly in the segmentation process, shading and lesion regions could be confused.
Therefore, shading is attenuated in the input image before the image segmentation.

We start by converting the input image Īci (Īci (x, y) ⊂ [0, 1], i = 1, 2, 3) from the
original RGB color space to the HSV color space ĪHSVi (SMITH, 1978). This is justified
by the better shading visibility in the Value channel, and also by the simplicity of dealing
with monochromatic images.

Let Ī be the Value normalized channel of ĪHSVi such that Ī ⊂ [0, 1]. To correct the
illumination in monochromatic images, Soille (SOILLE, 1999) suggests a simple opera-
tion:

R(x, y) = Ī(x, y) / M(x, y), (3.9)

where, R is the resultant image, M = Ī • s is the morphological closing of Ī by the
structuring element s, and (x, y) represents a pixel in each one of these images. The
main idea is that the closing operator is used to estimate the local illumination. However,
Fig. 3.8(b)-(c) show that the result is unsatisfactory, specially because it is difficult to
determine an efficient structuring element for each image location, and the illumination is
inhomogeneous.

Skin lesions often occur on curved surfaces (e.g. arms, hands, faces, etc.), and the
illumination changes locally due to the surface curvature, generating shading effects. A
smoothly darkening surface is presented as one that is turning away from the view di-
rection, and we use use shape from shading concepts (SHAPIRO; STOCKMAN, 2001)
to relight the image(instead of determining the illumination variation by a morphological
closing operation).

In order to avoid confusing lesion darkness with image shading, we capture shading
information based on pixels known to be in healthy skin areas. The imaged lesion is
supposed to be in the central part of the image, and healthy skin areas are expected in
the four image corners (CELEBI et al., 2008; MELLI; GRANA; CUCCHIARA, 2006).
Therefore, we use a set of 400 pixels around each image corner (20×20 square), and find
the pixel set S as the union of the four pixel sets, corresponding to 1600 pixels associated
to healthy skin. The pixel set S is used to determine the local illumination intensity
z(x, y), adjusting the following quadric function:
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z(x, y) = P1x
2 + P2y

2 + P3xy + P4x+ P5y + P6, (3.10)

where, the six quadric function parameters Pi (i = 1, ..., 6) are chosen to minimize the
error ε:

ε =

#S∑
j=1

[
Ī(Sj,x, Sj,y)− z(Sj,x, Sj,y)

]2
, (3.11)

where, Sj,x and Sj,y are the x and y coordinates of the jth element of the set S, respec-
tively.

Calculating the quadric function z(x, y) for each image spatial location (x, y), we
estimate the local illumination intensity in the image Ī . Next, we replace M(x, y) by
z(x, y) in Eq. 3.9 obtaining R(x, y), significantly attenuating the shading effects (see Eq.
3.9). An illustration of the results obtained with this shading attenuation approach is in
Figs. 3.8(d)-(e). Next, the monochromatic image R(x, y) is used to replace the Value
channel ĪHSV3 in ĪHSVi , and we obtain the shading corrected image by converting ĪHSVi

to the original RGB color space Īci , i = 1, 2, 3. Examples of color images with shading
correction are presented in Figs. 3.8(f) and 3.10(b).

3.2.3 Skin Lesion Segmentation

The skin lesion segmentation helps identify the skin lesion area and its rim in monochro-
matic ((ALCON et al., 2009)(GOMEZ et al., 2008)), or in color ((CELEBI et al., 2007)(IY-
ATOMI et al., 2008)) images. However, skin artifacts such as hair and freckles can be
confused with lesions, and affect negatively the prescreening process (e.g., feature extrac-
tion and classification). Moreover, segmentation techniques developed for dermoscopy
images consider texture and color patterns that are usually not visible in standard camera
images. Thus, we propose a new method to segment the lesions in these kind of image.

To minimize segmentation errors, we create a new representation ĪNi (i = 1, 2, 3) from
the original image to improve the discrimination between healthy and unhealthy skin
regions. This new three-channel image contains normalized values (ĪNi (x, y) ⊂ [0, 1],
ĪNi (x, y) ∈ R), improving its sensitivity to local changes in the lesion characteristics (such
as texture, darkness and color variation). The features represented more explicitly in each
one of these three channels are discussed in Subsections 3.2.3.1, 3.2.3.2 and 3.2.3.3.

3.2.3.1 Texture Variability Information Channel (ĪN1 )

Skin lesions often have more local textural variability than healthy skin areas, and that
can be used to differentiate healthy and unhealthy skin regions. In order to capture the
textural variation information we start by computing the normalized Luminance image L̄,
defined as:

L̄(x, y) =

∑3
i=1 Ī

c
i (x, y)

3
, (3.12)

where, Īci (x, y) is a pixel (x, y) of the normalized RGB color image. We quantify the
textural variability in L̄(x, y) by computing τ(x, y, σ):

τ(x, y, σ) =
L̄(x, y)

S(x, y, σ)
− L̄(x, y), (3.13)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8: Shading attenuation. (a) Input image; (b) Closing of the input Value channel
by a disk of 30 pixels radius; (c) Result obtained by replacing the input Value channel by
its normalized version using the image (b) - an unsatisfactory shading attenuation result;
(d) Obtained quadric model using the corners of the input Value channel; (e) Obtained
quadric model in 3D; (f) Result obtained by substituting the normalized version of the
input Value channel using the quadric model in (d) as a normalization factor - our shading
attenuation result.

where, S(x, y, σ) = L̄(x, y) ∗G(σ) (i.e., the Luminance image L̄ is smoothed by a Gaus-
sian filter with standard deviation σ). Re-arranging terms in Eq. 3.13, we obtain:

τ(x, y, σ) =
L̄(x, y)− L̄(x, y) · S(x, y, σ)

S(x, y, σ)

=
L̄(x, y) (1− S(x, y, σ)))

S(x, y, σ)

= L̄(x, y)
S̃(x, y, σ)

S(x, y, σ)
, (3.14)

where, S̃(x, y, σ) represents the complement of the L̄ smoothed image (i.e. S̃(x, y, σ) =
1−S(x, y, σ)). If an image region is dark (i.e. has low pixel intensities, as often occurs in
skin lesions), S̃(x, y, σ) > S(x, y, σ) and the ratio S̃(x, y, σ)/S(x, y, σ) tends to increase,
and the local region and textural information are emphasized; if the region is bright (e.g.
as in healthy skin regions), S̃(x, y, σ) < S(x, y, σ) and the ratio S̃(x, y, σ)/S(x, y, σ)
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tends to decrease, and the local region and its textural information are de-emphasized.
This process is illustrated in Fig. 3.9 for the image shown in Fig. 3.8(f). Usually, most
pixels in L̄ correspond to healthy skin (i.e., have higher intensity values). However, most
skin pixels have lower values (closer to zero) in τ(x, y, σ), while skin lesion pixels tend
to be brighter, as the histogram peaks show in Figs. 3.9(b)-(c). 1

(a)

(b) (c)

(d) (e)

Figure 3.9: Texture variability quantification τ(x, y, σ). (a) Histogram of the Luminance
image L̄ of Fig. 3.8(f); (b)-(c) show the histograms of L̄(x, y)S̃(x, y, σ)/S(x, y, σ) (see
Eq. 3.14) using σ = 1 and σ = 43

7
, respectively; (d)-(e) show the image instances associ-

ated to the histograms shown in Figs. (b)-(c).

A single Gaussian filter may not be sufficient to capture the textural variability of
different types of lesions in generic images. So, we calculate τ(x, y, σ) for different σ
values2 {σ1, σ2, ..., σN}, and select at each pixel the maximum τ(x, y, σ) among all scales
σ:

T (x, y) = maxσ[τ(x, y, σ)], σ ∈ {σ1, σ2, ..., σN} . (3.15)

Finally, the texture variation channel T is normalized, obtaining ĪN1 :

1The higher histogram peaks are associated to healthy skin regions in Figs. 3.9(b)-(c).
2In our experiments, we used σ = 1, 117 ,

15
7 , ...,

43
7 , and filter window sizes of 7σ × 7σ.
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ĪN1 (x, y) = (T (x, y)−min (T )) / (max (T )−min (T )). (3.16)

The procedure described in Eq. 3.15 was designed to capture the local texture vari-
ability information at each pixel (x, y), in lesions of different sizes, shapes and texture
patterns.

3.2.3.2 Local Skin Darkness Information Channel (ĪN2 )

We use the complement of ĪN2 = 1 − Īc1(x, y) (i.e. the normalized Red channel) to
represent the local skin darkness. Healthy skin tends to be reddish, so brighter Īc1(x, y)
pixels occur in healthy skin regions and darker Īc1(x, y) pixels often occur in lesion areas.
Therefore, ĪN2 tends to present lower intensity values in healthy skin areas and higher
intensity values in lesion areas. Local skin darkness information ĪN2 is used to reinforce
the local texture variability information in ĪN1 , and to help discriminate between healthy
and unhealthy skin areas in the input image.

3.2.3.3 Color Information Channel (ĪN3 )

Usually, healthy and unhealthy skin present different color distributions. To reduce
the problem dimensionality and represent the color information in a single channel, we
use principal component analysis (PCA) (GOMEZ et al., 2008) (CELEBI et al., 2009).

Let ~c be the color of the normalized RGB image pixel (x, y), where ~c = [Īc1(x, y)
Īc2(x, y) Īc3(x, y)]. The PCA finds vectors ~u1, ~u2, ~u3 (arranged as columns of a matrix U )
in such a way that ~c′ = UT~c maximizes the spread (variance) of the RGB data. We want
a single channel representation for the color variability information, and then only use
the vector ~u1 pointing along the direction that maximizes the variance of ~c′1 (i.e. first
component of ~c′). Assuming centered RGB data

∑
~ci = 0 (the color data is centered by

subtracting the mean data vector ~µ, i.e. ~c = ~c − ~µ), ~u1 is the vector that maximizes∑3
i=1( ~u1

T~ci)
2. In other words, the image colors (3D points) projected along the ~u1 direc-

tion (1D scalars) are as spread as possible.
To make sure that lesion pixels have higher values than healthy skin pixels, as in the

channels ĪN1 and ĪN2 , we use the PCA property described next. Since the color data is
centered around the mean vector ~µ, and the most frequent colors are predominant in the
computation of ~µ, the most frequent colors are projected along the ~u1 direction closer
to the origin of the space spanned by ~ci. Since the healthy skin pixels usually are more
frequent, their corresponding projection magnitudes

∣∣∣~c′1∣∣∣ ≈ 0, however the lesion pixels

projection magnitudes
∣∣∣~c′1∣∣∣ tend to be larger than zero. Therefore, we represent the color

variability information C by the magnitudes of ~c′1 (i.e., C =
∣∣∣~c′1∣∣∣).

In the sequence, we normalize the C values at each pixel (x, y) and create the ĪN3
channel:

ĪN3 (x, y) = (C(x, y)−min (C)) / (max (C)−min (C)). (3.17)

Also, we reduce the noise in ĪN3 by filtering it with a 5 × 5 median filter. The color
information channel ĪN3 helps to discriminate between healthy and unhealthy skin pixels,
while emphasizing skin lesion regions.



35

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3.10: Illustration of our 3-channel image representation ĪNi and the data bimodal
distribution in each channel (in higher peaks of histograms the healthy skin pixels, and in
lower peaks the lesion pixels). (a) Input image; (b) Input image after shading attenuation;
(c)-(d) show the computed texture variability information channel (ĪN1 ) and its histogram;
(e)-(f) show the computed local skin darkness information channel (ĪN2 ) and its histogram;
(g)-(h) show the computed color information channel (ĪN3 ) and its histogram.

3.2.3.4 Skin Lesion Area Segmentation and Rim Detection

In all three channels of the input image representation ĪNi (x, y), lesion pixels tend to
have higher intensities than healthy skin pixels. Fig. 3.10 illustrates these images, and
show that their histograms typically are bimodal (lesion/healthy skin). Therefore, we seg-
ment the lesion areas using a method inspired on the Otsu’s thresholding method (OTSU,
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1979). This algorithm assumes two pixel classes, usually healthy and unhealthy skin
pixels, and searches exhaustively for the threshold th that minimizes the total intra-class
variance σ2

w(th), defined as the weighted sum of variances of the two classes:

σ2
w(th) = ω1(th)σ2

1(th) + ω2(th)σ2
2(th), (3.18)

where ωi are the a priori probabilities of the two classes separated by the threshold th,
and σ2

i are their intra-class variances. Minimize the intra-class variance is equivalent to
maximize the inter-class variance σ2

b (th):

σ2
b (th) = σ2 − σ2

w(th) (3.19)
= ω1(th)ω2(th) [µ1(th)− µ2(th)]2 ,

where σ2 is the image pixels variance, and µi are the class means. Therefore, we obtain
three thresholds thi by maximizing σ2

b (th) for each ĪNi channel, creating a lesion segmen-
tation mask φ. A pixel (x, y) is in a lesion region (i.e., φ(x, y) = 1) if its value is higher
than the threshold thi in at least two of the three channels:

φ(x, y) =


1 , if (ĪN1 (x, y) > th1 ∧ ĪN2 (x, y) > th2),
1 , if (ĪN2 (x, y) > th2 ∧ ĪN3 (x, y) > th3),
1 , if (ĪN1 (x, y) > th1 ∧ ĪN3 (x, y) > th3),
0 , otherwise.

(3.20)

Although Ganster et al. (GANSTER et al., 2001) stated that a OR-combination of
binary masks gives the best segmentation results, we noted in our experiments that this
approach tends to merge lesion and healthy skin areas (e.g., areas where the skin have
color or texture similar to lesions). In our approach, majority voting is used to eliminate
most of these incorrectly segmented areas. After this operation, the remaining skin arti-
facts (such as freckles and hair) are eliminated more easily. These artifacts usually are
form isolated regions that differ in area and perimeter from skin lesions, since lesions
often have larger areas and boundaries that are more irregular. Therefore, we compute the
perimeter and the area of all thresholded connected pixel sets (i.e. where φ(x, y) == 1),
and then partition this set of regions in two clusters. All regions in the cluster with smaller
areas (in average) are eliminated, and we set their mask pixels to φ(x, y) = 0.

After eliminating artifacts, the lesion regions still can contain rim imperfections (caused
by hair or noise), which we filter out by applying a 5 × 5 median filter to φ(x, y).
Figs. 3.11(a)-(c) illustrate the lesion area segmentation steps (i.e., thresholding, artifacts
elimination and filtering) for the image shown in Fig. 3.10(b). As it can be seen, there can
be holes inside the lesion segment, but their pixels are not considered further in the next
image processing steps of our method. These holes often occur because of image specu-
larities, and these pixels are not processed further because they could introduce noise in
the lesion feature extraction process. The obtained lesion rim (i.e., the outer perimeter of
the lesion) is shown in Fig. 3.11(d) superimposed to the original image (Fig. 3.10(b)).

3.2.4 Feature Extraction

We extract a set of image features to distinguish between benign and malignant skin
lesions. Given the segmentation results, we compute the local characteristics from the
lesion areas according to the ABCD rule (NACHBAR et al., 1994). The ABCD acronym
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(a) (b)

(c) (d)

Figure 3.11: Segmentation process for the image shown in Fig. 3.10(b). (a)-(c) show
the lesion segmentation masks φ(x, y), respectively, after thresholding, artifacts elimina-
tion and filtering; (d) shows the computed lesion rim (dilated by two pixels for better
visualization) superimposed to the original image.

refers to the four criteria used in this rule, namely: Asymmetry, Border irregularity, Color
variation and Differential structures.

The ABCD rule in important dermatology, and most dermatological prescreening sys-
tems rely on some scheme for quantifying the four criteria of the ABCD rule. In this work,
we propose some image features to quantify this rule, and combine them with other fea-
tures that have already been proposed in the literature.

3.2.4.1 Features Used for Lesion Asymmetry Characterization

The goal of the proposed features is to quantify the lesion shape, in special the asym-
metry of the lesion in relation to the principal axes. The major axis L1 of the lesion is
aligned with its longest diameter, passing through its center; the minor axis L2 is orthog-
onal to L1 and also passes through the shape center. The selected features are:

f1: Solidity: the ratio between the lesion area (A) and its convex hull area (ALCON et al.,
2009);

f2: Extent: the ratio between the lesion area and its bounding box area (ALCON et al.,
2009);

f3: Equivalent diameter: 4A/(L1π) (ALCON et al., 2009; CELEBI et al., 2007);

f4: Circularity: 4πA/(L1p), where p is the lesion perimeter (ALCON et al., 2009);

f5: The ratio between the principal axes (L2/L1) (ALCON et al., 2009; CELEBI et al.,
2007);

f6: The ratio between sides of the lesion bounding box (ALCON et al., 2009);
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f7: The ratio between the lesion perimeter p and its area A (FIKRLE; PIZINGER, 2007);

f8: (B1 −B2)/A, where, B1 and B2 are the areas in each side of axis L1;

f9: Similar to f8, but makes use of the shorter axis L2;

f10: B1/B2 with respect to the axis L1;

f11: Similar to f10, but makes use of the shorter axis L2.

3.2.4.2 Features Used for Lesion Boundary Irregularity Characterization

The boundary sharpness is quantified by the magnitude of the gradient
∣∣∣∣ →∇ĪNi ∣∣∣∣ at each

pixel using the Sobel operator. However, instead of using pixels only at the lesion rim, we
analyze pixels in an extended (dilated) rim3 (ALCON et al., 2009). Consequently, lesions
that have a smooth boundary (usually nevi) are better characterized. Also, the lesion
boundary dilation makes the boundary representation more robust to the inaccuracies of
the segmentation process. To characterize the lesion boundary irregularity, we use the
following features:

f12-f14: Average gradient magnitude of the pixels in the lesion extended rim (ALCON
et al., 2009), in each one of the three INi channels;

f15-f17: Variance of the gradient magnitude of the pixels in the lesion extended rim (AL-
CON et al., 2009), in each one of the three INi channels;

The lesion rim irregularity is characterized in the ABCD rule by dividing the rim in
8 symmetric regions (NACHBAR et al., 1994). In addition to the two principal axes L1

and L2, we rotate these orthogonal axes by 45 degrees and obtain two additional axes.
Therefore, 8 symmetric regions R = 1, ..., 8 are obtained. For each channel ĪNi , the
average gradient magnitudes of the extended rim pixels µR,i(R = 1, ..., 8) are computed.
Therefore, we calculate 6 more features:

f18-f20: Average of the 8 µR,i values in each one of the three ĪNi channels;

f21-f23: Variance of the 8 µR,i values in each one of the three ĪNi channels;

3.2.4.3 Features Used for Lesion Color Variation Characterization

Their goal is to quantify the color variation in the lesion. The selected features are:

f24-f27: Maximum, minimum, mean and variance of the pixels intensities inside the le-
sion segment in the color variation channel ĪN3 ;

f28-f39: Maximum, minimum, mean and variance of the pixels intensities inside the le-
sion segment in each one of three original Īci channels;

f40-f42: Ratios between mean values of the tree original Īci channels: mean(Īc1)/mean(Īc2),
mean(Īc1)/mean(Īc3) and mean(Īc2)/mean(Īc3), considering only pixels inside the
lesion segment.

3The rim is dilated by 2 pixels, producing a 5 pixels wide region centered at the lesion rim, as suggested
in (ALCON et al., 2009).
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Table 3.1: Six Possible Colors of a Lesion on the RGB Color Space.
Color Red Green Blue
White 1 1 1
Red 0.8 0.2 0.2
Light Brown 0.6 0.4 0
Dark Brown 0.2 0 0
Blue-Gray 0.2 0.6 0.6
Black 0 0 0

Physicians usually identify six distinct hues in skin lesions: white, red, light and dark
brown, blue-gray, and black (NACHBAR et al., 1994). Lesions containing more of these
hues are more likely to be malignant. We quantify the lesion color variability by com-
puting the occurrence of these typical hues within a lesion segment. Given a pixel in the
lesion segment, we find the the nearest reference color (associated with a typical hue, see
Table 3.1 (ALCON et al., 2009)) by the Euclidean distance to the pixel color in Īci . A
hue occurrence counter is created, one cell per typical hue. For each lesion pixel, the
nearest typical hue counter is increased by 1. Finally, typical hues counters are normal-
ized/divided by the lesion area A, and generate the 6 additional features f43-f48.

3.2.4.4 Features Used for Lesion Differential Structures Characterization

The lesion differential structures refer to submacroscopic morphologic and vascu-
lar structures only visible in dermoscope images, as already mentioned in Section 3.2.1.
However, we measure differences between benign and malignant lesions using texture
features found in macroscopic images. We extract the 4 features f49-f52, namely the max-
imum, minimum, mean and variance of the pixels intensities inside the lesion segment to
represent the textural variation in the channel ĪN1 .

3.2.5 Lesion Classification

After segmenting a lesion segment, and extracting 52 features f1 − f52 (see Section
3.2.4), we can discriminate a benign from a malignant pigmented skin lesion by classifi-
cation. We present in the following subsections our classification scheme.

3.2.5.1 Feature Normalization

The extracted features may generate values in different ranges. However, often clas-
sifiers are more efficient if these feature values are normalized (produce values within a
specified range). We normalize feature values with the z-score transformation (AKSOY;
HARALICK, 2000):

Zi,j =
((vi,j − µj)/(3σj) + 1)

2
, (3.21)

where, vi,j is the value of the jth feature of the ith sample (image), µj and σj are the mean
and standard deviation of the jth feature, respectively. After the z-score transformation,
most of the Zi,j values are in the [0,1] range. The out-of-range values are saturated to
either 0 or 1.
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3.2.5.2 Training Samples Selection

We applied holdout validation for the training samples selection. That is, half of the
samples in each class (benign or malignant) are randomly selected for the training set.
Additionally, since we have a relatively small image data set (with N samples described
in Section 3.2.6), new samples are added to the training set using the Smoothed Bootstrap
Resampling method4 to obtain η samples, where η > N . In our experiments, we used zero
mean Gaussian noise with σ = 0.1, obtained η/2 samples for each class, and η was set to
the interval [1000, 5000] (see Section 3.2.6).

3.2.5.3 Classification

Two classifiers are used in our experiments (see Section 3.2.6), namely the K-Nearest
Neighbors (KNN) classifier, and the KNN followed by a Decision Tree classifier (KNN-
DT). Detailed information about these classifiers are presented next.

• KNN: classifies samples based onK closest matches in feature space (ALPAYDIN,
2004). We use K=1 and each sample is assigned to its nearest neighbor class by
using the Euclidean distance. Although this classifier have already been used in
previous approaches (DREISEITL et al., 2001; BURRONI et al., 2004), it never
resulted in a high accuracy as with our proposed features (see our experiments in
Section 3.2.6).

• KNN-DT: uses the KNN classifier (above) and a set of Bayes’ Classifiers, each
specialized on a feature sub-set identified by the Classification and Regression Tree
(CART) method (BREIMAN et al., 1984). It is used to reduce false negatives by
confirming each case pre-diagnosed as benign by KNN.

The Bayes’ Classifier (ALPAYDIN, 2004) assigns a sample to the most likely class,
given the extracted features. Let L be a set of features [f1,...,f52] extracted from a lesion,
D = 1 the malignant class and D = 0 the benign class. Using Bayes’ rule, the posterior
probability P (D|L) of assigning a lesion to class D can be written as:

P (D|L) =
P (L|D)P (D)

P (L)
, (3.22)

where, P (L|D) is the conditional probability of finding a lesion with these L characteris-
tics in class D, P (D) is the prior probability of class D, and P (L) is the evidence and it
represents the probability that these features L are seen.

Since the evidence P (L) will be the same for both classes (D = 0 and D = 1), we
discard this term from Eq. 3.22, and the lesion can be considered malignant if P (D =
1|L) > P (D = 0|L), or if:

P (L|D = 1)P (D = 1) > P (L|D = 0)P (D = 0), (3.23)

and it is benign otherwise. Given adequate estimates of P (L|D) and P (D), the Bayes’
Classifier is optimal since it minimizes the probability classification error. Considering
that we have a relatively large feature set to discriminate reliably between nevi and me-
lanomas (see the proposed 52 features in Section 3.2.4), the estimate of the joint feature

4The Smoothed Bootstrap Resampling method is used when data is not sufficient to guarantee statistical
significance. Specifically, original samples are randomly selected, and new ones are created adding a small
amount of zero-centered noise to their feature values, enlarging the data set (YOUNG, 1990).
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probability in Eq. 3.23 can be quite challenging without simplifications. Also, P (D) is
not known (to the best of our knowledge). Therefore, we use CART to simplify these esti-
mates. Recall that we are interested in minimizing false malignant (melanoma) negatives
by confirming the pre-diagnosis of nevi cases. Therefore, we simplify our problem by
choosing feature sub-sets (with less than 52 features) that independently can provide evi-
dences for a melanoma pre-diagnosis, and the CART method is used to find these feature
sub-sets.

The CART algorithm (BREIMAN et al., 1984) iteratively builds a decision tree by
creating feature space binary partitions (i.e. selecting linear feature discriminants), in a
way that sample class homogeneity is increased within each sub-space partition at each
decision tree construction step (ALPAYDIN, 2004). Each step introduces a new tree node
(i.e. a new linear discriminant), and the CART algorithm converges when the sample class
partitions are maximally homogeneous, given an error criterion. Traversing the decision
tree from its root to a given leaf node, implies in testing a set of feature thresholds to
reach a decision at the leaf node (i.e. reaching a sub-space partition that allows to decide
whether to assign a sample to the nevus or the melanoma class). However, in this work
we are only interested in the CART feature sub-sets involved in the leaf nodes decisions
(not in the linear discriminants produced by CART). Particularly, we are interested in the
feature sub-sets found by the CART algorithm that are used to decide the assignment of a
sample to the melanoma class (i.e. in the decision tree leaf nodes involved in class D = 1
assignment decisions). In this way, we reduce the computation of joint feature probability
estimates in Eq. 3.23 to a set of feature sub-sets joint probability estimates, specially those
used in D = 1 class assignments. In this way, we reduce the chance of occurring false
negatives in the final classification results (i.e. malignant samples incorrectly assigned to
the non-malignant class can be re-assigned correctly). In our experiments, we obtained
feature sub-sets of 4 to 19 features.

The following steps are used to estimate the joint probabilities in these feature sub-
sets:

• Considering all training samples assigned to classes D = 1 and D = 0 at all the
leaf nodes, we estimate the prior class probabilities P (D = 1) and P (D = 0) as
the percentages of the training set samples that are assigned to each one of these
two classes. In fact, we calculate the probability that a sample is assigned to the
class D = 1 at any decision tree leaf node P (D = 1), and then estimate the prior
probability that a sample is assigned to classD = 0 as P (D = 0) = 1−P (D = 1);

• Considering all training samples, we compute the feature joint probabilities P (Ll|D
= 0) and P (Ll|D = 1) for each decision tree branch leading to a D = 1 class
assignment, where Ll denotes all the features involved in the decision sequence at a
given tree branch, from the tree root to its leaf node l. The feature joint probabilities
P (Ll|D = 0) and P (Ll|D = 1) are multivariate distributions, that we model using
an unsupervised modified EM (Expectation-Maximization) algorithm to identify
finite Gaussian mixture models based on the method proposed by Figueiredo and
Jain (FIGUEIREDO; JAIN, 2002);

• We calculate P (Ll|D = 0) and P (Ll|D = 1) for each leaf node l. Given the
estimated P (D = 1) and P (D = 0), we use Eq. 3.23 at each leaf node with a
D = 1 class assignment decision, and decide if the sample in question should be
re-assigned to the class D = 1. For all leaf nodes l involving a D = 1 assignment
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decision, we increment the counter CD=1 if P (Ll|D = 1)P (D = 1) > P (Ll|D =
0)P (D = 0);

• Finally, a sample previously assigned to the nevus class (D = 0) is re-assigned to
the melanoma class (D = 1) is CD=1 ≥ Nl

2
, i.e. when at least half of the leaf node

tests (D = 1) indicate that the sample should be assigned to class D = 1.

3.2.6 Experimental Results and Discussion

We used in our experiments two datasets of images publicly available: (a) the dataset
used by Alcon et al.(ALCON et al., 2009), with 152 images from the Dermnet dataset
(DERMNET, 2010) (i.e., 45 benign Clark Nevi and 107 Melanomas); and (b) an ex-
tended dataset, which was built by adding 68 extra images from the DermQuest dataset
(DERMQUEST.COM, 2010) (37 Clark Nevi and 31 Melanomas), constituting a total of
82 Clark Nevi and 138 Melanomas in this extended dataset. The idea is to test our method
in a dataset used in the literature (i.e. the Alcon et al. dataset (ALCON et al., 2009)), and
then confirm our method performance in a larger dataset. Most of the 220 images are 720
pixels in width (in landscape format), or have a height of 720 pixels in portrait format. All
images with different dimensions were resized to have 720 pixels in width or in height,
preserving the aspect ratio. Recall that the imaged lesion is supposed to be in the central
part of the image, and healthy skin areas are expected in the four image corners (CELEBI
et al., 2008; MELLI; GRANA; CUCCHIARA, 2006).

We compare our results with two representative methods reported in the literature:
(a) Iyatomi et al. (known as the “Dermatologist-like”) (IYATOMI et al., 2008), which
is a publicly accessible teldermatology prescreening system; and (b) Alcon et al. (AL-
CON et al., 2009), which is the most recent approach dealing with standard camera
images. In order to compare our results with these methods results, we use sensitivity
(Sens = (TP )/(TP + FN)), specificity (Spec = (TN)/(TN + FP )) and accuracy
(Acc = (TP + TN)/(TP + FP + TN + FN)), where TP , TN , FP and FN are, re-
spectively, the number of True Positive, True Negative, False Positive and False Negative
cases. Specifically, Sens indicates the percentage of malignant (melanomas) cases cor-
rectly classified; Spec indicates the percentage of benign (nevi) cases correctly classified;
and, Acc indicates the overall percentage of cases correctly classified.

In order to illustrate that dermoscopy image prescreening methods actually are not ad-
equate to analyze skin lesion images acquired with standard cameras, we tested the Alcon
et al. dataset (ALCON et al., 2009) in the web-based “Dermatologist-like” system (IY-
ATOMI et al., 2008). From 107 melanomas images, 68 images were classified correctly,
26 images were mistakenly classified as nevi, 11 images were classified as ‘suspicious’
and 2 images resulted in no classification at all (probably because of segmentation errors).
From 45 nevi images, 31 images were classified correctly, 7 images were incorrectly clas-
sified as melanomas, 5 images were classified as ‘suspicious’, and 2 resulted in no clas-
sification at all. In this experiment, we obtained a sensitivity of 75.24%, a specificity of
80%, and an accuracy of 75.66%, considering ‘suspicious’ as a correct classification, and
the situation of ‘no classification’ as an incorrect classification.

Alcon et al.(ALCON et al., 2009) tested two classification procedures in their dataset.
They tested the Correlation-Based Feature Selector (CFS) with Logistic Model Tree (LMT),
and classified correctly 101 images in 107 melanoma images, and 31 images in 45 nevi
images, achieving a sensitivity of 94.39%, a specificity of 68.89% and an accuracy of
86.84%. The second classifier, CFS with Adaboost and LMT, classified correctly 96 im-
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ages in 107 melanoma images, and 34 images in 45 nevi images, achieving a sensitivity
of 89.72%, a specificity of 75.56% and an accuracy of 85.53%.

Table 3.2 presents the results obtained using the Alcon et al. dataset, our lesion image
representation with the KNN classifier and the KNN-DT classifier, and different values
of η (the number of Bootstrap samples). Although results are very similar, η = 5000 was
selected since it maximize the accuracy (i.e., generated the highest number of correctly
classified images). It is important to observe that the KNN-DT classifier reduced the
number of false negatives compared with the KNN classifier (i.e., correctly classified a
higher number of melanoma/malignant images), obtaining higher sensitivity values.

Table 3.2: Our experiments results using the Alcon et al. dataset.
Method η Melanomas Nevi Sens Spec Acc

class class
(total:107) (total:45)

KNN 1000 103 43 96.26% 95.55% 96.05%
KNN-DT 1000 103 43 96.26% 95.55% 96.05%

KNN 2000 102 43 95.32% 95.55% 95.39%
KNN-DT 2000 103 43 96.26% 95.55% 96.05%

KNN 3000 100 43 93.45% 95.55% 94.07%
KNN-DT 3000 102 43 95.32% 95.55% 95.39%

KNN 4000 101 43 94.39% 95.55% 94.73%
KNN-DT 4000 103 43 96.26% 95.55% 96.05%

KNN 5000 103 44 96.26% 97.77% 96.71%
KNN-DT 5000 103 44 96.26% 97.77% 96.71%

Table 3.3 compares the results obtained by our approach (η = 5000), and by the
methods proposed by Iyatomi et al.(IYATOMI et al., 2008) and Alcon et al.(ALCON
et al., 2009), using the Alcon et al. dataset. As it can be seen that for the same dataset,
the results obtained by our approach improved significantly on the results obtained by the
other methods (IYATOMI et al., 2008) (ALCON et al., 2009). The highest accuracy result
achieved by these methods was 86.84% (ALCON et al., 2009), and our approach achieved
96.71%, meaning that nearly 10% more cases of the dataset were classified correctly by
our method. Also, our approach classified correctly more melanoma images, increas-
ing the sensitivity values, and more nevi images, increasing significantly the specificity
values.

As already mentioned, we also realized experiments with an extended image dataset.
The KNN classifier classified correctly 131 images in 138 melanoma images, and classi-
fied correctly 75 images in 82 nevi images, achieving a sensitivity of 94.92%, a specificity
of 91.46% and an accuracy of 93.63%. The KNN-DT classifier classified correctly 133
images in 138 melanoma images, and classified correctly the same 75 images in 82 nevi

Table 3.3: Comparison of results.
Method Sens Spec Acc

“Dermatologist-like” (IYATOMI et al., 2008) 75.24% 80% 75.66%
CFS with LMT (ALCON et al., 2009) 94.39% 68.89% 86.84%

CFS with Adaboost and LMT (ALCON et al., 2009) 89.72% 75.56% 85.53%
KNN 96.26% 97.78% 96.71%

KNN-DT 96.26% 97.78% 96.71%
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images (as the KNN classifier), achieving a sensitivity of 96.37.%, a specificity of 91.46%
and an accuracy of 94.54%. These results are shown in Table 3.4. Comparing with the re-
sults for the Alcon et al. dataset, we had a decrease in specificity. However, it is important
to observe that our approach can correctly classify higher percentages of melanoma and
nevi images, achieving better sensitivity, specificity and accuracy measures as compared
to the other methods (IYATOMI et al., 2008)(ALCON et al., 2009) (see Table 3.3).

Table 3.4: Results to the extended dataset.
Method Melanomas class Nevi class Sens Spec Acc

(total:138) (total:82)
KNN 131 75 94.92% 91.46% 93.63%

KNN-DT 133 75 96.37% 91.46% 94.54%

As can be seen in Tables 3.2 and 3.4, the KNN-DT classifier is able to classify cor-
rectly a higher number of melanoma images, and consequently it can provide higher sen-
sitivity values than the KNN classifier. However, the KNN classifier can be useful since
it has lower computational cost.

3.2.7 Conclusion

This paper presented a method for classifying pigmented skin lesions as benign or
malignant. It is assumed that the imaged lesion is located in the central part of the image,
and healthy skin areas are expected in the four image corners (CELEBI et al., 2008;
MELLI; GRANA; CUCCHIARA, 2006). Besides the lesion position in the image, no
special care is required in the skin lesion image acquisition (e.g. dermoscopy is not used),
and the images are acquired with standard cameras and standard illumination, making
our method suitable for telemedicine applications. Since our skin lesion pre-screening
method is automatic, it can be used by non-specialists.

In this paper, new techniques to improve the processing and analysis of skin images
acquired with standard cameras were proposed, such as: (1) a new image data-driven
shading attenuation methodology was introduced to improve the image preprocessing
stage; (2) to facilitate the lesion rim detection, a new 3-channel image representation that
maximizes the discrimination between the lesion and healthy skin regions was presented;
(3) to better discriminate between malignant and non-malignant lesions, new features
based in our new 3-channel representation were introduced; and, (4) a hybrid classifier
was proposed to reduce the number of false negatives in the classification of skin lesion
images as malignant or non-malignant.

The preliminary experimental results suggest that our approach potentially can achieve
better classification results than comparable methods available in the literature (IYATOMI
et al., 2008; ALCON et al., 2009). Using the dataset proposed in (ALCON et al., 2009),
the highest accuracy result achieved by these other methods was 86.84% (ALCON et al.,
2009), while our approach achieved 96.71% of accuracy. Also, our approach classified
correctly more melanoma images, increasing the sensitivity values, and more nevi images,
increasing the specificity values. Also, using an extended dataset, our method classified
correctly 94.54% of the 220 images, with a sensitivity of 96.37% and a specificity of
91.46%. These experimental results are encouraging, and we plan to further develop our
approach by improving the lesion segmentation and classification stages, and test more
extensively our method in clinical trials.
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3.3 An ICA-Based Method for the Segmentation of Pigmented Skin
Lesions in Macroscopic Images

Cavalcanti, P. G. ; Scharcanski, J. ; Persia, L. E. ; Milone, D. H. . An ICA-Based Method
for the Segmentation of Pigmented Skin Lesions in Macroscopic Images. In: 33rd An-
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Abstract

Segmentation is an important step in computer-aided diagnostic systems for pigmented
skin lesions, since that a good definition of the lesion area and its boundary at the image is
very important to distinguish benign from malignant cases. In this paper a new skin lesion
segmentation method is proposed. This method uses Independent Component Analysis
to locate skin lesions in the image, and this location information is further refined by a
Level-set segmentation method. Our method was evaluated in 141 images and achieved
an average segmentation error of 16.55%, lower than the results for comparable state-of-
the-art methods proposed in literature.

3.3.1 Introduction

Pigmented skin lesions include both, benign and malignant forms. Just in United
States of America occur about 10000 deaths per year from the 40000 to 50000 diag-
nosed cases of melanoma, a dangerous kind of malignant pigmented skin lesions. Early
diagnosis is of fundamental importance to improve the patient prognosis, nevertheless
discriminating benign from malignant skin lesions has been proven to be a challenging
task.

To facilitate the diagnosis, physicians often use dermoscopy, which is a non-invasive
technique that magnifies submacroscopic structures with the help of an optical lens (a
dermoscope) and liquid immersion. According to Mayer (MAYER, 1997), the use of
dermoscopy can increase the diagnosis sensitivity in 10-27% with respect to the clinical
diagnosis. The early diagnosis of melanomas is very important for the patient prognosis,
since most malignant skin lesion cases can be treated successfully in their early stages.
However, even with the help of dermoscopy, differentiating malignant and benign lesions
is a hard task. In fact, specialists affirm that in the early stages of the evolution of malig-
nant lesions, dermoscopy may be useless as a tool to help the diagnosis (SKVARA et al.,
2005).

Still considering early stage cases, there are practical situations where a non-specialist
(e.g. a physician not trained on Dermatology) wishes to have a qualified opinion about
a suspect skin lesion, but only standard camera imaging is available on site. In such sit-
uations, telemedicine is justifiable, and the non-specialist can capture an image of the
suspect skin lesion and send it to an specialist, who can analyze it in higher detail. In this
particular situation, a teledermatology consultation brings benefits, like the easier access
to health care and faster clinical results (MASSONE et al., 2008). Besides, comparing the
physical (face-to-face) patient diagnosis with the remote diagnosis by teledermatology, re-
cent results suggest that teledermatology also tends to be effective and reliable (WHITED,
2006). Therefore, there is a growing interest in methods for diagnosing pigmented skin
lesions remotely, and segmentation is important in this context since the lesion must be
correctly located before it is analyzed and diagnosed.

Many segmentation methods have been proposed in the literature for dermoscopy im-



47

ages. Such techniques often are based on different strategies, namely: region-based, us-
ing mainly region-growing approaches (IYATOMI et al., 2008) (CELEBI et al., 2008);
clustering algorithms, separating healthy and unhealthy pixels in homogeneous regions
(GOMEZ et al., 2008); thresholding methods, computing values that can identify the le-
sion in histograms (GANSTER et al., 2001); and, active contours procedures, where
the lesion borders are detected iteratively (SILVEIRA et al., 2009). In a literature review,
Celebi et al. (CELEBI et al., 2009) reported that most of these methods are automatic and
operate on color images, but usually can result on segmentation errors, specially closer to
the lesion borders.

Unfortunately, macroscopic pigmented skin lesion (MPSL) image segmentation did
not receive much attention in the literature. Recently, some experiments (TANG, 2009;
PAROLIN; HERZER; JUNG, 2010) demonstrated that active contours-based techniques
can achieve good results. However, these methods usually depend on good initializa-
tion, and in our case this is not easily attainable. MPSL images usually contain several
artifacts (as uneven illumination condition, hair, freckles, etc.) that make the automatic
segmentation of the lesion region more difficult, and manual initialization often becomes
necessary. In this paper, we propose a method based on Independent Component Analysis
(ICA), that detects the skin lesion in macroscopic images, and uses this approximation as
an initialization of a Level-set method that detects the lesion boundaries more accurately.

In Section 3.3.2 we describe all the steps of this method. Then, in Section 3.3.3 we
present our segmentation results for publicly available datasets. Finally, Section 3.3.4
presents conclusions and directions for future work.

3.3.2 Proposed Method for Skin Lesion Segmentation

As mentioned before, MPSL images usually contain artifacts that make the automatic
lesion segmentation more difficult. Shading is a particularly challenging artifact, since
shading areas often are darker than healthy skin and may be confused with lesion areas.
To avoid confusing lesion and shading areas, the first step of our segmentation method is
to attenuate the local shading effects. After that, we use ICA to separate the information
contained in the image, usually healthy skin, lesion and possibly other artifacts. Given the
ICA results we obtain an initial lesion localization, and then the lesion boundary is deter-
mined more accurately by using a Level-set method (CHAN; SANDBERG; VESE, 2000)
and a few post-processing steps. All these steps are detailed in the following subsections.

3.3.2.1 Shading Attenuation

Cavalcanti et al. (CAVALCANTI; SCHARCANSKI; LOPES, 2010) (CAVALCANTI;
SCHARCANSKI, 2011) recently proposed a method to significantly attenuate shading ef-
fects in MPSL images. The method assumes that images are acquired in a way that the
lesion appears in the image center, and it does not touch the image outer borders. The first
step of the method is to convert the image from the original RGB color space to the HSV
color space, and retain the Value channel V . This is justified by the fact that this channel
presents the higher visibility of the shading effects. We extract 20 × 20 pixels in each V
corner and define S as the union of these four sets. This pixel set is used to adjust the
following quadric function z(x, y):

z(x, y) = P1x
2 + P2y

2 + P3xy + P4x+ P5y + P6, (3.24)

where the six quadric function parameters Pi (i = 1, ..., 6) are chosen to minimize the
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error ε:

ε =
Ns∑
j=1

[V (Sj,x, Sj,y)− z(Sj,x, Sj,y)]
2 , (3.25)

where, Sj,x and Sj,y are the x and y coordinates of the jth element of the set S, re-
spectively, and Ns is the total number of pixels of the four corners (Ns = 1600 in our
experiments).

Calculating the quadric function z(x, y) for each image spatial location (x, y), we
have an estimate z(x, y) of the local illumination intensity in the image V (x, y). Dividing
the original V (x, y) channel by z(x, y), we obtain a new Value channel where the shading
effects have been attenuated. The final step is to replace the original Value channel by this
new Value channel, and convert the image from the HSV color space to the original RGB
color space.

3.3.2.2 ICA-Based Lesion Localization

Independent Component Analysis (ICA) is a method to process multivariate data, pro-
ducing projections that are as statistical independent as possible (HYVäRINEN; KAR-
HUNEN; OJA, 2001). In this way, ICA searches for a data projections that maximize
the degree of independence of such data projection. In this work, we use the FastICA al-
gorithm (HYVÄRINEN, 1999) with a cost function that maximizes non-Gaussianity. To
apply FastICA, we resize each n×m image channel to a 1× nm vector, by scanning the
image top to bottom, left to right, and normalize color image triplet components to unity
length 5, obtaining the 3× nm measure matrix X . Then, the FastICA algorithm searches
for a separation matrix W such that the output matrix Y = WX has row components that
are as statistically independent as possible.

Applying the ICA to MPSL images three independent components are obtained, one
corresponds mainly to the lesion area, another to the healthy skin, and the third component
corresponds to noise and other artifacts. Nevertheless, there is an ordering indeterminacy
inherent to the ICA method, and it is not possible to know in advance which component
will show the lesion more clearly. However, due to the lesion variability, the histogram
of the component that shows more clearly the lesion often has a non-Gaussian histogram
(frequently multimodal). The histogram of the component showing predominantly noise
and artifacts tends to be non-Gaussian, and the component that shows healthy skin more
clearly tends to have a Gaussian histogram. Thus, we measure the non-Gaussianity of
the ICA histogram components with differential entropy, i.e. J (X ) = |H(X )−H(Xg)|,
where Xg is a Gaussian distributed random variable with the same variance as X . The
component that produces the largest differential entropy is identified as the one contain-
ing the lesion information more clearly, and the smallest differential entropy component
carries basically healthy skin.

After reordering the channels, we have the lesion region best represented in the first
channel. Next, we normalize its values in the range [0, 1] and use the Otsu’s thresholding
method (OTSU, 1979) to segment the skin lesion in this channel. This algorithm assumes
two pixel classes, usually background and foreground pixels (specifically in our case,
healthy and unhealthy skin pixels), and searches exhaustively for the threshold th that
maximizes the inter-class variance σ2

b (th):

5The ICA assumes that samples are iid, and scanning order is irrelevant.
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σ2
b (th) = ω1(th)ω2(th) [µ1(th)− µ2(th)]2 , (3.26)

where, ωi are the a priori probabilities of the two classes separated by the threshold th, and
µi are the class means. Given the ICA results, the lesion information can be emphasized
(closer to value 1) or de-emphasized (closer to value 0) in this channel, and consequently
the thresholded area may correspond to either, the lesion or the background (the only con-
strain is to maximize σ2

b ). To guarantee that we capture the lesion in the thresholded area,
the corners pixels (used in the shading attenuation step, that are known to correspond to
healthy skin) are tested to check if they are thresholded as ’1’s or ’0’s. If most corner
pixels are thresholded as ’1’s, the thresholded area corresponds to healthy skin, and the
logical complement is used to obtain the lesion localization mask. Since the thresholded
first re-ordered ICA component now contains the lesion approximately, a morphologi-
cal opening is performed on this image to better approximate the lesion boundary and
eliminate residual artifacts (using a disk of 3 pixels of radius as the structuring element).

3.3.2.3 Lesion Boundary Detection

After obtaining the lesion localization mask (see Section 3.3.2.2), we determine the
lesion boundary more precisely using the Chan-Vese Level-set method for vector-valued
images (CHAN; SANDBERG; VESE, 2000). It assumes that the color image Ii is formed
by two regions of approximately constant intensities c1 and c2, separated by a curve C.
This lesion localization mask is used as an initialization indicating approximately the
region to be segmented. Afterwards, the Level-set method iteratively tries to minimize
the energy function F (c1, c2, C) in the color image Ii (after shading effects have been
attenuated):

F (c1, c2, C) = µ length(C)+

λ1

∫
inside(C)

1

3

3∑
i=1

|Ii(x, y)− c1,i|2 dxdy +

λ2

∫
outside(C)

1

3

3∑
i=1

|Ii(x, y)− c2,i|2 dxdy,

where µ, λ1 and λ2 are weighting parameters (we used λ1=λ2=1, as suggested by the
authors (CHAN; SANDBERG; VESE, 2000), and µ=0.2). Using the Level-set formula-
tion, it is possible to minimize the energy function embedding the curve C, obtaining the
zero level set C(t) = {(x, y)|φ(t, x, y) = 0} of a higher dimensional Level-set function
φ(t, x, y). The evolution of φ(t, x, y) is given by the following motion Partial Differential
Equation:

∂φ

∂t
= δε(φ)



µ div
(
∇φ
|∇φ|

)
−

1

3

3∑
i=1

λ1 |Ii(x, y)− c1,i|2 +

1

3

3∑
i=1

λ2 |Ii(x, y)− c2,i|2


, (3.27)

where δε(φ) is the Dirac delta function, c1,i and c2,i are the averages inside and outside of
the curve C in the i-th channel Ii, respectively.
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It is possible that the final curve C contains regions beyond the lesion area. So, if the
number of regions segmented by the Chan-Vese method is higher than one, local artifacts
are eliminated. We compute the area and the perimeter of each segmented region, and
cluster these values with K-Means, where K=2. The regions in the cluster with the smaller
areas (in average) are eliminated as artifacts and the other regions are kept. The regions
kept are hole filled to improve their connectivity, forming the final segmentation mask.

The final post-processing step is a morphological dilation (with a disk of 5 pixels of
radius as the structuring element). As already observed (CELEBI et al., 2009) (GARNAVI
et al., 2011), the hand labeled lesion ground truth created by specialists tends to be slightly
larger than the result of our automatic segmentation, and this dilation operation helps to
suppress this difference. Fig. 3.12 presents images that demonstrate all these steps, from
the image shading attenuation until the obtained of lesion segmentation.

3.3.3 Experimental Results

In order to evaluate the performance of our proposed segmentation method, we used
141 macroscopic images of pigmented skin lesions from the Dermnet database (DERM-
NET, 2010). In these 141 images, 97 are malignant melanomas images, and 44 are Clark
Nevi images (which is a benign lesion difficult to diagnose since it contains similar char-
acteristics to melanomas). The segmentation error measure ε was chosen because it was
also used by the authors of the four state-of-the-art segmentation approaches used in our
comparisons (IYATOMI et al., 2008) (CELEBI et al., 2008) (GOMEZ et al., 2008) (CAV-
ALCANTI; YARI; SCHARCANSKI, 2010):

ε =
S ⊕G
G

× 100%, (3.28)

where S is the result of segmentation by the method under test, G is the manual segmen-
tation of the same lesion and ⊕ indicates the exclusive-OR, which gives the pixels for
which S and G disagree.

We also selected four segmentation methods to compare with the results of our pro-
posed method. In a recent paper, Celebi et al. (CELEBI et al., 2009) reviewed several
different segmentation approaches for dermoscopy, and indicated two methods among
the best performing published approaches: (1) Statistical Region Merging, proposed by
Celebi et al. (CELEBI et al., 2008); and (2) Independent Histogram Pursuit, proposed by
Gómez et al. (GOMEZ et al., 2008). Also recently, Iyatomi et al. (IYATOMI et al., 2008)
proposed a method named “Dermatologist-like”, which they claim to obtain segmenta-
tion results similar to those obtained by the Celebi et al.(CELEBI et al., 2008). We also
included in our comparisons a method recently proposed by Cavalcanti et al. (CAVAL-
CANTI; YARI; SCHARCANSKI, 2010), designed specifically for macroscopic images.

Analyzing the segmentation results, we observe that the methods proposed by Celebi
et al. (CELEBI et al., 2008) and Gómez et al. (GOMEZ et al., 2008) confuse shading
and lesion areas in several images. Probably because these methods have been proposed
for dermoscopy images, which are not affected by shading. Also, we generated seg-
mentation results for the 141 images with the three methods mentioned above, using our
shading attenuation method as a pre-processing step. The segmentation error averages
are presented in Table 3.5, as well as the percentages of the images in the database that
generated segmentation errors lower than 5%, 10%, 20%, 30%, 40% and higher than
100%6, respectively. As it can be seen, our proposed method achieved the best results

6The segmentation error is higher than 100% if the segmented area that is not part of the lesion ground
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(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Illustration of the segmentation process for a pigmented skin lesion image.
(a) Original image. (b) Image in (a) after shading attenuation. (c) First re-ordered inde-
pendent component/channel of image (b). (d) Lesion localization mask. (e) The Level-set
segmentation result. (f) Final lesion segmentation, after post-processing image (e).

in all tests in comparison with skin lesion segmentation approaches representative of the
state-of-the-art.

3.3.4 Conclusions and Future Work

Several MPSL segmentation methods have been proposed for dermoscopy images,
however skin lesion segmentation on macroscopic images have not received much at-
tention. This paper proposes a new method for segmenting pigmented skin lesions on
macroscopic images acquired with standard cameras. Our proposed method uses the ICA
approach for lesion localization, and a Level-set based segmentation algorithm to obtain

truth is larger than the lesion itself.
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Table 3.5: Comparison of the obtained segmentation errors (in average).
Approach ε in average ε in average w/ Sh. Att.

(CELEBI et al., 2008) 64.80% 42.93%
(GOMEZ et al., 2008) 245.70% 123.65%

(IYATOMI et al., 2008) 29.34% 21.64%
(CAVALCANTI; YARI; SCHARCANSKI, 2010) 25.91% -

Proposed method 16.55% -

Table 3.6: Segmentation errors in terms of error percentages.
Approach ε < 10% ε < 20% ε < 30% ε < 40% ε > 100%

(CELEBI et al., 2008) 4.96% 12.77% 20.57% 29.79% 0.71%
Celebi w/ Sh. Att. 2.84% 25.53% 46.81% 58.16% 2.84%

(GOMEZ et al., 2008) 14.18% 39.01% 44.68% 46.81% 43.97%
Gómez w/ Sh. Att. 21.28% 58.87% 67.38% 70.92% 20.57%

(IYATOMI et al., 2008) 14.18% 52.48% 74.47% 83.69% 1.42%
Iyatomi w/ Sh. Att. 19.86% 60.99% 80.85% 90.07% 0.00%

(CAVALCANTI; YARI; SCHARCANSKI, 2010) 22.70% 57.45% 71.63% 79.43% 0.00%
Proposed method 30.50% 75.18% 87.94% 95.74% 0.00%

more precisely the lesion boundary, which is an important feature to discriminate benign
and malignant lesions. In the next stage of this work, we intend to integrate and test our
proposed lesion segmentation and boundary detection method in a MPSL pre-screening
system, that can be used by non-specialists.
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3.4 A Two-Stage Approach for Discriminating Melanocytic Skin Le-
sions Using Standard Cameras

Cavalcanti, Pablo G. ; Scharcanski, Jacob ; Baranoski, G. V. G. . A Two-Stage Approach
for Discriminating Melanocytic Skin Lesions Using Standard Cameras. Expert Systems
with Applications, In Press, 2013.

Abstract

In this paper, we propose a novel approach to discriminate malignant melanomas and
benign atypical nevi, since both types of melanocytic skin lesions have very similar char-
acteristics. Recent studies involving the non-invasive diagnosis of melanoma indicate that
the concentrations of the two main classes of melanin present in the human skin, eume-
lanin and pheomelanin, can potentially be used in the computation of relevant features to
differentiate these lesions. So, we describe how these features can be estimated using only
standard camera images. Moreover, we demonstrate that using these features in conjunc-
tion with features based on the well known ABCD rule, it is possible to achieve 100% of
sensitivity and more than 99% accuracy in melanocytic skin lesion discrimination, which
is a highly desirable characteristic in a prescreening system.

3.4.1 Introduction

Malignant melanoma is a type of melanocytic skin lesion, and it is among the most
dangerous forms of cancer. According to World Health Organization (2011), approxi-
mately 132,000 melanoma cases occur globally each year. The early diagnosis of melan-
omas is essential for the patient prognosis since most malignant skin lesion cases can be
treated successfully in their initial stages. However, a benign atypical melanocytic nevus
shares at least some, and sometimes all, of the clinical characteristics of a malignant me-
lanoma, and discriminating benign from malignant cases is often challenging, sometimes
in the extreme (RAO et al., 1997; FIKRLE; PIZINGER, 2007).

It would be desirable that methods for detecting this malignancy approach to 100% of
sensitivity, meaning that almost no malignant melanomas are missed. Ideally, this high
degree of sensitivity should be coupled with a high degree of specificity, and consequently
a high degree of accuracy (RAO et al., 1997). Currently, the most reliable method is the
histopathology analysis. However, this requires that the patient undergoes surgical exci-
sion. Although this may not be a significant problem in some cases, this is a significant
problem for patients with the atypical-mole syndrome, presenting several melanocytic
nevi (i.e. 100 nevi or more (RAO et al., 1997), not viable of doing biopsy in all nevi).
Moreover, this option is very time consuming, considering the patient and medical staff
dislocation, the surgery preparation and the posterior patient monitoring.

To help diagnosing melanocytic skin lesion, physicians often use dermoscopy. This
non-invasive technique allows the magnification of submacroscopic structures through
the use of an optical device (a dermoscope) and liquid immersion. According to MAYER
(1997), the use of dermoscopy can increase the diagnosis sensitivity in 10-27% with re-
spect to the clinical diagnosis. Moreover, some computer-aided diagnosis systems have
been proposed in the literature to help the analysis of dermoscopy images. An example
is the approach proposed by CELEBI et al. (2007), which achieved 92.34% and 93.33%
of sensitivity and specificity, respectively. IYATOMI et al. (2008) proposed a web-based
system, obtaining a sensitivity of 85.9% and a specificity of 86%. More recently, RUIZ
et al. (2011) combined three classification algorithms and obtained classification rates of
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87.76%. However, even with the assistance of dermoscopy, differentiating malignant and
benign lesions is a difficult task. In fact, specialists state that in the early evolution stages
of malignant lesions, dermoscopy may not be helpful since it often does not improve the
diagnosis accuracy (SKVARA et al., 2005).

Still considering early stage cases, there are practical situations where a non-specialist
(e.g., a physician not trained on dermatology) wishes to have a qualified opinion about a
suspect skin lesion, but only standard camera imaging is available on site. In such situa-
tions, telemedicine is justifiable, and the non-specialist can capture a macroscopic image
of the suspect melanocytic skin lesion and send it to a specialist, who can analyze it in
higher detail. In this particular situation, a teledermatology consultation brings bene-
fits such as the easier access to health care and faster clinical results (MASSONE et al.,
2008). Besides these benefits, recent results also suggest that teledermatology tends to be
effective and reliable (WHITED, 2006).

We also can find in the literature systems designed to assist the diagnosis of melano-
cytic skin lesions using standard camera images. MANOUSAKI et al. (2006) proposed
a system that achieved a sensitivity of 60.9% and a specificity of 95.4% in their experi-
ments. The approach proposed by TABATABAIE; ESTEKI; TOOSSI (2009) resulted in
85% and 92.5% of sensitivity and specificity, respectively. ALCON et al. (2009) described
a methodology to obtain a lesion classification with sensitivity of 89.72% and specificity
of 75.56%. CAVALCANTI; SCHARCANSKI (2011) recently proposed a system even
more accurate, achieving a sensitivity of 96.2% and a specificity of 97.7%.

Regardless of the type of image and the devices employed in the data (image) acqui-
sition, the systems proposed to assist the diagnosis of skin lesions usually perform the
following operations: (1) preprocessing, in which image artifacts, such as hair or uneven
illumination, are eliminated; (2) segmentation, in which the lesion boundaries are deter-
mined; (3) feature extraction, in which a quantitative representation for the lesion area is
generated; and (4) classification, in which an estimate of whether the lesion is benign or
malignant is produced. In general, we can find very different methodologies to perform
the first two operations. On other hand, all systems employ the same methodology to
perform the last two operations. It consists in reproducing ABCD rule of dermoscopy, a
medical criterion that tries to differentiate malignant and benign melanocytic lesions us-
ing a set of lesion characteristics, namely Asymmetry, Border irregularity, Color variation
and Differential structures.

Beyond the ABCD rule of dermoscopy, there are other dermatological methods, such
as the Menzies Scoring Method or the 7-point Checklist (JOHR, 2002), that specialists
can employ to identify malignant cases. These criteria share some similarities, and seek
to determine which features should be visually identified by the physician to perform the
diagnosis. However, even experienced dermatologists do not obtain 100% of accuracy,
independent of the method in use (ARGENZIANO; ZALAUDEK; SOYER, 2004).

In opposite side to these methods of visual analysis, recent studies have been made
using features that are not visible to the naked eye. Melanomas are malignant tumors
of melanocytes, the cells responsible for the biochemical process that leads to the pro-
duction of melanin pigments. And, this process (known as melanogenesis) takes place
in highly specialized organelles known as melanosomes, and it results in the two main
classes of melanin present in the human skin, namely the eumelanin (brown and black)
and the pheomelanin (red and yellow). The color of human skin is largely determined
by the presence of these pigments, whose relative concentration may vary significantly in
skin lesions, notably in melanocytic tumors (JIMBOW et al., 1995). Accordingly, rele-
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vant efforts have been directed toward the identification of variations of eumelanin and/or
pheomelanin in melanocytic skin lesions with the purpose of improving the non-invasive
diagnosis of these lesions. For example, MARCHESINI; BONO; CARRARA (2009) per-
formed a retrospective analysis on 1671 lesions using diffuse reflectance spectroscopy.
They observed a decrease in pheomelanin and an increase in eumelanin concentration in
passing from benign to malignant cases. Their results are consistent with results later
obtained by ZONIOS et al. (2010) from reflectance measurements performed on 1379
lesions. However, Zonios et al. observed that the spectral responses obtained from dif-
ferent melanin concentrations do not appear strong enough to provide a definite criterion
for the diagnosis of melanocytic skin lesions. However, Zonios et al. also suggested that
these responses could be potentially useful for the characterization of melanocytic lesions
and the early diagnosis of melanoma if used in combination with other parameters and
diagnostic criteria. More recently, MATTHEWS et al. (2011) proposed a pump-probe
imaging system. Examining slices from 42 lesions, they also observed that melanomas
have higher amounts of eumelanin in comparison to benign nevi, concluding that melanin
features can improve diagnostic accuracy if used in conjunction with current diagnostic
techniques.

The main goal of this work is to propose a two-stage classification algorithm that po-
tentially can obtain highly accurate results, and achieve 100% of sensitivity, which is, as
already mentioned, a very desirable characteristic for prescreening systems. Firstly, in
Section 3.4.2 we present the algorithms for the first two initial processing stages: pre-
processing and segmentation. In Section 3.4.3 is presented the feature extraction process,
first computing 52 features to reproduce the ABCD rule of dermoscopy, and then comput-
ing 12 additional features that represent the eumelanin and pheomelanin lesion contents.
As far as we know, this is the first time that melanin features are used in melanocytic skin
lesion image analysis and classification, specially using standard camera images only. In
Section 3.4.4 we present our proposed two-stage melanocytic skin lesion discrimination
scheme, designed to improve on the ABCD rule for malignant cases identification. Sec-
tion 3.4.5 presents a general overview of the processing steps of our melanocytic skin
lesion pre-screening scheme, while Section 3.4.6 presents experimental results demon-
strating how accurate this scheme can be, specially because melanin-based features are
used to complement the ABCD rule-based features. Finally, Section 3.4.7 presents our
conclusions and outlines directions for future work.

3.4.2 Skin Lesion Detection

Before we start quantifying medical or physiological characteristics to differentiate
benign from malignant cases, it is crucial that we identify the lesion area in the input
image. This task is performed by the segmentation process, which is usually preceded
by a image preprocessing step. In the following subsections, these two procedures are
detailed.

3.4.2.1 Preprocessing

The input image acquired with a standard camera may be affected by illumination
artifacts, and if used directly in the segmentation process, shading and lesion regions
could be confused. Therefore, shading is attenuated in the input image before the image
segmentation.

Our preprocessing step is based on the approach proposed by CAVALCANTI; SCHAR-
CANSKI; LOPES (2010), which is based on the idea that a physician (or a person respon-
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sible for taking the lesion picture) focuses a camera on the skin lesion, placing the lesion
area in the center of the image, and healthy skin pixels appear at the image corners.

The first step of our shading attenuation method is to convert the image from the
original RGB color space to the HSV color space, and retain the Value channel Vorig,
which presents the higher visibility of the shading effects. We extract 20 × 20 pixels in
each V corner and define S as the union of these four sets. This pixel set with 1600 pixels
is used to adjust the quadric function z(x, y) = P1x

2 + P2y
2 + P3xy + P4x+ P5y + P6,

where the six quadric function parameters Pi (i = 1, ..., 6) are chosen to minimize the
quadratic error.

Calculating the quadric function z(x, y) for each image spatial location (x, y), we
get an estimate z(x, y) of the local illumination intensity in the image Vorig. Dividing
the original Vorig channel by z(x, y), we obtain a new Value channel Vproc where the
shading effects have been attenuated. The final step consists in replacing Vorig by Vproc,
and converting the image from the HSV color space to the original RGB color space. This
shading correction method has limited effect on local cast shadows, and may fail to reduce
shading artifacts in areas that are not locally smooth since it is based on a second-order
quadric function. However, as can be seen in Figures 3.13(a)-(b), this algorithm tends to
relight the healthy skin area without loosing lesion information. In this way, we obtain an
image where the skin lesion can be segmented more easily.

We consider the healthy skin region surrounding the lesion to compute lesion charac-
teristics, specially the melanin features. The shading attenuation method may generate a
highly contrasted image, with a bright skin color, and that may influence negatively the
melanin features estimation. Thus, to facilitate the feature extraction stage, we perform
one more image preprocessing step, correcting the illumination to obtain more realistic
skin colors (more similar to those in the original image), while trying to obtain an even il-
lumination condition. We extract again the Value channels (V from the HSV color space)
from the original image (Vorig) and from the processed image (Vproc), and generate a new
Value channel (Vnew):

Vnew(x, y) =
Vproc(x, y) ∗ µVorig

µVproc
(3.29)

where (x, y) indicates the pixel coordinates, and µV represents the mean value of the
referred V channel. After that, Vnew replaces Vproc, and we obtain an image with even
illumination and correct colors representation by converting from the HSV to the RGB
color space. Fig 3.13 shows an example of this process, presenting an original melan-
ocytic skin lesion image, the result of applying the shading attenuation method in this
image, and also shows the image obtained by applying Eq. 3.29 (to improve the image
quality for the feature extraction process).

3.4.2.2 Segmentation

Several techniques have been proposed for segmenting melanocytic skin lesions in
dermoscopy images (CELEBI et al., 2008, 2009; IYATOMI et al., 2008; GOMEZ et al.,
2008; WIGHTON et al., 2009, 2011). However, dermoscopy obtains skin lesion images
with constant illumination. Consequently, these methods do not perform well on standard
camera images, and other approaches have been proposed specifically for these images.
Usually, the input standard camera image is converted to grayscale and a thresholding-
based algorithm is used to identify the lesion area (MANOUSAKI et al., 2006; RUIZ
et al., 2011; ALCON et al., 2009). Also, segmentation approaches have been proposed
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(a)

(b) (c)

Figure 3.13: Illumination and color corrections of a melanocytic skin lesion image. (a)
The original image. (b) Fig. (a) after the shading attenuation step. (c) Fig. (b) after the
color correction step.

using the original color image obtained with a standard camera (TANG, 2009; WONG;
SCHARCANSKI; FIEGUTH, 2011). However, these image representations may confuse
healthy and lesion pixels due to its color or grayscale similarity. So, in our experiments
we used a multichannel image representation that maximizes the discrimination between
healthy and unhealthy skin regions as proposed in (CAVALCANTI; SCHARCANSKI,
2011).

As proposed in (CAVALCANTI; SCHARCANSKI, 2011), we create a new 3-channel
normalized image ĪNi (i.e., ĪNi (x, y) ⊂ [0, 1],∀i) based on the normalization of the RGB
channels ĪCi of the input image. The first channel is a representation of the image dark-
ness, relying on the fact that lesion areas are hyper-pigmented skin regions. Each pixel is
defined as ĪN1 (x, y) = 1− ĪC1 (x, y), i.e., the complement of the normalized Red channel.

The second channel is a intensity variation representation, since the intensity variabil-
ity usually is higher in lesions than in healthy skin areas. Being L̄ a normalized Lumi-
nance image defined by the average of the three ĪCi channels, we quantify the textural
variability in L̄(x, y) by computing τ(x, y, σ):

τ(x, y, σ) = L̄(x, y)
S̃(x, y, σ)

S(x, y, σ)
, (3.30)

where S(x, y, σ) = L̄(x, y) ∗G(σ) (i.e., the Luminance image L̄ is smoothed by a Gaus-
sian filter with standard deviation σ), and S̃(x, y, σ) represents its complement. In this
way, if an image region is dark, its intensity variation information is emphasized; if the
region is bright, it is de-emphasized. However, since a single Gaussian filter may not be
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sufficient to capture the textural variability, τ(x, y, σ) is calculated for different σ values7,
and we select its maximum value at each pixel. Finally, the ĪN2 (x, y) channel is obtained
normalizing these values to the range [0, 1].

The third channel ĪN3 (x, y) of the representation describes the color variation, assum-
ing that healthy and unhealthy skin regions present different color distributions. The
Principal Component Analysis (PCA) method is applied on the normalized colors of the
image ĪCi (x, y). We observed that the first principal component (i.e., the component that
maximizes the local data variance) tends to project the healthy skin pixels nearer to zero
and lesion pixels tend to have larger magnitudes. So, the ĪN3 channel is computed normal-
izing the magnitudes of the first component, and then filtering with a 5 × 5 median filter
to reduce noise.

Once obtained this multichannel representation, the Otsu’s thresholding method (OTSU,
1979) is used to segment the image. A pixel is defined as part of a lesion region if its value
is higher than the threshold in at least two of the three channels ĪNi (x, y). After thresh-
olding, the remaining skin artifacts (such as freckles and hair) are eliminated more easily.
The perimeter and the area of all thresholded connected pixel sets are computed, and then
this set of regions is partitioned in two clusters. All regions in the cluster with smaller
areas (in average) are eliminated, and their correspondent mask pixels are set to zero. At
the end, the resultant mask is filtered by a 5 × 5 median filter, eliminating any possible
remaining artifacts that may originate rim imperfections. In Figure 3.14, we present the
results for all steps of the skin lesion segmentation method, including the multichannel
representation generation, the thresholding and post-processing steps.

3.4.3 Melanocytic Skin Lesion Characterization

The ABCD rule of dermoscopy is the methodology normally used to differentiate be-
nign and malignant melanocytic skin lesions. Therefore, we propose in Section 3.4.3.1
a set of 52 features aiming at capturing the ABCD rule of dermoscopy criteria, namely,
Asymmetry, Border irregularity, Color variation and Differential structures. As men-
tioned before, although prescreening systems usually try to reproduce the ABCD rule of
dermoscopy criteria, the proposed approaches usually are not able to achieve 100% of
sensitivity, as it would be desirable. So, in addition to the ABCD features, we propose
12 features based on the concentrations of eumelanin and pheomelanin, the two kinds of
melanin that can potentially be used for the discrimination of melanocytic lesions.

3.4.3.1 ACBD Rule Characterization

The acronym ABCD refers to the criteria commonly used by physicians to differen-
tiate malignant melanomas from benign melanocytic nevi; that is, malignant lesions tend
to exhibit Asymmetry, Border irregularity, Color variation, and a Diameter greater than
6 millimeters (RAO et al., 1997). However, we do not adopt any kind of constraint dur-
ing the image acquisition, and the diameter measurement become impracticable. So, our
ABCD rule characterization is based on the ABCD rule of dermoscopy (NACHBAR et al.,
1994), which changes the D letter to Differential structures, submacroscopic morphologic
and vascular structures (e.g., pigment network, dots, globules) that occur more frequently
in malignant cases. And, to perform this characterization, we extract 52 features as de-
scribed next. It is important to observe that the ĪNi channels refer to the same channels

7We tested different σ values, and based on our experiments we suggest using σ = 1, 117 ,
15
7 , ...,

43
7 , and

filter window sizes of 7σ × 7σ.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 3.14: Segmentation process for the image shown in (a). In (b)-(d), respectively,
the ĪNi channels representing darkness, texture variation and color variation. In (e)-(g),
respectively, binary masks after thresholding, artifacts elimination and filtering.

that have been created during the segmentation process (see Section 3.4.2.2).
We start by quantifying the lesion shape, characterizing the asymmetry and irregular-

ity characteristics of the lesion. Let A, Ac, Ab be, respectively, the areas of the segmented
lesion, the convex hull and the bounding box. Moreover, p is the lesion perimeter, L1
the major axis of the lesion aligned with its longest diameter, and L2 is the minor axis
orthogonal to L1. Considering these measurements, we consider the following 11 param-
eters (ALCON et al., 2009; CELEBI et al., 2007; FIKRLE; PIZINGER, 2007; CAVAL-
CANTI; SCHARCANSKI, 2011): A/Ac (solidity), A/Ab (extent), 4A/(L1π) (equivalent
diameter), 4πA/(L1p) (circularity), p/A, ratio between the principal axes (L2/L1), ratio
between sides of the axis L1 and of the axis L2, the difference between the areas of each
side of the axes L1 and L2 normalized by the whole area A, and ratio between sides of the
lesion bounding box.

The boundary sharpness is quantified by the magnitude of the gradient using the Sobel
operator. We dilate the lesion rim by 2 pixels, obtaining a 5 pixels wide region, and
compute the following 6 features: the average and the variance of the gradient magnitudes
of all pixels in the extended rim in each one of the three ĪNi channels.

To reproduce closely the application of the ABCD rule in terms of asymmetry and
border irregularity, the next features are based on a sub-division of the lesion rim in 8
symmetric regions (NACHBAR et al., 1994). In addition to the two principal axes L1

and L2, we rotate these orthogonal axes by 45 degrees and obtain two additional axes,
obtaining 8 symmetric regions R = 1, ..., 8. For each channel ĪNi , the average gradient
magnitudes of the extended rim pixels µR,i(R = 1, ..., 8) are computed. Therefore, in
this way we calculate 6 more features: the average and the variance of the 8 µR,i gradient
magnitude values in each one of the three ĪNi channels.
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Table 3.7: Six Possible Colors of a Lesion on the RGB Color Space. (ALCON et al.,
2009)

Color Red Green Blue
White 1 1 1
Red 0.8 0.2 0.2
Light Brown 0.6 0.4 0
Dark Brown 0.2 0 0
Blue-Gray 0.2 0.6 0.6
Black 0 0 0

To represent the C letter of the ABCD rule, we start by computing maximum, mini-
mum, mean and variance of the intensities in the color variation channel ĪN3 . The same
four features are also computed for each one of the three original ĪCi channels. We also
consider the ratios between the mean values: mean(ĪC1 )/mean(ĪC2 ),mean(ĪC1 )/mean(ĪC3 )
and mean(ĪC2 )/mean(ĪC3 ), totalizing 19 features.

Furthermore, physicians usually identify six distinct hues in skin lesions: white, red,
light and dark brown, blue-gray, and black (NACHBAR et al., 1994). So, we compute the
occurrence of these typical hues within the lesion. Given a pixel in the lesion segment,
we find the nearest reference color (associated with a typical hue, see Table 3.7 (ALCON
et al., 2009)) using the Euclidean distance to the pixel color in ĪCi . A hue occurrence
counter is created, one cell per typical hue. For each lesion pixel, the nearest typical hue
counter is increased by 1. Finally, typical hue counters are normalized/divided by the
lesion area A, and generate 6 additional features.

Finally, we quantify the differential structures. The differential structure characteris-
tics are not easily discriminated based on macroscopic images, however these structures
tend to generate different intensity variations in benign and malignant lesions. So, we
extract 4 features, namely the maximum, minimum, mean and variance of the intensity
variation channel ĪN2 , considering only the pixels inside the lesion segment.

3.4.3.2 Melanin Content Variation Characterization

As already mentioned in Section 3.4.1, recent studies have analyzed the melanin vari-
ation in melanocytic skin lesion to differentiate benign and malignant cases through spec-
troscopy. In this work, we follow a different approach. Instead of using spectroscopy,
we propose to estimate the melanin variation in skin lesions using standard camera im-
ages. In order to perform this task, we employ a biophysically-based spectral model of
light interaction with human skin developed by Krishnaswamy and Baranoski (KRISH-
NASWAMY; BARANOSKI, 2004; BARANOSKI; KRISHNASWAMY, 2010) known as
BioSpec (see more details about BioSpec in Appendix A, Section 3.4.8). This model
simulates the reflectance spectra of skin specimens within the visible spectral domain
(i.e., from 400 to 700 nm). It takes into account the specimens’ biophysical character-
istics described through a set of biophysical parameters. In this work, unless otherwise
stated, we employed the default values assigned for these parameters in the online ver-
sion of the model (Natural Phenomena Simulation Group, 2011). This set of parameters
includes the concentration of eumelanin and pheomelamin. Although BioSpec was de-
veloped for healthy skin tissue, we believe that by varying the concentration of eumelanin
and pheomelanin we can obtain sound estimates for the reflectance spectra of melanomas
since the main factor responsible for their distinct spectral appearance, notably in their
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initial stages, is their high concentration of melanins (LAZOVA; PAWELEK, 2009).
In Fig. 3.15, we present a plate showing the skin colors that were obtained by convert-

ing the reflectance spectra provided by BioSpec given a wide range of parameter values
(see Appendix B, Section 3.4.9 for more details about how this conversion is performed).
We varied the concentration of eumelanin from 20 to 300 g/L, and the concentration of
pheomelanin from 4 to 60 g/L, both with steps of 4 g/L, and used the default values for the
other model parameters. The choice of using eumelanin predominantly in these simula-
tions is supported by optical scanning studies in which the spectrum of malignant melan-
omas tend to show an eumelanin predominance in their spectral characteristics (ZONIOS
et al., 2008; DIMITROW et al., 2009). Thus, we used 71 and 15 values for the eumelanin
and pheomelanin parameters, respectively, obtaining 1065 skin colors with BioSpec. The
colors appearing in the lesion images (photographs) are matched with the skin colors de-
rived from the reflectance spectra provided BioSpec, and the estimates of the eumelanin
and pheomelanin parameters are obtained.

Figure 3.15: The possible colors of skin, varying the concentration of eumelanin from 20
to 300 g/L (in the horizontal axis) and the concentration of pheomelanin from 4 to 60 g/L
(in the vertical axis).

3.4.3.3 Extracting Melanin Variation Features from Skin Lesion Images Captured with
Standard Cameras

Given a pixel, its color is compared to each one of the 1065 possible modeled colors
obtained using BioSpec. This comparison, consists of using the minimum Euclidean
distance to find the modeled color nearest to the pixel color. This information allows
us to estimate the concentration of eumelanin and pheomelanin in the skin location that
corresponds to this pixel. To compare the variation of the pigment concentrations within
the lesion with the concentrations in healthy skin, we also extract these concentration
values in the healthy skin in the surround area outside the lesion. In order to locate the
healthy skin in the area surrounding the lesion, we dilate the binary mask obtained in the
segmentation step with a disk structuring element of 30 pixels of radius. Then, we subtract
the original segmented lesion binary mask from the dilated segmentation binary mask,
obtaining just the region surrounding the lesion with a width of approximately 30 pixels.
An example of this operation can be seen in Fig. 3.16. Located the healthy skin region
surrounding the lesion, we estimate the concentrations of eumelanin and pheomelanin in
each inner pixel in the way described above. Given a healthy skin pixel, we also estimate
these values by minimum Euclidean distance to the 1065 modeled colors as mentioned
before.

After computing the estimates of the eumelanin and pheomelanin concentrations as-
sociated with a set of pixels of the given image, we extract the following melanin features
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(a) (b) (c)

Figure 3.16: Examples of the binary masks used in the melanin features computation.
(a) The original image. (b) The lesion segmentation binary mask. (c) The binary mask
corresponding to the healthy skin area surrounding the lesion.

mfi:

mf1: Average of the eumelanin concentration of all pixels inside the lesion segment;

mf2: Average of the eumelanin concentration of all pixels inside the lesion segment as
well as all pixels inside the healthy skin surrounding area;

mf3: Standard deviation of the eumelanin concentration of all pixels inside the lesion
segment;

mf4: Standard deviation of the eumelanin concentration of all pixels inside the lesion
segment as well as all pixels inside the healthy skin surrounding area;

mf5: The difference between the average of the eumelanin concentration inside the lesion
segment and the average of the eumelanin concentration inside the healthy skin
surrounding area;

mf6: The ratio between the average of the eumelanin concentration inside the lesion
segment and the average of the eumelanin concentration inside the healthy skin
surrounding area;

We also consider six more pheomelanin features mf7-mf12, similar to mf1-mf6, but
instead of using eumelanin concentration we use the pheomelanin concentration.

3.4.4 Proposed Two-Stage Melanocytic Skin Lesion Discrimination Scheme

Once the features that characterize the melanocytic lesions are extracted, we use these
information to discriminate the malignant and the benign cases. The following Sections
detail our two-stage discrimination approach, first using the ABCD rule-based features,
and next refining by the discrimination results using the melanin variation features. The
melanocytic skin lesion discrimination approaches proposed in the literature usually con-
tain a single discrimination step based on the ABCD rule, and as already mentioned in
Section 3.4.1, are not able to obtain the desirable 100% of sensitivity. So, we add a sec-
ond discrimination stage to our scheme, trying to correct cases that incorrectly received a
benign label in the initial stage. The melanin variation features improve the discrimina-
tion results obtained with the ABCD rule (first stage), helping achieve a higher degree of
sensitivity (i.e. so virtually no malignant case would be missed).
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3.4.4.1 First Stage: Melanocytic Skin Lesion Discrimination Using the ABCD Rule

Based on the 52 ABCD features that have been extracted (see Section 3.4.3.1), we
generate a preliminary discrimination of benign and malignant melanocytic skin lesions.
However, classifiers tend to be more efficient if these feature values are normalized (i.e.
produce values within a specified range). We normalize feature values with the z-score
transformation (CELEBI et al., 2007; AKSOY; HARALICK, 2000):

Zi,j =
((vi,j − µj)/(3σj) + 1)

2
, (3.31)

where vi,j is the value of the jth feature of the ith sample (image), µj and σj are the mean
and standard deviation of the jth feature, respectively, of all training set samples. After
the z-score transformation, most of the Zi,j values are in the [0,1] range. The out-of-range
values are saturated to either 0 or 1.

To create the training set, half of the samples in each class (benign or malignant) are
randomly selected. Additionally, since we have a relatively small image data set, new
samples are added to the training set using the Smoothed Bootstrap Resampling method
(i.e., original samples are randomly selected, and new ones are created adding a small
amount of zero-centered noise to their feature values, enlarging the data set (YOUNG,
1990)). In our experiments, we used zero mean Gaussian noise with σ = 0.1, obtaining
from 500 to 2500 samples for each class so the classes are balanced (i.e., have the same
number of samples). Using Normal probability plots, we observed that Normality is a
reasonable assumption for our features , and by introducing small Gaussian noise we
avoid “ties” that may lead to overfitting in random oversampling procedures.

Finally, we apply a classifier to determine the class (benign or malignant) of each
sample/image. We used a K-Nearest Neighbor Classifier (KNN) with K=1, or simply
a Nearest Neighbor Classifier, because this is a very simple method where each sam-
ple/image is assigned to its closest neighboring class in Euclidean (feature) space. Besides
its simplicity, this method has been used in melanocytic skin lesion image classification
research (DREISEITL et al., 2001; BURRONI et al., 2004), producing very accurate re-
sults (CAVALCANTI; SCHARCANSKI, 2011). Also, this classifier also has been suc-
cessfully used for the classification of non-melanoma skin lesions (BALLERINI et al.,
2012a,b).

3.4.4.2 Second Stage (Beyond the ABCD Rule): Melanocytic Skin Lesion Discrimina-
tion with Melanin Variation Features

A desirable characteristic for prescreening systems is to achieve 100% of sensitivity,
i.e. to not identify mistakenly any malignant case as benign. However, we observed in
our experiments that considering the proposed melanin variation features mf1-mf12 in
the first classification stage, i.e. when using the KNN classifier, is not efficient to achieve
this goal (i.e. of obtaining high sensitivity). So, in order to reach high sensitivity rates,
we propose to include a second classification stage. After obtaining the first melanocytic
skin lesion classification result, we re-classify all samples/images that have been initially
identified as benign using the melanin variation features mf1-mf12. This second stage is
based on the Bayes’s Classifier (ALPAYDIN, 2004) (which provided the best classifica-
tion results in our experiments), and assigns a sample to the most likely class based on
the extracted features. Let L be a set of melanin features [mf1,...,mf12] extracted from a
lesion, D = 1 the malignant class and D = 0 the benign class. Using Bayes’ rule, the
posterior probability P (D|L) of assigning a lesion to class D can be written as:
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P (D|L) =
P (L|D)P (D)

P (L)
, (3.32)

where, P (L|D) is the conditional probability of finding a lesion with the L characteristics
in class D, P (D) is the prior probability of class D, and P (L) is the evidence and it
represents the probability that the featuresL are seen. To the best of our knowledge, P (D)
is not known, and considering that our training sets have an equal number of samples per
class, we consider P (D = 0) = P (D = 1) and this term can be discarded from Eq. 3.32.
Since P (L) is constant with respect to argmaxD(P (L|D)/P (L)) and therefore has no
effect on the solution, it can be also discarded, and a lesion can be considered malignant
if:

P (L|D = 1) > P (L|D = 0), (3.33)

.
and it is benign otherwise. This classification method is usually referred to as the Maxi-
mum Likelihood Classifier. So, the challenge is to properly estimate P (L|D) in a way that
minimizes the probability classification error. To perform this task and generate accurate
classification results, we propose the following discrimination scheme:

• To generate the training set, we use half of the samples of each class (the same
samples that have been randomly selected to train the first discrimination stage).
Since the number of sample is small, specially in the benign class, we use again
Smoothed Bootstrap Resampling (see Section 3.4.4.1) to generate 2500 samples for
each class (i.e., benign and malignant), adding Gaussian noise (µ = 0 and σ = 0.1)
to the original mfi features. In this way, we obtain more statistical significant data;

• Given the training set and a subset ψ containing the mfi features, we generate
two multivariate probabilities density functions (pdfs): one for the benign class
P (L|D = 0) and one for the malignant class P (L|D = 1). We model these pdfs
using an unsupervised modified EM (Expectation-Maximization) algorithm to iden-
tify finite Gaussian mixture models as proposed by FIGUEIREDO; JAIN (2002);

• Each sample L that has been previously classified as benign is re-tested, and it
is re-classified by a Maximum Likelihood Classifier as malignant if its ψ features
indicate a higher probability of being malignant (see Eq. 3.33).

We tested this two-stage discrimination scheme with different ψ sets of features, and
the obtained results are presented in Section 3.4.6.

3.4.5 Method Overview

In the last three Sections we presented all the steps of the proposed two-stage dis-
crimination scheme, and Fig. 3.17 presents the overall system workflow used to identify
a melanocytic skin lesion as benign or malignant. We start by preprocessing the input
image, i.e. attenuating the shading effects, and segmenting the skin lesion. After that, the
first discrimination stage is performed, using the 52 features based on the ABCD rule and
a KNN classifier, assigning a benign/malignant label to the imaged lesion.

The second discrimination stage tries to enhance as much as possible the melanocytic
skin lesion classification sensitivity. All images that have been initially classified as be-
nign are re-classified now using the melanin variation features extracted from inside the
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Figure 3.17: Overall system workflow.

lesion and from the healthy skin area surrounding the lesion. The final classification result
is provided by a Maximum Likelihood Classifier.
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3.4.6 Experimental Results

We performed our experiments on the same image dataset that have been used in the
experiments of ALCON et al. (2009). They collected an image set containing 45 benign
atypical nevi (or Clark nevi) and 107 melanomas from the Dermnet dataset (DERMNET,
2010).

Considering that training our proposed two-stage discrimination scheme requires a
random resampling step, we repeated the whole process 50 times, seeking to obtain a
training set that characterizes well the two classes, i.e., the benign and malignant cases.
Furthermore, we tested different ψ sets of melanin variation features (see Section 3.4.4.2),
trying to identify the feature set that obtains less false negatives. We started the selection
of the ψ feature sets by taking each mfi feature individually, and then increased the set
size by adding one more feature at a time, until we reached 6 features per set, when we
observed that the obtained results were decreasing in quality. We tested all the possible
feature set combinations: all the 12 features individually, the 66 combinations of 2 fea-
tures, the 220 combinations of 3 features, the 495 combinations of 4 features, the 792
combinations of 5 features, and 924 combinations of 6 features. In Table 3.8 we present
the ψ feature sets considering these number of features that resulted in the best classifica-
tion results, i.e. the sets that obtained 100% of sensitivity associated with high specificity,
and using the number of times that results was obtained as a tiebreaker. We also tested the
6 eumelanin features, the 6 pheomelanin features, and the combination of all 12 melanin
variation features as three feature sets, and the corresponding results also are presented in
Table 3.8.

Considering that for each feature set ψ we generate randomly 50 training and testing
sets by Smoothed Bootstrap Resampling, we only present the average results, the best
obtained results in terms of accuracy and the number of times that these results were
obtained (when testing with the 50 different sets). However, although we use randomly
generated training sets to improve the chance of characterizing well the lesion classes, it
shall be observed that we only use the original data (and not the synthetic data) for testing.

It is important to observe that in the experiments of ALCON et al. (2009) with the
same dataset, but not including bootstrapping in their training step, the best obtained
results were: sensitivity of 89.72% and specificity of 75.56%. Later, CAVALCANTI;
SCHARCANSKI (2011) included the bootstrapping step, and presented a system even
more accurate in this dataset, achieving a sensitivity of 96.2% and a specificity of 97.7%.
So, comparing the results of these approaches with our results shown in Table 3.8, we may
conclude that our proposed discrimination scheme potentially can enhance the sensitivity
(i.e., reduce the number of false negatives), while maintaining or even increasing the
accuracy, although the specificity may decrease slightly. The set of features containing
all 12 melanin variation features obtained very good results in average, and achieved
100% of sensitivity in 11 of the 50 test sets. However, the best classification results have
been obtained using the feature set ψ = {mf6,mf8,mf10,mf12}. This set containing
one feature based on the eumelanin concentration and three based on the pheomelanin
concentration achieved 100% of sensitivity in 24 of the 50 test sets, combined with high
specificity and, consequently, high accuracy.

Important to observe the presence of mf6 and mf12 (i.e., the ratio between the eu-
melanin concentration inside the lesion and in the healthy skin, and the ratio between the
pheomelanin concentration inside the lesion and in the healthy skin) in the feature set that
obtained the best classification results. That indicates that although the concentration of
melanin inside the lesion is an important feature to discriminate malignant and benign



67

Table 3.8: Discrimination results in 50 trials.

Sensitivity Specificity Accuracy
Number of Times

the result was obtained

ψ = {mf12}
Average 100% 73.02% 92.01% -

Best result 100% 80% 94.08% 1

ψ = {mf10,mf12}
Average 99.83% 85.87% 95.70% -

Best result 100% 95.56% 98.68% 2

ψ = {mf6,mf10,mf12}
Average 99.68% 90.76% 97.04% -

Best result 100% 97.78% 99.34% 6

ψ = {mf6,mf8,mf10,mf12}
Average 99.70% 96.18% 98.66% -

Best result 100% 97.78% 99.34% 24

ψ = {mf6,mf8,mf10,mf11,mf12}
Average 99.57% 95.96% 98.50% -

Best result 100% 97.78% 99.34% 16

ψ = {mf3,mf6,mf8,mf10,mf11,mf12}
Average 99.64% 94.31% 98.07% -

Best result 100% 97.78% 99.34% 9

ψ = {mf1, ... ,mf6}
Average 99.35% 90.18% 96.63% -

Best result 99.07% 97.78% 98.68% 8

ψ = {mf7, ... ,mf12}
Average 99.66% 92.98% 97.68% -

Best result 100% 97.78% 99.34% 4

ψ = {mf1, ... ,mf12}
Average 99.48% 96.31% 98.54% -

Best result 100% 97.78% 99.34% 11
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cases, it is also important to consider the characteristics of the healthy skin to identify if
the lesion pigmentation variation is comparable to a melanoma or not.

We also analyzed the performance of each classification stage of our approach sep-
arately. We observed that when our system achieves its best result (i.e., sensitivity of
100%, specificity of 97.78% and accuracy of 99.34%), the first stage which uses the
ABCD features only generated a sensitivity of 96.26% and specificity of 97.78%, and a
total accuracy of 96.71%. Considered independently, the second stage which is based on
melanin features, obtained a lower sensitivity to 94.39%, high specificity of 100%, and
96.05% of accuracy. However, it is important to recall that we only use this second stage
for the samples that have been previously classified as benign (as a verification stage).
Consequently, our two-stage approach achieves 100% of sensitivity and a very high level
of accuracy (i.e. 99.34%). Although the second stage individually obtains worse results in
terms of sensitivity and accuracy, our experiments demonstrate that the melanin features
potentially can help identify melanomas that have been erroneously classified as benign
initially.

It shall be observed that our results were obtained using the 1065 different skin colors,
that have been modeled using the average characteristics of human skin. Our classification
results suggest that our approach potentially could estimate the melanin variation in dif-
ferent types of skin. Despite of the fact that our image set does not retain any information
about patients, the variability of skin characteristics is noticeable in this set. However, this
dataset does not include melanocytic lesions occurring in dark (black) skin, and comput-
ing a different color table may be necessary for these skin tones. The very low incidence
of melanomas (melanocytic lesions) in dark (black) skin, and the focus on the most com-
mon cases, justifies the absence of such examples of in our dataset. In fact, the incidence
of melanomas in dark (black) skin is a rare phenomenon, and recent statistics show this
incidence to be more than 20 times lower than in other skin tones (HOWLADER et al.,
2012)).

(a) (b)

Figure 3.18: Examples of lesions that have been previously identified as benign and then
were correctly re-classified as malignant. These images are displayed with their illumina-
tion corrected for better visualization.

In Fig. 3.18, we illustrate two examples of melanocytic skin lesions that have been in-
correctly identified as benign nevi in the first classification stage, and then were correctly
classified as malignant melanomas in the second classification stage using the proposed
melanin variation features.
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3.4.7 Conclusions

According to recent studies (MARCHESINI; BONO; CARRARA, 2009; ZONIOS
et al., 2010; MATTHEWS et al., 2011), the concentration of the two main classes of
melanin present in human skin, eumelanin and pheomelanin, can potentially be used to
identify melanocytic skin lesions as benign or malignant if employed in conjunction with
current diagnostic techniques. Based on these observations, we presented in this paper a
new method that uses only a standard camera image (a simple photograph) to compute
classification features based on the estimation of eumelanin and pheomelanin contents in
melanocytic skin lesions, and employs these melanin features in a two-stage classification
scheme.

In medical applications, it is especially desirable that a prescreening system achieves
100% of sensitivity, i.e., all malignant cases are correctly classified and no false nega-
tives occur. However, as far as we know, this goal still poses a challenge for researches.
With this objective in mind, we proposed a scheme that starts with a discrimination stage
based on the ABCD rule, which are well known medical criteria that prescreening sys-
tems usually try to implement. Next, a second discrimination stage based on melanin
variation features is used to help improve the discrimination sensitivity and accuracy. Our
preliminary experimental results suggest that the proposed framework which combines
ABCD rule-based and melanin variation features potentially can be very accurate and
obtain high sensitivity values (near 100% in our experiments). In addition, we remark
that although the proposed framework is designed for pre-screening purposes, which ide-
ally should involve melanocytic skin lesions (e.g., melanomas) in their initial stages, our
experiments were performed on images depicting melanomas in different stages of de-
velopment. Hence, the high level accuracy of our preliminary results also illustrates the
robustness of the proposed framework with respect to different input data (skin images).

As future work, we plan to test our framework more extensively in clinical trials, and
make it part of a complete teledermatological system. As more biophysical data on me-
lanomas becomes available, we also intend to further enhance its predictive capabilities,
notably with respect of melanomas in advanced stages, by incorporating into our simu-
lations other factors affecting the spectral signatures of melanocytic lesions such as ab-
normalities in the distribution and morphology of the melanosomes. Nevertheless, other
features could improve the reproduction of the ABCD rule and we intend to develop and
test it according to necessity. For example, fuzzy counters to represent the color presence
(i.e., assigning weight distances to each reference color) and textural descriptors trying
to identify the dermatological structures may possibly contribute for the differentiation of
malignant and benign cases.

3.4.8 Appendix A: BioSpec: A Spectral Model of Light Interaction with Human
Skin

For completeness, we summarize the main characteristics of the BioSpec model in
this section. We remark that detailed descriptions of BioSpec can be found in the re-
lated publications (KRISHNASWAMY; BARANOSKI, 2004; BARANOSKI; KRISH-
NASWAMY, 2010) and its source code is openly available online (Natural Phenomena
Simulation Group, 2011).

The BioSpec model uses Monte Carlo based algorithms to simulate the processes of
light propagation (surface reflection, subsurface reflection and transmission) and absorp-
tion in the skin tissues. It considers the stratification of skin into four semi-infinite main
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layers: stratum corneum, epidermis, papillary dermis, and reticular dermis. The model
parameter space includes: the refractive index and thickness of each layer, the refractive
index and the diameter of collagen fibrils, the extinction coefficient, concentration, and
volume fraction of the main chromophores present in the skin tissues (e.g., eumelanin,
phaeomelanin, oxyhemoglobin, deoxyhemoglobin, β-carotene and bilirubin) and the as-
pect ratio of the stratum corneum folds.

The propagation of light in the skin tissues is simulated by the BioSpec model as a
random walk process (that rely on the generation of random numbers ξj , for j = 1, 2, ..., 9,
uniformly distributed in the interval [0, 1]) using ray optics. In this random walk process,
the transition probabilities are associated with Fresnel coefficients computed at each in-
terface between the layers, and the termination probabilities are determined by the ray
free path length.

Once a ray hits a skin specimen at the air/stratum corneum interface, it can be re-
flected back or refracted into the stratum corneum. In the former case, the BioSpec model
computes the distribution of the reflected light taking into account the aspect ratio (or
oblateness) of the stratum corneum folds. In the BioSpec model, these mesostructures
are represented as ellipsoids. The aspect ratio, ς ∈ [0, 1], of these ellipsoids is defined as
the quotient of the length of the vertical axis by the length of the horizontal axis, which
are parallel and perpendicular to the specimen’s normal respectively. As the folds become
flatter (lower ς), the reflected light becomes less diffuse. In order to account for this effect,
the reflected rays are perturbed using angular displacements obtained from the surface-
structure function proposed by TROWBRIDGE; REITZ (1975), which represents rough
air-material interfaces using microareas randomly curved. These displacements are given
in terms of the polar perturbation angle:

θs = arccos

(( ς2√
ς4 − ς4ξ1 + ξ1

− 1

)
b

) 1
2

 , (3.34)

where b corresponds to 1/(ς2 − 1), and the azimuthal perturbation angle, φs, is given by
2πξ2.

If the ray penetrates the skin specimen, then it can be reflected and refracted multiple
times within the skin layers before it is either absorbed or propagated back to the en-
vironment through the air/stratum corneum interface. Since the subcutaneous tissue is a
highly reflective medium, for body areas characterized by the presence of hypodermis, the
BioSpec model assumes total reflection at the reticular dermis/hypodermis interface. In
the epidermis and stratum corneum, scattering is simulated using angular displacements
measured by BRULS; LEUN (1984).

Every ray entering one of the dermal layers is initially tested for Rayleigh scattering. If
the test fails or the ray has already been bounced off one of the dermal interfaces, then the
ray is randomized around the normal direction using a warping function based on a cosine
distribution in which the polar perturbation angle, αc, and the azimuthal perturbation
angle, βc, are given by:

(αc, βc) = (arccos((1− ξ3)
1
2 ), 2πξ4). (3.35)

In order to perform the Rayleigh scattering test, the spectral Rayleigh scattering amount,
S(λ), is computed using the appropriate expression for Rayleigh scattering involving par-
ticles (MCCARTNEY, 1976). Next, a random number ξ5 is generated. If ξ5 < 1−e−S(λ),
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then the ray is scattered using an azimuthal perturbation angle, βR, given by 2πξ8, and a
polar perturbation angle, αR, obtained using the following rejection sampling algorithm
based on the Rayleigh phase function (MCCARTNEY, 1976):

do
αR = πξ6
χ = 3

2
ξ7

while (χ > 3
√
6

8
(1 + cos2 αR) sinαR)

Once a ray has been scattered, it is tested for absorption. The absorption testing is
performed probabilistically every time a ray starts a run in a given layer, and it consists
in estimating the ray free path length using an expression based on Beer’s law (TUCHIN,
2000), and considering the total absorption coefficient, µai(λ), of a given layer i, which
takes into account the extinction coefficient and the concentration of each pigment present
in this layer. This test consists in estimating the ray free path length, p(λ), through the
following expression:

p(λ) = − 1

µai(λ)
ln(ξ9) cos θ, (3.36)

where θ corresponds to the angle between the ray and the specimen’s normal. If p(λ) is
greater than the thickness of the layer, then the ray is propagated, otherwise it is absorbed.

3.4.9 Appendix B: Converting the Modeled Spectral Reflectance Values to Skin
Colors

Unfortunately, we cannot directly access the original reflectance values associated
with the pixels of standard camera images. Therefore, we first transform the modeled
reflectance functions R(λ) (in our experiments, obtained using BioSpec) to colors that
can be matched straightforwardly with the lesion colors appearing in a standard image.
The color tristimulus values XYZ can be calculated by the additive law of color match-
ing (LEE, 2005):

X = N
∑
λ

R(λ) S(λ) x(λ) ∆λ, (3.37)

Y = N
∑
λ

R(λ) S(λ) y(λ) ∆λ, (3.38)

Z = N
∑
λ

R(λ) S(λ) z(λ) ∆λ, (3.39)

where S(λ) is the relative spectral power distribution of the illuminant, x(λ), y(λ) and
z(λ) are the spectral sensitivity functions, and ∆λ represents the wavelength intervals. In
our experiments, we used the CIE Standard Illuminant D65 (Commission Internationale
de l’Eclairage, 2011), the CIE 1931 sensitivity functions of the standard observer for 2◦,
and ∆λ = 5nm. The constant N is defined as follows:

N =
∑
λ

S(λ) y(λ) ∆λ. (3.40)

Obtained the color tristimulus XYZ, we convert XYZ to the RGB space using the
sRGB standard (LEE, 2005):
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R′ = 3.2410X − 1.5374Y − 0.4986Z, (3.41)
G′ = −0.9692X + 1.8760Y + 0.0416Z, (3.42)
B′ = 0.0556X − 0.2040Y + 1.0570Z. (3.43)

As shown in (LEE, 2005), to obtain the RGB colors in the correct range, an additional
non-linear transform is required. If R′, G′, B′ ≤ 0.003040, then we obtain the corrected
RGB color representation by:

R = 12.92R′, (3.44)
G = 12.92G′, (3.45)
B = 12.92B′, (3.46)

otherwise,

R = 1.055R′(1/2.4) − 0.055, (3.47)
G = 1.055G′(1/2.4) − 0.055, (3.48)
B = 1.055B′(1/2.4) − 0.055. (3.49)

Finally, the obtained RGB are normalized, i.e., are transformed to the range [0, 1],
and then the correct eight-bit values RGB are obtained by multiplying RGB by 255.
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3.5 Other Publications

Beyond those presented in the last Chapters, the authors of this Thesis also had other
publications related to the automated analysis of melanocytic skin lesions. They are de-
scribed next:

• Cavalcanti, P. G. ; Yari, Y. ; Scharcanski, J. . Pigmented Skin Lesion Segmentation
on Macroscopic Images. In: 25th IEEE International Conference on Image and
Vision Computing New Zealand, 2010, Queenstown. Proceedings of the 25th IEEE
International Conference on Image and Vision Computing New Zealand, 2010.
This paper presents a very simple segmentation technique, based on the Otsu’s
thresholding method of the Red channel (R of the RGB color space). Although
very simple, this paper demonstrates the importance of segmentation methods de-
veloped specifically for standard camera images. In our experiments, it achieves
lower average segmentation error in comparison to more complex algorithms that
were proposed for dermoscopy images.

• Cavalcanti, Pablo G. ; Scharcanski, Jacob . Macroscopic Pigmented Skin Lesion
Segmentation and Its Influence on the Lesion Classification and Diagnosis. In: M.
Emre Celebi; Gerald Shaefer. (Org.). Color Medical Image Analysis. 1ed. Heidel-
berg: Springer, 2012, v. 1, p. 15-39.
This book chapter compares different segmentation methods proposed for melan-
ocytic skin lesions in standard camera images, including the methods presented in
Sections 3.2 and 3.3. Then, the set of 52 features proposed in Section 3.2 is ex-
tracted from each different segmentation mask, and using the Nearest Neighbor
Classifier we classify each image. Experiments indicate that those features can
obtain good classification results independently of the previous segmentation step.
As already mentioned, this book chapter has been included as Appendix A in this
Thesis.

• Cavalcanti, Pablo G. ; Scharcanski, Jacob . Shading Correction in Human Skin
Color Images. In: A. Mishra. (Org.). An Introductory Guide to the Emerging Areas
of Digital Image Processing. 1ed. Sunnybank Hills: iConcept Press, 2012, v. 1, p.
1-16.
Due to the paper presented in Section 3.1, authors have been invited to present
their shading attenuation method also as a book chapter. Beyond the experiments
with melanocytic skin lesions and face images, this publication also includes exper-
iments with hand images (usually utilized in gesture recognition systems).

The author of this Thesis also was part of other research projects while working to-
wards the Doctoral Degree, collaborating with other colleagues of the research group.
These collaborations resulted in three publications:

• Yari, Y. ; Cavalcanti, P. G. ; Scharcanski, J. . Estimation of the Head Pose Based
on Monocular Images. In: 25th IEEE International Conference on Image and Vi-
sion Computing New Zealand, 2010, Queenstown. Proceedings of the 25th IEEE
International Conference on Image and Vision Computing New Zealand, 2010.

• Scharcanski, J. ; Oliveira, A. B. ; Cavalcanti, P. G. ; Yari, Y. . A Particle Filtering
Approach for Vehicular Tracking Adaptive to Occlusions. IEEE Transactions on
Vehicular Technology, v. 60, p. 381-389, 2011.
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• Welfer, D. ; Scharcanski, Jacob ; Cavalcanti, Pablo G. ; Marinho, Diane R. ; Lud-
wig, Laura W.B. ; Kitamura, Cleyson. M. ; Dal Pizzol, Melissa M. . A Computer-
Aided Diagnosis Scheme for Grading Diabetic Macular Edema Using Color Eye
Fundus Images. In: M. Emre Celebi; Gerald Shaefer. (Org.). Color Medical Image
Analysis. 1ed. Heidelberg: Springer, 2012, v. 1, p. 109-128.
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4 DISCUSSION

The approaches presented in Chapter 3 provide promising results for the automatic
processing and analyzing of standard camera images of melanocytic skin lesions.

The proposed shading attenuation method is potentially useful in many teledermatol-
ogy situations. Ideally the photographer should acquire the lesion image the best he/she
can, i.e. without the presence of shading effects, but this is a very difficult task. Due to the
typical small size of melanocytic lesions, the camera usually should be positioned very
close to the human body and shading is a consequence. Therefore, this shading artifact
may cause difficulties for the correct image segmentation. However, as we have already
demonstrated, the use of the shading attenuation method before the segmentation step
decreases this difficulty.

Moreover, the shading attenuation technique is not useful only for automated screen-
ing systems. Let use assume a situation when a physician wants to receive an opinion
about a suspicious lesion from an expert, and sends a photograph of that lesion by email or
any other Internet service. If the shading attenuation method is applied to the lesion image
before or during the image transfer, it will make easier for the expert to provide his opinion
about the lesion. As as indication of the usefulness of this technique, it has already at-
tracted interest in the literature (KRUPINSKI et al., 2012; GLAISTER; WONG; CLAUSI,
2012; PICCININI et al., 2012; KOROTKOV; GARCIA, 2012; GLAISTER et al., 2013).

The segmentation procedure is the usual next step in an automated screening system,
and also has been the focus of the approaches proposed in this Thesis. We proposed tech-
niques that minimize the errors when differentiating healthy and unhealthy skin pixels.
We also performed experiments comparing segmentation techniques and the influence of
the segmentation result on the final classification, and our results indicate that the features
usually extracted from the segmented lesion area based on the ABCD rule do not improve
classification performance when the segmentation is improved (see Appendix A). How-
ever, it is important to observe that the segmentation step still is a very important task.
The automatically lesion boundary determination can also be useful to help experts in
remote screening since the lesion borders are not always easily recognizable. Moreover,
several groups are working on melanoma diagnosis nowadays (KOROTKOV; GARCIA,
2012), and potentially new lesion features might be proposed, taking advantage of more
precise lesion border location.

In terms of lesion features, we also made some research contributions. Although it
requires more experiments to affirm that it can be used in practical situations, our set of
features based on the ABCD rule demonstrated to be very promising, achieving high accu-
rate levels using a simple classification algorithm, i.e. the KNN or the Nearest Neighbor
Classifier. Furthermore, we also proposed a combination of this classifier with a deci-
sion tree, aiming to enhance the sensitivity (and consequently the accuracy) as much as
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possible, and preventing the system to misclassify malignant lesions as benign.
Besides the set of features based on the ABCD rule, we also proposed a novel set of

features based on the quantity of melanin in a lesion. The color of human skin is largely
determined by the presence of these pigments, and recently studies suggest that malignant
lesions may present larger melanin concentrations than in benign cases. We presented a
technique to automatically estimate the melanin variation inside the lesion segments, and
a two-stage framework combining the ABCD features and these melanin features. Our
preliminary results indicate high levels of accuracy and sensitivity. However, as already
pointed out in the discussion of the prescreening system based on the ABCD rule, we
should be careful when analyzing these results. The experiments were realized in a limited
number of images, and more experiments are necessary. Melanocytic skin lesions are very
dangerous and refinements may be required before using these tools in real situations.
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5 CONCLUSIONS

Before starting this Doctoral research project that resulted in this Thesis, the use of
standard camera images to analyze melanocytic skin lesions did not receive much at-
tention in the literature. Although the quality of these images was increasing quickly,
making possible to acquire high-quality photographs with hand-held cameras and lots of
other portable devices such as smartphones, most of approaches proposed in the literature
in the 90s and in the early 2000s focused mostly on dermoscopic images.

However, in the recent years the Internet became an almost natural part of life, being
accessible anywhere, by many different types of devices, and reaching isolated areas of
the world. Consequently, medicine experts started taking advantage of this technology
that enables telemedicine, making it feasible to discuss cases and obtain diagnosis from
experts remotely through the exchange of data and images. Since dermatology is probably
the most visual medical specialty, teledermatology has become a reality.

In addition to the benefits of teledermatology for early remote diagnosis, it has also
been observed that preprocessing or an automated screening of the transferred images
would be really important. An automated system like that could possibly filter obviously
benign cases, and also detect severe malignant cases, creating priority attendance queues.
Consequently, different research groups around the world started developing tools to help
the screening of melanocytic skin lesions focusing on standard camera images, since this
is usually the only available imaging device.

The tools presented in this Thesis, including two complete automated screening sys-
tems for melanocytic skin lesions, and both achieved promising results in our experi-
ments. We proposed a technique to attenuate the shading effects commonly present in the
images, and segmentation techniques that resulted in more accurate results than compara-
ble state-of-the-art methods proposed in literature. The set of features based on the ABCD
rule achieved high levels of accuracy with adequate training and using simple classifiers.
Moreover, to the best of our knowledge the proposed melanin features were the first pro-
posed to estimate important melanocytic lesions characteristic using only standard camera
images.

As future work, it would be important to test all the proposed tools more extensively
in clinical trials. Although our preliminary results indicate high level of accuracy, we are
dealing with a very dangerous kind of cancer and before using these tools in real situations
caution is necessary.

Besides more experimental work, other future works can also be mentioned. For in-
stance, the Pattern Analysis methodology (PEHAMBERGER; STEINER; WOLFF, 1987)
suggests using a type of global texture pattern (reticular, globular, homogeneous, etc) as
an important feature for the lesion diagnosis. However, the texture analysis approach has
not been sufficiently explored for lesion images in the literature.
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Still considering the feature extraction step, the color variation representation also did
not receive sufficient attention. One of the reasons is that color variation description is
quite of subjective in the ABCD rule. For instance, it defines that melanocytic lesion
may contain six distinct hues: white, red, light and dark brown, blue-gray, and black.
However, to differentiate light and dark brown (and maybe even black) is a very subjective
issue. Moreover, there is no standard when acquiring the lesion images, and consequently
the ambient light may significantly influence the resulting colors. Consequently, color
calibration can be an important research topic to help melanoma identification.

Finally, the classification step may also be a potential focus of research. Machine
learning and pattern recognition are research areas in constant development, and many
feature selectors, resampling and classifier algorithms are being proposed. It is possible
that some of these untested techniques capture well the universe of the melanocytic skin
lesions.
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APPENDIX A MACROSCOPIC PIGMENTED SKIN LESION
SEGMENTATION AND ITS INFLUENCE ON THE LESION
CLASSIFICATION AND DIAGNOSIS

Cavalcanti, Pablo G. ; Scharcanski, Jacob . Macroscopic Pigmented Skin Lesion Segmen-
tation and Its Influence on the Lesion Classification and Diagnosis. In: M. Emre Celebi;
Gerald Shaefer. (Org.). Color Medical Image Analysis. 1ed. Heidelberg: Springer, 2012,
v. 1, p. 15-39.

A.1 Abstract

Melanoma is a type of malignant pigmented skin lesion, and currently is among the
most dangerous existing cancers. However, differentiating malignant and benign cases is
a hard task even for experienced specialists, and a computer-aided diagnosis system can
be an useful tool. Usually, the system starts by pre-processing the image, i.e. removing
undesired artifacts such as hair, freckles or shading effects. Next, the system performs
a segmentation step to identify the lesion boundaries. Finally, based on the image area
identified as lesion, several features are computed and a classification is provided. In this
chapter we describe all these steps, giving special attention to segmentation approaches
for pigmented skin lesions, proposed for standard camera images (i.e. simple color pho-
tographs). Next, we compare the segmentation results to identify which techniques have
more accurate results, and discuss how these results may influence in the following steps:
the feature extraction and the final lesion classification.

A.2 Introduction

Pigmented skin lesions include both, benign and malignant forms. According to
World Health Organization (World Health Organization, 2011), about 132000 melan-
oma cases, a dangerous kind of malignant pigmented skin lesion, occur globally each
year. The early diagnosis of melanomas is very important for the patient prognosis, since
most malignant skin lesion cases can be treated successfully in their early stages. How-
ever, research work has shown that discriminating benign from malignant skin lesions is
a challenging task (RAO et al., 1997; FIKRLE; PIZINGER, 2007).

To help diagnosing pigmented skin lesions, physicians often use dermoscopy, which
is a non-invasive technique that magnifies submacroscopic structures with the help of an
optical lens (a dermoscope) and liquid immersion. According to Mayer (MAYER, 1997),
the use of dermoscopy can increase the diagnosis sensitivity in 10-27% with respect to
the clinical diagnosis. Also, several automatic segmentation and classification methods
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have been proposed to help obtain a diagnosis with a dermoscopy image (CELEBI et al.,
2007, 2008; GOMEZ et al., 2008; IYATOMI et al., 2008; ZHOU et al., 2009, 2011). How-
ever, even with the help of dermoscopy, differentiating malignant and benign lesions is a
challenging task. In fact, specialists affirm that in the early evolution stages of malignant
lesions, dermoscopy may not be helpful since it often does not improve the diagnosis
accuracy (SKVARA et al., 2005).

Still considering early stage cases, there are practical situations where a non-specialist
(e.g. a physician not trained on Dermatology) wishes to have a qualified opinion about
a suspect skin lesion, but only standard camera imaging is available on site. In such
situations, telemedicine is justifiable, and the non-specialist can capture a macroscopic
pigmented skin lesion (MPSL) image of the suspect skin lesion and send it to a specialist,
who can analyze it in higher detail. In this particular situation, a teledermatology consul-
tation brings benefits, like the easier access to health care and faster clinical results (MAS-
SONE et al., 2008). Besides, comparing the physical (face-to-face) patient diagnosis with
the remote diagnosis by teledermatology, recent results suggest that teledermatology also
tends to be effective and reliable (WHITED, 2006).

In the last decades, several segmentation techniques have been proposed to facilitate
the remote diagnosis of MPSL images. Since there is no standardized protocol for acquir-
ing these images, often they contain artifacts like hair, shading and other disturbances that
make the remote diagnosis by specialists more difficult. With the help of the automatic
segmentation, this task may be facilitated. Moreover, the segmentation is an initial step
for computer-aided diagnosis systems. Starting from the lesion area identification, lesion
features can be extracted and an automatic classification/diagnosis can be provided.

However, since these MPSL images may present characteristics that could make the
remote diagnosis more difficult, the automatic processing and analysis also poses some
challenges for the researchers in this field. Most of the MPSL image segmentation tech-
niques proposed in the literature convert the original color image to a monochromatic
image, and use a thresholding algorithm to identify the lesion area (MANOUSAKI
et al., 2006; RUIZ et al., 2008; TABATABAIE; ESTEKI; TOOSSI, 2009; ALCON et al.,
2009). Even more complex segmentation approaches, such as active contours techniques
(PAROLIN; HERZER; JUNG, 2010; TANG, 2009), process grayscale images. Nev-
ertheless, the discriminating lesion and healthy skin areas may be more difficult on a
monochromatic images, since the chromatic aspect is lacking in them.

In the following Sections we will present segmentation algorithms that process multi-
channel MPSL images, based on thresholding (CAVALCANTI; SCHARCANSKI, 2011)
and on level-sets (CAVALCANTI et al., 2011). After that, we show that such meth-
ods working on multichannel MPSL images are more efficient than methods working on
monochromatic images. Also, we will discuss how features that are relevant from the
medical point of view can be extracted, and how the final classification/diagnosis of the
acquired lesion is affected by the segmentation quality.

A.3 Pre-processing

MPSL images usually contain artifacts that make the segmentation process more dif-
ficult. Skin characteristics, such as freckles, are easily detected by these algorithms based
on color or size. However, most methods available try to identify the lesion area assum-
ing that pigmented skin lesions correspond to locally darker skin discolorations. Conse-
quently, artifacts such as hair and shading, that usually also are darker than healthy skin
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may be mistaken as lesions during the segmentation process.
Although some of the approaches available eliminate hair as a pre-processing step

(RUIZ et al., 2008; TABATABAIE; ESTEKI; TOOSSI, 2009; TANG, 2009), this task can
be performed as a post-processing step, after the image segmentation. Hair is thin, and
its shape is quite distinct from the lesion shapes, and consequently it is easy to eliminated
hair from MPSL images by morphological operations or other methodologies.

On the other hand, the presence of shading requires pre-processing in advance to seg-
mentation. The shading areas assume any shape, and require a treatment that is different
from that given to artifacts like hair. Moreover, if the shading attenuation is well per-
formed, it also contributes for the enhance the contrast between healthy and unhealthy
skin.

A.3.1 Shading attenuation

Alcón et al. (ALCON et al., 2009) proposed to correct the uneven illumination by
removing the low frequency spatial component of the image. Although this method can
be efficient for some images, it requires specific parameters. It is very difficult to obtain a
specific value that can be used for any input image, and the authors (ALCON et al., 2009)
do not detail how to obtain this value automatically.

Face images also are skin images and can be affected by shading effects. Tan and
Triggs (TAN; TRIGGS, 2010) and Zhou et al. (ZHOU; MILLER; ZHANG, 2011) pro-
posed to use Difference of Gaussians (DoG) filtering to correct the shading artifacts. How-
ever, this methodology needs specific parameters (e.g., definition of a window size and the
filters standard deviations) which may require adjustments for different types of shading
effects in the skin lesion images. Moreover, the authors observed that DoG filtering may
generate strong-edges in hair areas (TAN; TRIGGS, 2010), which could affect negatively
the overall segmentation process.

Therefore, Cavalcanti et al. (CAVALCANTI et al., 2011) proposed a shading attenua-
tion method that is adaptive to the MPSL image data. Their method assumes that images
are acquired in a way that the lesion appears in the image center, and it does not touch the
image outer borders. The first step of the method is to convert the image from the original
RGB color space to the HSV color space, and retain the Value channel V . This is justified
by the fact that this channel presents the higher visibility of the shading effects. A region
of 20× 20 pixels is extracted from each V corner, and the union of these four sets define
the pixel set S. This pixel set is used to adjust the following quadric function z(x, y):

z(x, y) = P1x
2 + P2y

2 + P3xy + P4x+ P5y + P6, (A.1)

where the six quadric function parameters Pi (i = 1, ..., 6) are chosen to minimize the
error ε:

ε =
Ns∑
j=1

[V (Sj,x, Sj,y)− z(Sj,x, Sj,y)]
2 , (A.2)

where, Sj,x and Sj,y are the x and y coordinates of the jth element of the set S, respec-
tively, and Ns is the total number of pixels of the four corners (in our case, Ns = 1600).

Calculating the quadric function z(x, y) for each image spatial location (x, y), we
have an estimate z(x, y) of the local illumination intensity in the image V (x, y). Dividing
the original V (x, y) channel by z(x, y), we obtain a new Value channel where the shading
effects have been attenuated. The final step is to replace the original Value channel by
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this new Value channel, and convert the image from the HSV color space to the original
RGB color space. In Fig. A.1, an example of applying this method to a skin lesion image
is presented. The result is a color image easier to be segmented.

(a) (b)

(c) (d)

Figure A.1: Shading attenuation example. (a) Input image; (b) Obtained quadric model
using the corners of the input Value channel; (c) Obtained quadric model in 3D; (d) Result
obtained by the division of the Value channel by the obtained quadric model.

A.4 Segmentation

As already mentioned in Section A.2, several segmentation techniques have been pro-
posed for MPSL images in the last decades. We outline some representative recent meth-
ods and their characteristics in the following subsections. Also, at the end of this section,
we present and discuss the performance of these segmentation techniques for a MPSL
image database.

A.4.1 Grayscale-Based Methods

Based on the principle that a pigmented skin lesion is a depigmentation of the skin, and
to reduce the computation cost, many segmentation methods start by converting the input
image from color to grayscale. After that, most algorithms try to distinguish between
healthy to unhealthy pixels. The following techniques illustrate the algorithms that have
recently been used for this purpose.

A.4.1.1 Thresholding-Based Methods

Otsu’s Thresholding method (OTSU, 1979) has been widely used in grayscale im-
ages (MANOUSAKI et al., 2006; RUIZ et al., 2008; TABATABAIE; ESTEKI; TOOSSI,
2009). Furthermore, Cavalcanti et al. (CAVALCANTI; YARI; SCHARCANSKI, 2010)
also employed this thresholding scheme to the Red channel (R of the RGB color space),
trying to take advantage of the fact that healthy skin usually has a reddish tone. This
method assumes two pixel classes, namely healthy and unhealthy skin pixels, and searches
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exhaustively for the threshold th that minimizes the total intra-class variance σ2
w(th), de-

fined as the weighted sum of variances of the two classes:

σ2
w(th) = ω1(th)σ2

1(th) + ω2(th)σ2
2(th), (A.3)

where ωi are the a priori probabilities of the two classes separated by the threshold th,
and σ2

i are their intra-class variances. Minimizing the intra-class variance is equivalent to
maximizing the inter-class variance σ2

b (th):

σ2
b (th) = σ2 − σ2

w(th) (A.4)
= ω1(th)ω2(th) [µ1(th)− µ2(th)]2 ,

where σ2 is the image pixels variance, and µi are the class means. Computed the th
threshold, the lesion pixels correspond to the pixels with values lower than th.

The Otsu’s method usually is followed by a post-process step, constituted by succes-
sive morphological operations, to eliminate other regions that may be thresholded (besides
the lesion). Cavalcanti et al. (CAVALCANTI; YARI; SCHARCANSKI, 2010) suggest the
following procedures: select the largest threshold area, perform a hole filling operation,
and a dilation with a disk with 5 pixels of radius.

However, Alcón et al. (ALCON et al., 2009) recently suggested that Otsu’s method
may over-segment the lesion area. So, they proposed a new thresholding method specific
for MPSL images. They observed that, although the lesion intensities distribution fl(x) is
unknown, the distribution fs(x) of the skin correspond to a Gaussian-like distribution:

fs(x) = A e
−(x−µs)2

2σ2s , (A.5)

where, µs is the mean value of healthy skin pixel intensities. Being fl+s the distribution of
grayscale intensities of the whole image, µs is determined by the corresponding intensity
value of the highest peak of fl+s. Since fl+s = fl + fs, and µl (the mean value of lesion
pixels) always is lower than µs, this distribution can be approximated as:

fl+s(x) =

{
fs(x) , x ≥ µs
fl(x) + fs(x) , x < µs

. (A.6)

Therefore, based on this assumption, the skin pixels distribution can be estimated as :

f̃s(x) =

{
fl+s(2µs − x) , x < µs
fl+s(x) , x ≥ µs

, (A.7)

and, consequently, the lesion pixels distribution as :

f̃l(x) = fl+s(x)− f̃s(x). (A.8)

Finally, the means Ẽ(Xs) and Ẽ(Xl) of the distributions f̃s(x) and f̃l(x), respectively,
are used for the computation of the threshold T as follows :

T =
Ẽ(Xs) + Ẽ(Xl)

2
, (A.9)

and, as in the Otsu’s method, the pixels with values lower than the computed threshold,
are segmented as lesion pixels.
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Figure A.2 illustrates the performance of the above mentioned thresholding-based seg-
mentation methods. As can be observed, these low-complexity algorithms are able to de-
termine the lesion area, suffering from boundary definition inaccuracies caused by hair.
Also, it is important to observe that the method proposed by Alcon et al. is negatively
affected by the lack of a post-processing method to eliminate undesired thresholded ar-
eas. Finally, Figure A.2(i) shows the difference between Otsu and Alcon et al. results,
obtained by thresholding different regions of the histogram.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure A.2: MPSL image segmentation using thresholding-based methods. (a) The RGB
image after pre-processing. (b) Figure (a) after conversion to grayscale. (c) The Red
channel of (a). (d) The resultant binary mask of Otsu’s method applied to figure (b). (e)
The result of applying morphological operation in (d). (f) The resultant binary mask of
Otsu’s method applied to figure (c). (g) The result of applying morphological operation
in (f). (h) The resultant binary mask of Alcon et al. method applied to figure (b). (i) The
plot of histogram of figure (b), and the computed Otsu and Alcon thresholds.

A.4.1.2 Multi-Direction GVF Snake Method

Some researchers have proposed to use Snakes (or Active-Contours) methods to seg-
mented MPSL images, instead of a thresholding method (TANG, 2009). These methods
usually start by smoothing the image, and as an illustration of such methods we refer
to the method proposed by Tang (TANG, 2009). In this method, the MPSL image is
initially smoothed by adaptive anisotropic diffusion filtering. Tang modified the tradi-
tional anisotropic diffusion to make it more robust to noise, and more details can be found
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in (TANG, 2009). Next, a modification of the traditional GVF (Gradient Vector Flow)
snake (XU; PRINCE, 1998) is used to determine the lesion boundary. The original GVF
(u, v) can be determined by the minimization of the following energy function :

EGV F (u, v) = 1
2

∫ ∫
g(|∇f |)(u2x + u2y + v2x + v2y)

+(1− g(|∇f |))((u− fx)2 + (v − fy)2)dxdy,
(A.10)

where, f is an edge map derived from the image, g is an edge-force magnitude :

g(|∇f |) = exp(−(
|∇f |
K

)), (A.11)

and K is a non-negative smoothing parameter for the field (u, v).
Tang uses a Multi-Directional GVF (MDGVF) in order to create a force-field (u, v)

that enforces the snake to converge to the lesion area, and not to spurious image edges.
Based on an initialization mask (containing a rough segmentation of the lesion), the author
computes the lesion center (x, y) and the direction vector ~d(x, y) = (dx, dy) at each image
pixel (x, y), pointing to the lesion center :

dx =
x− x√

(x− x)2 + (y − y)2
, (A.12)

dy =
y − y√

(x− x)2 + (y − y)2
. (A.13)

After that, the author determines the unitary vector ~v(x, y) = (vx, vy) for each pixel
closer to ~d(x, y) by cosine similarity, i.e. ~v(x, y) is one of the nine vectors (-1,-1), (-1,0),
(-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0) or (1,1).

Being I(x, y) the grayscale intensity of a pixel (x, y), its respective directional gradi-
ent DI can be determined as follows :

DI(x, y) = I(x+ vx, y + vy)− I(x, y). (A.14)

Since often lesions are darker than healthy skin, the negative values of this gradient
can be used to determine a new edge-map :

F (x, y) =

{
DI(x, y), if DI(x, y) < 0
0 otherwise

. (A.15)

Replacing f by F in Eq. A.10, a new energy function is obtained to force the snake
to converge specifically along the direction of the lesion. To initialize this process, Tang
suggests using the Multistage Adaptive Thresholding method (YAN; ZHANG; KUBE,
2005) to segment the image roughly. In Figure A.3, we present a typical lesion segmen-
tation obtained using this method. The reader may observe that this algorithm handles
better artifacts like hair than thresholding-based methods, but unfortunately the lesion
boundary is not well determined.

A.4.2 Multichannel-Based Methods

Although grayscale images have widely being used for segmenting MPSL images,
some approaches rely on multichannel images as described in the following Sections.
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(a) (b)

(c) (d)

Figure A.3: MPSL image segmentation using multi-direction GVF snake method. (a) An
example of image after pre-processing and grayscale conversion. (b) Image (a) after the
application of anisotropic diffusion filter. (c) The rough segmentation of (b). (d) The final
segmentation after the snake convergence.

A.4.2.1 Thresholding-Based Methods

In a similar way that thresholding is used in grayscale MPSL images, we can threshold
color images. In this case, thresholds are computed and a binary mask is generated for
each channel, and masks are combined to form the final color MPSL image segmentation.
However, working with color images adds new concerns. For example, pigmented skin
lesions are not easily discriminated from healthy skin on the Green channel (G of the
RGB color space), and the color information may disturb instead of benefiting the final
results.

So, to facilitate the use of thresholding methods, Cavalcanti and Scharcanski (CAVAL-
CANTI; SCHARCANSKI, 2011) recently proposed a multichannel image representation
for MPSL images that maximizes the discrimination between healthy and unhealthy skin
regions. The idea is to create a new 3-channel image ĪNi based on the normalization of
the RGB channels ĪCi of the input image, and then use a thresholding algorithm based on
Otsu’s method to segment it.

The first channel is a representation of the image darkness, relying on the fact that
lesion areas are depigmented skin regions. Each pixel is defined as ĪN1 (x, y) = 1 −
ĪCi (x, y), i.e. the complement of the normalized Red channel.

The second channel is a texture representation, since local textural variability usually
is higher in lesions than in healthy skin areas. Being L̄ a normalized Luminance image
defined by the average of the three ĪCi channels, the textural variability in L̄(x, y) can be
quantified by computing τ(x, y, σ) as follows :

τ(x, y, σ) = L̄(x, y)
S̃(x, y, σ)

S(x, y, σ)
, (A.16)

where, S(x, y, σ) = L̄(x, y) ∗G(σ) (i.e., the Luminance image L̄ is smoothed by a Gaus-
sian filter with standard deviation σ), and S̃(x, y, σ) represents its complement. In this
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way, if an image region is dark, its textural information is emphasized; if the region is
bright, its textural information is de-empshasized. However, a single Gaussian filter may
not be sufficient to capture the textural variability, so τ(x, y, σ) is calculated for different
σ values and we select its maximum value at each pixel:

T (x, y) = maxσ[τ(x, y, σ)], σ ∈ {σ1, σ2, ..., σN} . (A.17)

Finally, the texture variation channel T is normalized, obtaining ĪN2 (x, y) as follows :

ĪN2 (x, y) = (T (x, y)−min (T )) / (max (T )−min (T )). (A.18)

The third channel ĪN3 (x, y) of the representation describes the local color variation,
assuming that healthy and unhealthy skin regions present different color distributions.
The Principal Component Analysis (PCA) method is applied on the normalized colors of
the image ĪCi (x, y), and the first component is retained (i.e. the component that maxi-
mizes the local data variance). In this representation, lesion pixels usually have higher
variability values than healthy skin pixels, and to detect these lesion pixels in this channel
(corresponding to those detected in channels ĪN1 and ĪN2 ), the following PCA property
described next is utilized. Since the input data is centered around the mean, and healthy
skin pixels often are more frequent in the MPSL image, the projections of the healthy
skin pixels on the PCA space tend to generate values nearer to zero than the lesion pixels
(i.e., the projected lesion pixels tend to have larger magnitudes, i.e. positive or nega-
tive). Therefore, the color variability information C is represented by the pixel projection
magnitudes, and the normalization of C generates the ĪN3 channel:

ĪN3 (x, y) = (C(x, y)−min (C)) / (max (C)−min (C)). (A.19)

Also, the ĪN3 channel is filtered with a 5×5 median filter to reduce the noise. Obtained
this multichannel representation, the Otsu’s thresholding method (see Section A.4.1.1) is
used to segment the image. Three thresholds thi are computed, one for each channel
ĪNi (x, y), and a pixel (x, y) is defined as part of a lesion region (i.e., φ(x, y) = 1) if its
value is higher than the threshold thi in at least two of the three channels :

φ(x, y) =


1 , if (ĪN1 (x, y) > th1 ∧ ĪN2 (x, y) > th2),
1 , if (ĪN2 (x, y) > th2 ∧ ĪN3 (x, y) > th3),
1 , if (ĪN1 (x, y) > th1 ∧ ĪN3 (x, y) > th3),
0 , otherwise.

(A.20)

As mentioned before (see Section A.3), after thresholding the remaining skin artifacts
(such as freckles and hair) are eliminated more easily. These artifacts usually occur in
isolated regions that differ in area and perimeter from skin lesions, since lesions often
have larger areas and more irregular boundaries. Therefore, the perimeter and the area of
all thresholded connected pixel sets (i.e. where φ(x, y) == 1) are computed, and then this
set of regions is partitioned in two clusters. All regions in the cluster with smaller areas
(in average) are eliminated, and their correspondent mask pixels are set to φ(x, y) = 0.
At the end, the resultant mask is filtered by a 5× 5 median filter, eliminating any possible
remaining artifacts that may originate rim imperfections.

In Figure A.4, we present the results for all steps of this method, including the multi-
channel representation generation, the thresholding and post-processing steps. The reader
may observe that the lesion boundary is determined with higher precision in comparison
to the methods presented previously.
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(a)

(b) (c) (d)

(e) (f) (g)

Figure A.4: Segmentation process for the image shown in (a) using thresholding method
on a multichannel representation. In (b)-(d), respectively, the ĪNi channels representing
darkness, texture variation and color variation. In (e)-(g), respectively, binary masks after
thresholding, artifacts elimination and filtering.

A.4.2.2 ICA-Based Active-Contours Method

Instead of creating a multichannel representation for a MPSL color image, Cavalcanti
et al. (CAVALCANTI et al., 2011) recently proposed a segmentation method to be used
on the image original color channels. They proposed to use a classical active-contours
method (Chan-Vese (CHAN; SANDBERG; VESE, 2000)), followed by morphological
operations as a post-processing step.

Active-contours methods have already been used to segment pigmented skin lesion
images. However, as we seen in Section A.4.1.2, usually a conversion to a grayscale
image precedes the processing stages. Other approaches have been proposed using color
images (SILVEIRA et al., 2009), but these algorithms were designed for dermoscopic
images, which have different characteristics, and a common drawback of such methods is
the difficulty to determine a convenient way to initialize the active-contours algorithm. If
the initialization do not indicate the lesion regions with some accuracy, the final segmen-
tation may be incorrect and include healthy skin regions.

Cavalcanti et al. (CAVALCANTI et al., 2011) proposed to use independent compo-
nent analysis (ICA) to generate a reliable binary mask for initializing the active-contours
algorithm. They observed that when ICA is applied to a MPSL image, one of the resul-
tant ICA components corresponds mainly to the lesion area, the second component to the
healthy skin, and the third component corresponds to noise artifacts. Nevertheless, there
is an ordering indeterminacy inherent to the ICA method, and it is not possible to know
in advance which component will show the lesion more clearly. However, due to the le-
sion variability, the histogram of the component that shows more clearly the lesion often
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has a non-Gaussian histogram (frequently multimodal). The noise artifacts component
histogram tends to be non-Gaussian, and the component that shows healthy skin more
clearly tends to have a Gaussian histogram. Thus, they estimate the non-Gaussianity of
the ICA histogram components with differential entropy, i.e. J (X) = |H(X)−H(Xg)|,
where Xg is a Gaussian distributed random variable with the same variance as X . The
component that produces the largest differential entropy (i.e., contains the highest non-
Gaussianity estimate) is identified as the one containing the lesion information more
clearly, and the smallest differential entropy component carries basically healthy skin.

After reordering the channels, the lesion region is best represented in the first channel.
Next, the component values are normalized in the range [0, 1], and the Otsu’s thresh-
olding method is used (see Section A.4.1.1) to segment the skin lesion in this channel.
Given the ICA results, the lesion information can be emphasized (closer to value 1) or de-
emphasized (closer to value 0) in this channel, and consequently the thresholded area may
correspond to either, the lesion or the background. To guarantee that the lesion is captured
in the thresholded area, the corner pixels (used in the shading attenuation step, that are
known to correspond to healthy skin) are tested to check if they are thresholded as ’1’s
or ’0’s. If most corner pixels are thresholded as ’1’s, the thresholded area corresponds to
healthy skin, and the logical complement is used to obtain the lesion localization mask. In
this way, a rough approximation of the lesion area is obtained. Next, the lesion boundary
is better approximated and possible artifacts are eliminated with a morphological opening
(i.e. the structuring element is a disk with a radius of 3 pixels).

Given this initialization binary mask, Cavalcanti et al. (CAVALCANTI et al., 2011)
proposed determining the lesion boundary more precisely using the Chan-Vese Active-
contours method for vector-valued images (CHAN; SANDBERG; VESE, 2000). Their
method assumes that the color image Ii is formed by two regions of approximately con-
stant intensities c1 and c2, separated by a curve C. The lesion localization mask is used
as an initialization, indicating approximately the region to be segmented. Afterwards, the
active-contours method iteratively tries to minimize the energy function F (c1, c2, C) in
the color image Ii:

F (c1, c2, C) = µ length(C)+

λ1

∫
inside(C)

1

3

3∑
i=1

|Ii(x, y)− c1,i|2 dxdy +

λ2

∫
outside(C)

1

3

3∑
i=1

|Ii(x, y)− c2,i|2 dxdy,

where µ, λ1 and λ2 are weighting parameters (λ1=λ2=1, as suggested in (CHAN; SAND-
BERG; VESE, 2000), and µ=0.2). Using the Level-set formulation, it is possible to min-
imize the energy function embedding the curve C, obtaining the zero level set C(t) =
{(x, y)|φ(t, x, y) = 0} of a higher dimensional Level-set function φ(t, x, y). The evolu-
tion of φ(t, x, y) is given by the following motion Partial Differential Equation:
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∂φ

∂t
= δε(φ)



µ div
(
∇φ
|∇φ|

)
−

1

3

3∑
i=1

λ1 |Ii(x, y)− c1,i|2 +

1

3

3∑
i=1

λ2 |Ii(x, y)− c2,i|2


, (A.21)

where δε(φ) is the Dirac delta function, c1,i and c2,i are the averages inside and outside of
the curve C in the i-th channel Ii, respectively.

It is possible that the final curve C contains regions beyond the lesion area. So, if the
number of regions segmented by the Chan-Vese method is higher than one, local artifacts
are eliminated. The area and the perimeter of each segmented region are computed, and
these values are clustered with K-Means, where K=2. The regions in the cluster with the
smaller areas (in average) are eliminated as artifacts and the other regions are kept. The
regions kept are hole filled to improve their connectivity, forming the final segmentation
mask. The final post-processing step is a morphological dilation (with a disk of 5 pixels
of radius as the structuring element).

In Figure A.5, we present the results for all steps of this method. The reader may
observe that the initialization mask already do not contain skin artifacts, forcing the active-
contours method to a precise determination of the lesion area.

A.4.3 Comparison of Segmentation Methods Based on Experimental Results

In order to compare the performances of the six state-of-art segmentation methods for
MPSL images presented above, we use the same image dataset as in Alcón et al. (AL-
CON et al., 2009), which contains 152 images that have been collected from the Dermnet
dataset (DERMNET, 2010). This dataset consists of 107 melanomas and 45 Clark nevi (or
atypical nevi), a benign kind of lesion that present similar characteristics to melanomas.

We implemented the shading attenuation step and all the presented algorithms, and
processed all the 152 images with these implemented methods. Some examples of seg-
mentation results can be seen in Figure A.6. We also measured the error for each resultant
segmentation using the following criterion (CELEBI et al., 2008; GOMEZ et al., 2008;
IYATOMI et al., 2008):

ε =
Area(Segmentation⊕GroundTruth)

Area(GroundTruth)
× 100%, (A.22)

where, Segmentation is the result of the method in test, GroundTruth is the manual
segmentation of the same lesion, Area(S) denotes the number of pixels indicated as le-
sion in the segmentation result S, and ⊕ indicates the exclusive-OR, operation that gives
the pixels for which the Segmentation and GroundTruth disagree.

The average error obtained by each segmentation method is presented in Table A.1.
We also included a synopsis of the six segmentation methods tested in Table A.1. As
can be seen, the only method that uses color information (ICA-Based Active-Contours
Method) generates the smallest error segmentation, in average. Although the methods
based on the Otsu’s Thresholding Method are not computationally as intense as the method
based on active-contours, those methods appear in the sequence, as those with the small-
est segmentation errors (multichannel representation appears to be more effective than
the methods based on grayscale images). The thresholding method proposed by Alcón
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(a)

(b) (c)

(d) (e)

Figure A.5: Illustration of the segmentation using the ICA-Based Active-Contours
method. (a) Color image after shading attenuation. (b) First re-ordered independent
component/channel of image (a). (c) Lesion localization mask. (d) The active-contours
segmentation result. (e) Final lesion segmentation, after post-processing image (d).

et al. and the Multi-Direction GVF Snake method were ranked last, since these methods
presented higher segmentation errors. It shall be observed that these methods do not have
a post-processing step. Analyzing the segmentation results visually (see Figure A.6), we
may observe that the lack of a segmentation post-processing step to eliminate artifacts
usually generate segmentations larger than the lesion itself.

Table A.1: Comparison of the six segmentation methods tested for the MPSL image
database.

Approach
Image Post-processing Computational ε in
type type cost average

Otsu’s Thresh. Method on Grayscale Monochromatic. M. Morphology Low 42.33%
Otsu’s Thresh. Method on the Red Channel Monochromatic M. Morphology Low 38.58%

Alcón et al. Thresh. Method Monochromatic - Low 165.31%
Multi-Direction GVF Snake Method Monochromatic - High 59.60%

Thresh. Method on a Multichannel Repr. Multichannel M. Morphology Medium 34.83%
ICA-Based Active-Contours Method Multich. (Color) M. Morphology High 28.34%

Besides the average errors, we present in Table A.2 the percentage of images in the
database that had lesion segmentation errors lower than 5%, 10%, 20%, 30% and 40%,
respectively. As can be seen, the Otsu’s thresholding method applied on grayscale images
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Figure A.6: Examples of MPSL images and their respective segmentation results for the
six presented methods. In the 1st. line, the color images (after shading attenuation). From
2nd. to 7th. lines, respectively, results of Otsu’s Thresholding Method on Grayscale,
Otsu’s Thresholding Method on the Red Channel, Alcón et al. Thresholding Method,
Multi-Direction GVF Snake Method, Thresholding Method on a Multichannel Represen-
tation, and ICA-Based Active-contours Method.

tends to be more accurate, but potentially it also can generate larger segmentation errors
than the ICA-Based Active-Contours method (the only method that uses color MPSL
images). On the other hand, the ICA-Based Active-Contours method tends to be more
reliable in the sense that it is less likely to produce large segmentation errors, and obtained
experimentally the most accurate lesion segmentation results (in average).

Considering the results presented in Tables A.1 and A.2, we can infer that color can
contribute to improve the segmentation of a MPSL image. Although methods based on
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Table A.2: Segmentation errors in terms of error percentages.
Approach ε < 5% ε < 10% ε < 20% ε < 30% ε < 40%

ICA-Based Active-Contours Method 3.29% 29.61% 73.68% 86.84% 94.08%
Otsu’s Thresh. Method on Grayscale 3.29% 34.87% 75.66% 87.50% 93.42%

Otsu’s Thresh. Method on the Red Channel 1.97% 27.63% 67.11% 83.55% 93.42%
Thresh. Method on a Multichannel Representation 1.32% 4.61% 43.42% 69.74% 81.58%

Alcón et al. Thresholding Method 0.00% 0.00% 8.55% 16.45% 25.00%
Multi-Direction GVF Snake Method 0.00% 0.00% 0.00% 5.92% 23.03%

one single channel may segment accurately some MPSL images, in average the color-
based method provides more reliable segmentation results. In the next Sections, we dis-
cuss if the segmentation accuracy is correlated, or not, to the final classification/diagnosis
accuracy.

A.5 Feature Extraction for Skin Lesion Discrimination

Given a MPSL image segmentation, we are able to obtain a classification (or diagno-
sis) of the acquired pigmented skin lesion. Before obtaining this classification, features
representative of the skin lesion must be extracted. Computer-aided diagnosis systems of-
ten try to reproduce computationally the ABCD rule (NACHBAR et al., 1994), which is
an acronym referring to the four criteria used in clinical diagnosis, namely: Asymmetry,
Border Irregularity, Color Variation and Differential Structures. Several approaches have
been proposed for describing quantitatively the first three criteria (FIKRLE; PIZINGER,
2007; ALCON et al., 2009; IYATOMI et al., 2008; CELEBI et al., 2007; GANSTER
et al., 2001). These feature extraction techniques can be used jointly to represent benign
and malignant cases better, and discriminate them more effectively. The fourth criterion
(i.e. Differential structures) only is visible in dermoscopy images, but to describe quanti-
tatively this lesion characteristic automatically still is challenging.

Since our ultimate goal is to evaluate the influence of image segmentation on the final
classification/diagnosis, we will adopt the feature extraction and classification scheme
proposed specifically for MPSL images by Cavalcanti and Scharcanski (CAVALCANTI;
SCHARCANSKI, 2011). In the following Sections we present the 52 features that have
been used in their ABCD rule implementation, also including features that were proposed
by other authors. In terms of terminology, it is important to clarify that images ĪCi and ĪNi
refer to a normalized color image and to the multichannel image representation presented
in Section A.4.2.1, respectively.

A.5.1 Features Used for Lesion Asymmetry Characterization

The goal of these features is to quantify the lesion shape, in special the asymmetry of
the lesion in relation to the principal axes. The major axis L1 of the lesion is aligned with
its longest diameter, passing through its center; the minor axis L2 is orthogonal to L1 and
also passes through the shape center. The features utilized are the following :

f1: Solidity: the ratio between the lesion area (A) and its convex hull area (ALCON et al.,
2009);

f2: Extent: the ratio between the lesion area and its bounding box area (ALCON et al.,
2009);
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f3: Equivalent diameter: 4A/(L1π) (ALCON et al., 2009; CELEBI et al., 2007);

f4: Circularity: 4πA/(L1p), where p is the lesion perimeter (ALCON et al., 2009);

f5: The ratio between the principal axes (L2/L1) (ALCON et al., 2009; CELEBI et al.,
2007);

f6: The ratio between sides of the lesion bounding box (ALCON et al., 2009);

f7: The ratio between the lesion perimeter p and its area A (FIKRLE; PIZINGER, 2007);

f8: (B1 −B2)/A, where, B1 and B2 are the areas in each side of axis L1;

f9: Similar to f8, but makes use of the shorter axis L2;

f10: B1/B2 with respect to the axis L1;

f11: Similar to f10, but makes use of the shorter axis L2.

A.5.2 Features Used for Lesion Boundary Irregularity Characterization

The boundary sharpness is quantified by the magnitude of the gradient
∣∣∣∣ →∇ĪNi ∣∣∣∣ at each

pixel using the Sobel operator (CAVALCANTI; SCHARCANSKI, 2011). However, in-
stead of using pixels only at the lesion rim, we analyze pixels in an extended (dilated)
rim1 (ALCON et al., 2009). Consequently, lesions that have a smooth boundary (usually
nevi) are better characterized. Also, the lesion boundary dilation makes the boundary
representation more robust to the inaccuracies of the segmentation process. To charac-
terize the lesion boundary irregularity, the following features are used (CAVALCANTI;
SCHARCANSKI, 2011) :

f12-f14: Average gradient magnitude of the pixels in the lesion extended rim (ALCON
et al., 2009), in each one of the three ĪNi channels;

f15-f17: Variance of the gradient magnitude of the pixels in the lesion extended rim (AL-
CON et al., 2009), in each one of the three ĪNi channels;

The lesion rim irregularity is characterized in the ABCD rule by dividing the rim in
8 symmetric regions (NACHBAR et al., 1994). In addition to the two principal axes L1

and L2, two additional axes are obtained by rotating by 45 degrees these orthogonal axes.
Therefore, 8 symmetric regions R = 1, ..., 8 are generated. For each channel ĪNi , the
average gradient magnitudes of the extended rim pixels µR,i(R = 1, ..., 8) are computed.
Therefore, 6 more features are calculated :

f18-f20: Average of the 8 µR,i values in each one of the three ĪNi channels;

f21-f23: Variance of the 8 µR,i values in each one of the three ĪNi channels;

1The rim is dilated by 2 pixels, producing a 5 pixels wide region centered at the lesion rim, as suggested
in (ALCON et al., 2009).
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Table A.3: Six Possible Colors of a Lesion on the RGB Color Space.
Color Red Green Blue
White 1 1 1
Red 0.8 0.2 0.2
Light Brown 0.6 0.4 0
Dark Brown 0.2 0 0
Blue-Gray 0.2 0.6 0.6
Black 0 0 0

A.5.3 Features Used for Lesion Color Variation Characterization

These features quantify the color variation in the lesion, and the following measure-
ments can be utilized for this purpose (CAVALCANTI; SCHARCANSKI, 2011) :

f24-f27: Maximum, minimum, mean and variance of the pixels intensities inside the le-
sion segment in the color variation channel ĪN3 ;

f28-f39: Maximum, minimum, mean and variance of the pixels intensities inside the le-
sion segment in each one of three original ĪCi channels;

f40-f42: Ratios between mean values of the tree original ĪCi channels: mean(ĪC1 )/mean(ĪC2 ),
mean(ĪC1 )/mean(ĪC3 ) and mean(ĪC2 )/mean(ĪC3 ), considering only pixels inside
the lesion segment.

Physicians usually identify six distinct hues in skin lesions: white, red, light and dark
brown, blue-gray, and black (NACHBAR et al., 1994). Lesions containing more of these
hues are more likely to be malignant. The lesion color variability can be quantified by
computing the occurrence of these typical hues within a lesion segment. Given a pixel in
the lesion segment, the nearest reference color (associated with a typical hue, see Table
A.3 (ALCON et al., 2009)) is found by the Euclidean distance to the pixel color in ĪCi .
A hue occurrence counter is created, one cell per typical hue. For each lesion pixel, the
nearest typical hue counter is increased by 1. Finally, typical hues counters are normal-
ized/divided by the lesion area A, and generate the 6 additional features f43-f48.

A.5.4 Features Used for Lesion Differential Structures Characterization

The lesion differential structures refer to submacroscopic morphologic and vascular
structures only visible in dermoscope images. In an attempt to extract the characteristics
of these structures also on a macroscopic image, differences between benign and malig-
nant lesions can be measured using texture features. Cavalcanti and Scharcanski (CAV-
ALCANTI; SCHARCANSKI, 2011) propose to extract the 4 features f49-f52, namely
the maximum, minimum, mean and variance of the pixels intensities inside the lesion
segment to represent the textural variation in the channel ĪN2 .

A.5.5 Feature Extraction Summary

Even for specialized physicians the discrimination of benign from malignant pig-
mented skin lesions may not be an easy task, and the development of techniques that
facilitate this job is a current research topic. In the previous Sections, we presented 52
features that help in this task, but readers can probably find additional (or even alternative)
features in literature, and probably new features will be proposed in the coming years as
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this research area develops. The ultimate goal is to represent image lesion characteris-
tics to could facilitate the early classification/diagnosis and reduce the number of deaths
caused by these lesions.

Another important issue when dealing with the selection of feature sets is the adoption
of automatic (or interactive) feature selection algorithms. Some authors of classification
approaches for pigmented skins lesions (ALCON et al., 2009; CELEBI et al., 2007; RUIZ
et al., 2008) suggest using a method to select the best features as those that help most
the MPSL image class discrimination. However, this feature selection procedure can be
tricky. Pigmented skin lesions have a large variability in terms of characteristics, and the
discrimination between a malignant and a benign case can be determined by only 1 or 2
features. If these features have been eliminated because they did not seem to be important
on a given training set, malignant cases can be incorrectly classified as benign, leading to
costly false negatives.

A.6 Classification of Pigmented Skin Lesion Images

After extracting the features that characterize each MPSL image, we can use these
data to obtain a final classification (or diagnosis) of the imaged lesion. We discuss how
this information is processed In the following Sections.

A.6.1 Feature Normalization

The extracted features may have values in different ranges. Some of the proposed
approaches do not perform feature normalization (ALCON et al., 2009; IYATOMI et al.,
2008). However, classifiers tend to be more efficient if these feature values are normalized
and represented in the same range (i.e., the feature values are scaled to fall in a specified
range), therefore we adopt this normalization step in our work.

This feature value scaling is performed based on the mean and standard deviation
of the captured feature values (CAVALCANTI; SCHARCANSKI, 2011; CELEBI et al.,
2007; GANSTER et al., 2001). Among the possible feature normalization options (AK-
SOY; HARALICK, 2000; GANSTER et al., 2001), we chose to normalize the feature
values using the well known z-score transformation (AKSOY; HARALICK, 2000):

Zi,j =
((vi,j − µj)/(3σj) + 1)

2
, (A.23)

where, vi,j is the value of the jth feature of the ith sample (image), µj and σj are the mean
and standard deviation of the jth feature, respectively. After the z-score transformation,
most of the Zi,j values are in the [0,1] range. The out-of-range values are saturated to
either 0 or 1.

A.6.2 Defining Training Sets

Classification techniques are commonly used in machine learning. The validation
test requires the definition of training sets, and two methodologies are usually applied,
namely: cross-validation and holdout validation (BISHOP, 2007). The cross-validation
method divides the samples in S portions, and S − 1 portions are used for training while
the remaining portion is used for testing. This process is repeated until all the samples
have been evaluated. In the holdout validation, part of the samples in each class (benign
or malignant) are randomly selected and used for training, and the remaining samples are
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used for testing. Often, up to half of the initial sample set is used for testing. The holdout
validation method was used in our experiments described in Section A.7.

However, a common limitation of the public domain MPSL datasets is the relatively
small number of cases, specially in the benign class (which often leads to unbalanced
training sets). So, in addition to the selection of representative samples, we often need to
balance and extend the training sets. One popular alternative is to add new training sam-
ples using the Smoothed Bootstrap Resampling method (CAVALCANTI; SCHARCAN-
SKI, 2011; YOUNG, 1990). This method is used when there are not enough samples to
guarantee the statistical significance of the data set. In this case, the original samples are
randomly selected, and new ones are created by adding a small amount of zero-centered
noise to their feature values, enlarging the data set (YOUNG, 1990). In our experiments
(see Section A.7), we used zero mean Gaussian noise, with σ = 0.1, and made sure to
obtain at least 2500 samples for each class (5000 samples in total) for a two class problem.

A.6.3 Classification Methods

After the feature normalization and the training samples selection steps, the gener-
ated data is the input used to train a classification method. For the classification of
pigmented skin lesions images (macroscopic or dermoscopic), Support Vector Machines
(SVM) is frequently utilized (TABATABAIE; ESTEKI; TOOSSI, 2009; CELEBI et al.,
2007). However, due to the complex class shapes generated by the feature data, deter-
mining an adequate kernel and its parameters often is a difficult task. Artificial Neural
Networks (RUIZ et al., 2008; DREISEITL et al., 2001) suffer from a similar limitation,
determining the number of layers in multilayer perceptrons and their characteristics is crit-
ical, and may increase or decrease the final accuracy significantly. However, techniques
such Decision and Regression Trees (ALCON et al., 2009) usually are less computation-
ally intensive, and the parameters can be determined automatically. However, despite of
their relatively simplicity, such classifier used alone hardly obtain the desirable accuracy
levels by state-of-the-art of MPSL classification schemes.

In our experiments, where we try to relate segmentation and classification perfor-
mance, we used a Nearest Neighbor Classifier (KNN) with K=1. This algorithm is
very simple, where each sample/image is assigned to its neighbor class using the Eu-
clidean Distance in feature space. This method was chosen for its simplicity and because
it has been already used successfully in pigmented skin lesion image classification re-
search (DREISEITL et al., 2001; BURRONI et al., 2004; CAVALCANTI; SCHARCAN-
SKI, 2011).

A.7 Discussion of Experimental Evidences: Pigmented Skin Lesion
Segmentation and Its Influence on the Lesion Classification and
Diagnosis

In the previous Sections, we discuss the procedures utilized to obtain a classifica-
tion/diagnosis for a MPSL image, from the pre-processing steps to the final classification.
Now, we wish to evaluate the influence of the segmentation methods in the final lesion
classification/diagnosis.

Recall that the Alcón et al. dataset used in our experiments (see Section A.4.3) con-
tains 107 melanoma images (malignant cases) and 45 Clark nevi images (benign cases).
In Tables A.4, A.5, A.6 and A.7 we present the classification results for these 152
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images obtained by different state-of-the-art methods. In each one of these Tables, we
present the Sensitivity (i.e, the percentage of MPSL images correctly classified in the
malignant class), Specificity (i.e., the percentage of MPSL images correctly classified in
the benign class) and Accuracy (i.e., the percentage of MPSL images correctly classified
overall, considering all images).

Since the training sample selection process is random (see Section A.6.2), and may
not assure that the selected samples represent well the characteristics of both classes, we
considered as representative all the 50 training sets obtained in 50 random trails, as well
as the 50 classification results corresponding to each one of these training sets. That is,
we computed 50 times : (a) the training samples selection, (b) the Smoothed Bootstrap
Resampling method, and (c) the Nearest Neighbor classifier results, so that our experi-
mental results are statistically relevant. The final classification performance is measured
based on these 50 trials.

We present the Accuracy, Specificity and Sensitivity averages of the 50 obtained re-
sults in Table A.4. In Tables A.5, A.6 and A.7, we present the best classification results
for each segmentation method tested (in terms of Sensitivity, Specificity and Accuracy,
respectively). As can be seen, these segmentation methods were ranked based on their
segmentation (see Section A.4) and classification errors, but their segmentation and clas-
sification rankings differ. This indicates that the MPSL image feature set describes the
lesions well, representing well their morphology even if the segmentation is not as pre-
cise as would be desirable. Additionally, these experimental results show that better fea-
ture extraction techniques that could take advantage of more accurate segmentations are
needed, achieving classification results that are more accurate.

It shall be observed that our classification results indicate accuracies higher than 90%
(in average), independent of the selected segmentation algorithm. These accuracies are
higher than the diagnosis accuracies obtained by trained physicians in telemedicine, which
range between 31% to 85% according to the literature (WHITED, 2006).

Table A.4: Comparison of classification results in average.
Approach Sensitivity Specificity Accuracy

Alcón et al. Thresholding Method 92.56% 89.16% 91.55%
Otsu’s Thresholding Method on Grayscale 93.89% 83.91% 90.93%

ICA-Based Active-Contours Method 92.95% 85.60% 90.78%
Thresholding Method on a Multichannel Representation 93.91% 83.29% 90.76%

Multi-Direction GVF Snake Method 92.34% 86.89% 90.72%
Otsu’s Thresholding Method on the Red Channel 94.17% 80.36% 90.08%

Table A.5: Best classification results in terms of Sensitivity.
Approach Sensitivity Specificity Accuracy

Otsu’s Thresholding Method on the Red Channel 99.07% 75.56% 92.11%
Alcón et al. Thresholding Method 99.07% 75.56% 92.11%

Multi-Direction GVF Snake Method 98.13% 86.67% 94.74%
Thresholding Method on a Multichannel Representation 98.13% 86.67% 94.74%

ICA-Based Active-Contours Method 98.13% 84.44% 94.08%
Otsu’s Thresholding Method on Grayscale 97.20% 80.00% 92.11%
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Table A.6: Best classification results in terms of Specificity.
Approach Sensitivity Specificity Accuracy

Alcón et al. Thresholding Method 92.52% 97.78% 94.08%
ICA-Based Active-Contours Method 92.52% 95.56% 93.42%
Multi-Direction GVF Snake Method 87.85% 93.33% 89.47%

Thresholding Method on a Multichannel Representation 93.46% 91.11% 92.76%
Otsu’s Thresholding Method on Grayscale 94.39% 88.89% 92.76%

Otsu’s Thresholding Method on the Red Channel 94.39% 88.89% 92.76%

Table A.7: Best classification results in terms of Accuracy.
Approach Sensitivity Specificity Accuracy

Alcón et al. Thresholding Method 98.13% 88.89% 95.39%
Thresholding Method on a Multichannel Representation 98.13% 86.67% 94.74%

ICA-Based Active-Contours Method 97.20% 88.89% 94.74%
Multi-Direction GVF Snake Method 97.20% 88.89% 94.74%

Otsu’s Thresholding Method on Grayscale 96.26% 88.89% 94.08%
Otsu’s Thresholding Method on the Red Channel 94.39% 88.89% 92.76%

A.8 Summary and Future Trends

In this chapter, we reviewed the procedures used for classifying or diagnosing a pig-
mented skin lesion from a macroscopic image. Given the acquired color image, we
showed how to eliminate shading effects, determine the lesion boundaries and some of
the important lesion characteristics, and how to obtain the correct lesion classification as
a (malignant) melanoma or a (benign) nevus.

The importance of using color also is outlined in this work, since the use of color can
enhance the MPSL image segmentation precision. It shall be observed that the classifi-
cation accuracies obtained in such segmentation and classification schemes already can
be higher than the diagnosis accuracies obtained by trained physicians in telemedicine.
Although the segmentation results do not correlate well with the final classification accu-
racies, we believe that in future new features can be developed to make better use of more
precise segmentations, leading even higher classification accuracies.

In particular, we believe that such automatic MPSL image analysis schemes will con-
tribute to increase the reliability of telemedicine. Consequently, the access to MPSL
image prescreening systems shall be increase in the near future, which will contribute to
improve the current early skin cancer detection rates, the skin cancer patient prognosis,
and also it shall help increase the efficiency of the medical care systems.
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