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Abstract The purpose of this paper is to investigate a clearly defined way of developing fault-
tolerant applications using software meta-level architectures. Meta-level architectures 
are software architectures based on computational reflection. It addresses complex 
pieces of software: fault-tolerant software. Fault-tolerant applications must cope with 
several non-functional requirements to maintain its functionality. So, it is particularly 
relevant to investigate how to alleviate developers from repeatedly dealing with this 
complexity. Some solutions are presented, such as software patterns and basic guidelines 
to help the development of such applications. 

Keywords: meta-level architecture, computational reflection, software patterns, fault-
tolerance 

  

1 Introduction 

Meta-level architectures have recently acquired a great deal of attention from researchers as this offers 
new solutions to well known problems. Particularly among those are researchers interested in fault-
tolerance as can be seen on some recent works [1, 2, 3, 4, 5]. 

As happens with any emerging methodology, the concepts related to meta-level architectures are not well 
understood. These concepts range from computational reflection to software architecture styles. Both are 
becoming explicit fields of study and there is currently no well-established methodology combining them 
into meta-level architectures. 

Meta-level architectures are software architectures based on computational reflection. While software 
architecture addresses the structure and interaction of software components, computational reflection 
concerns are about introspection on software components. This means that a component can get 
information about the internal properties of another component. 

Some reflection-based solutions offer obvious benefits. However, they can introduce additional 
complexity and liability on the fault-tolerant software development. The challenge of this paper is to 



investigate a clearly defined way of developing fault-tolerant applications using software meta-level 
architectures. Some ideas were inspired by the work of Buschmann [6] who documented a collection of 
eight architectural patterns including a general reflection pattern. Also recently, Islam [7] documented a 
pattern for distributed systems, which emphasizes the two fundamental forces: fault-tolerance and 
performance.  

  

2 Software architecture and design patterns 

Fault-tolerant software can be very complex, its development being subject to human fallibility. Based on 
intentional inclusion of redundancy supported by special mechanisms as exception handling, 
checkpointing and persistence, fault tolerant applications must cope with several non-functional 
requirements to maintain its functionality. Also, as stated by [6], to specify non-functional requirements 
for software architecture, it is necessary to consider the interdependencies and trade-offs that exist 
between them. So, it is particularly relevant to investigate how to alleviate developers from repeatedly 
deal with this complexity. 

As observed by [8], designers have begun to develop a shared repertoire of methods, techniques, patterns 
and idioms for structure complex software systems. Informally speaking, in a bottom-up point of view, 
programs are composed by interacting components, which are styled and organized according to a 
structure defined by a software architecture. Some of these components might be implemented following 
a design pattern while others could be specializations of classes from a framework. Hence, software 
architectures molds some relationships among frameworks, design patterns and components used to build 
an application. 

Architectural styles define the fundamental structure and interactions among the components of an 
application. Components are atomic units and their interaction provides the functional and non-functional 
requirements. One or a group of components fulfills each requirement. Conversely, one component can 
fulfill a number of requirements. Moreover, an application may include several components not directly 
related to any requirement (figure 1). The structural and logic relationships among these components 
constitute the major task in system design. 

 

Figure 1: Relationships among components and requirements 

  

However, it is possible to look at some of these relationships and identify them as recurrent on different 
systems. Hence, such problems can have an application independent solution and thus described using 
abstra ctions of structure and interactions. The description of a solution using components, collaborations 
among components and their design context is a design pattern. 



In an attempt to provide help to a number of software designers, experts capture the essentials of a design 
pro-blem that arises in many systems, and then they describe the basic structure of a well proven solution 
to it. As stated by [7], early experiences indicate that pattern-based solutions design reuse reduces the 
time needed to solve a problem and makes it easy to customize the core solution for a specific 
implementation. 

Both frameworks and design patterns describe solutions to software problems. Frameworks intend to 
solve several problems related to a specific domain presenting a collection of classes. A framework class 
is an incomplete or complete implementation of an abstraction. As a consequence, a class is programming 
language depen-dent. A design pattern describes a solution using a language independent idiom [6], but it 
is not supposed to present a specific solution to problems found in an application. It focuses on a 
particular, well-known and widely applicable software design problem.  

  

3 Meta-level architectures 

The key concept in the design of software using meta-level architecture style is the separation of the 
system in two tiered layers: a meta-level and a base level. Additionally, those layers have different but 
related responsibilities. 

The base level encompasses all the components that implement the functionalities of an application as 
defined on its functional requirements. The meta-level provides a self-representation of the software to 
give it knowledge of its own structure and behavior [6]. Computational reflection provides this basis for 
meta-level architectures. 

Thus, a reflective architecture defines a system which incorporates data structures representing itself. That 
self-representation makes it possible for the system to get information concerning to the state, structure 
and behavior of some systems components. Moreover, based on that information, it can dynamically 
interfere on its current computations. More precisely, the meta-level components can change and adapt 
some structural and behavioral aspects of the base-level components. 

A MOP - Metaobject Protocol, establishes the relationships among the base level and the meta-level 
components. The MOP provides a high level interface to the programming language implementation in 
order to reveal to the program information normally hidden by the compiler and/or run-time environment. 
As a consequence, a programmer can develop language extensions, adapt component behavior and even 
make non-permanent changes into the system. 

During the compilation process, the compiler has information about the classes, class hierarchies, identi-
fiers, types and other attributes of classes, data structures and methods regarding to the program. Such 
information, that is not likely to change during the execution, constitutes the structural meta-information 
part of a metaobject protocol.  

Conversely, the non-permanent information, e.g. the values of arguments passed to a method, depends on 
the execution. This kind of data deals with the behavioral aspects of the components and it is part of the 
dynamic information that a metaobject holds. Depending on the metaobject protocol, the metaobjects 
provide different meta-information. A metaobject holds static and dynamic information about the base-
level objects. Figure 2 depicts some static (e.g. class and type) and dynamic information (e.g. values) 
reified as data within the metaobject.  



 

Figure 2: Meta-information 

On the object model, the meta-information interface is usually implemented at one single class, which by 
further specialization or direct instantiation offers to the program a meta-level interface. 

The meta-level interface defines the methods that implement the reflective services. Generalizing from 
different MOPs, it is possible to identify four groups representing the basic aspects of metaobjects 
protocols. 

 Attachment of base and meta-level: The purpose of this group is to bind base-level components to 
meta-level entities in a static or dynamic way. An entity is one or a group of objects or classes. It 
is possible to bind them in a one-to-one basis and also multiple metaobjects can be bound to one 
base-level entity. Thus, one can devise many semantics: one metaobject can control just one base 
object or a number of base objects of the same class, or multiple metaobjects can be used to 
control one or a number of base objects. 

 Reification: Reflection means materialization of information otherwise hidden to the program. 
This group deals with reification of incoming and outgoing messages, reification of arguments, 
data and other structural information. 

 Execution: This group addresses the meta-level computation and the ability to invoke base-level 
methods. Metaobjects are ordinary objects and thus they provide services through public 
interfaces and invoke other objects in a normal way. However, to perform base-level computation 
transpa-rently to the server they depend on reification. When a base object receives a message, the 
corresponding metaobject intercepts and materializes the method identifier and the actual 
parameters. Re-sending the message to the original receiver, before or after meta-level 
computations, the metaobject acts as an indirect client of the base object. 

 Modification: Once the meta-level holds information about the behavior and structure of base 
objects, computations can change some aspects of the base components. The ability to handle 
structural information is critical since it can affect multiple objects. One alternative is to make 
changes on shadow classes, as proposed by [9] without affecting semantics of other objects of the 
same class.  

There is no universally accepted MOP that serves as a recipe to implement reflective support in 
programming languages. First, it is necessary to establish which kind of meta-information is useful to 
reveal to the program. Second, there are several implementations of programming languages intended to 
support the object model. Some of them use a common root class to derive the classes used to instantiate 
application objects, while others use objects to describe the application objects. Some programming 
languages have native reflective facilities, while in others the support for reflection is included by 
language extensions. 

Smalltalk meta-classes define a native interface for structural reflection. The original design of the Java 
Virtual Machine supports some introspection about classes and objects, but recently it has been extended 



to offer more reflective mechanisms [9,10]. C++ does not support reflection - only little information about 
types provided by library functions. However, different MOPs [11, 12, 13] extended the C++ language. 

  

4 The meta-level approach for fault-tolerance 

Software fault-tolerance encompasses all techniques and programming language mechanisms intended to 
support the development of high reliability software. We can consider the fault-tolerance area a specific 
domain of knowledge composed by well-defined techniques used to guarantee the reliability of 
applications built over other domains. Thus, we can figure a domain-specific architecture for software 
fault-tolerance.  

  

4.1 Domain-specific meta-level architecture 

A domain-specific architecture, as stated by [14], comprises: a) a reference architecture, which describes 
a general computational framework for a significant domain of applications, b) a component library, 
which contains reusable chunks of domain expertise, and c) an application configuration method for 
selecting and configuring components within the architecture to meet particular application requirements. 

Thus, the fault-tolerance meta-level architecture comprises: 

 A meta-level architecture as reference architecture for structuring fault-tolerant applications split 
on two layers: the fault-tolerance layer and the application logic layer. 

 A collection of design patterns describing successful solutions of fault-tolerance problems, and an 
open component library, which contains reusable meta-classes implementing fault-tolerant 
mechanisms to support the development of fault-tolerant applications. 

 A metaobject protocol to provide a nice interface among the application components and the fault-
tolerant level. 

Meta-level architectures have been achieving considerable attention as a reference architecture for fault-
tolerant applications. Evidence of this trend can be seen on some recent papers. 

 Fabre [2]: "... our experiments in implementing fault-tolerance and secure communication 
metaobjects were really successful and confirmed that a really good level of transparency and 
abstraction could be achieved within application objects, fault-tolerance and secure 
communication metaobjects." 

 Stroud [3]: "With a metaobject protocol approach, non-functional aspects of atomic data types 
such as synchronization and recovery are implemented in metaobject classes at the meta-level, 
whilst functional aspects such as object operations are implemented at the base-level." 

 Fraga [5]: "To improve the flexibility of the implementation, we use a reflexive approach which 
allows to separate aspects related to the replication model from those related uniquely to the 
service being replicated." 

 Lisboa [4]: "... reflection is used to implement different fault-tolerance schemes in the meta-level 
in a transparent and non-intrusive way..." 

Those authors stressed the major issue related to meta-level architecture: the separation of concerns 
within the fault-tolerant application. It is advisable to separate the fault-tolerant components from the rest 
of the system to reduce problems associated with the interaction between redundant components [16]. It 
fo-llows that this separation, although focusing on independent responsibilities, relies on a tight 
interaction among components. 



Computational reflection helps to organize fault-tolerant activities at meta-level and it provides 
transparent interfaces among components dealing with fault-tolerance and those implementing the 
functional requirements. 

There are tangible benefits from this separation but there are also some liabilities. First, computational 
reflection adds cost to the application due to extra-level computation and indirection mechanisms. 
Second, it depends on reflective facilities to be supported by the target implementation language. Third, 
reflection is not a universal solution to programming problems. Instead, it is primarily concerned with 
implementation of open library components.  

  

4.2 Drawing design patterns 

The next step toward a reference meta-level architecture is to devise design patterns capturing the 
essentials of fault-tolerance schemes. Considering the fault-tolerance domain, the body of knowledge and 
the solutions given to many non-functional requirements are well established and thus it is possible to use 
design patterns to describe successful solutions. 

Patterns help reducing software complexity by clearly describing a software solution in terms of structure, 
dynamic behavior and context. Similar to what happens for any intrinsically complex systems, the 
definition of clean interfaces among components contributes to their independent development and reuse. 
In the case of software fault-tolerance domain, patterns can be used to present a collection of relatively 
independent solutions to common non-functional properties problems such as atomic actions, recovery 
points, replication policies and exceptions.  

Suppose a fault-tolerant application built from several components. Some of these components should 
provide critical services while others are not so critical, but there are many interactions occurring among 
them. Both critical and non-critical objects must provide reliable services but only the critical ones are 
subject to fault-tolerance techniques. The following pattern presents a basic guideline to solve the 
interaction problem between a fault-tolerant object and its client. 

Pattern: Fault-tolerant Object interaction 

Fault-tolerant objects (FT objects) are highly re-liable objects whose services are assured by redundant 
components. 

Context: Software fault-tolerance 

Redundant components can be managed according to different fault-tolerance techniques as n-version 
programming, recovery blocks, active or passive replication protocols and so on. Regardless of the 
technique adopted, a fault-tolerant object should interact with other objects to provide reliable services. 

Problem: Transparency 

The client requests services to a fault-tolerant object but it is not aware of the existence of redundant 
components used to provide the requested service. As an alternate, the fault-tolerant component can 
manage all its counterparts thus providing the expected service. The inclusion of redundancy within an 
application component is quite intrusive and it violates the separation of concerns. Hence, the provision of 
redundant services must be done transparently to the application objects. Both the client and the server 
must not be involved with this issue. 

 



Solution: Meta-level architecture 

The client, the fault-tolerant object and the redundant objects are implemented as base-level objects but 
the redundant services are managed at the meta-level. Using Class-Responsibilities-Collaborators (CRC-) 
cards [6], figures 3a and 3b depict the responsibilities and collaborators of base-level components. 

The fault-tolerant object is connected to a metaobject which intercepts the incoming messages. For each 
incoming message, the target method and the actual parameters are materialized at meta-level, and then 
the same message is dispatched to all redundant components. The responses to the requested service are 
collected at meta-level and one response is selected according to the adopted fault-tolerance technique. It 
can follow the first-response semantics, roting or acceptance. Finally, the selected response is delivered to 
the original client. Figures 4a and 4b show the responsibilities and collaborators of the meta-level 
components. 

Class Base-level Client Collaborator 
Responsibility   

 Requests services to a FT 
Object 

 Depends on reliable services provided by the FT object 

FT Object 

Figure 3a: Base level client 

  

Class FT Object Collaborator 
Responsibility   

 Provides reliable services to its clients   Metaobject  
  Redundant Components 

Figure 3b: Base-level FT objects 

  

Class Metaobject Collaborator 
Responsibility   

 Intercepts messages 
 Reifies base-level information 
 Acts as an indirect server 

Meta-level FT manager 

Figure 4a: Meta level object 

  

Class Meta-level FT Manager Collaborator 
Responsability   

 Invokes the corresponding method at each redundant object 
 Collects the answers 
 Select one result 

  Redundant Components 
  Voter or adjudicator  



Figure 4b: Meta-level FT manager 

  

Another concern is about the fault-tolerance technique adopted by the application. The functional core of 
the meta-level fault-tolerance scheme should be separated into a component. The component class shall 
encapsulate the minimum memory size and services to manage the redundant components because it can 
be inherited or instantiated by the specialized metaobject associated with the base-level FT-object. To 
avoid performance problems and to guarantee independent reusability, the services dealing with the 
multiple results and the selection of one response - the adjudicators - should be encapsulated in separate 
components. Note that the meta-level program is composed by several metaobjects.  

They are distinct from base-level objects since they are specialists on fault-tolerance schemes and thus 
hold information about the application objects. However, meta-level components provide their own 
interface and the meta-level program has its own dynamic behavior, very much like the base-level 
program.  

Example: Consider a Recovery Block (RB-) scheme to manage redundancy. A recovery blocks a control 
structure that consists of several alternates and an acceptance test. This structure can be represented by a 
code fragment as: 

ensure <acceptance test> 

by <alternate 1> 

else by <alternate 2> 

......... 

else by <alternate n> 

else error 

The execution of the recovery block terminates successfully when a result from any one of the alternates 
satisfies the acceptance test. When a faulty alternate is executed, the state that existed prior to the 
execution of the faulty alternate is restored and the next alternate is tried [15]. Resuming the design 
pattern example, diagrams are used in addition to CRC cards to illustrate runtime scenarios. The diagram 
in figure 5 shows the dynamic behavior of an execution of recovery block. 

As previously stated by [15], dealing with state restoration can be as simple as to make a copy of the 
original object or as complex as recovery cache memory implemented in hardware. Thus, the problem of 
state restoration needs special solutions and this concern suggests the existence of another opportunity to 
create design patterns for different contexts of state restoration. The discussion about patterns can go 
further but, for the moment, it is enough to think about the benefits they can bring to fault-tolerant 
software development. 

  

4.3 Configuring fault-tolerant applications 

When the fault-tolerance domain is merged into an application domain, it becomes responsible for some 
non-functional requirements of the application. But, as previously discussed, there are mutual 
dependencies between both domains. However, the designer of the whole application need not be 
concerned with a" global" property of fault tolerance of the application. The designer can identify 



individual critical objects thus subject to fault tolerant behavior. The other objects are considered non-
critical and thus not subject to fault tolerant behavior. 

 

Figure 5: The Recovery Block dynamic behavior 

Since the application consists of fault tolerant (FT-) and non-fault tolerant objects, and only fault tolerant 
objects are connected to metaobjects, the meta-level program must provide information only about those 
aspects on which the metaobjects depend. For example, metaobjects must be aware of incoming messages 
addressed to critical methods within the FT objects. Also, metaobjects often need information about the 
current state of computation.  

The following guidelines, adapted from those suggested by [6], help in designing a meta-level 
architecture: 

1 Define a model of the fault-tolerant application using an appropriate analysis method. Identify the 
services according to the functional requirements, the components that can fulfill these services and the 
structure and the relationships among the components. 
2 Identify structural aspects of the system, which, when changed, should not affect the implementation of 
the components. Examples include the type structure or the distribution of components. 
3 Identify fault-tolerant behavior of the application such as atomic transactions, real-time constraints, 
reliable distribution, exceptional behavior and special algorithms for critical services. 
4 Identify fault-tolerant services to be provided to guarantee the reliability, availability and safety of the 
whole application. Several fault-tolerance strategies can be combined to achieve these goals. Identify the 
system components, which provides the services. For example, the run-time system may provide some 
safety/security mechanisms. 
5 Define the metaobjects that provide the fault-tolerance services needed by the application. The 
metaobjects can be specially implemented to fulfill the requested services, or they can be reused from 
frameworks or library classes. 
6 Define the metaobject protocol suitable to the application. A metaobject protocol can be defined on 
early stages of software development, when an implementation language is chosen. Otherwise, it can be 
implemented as one separate component to just operate on other object components. As proposed by [18], 
metaobject support can be customized to accommodate different policies of metaobject organization and 
activation. 

  

 



5 Conclusion 

This paper presented important remarks about the current trend in adopting a software reference 
architecture to provide a skeleton for building applications. Concerning the development of fault-tolerant 
applications, a meta-level software architecture was suggested as a reference architecture. Then, basic 
guidelines to help the development of such applications were addressed.  

One could have chosen any other software archite-cture or other ways to develop fault-tolerant software. 
However, recent works dealing with software develo-pment on the fault-tolerance domain serve as 
evidence of this trend. Those works have confidence on the object model for composing fault-tolerant 
applications from pre-defined components and they use a reflective architecture to achieve separation 
between functional requirements and those related to fault-tolerance. Meta-level architectures attack 
several important issues in implementing non-functional requirements in a non-intrusive, transparent way 
to the application. 
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