
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA
CIÊNCIA DA COMPUTAÇÃO

LUÍS ARMANDO BIANCHIN

A Study of Similarities Between

Brazilian Computer Science

Conferences

Final Report presented in partial ful�llment
of the requirements for the degree of
Bachelor of Informatics

Prof. Dr. Lisandro Zambenedetti
Granville
Advisor

Dr. Ricardo Neisse
Coadvisor

Porto Alegre, December 2012

CIP � CATALOGING-IN-PUBLICATION

Bianchin, Luís Armando

A Study of Similarities Between Brazilian Computer Sci-
ence Conferences / Luís Armando Bianchin. � Porto Alegre:
PPGC da UFRGS, 2012.

49 f.: il.

Final Report (Bachelor) � Universidade Federal do Rio
Grande do Sul. Ciência da Computação, Porto Alegre, BR�
RS, 2012. Advisor: Lisandro Zambenedetti Granville; Coad-
visor: Ricardo Neisse.

I. Zambenedetti Granville, Lisandro. II. Neisse, Ricardo.
III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Diretor do Instituto de Informática: Prof. Luís C. Lamb
Coordenador da CIC: Prof. Raul Fernando Weber
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

�Know thy self, know thy enemy. A thousand battles, a thousand victories.�

� Sun Tzu

ACKNOWLEDGMENTS

I would like to thank my advisor Lisandro Zambenedetti Granville and my co-
advisor Ricardo Neisse for the knowledge, support and e�ort which were essential
for the whole work.

I wish to thank my colleagues and professors for all the shared knowledge and
experience.

I am deeply grateful for the support and con�dence by my family, mainly during
my studies.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 7

LIST OF FIGURES . 8

LIST OF TABLES . 9

ABSTRACT . 10

RESUMO . 11

1 INTRODUCTION . 12

2 RELATED WORK AND CONCEPTS 14
2.1 Related Work . 14
2.2 Document Representation . 15
2.3 Similarity Metrics . 16
2.3.1 Euclidean Distance . 16
2.3.2 Cosine Similarity . 17
2.3.3 Jaccard Index . 17
2.4 Clustering . 17

3 SOLUTION . 20
3.1 Conferences . 20
3.2 Normalization . 21
3.3 Weighting . 22
3.4 Similarity Measuring . 24
3.5 Clustering . 24
3.6 Visualizations . 24

4 IMPLEMENTATION . 26
4.1 System Architecture and Related Technologies 26
4.1.1 Programming Language . 26
4.1.2 Application Framework . 27
4.1.3 Database . 28
4.2 Database modeling . 28
4.3 Class architecture . 29
4.3.1 Details of CakePHP Framework . 29
4.3.2 System Classes . 30
4.3.3 Visualization . 33

4.4 User interface . 33
4.4.1 Conference Selection . 34
4.4.2 Similarity Matrix . 34
4.4.3 Charts of comparison . 35
4.4.4 Clustering . 35
4.4.5 Graph Visualization . 36

5 CASE STUDY . 38
5.1 Conferences . 38
5.2 Similarity Measurements . 38
5.3 Evolution . 43

6 CONCLUSION . 45

APPENDIX: .

APPENDIX A CONFERENCES NAMES 47

REFERENCES . 48

LIST OF ABBREVIATIONS AND ACRONYMS

DBLP Digital Bibliography & Library Project

JEMS Journal and Event Management System

SBC Brazilian Computer Society

TPC Technical Program Committee

tf Term frequency

idf Inverse document frequency

MVC Model-View-Controller

HTML HyperText Markup Language

CSV Comma-Separated Values

TSV Tab-Separated Values

CSS Cascading Style Sheets

SVG Scalable Vector Graphics

RDBMS Relational Database Management System

UML Uni�ed Modeling Language

JSON JavaScript Object Notation

Ajax Asynchronous JavaScript and XML

SaaS Software as a Service

LIST OF FIGURES

Figure 3.1: Components of the solution . 20
Figure 3.2: Research topics extracted from a conference 21
Figure 3.3: Tokenized research topics . 21
Figure 3.4: Stemmed terms . 22

Figure 4.1: Diagram of a classical SaaS architecture 26
Figure 4.2: Class diagram of JEMS database 28
Figure 4.3: Project Diagram . 31
Figure 4.4: Diagram of the implementation 32
Figure 4.5: Conference list page . 34
Figure 4.6: Filter and options to con�gure similarity output 35
Figure 4.7: Chart of comparison of similarities with a given event 36
Figure 4.8: Clustering . 37
Figure 4.9: Graph Visualization . 37

Figure 5.1: RSS when using several K clusters 40
Figure 5.2: Force Graph using cosine similarity and topics 42
Figure 5.3: Similarities chart using cosine similarity and TPC interest 44

LIST OF TABLES

Table 3.1: Terms with count and frequency 23

Table 5.1: Selected Conferences . 39
Table 5.2: Amount of conferences selected by year 39
Table 5.3: Clusters output of K-Means algorithm 41

ABSTRACT

Many research studies focus on the analysis of patterns in research communities.
However, we are not aware of any study that performs similarity analysis of confer-
ences considering their research topics. This work presents an innovative solution to
measure similarities between conferences based on their research topics. The solu-
tion is implemented in a web-based tool that is capable of �nding groups (clusters)
of conferences classi�ed considering their similarity degrees. Using our tool it is pos-
sible to generate visualizations of graphs and charts that show the relations between
conferences in an user friendly way. In addition to similarity analysis for a speci�c
conference edition in one year, our tool also supports the analysis of the evolution
of the similarity degrees over many editions. To evaluate the proposed solution, a
case study was conducted using a Brazilian computer science conference database
managed by the JEMS system.

Keywords: Research Communities, Information Retrieval, Simmilarity, Cluster-
ing.

RESUMO

Um Estudo de Similaridades entre Confererências Brasileiras de Ciência

da Computação

Muitos estudos de pesquisa focam na analise de padrões de comunidades de
pesquisa. Porém, não temos conhecimento de nenhum estudo que realiza análise
de similaridade de conferências considerando seus tópicos de pesquisa. Esse tra-
balho apresenta um solução inovadora para medir semelhanças entre conferências
baseando-se nos seus tópicos de pesquisa. A solução é implementada numa ferra-
menta para web que é capaz de encontrar grupos (clusters) de conferências classi�ca-
das considerando seus graus de similaridade. Utilizando nossa ferramenta, é possível
gerar visualizações de grafos e grá�cos que mostram as relações entre conferências
de maneira amigável. Além de análise de similaridade de edições de conferências em
um ano especí�co, a ferramenta também suporta a análise da evolução dos graus de
similaridade de várias edições. Para avaliar a solução proposta, um estudo de caso
foi conduzido usando um banco de dados de conferências brasileiras de ciência da
computação gerenciado pelo sistema JEMS.

Palavras-chave: Comunidades de Pesquisa, Recuperação de Informação, Similari-
dade, Clusterização.

12

1 INTRODUCTION

Scienti�c research communities are usually organized around a large number
of areas of knowledge. Understanding the internal an external interactions among
these communities is an interesting and relatively well exploited challenge. By ob-
serving the behavior of scienti�c communities it is possible, for example, to learn
about trends in research topics. Some authors have studied the dynamics of some
research communities by analyzing social networks of collaboration, evaluating inter-
disciplinary research, behavior of individuals and their relationship. For example,
Elmacioglu and Lee [9] have analyzed these networks on the context of database
community. Barbasi et al [2] have evaluated how these networks evolve in time.
In particular, Bazzan and Argenta [3] elucidate the characteristics of the Brazil-
ian computer science community in terms of co-authorship of Program Committee
members.

In spite of many studies in social collaboration, a study that addresses the re-
lationships between conferences considering their research topics is still missing.
The perspective of observing research communities according to their research areas
in conferences, instead of individual social relationships, would reveal di�erences
among conferences, e.g., in which topics they are related and in which they di�er.
In addition, one could understand how conferences approximate or dissociate of one
another over the years. Given this information, researchers might consider related
conferences for submission and cooperation.

The main goal of this work is study the relationships among conferences and their
research topics. In order to achieve that, we seek answering the following research
questions:

• Which conferences have more alike research topics?

• Which conferences have more alike research topics, considering paper submis-
sions, acceptance, and technical program committee (TPC) members' interest
on their research topics?

• How conferences are grouped into areas, and how these areas interact?

• Which conferences became more similar and which became di�erent over the
years, again considering submissions, acceptance, and TPC interest on the
research topics.

To carry out our study, we use conference information retrieved from the Journal
and Events Management System (JEMS)1 maintained by the Brazilian Computer

1https://jems.sbc.org.br

13

Society (SBC). JEMS hosts several Brazilian and international conferences in many
areas of Computer Science. We have retrieved the research topics of a set of relevant
conferences and processed them using the information retrieval techniques, such as
term weighting de�ned by Salton and Buckley [17]. We then compute a similarity
factor among all observed conferences. The clustering algorithm K-means is applied
to identify areas of research and their most common research topics. Finally, visual-
izations are generated to observe the conference's behavior in terms their similarities
along several years, in a way that it is possible to verify the transformations over
the years.

The remaining of this work is structured as follows. In Chapter 2, related work,
concepts and de�nitions important to this research are described. In Chapter 3, we
present our proposed solution. A prototype implementation is detailed in Chapter 4.
A case study is presented in Chapter 5. Finally, in Chapter 6 we present conclusions
of this work with �nal remarks and future directions.

14

2 RELATED WORK AND CONCEPTS

In this chapter, we start with a discussion about the previous investigations of
existing research communities. Most of this work focus on the dynamics of the
collaboration networks and the relations among research areas. We also introduce
concepts of information retrieval that are used by these research communities and
have been proved useful for clustering documents [13] and web-pages [18]. These
concepts are the ground basis of our solution to measure the degree of the similarity
among conferences.

2.1 Related Work

Several authors have studied the dynamics of collaboration networks. Among
the earliest, Newman [14] has used an author network to verify some properties
of collaborations between authors using databases from physics and medical areas.
The author network was built by taking each researcher as a node and establishing
a link when two of them have co-authored a paper together. The results of this
work indicates the small world property, where two randomly selected authors are
generally separated by a short path. This situation happens even considering such
large communities. Moreover, the degree distribution follows a power law, in which
many authors have few collaborators and just few authors have many collaborators.

Networks of co-authorship have also been applied to analyze collaborations in
other speci�c communities. Elmacioglu and Lee[9] veri�ed these collaboration net-
works on the database community and Cotta et al [8] investigated the discipline of
evolutionary computation.

Barabasi et al. [2] analyzed data from a period of eight years of relevant journals
of mathematics and neuroscience as a prototype of evolving networks. They learned
that the network of co-authorship is scale-free, i.e. it also follows a power law.
Also, they have evaluated the dynamics of the topology and the evolution of such
networks. Among the results, they established that the average distance of authors
decreases and the average degree of collaboration increases.

Backstrom et al. [1] investigated the community growth using the DBLP dataset.
They developed a methodology for measuring the movement of individuals between
communities, in which conferences are considered as communities. They found out
that movements between communities are closed aligned with changes in the topics
of interests. In their work they applied a decision-tree to identify the most important
properties that in�uence these movements.

A comparison of several research areas of computer science has been done by
Bird et al. [4]. In their work, they describe how interdisciplinary the �elds are,

15

how well de�ned are the sub-areas inside each �eld and the collaborative patterns
- dominance and assortativity - in each area. They also show the area overlap and
migration patterns of authors.

Bazzan and Argenta [3] investigated the properties of the social network of Pro-
gram Committee Members in conferences of the Brazilian computer science commu-
nity. The relationship between authors was established also from co-authorship data
from the DBLP dataset. Using some metrics as the number of connected compo-
nents, the degree of the nodes, and the clustering coe�cient, they showed that the
given network di�ers from the pattern of the other scienti�c collaboration networks.
One of the �ndings was that most connected nodes are non-Brazilian TPC members.

All the related work in this section focus on the relationship between individuals
inside research communities [14, 9, 8, 2, 1, 3] or on properties of the research areas
[4]. We are not aware of any work that focus on the analysis of the similarity and
relationships of the conferences. Since researchers of speci�c research communities
publish their contributions in a set of main target conferences, we consider it worth
to analyze the similarity between these conferences to have a better understanding
of the similarities among the research communities.

2.2 Document Representation

In information retrieval and text mining, there are di�erent approaches to rep-
resent a document. One of these approaches is the bag of words model [19]. In
this model, a bag contains words and their counter of occurrences in the document.
Therefore, the order in which a word appears in the document and their grammar
composition are irrelevant.

Following this model, a document is represented as a vector of non-negative
values of the frequency of each of its words. The intuition of this vector is that
terms that appear more are more important and descriptive for the document. In
our solution described in Chapter 3 we consider this document representation to
depict conference information.

Let D = {d1, ..., dn} be a set of documents and T = {t1, ..., tm} the set of
distinct terms occurring in a particular document d. A document is represented as
a m-dimensional vector ~td. Let tf(d, t) denote a non-negative value of the frequency
of term t ∈ T in document d ∈ D, that is the number of occurences of t divided
by the total amount of words in the document. Then the vector representation of a
document di is presented in Equation 2.1.

~td = (tf(d, t1), ..., tf(d, tm)) (2.1)

The term frequency captures its relevance inside a document. Other aspect is
the external relevance of a term. That is, terms that appear frequently in just a
few documents tend to be more relevant and speci�c for that group of documents.
In order to capture the importance of such terms the formula inverse document
frequency (idf) can be used.

Let |D| be the total number of documents and |{d ∈ D : t ∈ d}| the number of
documents where the term t appears, idf is presented in Equation 2.2.

idf(t,D) = log(
|D|

|{d ∈ D : t ∈ d}|
) (2.2)

16

Finally, we assume the term weight as the product of term frequency and inverse
document frequency, as de�ned in Equation 2.3.

wt,d = tf − idf(t, d,D) = tf(t, d)× idf(t,D) (2.3)

The interpretation of this formula is that a high value of tf − idf is achieved by
a high term frequency - in the given document - and a low document frequency of
term in the universe of documents. One must note that, since the ratio inside idf
log function is always greater than or equal to 1, the value of idf will always be a
non-negative value. When a term appears in many documents, the ration inside the
logarithm tends to 1, bringing the idf and tf − idf closer to 0.

With the given tf − idf values, each document will be described with a vector,
where each element is the weight of a term t in document d. To generalize, the
weight of a term t in document d is denoted as wt,d.

2.3 Similarity Metrics

A similarity/distance metric is one way of estimating the degree of closeness or
separation of target objects. This metric should re�ect the characteristics that are
believed to most distinguish the observed objects. Generally, these characteristics
depend on the data or the problem context, therefore, no measure is universally the
best.

In order to qualify a distance metric as a measure, some conditions must be
satis�ed. Let x and y be any two objects in a set and d(x, y) be the distance
function between x and y.

1. d(x, y) = 0 if and only if x = y, the distance is zero if and only if the objects
are considered identical (axiom of identity).

2. d(x, y) = d(y, x), the distance is symmetric, that is, the distance from x to y
is the same as the distance from y to x. (axiom of symmetry)

3. d(x, z) ≤ d(x, y) + d(y, z), satisfy the triangle inequality.

4. d(x, y) ≥ 0, the distance must be non-negative.

Similarity and distance are opposite concepts. While similarity measures how
close objects are, distance measures how far objects are from each other. Several
similarity metrics have been researched by the information retrieval community. In
this work we consider three metrics: Euclidean Distance, Cosine Similarity and Jac-
card Similarity. These are traditional metrics that have been proved to perform well
for document and web-page clustering [13] [18]. Moreover, we are interested in hav-
ing an intial similarity measure for conferences and not to compare the performance
of these metrics.

2.3.1 Euclidean Distance

The Euclidean distance is a standard metric for geometrical problems. It repre-
sents the ordinary distance between two points in the space and is widely used in
clustering problems.

17

Given two documents represented by vectors ~ta and ~tb of size m, the Euclidean
distance is de�ned in Equation 2.4. As previously stated, terms weight are their
tf − idf values, wt,a = tf − idf(t, a,D)

Dise(~ta, ~tb) =

√√√√ m∑
t=1

|wt,a − wt,b|2 (2.4)

2.3.2 Cosine Similarity

Since documents are represented as vectors, the similarity might be considered
as the correlation among these vectors. This correlation may be de�ned by the
cosine of the angle between vectors. Cosine similarity is a very popular measure for
text documents [19]. The cosine similarity is de�ned in Equation 2.5, and when the
vectors' coe�cients are non-negative, the resulting similarity is bounded between
[0, 1].

Simc(~ta, ~tb) =
~ta · ~tb
|~ta| × |~tb|

(2.5)

One property of this measure is that it does not depend on the length of the
document. That is, documents composed by the same words, but with di�erent
quantity of words are treated identically. For example, if one takes two identical
documents d and merge them, creating a new document d′, then Simc(d, d

′) = 1.
This means that d and d′ are considered identical.

2.3.3 Jaccard Index

The Jaccard index measures the ratio of the number of shared attributes by
the number of all attributes. In other words, it measures the cardinality of the
intersection divided by the cardinality of the union of the attributes. The Jaccard
index of two vectors ~ta and ~tb is described by Equation 2.6.

Simj(~ta, ~tb) =
~ta · ~tb

|~ta|2 + |~tb|2 − ~ta · ~tb
(2.6)

The resulting value of the Jaccard index also ranges between 0 and 1. This
means that, when the value is 0, the vectors are disjoint and so completely di�erent.
And when the value is 1 the vectors are identical.

2.4 Clustering

Clustering is de�ned as the task of assigning a set of objects to groups - called
clusters - such that objects in each particular group are more similar to each other
than between those of other groups [17]. There are two main kinds of clustering
algorithms: hierarchical and partitional.

Hierarchical algorithms have their output as a nested sequence of partitions,
with a single cluster at the top and clusters of individual objects at the bottom.
Each intermediate level may be viewed as splitting a cluster from a higher level, or
combining clusters of the next lower level. The result of hierarchical clustering are
usually represented as a tree, denoted as dendogram. For document clustering, this
dendogram acts as a taxonomy or a hierarchical index.

18

To generate hierarchical clusters, two strategies can be adopted:

• Agglomerative: the bottom up approach. Each object starts in its own
cluster and at each step the closest cluster is merged. This requires the mea-
surement of the cluster distance or similarity.

• Divisive: the top down approach. All objects start in one single cluster and
at each step a cluster is partitioned until only singleton clusters of individual
objects remain. In this case, one needs to decide which cluster to split and
how to perform the split.

Partitional clustering creates a division (un-nested) of the data objects. With a
prede�ned number of desired clusters, the partitional approaches typically �nd all
these clusters at once. As opposed to the hierarchical ones, which splits a cluster to
get two clusters or merge two clusters to get one.

To design our solution we choose only the partitional algorithm K-means. The
reason for this choice is the simplicity and speed of this algorithm, and its large
application in existing document clustering approaches [13]. Also, similar to our ap-
proach for the chosen similarity metrics, our objective is to have an initial method for
grouping of conferences into areas, and not to evaluate the performance of existing
clustering techniques.

In K-means, a cluster is represented as a centroid object, which is computed as
the average of all objects in the cluster. Note that this centroid usually does not rep-
resent a real object. This algorithm is better suited for handling large datasets than
hierarchical clustering algorithms, due to relatively low computation requirements.

The algorithm adjusts the clusters aiming to minimize the residual sum of squares
(RSS). Let the objects be represented by ~ti and its closest centroid as ~µc(i) . The RSS
is de�ned as the sum of the squares of the distances of the objects and its closest
centroids, as stated in Equation 2.7.

RSS =
m∑
i=1

Dis(~ti, ~µc(i))
2 (2.7)

As noticed, K-means uses distances measures to minimize the interior distance
of the clusters. This makes the distance metric a fundamental component of the
algorithm. However, some transformation must be applied to transform similarity
measures to distance values. Euclidean distance is already a distance metric. For
cosine similarity and Jaccard index, as they are both bounded to [0, 1], we take
Dis = 1− Sim as the corresponding distance value.

The K-means algorithm may be described in a simpli�ed manner as follows:

1. Select centroids : randomly select k data objects as the cluster centroids

2. Cluster assignment : assign each object to the cluster with closest centroid.

3. Move centroid : compute new centroids as the mean of all objects inside each
of the clusters.

4. Repeat (2) and (3) until the centroids have not moved

19

In the move centroid step, it is necessary to calculate the mean of all object
inside the cluster. This is achieved as de�ned in Equation 2.8. That is, the sum of
all vectors assigned to the cluster divided by the number of vectors.

µk =
1

n
[~tk1 + ~tk1 + ...+ ~tkn] (2.8)

In each step of the algorithm the cost function decreases, and after a number of
iterations it will converge, indicating that the clusters haven't changed. However,
the generated clusters are only assured to be locally optimal for the given data set
and the initial seeds. This implies that di�erent choices of the initial seeds may
result in di�erent �nal partitions.

Several approaches have been investigated to overcome this problem. A compar-
ison of some initialization methods was made by Pena et al. [15]. Their �ndings is
that the random initialization is a good option due to its high performance. The
idea is to run K-means several times initializing with random samples and pick the
clustering that gave the lowest cost (RSS).

Other problem is that choosing the number K of clusters can be quite arbitrary
and ambiguous. One way to overcome this is by using the Elbow method, that is
plot the cost as function of clusters K. The cost function should decreases as the
number of cluster increases and then �atten out. The idea is to choose K at the
point which the cost function starts to �atten.

20

3 SOLUTION

The objective of our work is to provide a way to measure the similarity between
conferences and to visually identify overlapping areas of conferences. In order to
achieve that, our proposed solution design consists of activities that perform in-
termediate steps that are necessary to achieve our objective. The squared boxes
represented in Figure 3.1 are the activities we proposed in our solution. The �rst
activity is the retrieval of conference information from a database, followed by nor-
malization, weighting, similarity calculation, clustering, and visualization of charts
and graphs. The visualizations show the similarity between conferences in an user
friendly way.

Figure 3.1: Components of the solution

3.1 Conferences

A conference held in a particular year has some information associated to it. For
each ocurance of a particular conference we consider in our solution the following
information:

• Research topics: list of topics where each topic consists of a couple of words
describing a speci�c sub-area of interest of the conference;

• Technical Program Committee (TPC) members: each TPC member is respon-
sible for selecting from the research topics list the set of topics of interest or
expertise;

• Papers: each paper has a title, an abstract, and a list of topics selected from
the research topics list by the authors when the paper is submitted. A paper
has also an status that indicate the paper is current under review, has been
accepted or reject for publication in the conference.

In our proposed solution we use the information from the research topics to
characterize a conference. We apply the concepts of information retrieval presented

21

in the previous section making an analogy where conferences are the equivalent to
documents, and words of the research topics the equivalent to terms.

The data from the Research Topics must �rst be processed in order to be available
to similarity measurements. This is done by the the activities of Normalization and
Weighting that generate the Weight vectors ready for similarity measurements.

3.2 Normalization

The �rst step in the normalization activity of the research topics consists of the
tokenization. In this step, the research topics list of each conference is retrieved
and are divided into terms (i.e. tokens or words). In this step we also remove the
punctuation marks and all characters are converted to their lower case equivalent.

To illustrate this step we show an example input and output of the tokenization
step for a conference of the area of computer architecture and high performance.
Figure 3.2 shows the research topics of this conference that were used as input for
the tokenization step and Figure 3.3 shows the output.

Benchmarking Performance Measurements and Analysis
Cache and Memory Architectures
Fault-Tolerant Architectures and Systems
Grid Computing
High Performance Applications
Languages, Compilers and Tools for Parallel and Distributed Programming
Large Scale Simulations
Load Balancing and Scheduling
Operating Systems
Processor Microarchitectures
Parallel and Distributed Algorithms, Architectures, Interconnection Networks,
Routing and Communication
Pervasive and Heterogeneous Computing
Performance Measurements and Analysis
Recon�gurable Systems

Figure 3.2: Research topics extracted from a conference

application-speci�c architectures benchmarking performance measurements analy-
sis cache memory architectures fault-tolerant architectures systems grid computing
high performance applications languages compilers tools for parallel distributed
programming large scale simulations load balancing scheduling operating systems
processor microarchitectures parallel distributed algorithms architectures intercon-
nection networks routing communication pervasive heterogeneous computing per-
formance measurements analysis recon�gurable systems

Figure 3.3: Tokenized research topics

After the tokenization step, we need to ensure all terms are in a common lan-
guage. This is necessary because the JEMS system hosts conferences with data both

22

in the English and the Portuguese languages. To overcome this issue, our solution
includes a translation step where all terms are translated into the English language.

Considering the output of the translation steps, we observed that some terms
are semantically not descriptive. Examples of these are words like and, for and
to. Mainly these terms are conjunctions, articles and prepositions. These irrelevant
words are called stop words. We do not consider these terms relevant for our simi-
larity analysis and we propose in our solution a �ltering step that removes all these
terms.

For the example of conference given above, only the word for is removed.
After the �ltering step we perform a stemming step where we apply the Porter's

su�x-stripping algorithm [16]. Thereby, terms with di�erent endings will be mapped
into a single term. For example, the terms networks, networking and network will
be mapped to the stem network. This allows that terms with the same steam/root
- and thus semantically identical - be depicted as the same term.

Following the example, after stemmed, the data will look like Figure 3.4.

application-specif architectur benchmark perform measur analysi cach memori ar-
chitectur fault-toler architectur system grid comput high perform applic languag
compil tool parallel distribut program larg scale simul load balanc schedul oper
system processor microarchitectur parallel distribut algorithm architectur inter-
connect network rout communic pervas heterogen comput perform measur analysi
recon�gur system

Figure 3.4: Stemmed terms

Infrequent terms are also removed. The reason is that these terms are not very
descriptive about the document (conference). Moreover, rare terms might introduce
noise in the clustering process and also increase the similarity computation time.
Therefore, we removed all the terms that occurred only once in the dataset.

3.3 Weighting

After all terms are normalized, we need to assign weights that represent the
relevance of each term to describe the topics of the conference. In this step, we
consider the following four aspects (heuristics) to measure the relevance of a term:

• Number of occurrences in the topics list

• Amount of persons from the TPC that are interested in that term

• Amount of submitted papers in a topic having that term

• Amount of accepted papers in a topic having that term

In this way, each term will have its frequency calculated by only one of the given
aspects. For the given example, if one considers the number of occurrences in the
topics list, the amount of repeated terms are presented in the �rst column of the
Table 3.1.

With the given counting, this activity calculates the tf − idf weight for each
term. The tf values of the given example are presented in the third column of

23

Term Count Frequency

architectur 4 0.082
perform 3 0.061
system 3 0.061
comput 2 0.041
parallel 2 0.041
distribut 2 0.041
analysi 2 0.041
measur 2 0.041
processor 1 0.020
microarchitectur 1 0.020
algorithm 1 0.020
oper 1 0.020
balanc 1 0.020
schedul 1 0.020
interconnect 1 0.020
rout 1 0.020
heterogen 1 0.020
recon�gur 1 0.020
pervas 1 0.020
communic 1 0.020
load 1 0.020
network 1 0.020
scale 1 0.020
applic 1 0.020
languag 1 0.020
high 1 0.020
grid 1 0.020
memori 1 0.020
fault-toler 1 0.020
compil 1 0.020
tool 1 0.020
larg 1 0.020
cach 1 0.020
program 1 0.020
application-specif 1 0.020
benchmark 1 0.020
simul 1 0.020

Table 3.1: Terms with count and frequency

24

Table 3.1. idf values were not calculated because they depend on other conferences
making it hard to describe.

3.4 Similarity Measuring

After the normalization and weighting activities, the output will be a weight
vector for each conference. As previoulsy mentioned, this vector contains the tf−idf
values for each term.

With the given weight vectors, it is possible to measure the degree of relationship
among pairs of conferences. For this solution it was implemented the metrics of
Euclidean Distance, Cosine Similarity and Jaccard index, presented in the previous
chapter.

For the Euclidean Distance, one must note that it is a distance metric. To
convert it to a similarity metric we take add one and take the inverse, that is
Sime =

1
1+Dise

. Adding one is imporant because when two objects are the same, the
Euclidian Distance evaluates to zero and that would raise a divison by zero. Note
that distance zero is the same as the similarity been one.

3.5 Clustering

One activity of this solution is to �nd grouping of conferences. That is, clusters
of conferences that look more similar. This is done by using the K-means algorithm
described in Section 2.4 and a similarity metric. The input will be the weighting
vectors presented in Section 3.3 and a number K of required clusters. The output
will be a K clusters, each with several conferences and a weighting vector describing
the average of the conferences inside the cluster.

3.6 Visualizations

The �nal component of the solution is the visualizations. This is an important
part because it will allow to perform analysis of the relationships of conferences.

One very popular way to represent data is by using charts. Charts provide a way
to graphically represent symbols, generally in a two-dimensional space. However,
one must notice that a conference does not directly map to a position in the two-
dimensional space. That is, a conference does not have a explicit pair of coordinates
(x, y).

Two kinds of visualization were implemented: Force Graphs to compare all con-
ferences, and charts to verify the evolution of similarity among years.

At the force graph, each conference is represented as a node and the weights
of the links between nodes are the similarity between conferences. After applying
the force layout, similar conferences will be arranged closer. Also, the conferences'
nodes are colored according to their cluster. In this way, conferences that belong to
the same group, will have the same color. One may note that in this approach the
nodes are automatically positioned in the screen.

In line charts, the similarities are plotted, showing which pairs of conferences
neared and which distanced. The X-axis is represented by years and the Y-axis is
the similarity, ranging from 0 to 1. Each line correspond to the similarity measure of
a pair of conferences on several years. For generating the chart, the user might select

25

to pin a conference and visualize the evolution of the similarity of all conferences
compared to the selected conference.

26

4 IMPLEMENTATION

The solution we propose was implemented as a tool for retrieving conference
information of the JEMS system database and visualizing similarity between these
conferences. This tool is directed to users who have some knowledge of information
retrieval techniques. In this chapter we start with a general overview of the design
and a high-level description of the related technologies we have used in the develop-
ment of this tool. This general overview is followed by a description of the system
design model and implemented architecture. Finally, we show an user guide that
supports possible users of the tool.

4.1 System Architecture and Related Technologies

The tool implemented was conceived as a web application using the model of
Software as a service (SaaS) described in Figure 4.1. In this model, the software
and its data might be hosted somewhere in the cloud. Users access the system by
using a simple web browser client that request the site through the internet.

The application is divided in three tiers. Presentation tier comprises a web server
responsible for handling requests, calling the logic and delivering the web page. The
logic tier is where the core of the application is executed. And, �nally persistence
tier is responsible to store data important for the application.

Figure 4.1: Diagram of a classical SaaS architecture

4.1.1 Programming Language

The programming language PHP is a general-purpose server-side scripting lan-
guage �rst released in 1995. Its main purpose is the generation of dynamically web
pages. PHP scripts run in the server-side and generate HTML web pages that are
rendered in client web-browsers.

27

PHP was chosen due to the existence of an initial draft implementation of the
solution we propose that could be re-used by us in the implementation of our tool.
Furthermore, the author has some experience with this language and it was more
convenient since no time had to be spent in learning a new technology. Nonetheless,
PHP is a �exible language featuring simplicity, portability, object orientation and
dynamic typing that was adequate considering our implementation requirements.

4.1.2 Application Framework

A framework is a set of libraries and components providing a generic function-
ality. It is able to use an architectural style to inherit it advantages: modularity,
low coupling and high cohesion. This allows the rapidly development of an applica-
tion. Also, one can achieve faster development by using proven patterns and reusing
functionality provided by components provided with the framework.

For the implementation, we chose the framework CakePHP (v2.1) [6]. The rea-
son was also that the author has some experience with this framework. CakePHP
provides an easy programming interface to retrieve the required information for the
tool we have implemented from the JEMS database.

CakePHP is an open-source framework licensed under MIT License with the goal
to provide an environment for fast development of web applications. It has a highly
active community and was conceived based on the design patterns of MVC (Model
View Controller) and Active Record.

4.1.2.1 Model-View-Controller Design Pattern

The MVC [11] architecture aims to separate the application logic from the data
representation and user interaction. This allows to produce more cohesive software
and to easy manage changes in the data access, application logic, and presentation
layers.

The model represents the data management layer. It manages the storing, re-
trieving and handling of data. A model is mapped to an entity or table in the
database.

The view represents the visual presentation of the model for human users. One
speci�c view could, for example, highlight some data attributes and ignore attributes
that are not relevant for a speci�c user interaction. The view layer render a pre-
sentation using as input the data provided from the model. Therefore, the view
implementation must know the semantics of the attributes of the model it repre-
sents. Multiple views can be de�ned for di�erent user interactions using the same
model as input.

A controller is what connects the user to the system and implements the logic
of the application. It is responsible to handle user input, contacting the model and
passing its information for presentation (view).

4.1.2.2 Active Record

Active record [10] is an architectural pattern used by systems that rely on re-
lational databases for data storage. With this pattern, each table on the database
is mapped into one class of the system and the �elds of the table are mapped to
attributes of the class. The CRUD operations (reate, Read, Update and Delete)
on the table are mapped to methods of the class. In CakePHP, the Active Record

28

pattern is implemented by the model class, which is the usual way also found in
other MVC frameworks.

4.1.3 Database

The conference information that is used as input for our tool is retrieved from
the JEMS database. This database is implemented in the production JEMS server
using the MySQL server version 5.5.19. MySQL [7] is an open source relational
database management system (RDBMS) that has been �rst released in 1995.

Since the focus of our work was initially to perform similarity analysis of con-
ferences that use the JEMS system the use of a MySQL interface was mandatory
to access JEMS data. The MySQL syntax is very simple, and complies with the
SQL (Structured Query Language) standards. MySQL is also one of the standard
databases that is supported by CakePHP, making it simple and easy to retrieve the
conferences information in our tool.

4.2 Database modeling

To retrieve the data necessary for our tool, we only need to access a sub-set of
the JEMS database. The JEMS tables required by our tool and their relationships
are presented in the UML (Uni�ed Modeling Language) diagram in Figure 4.2.

Figure 4.2: Class diagram of JEMS database

The Conference table describes the data of a conference held in a particular year.
In spite of this entity has 115 �elds in the JEMS database, for this solution it is
important to consider only 3 �elds. The primary key is the �eld conference and is
a unique integer identi�er. The name �eld contains the conference's name with the
year of occurrence. The topics �eld is a string with topics separated by new line
(\n) characters.

The table Tpc is used to record the association of a person to a conference with
the technical program committee role and includes also the topics of interest of this

29

person for the conference. These topics are used by conference chair to assign papers
to this person for revision. They are stored in the �eld topics represented by a string
containing the index of the topics separated by commas. This index indicates the
position of the topic in the topics string (from Conference table).

The table Paper stores information of a paper submitted to a conference. The
�elds are a primary key (paper), the conference to which the paper has been sub-
mitted, the title (papertitle), an abstract summarizing the paper content, a comma-
separated list of topics that the paper covers (index of the topic), and the review
status.

In the ConferenceInfo table, the data from the conference is normalized. That
is important since the Conference table has only a �eld for the conference name
including the year without distinguishing the regular occurrence of a conference in
di�erent years (e.g. name = �SBRC 2012�). The ConferenceInfo table contains the
conference name in the �eld event and the year that it occurs. This allows us to easily
query all occurrences of a speci�c event (e.g. event=�SBRC� year=�2012�). The
normalization of the conference name was automatically done considering common
patterns used in the JEMS system by chairs to specify the conference name. The
�eld selected holds a boolean value describing if the conference should be considered
for analysis.

4.3 Class architecture

In this section we describe the class architecture and the source �les of our tool
implementation. First we describe internal components of the CakePHP Framework
followed by a description of the classes implemented by us (model and controller).
Finally, we describe the implemeantion of the similarity visualizations (views).

4.3.1 Details of CakePHP Framework

As previously stated, CakePHP follows the MVC pattern. Hence, models -
that represent tables from the database - inherit from the class AppModel, which
implements the ActiveRecord pattern. The application controllers inherit from the
class AppController. These both classes provide useful methods and attributes that
are used in the inherited classes.

In the models classes there are some attributes that describe the relationship
between models. There is the attribute hasOne which de�nes a relationship of one-
to-one and the foreign key is at the associated model. The attribute belongsTo also
de�nes a one-to-one relationship, but in this case the foreign key in the current
model. There is also the attribute hasMany and hasAndBelongsToMany, used when
there is an associative table. The model also has the methods save and saveAll, these
methods take an array of data and save the records to the database. There are also
methods read() (read only one record), �nd() (read several records), update() and
delete().

The controller class import models by specifying their names in the attribute
uses. There is also the attribute helpers which import helper objects that assist in
the view presentation, as for formatting (HTML, Number), forms creation (Forms),
session handling (Session), etc. The controller usually reads data from the models
and put in a variable; this variable is sent to the view by using the method set().
Also, each method de�ned in the controller is denoted as an action and generally

30

has a correspondent view.
Views are only template �les, that is, they basically contain HTML markup em-

bedding some PHP to make it dynamic. For each action in the controller (method),
there view �le withe .ctp extension (CakePHP View Template).

CakePHP implements a routing scheme that translates URLs to calling actions
from controllers. The default routing is /<controller>/<action>/<param>. That
is, if one access posts/view/1, it will map to the view() action of the PostsController
passing 1 as an argument.

CakePHP enforces some conventions in the �le structure. The application code
must be put inside the folder app. Inside this folder, there are several folders,
among them: Controller, Model, View, Lib, etc. The architecture of system's classes
is presented in Figure 4.4. Note that each subsystem correspond to a folder inside
the app directory and each class has a �le with its name and the .php extension.

4.3.2 System Classes

The tool was projected following CakePHP �le structure. The project diagram
is described in Figure 4.3. As previously mentioned controller classes inherit from
AppController and Model classes inherit from AppModel. The model classes are the
tables from JEMS database, which were discussed in Section 4.2.

The implementation has only two controllers. ConferencesController allows to
list, visualize, select and normalize conferences. Whereas, SimilaritiesController
retrieves conference data, calculates similarities, generate the clusters and prepares
for visualization.

The core logic of the solution was implemented inside the Lib folder. The im-
plemented classes are described in Figure 4.4. There are classes for normalization,
weighting, similarity measurement and clustering.

Inside the model Conference there is the method getVectors(). This method
fetches conference data from the database and, according to the selected scope to
be considered for the relevance of the term, it will build the weight vectors. If the
scope is submitted or accepted papers, it fetches data from the model Paper. If the
scope is TPC interest, it fetches data from Tpc model. With the given data, for each
conference, it will be applied the methods from the Normalizer and TfIdf classes.

The normalization step of the solution consists of three static classes. First
the Normalizer receives the topics list by the method tokenize(), which converts
characters to their lower case equivalent and returns an array of words. Then nor-
malizeKeywords() method is called, which normalizes each word. The single word
normalization is performed by the normalizeKeyword() method, which verify if the
word is a stop word by calling isStopWord method from the StopWords class. If
not, it tries to translate using the Translator class, and invoke the method stem-
Word from the Normalizer class. At the end of this process, the �nal output is an
array of stemmed English terms.

With the given terms and weights of topics - that is the number of TPC members,
submitted papers or accepted papers of each topic - it is calculated how relevant
(descriptive) each term is, as described in Section 2.2. That is achieved by computing
the term frequency in the static method calculateTf() of the class TfIdf.

After having the data ready for each conference, one may merge conferences by a
window of years. For example, selecting a step of two, would merge each two confer-
ences into a single conference. That is performed by the method mergeByStep() of

31

Figure 4.3: Project Diagram

32

Figure 4.4: Diagram of the implementation

33

the model Conference. Inside of it, it is also calculated the idf value of each term by
using the method calculateIdf() of the class TfIdf. Then, the tf − idf is calculated
by multiplying the idf value with the previous calculated tf value.

For similarity calculation, there is a main abstract class SimilarityMetric. This
class has only two methods: calculate (to calculate the similarity measure) and dis-
tance (to calculate the distance measure). These methods take two arrays describing
the comparison objects. Each metric was implemented as a class that inherits from
SimilarityMetric and implements the measurement methods.

K-means algorithm was implemented in the class KMeans. An object of this
class is constructed using as arguments: the number K of clusters, the weight-
ing vectors (items) and a SimilarityMetric instance. First, it calls the method
initializeClusters(), that randomly select the �rst K centroids. After that, it iter-
atively calls clusterAssignment() and moveCentroids() until the cost - calculated
by calculateCost - has not changed. This class is used in the action cluster of the
SimilaritiesController.

4.3.3 Visualization

The visualization was implemented in the view �les, importing some JavaScript
libraries and CSS �les. When the action force from the SimilarityController is
called, it fetches the conference data by calling getVectors() of Conference model,
measures similarity (at the controller) and delivers for visualization. The view is
rendered in the user's browser displaying the force graphs.

To display graphs, we use the library D3.js (Data-Driven Documents) [5]. D3.js
is a JavaScript library created with the purpose of displaying digital data into graph-
ical dynamical forms. It relies on SVG (Scalable Vector Graphics), JavaScript and
CSS (Cascading Style Sheets) languages.

After the conference data is fetched, it is adapted to describe a graph. As
previously stated, the nodes in this graph represent conferences and the weight of
the links represents the similarity degree among two conferences. This graph is then
exported into a JSON (JavaScript Object Notation) following the D3.js convention.
This data is captured by an Ajax (Asynchronous JavaScript and XML) call from
D3.js and rendered as a graph.

A dynamic force layout is applied to this graph. The goal of this layout is to
iteratively assign new positions to the nodes such that those nodes that are connected
by stronger weights are placed closer to each other.

Moreover, our tool also supports line charts, to allow quick visualization of the
similarity evolution. They are at the action charts of the SimilaritiesController.
The chart was implemented using Google Chart Tools [12]. Each line in the chart is
the similarity of a pair of conference on several years. Besides being quick visualized
in a line chart, the data might be exported to CSV (comma-separated values) or
TSV (tab-separated values) that is suitable for input to external analysis tools (e.g.
MS-Excel).

4.4 User interface

This section aims to present the main pages and functionality of the implemented
system. The user interface is composed by screens for Conference Selection, Similar-
ity Matrix Visualization, Similarity Chart Visualization, and Clustering and Graph

34

Visualization.

4.4.1 Conference Selection

In this interface the user may select the conferences he wants to analyze. The
conference list page, shown in Figure 4.5, displays the selected conferences. The
attributes highlighted are its name, the �rst part of the topics list, normalized name
and year.

Figure 4.5: Conference list page

To select a new conference the user may enter the name and click the Filter
button. After that, a list of conferences matching that name is listed. To change
the selected status, the user must click in the column selected of the item. The user
might also specify the conference name (for the event �eld) and the year.

4.4.2 Similarity Matrix

In this part of the system, the user can generate the similarity of the combination
of all conferences with each other. The available options for generating this matrix
a user might con�gure are:

• The similarity metric;

• Which �eld to use for term weighting;

• The output format, that might be a HTML table, CSV �le, graphml �le or
JSON;

• Which conferences to consider - when none is selected, all conferences will be
considered;

35

• Which years to consider - also when none is selected, conferences of all years
will be considered;

• A threshold value, i.e. the similarity value is not displayed when it is bellow
threshold/100;

• The step size, to merge conferences by year, e.g. if this value is 2 it will merge
conferences each 2 years;

• The step, that is which year to show, if it is 0 it will show for all the period.

Figure 4.6 shows the Similarity Matrix screen with �lters and options for the
similarity output.

Figure 4.6: Filter and options to con�gure similarity output

4.4.3 Charts of comparison

In this screen, the user may select a conference and view the similarity evolution
compared to all other conferences. The Figure 5.3 shows an example of a generated
chart.

Moreover, the user might choose to view the similarity evolution of pairs of
conference which have the greatest similarity value. And also, to view those pairs
that have the greatest standard deviation, that is, those that have a greater variation
of similarity values.

4.4.4 Clustering

To perform the clustering, the user must select how many clusters he wants. The
number K of clusters is a required input for the K-Mean algorithm. Also, it is pos-
sible to con�gure in this interface all the options already described in the Similarity

36

Figure 4.7: Chart of comparison of similarities with a given event

Matrix screen, introduced in Section 4.4.2. Figure 4.8 shows the Clustering screen
with the given options.

After the clustering has been performed, it will display the number of iterations
required for convergence, the cost (Residual Sum of Squares) of each iteration and
amount of time spent on clustering. It also displays the contents of each cluster.
That is, which conference is inside of them and the most descriptive terms of the
cluster. This terms are those with the higher weights from the clusters' centroids.

4.4.5 Graph Visualization

After the clustering activity is completed, the user can visualize the force graph.
In the Figure 4.9 an example of a force graph is shown. As we can see in this
�gure, the colors represent the cluster in which the conference is located, and the
conferences represented with the same color are located in the same cluster. Using
the force graph in combination with the coloring allows us to analyze the soundess
of the clustering technique. If the clustering technique is sound, conferences in the
same cluster will be placed closer.

It is possible to specify parameters for the graph layout. The charge value is a
negative value that results in node repulsion. The strength speci�es the strength
(rigidity) of the links, this value is multiplied by the similarity represented by the
link weight.

37

Figure 4.8: Clustering

Figure 4.9: Graph Visualization

38

5 CASE STUDY

In order to evaluate our solution, we performed similarity analysis of a set of
conferences using our tool in a case study. In this case study, we were able to �nd
some characteristics of the relationship between conferences. These �ndings are not
exhaustive, our aim was to demonstrate that our solution performs adequately and
is useful.

5.1 Conferences

The conferences we selected for this study are in the computer science discipline
and are promoted by the Brazilian Computer Society (SBC) 1. We selected those
that are registered in JEMS database with more than one occurence. That was 30
conferences that occurred from 2004 to 2011, in a total of 169 conference ocurrences.
Table 5.1 presents the conference acronyms and the years in which they were selected.
The complete description of the conference name is described in Appendix A.

Table 5.2 describes how many conferences were selected by each year. As one
may note from this data, there are conferences that only have data in the recent years
(e.g. SBCUP,)and others that only have old data (e.g. WSCAD, SBRN, SBLP,
WSO and WIM). This is the case because some conferences are new and their �rst
edition happened just recently, and other conferences do not exist anymore or were
merged with other events. Also, some conferences do not have registered topics of
interest.

5.2 Similarity Measurements

The worst performance of the similarity metrics we observed was the Euclidean
distance. This metric took to many resources to be computed and generate similarity
values that did not di�erentiate conferences adequately. This was also observed in
other researches of document clustering [18] [13]. For this study, we choose to use
only the metric cosine similarity. The reason of this is to limit the length of this
analysis and also because cosine similarity performed very well.

For the �rst measurement, all the years of each conference have been merged
into one single object. That is, the topics lists of a conference that happened several
years were merged to a unique topics list.

To perform the clustering analysis using K-means, we �rst need to �nd out
which is a good number of K clusters. To achieve this number, we used the Elbow

1https://www.sbc.org.br

39

Conference Years

BSB 2005, 2007, 2008, 2010, 2011
ERRC 2004, 2005, 2006, 2007
IHC 2006, 2008, 2010
SBAC-PAD 2004, 2005, 2006, 2007, 2008, 2009, 2010
SBBD 2005, 2006, 2007, 2010
SEMISH 2004, 2005, 2006, 2007, 2008, 2009, 2011
WEI 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
WPerformance 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
WIM 2005, 2006, 2007, 2008
WSO 2006, 2007, 2008
SBES 2005, 2006, 2007, 2008, 2009, 2010, 2011
SBGames 2004, 2006, 2007, 2008, 2009, 2010, 2011
SBIE 2004, 2005, 2006, 2007, 2008, 2009, 2010
SBLP 2005, 2006, 2007, 2008
SBMF 2004, 2006, 2007, 2008, 2009
SBQS 2005, 2006, 2006, 2007, 2008, 2009, 2010, 2011
WMSWM 2006, 2007, 2008, 2009, 2010, 2011
SBRC 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
WGRS 2004, 2006, 2007, 2008, 2009, 2010, 2011
WTF 2004, 2005, 2006, 2007, 2008
WTR 2004, 2005, 2006, 2007, 2008
SBRN 2004, 2006, 2008
SBSC 2006, 2007, 2008, 2008, 2009, 2010, 2011
SBSeg 2005, 2006, 2007, 2008, 2009, 2010, 2011
SEMINCO 2006, 2007, 2008, 2009, 2010, 2011
SIBGRAPI 2004, 2005, 2006, 2007, 2008, 2009, 2010
SVR 2004, 2006, 2007, 2008, 2010
WebMedia 2006, 2007, 2008, 2009, 2010
WSCAD 2004, 2005, 2006, 2007
SBCUP 2009, 2010, 2011

Table 5.1: Selected Conferences

Year Amount

2004 16
2005 18
2006 29
2007 27
2008 27
2009 18
2010 20
2011 14

Table 5.2: Amount of conferences selected by year

40

method. That is, running the K-means algorithm for several K values, measuring
the residual sum of squares (RSS) value and plotted these costs on a line chart.
The RSS measures how far items are from their cluster centroid. In this way, by
analyzing the chart, one may notice how the clustering improve by having a large
number of K clusters. This chart is presented in Figure 5.1. The x-axis represents
the number of K clusters and the y-cluster represents the correspondent RSS value.

Figure 5.1: RSS when using several K clusters

From this chart it is possible to observe that the numbers of K clusters in the
chart �atten are at 11, 13 and 17. These are points where incrementing the number
of clusters does not improve much the clustering result. We chose 11 since it is the
smaller of then.

Using K = 11 clusters, K-Means was applied. The output clusters are described
in Table 5.3. The �rst column contains the cluster identi�er, the second there are the
conferences that are inside this cluster (and the similarity with the cluster centroid)
and the third contains the �ve most descriptive terms of the cluster.

With the clusters generated, a visualization of the force graph was rendered and
is shown in Figure 5.2. The links represent the similarity between pairs of nodes
(conferences), and when they are smaller than 0.1 they are not represented. The
color code represents the membership of the node to one particular cluster. That is,
nodes with the same color belong to the same cluster.

First, one should notice how clusters are disposed in the force graph. Most of the
clusters have their conferences placed closer, since they have the same color code.
This indicate that the force graph and the clustering agreed that those conferences
are very similar.

Cluster 1 is composed mostly by conferences of the area of networks (ERRC,
SBRC, WGRS) and security (SBSeg). It is mainly represented by SBRC (Brazil-
ian Symposium of Computer Networks) and ERRC (Regional School of Computer
Networks). WTF is a workshop of Fault Tolerance that happens inside of SBRC
(Brazilian Symposium of Computer Networks). WTR is a workshop of Real-Time
systems that also occurs inside of SBRC.

41

Cluster Conferences Top 5 most descriptive terms

1

ERRC (0.755)
SBRC (0.789)
SBSeg (0.540)
WGRS (0.610)
WTF (0.532)
WTR (0.452)

manag servic network secur protocol

2
SBES (0.673)
SBQS (0.749)
WMSWM (0.714)

mainten qualiti softwar product reengin

3

SBAC-PAD (0.762)
SBCUP (0.396)
WPerformance (0.710)
WSCAD (0.687)

perform pervas parallel capac load

4
SBGames (0.694)
SIBGRAPI (0.786)
SVR (0.667)

imag game render realiti 3d

5
SBBD (0.802)
WebMedia (0.790)

databas data multimedia document tempor

6 SBSC (1.000) collabor group support work work�ow

7
SBLP (0.529)
SBMF (0.628)
WEI (0.739)

experi formal teach program languag

8
SBIE (0.753)
SEMINCO (0.786)
WSO (0.404)

educ oper graphic learn arti�ci

9
IHC (0.742)
SEMISH (0.825)

interact human challeng interfac impact

10 WIM (1.000) medicin health telemedicin sign intelig

11
BSB (0.827)
SBRN (0.653)

biolog structur sequenti dynam percept

Table 5.3: Clusters output of K-Means algorithm

42

Figure 5.2: Force Graph using cosine similarity and topics

43

Cluster 2 is represented by the software engineer conferences. SBQS is the Brazil-
ian Symposium of Software Quality. SBES is the Brazilian Symposium of Software.
WMSWM is the Workshop on Modern Software Maintenance and occurs inside of
SBQS.

Cluster 3 contains conferences of Computer Architecture and High Performance
Computing. One may notice that the SBCUP (Brazilian Symposium on Pervasive
and Ubiquitous Computing) might be considered an outlier in this cluster, since it
has the small similarity to the centroid and is farthest positioned in the force graph.

Cluster 4 has conferences of games (SBGames), graphics (SIBGRAPI) and vir-
tual reality (SVR). All of these conferences have very related subjects. Also, the
conferences are placed closer in the force graph.

Cluster 5 contains SBBD (Brazilian Symposium on Database) and WebMedia
(Brazilian Symposium on Multimedia Systems). They are very related conferences
and actually they are jointly organized every year.

There are two clusters with only one conference. Cluster 6 has SBSC (Brazilian
Symposium on Collaborative Systems). Cluster 10 has WIM (Workshop on Medical
Informatics). By looking at the force graph, one could notice that these conferences
are positioned almost outside of the graph. This indicate that there are no confer-
ences in their related areas. Therefore, it makes sense that they are in their own
clusters alone.

Cluster 7 contains conferences of programming languages (SBLP), formal meth-
ods (SBMF) and education (WEI). By looking at the force graph, it is possible to
notice that SBLP and SBMF might be related conferences. WEI, by being of the
education area, might be a conference with topics in several areas.

Cluster 8 has operating systems (WSO), SEMINCO (Computing Seminar) and
education (SBIE) conferences. This cluster is very fuzzy if one observe the posi-
tion of the conferences in the graph. This happens because they are very generic
conferences, with topics that spread over several areas.

Cluster 9 consists of the IHC (Symposium of Human Factors in Computer Sys-
tems) and the Semish (Integrated Seminar of Software and Hardware) conferences.
This cluster does not make sense since it combines conferences fo two complete dif-
ferent areas. But by looking at the force graph it is di�cult to decide in which
cluster these conferences should be.

Cluster 11 identi�ed conferences of bio-informatics (BSB) and neural networks
(SBRN). By analyzing the force graph, it is possible to note that these conferences
are weakly connected to others. With a greater number of K clusters, they would
probably have their own clusters.

5.3 Evolution

In this section, we have taken pairs of conferences on several years and evaluated
the evolution of similarity. In this case, we used cosine similarity considering the
TPC interest in topics as weighting. The Figure 5.3 shows the evolution of 5 pairs
of conferences. These are the pairs that presented the biggest variance. The x-axis
contains years in which the editions of the conferences occur and the y-axis contains
the correspondent similarity value of the pair of conferences.

By analyzing this chart, one could notice that SBES became more similar with
SBQS and with WMSWM in recent years. That is due to their call for paper that

44

Figure 5.3: Similarities chart using cosine similarity and TPC interest

became more mature, less broader and more focused in its area.
SEMISH have distanced from WEI. SEMISH is a conference with broad topics

with a call for papers that changed every year.
SBSeg and WGRS (Workshop on Management and Operation of Networks and

Services) also became closer. One could infer that the WGRS have included topics
in the security area.

In this chart it is also shown SBgames and SBMF. But by looking closely, they
have a similarity degree that only variate between 0.034 and 0.013. This means that
they are very di�erent and it is not appropriate to do an analysis in their similarity
evolution.

45

6 CONCLUSION

In this work we present a solution to measure and to support analysis of the
similarity between conferences of research communities. Our solution is able to:

• Represent conferences in a format that allows the application of information
retrieval techniques. This representation emphasizes the topics list of the
conference, and considers relevant the: occurrences of term in the topics lists,
TPC interest in topics, papers submitted and accepted in speci�c topics;

• Measure the degree of similarity between conferences. We used three metrics:
Euclidean distance, cosine similarity and Jaccard index;

• Find groups (clusters) of conferences based on their similarity. This was
achieved using the K-means algorithm;

• Visualize and export the similarity between pairs of conferences.

This solution was implemented as a web-based tool. This tool was designed using
the MVC pattern and the CakePHP framework. The tool retrieves data from the
JEMS conference database and performs the measurements proposed in the solution.
Also, since it is implemented for the web, it allows great portability and ease of use,
as anyone with a browser may access it.

To evaluate the proposed solution, we measured similarities of some Brazilian
conferences on computer science in a case study. It was possible to verify that
most clusters identi�ed conferences of the same area. It was also shown that the
similarity between conferences vary over years, we observed that some conferences
became more similar and others less similar for a given time window.

For future work it would be interesting to compare and analyze the performance
of other similarity metrics and clustering techniques. Examples of other similarity
metrics that could be considered are the Pearson Correlation Coe�cient and Aver-
aged Kullback-Leibler Divergence [13]. Also, it would be interesting to use other
initialization method for K-Means or using other clustering techniques. To evaluate
these techniques, one could label all conferences into categories, run the clustering
algorithm, and verify how the generated clusters correspond to the labeled categories
using measures such as precision and recall[17].

Our current PHP implementation allows for great portability of the tool. How-
ever, we believe that a scripting language (mainly like PHP) would not be the better
option for managing larges amounts of data to perform information retrieval (sim-
ilarities measurements) and machine learning (clustering) techniques. We noticed

46

mainly when running K-means algorithm that the time needed is high for a web
request (around 5 seconds).

Finally, we believe other visualizations could be researched. One problem we ob-
served with force graphs is that it does not allow to visualize evolution of similarities.
It is possible to dynamically change the links weights. But that would drastically
change the nodes position in the graph, making it di�cult to visualize evolutions
over a time window. One possibility could be the animation of force graphs using a
movie that shows the force changes over the year.

47

APPENDIX A CONFERENCES NAMES

Acronym Conference Name

BSB Brazilian Symposium on Bioinformatics
ERRC Regional School of Computer Networks
IHC Symposium of Human Factors in Computer Systems

SBAC-PAD
International Symposium on Computer Architecture
and High Performance Computing

SBBD Brazilian Symposium on Database
SBCUP Brazilian Symposium on Pervasive and Ubiquitous Computing
SBES Brazilian Symposium of Software
SBGames Brazilian Symposium on Games and Digital Entertainment
SBIE Brazilian Symposium on Computer in Education
SBLP Brazilian Symposium on Programming Languages
SBMF Brazilian Symposium on Formal Methods
SBQS Brazilian Symposium of Software Quality
SBRC Brazilian Symposium on Computer Networks and Distributed Systems
SBRN Brazilian Symposium on Arti�cial Neural Networks
SBSC Brazilian Symposium of Collaborative Systems
SBSeg Brazilian Symposium on Information Security and Computer Systems
SEMINCO Computing Seminar
SEMISH Seminar on Hardware and Software
SIBGRAPI Conference on Graphics, Patterns and Images
SVR Symposium on Virtual and Augmented Reality
WebMedia Brazilian Symposium on Multimedia Systems
WEI Workshop on Computer Education
WGRS Workshop on Management and Operation of Networks and Services
WIM Workshop on Medical Informatics
WMSWM Workshop on Modern Software Maintenance
WPerformance Workshop on Performance of Computer and Communication
WSCAD Symposium on Computing Systems
WSO Workshop on Operating Systems
WTF Workshop on Testing and Fault Tolerance
WTR Workshop on Real-Time Systems

Table A.1: Conferences acronyms and names

48

REFERENCES

[1] L. Backstrom, D. Huttenlocher, J. Kleinberg, and X. Lan. Group formation in
large social networks: membership, growth, and evolution. In Proceedings of
the 12th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 44�54. ACM, 2006.

[2] A.L. Barabâsi, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek.
Evolution of the social network of scienti�c collaborations. Physica A: Statistical
Mechanics and its Applications, 311(3):590�614, 2002.

[3] A.L.C. Bazzan and VF Argenta. Network of collaboration among pc members
of brazilian computer science conferences. Journal of the Brazilian Computer
Society, 17(2):133�139, 2011.

[4] C. Bird, E. Barr, A. Nash, P. Devanbu, V. Filkov, and Z. Su. Structure and
dynamics of research collaboration in computer science. In SDM, pages 826�
827. Citeseer, 2009.

[5] Michael Bostock. Data-driven documents, November 2012. http://d3js.org/.

[6] Inc. Cake Software Foundation. Cakephp framework, November 2012.
http://www.cakephp.org/.

[7] Oracle Corporation. Mysql database, November 2012.
https://www.mysql.com/.

[8] C. Cotta and J.J. Merelo. The complex network of ec authors. ACM SIGEVO-
lution, 1(2):2�9, 2006.

[9] E. Elmacioglu and D. Lee. On six degrees of separation in dblp-db and more.
ACM SIGMOD Record, 34(2):33�40, 2005.

[10] M. Fowler. Patterns of enterprise application architecture. Addison-Wesley
Professional, 2003.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Elements
of reusable object-oriented design, 1995.

[12] Google. Gogle chart tools, November 2012.
https://developers.google.com/chart/.

49

[13] A. Huang. Similarity measures for text document clustering. In Proceedings of
the Sixth New Zealand Computer Science Research Student Conference (NZC-
SRSC2008), Christchurch, New Zealand, pages 49�56, 2008.

[14] M.E.J. Newman. The structure and function of complex networks. SIAM
review, 45(2):167�256, 2003.

[15] J.M. Pena, J.A. Lozano, and P. Larranaga. An empirical comparison of four
initialization methods for the k-means algorithm. Pattern recognition letters,
20(10):1027�1040, 1999.

[16] M.F. Porter et al. An algorithm for su�x stripping, 1980.

[17] G. Salton and C. Buckley. Term-weighting approaches in automatic text re-
trieval. Information processing & management, 24(5):513�523, 1988.

[18] A. Strehl, J. Ghosh, R. Mooney, et al. Impact of similarity measures on web-
page clustering. In Workshop on Arti�cial Intelligence for Web Search (AAAI
2000), pages 58�64, 2000.

[19] R.A.B. Yates and B.R. Neto. Modern information retrieval. 1999.

