
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

BACHELOR OF COMPUTER SCIENCE

LEONARDO PILETTI CHATAIN

Hybrid Parallel Programming - Evaluation
of OpenACC

Final Report presented in partial fulfillment of the
requirements for the degree of Bachelor of
Computer Science

Prof. Dr. Nicolas Maillard
Advisor

Porto Alegre, December 2012



CIP – CATALOGING-IN-PUBLICATION

Chatain, Leonardo Piletti

Hybrid Parallel Programming - Evaluation of OpenACC /
Leonardo Piletti Chatain. – Porto Alegre: COMGRAD CIC
UFRGS, 2012.

43 f.: il.

Final Report (Bachelor) – Universidade Federal do Rio
Grande do Sul. Bachelor of Computer Science, Porto Alegre,
BR–, 2012. Advisor: Nicolas Maillard.

1. OpenACC. 2. GPGPU. 3. GPU programming. 4. CUDA.
I. Maillard, Nicolas. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitora de Graduação: Profa. Valquiria Link Bassani
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do CIC: Prof. Raul Fernando Weber
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro



“Experience is what you get when you didn’t get what you wanted.”
— RANDY PAUSCH
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ABSTRACT

OpenACC is a new specification for a hybrid (CPU + GPU) parallel programming
API, in which the programmer uses compiler directives to distribute the computation be-
tween the GPU and the CPU.

With a similar paradigm to OpenMP, OpenACC presents clear advantages in terms
of ease of programming. Regarding performance, however, a comparison between Ope-
nACC and CUDA has not yet been made.

This study aims to evaluate OpenACC, establishing a comparison with CUDA. Fur-
thermore, this work aims to identify the main limitations of OpenACC, analyzing its im-
pact on performance.

The evaluation is made using three different benchmarks (matrix transpose, dot prod-
uct and matrix multiplication), each one comprising several implementations.

Our results show that, although being in some cases notably slower than optimized
CUDA, OpenACC implementations can still benefit from significant performance im-
provements over serial programs executed on the CPU. Moreover, when compared with
less optimized CUDA implementations, OpenACC is shown to provide competitive per-
formance with a much simpler programming model.

Keywords: OpenACC, GPGPU, GPU programming, CUDA.



RESUMO

Programação Paralela Híbrida - Avaliação de OpenACC

OpenACC é uma nova especificação para uma API de programação paralela híbrida
(CPU + GPU), na qual o programador utiliza diretivas de compilação para distribuir a
execução do programa entre a CPU e a GPU.

Em comparação a CUDA (programação GPU direta) OpenACC apresenta vantagens
claras em termos de facilidade de programação (à semelhança de OpenMP). Com relação
à performance, entretanto, ainda não existe uma comparação entre OpenACC e CUDA.

Este trabalho visa fazer uma avaliação de OpenACC, estabelecendo uma compara-
ção com CUDA. Adicionalmente, este estudo visa identificar as principais limitações de
OpenACC, estudando seu impacto no desempenho.

A avaliação é feita usando três diferentes benchmarks (matrix transpose, dot product
and matrix multiplication), cada um composto de diversas implementações.

Nossos resultados mostram que, ainda que em alguns casos notavelmente mais lentas
que CUDA, implementações em OpenACC podem apresentar melhorias significativas de
desempenho se comparadas a programas seriais executados na CPU. Em comparação a
implementações CUDA menos otimizadas, OpenACC apresenta uma performance com-
petitiva com um modelo de programação muito mais simples.

Palavras-chave: OpenACC, GPGPU, CUDA, Programação em GPUs.
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1 INTRODUCTION

For many years programmers relied primarily on single core processors to perform
virtually any general purpose task. GPUs, on the other hand, were used almost exclusively
for graphic applications.

Following the demands of the entertainment industry, GPUs evolved to become mas-
sively parallel devices, capable of processing the thousands of triangles per second re-
quired to render the latest generation of games, a level of arithmetic throughput CPUs
were not able achieve. Figure 1.1 (NVIDIA, 2012) shows the recent evolution of CPUs
and GPUs in terms of GFLOPS (Floating Point Operations per Second).

In 2001, with the introduction of programmable shaders, developers were given con-
trol over the exact computations the GPU would perform. The programming model was,
however, still too focused on graphics to be efficient and accessible when solving other
kinds of tasks.

In 2006 NVIDIA introduced CUDA, a parallel computing platform that enabled pro-
grammers to write general purpose code that would run on GPUs. In 2007 Tesla was
announced: the first GPU specifically designed for general purpose computing. Since
then, the CUDA platform has been steadily improved in terms of software (with additions
to the API and introduction of higher level libraries) and hardware (with the loosening of
constraints and introduction of features such as caching).

As of November 2012, CUDA enabled GPUs are present in 62 supercomputers of the
Top500 list, including Titan, the current leader of the ranking (TOP500, 2012).

However, despite the significant improvement over previous GPGPU alternatives,
CUDA programming still presents some challenges, such as:

Portability CUDA is a proprietary platform, with hardware and software provided and
supported only by NVIDIA.

Ease to code/Maintainability CUDA code is still arguably hard to write and maintain.

An alternative to minimizing portability issues is OpenCL. Released in 2008, OpenCL
is an open standard initially developed by Apple and now maintained by the Khronos
Group (GROUP, 2008).

OpenACC, another open standard, was released in 2011 and aims to solve the second
issue (OPENACC, 2011a). Similarly to OpenMP (CHAPMAN; JOST; VAN DER PAS,
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Figure 1.1: GPU performance vs CPU performance.

2007), with OpenACC programmers can use directives to determine that areas of the code
should be parallelized and executed on the GPU.

1.1 Objective

OpenACC is a fairly recent standard that has not yet been evaluated. The goal of this
study is to provide an objective evaluation of OpenACC and a comparison with CUDA in
terms of features, performance and ease of programming.

Moreover, this work aims to answer the question: how much of CUDA’s performance
can be matched by OpenACC, and what exactly are the advantages in terms of ease of
programming?

Finally, we seek to identify the main limitations of OpenACC and what is their impact
on performance.

1.2 Structure of this document

Chapter 2 provides an overview of the current GPGPU programming models, dis-
cussing the OpenACC standard. Chapter 2 also introduces the NVIDIA architecture,
explaining the performance bottlenecks and which CUDA mechanisms can be used to
achieve maximum performance.

Chapter 3 explains the benchmarks that were used, the CUDA solutions and how
OpenACC was used. Chapter 4 shows the experimental results.
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2 HYBRID PARALLEL PROGRAMMING

The main idea of hybrid parallel programming is to have architecturally different com-
puting devices working together to achieve performance. Furthermore, the goal is to have
each part of the code running on the architecture that suits it better.

With the rise of GPU computing many hybrid computing platforms consist of CPUs
and GPUs. In the configuration targeted by this study, hybrid programs comprise two
parts: one executing in the host (CPU) and one executed in the device, or accelerator
(GPU).

2.1 CUDA

CUDA provides a relatively low-level programming model, in which developers are
directly responsible for the use of the resources available on the GPU, such as different
memories and thread organization.

This section describes CUDA in detail, providing a basic understanding of the GPU
architecture and explaining the mechanisms in CUDA which provide high performance.

NVIDIA architecture is constantly evolving, and this evolution usually affects the pro-
grammability, of CUDA devices. A device “programability” is represented by its compute
capability (c.c.). As of the date of this study, three major architectures have been released:
Tesla (c.c. 1.x), Fermi (c.c. 2.x) and Kepler (c.c. 3.x).

This study was made using a Fermi card, and some of the numbers and characteristics
presented are specific to this architecture.

2.1.1 Execution Model

In CUDA, GPU code is written in special functions called kenels. Kernels are func-
tions that, when launched, are executed in parallel across several threads on the GPU.

It is important to note that, in comparison with their CPU counterparts, GPU threads
are extremely lightweight, with the cost of context-switching being of only a few cycles
(KIRK; HWU, 2010). Because of such low scheduling overhead and of the massively par-
allel nature of the GPU architecture, launching a high number of threads is often required
in order to hide I/O latency with computation.

Threads are organized into blocks, which can have one, two or three dimensions, as
defined by the programmer. Blocks, in turn, are organized into one-dimensional, two-
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Figure 2.1: Grid of thread blocks.

dimensional or three-dimensional grids. The thread hierarchy can be seen in Figure 2.1.1
(NVIDIA, 2012).

Furthermore, CUDA executes instructions in a SIMT (Single Instruction Multiple
Thread) fashion. In the GPU, threads are divided into groups called warps, which ex-
ecute in lock-step (all threads in a warp execute the exact same instruction at the same
time).

2.1.2 Memory Hierarchy

There are 4 different kinds of GPU memory available to programmers:

Registers Registers, also known as local memory, are private to threads and represent
the fastest available memory. Registers also represent a very small portion of the
total memory.

A GTX 480 has 32768 available registers per block. A kernel launched with 256
threads per block, for example, contains only 128 registers per thread.

Shared memory Shared memory is local to blocks, representing the second fastest mem-
ory available. As the name suggests, shared memory can be shared across all
threads inside the block. Shared memory is also a relatively scarce resource.

A GTX 480 has 48 KiB of shared memory available per block. Previous generation
graphic cards had only 16 KiB.

Global memory Global memory is the largest and slowest memory available, and is ac-
cessible to all threads. This is also the memory the host can read and write.
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Figure 2.2: CUDA memory hierarchy.

A GTX 480 has approximately 1.5 GiB of global memory.

Constant memory Constant memory is small and globally accessible. It is faster than
the global memory, but slower than the shared memory.

A GTX 480 has 64 KiB of constant memory.

Figure 2.1.2 (NVIDIA, 2012) shows the different memories and their relation with
threads, blocks and grids.

As stated before, the programmer is responsible for the use of each of these memories.

Additionally, the Fermi architecture also features L1 and L2 caches to the global mem-
ory, which cannot be directly controlled by the programmer1 (NVIDIA, 2011).

2.1.2.1 Global memory accesses and coalescing

In c.c. 1.x GPUs (Tesla architecture), when a warp (a group of threads executing in
lock-step) fetched data from the global memory, one of the following would happen:

1The Fermi architecture features a 64 KiB shared-memory, that can be configured into 16 KiB of L1
cache and 48 KiB of shared-memory or the other way around.
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• If the requests were aligned2, memory would be accessed in a single transaction3.

• Otherwise, one transaction would be issued per request.

Because global memory accesses are much slower than computations or that other
memory accesses, ensuring coalescing is a top priority when developing CUDA programs.

The Fermi architecture, on the other hand, introduces a cached global memory access
scheme which greatly relaxes the constraints for high efficiency memory utilization.

Due to the design of the cache, however, some access patterns will still degrade per-
formance, for example:

All threads requesting the same element this will cause all requests to be serialized.

Strided accesses this will cause accesses to fall into different cache-lines. The effects of
this will be seen in practice in Chapter 3.

Overall, even though the caching system is present, the general performance guideline
is to still strieve for coalescing whenever possible.

2.1.3 Wrap up

CUDA is a powerful platform for programming GPUs, and offers great control to the
programmer. It also leaves on the hands of the programmer most of the resposibility for
achieving performance.

Some of the main goals when designing CUDA algorithms are:

• Ensuring that there is work available for all threads. This is done by chosing mas-
sively parallel problems and tuning the number of threads and blocks.

• Ensuring that there are enough threads to hide memory latency.

• Using registers and shared memory as caches to the global memory.

• Ensuring that global memory accesses are efficient.

2.2 Alternatives to “direct” GPU computing

As an attempt to make CUDA and general purpose GPU programming easier, several
alternatives have arised. This is a short, non extensive, description of the main available
options:

Thrust Thrust is a high level CUDA library of algorithms and data structures, similar to
the C++ Standard Template Library (STL). Thrust lets programmers transparently
manage vectors on the GPU and features a comprehensive set of algorithms such as
sort, prefix-sum, transform and reduce (HWU, 2011).

2Depending on the exact architecture the requirements for alignment would be more or less strict, but it
would usually involve that consecutive threads loaded consecutive regions of the memory.

3Technically, one transaction would be issued per half-warp.
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cuBLAS, cuFFT, cuSPARSE, NPP These are CUDA versions of numeric libraries. cuBLAS
(NVIDIA, 2008) is the CUDA version of the standard BLAS library. cuFFT (NVIDIA,
2010) provides a FFT implementation. cuSPARSE is the CUDA Sparse Matrix li-
brary, and NPP (Performance Primitives library) is a collection of image, video and
signal processing algorithms.

Matlab/Mathematica both Matlab and Mathematica either directly support or provide
CUDA plugins that enable some of the numerical computations to be performed on
the GPU.

These are some of the alternatives that avoid coding directly in CUDA, also being
extremely optimized and well maintained. On the other hand, these options provide a
limited set of functionality.

2.3 OpenACC

As opposed to the previous alternatives, OpenACC is not restricted to a limited set of
algorithms. With a paradigm similar to OpenMP, OpenACC defines a group of directives
that work as hints to the compiler, enabling it to offload compute-intensive regions to an
external accelerator (GPU) without any additional work of the developer.

Furthermore, OpenACC provides a generic programming model in which the same
code can be compiled to target different architectures, or even run sequentially in the
absence of a GPU.

OpenACC is an open standard, maintained by a group of four enterprises: CAPS
Enterprise, CRAY Inc, The Portland Group Inc (PGI) and NVIDIA.

2.3.1 Available compilers

Despite being an open standard, there are currently no free implementations of Ope-
nACC. By the date of this study the only compilers supporting OpenACC are offered
by PGI, CAPS and Cray. For this work the PGI Accelerator Compiler v12.9 was used
(GROUP, 2012).

OpenACC is available for C and Fortran. This study uses only the C version, but there
are no reasons to believe there would be any significant difference if Fortran was used.

2.3.2 Programming model

OpenMP programmers will be somewhat familiar with the OpenACC paradigm: both
use directives to generate parallel code out of for loops. However, OpenACC’s target
architecture, the GPU, is fundamentally different from OpenMP’s. Specific details such
as CPU-GPU data movement and kernel launch configuration are some of the key differ-
ences between OpenMP and OpenACC.

The following sections aims to provide a short introduction to the main features in
OpenACC, especially the ones used in this work. More information about the OpenACC
specification can be found in (OPENACC, 2011b).
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2.3.3 Directives

The general syntax of an OpenACC directive is:

#pragma acc <directive-name> [clauses]

There are basically two kinds of directives/clauses: execution directives and data di-
rectives.

2.3.3.1 Execution directives/clauses

The main directive is kernels, that specifies a region of the code to be translated
into a GPU kernel.

Inside a kernel area, loops can be annotated with the loop directive, defining one
dimension of the kernel.

The following clauses can be used:

vector defines the number of threads per block.

gang defines the number of blocks launched. Threads may operate on more than one
element if the total number of threads is smaller than number of elements. The total
number of threads is defined as the number threads per block times the number of
blocks.

independent Dependency occurs when computations inside a loop depend on data ex-
ternal to the loop. If dependent code is wrongly parallelized it might lead to errors
on the result. Because of such errors, the compiler is very conservative, and might
not parallelize code, even if it does not present dependencies. This directive tells
the compiler to assume the loop is independent.

2.3.3.2 Data directives/clauses

OpenACC data directives define how data is copied across host and device. In the
absence of these directives, the compiler may generate unnecessary transfers. As seen in
Subsection 2.3.4, optimizing data transfers is a key detail for improving performance.

A data region can be defined with the data directive. The main clauses are:

copy Copies the data specified to the device in the beginning of the region, and back to
the host at the end.

copyin Copies data to the device, and does not copy it back at the end.

copyout Creates uninitialized data on the device and copies it to the host at the end of the
region.

create Creates uninitialized data on the device. Never copies it to the host.

present Tells the compiler that the data required had already been copied/created on the
device by a previous directive and there is no need to copy anything.
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pcopy / pcreate / pcopyin / pcopyout The initial p is a shortcut for present_or. These
clauses do exactly the same as their counterparts, but the copy will only happen if
the data is not present.

2.3.3.3 Example

1 void sum ( f l o a t * restrict a , f l o a t * restrict b , i n t n ) {
2 #pragma acc kernels loop vector ( 2 5 6 ) copy (a [ 0 :n ] ) copyin (b [ 0 :n ] )
3 f o r ( i n t i = 0 ; i < n ; i++) {
4 a [i ] = a [i ] + b [i ] ;
5 }
6 }

Listing 2.1: Vector sum example.

Listing 2.1 shows an example code for the sum of two vectors. This code launches a
one-dimensional grid of one-dimensional thread blocks, each block is composed of 256
threads. The amount of work per thread, as well as the amount of thread blocks is defined
at launch time.

The data clauses in Listing 2.1 tell the compiler to copy the a vector back and forth,
and to only copy b from the host to the device (and not back).

2.3.4 Performance guidelines

There are a few generic peformance guidelines for OpenACC. These guidelines are
based mostly on how to ensure that the compiler has enough information to perform the
best parallelization.

Pointer arithmetic In a low-level programming language such as C, arrays are repre-
sented as contiguous areas of memory. With this representation, accesses to ele-
ments are done with simple pointer arithmetic, and there are no guarantees that the
memory position being accessed is within the limits of the array. Moreover, from
the compiler’s point of view there are no guarantees that a pointer from one array
will never “step over” other’s data.

Pointer arithmetic is not allowed inside OpenACC compute regions (only accesses
through indices, using the element[i] syntax). Moreover, the restrict key-
word can be used in array declarations to tell the compiler that arrays will never
overlap.

Additionally, irregular memory access patterns should be avoided at all cost. Each
iteration of the loop will be mapped to a different thread and, as discussed in Sec-
tion 2.1, complex memory access patterns incur in a significant overhead in CUDA.

Data movement data movement between the host and the device is very expensive, and
should be avoided whenever possible. Eliminating useless data transfers can be
done using the data directives as seen previously.

Other important aspects of minimizing data transfers include to allocate multi-
dimensional arrays in contiguous area of memory, enabling data to be copied over
much faster.
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Minimize dependencies Dependencies between loops should be minimized whenever
possible. The key for this is to try to keep data inside loops as private as possible.
Keywords such as restrict and independent help the compiler to generate
the best possible code.

2.3.5 Runtime API

The runtime API specifies routines to querying device information or chose which
device to be used. During this study no runtime function was used, except for acc_
init(device), which tells OpenACC to initialize the device, theoretically saving initial-
ization time from the first call.

However, in practice we found that the performance of the first execution was always
poorer than the rest of executions. To work around such limitation we execute all kernels
once before start measuring time.

2.4 Wrap up

This chapter introduced the concept of hybrid programming and provided an intro-
duction to CUDA and OpenACC.
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3 BENCHMARKS

Three different benchmarks were evaluated on this study of OpenACC: matrix trans-
pose, dot product and matrix multiplication. Each benchmark involves one or more Ope-
nACC implementations that are compared against one or more CUDA implementations.

This chapter introduces the experiments and explains the objectives of each one, as
well as the challenges involved and the solutions adopted. All CUDA implementations
and ideas were taken from literature, while all OpenACC solutions were developed during
this study. Results are shown in Chapter 4.

3.1 Matrix Transpose

In linear algebra, a matrix can be transposed by being reflected over its main diagonal.
The rows of the transposed matrix are therefore the columns of the original matrix and
vice versa. Figure 3.1 shows a matrix and its transpose.

Implementation-wise, matrices are internally represented as contiguous regions of
memory (organized in row-major order in this study). As it can be seen in Figure 3.2,
this layout causes memory to be sometimes accessed in a non-contiguous way when per-
forming the transpose.

In a GPU programming context, benchmarking different matrix transpose methods
has no other purpose but to measure the impact of different memory access patterns on
the overall performance.

This benchmark will be structured around the comparison of a simple matrix copy
kernel with several transpose implementations. For the sake of simplicity, the matrices
used on all benchmarks are square.

A =

[
1 2 3
4 5 6

]
A′ =

 1 4
2 5
3 6


Figure 3.1: Matrix A and its transpose A′.



23

Aligned Reads  

Strided Writes

Figure 3.2: Non-coalesced write accesses on row-major matrix transpose.

3.1.1 Transpose in CUDA

The CUDA benchmark features 4 kernels: copy, naive transpose, coalesced trans-
pose and bank conflict free transpose. All implementations are described in (RUETSCH;
MICIKEVICIUS, 2009).

All kernels are launched with blocks of size 32x8, and each thread block operates on
a 32x32 block of the matrix. With this setup, each thread is responsible for transposing/-
copying 4 elements.

The host code for all kernels is the same. It allocates and initializes the matrices,
launches the kernels and checks for the correctness of the output.

Unlike the rest of the benchmarks, the measured time only includes actual kernel
time, excluding setup and host-device memory copies as they would dominate the mea-
surements.

3.1.1.1 Copy

In this kernel, each thread is responsible for copying four elements from the input
matrix to the output matrix.

Each thread reads from the input matrix and writes to the output matrix in the exact
same position, ensuring coalesced accesses to the global memory.

Given its simplicity and regularity, this kernel achieves the maximum prectical through-
put, and has therefore been chosen as the main comparison point.

3.1.1.2 Naive transpose

The naive transpose is also a simple kernel. It is similar to the copy kernel, and simply
swaps the output matrix indices.

From Figure 3.2 it is easy to see that such approach will not produce coalesced ac-
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cesses to the global memory: threads perform coalesced reads but strided writes.

3.1.1.3 Coalesced transpose

This implementation makes use of the shared memory to avoid the strided global
memory accesses. The basic idea is to decompose the transposition in two steps:

1. Read global memory in a coalesced way and store it in the shared memory: Thread
(i, j) reads Mi,j from the global memory and stores it in position (i, j) of the shared
memory.

2. Read from the shared memory (already in transposed order) and write to the global
memory in a coalesced way: Thread (i, j) reads position (j, i) from the shared
memory and stores it in Mi,j in the global memory.

The reason why this approach works is that there is no penality for non-aligned ac-
cesses to the shared memory. This makes it a perfect intermediate buffer to ensure global
memory aligned accesses.

3.1.1.4 Bank conflict free transpose

The bank conflict free transpose is even more interesting, even though it translates
into a very small change to the coalesced transpose source code.

Shared memory is implemented as a series of memory modules, named banks. Ac-
cessing memory in different banks can be done in parallel, but concurrent accesses to the
same bank must be serialized.

Banks are organized in such a way that consecutive words are assigned to consecutive
banks. Bank conflicts occur because in the coalesced transpose the size of the shared
memory cache is a multiple of the size of a warp, and because of the scheme of accesses.

While this problem may seem complicated, the solution is surprisingly simple: instead
of allocating shared memory caches of 32x32, we allocate caches of 32x33. The extra
column is never used by the program, but the padding causes the accesses to be distributed
in a better way across the banks.

3.1.2 Transpose in OpenACC

As seen in the previous section, all efforts to improve the performance of the transpose
are based on the use of shared memory to improve the efficiency of accesses to the global
memory.

OpenACC provides, however, a much more abstract programming model in which
details such as shared memory utilization are out of reach.

Benchmarks copy and transpose feature a few implementations, ranging from the most
naive one (the result of simply adding OpenACC directives) to more elaborate ones.

Rather than to optimize the use of memory, the main focus of optimizations in Ope-
nACC is the tuning the amount of work per thread.
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Similarly to CUDA, all OpenACC benchmarks define TILE_DIM as 32 and BLOCK_
ROWS as 8.

3.1.2.1 Copy

The initial implementation is shown in Listing 3.1 and is the result of adding the
#pragma acc kernels loop directive to the copy.

1 #pragma acc kernels loop independent
2 f o r ( i n t i = 0 ; i < n*n ; i++) {
3 out [i ] = in [i ] ;
4 }

Listing 3.1: Simple OpenACC copy.

The first modification to this kernel is to make it 2D. This can be seen in Listing 3.2.
Moreover, this second implementation uses the idea of forcing the compiler to generate
code that does more work per thread.

The kernel in Listing 3.2 launches a grid of n/TILE_DIM by n/TILE_DIM
blocks (as specified by the two gang parameters). Each block, however, has dimensions
TILE_DIM (32) by BLOCK_ROWS (8). Therefore, in order to cover the whole ma-
trix each thread will have to operate over 4 elements, exactly like in the CUDA version.

1 #pragma acc kernels loop independent gang (n /TILE_DIM ) vector (←↩
TILE_DIM )

2 f o r ( i n t i = 0 ; i < n ; i++) {
3 #pragma acc loop independent gang (n /TILE_DIM ) vector (BLOCK_ROWS )
4 f o r ( i n t j = 0 ; j < n ; j++) {
5 out [j + i * n ] = in [j + i * n ] ;
6 }
7 }

Listing 3.2: 2D OpenACC copy.

The last copy kernel family attempts to “manually” force each thread to operate over
more elements. This is done by adding an extra for loop inside each thread, making it
iterate over n/BLOCK_ROWS elements. The code can be seen in Listing 3.3.

1 #pragma acc kernels loop independent vector (TILE_DIM )
2 f o r ( i n t j = 0 ; j < n ; j++) {
3 #pragma acc loop independent vector (BLOCK_ROWS )
4 f o r ( i n t i = 0 ; i < BLOCK_ROWS ; i++) {
5
6 f o r ( i n t k = 0 ; k < n ; k+=BLOCK_ROWS ) {
7 out [j + (i + k ) * n ] = in [j + (i + k ) * n ] ;
8 }
9

10 }
11 }

Listing 3.3: OpenACC copy with extra inner loop.
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3.1.2.2 Transpose

The OpenACC transpose kernels follow the same ideas introduced in the copy bench-
mark. The first implementation can be seen in Listing 3.4 and is the result of the simple
addition of OpenACC directives to a transpose code.

1 #pragma acc kernels loop independent
2 f o r ( i n t j = 0 ; j < n ; j++) {
3 #pragma acc loop independent
4 f o r ( i n t i = 0 ; i < n ; i++) {
5 out [j + i * n ] = in [i + j * n ] ;
6 }
7 }

Listing 3.4: Naive OpenACC transpose.

Another version of Listing 3.4 uses the same idea of Listing 3.2 to force more work
per thread.

Finally, Listing 3.5 uses an inner loop to force threads to do more work, similarly to
Listing 3.3.

1 #pragma acc kernels loop independent vector (TILE_DIM )
2 f o r ( i n t j = 0 ; j < n ; j++) {
3 #pragma acc loop independent vector (BLOCK_ROWS )
4 f o r ( i n t i = 0 ; i < BLOCK_ROWS ; i++) {
5
6 f o r ( i n t k = 0 ; k < n ; k+=BLOCK_ROWS ) {
7 out [j + (i + k ) * n ] = in [ (i + k ) + j * n ] ;
8 }
9 }

10 }

Listing 3.5: OpenACC transpose with extra inner loop.

3.1.2.3 Attempts to use shared memory

OpenACC does not offer support to direct management of shared memory, but it gen-
erates code that uses shared memory whenever it detects it. As shown in Chapter 4, none
of the implementations above generated code that used the shared memory.

There were, however, unsuccessful attempts to force the compiler into using shared
memory, from which we can highlight:

• Dividing the two main for loops into several small ones, and hoping that each one
of them would be mapped to one block and make use of shared memory.

• Allocating another matrix (using the create directive) with same dimensions as
the main matrix and using blocks of it as the blocks of the shared memory.

3.2 Dot Product

In mathematics, the dot product between two equal-lenghted vectors is defined as
follows:
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(x1, x2, . . . , xn) · (y1, y2, . . . , yn) = x1y1 + x2y2 + · · ·+ xnyn

In computing, the dot product can be seen as a reduction over the pairwise multiplica-
tion of the elements of two vectors.

This benchmark was chosen to evaluate whether OpenACC is able to automatically
generate code for a reduction, and if so, how performant it is.

3.2.1 Dot Product in CUDA

CUDA is not the ideal platform to perform reductions. Reductions may not be con-
sidered massive data parallel problems, having the amount of computations (n) equal to
the amount of data (n).

Nevertheless, reductions are interesting problems to analyze, and are often used as
part of a larger problem. It usually better to use sub-optimal algorithms in the GPU than
to transfer data back and forth from the host.

The CUDA dot product algorithm analyzed in this study is presented in (SANDERS;
KANDROT, 2010), and consists of 4 main steps. Assuming vectors X, Y of size n, n
threads are launched, organized in blocks of size B:

1. Each block declares a shared-memory cache of size B (one “slot” for each thread
in the block).

2. Each thread i computes X[i]∗Y [i] and stores it in its slot of the cache. At this point
the two vectors have been pairwise multiplied and the result is stored in shared
memory.

3. Each block performs a sum reduction on its elements. This is done in O(logB)
steps, as seen in Figure 3.3.

4. In the CPU, the partial results are summed.

In practice, instead of launching one thread per element, a much smaller number is
launched, causing each thread to operate on multiple elements. Therefore, in step 2 in-
stead of computing one product, each thread computes several products and stores their
sum in the cache.

Although all accesses to the global memory are made in a coalesced way, resources
utilization is not optimal in step 3.

3.2.2 Dot Product in OpenACC

The OpenACC Dot Product is a straightforward implementation as shown in List-
ing 3.6.

1 ff res = 0 ;
2 #pragma acc kernels loop
3 f o r ( i n t i = 0 ; i < n ; i++) {
4 res += v1 [i ] * v2 [i ] ;
5 }
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} log n steps

Figure 3.3: Parallel reduction inside each block.

6 re turn res ;

Listing 3.6: Dot product in OpenACC.

The interesting part of this implementation is that the compiler is actually able to de-
tect the reduction and generate specific code for it. The developer is informed a reduction
has been generated by the compiler output.

3.3 Matrix Multiplication (sgemm)

In mathematics, matrix multiplication is a binary operation that takes a pair of matrices
and produces another matrix.

This study refers to the matrix multiplication as sgemm (Single-precision General Ma-
trix Multiplication). All matrices used are square, and for the sake of simplicity matrices
are referred as A, B and C, where:

C = A ∗B

On the computation of a matrix multiplication, the element (i, j) in the resulting ma-
trix is the result of the dot product of the ith line of the first matrix with the jth column of
the second matrix.

Matrix multiplication is a classic example of a parallel benchmark, featuring an inter-
esting scheme with n2 independent operations of cost n.

3.3.1 sgemm in CUDA

The CUDA implementations are described in (KIRK; HWU, 2010).

Following the idea of the matrix transpose benchmark, there are three matrix multi-
plication implementations: naive, shared-memory and cuBLAS.
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A

B

C

Figure 3.4: Matrix multiplication access patterns.

3.3.1.1 Naive implementation

In the naive implementation, n2 threads are launched, each thread (i, j) being respon-
sible for computing its respective element in C (thread (i, j) computes element (i, j)).
Each one of the n2 threads performs n operations, as shown in Figure 3.4.

3.3.1.2 Shared-memory implementation

Much like the naive matrix transpose algorithm, the multiplication described above
generates non aligned accesses, as can be seen in Figure 3.4.

Moreover, many accesses are redundant. When computing the ith row of C, each
thread loads different columns from B, but all threads read the exact same row from A.

Once again, shared memory is used to cache global memory accesses and increase
performance.

3.3.1.3 cuBLAS

cuBLAS is the BLAS library for CUDA developed by NVIDIA. The implementa-
tion of the matrix multiplication is highly optimized. cuBLAS is closed-sourced, and no
implementation details are provided.

In terms of programmability, using cuBLAS is as simple as using a regular library.

3.3.2 sgemm in OpenACC

Listing 3.7 shows the first version of the OpenACC sgemm, which results of the simple
addition of the OpenACC directives.

It is interesting to notice that, in this code, the intermediate sum of the products have
been stored on a local variable (sum) rather than on the final vector (c). This not only
avoids several writes to the global memory, but also ensures that the loops are fully paral-
lelizable.

1 #pragma acc loop gang vector ( 3 2 ) independent
2 f o r ( i n t j = 0 ; j < n ; ++j ) {
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3 #pragma acc loop gang vector ( 3 2 ) independent
4 f o r ( i n t i = 0 ; i < n ; ++i ) {
5 f l o a t sum = 0 ;
6 f o r ( i n t k = 0 ; k < n ; ++k ) {
7 sum += a [j + n * k ] * b [k + n * i ] ;
8 }
9 c [i + n * j ] = sum ;

10 }
11 }

Listing 3.7: Matrix multiplication with OpenACC.

Two other similar implementations were made: one in which the gang parameter is
tuned to force more work per thread (as in Listing 3.2) and another where the inner loop
is manually unrolled into blocks of 32.

Typical CPU sgemm implementations swap the indices of the three loops to maximize
cache-hits when iterating over the matrices. This is not a good idea in OpenACC imple-
mentation, since matrices A and B are not really being “iterated over”. In the OpenACC
solution, a bi-dimensional grid of threads is being launched to cover each one of the cells
in C. Swapping the order of the indices would cause each thread to be responsible for
computing one multiplication of each of the elements in a row/column, rather than an
entire element of the C matrix.

3.3.2.1 Attempts to use shared memory

Like in the transposition, there were attempts to make the compiler use shared memory
as caching, mainly trying to decompose the multiplication in small blocks. As in the
transposition, such attempts did not generate shared memory usage.

3.4 Wrap Up

This chapter introduced the benchmarks proposed, as well as the several solutions
studied. A common focus of optimization of the CUDA benchmarks was, as previously
mentioned in Section 2.1, the use of shared memory to cache memory accesses and to
ensure global memory efficiency. OpenACC optimizations, on the other hand, focused on
tuning the amount of work per thread.
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4 EXPERIMENTAL RESULTS

This chapter describes the results from each of the benchmarks introduced in Chap-
ter 3.

4.1 Metrics

The following metrics were used to evaluate the benchmarks:

Throughput Throughput is defined as the amount of processed (copied/transposed) mem-
ory in a time interval, and is measured in Gb/s. The throughput T can be calculated
with this formula:

T =
B

109 ∗ time

Where B is the amount of data in bytes read and written by the kernel and time is
the execution time in seconds.

Speedup we will define speedup as the execution time of the sequential algorithm run-
ning on the CPU divided by the execution time of the parallel algorithm running on
the GPU. The speedup S is defined by the following formula:

S =
TCPU

TGPU

Tests of the Matrix multiplication and Dot product benchmarks were run 10 times.
Matrix transpose tests were run 100 times. The average of all executions was measured.
These numbers were sufficient to get reliable results with negligible standard deviations.

4.2 Machine used

All benchmarks were executed on a GeForce GTX 480, with compute capability 2.0,
480 cores and 1.5 GB of total global memory. The CUDA driver version was 5.0. The
compiler used was the PGI Accelerator Compiler 12.9.

The CPU is an Intel® Core™ i7 930, with 4 cores at 2.80GHz, 8MB of cache and 12
GB of total RAM memory.
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Registers Shared Mem. Constant Mem. Thread block size Grid size
acc_1d_naive 12 0 60 128 unknown

acc_1d_par 12 0 60 128 *
acc_2d_inner 22 0 64 32x8 unknown
acc_2d_naive 14 0 64 64x4 unknown

acc_2d_par 14 0 64 32x8 *

Table 4.1: Compilation results for copy.

4.3 Matrix Transpose

This section presents the results for the matrix transpose implementations.

4.3.1 Theoretical maximum throughput

Measuring the theoretical maximum throughput of the used GPU is important in order
to have a main point of comparison for the copy/transpose benchmarks.

With a memory clock rate of 1848 MHz (1848 ∗ 106Hz) and a memory bus width of
384 bits (48 bytes), the theoretical maximum throughput achievable by the GTX 480:

(1848 ∗ 106)Hz ∗ (48 ∗ 2)B = 1774086 Bytes/s = 177.4 GB/s

In practice, other factors such as kernel initialization and scheduling overhead make
it impossible to obtain this throughput.

4.3.2 Copy

Recalling the copy implementations:

acc_1d_naive simple 1D copy with an OpenACC loop pragma.

acc_1d_par 1D copy with parameter tuning (threads per block times number of blocks
is smaller than the size of the matrix).

acc_2d_inner 2D copy with inner loop.

acc_2d_naive simple 2D copy with just the loop pragma.

acc_2d_par 2D copy with parameter tuning.

Table 4.1 shows the compilation results for the copy OpenACC implementations. No-
tice that the grid size is either unknown - in which case the compiler is free to choose it
upon launch (typically chosing a scheme such that each thread works on one piece of the
problem) - or is a configuration that, upon launch, will respect the work ratio specified
before (noted as “*” on the table).

Figure 4.1 shows the performance of all the copy benchmarks. As expected, not even
CUDA is able to reach the maximum theoretical throughput, approaching on average
0.75% of the theoretical 177.4 GB/s.
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From Figure 4.1, the best performing version is acc_2d_inner. The 1D approaches
(acc_1d_naive and acc_1d_par) are very inneficient for small instances, but become as
efficient as acc_2d_inner with matrices as large as 10240x10240.

The intriguing result is the relation between acc_2d_inner and acc_2d_par. One
would expect the two of these to have similar performances, since they should perform the
same operations. The parameter tuned version of copy is, however, significantly slower
than its “manually” tuned counterpart.

It is also possible to see that for smaller matrices (for which the processing time is less
significant) the startup time for OpenACC is much higher than for CUDA. Overall this is
also true, as can be seen that OpenACC’s running time tends to differ by a constant offset
from CUDA’s. The higher launch overhead is understandable, and is unlikely to represent
a big problem on real tests.
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Figure 4.1: Matrix copy results.

4.3.3 Transpose

Recalling the transpose implementations from Chapter 3:

acc_naive simple kernel with no tuning.

acc_inner_loop kernel with inner loop

acc_par_tuning kernel with parameter tuning.
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Registers Shared Mem. Constant Mem. Thread block size Grid size
acc_naive 17 0 64 64x4 unknown

acc_inner_loop 22 0 64 32x8 unknown
acc_par_tuning 27 0 64 32x8 *

Table 4.2: Compilation results for transpose.

% theoretical maximum % CUDA copy
CUDA copy 76.0 100.0

CUDA transpose 66.7 87.7
OpenACC copy 66.7 87.7

OpenACC transpose 45.6 59.9

Table 4.3: Percentage of the theoretical and pratical optimal solutions.

cuda_naive naive CUDA.

cuda_coal coalesced CUDA.

cuda_opt bank conflict free CUDA.

The performance of the matrix transposes can be seen in Figure 4.2. The results of the
compilation can be seen in Table 4.2.

It is interesting that, for this set of benchmarks, the best performance from OpenACC
is observed with the naive implementation with parameter tuning (acc_par_tuning), rather
than the one with an inner loop (acc_inner_loop). This contrasts with the results obtained
from the copy kernel and gives us an impression that getting the most performing Ope-
nACC implementation may require some experimentation. It was not possible to further
investigate why these results were produced, since none of the codes generated in the
experiments are human-readable.

Another interesting fact is that an OpenACC transpose (acc_par_tuning) can be faster
than a CUDA coalesced transpose. In fact, it is in average 18% faster, even though it does
not use shared memory. This pattern (OpenACC faster than naive CUDA) is found in the
next benchmarks as well, and can be explained by the fact that the Fermi cache amor-
tizes the cost of global memory accesses. Moreover, unlike the CUDA implementations,
OpenACC makes use of constant memory.

4.3.4 Summary

Figure 4.3 shows the aggregated results for both copy and transpose benchmarks.
Table 4.3 shows the percentual difference from each one of the best implementations to
the theoretical maximum and to the pratical maximum. In this measurement matrices
smaller than 2048x2048 were discarded in order to exclude the initialization overhead.

4.4 Dot Product

The dot product benchmark is interesting for its comparison with CUDA, given that
both implementations perform significantly worse than the serial version, as seen in Fig-
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Figure 4.2: Matrix transpose results.

ure 4.4.

The interesting detail is that both implementations have almost the same results, what
shows us that OpenACC actually generated CUDA-equivalent code. Given the relative
complexity of the CUDA code involved, this is quite impressive.

4.5 Matrix Multiplication (sgemm)

Recalling matrix multiplication implementations:

acc the naive OpenACC implementation with blocks of 32x32.

acc_par each thread operates on 4 cells of the result matrix.

acc_loop features a manually unrolled loop over 32 elements.

cuda_naive simple naive implementation with CUDA.

cuda_opt shared memory aware implementation.

cublas cuBLAS sgemm.

Matrix multiplication results are shown in Figure 4.5.
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Figure 4.3: Comparison of the best OpenACC/CUDA copies and transposes.

Registers Shared Mem. Constant Mem. Thread block size Grid size
acc 24 0 80 128 unknown

acc_par 22 0 80 32x8 *
acc_loop 63 0 80 128 unknown

Table 4.4: Compilation results for sgemm.

It is possible to see that all OpenACC implementations have the peformance, being
relatively better than the naive CUDA and worse than the optimized CUDA.

OpenACC implementations are better than naive CUDA. This shows that if one is not
familiar with CUDA, or is not willing to optimize his code, OpenACC might be a better
option.

The cuBLAS implementation shows the maximum performance achievable, which is
significantly faster than any other implementation. This kind of performance can only be
achieved with thorough optimizations and fine-grained tuning. As seen in the previous
sections, this is far from possible with OpenACC.

From a developers standpoint, the main advantage of a GPU solution is the compari-
son with a serial solution. Even though OpenACC shows a poor results when compared
to a thoughtful CUDA implementation, the speedup relative to the serial implementation
is around 45x for matrices of size 2048x2048, as shown in Table 4.5.
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1024x1024 2048x2048 4096x4096
acc 36.5 45.2 45.9

cuda_naive 26.4 29.3 29.4
cuda_opt 85.9 98.8 100.4

cublas 143.0 242.4 301.4

Table 4.5: GPU speedups for sgemm.
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5 CONCLUSION

This work experimentaly evaluated OpenACC and compared it to CUDA using three
main benchmarks, each one comprising several implementations.

This chapter summarizes the results and tries to answer the initial question: how much
of CUDA’s performance can be matched by OpenACC, and what exactly are the advan-
tages in terms of ease of programming?

Programmability/Maintainability OpenACC provides a much simpler programming
paradigm than CUDA.

Also, although OpenACC and OpenMP share many common principles, OpenACC
still targets a completely different architecture, which must be taken into account in
order to attain good results.

That said, OpenACC provides a great way to accelerating legacy code, as the mod-
ifications required are quite small and the parallelization would not be made other-
wise. It also provides a starting point for programmers with little GPGPU experi-
ence, as they can profit from some of the performance of GPUs without sacrificing
productivity.

Overall, OpenACC is very maintainable and easy to develop. Code produced is
portable across different platforms.

From a performance standpoint, however, relying on existing libraries such as cuBLAS
(used in the matrix multiplication benchmark) or the ones mentioned in Chapter 2
may provide much better results with virtually the same added complexity.

Performance OpenACC’s higher level model comes at the cost of performance and ex-
pressivity. OpenACC can provide a lot of improvement over serial code, but results
are still far from what is observed in handwritten CUDA.

The main disadvantage arises from the significant loss of control over the generated
code. This is particularly impactful when it comes to managing the use of the
different memories, a key point for GPU programming optimization.

Performance is, however, good enough for OpenACC to be considered against a
naive or non-optimized CUDA implementation.

Expressivity OpenACC represent a much more rigid and limited model than CUDA,
only allowing regular for loops to be parallelized.
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Moreover, OpenACC does not provide other interesting features, such as atomics,
which are available in CUDA.

Overall, OpenACC’s abstract model allows a smaller set of problems to be paral-
lelized efficiently.

5.1 Future of GPUs and OpenACC

Right now, achieving a good speedup with CUDA depends deeply on fine-grained
optimizations, but this picture is gradually changing with the evolution of GPUs.

The introduction of the Fermi architecture in 2010 brougth transparent caching to
GPUs and to CUDA, making it a much friendlier platform. Furthermore, at each new
CUDA device architecture, the constraints for memory efficiency are relaxed and GPUs
become overall more flexible.

If it gets easier for programmers to write efficient code, the same holds true for com-
pilers. Future graphic cards, together with newer versions of the OpenACC standard and
improved compilers are likely to reduce the gap between OpenACC and CUDA.

Handwritten CUDA performance, however, is unlikely to be matched anytime soon,
and OpenACC will probably become a tool such as OpenMP, in which the simplicity
comes at the expense of performance.
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APPENDIX A COMPILING AND PROFILING OPENACC

Compiling OpenACC code using the PGI Accelerator compiler can be done with the
following command:

pgcc -acc -o <binary name> <sources>

Moreover, the compiler can display useful information about the compilation when
the option -Minfo=acc is added. Figure A.1 shows the compiling output from a simple
kernel.

The most important information to be extracted from the compilation output is the
usage of registers, shared memory and constant memory, as well as the kernel launch set-
tings (number of threads per block, number of blocks...). Moreover, the compiler output
shows information about memory transfers, which as mentioned in 2.3.4 is a fundamental
part of the OpenACC parallelization.

The compiler will also display here information about issues with parallelization, such
as inter-loop dependencies.

Enabling the profiler in OpenACC can be done either by adding the option -Minfo=time
to the pgcc compiler.

Additional options can enable features such as storing the resulting CUDA bytecode
(PTX) or even the generated CUDA code (which is not meant to be human-unreadable

Figure A.1: PGCC compiler output showing information about the generated GPU code.
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Figure A.2: OpenACC profiler output.

and is not very useful in practice).

Profiling information can be seen in Figure A.2, and includes information about host-
device memory transfers, initialization and kernel execution times. This information is
particularly useful to detect regions where memory is being unnecessarily transfered and
to visualize in which parts of the program time is being spent.


