
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

LEONARDO FERNANDO DOS SANTOS MOURA

An Efficient Dynamic Programming
Algorithm For The Unbounded Knapsack

Problem

Final Report presented in partial fulfillment of the
requirements for the degree of Bachelor of
Computer Science

Profa. Dra. Luciana Buriol
Advisor

Porto Alegre, December 14th, 2012

CIP – CATALOGING-IN-PUBLICATION

Leonardo Fernando dos Santos Moura,

An Efficient Dynamic Programming Algorithm For The Un-
bounded Knapsack Problem /

Leonardo Fernando dos Santos Moura. – Porto Alegre: PPGC
da UFRGS,

.

57 f.: il.

Final Report – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS,

. Advisor: Luciana Buriol.

1. Unbounded Knapsack Problem. 2. Cutting Stock Problem.
3. Column Generation. I. Buriol, Luciana. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitora de Graduação: Profa. Valquiria Link Bassani
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do CIC: Prof. Raul Fernando Weber
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGMENTS

First I would like to thank my parents, Vitor and Raquel, for all their support through-
out undergraduation.

Secondly, I would like to thank my Advisor, Luciana Buriol, for all her attention and
shared knowledge. And all the professors who guided me through this journey. A special
thanks is due to my former advisor Aline Villavicencio, who inspired me to pursue an
academic career.

Last but not least, I want to thank all my friends, that I saw grow academically and
personally with me. Leonardo, Wagner, Júlia, Tomaz, Alessandro, André, Kauê, Cassio,
among many others.

ABSTRACT

This report describes an algorithm for the Unbounded Knapsack Problem based on the
algorithm EDUK (Efficient Dynamic Programming for the Unbounded Knapsack Prob-
lem). EDUK takes advantage of the problem properties of dominance and periodicity
to speed up computation. This algorithm is compared with other implementations and
it is tested both with randomly generated instances and with instances generated from a
delayed column generation for the Cutting Stock Problem. This report also contains an
analysis of unbounded knapsack instances.

Keywords: Unbounded Knapsack Problem, Cutting Stock Problem, Column Genera-
tion.

CONTENTS

CONTENTS . 7

LIST OF FIGURES . 11

LIST OF TABLES . 13

LIST OF ALGORITHMS . 15

1 INTRODUCTION . 17

1.1 Contribution . 18

1.2 Structure of this report . 18

2 THE UNBOUNDED KNAPSACK PROBLEM 19

2.1 Problem Definition . 19

2.2 Dominance . 20

2.3 Efficiency . 20

2.4 Methods used for Solving UKP . 21

2.4.1 An Approximate Method . 22

2.4.2 Branch & Bound . 22

2.4.3 Dynamic Programming . 24

3 THE CUTTING STOCK PROBLEM . 27

3.1 Problem Definition . 27

3.2 Delayed Column Generation . 29

3.2.1 Example . 31

3.2.2 Generation of the Initial Columns . 32

4 INSTANCES GENERATED FOR THE UNBOUNDED KNAPSACK AND
CUTTING STOCK PROBLEMS . 33

4.1 Unbounded Knapsack Problem Instances 33

4.1.1 Realistic Random Instances . 33

4.1.2 Hard Instances . 33

4.1.3 Similarity between UKP instances generated in sequence 33

4.2 Cutting Stock Problem Instances . 35

4.2.1 Discrete Union Distributions . 35

4.2.2 Bounded Probability Sampled Distributions 35

5 IMPLEMENTATION . 39

5.1 Unbounded Knapsack Problem . 39

5.1.1 myEDUK . 39

5.2 Column Generation for the Cutting Stock Problem 41

6 RESULTS . 43

6.1 Parameters Testing . 43

6.2 Unbounded Knapsack Problem Tests . 44

6.2.1 Realistic Random instances . 44

6.2.2 Hard Instances . 45

6.3 Cutting Stock Problem Tests . 47

6.3.1 Discrete Uniform Distributions . 47

6.3.2 Bounded Probability Sampled Distributions 49

6.4 Linear Programming time versus UKP 50

7 CONCLUSION AND FUTURE WORK 53

REFERENCES . 55

LIST OF ABBREVIATIONS AND ACRONYMS

EDUK Efficient Dynamic Programming for the Unbounded Knapsack Problem

UKP Unbounded Knapsack Problem

CSP Cutting Stock Problem

FPTAS Fully Polynomial-Time Approximation Scheme

B&B Branch & Bound

DP Dynamic Programming

FFD First Fit Decreasing

LIST OF FIGURES

2.1 Dominance Relations . 21

3.1 Cutting Stock Example . 27

4.1 Similarity between UKP instances generated in sequence by column
generation on a instance of type U{1,15000,28000} with n = 18970 . 36

4.2 Similarity between UKP instances generated in sequence by column
generation on a instance of type BS{1,12000,20000,800} with n =
40000000 . 37

LIST OF TABLES

4.1 Mean of Similarity between items generated in sequence by using the
column generation method on instances of type U{1, 600, 1000} . . . 34

4.2 Mean of Similarity between items generated in sequence by using the
column generation method on instances of type U{1, 6500, 10000} . 35

4.3 Mean of Similarity between items generated in sequence by column
generation on instances of type U{1, 15000, 28000} 35

4.4 Mean of Similarity between items generated in sequence by using the
column generation method on instances of type BS{1, 6000, 10000,
400} . 36

4.5 Mean of Similarity between items generated in sequence by using the
column generation method on instances of type BS{1, 12000, 20000,
800} . 36

6.1 Parameters Tests on Large Realistic Random Instances. 44

6.2 Benchmark set used by the authors of EDUK 45

6.3 Realistic Random Instances . 46

6.4 Hard UKP Instances . 47

6.5 U{1, 600, 1000}. 48

6.6 U{1, 6500, 10000}. 48

6.7 U{1, 15000, 28000}. 48

6.8 U{200, 600, 1000}. 48

6.9 BS{1, 6000, 10000, 400}. 49

6.10 BS{1, 12000, 20000, 800}. 49

6.11 BS{2000, 6000, 10000, 2000}. 49

6.12 Linear Programming time versus UKP: U{1, 600, 1000} 50

6.13 Linear Programming time versus UKP: U{1, 6500, 10000} 50

6.14 Linear Programming time versus UKP: U{1, 15000, 28000} 51

6.15 Linear Programming time versus UKP: U{200, 600, 1000} 51

6.16 Linear Programming time versus UKP: BS{1, 6000, 10000, 400} . . 51

6.17 Linear Programming time versus UKP: BS{1, 12000, 20000, 800} . . 51

7.1 Detailed Parameters Tests on Large Realistic Random Instances. . . . 57

LIST OF ALGORITHMS

1 Branch & Bound. 23

2 Classic Dynamic Programming Algorithm for UKP. 24

3 Backtracking method for obtaining the UKP optimal solution. 26

4 Column Generation for the Cutting Stock Problem. 31

5 First Fit Decreasing Heuristic. 32

6 myEDUK threshold dominance checking. 40

7 myEDUK . 41

17

1 INTRODUCTION

Suppose a hardware store owner has a limited shelf space on his store, and he wants to
select the most profitable products in stock that fit in his shelves. Such problems arise on a
daily basis in industry and commercial applications. They usually involve a large array of
decisions, many of which are dependent on each other. As problems get bigger, they tend
to become impossible to solve manually. Digital computers enhanced our capabilities to
solve problems, and also made possible the solution of a wider range of problems that
were previously thought impossible to solve. But, which problems are easy and which
problems are hard?

A considerable research effort has been directed toward the classification of problems.
Stephen Cook’s seminal work [6] introduces the idea of classifying problems “hardness”
according to their relation with other problems. A problem A is at least as hard as a
problem B if an algorithm that solves A can also be used to solve B, in which case it is
said that B is reducible to A. Problems that are reducible from hard problems are called
“NP-Complete”. Such problems are deemed hard for a computer to solve, such that many
people think all large instances of NP-Complete problems are impossible to be solved in
a reasonable time. This actually is false.

Since the publication of Cook’s paper, much work has been done in the classification
and efficient resolution of NP-Complete problems. Different solving techniques and im-
provements on the computational speed of modern computers have led to the resolution
of bigger and bigger instances of different problems.

The 1972 paper of Richard Karp [16] presents twenty-one problems that are classified
as NP-Complete. Among those problems is the Knapsack Problem, a slightly different
variant of the one used in this report. The knapsack problem consists in filling a knapsack
of limited weight with different items, each item having a weight and a value, maximizing
the total value without exceeding the weight limit of the knapsack. This kind of problem
arises whenever one has to select from a list of different things the best one according to
a given criterion when there is a limited amount of resources. For example, suppose one
wants to invest on different companies. Each company has an estimated profitability and
cost and one has a finite amount of money to invest. This problem can be modeled as a
Knapsack Problem.

One of the most interesting uses of the Unbounded Knapsack problem is in delayed
column generation for Linear Programming problems. Column generation is a technique
used to solve Linear Programming problems that seem intractable due to their large num-
ber of constraints or variables. More details about this technique is given in Section 3.2.

18

1.1 Contribution

This report describes the implementation of an algorithm for the Unbounded Knap-
sack Problem based on the algorithm EDUK (Efficient Dynamic Programming for the
Unbounded Knapsack Problem), first described in [1]. This algorithm is tested with large,
randomly generated Unbounded Knapsack problem instances.

Furthermore, the implemented Unbounded Knapsack problem algorithm is integrated
in a solver, described in [7], for the Cutting Stock Problem. This solver uses the de-
layed column generation technique, combining the commercial linear optimization solver
CPLEX with different Unbounded Knapsack Problem algorithms.

Briefly, the contributions of this report are the following:

• Implementation of an algorithm for the Unbounded Knapsack Problem in an im-
perative programming language;

• Efficient iterative method for detecting threshold dominance;

• Test and analysis of the parameters of EDUK;

• Analysis of the characteristics of instances generated by the column generation al-
gorithm; and

• Analysis of the behavior of the implemented algorithm coupled with a column gen-
eration algorithm for the Cutting Stock Problem.

1.2 Structure of this report

This report is structured as follows: Chapter 2 defines the Unbounded Knapsack Prob-
lem and describes some of its characteristics. In Chapter 3, the Cutting Stock problem and
the delayed column generation technique are explained. Chapter 4 describes the generated
instances for the Unbounded Knapsack Problem and the Cutting Stock problem. Next,
the implementation details are exposed. Finally, in Chapter 6 some tests are presented to
compare the proposed solutions.

19

2 THE UNBOUNDED KNAPSACK PROBLEM

2.1 Problem Definition

The Unbounded Knapsack Problem (UKP) is a widely studied NP-hard optimization
problem [20] with an extensive range of applications in industry and financial manage-
ment [24]. Informally, a set N of item types is given, each item type i has a weight wi

and a profit pi. The goal is to fill a knapsack of limited capacity C with a linear combina-
tion of the item types in N , maximizing the sum of the profits of the selected items and
respecting the capacity constraint. Consider xi ∈ N as the decision variable that indicates
the number of copies of the item type i in the solution, then the Unbounded Knapsack
problem can be stated as an integer linear program:

max
∑
j∈N

xjpj

s.t.
∑
j∈N

xjwj ≤ C

xj ∈ N ∀j ∈ N

(2.1)

UKP is part of a family of problems called Knapsack Problems. It is called un-
bounded because each item type in N can be used as many times as needed. Other
variants of knapsack problems include problems where only a limited number of items
of each type can be used (Bounded Knapsack Problem), and problems where each item
type can be used only once (0-1 Knapsack Problem).

Even though there is an unlimited available number of items of each type, the amount
of items in a solution is naturally bounded by the knapsack capacity. So a solver for the
Bounded Knapsack Problem also solves the UKP if we set the bounds bi on each item i
(the maximum number of each item type allowed in the knapsack) as the Capacity C
divided by its weight wi. The same thing can be said for the 0-1 Knapsack Problem: an
UKP instance can be transformed into a 0-1 Knapsack Problem instance if we create bi
copies of each item i. Using the aforementioned transformations to solve UKP instances
shows a poor performance in practice [17]. In order to use a 0-1 Knapsack Problem solver,
a large number of items must be created, specially when the knapsack capacity is large,
increasing the processing time and the required amount of memory needed. There are
also some properties of the UKP (namely dominance and periodicity) that are not present
in other variants. Such properties can be exploited by an specific algorithm for the UKP.

There are two classic, exact methods for solving UKP: Branch & Bound and Dynamic
Programming. In this chapter both techniques are explained. These techniques exploit the

20

dominance property to solve UKP.

2.2 Dominance

If an item i is less profitable and heavier than another item j, it is never used in an
optimal solution, since it is always better to replace any copy of i by one or more copies
of j without decreasing the total profit.

Such relation between items is called simple dominance and it was first observed
in [12]. Figure 2.1 illustrates how dominance relations work. An object type is rep-
resented as a triangle of width w and height p, the line at the right of the object is its
“shadow”, the items bellow its shadow are dominated. In Figure 2.1a, the item j simply
dominates the object i since wj ≤ wi and pj ≥ pi.

Some extensions of dominance were proposed in the literature. [22] presents multiple
dominance. An item i is said to be multiply dominated by j if bwi/wjc ≥ pi/pj , i.e., it
is always better to replace one copy of i by bwi/wjc copies of j. In Figure 2.1b, the three
copies of the object type j dominate one copy of i, so j multiply dominates i.

Finally, [1] proposed another form of domination: threshold dominance. An item i
is threshold dominated by a set of items J , if, for α ∈ N and y ∈ N|J |, αwi ≥

∑
j∈J yjwj

and αpi ≤
∑

j∈J yjpj , i.e., it is always better to replace α copies of item i by some linear
combination of the items in J . The case where α = 1 is called collective dominance.

Collective dominance is shown in Figure 2.1c. The set {j, k} collectively dominates i.
And in Figure 2.1d the set {j, k} threshold dominates i: it is better to replace three copies
of i by one copy of j and another of k.

Single, multiple and collective dominance can be used to increase the speed of UKP
algorithms by eliminating items that do not alter the optimal solution. In [17] the follow-
ing proposition is stated:

Proposition 1. For every instance of UKP there always exists an optimal solution not
containing any simply, multiply or collective dominated item types.

That means that all simply, multiply or collective dominated item types can be dis-
carded without changing the optimal solution, largely reducing the search space. Sec-
tion 2.4.3.3 details how threshold dominance can be exploited.

2.3 Efficiency

Definition The efficiency of an item i is its profit divided by its weight.

An item type i is said to be more efficient than another item type j if the efficiency of
i is larger than the efficiency of j. Some algorithms sort item types by efficiency in order
to speed up computation. The algorithm proposed in this work uses efficiency to detect
threshold dominance.

21

(a) Simple Dominance - item type j simply
dominates i.

(b) Multiple Dominance - item type j multiply
dominates i.

(c) Collective Dominance - set {j, k} collec-
tively dominates i.

(d) Threshold Dominance - set {j, k} threshold
dominates i.

Figure 2.1: Dominance Relations.

2.4 Methods used for Solving UKP

Since the publication of the column generation method, there is a growing interest
in solving the Unbounded Knapsack problem efficiently. The UKP is an NP-Hard prob-
lem, nevertheless there are efficient methods to solve it optimally. Hence, relatively large
instances can be solved easily.

An approximate algorithm for the UKP is shown in [18], this algorithm is briefly
explained in Section 2.4.1. The most commonly used exact methods are Branch & Bound
and Dynamic Programming.

Branch & Bound solutions are presented in [12, 5, 21]. This technique is better ex-
plained in Section 2.4.2.

Several special purpose dynamic programming (DP) solutions were presented in the
literature [13, 15, 10, 14]. In [17], EDUK (the algorithm provided in this work) is said to
be the most efficient dynamic programming solution for the UKP. EDUK2, an algorithm
implemented by the same authors of EDUK, is presumably the currently state-of-the-art
algorithm for the UKP [25]. The dynamic programming approach and the algorithm are
explained in Section 2.4.3.

22

2.4.1 An Approximate Method

A fully polynomial-time approximation scheme (FPTAS) for UKP is presented in
[18]. A fully polynomial approximation scheme is an approximation algorithm that has
a parameterizable guarantee on the optimal solution, i.e., the solution given by this algo-
rithm can be arbitrarily closer do the optimal solution. Given the parameter ε (0 < ε ≤ 1),
the running time of this method is bounded on a polynomial in the size of the input and
in a parameter 1/ε. Basically it guarantees a solution with an arbitrary quality. Let OPT
be the value of the optimal solution for a given maximization problem, and APP be the
value of the solution given by the FPTAS, the guarantee of APP is given by Equation 2.2.

OPT − APP = εOPT. (2.2)

This means that the approximate solution given by this method is in a factor of (1− ε)
of being optimal. The smaller the parameter ε, the longer it will take to run the algorithm.

The main ideas of the algorithm is to divide the item profits by a factor K, that is
obtained using ε, and to only use the most efficient items. This approximate algorithm
has time and space complexity of O(n+1/ε3). A more detailed description can be found
in [18].

2.4.2 Branch & Bound

The Branch & Bound method consists in enumerating every combination of item
types, keeping a lower bound and an upper bound on the optimal solution. The lower
bound is given by the best solution obtained during the computation, while the upper
bound can be, for example, the solution for the fractional knapsack problem. When the
upper bound and the lower bound are equal, the solution is optimal.

The basic Branch & Bound method works in three steps:

1. Sort items by efficiency in a non decreasing order;

2. Calculate upper bound;

3. Backtrack (Algorithm 1).

The backtrack method, shown in Algorithm 1, is used to build the optimal solution.
Initially, the maximum number of copies of each item is put in the current solution. The
most efficient items are put first, since the item types are sorted by efficiency. When the
knapsack is full, the most efficient items are gradually replaced by less efficient items.
At every replacement a lower bound on the current solution is calculated. If this lower
bound is smaller than the value of a previously found solution (tested in line 8), the item
currently being put on the knapsack is discarded and the next item is put on the knapsack.
The algorithm proceeds until the value of the solution is equal to the upper bound or every
item is used.

The standard B&B algorithm for the Unbounded Knapsack problem is MTU2, pre-
sented with more details in [21]. It was experimentally observed that most of the running
time of the B&B algorithm was spent in sorting the item types. MTU2 addresses this issue
by solving the problem just for some of the item types. The core problem is the items

23

input: j : first item, z : profit, c : capacity
for i := j to n do1

for m := bc/wic downto 0 do2

add m copies of item i to current solution;3

z′ := z +mpi;4

c′ := c−mwi;5

if z′ = Upper Bound then6

return current solution ;7

else if z′ + bc′pi+1/wi+1c ≤ Lower Bound then8

abandon branch;9

remove items i from current solution;10

else11

update Lower Bound;12

update best solution;13

call Branch & Bound(i+ 1, c′, z′);14

end15

end16

end17

Algorithm 1: Branch & Bound.

with an efficiency better than some threshold. Algorithm 1 solves the core problem, if a
solution with a value equal to the upper bound is found for the core problem, this solution
is optimal for all the item types. If no such solution is found, the algorithm is run again
with some items added to the core. This procedure is repeated until the upper bound is
reached or all the items are added to the core problem.

The Upper Bound used in MTU2, calledU3, is calculated using the three most efficient
item types. Suppose that p1/w1 ≥ p2/w2 ≥ p3/w3. The upper bound U3 is defined as the
maximum value between two bounds U0 and U1. Let c = C mod w1 be the capacity left
after using the maximum number of items of type 1, c′ = c mod w2 be the capacity left
after using the maximum number of items of type 2 in a knapsack with capacity c, and
z′ = bc/w1cp1 + bc/w2cp2 be the profit of a solution that uses the maximum number of
items of type 1 and the capacity left with the items of type 2. The two bounds are given
by:

U0 = z′ +

⌊
c′
p3
w3

⌋
U1 = z′ +

⌊
(c′ +

⌈
w2 − c′

w1

⌉
w1)

p2
w2

− p1

⌋
(2.3)

The bound U0 is the profit achieved by using the rest of the capacity with the item type
3 and U1 is the value of removing some items of type 1 from the solution given by z′ and
replacing them by items of type 2.

The performance of this approach depends on the structure of the problem instances,
resulting in a hard-to-predict behavior. For some instances it can degenerate to an expo-
nential running time. However, B&B is generally better than dynamic programming for
instances with large capacities.

24

2.4.3 Dynamic Programming

Dynamic programming (DP) is a method used for solving large problems by using
the stored solution of slightly smaller problems. Large problems solved by DP have
overlapping subproblems that are used to construct their optimal solution. The solution
of each subproblem is usually stored in a table, so the subproblems are never calculated
more than one time. UKP can be solved by considering knapsacks of lesser capacities as
subproblems, storing the best profit for each capacity. The optimal solution for a knapsack
of capacity c can then be found by using the solution for the knapsacks with capacities
smaller than c.

Suppose that, for example, a knapsack of capacity 11 has to be filled with two items:
one of weight 5 and profit 10 and another with weight 2 and profit 3. Suppose that the
solution (the largest amount of profit) for knapsacks of capacities up to 10 are known.
If we use the first item, we are still going to have 6 units of weight available, so if the
optimal solution for a knapsack of weight 6 is 10, using the first item is going to result
in a solution with profit 10 + 10 = 20. If we, however, use the second item, we are still
going to have 9 units of weight, if the optimal solution for a knapsack of capacity 9 is
16, then using the second item results in a solution with profit of 16 + 3 = 19. So the
optimal solution for the knapsack of weight 11 is 20. And this value could be used to
solve knapsacks of capacities larger than 11.

The method exemplified by the above example is summarized in the following gener-
ating function:

z(c) =

{
max

i∈N |wi≤c
{z(c− wi) + pi} if c > 0

0 otherwise.
(2.4)

A vector z is used to calculate Function 2.4. This vector contains the best profit
possible for each capacity c, 0 ≤ c ≤ C. The classic dynamic programming algorithm for
the UKP is shown in Algorithm 2. At first, in line 1, z[0] is set to zero, since all items have
a weight larger than zero. Then for every capacity c from 1 to C, the item type that fits
in the current knapsack, and that yields the largest profit is used. Note that the previous
solutions of smaller problems are never recalculated, they are fetched from vector z. After
z is calculated for every c, the optimal solution can be obtained on z[C].

z[0] := 0;1

for c:= 1 to C do2

z[c] := z[c− 1];3

foreach item type i ∈ N do4

if wi ≤ c then5

z[c] := max{z[c], z[c− wi] + pi};6

end7

end8

end9

return z[C];10

Algorithm 2: Classic Dynamic Programming Algorithm for UKP.

The time complexity of this approach is O(nC), line 6 is executed n times (the number

25

of items) for every capacity smaller than C. Its space complexity is O(C), since the profit
for every capacity smaller than C has to be stored.

The algorithm EDUK (Efficient Dynamic Programming for the Unbounded Knapsack
Problem), first described in [1], is a dynamic programming solution for UKP that uses the
periodicity and dominance properties, further explained in this chapter. The implemen-
tation of EDUK provided by this work is explained in Section 5.1.1. EDUK operation is
similar to that of Algorithm 2, but the running time is reduced by calculating less capaci-
ties, using periodicity, and removing items that are not used, using dominance.

2.4.3.1 Periodicity

Periodicity is a property specific to the Unbounded Knapsack Problem [10]. It states
that for capacities larger than some capacity Ĉ, only the best item b is used. So, when
such a capacity is reached by the dynamic programming method, the optimal solution can
be calculated with Equation 2.5.

z(C) = z(Ĉ) +

⌈
C − Ĉ
wb

⌉
× pb (2.5)

2.4.3.2 Sparse Representation

As shown in Section 2.4.3, the classical way of calculating Equation 2.4 is to calculate
every capacity from 0 to C. In [2], a method is described to only calculate the values that
are needed. To implement this approach, some data structure must be used. Exploiting
sparsity can have a prohibitive cost.

The algorithm proposed at this work does not implement the sparse representation.
The reasons are given in Chapter 7.

2.4.3.3 Threshold Dominance

For an item i, and some set of items J , let y = αwi be the smallest capacity such that
αwi ≥

∑
j∈J yjwj and αpi ≤

∑
j∈J yjpj . For capacities larger than y, the item type i will

never affect the optimal solution. Since the dynamic programming algorithm calculates
function 2.4 incrementally, when threshold domination is detected for an item type, it can
be removed.

To detect threshold dominance, [1] introduces the function l(i, y) defined in Equa-
tion 2.6. Equation 2.6 is, for an item type i and a capacity y, the largest capacity y′,
y′ ≤ y, in which i was the most efficient item used in an optimal solution.

l(i, y) =

0 if y < wi,
l(i, y − 1) if y ≥ wi and z(y) > z(y − wi) + pi,
l(i, y − 1) if y ≥ wi and z(y) = z(y − wi) + pi,

and it exists an item type k, k 6= i, such that l(k, y) = y,
y if y ≥ wi and z(y) = z(y − wi) + pi,

and for every item type k, k 6= i, l(k, y) < y,
(2.6)

26

Function l is a test to detect threshold dominance. The following proposition states
that for capacities larger than y′ = l(i, y), the item type i can be removed and not con-
sidered when calculating Function 2.4. In the implementation of EDUK proposed in this
work, a non-recursive procedure is used to detect threshold dominance based on Func-
tion 2.6. This procedure is explained in Section 5.1.1.3.

Proposition 2. If an item type i is threshold dominated by some set J , then y′ ≤ min{y′|
l(i, y′) ≤ (y′ − wi)}.

2.4.3.4 Obtaining the optimal solution

Function 2.4 calculates only the best profit for a given knapsack capacity. In certain
applications, such as Column Generation, the information about which items were used
is also required. As explained before, the dynamic programming algorithm for UKP uses
a table that stores the values of Function 2.4 for each c ∈ [0, C]. Using this table, the
optimal solution can be obtained without the use of any special structure nor extra space.

Algorithm 3 shows a pseudo-code for the backtrack method used to obtain the op-
timal solution from the vector z. A variable current_capacity is initialized with the
knapsack capacity C. For every item type i, if i fits in the current knapsack (wi ≤
current_capacity) and it was used in an optimal solution for a knapsack of capacity
current_capacity, it is added on the optimal solution and the current_capacity is up-
dated. This procedure is repeated for every item until the capacity reaches 0 or there are
no more items.

Only the items that are not simply, multiply or collective dominated must be consid-
ered (since their removal will not affect the optimal solution).

current_capacity := C;1

foreach item i in N do2

while current_capacity − wi ≥ 0 AND3

z[current_capacity − wi] + pi = z[current_capacity] do
add a copy of item i to the solution;4

current_capacity := current_capacity − wi;5

end6

end7

Algorithm 3: Backtracking method for obtaining the UKP optimal solution.

Let wmin be the smallest weight in a give instance of UKP, the backtrack algorithm
has a worst-case, pseudo-polynomial running time of O(C/wmin + n). In practice, the
order in which items are verified influences the running time of the backtracking method.
It is an open question which order is the best [1]. In the presented implementation of
EDUK, the items are verified in the reverse order of their threshold domination detection,
i.e., the last item for which threshold domination was detected is the first to be tested.

27

3 THE CUTTING STOCK PROBLEM

3.1 Problem Definition

The Cutting Stock problem (CSP) is a classical NP-Hard problem and it is subject of
much interest in the literature. In [27], more than four hundred publications on cutting and
packing problems are cited. CSP naturally arises in a variety of industries, such as paper,
glass, steel, among others [23]. The problem consists in cutting a demand of various item
sizes from an unlimited number of raws of fixed size, minimizing the number of raws
used.

Formally, there is an unlimited set of raws of size L. And there is a set S of item sizes.
Each item size i ∈ S has length si ≤ L and a demand di that must be fulfilled. The goal is
to find a way of cutting the raws in order to fulfill the demand, minimizing the number of
raws used. Figure 3.1a shows an example of a Cutting Stock instance, originally shown in
[17], with a raw of size 10m and three item sizes, with s = {6, 3, 5} and d = {2, 4, 3}. A
possible solution using five raws is shown in Figure 3.1b. Note that eleven meters of raw
material were wasted by this solution. However, this solution has the minimum number
of necessary raws.

(a) Cutting Stock Instance. (b) Cutting Stock Solution.

Figure 3.1: Cutting Stock Example

An Integer Programming formulation, presented in [17], is given in Formulation 3.1.
The value U is an upper bound on the minimum number of raws necessary (U can be

28

obtained by using, for example, the FFD heuristic described in Section 3.2.2). The deci-
sion variable xij ∈ N indicates the amount of items of size i produced by the raw j and
yi ∈ {0, 1} is a boolean vector indicating whether the raw j is used or not.

min
U∑

j=1

yj

s.t.
n∑

i=1

sixij ≤ Lyj, j = 1, . . . , U,

U∑
j=1

xij ≥ di, i ∈ S

xij ∈ N, yj ∈ {0, 1} i ∈ S; j = 1, . . . , U

(3.1)

This is a valid integer programming formulation for the Cutting Stock Problem. How-
ever it is solved inefficiently by integer programming solvers, so it is not commonly used
in practice. The main reasons for that is:

• The LP-relaxation of 3.1 is not a good approximation of the Integer Program solu-
tion [8];

• The problem has many symmetrical solutions. Every permutation of the columns
is equivalent, what makes the problem difficult for integer programming methods
to solve. Symmetry can lead, for example, Branch & Bound algorithms to have
several equivalent branches.

Another possible, but less compact, formulation is given by Formulation 3.2. Consider
a pattern as a way of cutting the raw, defined by a vector A ∈ N|M | where ai indicates the
amount of items of size i produced by the given pattern. For example, the first raw shown
in Figure 3.1b would be represented by the vector (0, 3, 0) (this pattern produces three
items of type 2). Let M be the set of all possible patterns, and aij ∈ N be the number
of copies of the size i generated by the pattern j, and xj ∈ N be the number of times the
pattern j is used.

min
∑
j∈M

xj

s.t.
∑
j∈M

aijxj ≥ di ∀i ∈ S

xj ∈ N ∀j ∈M

(3.2)

The linear relaxation (henceforth called LP) of 3.2 gives a lower bound and a good
approximation on the number of raws needed. Let OPT (PI) be the optimal number of
raws needed for problem 3.2. Any solution containing only integer values would also be
a solution for LP, so OPT (LP) ≤ OPT (IP). An optimal solution for LP has at most
|S| non-zero variables (since LP has |S| constraints). A feasible solution can be obtained
by rounding up those variables, what yields a solution for 3.2 that uses OPT (LP) + |S|
raws in the worst case. So OPT (LP) ≤ OPT (IP) ≤ OPT (LP) + |S|.

Rounding the fractional variables up is only one possible method of transforming the
solution of the linear relaxation into an integer solution. Wäsher and Gau [28] suggest
rounding down the fractional variables and filling the remaining demands with the FFD
heuristic (the FFD heuristic is described in Section 3.2.2). In practice this approach results

29

in much better approximations of the optimal solution. In the experimental results of [7],
it was observed that this approach yields a solution that is no more than 4% of OPT (IP).

The problem of using the linear relaxation of 3.2 is that the size of the set M grows
exponentially with the number of item sizes. To overcome this problem, the delayed
column generation is used.

3.2 Delayed Column Generation

Column Generation is a technique used to solve problems that have a large number
of variables. In this method, presented in [11], when the simplex method needs to find
the next column to enter the basis, instead of selecting over all columns, a column is
generated by solving a subproblem. Column Generation has been used in the literature
to solve various hard problems such as Bin Packing, Generalized Assignment, and Crew
Scheduling [19, 4, 26].

As Formulation 3.2 has a large number of columns (one for each possible pattern),
the main problem is decomposed in two problems: The Master Problem and the Pric-
ing Problem. The algorithm begins by solving the master problem, a smaller problem
LP (M ′) containing, initially, just a few columns M ′ ⊂ M . Section 3.2.2 describes how
the initial columns are selected. LP (M ′) is solved to optimality with the revised simplex
method.

Considering a minimization problem, the simplex method selects, at each iteration, a
column that has a negative objective function coefficient to enter the basis. A variable
with a positive coefficient could potentially worsen the solution. When all variables have
a positive coefficient in the objective function, the solution is optimal. But the simplex
method does not store the coefficient vector of the objective function, so the entering
column must be found by solving the pricing problem.

The linear relaxation of Problem 3.2, after slack variables are introduced, can be rep-
resented by matrix notation as following:

min cx
s.t. Ax = b

x ≥ 0.
(3.3)

The vector x can be decomposed in xB and xN , the basic and non-basic variables,
respectively. Let AB be the matrix of columns associated with the basic variables, and let
AN be the one associated with the non-basic variables. By decomposing the vector c in
the same manner we obtain the following formulation:

min cBxB + cNxN
s.t. ABxB + ANxN = b

x ≥ 0.
(3.4)

By subtracting ANxN on both sides of the constraints equation in 3.4 we obtain:

ABxB = b− ANxN (3.5)

30

Since AB is nonsingular, we can multiply the inverse matrix A−1B on both sides, re-
sulting in:

xB = A−1B b− A−1B ANxN (3.6)

Replacing Equation 3.6 on Equation 3.4 results in:

cx = cB(A
−1
B b− A−1B ANxN) + cNxN

= cBA
−1
B b+ (cN − cBA−1B AN)xN

(3.7)

Since CSP is a minimization problem we need to search for the most negative coeffi-
cient. The dual variables of LP are y = cBA

−1
B . Let Aj ∈ N|M | be the j-th column of A.

By replacing the dual variables in Equation 3.7 the condition 3.8 is valid if all the reduced
costs are nonnegative.

(∀j ∈M) cj − yAj ≥ 0 (3.8)

Which, since all coefficients in the objective function of 3.2 are one, is equivalent to
Condition 3.9.

max
j=1,...,|M |

yAj ≤ 1 (3.9)

If Equation 3.9 holds, no variable can improve the current solution, so the solution
is optimal. But is not practical to generate and test every possible pattern. A column
represents a pattern, a way of cutting the raw. The coefficient ai in a given column Ak is
the number of items i produced by the given pattern. So the number of produced items is
limited by the raw size L. Let αj be the number of items i produced by a pattern, the set
of all possible patterns is given by Equation 3.10.

∑
j∈S

αjsj ≤ L (3.10)

Moreover, we want to find a column that satisfies 3.10 and minimizes the reduced
cost. This amounts to the pricing problem, defined as follows:

max
∑
j∈N

αjyj

s.t.
∑
j∈N

αjsj ≤ L

αj ∈ N ∀j ∈M

(3.11)

Essentially, the pricing problem is to generate a new column to be inserted in the
master problem. Since the columns are the possible patterns, i.e., the patterns that respect
the capacity constraint, and the column searched is the most negative, the pricing problem
is tantamount to the unbounded knapsack problem, defined in (2.1).

The column generation method for the Cutting Stock problem is summarized in Algo-
rithm 4. A Linear Program is generated from an initial set of columns, and a dual vector
is obtained from the optimal solution of this problem. The dual vector is used to generate

31

an UKP instance, that is solved through dynamic programming or another method. Then
if the solution obtained is less than or equal to one, the algorithm stops and a solution for
the original problem is generated from the current linear program. If it is bigger than one,
the generated column is added to the current LP and the program starts again.

generate LP with initial set of columns;1

repeat2

solve LP ;3

build UKP problem using the dual variables of LP ;4

solve UKP ;5

if UKP solution is greater than one then6

add column in LP;7

end8

until UKP solution is less than or equal to one ;9

Algorithm 4: Column Generation for the Cutting Stock Problem.

3.2.1 Example

To illustrate the column generation method, let us consider an example taken from [17],
and detailed in Figure 3.1a. Initially, suppose that two patterns are generated (1, 0, 1),
(1, 1, 0) and (0, 2, 0). The first step is to solve the following problem:

min x1+ x2+ x3
s.t. x1+ x2 ≥ 4,

x2+ 2x3 ≥ 3,
x1+ ≥ 2,

x1, x2, x3 ≥ 0.

(3.12)

Solving Problem 3.12, we obtain the dual variables y1 = 1
2
, y2 = 1

2
, y3 = 1

2
. The

pricing problem is presented in Problem 3.13.

max 1
2
α1+

1
2
α2+

1
2
α3

s.t. 3α1+ 5α2+ 6α3 ≤ 10,
α1, α2, α3 ∈ N.

(3.13)

Problem 3.13 has a solution α1 = 3, α2 = 0, α3 = 0. This solution’s objective value
is 3

2
, which is bigger than one, so the algorithm continues. The generated column is added

to the master problem, resulting in the following problem:

min x1 +x2 +x3 +x4
s.t. x1+ x2 +3x4 ≥ 4,

x2+ 2x3 ≥ 3,
x1 ≥ 2,

x1, x2, x3, x4 ≥ 0.

(3.14)

This time around the the dual variables obtained are y1 = 1
3
, y2 =

1
2
, y3 =

2
3
. And we

again generate the following pricing problem:

32

max 1
3
α1+

1
2
α2+

2
3
α3

s.t. 3α1+ 5α2+ 6α3 ≤ 10,
α1, α2, α3 ∈ N.

(3.15)

With solution α1 = 1, α2 = 0, α3 = 1, that results in the objective value of one, so the
algorithm stops and the current solution is optimal for the linear relaxation of the original
problem.

The solution obtained x1 = 2, x3 = 3
2
, x4 = 2

3
is then rounded down to the value

three and the rest of the demands of the items sizes 1 and 2 are fit into two raws with the
FFD heuristic. The final result is five, that happens to be the optimal value for the integer
programming problem as well.

3.2.2 Generation of the Initial Columns

The First Fit Decreasing (FFD) heuristic is used to generate the initial columns. The
items are sorted by size in a decreasing order, each item is assigned to the first raw that
has room for it, if no raw is available, a new one is created and the item is assigned to it.
The heuristic is summarized in Algorithm 5.

sort item sizes decreasingly by size;1

foreach size si in S do2

if si fits in an available bin B then3

put si in B;4

else5

create a new bin and put si in it;6

end7

end8

Algorithm 5: First Fit Decreasing Heuristic.

This heuristic is a good approximation on the optimal solution. Let OPT (L) be the
optimal solution (the number of bins) for a bin-packing problem L, and let FFD(L) be
the number of bins achieved by Algorithm 5. Equation 3.16, shown in [3], states the
guaranteed quality of the FFD heuristic. For example, if the optimal solution is ninety
raws, FFD finds a solution having at most one hundred thirteen raws.

FFD(L) ≤ 11

9
OPT (L) + 3 (3.16)

33

4 INSTANCES GENERATED FOR THE UNBOUNDED KNAP-
SACK AND CUTTING STOCK PROBLEMS

This Chapter describes the different types of problem instances generated and used for
the experimental tests in this report. In Section 4.1, the Unbounded Knapsack Problems
instances are characterized, followed by the description of the Cutting Stock Problem
instances in Section 4.2.

4.1 Unbounded Knapsack Problem Instances

4.1.1 Realistic Random Instances

Data sets that do not contain simple dominance are called Realistic random. They
are constructed, as described in [1], by generating n random numbers in the interval
[wmin, wmax] and n numbers in the interval [pmin, pmax]. The two sets are sorted and
matched in order. For example, if the sets {1, 5, 2} and {12, 11, 8} are generated, the
generated instance is going to be {(1, 8), (2, 11), (5, 12)}.

4.1.2 Hard Instances

Instances that do not contain collective dominance are in general harder to solve. One
way of generating hard instances [1] is to generate a list of n distinct random weights in
the interval [wmin, 2 wmin). For each item i, its profit is set to be its weight (wi = pi).

As stated in Section 2.2, an item i is collectively dominated by a set of items J , if, for
a linear combination y, y ∈ N|J |, of the items in J , wi ≥

∑
j∈J yjwj and pi ≤

∑
j∈J yjpj .

Any combination that has more than two items will not satisfy the first condition, since
the the maximum weight wmax is less than two times the minimum weight wmin. A
combination with only one item would simply dominate the item i, but hard instances
clearly do not contain simple dominance, since for each item k, wk = pk.

4.1.3 Similarity between UKP instances generated in sequence

At each iteration, the column generation method generates one UKP instance. We
observed that instances generated in sequence have many items in common, i.e., many
items that have the same weight and same profit. Let (UKP)i be the i-th UKP instance
generated by the Column Generation algorithm. The similarity of two instances (UKP)i
and (UKP)j is the percentage of equal item types between those instances.

34

Tables 4.1, 4.2, and 4.3 show the mean of similarity between instances generated in se-
quence by the column generation method on instances with Discrete Union Distributions
(those instances are characterized on Section 4.2.1). Tables 4.4 and 4.5 show the mean
of similarity between instances generated in sequence by the column generation method
on instances with Bounded Probability Sampled Distributions (further characterized in
Section 4.2.2).

To further illustrate the similarity between instances, Figure 4.2 shows the similarity
between UKP instances generated in sequence by a BS{1, 12000, 20000, 800} CSP in-
stance with n = 40000000. For each iteration i it shows the percentage of equal item
types between the instance (UKP)i and (UKP)i−1. Figure 4.1 shows the same kind
of graph for CSP instances with distribution U{1, 15000, 28000} and n = 18970. Note
that the similarity is never 100%, if the same instance were generated in two different
iterations of the column generation method, the algorithm would enter in an infinite loop,
generating always the same columns.

The instances of UKP generated by column generation with Discrete Uniform distri-
butions seem to maintain much more similarity along the execution of the algorithm. If
we observe the results in Section 6.4, we can see that column generation with Bounded
Probabilist Sampled distributed instances spend much more time solving the linear pro-
gram than the UKP, what means that more iterations of the simplex method are executed.
Therefore the dual variables at the end of each iteration will change a lot, changing also
the generated UKP instance.

As the presented results show, the instances can change more than 80% between two
consecutive iterations. It is not clear whether taking advantage of the similarity between
the UKP instances would improve the overall performance of the algorithm. One single
item type that changes can invalidate all the calculated table of dynamic programming
algorithms, forcing it to execute it all again. And the algorithm would have the overhead
of checking which items are unchanged.

A more detailed study needs to be done to determine if the similarity between in-
stances could be used to improve the performance of the provided algorithm.

Table 4.1: Mean of Similarity between items generated in sequence by using the column
generation method on instances of type U{1, 600, 1000}.

n Similarity Mean
600 90.09
1897 88.98
6000 88.44
18974 50.90
60000 53.41
189737 55.03
600000 58.15

35

Table 4.2: Mean of Similarity between items generated in sequence by using the column
generation method on instances of type U{1, 6500, 10000}.

n Similarity Mean
18974 62.96
60000 64.83
189737 70.89
600000 71.19

Table 4.3: Mean of Similarity between items generated in sequence by column generation
on instances of type U{1, 15000, 28000}.

n Similarity Mean
18970 87.44
1897370 91.12
189740 92.57

4.2 Cutting Stock Problem Instances

4.2.1 Discrete Union Distributions

In these distributions, denoted as U{j,h,k}, n items are generated with sizes s evenly
distributed in the interval [j,h]. The raw has size k. Items of same size are grouped. So
if, for example, the generated sizes are (10, 10, 14, 30, 30, 30), the sizes and demands are
going to be {(10, 2), (14, 1), (30, 3)}.

4.2.2 Bounded Probability Sampled Distributions

These distributions, presented in [9], denoted BS{h, j, k,m} are built by generating
m different sizes between h and j. A random value in the interval [0.1, 0.9] is assigned for
each size. The demands of each size are generated by dividing its assigned random value
by the sum of all values and multiplying it by n. So the total number of items is close to
n.

36

Table 4.4: Mean of Similarity between items generated in sequence by using the column
generation method on instances of type BS{1, 6000, 10000, 400}.

n Similarity Mean
4000 21.73
12640 12.47
40000 5.873
126490 8.231
400000 6.586
1264910 7.334
4000000 7.22

Table 4.5: Mean of Similarity between items generated in sequence by using the column
generation method on instances of type BS{1, 12000, 20000, 800}.

n Similarity Mean
40000 17.37
126400 15.98
400000 16.03
1264900 14.8
4000000 15.54
12649100 15.77
40000000 14.37

Figure 4.1: Similarity between UKP instances generated in sequence by column genera-
tion on a instance of type U{1,15000,28000} with n = 18970.

37

Figure 4.2: Similarity between UKP instances generated in sequence by column genera-
tion on a instance of type BS{1,12000,20000,800} with n = 40000000.

38

39

5 IMPLEMENTATION

5.1 Unbounded Knapsack Problem

5.1.1 myEDUK

The algorithm implemented in this work, myEDUK, is a dynamic programming algo-
rithm for the Unbounded Knapsack Problem based on the algorithm described in [1]. The
original algorithm is implemented in the O’caml language. myEDUK was implemented
in C++.

This algorithm, summarized in Algorithm 7, computes Function 2.4 by filling a vector
z of size C. For each c ≤ C, z[c] stores the best profit possible for the capacity c. The
algorithm is divided in two phases: The reduction phase and the standard phase.

5.1.1.1 Preprocessing

In dynamic programming solutions for the Unbounded Knapsack problem, there is
usually a preprocessing phase before the main computation where dominated items are
detected. myEDUK does not preprocess the items. Each item type is processed after every
capacity smaller than its weight is calculated, i.e., z[c] for 0 ≤ c ≤ wi is already calculated
for every item j withwj ≤ wi. The advantage of this approach is that single, multiple, and
collective dominance can be detected with a single test (executed on line 13), executed in
O(1) for each item type: if, for an item i, z[wi] ≥ pi the item i will never be used, so it is
not inserted in the set F of non-dominated items.

5.1.1.2 Reduction Phase

In the reduction phase, shown from line 2 to line 19, the items are processed in slices
of t items sorted by increasing weights. A list of the undominated items F sorted de-
creasingly by efficiency is maintained. In the beginning F is empty. z[0] is set to zero.
For each item i ∈ N , z[c] for wi−1 < c ≤ wi is calculated using Equation 2.4. If the
profit of item i is larger than the current z[wi], then the item is added to F. Otherwise, it is
threshold dominated, and it is discarded.

5.1.1.3 Threshold Dominance Detection

At the end of each item slice, threshold domination is tested for every item. An item
is threshold dominated for capacities larger than some y if it is not the most efficient item

40

for some knapsack with capacity c, c ∈ [y − wi, y].

To efficiently detect this, a vector l is stored, holding, for each item i, the last capacity
in which i was the most efficient item used in an optimal solution. To maintain this vector
valid, F is sorted by efficiency, if z[c − w[i]] + p[i] > z[c], l[i] is set to be c. So, if z[c′]
is fully calculated, any item for which l[i] < c′ − w[i] can be removed. Algorithm 6
summarizes threshold detection.

d := last capacity calculated;1

foreach i in F do2

if l[i] < d− wi then3

remove i from F ;4

end5

end6

Algorithm 6: myEDUK threshold dominance checking.

5.1.1.4 Standard Phase

In the standard phase, shown from line 19 to line 34, z[c] is calculated in slices of q
capacities. At the end of each slice the threshold dominance is verified for each item in
the same fashion as described above. If the cardinality of F reaches one, the algorithm
stops and Formula 2.5 is used to calculate the optimal solution. If this never happens, the
algorithm stops when the capacity reaches C.

5.1.1.5 Parameters

The provided algorithm has two parameters:

• t - the size of the item slices in the reduction phase;

• q - the size of the capacity slices in the standard phase.

At the end of each slice, threshold domination is tested for every item in F . So if the
values of the parameters are too small, the verification is going to be made more times than
needed. If they are too large, the items are going to take more time to be removed, causing
the program to take longer to run. Different values of t and q are tested in Section 6.1.

5.1.1.6 Complexity

The number of primitive operations executed by myEDUK is dependent on the knap-
sack capacity C and the number of items n. The algorithm can be seen as the computation
of a C × n table. Even though on most real cases the periodicity is reached before the
computation of C, the worst case (one in which the periodicity is not reached) still occurs
in some rare cases. So myEDUK is O(Cn). Note that, Since myEDUK complexity is
bounded not by the problem size (the number of items), but by the numeric value of the
input, its time complexity is called pseudo-polynomial.

41

sort items in ascending order by weight ;1

/* Reduction Phase: */
foreach item slice do2

foreach item j in the current slice do3

foreach capacity d ∈ (wj−1, wj] do4

z[d] := 0;5

foreach item f in F do6

if z[d− wi] + pi > z[d] then7

l[f] := d;8

z[d] := z[d− wf] + pf ;9

end10

end11

end12

if z[wj] ≤ pj (j is not dominated by F) then13

z[wj] := pj;14

F := F ∪ {j};15

end16

end17

checks threshold dominance;18

end19

/* Standard Phase: */
foreach capacity slice do20

if |F | = 1 then21

periodicity achieved;22

end23

foreach capacity d in the current slice do24

z[d] := 0;25

foreach item f in F do26

if z[d− wi] + pi > z[d] then27

l[f] := d;28

z[d] := z[d− wf] + pf ;29

end30

end31

end32

checks threshold dominance ;33

end34

Algorithm 7: myEDUK.

5.2 Column Generation for the Cutting Stock Problem

To test the implemented UKP solver in column generation, the solver described in
[7] was used. This solver integrates the IBM R©ILOG R©CPLEX R©Optimization Studio
V12.4, a commercial, closed source, optimization tool, and unbounded knapsack prob-
lems solvers.

The solver is implemented in the C programming language. It operates as described
in Section 3.2: It builds an initial solution for the Cutting Stock Problem using the FFD

42

heuristic. Then it constructs the linear program from the initial solution. The linear
problem is solved using CPLEX. It generates an UKP instance using the dual variables
given by CPLEX. If the value of the solution of this UKP instance is bigger than one,
this solution is transformed into a column and inserted in the linear program. When the
solution for the Unbounded Knapsack problem is less than or equal to one, the linear
program solution is rounded down and the sizes that are left are fit in raws using the FFD
heuristic (as described in Section 3.1).

This solver contains the following UKP solvers:

• DP - A dynamic programming solution, it operates similarly to Algorithm 2. But
it tests for simple, multiple, and collective dominance using a test similar to that of
myEDUK in line 13. It does not use threshold dominance, nor periodicity.

• B&B - a Branch & Bound solver based on [21], the algorithm is described in Sec-
tion 2.4.2.

Both solvers are experimentally compared with myEDUK in Chapter 6.

43

6 RESULTS

This Chapter presents the experimental results for myEDUK with the instances de-
scribed in Section 4. Section 6.1 presents the experimental tests used to obtain the best
parameters of myEDUK. Using the best parameters, myEDUK is compared with other
UKP solver implementations described in the box below. In Section 6.2, the provided al-
gorithm is compared experimentally with other implementations using the benchmark set
provided by the authors of EDUK, large randomly generate instances, and hard instances.
In Section 6.3, myEDUK is compared with the Branch & Bound and Dynamic Program-
ming algorithms using instances with Discrete Uniform Distributions and Bounded Prob-
ability Sampled Distributions. Finally, in Section 6.4, the amount of time used in solving
the UKP subproblem of the column generation method is analysed.

• myEDUK - version of EDUK implemented for this work in C++.

• EDUK2 - Hybrid B&B and dynamic programming solver described in
[25], implemented by the authors in O’caml and available on-line.

• EDUK - Dynamic Programming solver described in [1], implemented
by the authors in O’caml and available on-line.

• DP - Dynamic Programming using dominance, implemented in C, by
the authors of [7].

• B&B - Branch & Bound solver based in [21], implemented in C, by the
authors of [7].

In all tests, time is expressed in seconds. The compiler used was g++ 4.6.3 for C++
and C, and ocamlc 3.12 for O’caml. The machine used was an Intel Core i7 930 2.8GHz
running Ubuntu 12.04.

6.1 Parameters Testing

As explained in Section 5.1.1.5, myEDUK has two parameters: t and q, the size of
the slice of items and the size of the slice of capacities, respectively. In order to discover
the best parameters, myEDUK was run with different parameters for the large, randomly
generated, realistic random instances described in this chapter on Section 6.2.1.2. The
parameter t, the size of the item slice of the reduction phase, was set as a percentage of n

44

(the number of item types), so for example, if t = 0.1 and n = 100 the item slices will
have size 10. The size of the capacity slice q in the standard phase is set as the ratio of the
heaviest item, so, if the heaviest item has w = 1000 and q = 2, the capacity slice is going
to be 2000. The smaller the value of the parameters t and q are, more times the threshold
dominance is checked.

The tests were executed for every combination of t ∈ {1%, 5%, 10%, 20%, 25%, 30%}
and q ∈ {1, 1.5, 2, 4}. Table 6.1 shows the the mean running time of myEDUK over all
large instances for every combination of the parameters. The detailed list can be seen at
the end of this work on Table 7.1.

Table 6.1: Parameters Tests on Large Realistic Random Instances.

q t 1% 5% 10% 20% 25% 30%
1 2.034 2.023 2.025 2.020 2.033 2.022

1.5 2.028 2.021 2.027 2.018 2.022 2.019
2 3.112 3.095 3.111 3.104 3.111 3.100
4 5.393 5.379 5.411 5.389 5.402 5.386

The best values found were t = 20% and q = 1.5. Those values were used for all
other tests.

6.2 Unbounded Knapsack Problem Tests

In this section myEDUK is tested for large, randomly generated instances, hard in-
stances and instances provided by the authors of EDUK.

6.2.1 Realistic Random instances

6.2.1.1 Benchmark set used by the authors

The first experimental results are shown in Table 6.2. The instances used were made
available by the authors of [1]. They were generated as explained in Section 4.1.1 with the
parameters indicated in the table and pmin = 1. The value n is the number of item types,
the values wmin and wmax are, respectively, the minimum and maximum weight used to
generate the item types, and pmax is the maximum possible profit for the item types, and
c is the total knapsack capacity.

45

Table 6.2: Benchmark set used by the authors of EDUK.

n wmin wmax pmax c myEDUK EDUK2 EDUK DP B&B
2000 100 10000 10000 889304 0.020 0.028 0.112 0.008 0.004
2000 100 10000 10000 933367 0.000 0.072 0.024 0.008 0.000
2000 100 10000 10000 914968 0.020 0.156 0.208 0.008 0.004
2000 100 10000 10000 934160 0.080 0.068 0.580 0.008 0.004
2000 200 10000 10000 894645 0.070 0.088 0.516 0.008 0.004
2000 200 10000 10000 917598 0.080 0.184 0.528 0.008 0.004
20000 1 100000 200000 1624196 0.020 0.240 0.324 0.056 0.424

The running times of myEDUK for those instances are always better than EDUK, and
is only worse than EDUK2 for one instance. It is aways worse than B&B and DP but for
the last instance. As those instances are small compared with the instances used to set the
parameters, this behavior was expected.

6.2.1.2 Large randomly generated instances

For the next tests, realistic random instances were generated with the following pa-
rameters:

• n ∈ {10000, 15000, 20000, 25000, 30000};

• wmin ∈ {1, 3, 10, 30, 100, 300, 1000, 3000};

• pmax = 200, 000;

• capacity C = 200, 000, 000;

• wmax = 100, 000; and

• pmin = 2;

The results are shown in Table 6.3, n is the number of items, wmin is the minimum
item size. A “> 300” indicates that the implementation took more than 300s to run.

myEDUK runs always faster than EDUK, even without implementing sparsity. The
worse time over all instances was 12.32s, while EDUK2 worse time was 91.83s. Those
results show how dynamic programming has a more predictable behavior than Branch
& Bound, since for the largest instance, EDUK2 was faster then myEDUK. This was
achieved by EDUK2 due to a good upper bound on the optimal solution.

The parameter wmin, used to generate realistic random instances, seems to have a
larger impact on the running times than the number of item types. According to [17] as
wmin gets larger, there are more non-dominated item types. The extreme case is shown in
Section 6.2.2, that uses instances that do not contain collective dominance.

6.2.2 Hard Instances

On this section, the tests on hard instances described in Section 4.1.2 are analyzed.
All instances have a capacity C = 200, 000, 000. The results are shown in Table 6.4.

46

Table 6.3: Realistic Random Instances.

n wmin myEDUK EDUK2 EDUK DP B&B
10000 1 0.010 0.008 0.008 14.205 1.796
10000 3 0.010 0.004 0.008 5.696 0.604
10000 10 0.010 0.008 0.008 28.870 0.028
10000 30 0.000 0.020 0.004 13.209 0.068
10000 100 0.070 0.028 0.256 >300.000 0.020
10000 300 4.180 4.860 13.329 >300.000 >300.000
10000 1000 4.750 12.221 16.021 >300.000 >300.000
10000 3000 5.540 15.777 21.145 >300.000 >300.000
15000 1 0.010 0.008 0.008 9.069 0.464
15000 3 0.000 0.004 0.012 5.264 0.464
15000 10 0.000 0.016 0.008 18.069 0.072
15000 30 0.000 0.012 0.008 23.485 0.096
15000 100 0.010 0.028 0.008 189.372 0.020
15000 300 0.860 1.592 6.892 >300.000 >300.000
15000 1000 6.840 10.857 32.006 >300.000 >300.000
15000 3000 6.650 16.733 33.914 >300.000 >300.000
20000 1 0.000 0.004 0.008 10.645 0.464
20000 3 0.010 0.024 0.012 7.896 0.092
20000 10 0.010 0.072 0.116 >300.000 0.048
20000 30 0.010 0.100 0.072 >300.000 0.096
20000 100 0.030 0.196 0.284 >300.000 1.308
20000 300 6.100 25.042 36.970 >300.000 >300.000
20000 1000 5.980 26.682 41.431 >300.000 >300.000
20000 3000 8.880 24.626 60.052 >300.000 >300.000
25000 1 0.010 0.004 0.008 17.281 0.244
25000 3 0.010 0.104 0.152 >300.000 0.476
25000 10 0.010 0.020 0.008 16.149 0.228
25000 30 0.010 0.116 0.032 >300.000 0.036
25000 100 0.010 0.096 0.104 >300.000 0.868
25000 300 0.100 0.712 1.088 >300.000 >300.000
25000 1000 3.810 0.040 36.754 >300.000 0.068
25000 3000 10.310 91.834 98.026 >300.000 >300.000
30000 1 0.010 0.020 0.008 21.669 0.620
30000 3 0.000 0.028 0.012 70.812 0.036
30000 10 0.000 0.020 0.016 182.147 0.036
30000 30 0.070 0.236 1.084 >300.000 2.232
30000 100 0.100 1.056 1.340 >300.000 >300.000
30000 300 3.630 32.818 34.698 >300.000 >300.000
30000 1000 12.320 57.924 129.540 >300.000 >300.000
30000 3000 11.820 2.436 130.156 >300.000 >300.000

47

Table 6.4: Hard UKP Instances.

n wmin myEDUK EDUK2 EDUK DP B&B
10000 1000 0.030 0.012 0.272 >300.000 0.016
15000 1000 0.030 0.008 0.280 >300.000 0.012
20000 1000 0.030 0.020 0.304 >300.000 0.012
5000 1000 0.020 0.000 0.268 >300.000 0.020

10000 5000 0.320 0.012 6.412 >300.000 0.192
15000 5000 0.380 0.004 7.440 >300.000 0.220
20000 5000 0.410 0.008 8.905 >300.000 0.232
5000 5000 0.200 0.004 3.988 >300.000 0.200

10000 10000 0.800 0.008 15.569 >300.000 0.008
15000 10000 1.050 0.008 21.697 >300.000 0.008
20000 10000 1.250 0.012 26.302 >300.000 0.008
5000 10000 0.450 0.004 7.672 >300.000 0.008

10000 20000 1.840 0.008 31.510 >300.000 0.564
15000 20000 2.550 0.008 49.963 >300.000 0.984
20000 20000 3.190 0.012 69.796 >300.000 1.416
5000 20000 1.000 0.000 14.181 >300.000 0.184

For those instances, DP aways took more than three hundred seconds to run. EDUK2
and B&B show a better performance for hard instances. It can be concluded that the
EDUK algorithm is sensible to the amount of non-dominated items.

6.3 Cutting Stock Problem Tests

In this section, myEDUK is compared with DP and B&B when integrated in the col-
umn generation solver described in Section 5.2. The instances used have Discrete Uni-
form and Bounded Probability Sampled distributions. EDUK and EDUK2, the algorithms
implemented by the original authors, were not tested in this section because the profits of
the item types in the UKP instances generated by the column generation method have
double precision variables. EDUK and EDUK2 only accept integer profits.

6.3.1 Discrete Uniform Distributions

Tables 6.5, 6.6, 6.7, and 6.8 show the execution time in seconds of Branch & Bound,
Dynamic Programming, and myEDUK on four different sets of instances with discrete
uniform distributions. The parameters used to generate the instances are indicated in the
captions of the tables.

myEDUK is always faster than the previous dynamic programming implementation,
and for larger instances it almost always beats Branch & Bound. The advantage of dy-
namic programming over B&B is that its running time is bounded by the size of the
problem (the knapsack capacity and the number of items), while B&B is not bounded and
has a hard to predict behavior.

48

Table 6.5: U{1, 600, 1000}.

n B&B DP myEDUK
600 0.13 1.45 0.19
1897 0.60 6.28 0.72
6000 11.43 3.02 0.35
18974 3.41 8.14 3.56
60000 4.48 7.58 5.16
189737 7.61 13.10 8.65
600000 4.91 10.28 5.20

Table 6.6: U{1, 6500, 10000}.

n B&B DP myEDUK
6000 0.02 0.02 0.02
18974 427.16 915.02 353.56
60000 109.95 275.35 109.60
189737 157.69 274.77 152.76
600000 41.49 121.28 52.04

Table 6.7: U{1, 15000, 28000}.

n B&B DP myEDUK
6000 0.02 0.02 0.02
18970 2550.91 7345.78 317.85
60000 0.25 0.25 0.25
189740 11.31 11.52 11.87
600000 4.66 4.71 4.39
1897370 65.48 545.64 59.95
6000000 18.99 337.72 18.47

Table 6.8: U{200, 600, 1000}.

n B&B DP myEDUK
600 0.20 0.40 0.25
1897 0.17 0.26 0.15
6000 0.72 0.34 0.20
18974 0.73 0.51 0.30
60000 0.56 0.37 0.24
189737 0.59 0.44 0.25
600000 0.79 0.43 0.28

49

6.3.2 Bounded Probability Sampled Distributions

Tables 6.9, 6.10, and 6.11 show the running time of the implementations on cutting
stock instances generated with distributions indicated in the label under the tables. The
instances are identified by the parameter n, the expected number of items, and the mean
of the demand for each size.

Table 6.9: BS{1, 6000, 10000, 400}.

n demand mean B&B DP myEDUK
4000 9.51 0.39 2.83 0.59
12640 31.13 1.45 6.12 2.43
40000 99.49 2.64 9.05 4.72
126490 315.70 2.24 8.28 3.88
400000 999.50 2.98 9.26 4.90
1264910 3161.77 3.28 9.93 5.65
4000000 9999.50 3.39 10.61 5.30

Table 6.10: BS{1, 12000, 20000, 800}.

n demand mean B&B DP myEDUK
40000 12.83 222.67 1225.94 269.87
126400 41.63 806.64 2281.59 955.71
400000 132.84 1245.05 2906.54 1489.09
1264900 421.13 1692.85 3791.66 1926.33
4000000 1332.83 2059.27 4220.45 2285.34
12649100 4215.86 2076.06 4307.71 2410.98
40000000 13332.84 2309.85 4460.83 2645.32

Table 6.11: BS{2000, 6000, 10000, 2000}.

n demand mean B&B DP myEDUK
400 1.000 12.96 98.67 15.35
1264 1.000 15.60 116.28 18.87
4000 1.690 11.55 77.63 11.13
12649 5.843 333.28 93.32 33.89
40000 19.499 554.70 163.54 97.35
126491 62.748 692.47 162.60 98.28
400000 199.493 601.89 170.43 108.25

For this set of instances, myEDUK is again better than the previous DP implementa-
tion for all test cases. For instances with wmin = 1, B&B is always faster than myEDUK.
For the instances with distribution BS{2000, 6000, 10000, 2000}, myEDUK performs

50

better than B&B. Again, when wmin is large, 2000 in that instance, there are less non-
dominated items. It seems to be the case that myEduk is less sensible to the number of
non-dominated items for instances with small capacity.

6.4 Linear Programming time versus UKP

The running time of the column generation method is divided between solving the
master problem, with CPLEX, and solving the pricing problem, with the UKP algorithm.
An important aspect to be known is whether the linear programming solver, CPLEX,
occupies most of the computation time. If this is the case the optimization focus should
be the linear programming solver.

The tables 6.12, 6.13, 6.14, and 6.15 show the percentage of the total time spent on
CPLEX and on the knapsack solver for discrete uniform distributed instances, and 6.16
and 6.17, for bounded probability sampled distribution. The first column total is the
total running time in seconds, CPLEX and myEDUK are, respectively, the percentage
of the running time spent solving the Linear Program and the Knapsack Problem. Note
that there still time that is not used neither by myEDUK nor CPLEX.

Table 6.12: Linear Programming time versus UKP: U{1, 600, 1000}.

n total CPLEX (%) myEDUK (%)
600 0.18 40.00 46.60
1897 0.71 50.80 36.70
6000 0.29 61.60 27.30
18974 3.19 89.40 8.50
60000 4.22 94.10 4.10
189737 7.70 95.10 3.90
600000 5.60 93.70 4.50

Table 6.13: Linear Programming time versus UKP: U{1, 6500, 10000}.

n total CPLEX (%) myEDUK (%)
18974 310.10 95.90 3.20
60000 91.47 96.60 2.30
189737 143.46 98.00 1.20
600000 45.82 95.90 2.40

It can be seen that a long of time is spent solving the linear programming problem.
For the larger instances tested almost always more than 80%. It is still worth, though, to
optimize the UKP solution since for some instances the time spent solving it is around
50%.

51

Table 6.14: Linear Programming time versus UKP: U{1, 15000, 28000}.

n total CPLEX (%) myEDUK (%)
18970 283.50 83.70 13.60
1897370 55.68 92.30 3.60
6000000 17.54 85.00 8.00

Table 6.15: Linear Programming time versus UKP: U{200, 600, 1000}.

n total CPLEX (%) myEDUK (%)
600 0.29 50.00 44.40
1897 0.17 66.60 26.10
6000 0.23 50.00 41.30
18974 0.35 60.20 34.00
60000 0.27 44.10 48.50
189737 0.29 44.40 45.80
600000 0.34 49.40 44.70

Table 6.16: Linear Programming time versus UKP: BS{1, 6000, 10000, 400}.

n total CPLEX (%) myEDUK (%)
4000 0.70 42.60 52.80
12640 2.50 50.70 47.30
40000 4.90 60.10 38.50
126490 3.85 59.40 38.40
400000 5.11 54.50 43.90
1264910 5.54 56.60 41.50
4000000 5.52 57.00 41.80

Table 6.17: Linear Programming time versus UKP: BS{1, 12000, 20000, 800}.

n total CPLEX (%) myEDUK (%)
40000 294.09 84.40 15.20
126400 992.81 85.80 14.00
400000 1476.24 86.60 13.20
1264900 2100.45 88.50 11.40
4000000 2284.21 88.50 11.40
12649100 2347.37 87.80 12.10
40000000 2736.76 88.20 11.60

52

53

7 CONCLUSION AND FUTURE WORK

In this report an efficient dynamic programming algorithm for the Unbounded Knap-
sack problem was described and tested for different instances. This algorithm was im-
plemented in an imperative programming language and it was experimentally compared
with other implementations. The parameters of the algorithm were experimentally tested.

This work shows an efficient iterative method to detect threshold dominance. To the
best of our knowledge this approach was never described in the literature.

Different methods of generating UKP and CSP instances were explained and used to
generate results.

The implementation provided in this work shows an improvement over the original
EDUK implementation over all instances tested, and a reasonable performance compared
with the state-of-the-art EDUK2. When integrated in the Cutting Stock solver provided
by [7], the proposed implementation runs faster than the former dynamic programming
implementation over all instances. For large instances it outperform the Branch & Bound
implementation.

Future research directions include:

• To take advantage of the the similarity between UKP instances generated in se-
quence by the column generation method, detected in Section 4.1.3. As the in-
stances are not always very similar, it is not clear if this approach could achieve an
improvement on the overall performance of the method. One possible way of using
the similarity between consecutive instances is to store dominance relations and use
them to remove items.

• Implementation of sparsity (see Section 2.4.3.2) and its comparison with the non
sparse version. The results of this work show that the implementation of EDUK
provided by this work shows a better performance on the instances tested, even
though it does not implement sparsity. However it is not clear whether this phe-
nomenon is a product of the programming language used, as functional program-
ming languages are allegedly slower, or if the cost of applying sparsity is indeed
too expensive on instances with large capacities.

• The Column Generation method used is an approximation of the integer CSP. A
possible research direction is the integration of the implemented algorithm in a
Branch and Prince algorithm in order to solve the problem optimally.

54

55

REFERENCES

[1] R. Andonov, V. Poirriez, and S. Rajopadhye. Unbounded knapsack problem:
Dynamic programming revisited. European Journal of Operational Research,
123(2):394 – 407, 2000.

[2] Rumen Andonov and Sanjay Rajopadhye. A sparse knapsack algo-tech-cuit and its
synthesis. In In International Conference on Application-Specific Array Processors
(ASAP-94, pages 302–313. IEEE, 1994.

[3] Brenda S Baker. A new proof for the first-fit decreasing bin-packing algorithm.
Journal of Algorithms, 6(1):49 – 70, 1985.

[4] Cynthia Barnhart, Ellis L. Johnson, George L. Nemhauser, Martin W. P. Savels-
bergh, and Pamela H. Vance. Branch-and-price: Column generation for solving
huge integer programs. Oper. Res, 1998.

[5] A. Victor Cabot. An enumeration algorithm for knapsack problems. Operations
Research, 18(2):06–311, 1970.

[6] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the third annual ACM symposium on Theory of computing, STOC ’71, pages
151–158, New York, NY, USA, 1971. ACM.

[7] David L. Applegate, Luciana S. Buriol, Bernard L. Dillard, David S. Johnson and
Peter W. Shor. The cutting-stock approach to bin packing: Theory and experiments.
In Proceedings of ALENEX 2003, pages p. 1–15, 2003.

[8] J.M. Valerio de Carvalho. Lp models for bin packing and cutting stock problems.
European Journal of Operational Research, 141(2):253 – 273, 2002.

[9] Zeger Degraeve and Marc Peeters. Optimal integer solutions to industrial cutting-
stock problems: Part 2, benchmark results. INFORMS J. on Computing, 15(1):58–
81, January 2003.

[10] R. Garfinkel and G.L. Nemhauser. Integer programming. Series in decision and
control. Wiley, 1972.

[11] P. Gilmore and R. Gomory. A linear programming approach to the cutting stock
problem. Operations Research, 9:849–859, 1961.

[12] P. Gilmore and R. Gomory. A linear programming approach to the cutting stock
problem – part II. Operations Research, 11:863, 1963.

56

[13] P. C. Gilmore and R. E. Gomory. The theory and computation of knapsack functions.
Operations Research, 14(6):1045–1074, 1966.

[14] Harold Greenberg. An algorithm for the periodic solutions in the knapsack problem.
Journal of Mathematical Analysis and Applications, 111(2):327 – 331, 1985.

[15] T.C. Hu. Integer programming and network flows. Addison-Wesley Pub. Co., 1969.

[16] Richard M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, 1972.

[17] Hans Kellerer, Ulrich Pferschy, and David Pisinger. Knapsack Problems. Springer,
Berlin, Germany, 2004.

[18] Eugene L. Lawler. Fast approximation algorithms for knapsack problems. Mathe-
matics of Operations Research, 4(4):339–356, 1979.

[19] Marco Lubbecke and Jacques Desrosiers. Selected topics in column generation.
Operations Research, 53:1007–1023, 2004.

[20] G.S Lueker. Two NP-complete problems in nonnegative integer programming. Re-
port No. 178, Computer Science Laboratory, Princeton University, Princeton, NJ.,
1975.

[21] Silvano Martello and Paolo Toth. An exact algorithm for large unbounded knapsack
problems. Oper. Res. Lett., 9(1):15–20, January 1990.

[22] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer
implementations. John Wiley & Sons, Inc., New York, NY, USA, 1990.

[23] Kazuki Matsumoto, Shunji Umetani, and Hiroshi Nagamochi. On the one-
dimensional stock cutting problem in the paper tube industry. Journal of Scheduling,
14:281–290, 2011.

[24] D. Pisinger. Algorithms for Knapsack Problems. PhD thesis, DIKU, University of
Copenhagen, Denmark, 1995. Technical Report 95-1.

[25] Vincent Poirriez, Nicola Yanev, and Rumen Andonov. A hybrid algorithm for the
unbounded knapsack problem. Discrete Optimization, 6(1):110 – 124, 2009.

[26] G.Terry Ross and RichardM. Soland. A branch and bound algorithm for the gener-
alized assignment problem. Mathematical Programming, 8:91–103, 1975.

[27] P.E. Sweeney and E.R. Paternoster. Cutting and packing problems: an updated
literature review. Working Paper, (654), 1991.

[28] Gerhard Wäscher and Thomas Gau. Heuristics for the integer one-dimensional
cutting stock problem: A computational study. Operations-Research-Spektrum,
18:131–144, 1996.

57

Ta
bl

e
7.

1:
D

et
ai

le
d

Pa
ra

m
et

er
s

Te
st

s
on

L
ar

ge
R

ea
lis

tic
R

an
do

m
In

st
an

ce
s.

n
w

w
m

i
n

1%
/1

5%
/1

10
%

/1
20

%
/1

25
%

/1
30

%
/1

1%
/1

.5
5%

/1
.5

10
%

/1
.5

20
%

/1
.5

25
%

/1
.5

30
%

/1
.5

1%
/2

5%
/2

10
%

/2
20

%
/2

25
%

/2
30

%
/2

50
00

1
0.

00
0

0.
01

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

01
0.

01
0.

00
0

0.
01

0.
01

0.
01

0.
01

0.
01

0.
00

0
50

00
3

0.
00

0
0.

00
0

0.
01

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
01

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
01

0.
00

0
0.

01
0.

02
0.

01
0.

01
50

00
10

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

01
0.

00
0

0.
00

0
0.

00
0

0.
01

0.
00

0
0.

00
0

0.
01

0.
01

0.
01

0.
01

0.
01

0.
00

0
50

00
30

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
01

0.
00

0
0.

01
0.

00
0

0.
00

0
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
50

00
10

0
0.

01
0.

01
0.

01
0.

00
0

0.
01

0.
01

0.
01

0.
00

0
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

02
0.

01
0.

01
0.

02
50

00
30

0
0.

00
0

0.
00

0
0.

01
0.

00
0

0.
00

0
0.

00
0

0.
01

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
50

00
10

00
0.

25
0.

24
0.

24
0.

24
0.

24
0.

24
0.

24
0.

24
0.

24
0.

24
0.

23
0

0.
24

0.
27

0.
27

0.
26

0.
29

0.
27

0.
27

50
00

30
00

2.
7

2.
68

2.
68

2.
69

2.
7

2.
66

0
2.

66
0

2.
67

2.
68

2.
68

2.
68

2.
7

4.
04

4.
04

4.
05

4.
05

4.
02

4.
04

10
00

0
1

0.
01

0.
01

0.
00

0
0.

01
0.

00
0

0.
01

0.
00

0
0.

01
0.

01
0.

00
0

0.
00

0
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
10

00
0

3
0.

01
0.

01
0.

01
0.

00
0

0.
01

0.
00

0
0.

00
0

0.
01

0.
00

0
0.

00
0

0.
01

0.
00

0
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
10

00
0

10
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

00
0

0.
00

0
0.

01
0.

00
0

0.
00

0
0.

02
0.

01
0.

01
0.

01
0.

01
0.

01
10

00
0

30
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

01
0.

00
0

0.
00

0
0.

00
0

0.
01

0.
01

0.
01

0.
01

0.
01

0.
02

0.
01

0.
01

0.
01

0.
01

10
00

0
10

0
0.

06
0

0.
06

0
0.

06
0

0.
06

0
0.

06
0

0.
06

0
0.

06
0

0.
06

0
0.

06
0

0.
06

0
0.

06
0

0.
06

0
0.

1
0.

08
0.

08
0.

09
0.

08
0.

09
10

00
0

30
0

4.
24

4.
29

4.
26

4.
22

4.
22

4.
2

4.
17

4.
18

4.
18

4.
19

4.
14

4.
16

6.
57

6.
56

6.
58

6.
57

6.
52

6.
49

10
00

0
10

00
4.

83
4.

82
4.

81
4.

81
4.

81
4.

78
4.

81
4.

83
4.

85
4.

81
4.

81
4.

8
7.

42
7.

42
7.

41
7.

43
7.

4
7.

43
10

00
0

30
00

5.
59

5.
56

5.
53

5.
54

5.
62

5.
61

5.
63

5.
61

5.
66

5.
63

5.
6

5.
65

8.
54

8.
57

8.
56

8.
6

8.
5

8.
55

15
00

0
1

0.
01

0.
00

0
0.

01
0.

00
0

0.
01

0.
00

0
0.

00
0

0.
00

0
0.

01
0.

00
0

0.
01

0.
01

0.
01

0.
00

0
0.

01
0.

01
0.

00
0

0.
00

0
15

00
0

3
0.

00
0

0.
01

0.
00

0
0.

01
0.

00
0

0.
00

0
0.

01
0.

00
0

0.
00

0
0.

00
0

0.
01

0.
01

0.
00

0
0.

01
0.

01
0.

01
0.

01
0.

01
15

00
0

10
0.

01
0.

01
0.

00
0

0.
01

0.
01

0.
00

0
0.

00
0

0.
01

0.
01

0.
00

0
0.

00
0

0.
01

0.
02

0.
01

0.
01

0.
02

0.
02

0.
00

0
15

00
0

30
0.

02
0.

01
0.

01
0.

01
0.

00
0

0.
01

0.
00

0
0.

00
0

0.
01

0.
01

0.
00

0
0.

01
0.

01
0.

02
0.

00
0

0.
01

0.
02

0.
00

0
15

00
0

10
0

0.
01

0.
01

0.
01

0.
00

0
0.

00
0

0.
01

0.
00

0
0.

01
0.

00
0

0.
00

0
0.

01
0.

01
0.

00
0

0.
01

0.
01

0.
02

0.
01

0.
02

15
00

0
30

0
0.

89
0.

84
0.

85
0.

83
0

0.
88

0.
86

0.
85

0.
86

0.
85

0.
86

0.
87

0.
87

0.
97

0.
97

0.
95

0.
97

0.
97

0.
96

15
00

0
10

00
7.

23
6.

97
7.

07
7.

08
7.

09
7.

07
7.

08
7.

11
6.

9
6.

86
6.

86
6.

83
10

.8
3

10
.8

5
10

.7
7

10
.8

10
.7

7
10

.7
9

15
00

0
30

00
6.

65
6.

43
6.

62
6.

42
6.

64
6.

46
6.

66
6.

39
6.

66
6.

44
6.

65
6.

47
10

.4
10

.0
3

10
.3

8
10

.1
4

10
.4

10
.1

4
20

00
0

1
0.

01
0.

00
0

0.
01

0.
00

0
0.

00
0

0.
01

0.
01

0.
00

0
0.

01
0.

01
0.

01
0.

00
0

0.
01

0.
01

0.
02

0.
00

0
0.

01
0.

01
20

00
0

3
0.

01
0.

00
0

0.
01

0.
00

0
0.

00
0

0.
01

0.
01

0.
01

0.
00

0
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

02
0.

01
20

00
0

10
0.

01
0

0.
02

0.
01

0
0.

01
0

0.
02

0.
02

0.
02

0.
02

0.
01

0
0.

01
0

0.
01

0
0.

01
0

0.
03

0.
02

0.
02

0.
01

0
0.

02
0.

02
20

00
0

30
0.

02
0.

01
0.

01
0.

01
0.

02
0.

01
0.

01
0.

02
0.

00
0

0.
01

0.
02

0.
01

0.
02

0.
01

0.
01

0.
02

0.
01

0.
01

20
00

0
10

0
0.

03
0.

03
0.

03
0.

03
0.

03
0.

02
0

0.
03

0.
03

0.
03

0.
03

0.
04

0.
02

0
0.

03
0.

03
0.

02
0

0.
03

0.
02

0
0.

03
20

00
0

30
0

6.
05

6.
05

5.
99

6.
01

5.
99

5.
99

6
6.

03
5.

99
5.

99
6.

03
5.

99
9.

48
9.

28
9.

68
9.

37
9.

59
9.

38
20

00
0

10
00

5.
95

5.
98

5.
93

5.
92

5.
98

5.
99

5.
97

5.
98

5.
96

5.
97

5.
94

6
9.

64
9.

62
9.

63
9.

69
9.

64
9.

67
20

00
0

30
00

8.
76

8.
87

8.
86

8.
85

8.
9

8.
86

8.
82

8.
83

8.
83

8.
84

8.
77

8.
75

14
.0

5
14

.0
8

14
.0

4
14

.1
5

14
.1

1
14

.1
9

25
00

0
1

0.
01

0.
01

0.
00

0
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

00
0

25
00

0
3

0.
00

0
0.

01
0.

01
0.

01
0.

02
0.

01
0.

01
0.

02
0.

01
0.

01
0.

02
0.

01
0.

02
0.

02
0.

02
0.

02
0.

02
0.

01
25

00
0

10
0.

00
0

0.
01

0.
00

0
0.

01
0.

01
0.

00
0

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

0.
01

0.
00

0
0.

01
0.

01
0.

01
0.

01
25

00
0

30
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

00
0

0.
01

0.
00

0
0.

01
0.

01
0.

02
0.

01
0.

00
0

25
00

0
10

0
0.

01
0

0.
01

0
0.

02
0.

01
0

0.
02

0.
01

0
0.

01
0

0.
01

0
0.

01
0

0.
01

0
0.

01
0

0.
01

0
0.

02
0.

01
0

0.
01

0
0.

03
0.

01
0

0.
01

0
25

00
0

30
0

0.
09

0.
08

0
0.

08
0

0.
08

0
0.

09
0.

08
0

0.
09

0.
09

0.
09

0.
08

0
0.

09
0.

09
0.

09
0.

1
0.

08
0

0.
08

0
0.

09
0.

09
25

00
0

10
00

3.
77

3.
81

3.
75

3.
75

3.
81

3.
78

3.
83

3.
73

0
3.

84
3.

81
3.

81
3.

86
5.

68
5.

57
5.

59
5.

58
5.

75
5.

64
25

00
0

30
00

10
.3

3
10

.2
80

10
.2

9
10

.3
1

10
.3

2
10

.2
80

10
.2

80
10

.2
80

10
.3

1
10

.3
10

.3
1

10
.2

80
15

.7
9

15
.7

4
15

.8
1

15
.7

6
15

.7
5

15
.7

6
30

00
0

1
0.

01
0.

01
0.

01
0.

01
0.

00
0

0.
01

0.
01

0.
00

0
0.

01
0.

00
0

0.
00

0
0.

01
0.

02
0.

01
0.

01
0.

01
0.

01
0.

00
0

30
00

0
3

0.
01

0.
00

0
0.

00
0

0.
01

0.
00

0
0.

01
0.

01
0.

00
0

0.
01

0.
00

0
0.

01
0.

00
0

0.
01

0.
01

0.
01

0.
00

0
0.

01
0.

01
30

00
0

10
0.

01
0.

01
0.

01
0.

01
0.

01
0.

01
0.

00
0

0.
00

0
0.

00
0

0.
02

0.
01

0.
01

0.
00

0
0.

00
0

0.
00

0
0.

00
0

0.
00

0
0.

01
30

00
0

30
0.

08
0.

06
0

0.
07

0.
09

0.
08

0.
07

0.
07

0.
07

0.
07

0.
07

0.
07

0.
07

0.
08

0.
08

0.
07

0.
08

0.
08

0.
09

30
00

0
10

0
0.

1
0.

1
0.

1
0.

09
0

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
1

0.
11

0.
11

0.
11

0.
11

0.
11

0.
12

30
00

0
30

0
3.

62
3.

61
3.

6
3.

61
3.

62
3.

64
3.

63
3.

61
3.

61
3.

59
0

3.
61

3.
62

4.
16

4.
16

4.
18

4.
13

4.
15

4.
15

30
00

0
10

00
12

.3
7

12
.3

10
12

.3
5

12
.3

2
12

.3
9

12
.3

10
12

.3
3

12
.3

2
12

.3
6

12
.3

10
12

.3
4

12
.3

5
19

.0
6

19
.0

2
19

.0
3

19
.0

2
19

.0
7

19
.0

2
30

00
0

30
00

11
.8

3
11

.8
1

11
.8

3
11

.8
2

11
.8

2
11

.7
90

11
.8

2
11

.8
1

11
.8

6
11

.8
2

11
.8

2
11

.8
18

.6
5

18
.6

3
18

.6
4

18
.6

1
18

.6
5

18
.6

