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The procedures used to obtain general expressions for the components of the effective dielectric tensor for elec-
tromagnetic waves in inhomogeneous magnetized plasmas are briefly reviewed, and the relationship between
these expressions and their counterparts which can be obtained assuming electrostatic fluctuations is discussed.
It is argued that a general formulation formerly available in the literature, which do not satisfy Onsager symme-
try in the case of electrostatic fluctuations, is not the suitable form for description of dielectric properties in the
electrostatic case, which require a dielectric constant. A general expression for an effective dielectric constant
is therefore provided, obtained from the effective dielectric tensor, which satisfy Onsager symmetry.

1 Introduction

The subject of wave propagation in inhomogeneous plasmas
can not be considered a simple problem, from a mathemat-
ical point of view. In a collisionless plasma it involves the
use of Maxwell’s equations for the components of the elec-
tromagnetic field, coupled to a set of Vlasov equations for
the distributions of each of the plasma species. However, for
the case of small amplitude perturbations with wavelengths
much smaller than the scalelengths of inhomogeneities, the
analysis can be simplified. In the simplest approach the fluc-
tuations are described by a plane wave approximation, and
a local relationship is assumed between current density and
electric field. The procedure generates a dispersion relation
which for a given wave frequency provides the local refrac-
tion index. Since the dispersion relation depends on local
parameters, the approach is called the “locally homogeneous
approximation”.

Inhomogeneity effects can be explicitly included in the
description of dielectric effects by simply taking into ac-
count in the evaluation of the dielectric tensor components
the space derivatives of parameters that describe the plasma
at each point, and then inserting these components into the
same form of the dispersion relation utilized in the locally
homogeneous approximation [1, 2, 3, 4]. However, this
simple approach for the introduction of inhomogeneity ef-
fects has an important drawback. It leads to expressions for
the components of the dielectric tensor which in general do
not satisfy Onsager symmetry, except for wave propagation
perpendicular to the direction of inhomogeneity [5]. As a
consequence, non-resonant contributions appear to the anti-
Hermitian parts of the components of the dielectric tensor,
which means that the dielectric tensor obtained according to
this approach do not properly describe the dielectric prop-
erties of the inhomogeneous medium and the exchange of

energy between wave and particles.

The undesirable features of the dielectric tensor obtained
with the plane wave approximation can be corrected by the
introduction of the effective dielectric tensor, which is orig-
inated from an iterative procedure applied to the wave equa-
tion [6]. The procedure which leads to the effective di-
electric tensor, starting from the conventional tensor derived
with use of the plane wave approximation, will be called in
what follows as BGI procedure, after the names of Beskin,
Gurevich and Istomin, the authors of Ref. [6]. The BGI
procedure assumes weak gradients in the physical param-
eters and neglects mode conversion and reflection. These
simplifying assumptions may be violated near resonances or
cut-offs, or for parameters for which two dispersion curves
approach each other. However, many interesting phenom-
ena occur in parameter regions with weak gradients where
the WKB approximation is justified and where the effective
dielectric tensor may play important role, as can be seen in
a recent publication on geometrical optics [7].

We have early on been atracted by the potential useful-
ness of the concept of effective dielectric tensor and used
it for several applications in magnetized plasmas, consid-
ering situations where the magnetic field is homogeneous
and other parameters are inhomogeneous [5], situations
where the magnetic field is inhomogeneous [8, 9], and situa-
tions where density and magnetic field inhomogeneities are
present simultaneously [10, 11]. In all these cases, we have
obtained expressions which clearly satisfy Onsager symme-
try and used them to obtain the solutions of the dispersion
relation. It is important to remark the point about the On-
sager symmetry, since although the general conception of
the effective dielectric tensor is aimed to satisfy energy con-
servation, the proper symmetry of the tensor might be lost
due to approximations introduced in the process of actual
calculation of specific expressions of its components. If On-
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sager symmetry is satisfied, the anti-Hermitian parts of the
dielectric tensor only feature resonant parts, properly de-
scribing wave-particle energy exchange. As it is known, if
non-resonant terms appear in the anti-Hermitian parts of the
dielectric tensor, they describe the variation of the wave am-
plitude due to the modification of the group velocity in an
inhomogeneous medium, not true absorption or amplifica-
tion [12, 13]. This point has been illustrated with examples
in Ref. [8], where results obtained from the dispersion rela-
tion with use of the effective dielectric tensor are compared
with results obtained using other approaches found in the
literature [3, 14, 15, 16, 12].

The Onsager symmetry of the effective dielectric tensor
for electromagnetic waves has also been considered in Ref.
[17], for the case of homogeneous magnetic field. In fact,
Ref. [17] obtained expressions which satisfy Onsager sym-
metry for the case of electromagnetic waves, corroborating
our earlier results presented in Ref. [5]. However, Ref. [17]
also considered the case of electrostatic waves, concluding
that in this particular case the Onsager symmetry is not sat-
isfied by the effective dielectric tensor. This is a particularly
puzzling feature, which motivates the present investigation.

In the present paper we therefore return to the subject,
with the objective of briefly review the derivation of the ef-
fective dielectric tensor for electromagnetic waves, and dis-
cuss its extension for the case of electrostatic waves. It is
therefore sufficient to consider for simplicity the case of in-
homogeneous density in homogeneous magnetic field. In-
homogeneities in other plasma parameters, like temperature,
and in the magnetic field, could be also considered, but they
are not essential to the point which we wish to demonstrate,
and would only contribute to the complexity of the expres-
sions for the components of the tensor. The calculations
which follow show that the non-symmetrical tensor obtained
when following the procedure indicated in Ref. [17] is not
the correct form to be used for the study of electrostatic fluc-
tuations. We therefore point out that the proper dispersion
relation for electrostatic waves can be obtained from the ef-
fective dielectric tensor for electromagnetic waves, which
features adequated symmetry properties. For the derivation,
we consider a weakly inhomogeneous plasma with inho-
mogeneities along x direction, immersed in a homogeneous
magnetic field along z direction, B0 = B0e3. We also as-
sume waves propagating in an arbitrary direction relative to
ambient the magnetic field and to the inhomogeneity, with
wave vector

k = k⊥ cos ψe1 + k⊥ sin ψe2 + k‖e3. (1)

The procedure starts with the calculation of the com-
ponents ε0

ij , which are the components of the usual dielec-
tric tensor for homogeneous medium, obtained with a plane
wave approximation, but including terms corresponding to
the gradients of the plasma distribution function [1]. The
effective dielectric tensor is then obtained by application of
the following rule,

↔
ε=

↔
ε

0
+

i

2
∂2 ↔

ε
0

∂kx∂x
. (2)

In section 2 we briefly review the steps for derivation
of the components ε0

ij for the case of electromagnetic (EM)
waves, which are necessary for the derivations of the effec-
tive dielectric tensor, according to the BGI procedure. In
section 3 we obtain the corresponding components εij of
the effective dielectric tensor, using Eq. (2), and also dis-
cuss the case of electrostatic (ES) fluctuations, according to
the approach adopted in Ref. [17]. In section 4 we discuss
the Onsager symmetry of the effective dielectric tensor, the
validity of the approach adopted in section 3 for the case of
ES fluctuations, and the proper application to the ES limit.
In Sect. 5 we state the main results of the paper.

2 Calculation of the
↔
ε

0
tensor

Let us consider a plasma with several species of particles,
each denoted by the index α. Each species is described by
a distribution function fα(r,p, t), where r is position, p is
momentum, and t is the time. The distribution function is
normalized as follows∫

d3p fα(r,p, t) = nα(r, t), (3)

where nα(r, t) is the number of particles of type α by unit
of volume, at position r and time t.

In the absence of collisions the behavior of the system is
governed by the Vlasov-Maxwell system of equations. Con-
sidering small amplitude fluctuations such as the system can
be linearized, using the method of characteristics to solve
the Vlasov equation, and assuming plane-wave approxima-
tion, the perturbed distribution function can be given by the
well known result,

fαk,ω
= −qαAα · Ek,ω (4)

where

Aα ≡
∫ 0

−∞
Θαei(k·R−ωτ)dτ,

Θα =
(

1 − p′ · k
mαγ′

αω

)
∇p′fα0 +

(
k · ∇p′fα0

mαγ′
αω

)
p′,

and
R = r′ − r, τ = t′ − t,

and where we have used Faraday’s law to relate magnetic
and electric field. The quantity fα0 is the equilibrium dis-
tribution function, which is a function of the constants of
motion,

fα0(r,p, t) = Fα(p2
⊥, p‖, X̄α), (5)

where p‖ and p⊥ are, respectively, the momentum parallel
and perpendicular to the magnetic field B0, and where

X̄α = x +
py

mαΩα

with Ωα = qαB0/(mαc) being the cyclotron angular fre-
quency of particles of type α.
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Therefore, it easily follows that the components of vec-
tor Aα are

Aαx =
[
ϕ0(Fα) +

k⊥ sin ψ

mαγαω

p⊥
mαΩα

∂Fα

∂X̄α

]
Ix, (6)

Aαy = −k⊥ cos ψ

mαγαω

p⊥
mαΩα

∂Fα

∂X̄α
Ix + ϕ0(Fα) Iy

+
(

1 − k‖p‖
mαγαω

)
1

mαΩα

∂Fα

∂X̄α
Iz (7)

Aαz =
k⊥ cos ψ

mαγαω
L(Fα) Ix +

k⊥ sin ψ

mαγαω
L(Fα) Iy

+
[
∂Fα

∂p‖
+

(
k⊥ sinψ

mαΩα

∂Fα

∂X̄α

)
p‖

mαγαω

]
Iz (8)

where

ϕ0 =
(

1 − k‖p‖
mαγαω

)
∂

∂p⊥
+

k‖p⊥
mαγαω

∂

∂p‖

L = p‖
∂

∂p⊥
− p⊥

∂

∂p‖

Ix =
∫ 0

−∞

p′x
p⊥

ei(k·R−ωτ)dτ

Iy =
∫ 0

−∞

p′y
p⊥

ei(k·R−ωτ)dτ

Iz =
∫ 0

−∞
ei(k·R−ωτ)dτ.

Using the expressions for the unperturbed orbits in the
proposed geometry, the Ix, Iy and Iz integrals can be writ-
ten as follows

Ii = i

+∞∑
n=−∞

ei[bα sin(ϕ−ψ)−n(ϕ−ψ)] 1
Dαn

(
p⊥
p‖

)δiz

πi,

(9)
where

Dαn ≡ ω − k‖p‖
mαγα

− nΩα

γα
, (10)

and where the πi are the components of the following auxil-
iary vector,

�πnα =
(

nJn(bα)
bα

cos ψ − iJ ′
n(bα) sin ψ

)
e1

+
(

nJn(bα)
bα

sin ψ + iJ ′
n(bα) cos ψ

)
e2

+
p‖
p⊥

Jn(bα)e3, (11)

with bα = k⊥p⊥/(mαΩα).
We now consider the distribution function. For a weakly

inhomogeneous plasma it can be expanded as follows,

Fα(p2
⊥, p‖, X̄α) � fα(p2

⊥, p‖, x) +
(
X̄α − x

)
f ′

α, (12)

where fα(p2
⊥, p‖, x) is a local distribution with azimuthal

symmetry, and f ′
α represents its derivative with respect the

variable x.
Using Eq. (12), we obtain

�

Aαx =
[
ϕ0(fα) +

p⊥ sin ϕ

mαΩα
ϕ0(f ′

α) +
k⊥ sinψ

mαγαω

p⊥
mαΩα

f ′
α

]
Ix, (13)

Aαy = −k⊥ cos ψ

mαγαω

p⊥
mαΩα

f ′
α Ix +

[
ϕ0(fα) +

p⊥ sin ϕ

mαΩα
ϕ0(f ′

α)
]

Iy

+
(

1 − k‖p‖
mαγαω

)
1

mαΩα
f ′

α Iz (14)

Aαz =
k⊥ cos ψ

mαγαω

[
L(fα) +

p⊥ sin ϕ

mαΩα
L(f ′

α)
]

Ix

+
k⊥ sinψ

mαγαω

[
L(fα) +

p⊥ sin ϕ

mαΩα
L(f ′

α)
]

Iy

+
[
∂fα

∂p‖
+

p⊥ sin ϕ

mαΩα

∂f ′
α

∂p‖
+

k⊥ sin ψ

mαγαω

p‖
mαΩα

f ′
α

]
Iz. (15)

�

These expressions are used to obtain the perturbed dis-
tribution function, according to Eq. (4). The distribution is
then utilized to evaluate the current, generating a linear re-
lationship, possibly anisotropic, between the Fourier trans-

forms of current and electric field,

Jk,ω =
↔
σ

0
(k, ω;x) · Ek,ω. (16)
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It is important to remark that the tensor
↔
σ

0
is not the

Fourier transform of the conductivity tensor in configura-
tion space, which relates current density and electric field in
a stationary and inhomogeneous medium

J(r, t) =
∫

d3x′
∫

dt
↔
σ (r, r′, t − t′) · E(r′, t′), (17)

since a relationship like Eq. (16) only would be obtained by
Fourier transform from Eq. (17) in the case of a homoge-
neous medium, granting the use of the convolution theorem.

Using the expression obtained for the σ0
ij , and following

the usual procedures, one arrives to the following expression
for the components of the plane wave dielectric tensor:

ε0
ij = δix − iω

∑
α

Xα

nα

∫
d3p

1
γα

piAαj , (18)

where

Xα =
ω2

pα

ω2
, and where ωpα =

(
4πnαq2

α

mα

)1/2

is the plasma frequency for the particles of species α. Using
in Eq. (18) the expressions given by Eqs. (13) to (15), along
with Eq. (9), and following through some tedious algebra,
we obtain

ε0
ij = ε0h

ij + ε0nh
ij , (19)

where

�

ε0h
ij = δij + ω

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

π∗
i

×
{

(1 − δjz)ϕ0(fα)πj + δjz

[
k⊥

mαγαω

n

bα
L(fα) +

∂fα

∂p‖

]
p⊥
p‖

πz

}
, (20)

ε0nh
ij = ω

∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
{

δjy

[(
1 − k‖p‖

mαγαω

)
− k⊥p⊥

mαγαω

n

bα

]
1
p‖

f ′
απ∗

i πz

+
k⊥ sin ψ

mαγαω
f ′

απ∗
i πj + (1 − δjz) ϕ0(f ′

α)Φ∗
i πj

+ δjz

[
k⊥

mαγαω

n

bα
L(f ′

α) +
∂f ′

α

∂p‖

]
p⊥
p‖

Φ∗
i πz

}
. (21)

In the derivation of these expressions, we have used

Ji =
∫ 2π

0

pi ei[bα sin(ϕ−ψ)−n(ϕ−ψ)]dϕ = 2πp⊥ π∗
i (22)

Ki =
∫ 2π

0

pi sin ϕei[bα sin(ϕ−ψ)−n(ϕ−ψ)]dϕ = 2πp⊥Φ∗
i , (23)

where the Φi are components of the following vector

�Φnα =
{[(

n2

b2
α

− 1
2

)
Jn(bα) − J ′

n(bα)
bα

]
sin(2ψ)

−i

[
n

b2
α

Jn(bα) − nJ ′
n(bα)
bα

]
cos(2ψ)

}
e1

+
{

Jn

2
−

[(
n2

b2
α

− 1
2

)
Jn(bα) − J ′

n(bα)
bα

]
cos(2ψ)

−i

[
n

b2
α

Jn(bα) − nJ ′
n(bα)
bα

]
sin(2ψ)

}
e2

+
p‖
p⊥

[
n

bα
Jn(bα) sin ψ + iJ ′

n(bα) cos ψ

]
e3 . (24)
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An alternative form for these expressions can be obtained if we take into account the definition of bα and cancel out the
k⊥ which appear in the combination k⊥/bα, in Eqs. (20) and (21). We arrive to the following form,

ε0h
ij = δij + ω

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

ϕ0(fα)π∗
i πj

− δiz δjz

∑
α

Xα

nα

∫
d3p

1
γα

p‖
p⊥

L(fα) (25)

ε0nh
ij = ω

∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
[
k⊥ sin ψ

mαγαω
f ′

απ∗
i πj + ϕ0(f ′

α)Φ∗
i πj

]

+(δiyδjz + δjyδiz)
∑
α

Xα

nα

1
mαΩα

∫
d3p p⊥

1
γα

p‖
p⊥

f ′
α. (26)

�

Details about this transformation can be found in Ap-
pendix A. The ε0

ij components given by Eqs. (25) and (26)
are exactly equivalent to those appearing in Ref. [5], since it
can easily be demonstrated that

π∗
i πj =

(
p‖
p⊥

)δiz+δjz

Rij (27)

Φ∗
i πj =

(
p‖
p⊥

)δiz+δjz

Sij , (28)

where the Rij and the Sij are those defined in Ref. [5].
Eq. (25), as well as Eq. (20), are the conventional ex-

pressions for the dielectric tensor obtained with the plane
wave approximation. Eqs. (26) and (21) are alternative for-
mulations for the contribution originated when weak inho-
mogeneities are taken into account, which have to be added
to the homogeneous contribution. As mentioned in the In-
troduction section, the resulting dielectric tensor do not sat-
isfy Onsager symmetry.

3 Calculation of the effective dielec-
tric tensor,

↔
ε

The tensor
↔
ε for the general case of EM fluctuations may be

now obtained by application of Eq. (2) to Eq. (18). Using

the formulation given by Eqs. (20) and (21), we obtain the
following correction for each ij component of the tensor,

i

2
∂2

∂kx∂x
ε0h
ij =

i

2

[
ω

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

×
{

(1 − δjz)ϕ0(f ′
α)

∂

∂kx
(π∗

i πj)

+ δjz

[
k⊥

mαγαω

n

bα
L(f ′

α) +
∂f ′

α

∂p‖

]
p⊥
p‖

∂

∂kx
(π∗

i πz)
}]

,

where we notice that the quantity

k⊥
mαγαω

n

bα

is independent of kx because of the k⊥ dependence of bα,
and therefore don’t need to be derived.

The derivative of the product π∗
i πj can be written in

terms of the components πi themselves and components Φi,

∂

∂kx
(π∗

i πj) =
p⊥

mαΩα
i (Φ∗

i πj − Φjπ
∗
i ) . (29)

Using this equation and adding the corrections obtained
to the ε0

ij components, we readily arrive to the expression
for the components of the effective dielectric tensor

�

εij = ε0h
ij + ε0nh

ij +
i

2
∂2

∂kx∂x
ε0h

ij

= δij + ω
∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

π∗
i

×
{

(1 − δjz)ϕ0(fα)πj + δjz

[
k⊥

mαγαω

n

bα
L(fα) +

∂fα

∂p‖

]
p⊥
p‖

πz

}
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+ ω
∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
{

δjy

[(
1 − k‖p‖

mαγαω

)
− k⊥p⊥

mαγαω

n

bα

]
1
p‖

f ′
απ∗

i πz

+
k⊥ sin ψ

mαγαω
f ′

απ∗
i πj + (1 − δjz) ϕ0(f ′

α)(Φ∗
i πj)H

+ δjz

[
k⊥

mαγαω

n

bα
L(f ′

α) +
∂f ′

α

∂p‖

]
p⊥
p‖

(Φ∗
i πz)H

}
. (30)

As in the case of the plane wave tensor, an alternative form of the effective tensor can be obtained by cancelling out the
k⊥ which appear in numerator and denominator in the combination k⊥/bα (details in Appendix A). After this operation, the
components of the effective dielectric tensor are written as follows

εij = δij + ω
∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

ϕ0(fα)π∗
i πj

− δizδjz

∑
α

Xα

nα

∫
d3p

1
γα

p‖
p⊥

L(fα)

+ δjy δiz

∑
α

Xα

nα

1
mαΩα

∫
d3p p⊥

1
γα

p‖
p⊥

f ′
α

+ ω
∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
[
k⊥ sin ψ

mαγαω
f ′

απ∗
i πj + ϕ0(f ′

α)(Φ∗
i πj)H

]

− δjz

∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p⊥

1
γα

p⊥
p‖

L(f ′
α) (Φ∗

i πj)
H

. (31)

Now we take into account the following property, which can be easily demonstrated,

+∞∑
n=−∞

(Φ∗
i πz)H =

1
2

p‖
p⊥

δiy, (32)

and write the last term in Eq. (31) as follows

− δiyδjz
1
2

∑
α

Xα

nα

1
mαΩα

∫
d3p p⊥

1
γα

L(f ′
α)

= δiyδjz

∑
α

Xα

nα

1
mαΩα

∫
d3p

1
γα

p‖ f ′
α,

where the last step was obtained via integration by parts.
Using this result in Eq. (31),

εij = δij + ω
∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

ϕ0(fα)π∗
i πj

− δizδjz

∑
α

Xα

nα

∫
d3p

1
γα

p‖
p⊥

L(fα)

+ ω
∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
[
k⊥ sin ψ

mαγαω
f ′

απ∗
i πj + ϕ0(f ′

α)(Φ∗
i πj)H

]

+(δiyδjz + δjyδiz)
∑
α

Xα

nα

1
mαΩα

∫
d3p p⊥

1
γα

p‖
p⊥

f ′
α (33)
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These expressions for the components of the effective
dielectric tensor are exactly equivalent to those obtained in
Ref. [5].

According to the approach adopted in Ref. [17], we pro-
ceed to derive expressions for the dielectric tensor for the
case of ES fluctuations. The components of the effective di-
electric tensor in the electrostatic limit can be obtained from
those which we have derived for EM waves by assumption
of vanishing value of the components of the wave vector ap-
pearing in the numerators of the differential operator applied

to the distribution function. These components originated
from the use of Faraday’s law for the magnetic fluctuations,
k × E = (ω/c)B. It is clear that the more familiar form
given by Eq. (33) of course can not be used for obtain-
ing this limit, because some of these ki components have
been cancelled out and are no longer present. However, Eq.
(30) can be used for such a procedure, and after taking the
limit of vanishing ki in the differential operator we obtain
the following limiting expression for the components of the
effective dielectric tensor,

�

εij = δij + ω
∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

×
{

∂fα

∂p⊥
π∗

i πj − δjz
1
p‖

L(fα)π∗
i πz

}

+ω
∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
[

δjy
1
p‖

f ′
απ∗

i πz +
∂f ′

α

∂p⊥
(Φ∗

i πj)
H − δjz

1
p‖

L(f ′
α)(Φ∗

i πz)H

]
. (34)

�

Of course, the procedure of assuming vanishing values
of the components ki in the differential operator applied to
the distribution function, in order to obtain the ES limit, is
only an useful artificial procedure. It is equivalent to assum-
ing as a starting condition that magnetic fluctuations do not
exist. In that case, the quantity Θα which was defined along
with Eq. (4) would be simply Θα = ∇p′fα0, and Eqs. (13),
(14), and (15) would be reduced simply to

Aαx =
∂fα

∂p⊥
, Aαy =

∂fα

∂p⊥
, Aαz =

∂fα

∂p‖
. (35)

All other procedures would be exactly as described in
the more general case of EM waves, and the outcome would
be exactly Eq. (34).

4 The symmetry properties of the ef-
fective dielectric tensor and the ap-
plication to the electrostatic limit

The effective dielectric tensor as given by Eq. (33) features
proper Onsager symmetry [5], as it is easily verified by con-
sidering that it contains the Hermitean part of Φ∗

i πj , and
that the product π∗

i πj is also Hermitean. When written in
the form of Eq. (30), however, the symmetry of the effective
dielectric tensor is apparently not satisfied, due to the term
with δjy and δjz . However, despite the apparent asymme-
try, the tensor in the form of Eq. (30) also satisfies Onsager
symmetry, since it is equivalent to Eq. (33).

When considering the ES limit, however, an important
feature emerges. The terms originated from the magnetic

field fluctuations, containing the ki components in the nu-
merator of the differential operator, were essential in the
transformation between Eq. (30) and Eq. (33), as can be
seen in Appendix A. In the case of the ES limit, when
these terms are no longer present, the same operation which
makes the symmetry evident can not be made. As a result,
by considering the components of the tensor in the ES limit,
Eq. (34), we obtain the following result

εij − ε∗ji = −ω
∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

× 1
p‖

L(fα) [ δjzπ
∗
i πz − δizπjπz]

+ ω
∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
{

1
p‖

f ′
α [ δjy π∗

i πz − δiy πjπz]

− 1
p‖

L(f ′
α)

[
δjz (Φ∗

i πz)H − δiz (Φjπz)H
]}

. (36)

It is seen that the quantities εij and ε∗ji have a non-
vanishing difference in the ES limit, leading to the conclu-
sion that the effective dielectric tensor do not satisfy On-
sager symmetry when written in the ES limit, while the ef-
fective tensor derived for the general case of EM waves sat-
isfies Onsager symmetry. This conclusion is the same as ob-
tained in Ref. [17], where the lack of Onsager symmetry in
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the ES case was atributed to the diamagnetic current which
occurs in the direction respectively perpendicular to the am-
bient magnetic field and to the inhomogeneity. However,
in what follows we argue with more fundamental reasons
to show that the so called ‘dielectric tensor for ES waves’
obtained in Ref. [17], and which has been discussed in the
present paper as a limiting form, is not the correct way to
deal with ES fluctuations, making meaningless and without
consequence the lack of Onsager symmetry of the effective
dielectric tensor in the ES limit.

First of all, we start by considering that the dielectric
tensor given by Eqs. (30) and (33) features the proper sym-
metry and can be used in the dispersion relation for quite
general circunstances, even for low level of magnetic per-
turbation. Let us therefore examine the dispersion relation.
In the electrostatic approximation, B1 � 0, and Gauss’s
law can be used to obtain the dispersion relation. Using it
along with the equation of continuity, and using plane wave
approximation for the electric field, we obtain the following

ik · E = −4πi

ω

[(
∇· ↔

σ
)
· E + ik· ↔

σ ·E
]

,

where we have used the relationship between the effective
dielectric tensor and the effective conductivity,

εij = δij +
4πi

ω
σij .

Considering now that in the ES limit E � −∇φ =
−ikφ, we obtain the following form of the dispersion re-
lation [18],

k2εl − ik ·
(
∇· ↔ε

)
= 0 , (37)

where we have introduced the effective dielectric constant,

εl =
∑
ij

ki εij kj

k2
. (38)

It is important to point out that the dielectric tensor to
be used in Eq. (37) is the effective dielectric tensor, which
is free from the inconsistencies arising from the use of the
local approximation for inhomogeneous plasmas. We also
point out that the term with derivatives of the components of

the dielectric tensor introduces inhomogeneity effects which
are of the same order of inhomogeneity effects which were
taken into account in the derivation of the effective dielec-
tric tensor. Even if it can be negligible in some circunstances
[18], it has been shown to play essential role in the descrip-
tion of the lower hybrid drift instability (LHDI), an insta-
bility with strong electrostatic character which occurs in the
lower hybrid range of frequencies [11].

For the actual derivation of the dielectric constant we
start from the components of the effective dielectric tensor
as given by Eq. (30), and obtain the following,

εl = 1 +
ω2

k2

∑
α

Xα

nα
mα

+∞∑
n=−∞

∫
d3p

1
Dαn

J2
n

×
[
k⊥

n

bα

∂fα

∂p⊥
+ k‖

∂fα

∂p‖

]

+
ω2

k2

∑
α

Xα

nα

k⊥ sinψ

Ωα

+∞∑
n=−∞

∫
d3p

1
Dαn

J2
nf ′

α

+
ω2

k2

∑
α

Xα

nα

sinψ

Ωα

+∞∑
n=−∞

∫
d3p p⊥

1
Dαn

×
[
nJ2

n

bα
− Ωα

γαω
JnJ ′

n

] [
k⊥

n

bα

∂f ′
α

∂p⊥
+ k‖

∂f ′
α

∂p‖

]
. (39)

Details about this calculation can be found in Appendix
B. It is important to notice that all the ki components
originated from the magnetic fluctuations have been can-
celled out in the derivation of Eq. (39), so that the di-
electric constant is the same as it would be obtained if we
had started assuming electrostatic fluctuations when deriv-
ing the components of the dielectric tensor. This result was
attained as a consequence of the double scalar product con-
tained in k· ↔

ε ·k, without the need of considering any non-
symmetrical dielectric tensor,

By taking into account that in the present application
the inhomogeneities are along the x direction, evaluating
the derivatives of the components of the dielectric tensor as
given by Eq. (30), and using Eq. (39), the dispersion relation
(37) can be written more explicitly as follows,

�

−i
ω

k2

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

[
k⊥

n

bα

∂f ′
α

∂p⊥
+ k‖

∂f ′
α

∂p‖

]

×
(

nJ2
n

bα
cos ψ + iJnJ ′

n sinψ

)
+ εl = 0 , (40)

where the dielectric constant εl is given by Eq. (39).
Some limiting cases can be now considered. For instance, in the case of waves propagating parallel to the ambient magnetic

field (k⊥ = 0), we obtain the well known dispersion relation for electrostatic waves propagating along the ambient magnetic
field,

εl = 1 +
∑
α

4πq2
α

k‖

∫
d3p

1
Dα0

∂fα

∂p‖
= 0 . (41)

This expression shows that in the case of parallel propagation the dispersion relation for ES waves is not affected by the
inhomogeneity.
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Another limit to be considered is the case of waves propagating along the direction of inhomogeneity (k‖ = 0, sinψ = 0).
In this case, Eq. (40) is reduced to

−i
ω

k

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

n

bα

∂f ′
α

∂p⊥
nJ2

n

bα

+1 +
ω2

k

∑
α

Xα

nα
mα

+∞∑
n=−∞

∫
d3p

1
Dαn

nJ2
n

bα

∂fα

∂p⊥
= 0 .

It is seen that the effect of inhomogeneity comes entirely from the term with the derivative of the dielectric tensor, intro-
duced in Eq. (37).

Another interesting limit is that of waves propagating perpendicularly both to the magnetic field and to the inhomogeneity
(k‖ = 0, sin ψ = 1).

1 +
ω2

k

∑
α

Xα

nα
mα

+∞∑
n=−∞

∫
d3p

1
Dαn

nJ2
n

bα

∂fα

∂p⊥

+
ω2

k

∑
α

Xα

nα

1
Ωα

+∞∑
n=−∞

∫
d3p

1
Dαn

J2
nf ′

α

+
ω2

k

∑
α

Xα

nα

1
Ωα

+∞∑
n=−∞

∫
d3p p⊥

1
Dαn

nJ2
n

bα

n

bα

∂f ′
α

∂p⊥
= 0 .

�

In this case, there are inhomogeneity effects on the di-
electric constant. It is seen that, if the medium is homoge-
neous, this case of propagation perpendicular to the inhomo-
geneity is the same as the case of propagation parallel to the
inhomogeneity, as it should be.

5 Summary and conclusions

We have presented a detailed derivation of the effective di-
electric tensor for electromagnetic waves propagating in ar-
bitrary direction in a weakly inhomogeneous plasma. Some
of the details of the derivation have already appeared in the
literature, but were repeated here in order to clearly define
the notation, and because they are important in order to show
details of the derivation of the particular limiting case for
electrostatic fluctuations. The calculations have shown once
again that the effective dielectric tensor satisfies Onsager
symmetry, and have also corroborated earlier results of the
literature which indicated that the symmetry is lost in the
case of a limiting form of the tensor derived assuming the
absence of magnetic fluctuations. We have therefore argued
using basic features of electromagnetic theory that the lim-
iting electrostatic form obtained for the effective dielectric
tensor is a spurious result which does not satisfy the whole
set of Maxwell equations and does not constitute the cor-
rect form of description of dielectric properties for the case
of electrostatic fluctuations, which require a dielectric con-
stant. We have then provided a general expression for the
dielectric constant which incorporate inhomogeneity effects,
derived from the effective dielectric tensor and therefore sat-
isfying energy conservation requirements.
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A Some details on the transition be-
tween two expressions for the com-
ponents of the dielectric tensor

In the term with the δjy in Eqs. (21) and (30), we have(
1 − k‖p‖

mαγαω

)
− k⊥p⊥

mαγαω

n

bα

Using the definition of bα, this is equal to(
1 − k‖p‖

mαγαω

)
− nΩα

γαω
=

Dnα

ω
. (42)

When this result is introduced either in Eq. (21) or in Eq.
(30), the denominator is cancelled, and the following prop-
erty can be used to add the Bessel functions which remain.

+∞∑
n=−∞

π∗
i πz =

(
p‖
p⊥

)2

δiz. (43)

Moreover, in Eqs. (20) and (21), and also in (30), we
have terms with a δjz containing the following,

k⊥
mαγαω

n

bα
L(g) +

∂g

∂p‖
,
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where g can be fα or f ′
α. Using the definition of bα, this can

be written as
nΩα

γαω

1
p⊥

L(g) +
∂g

∂p‖
,

and therefore(
1 − k‖p‖

mαγαω

)
1

p⊥
L(g) +

∂g

∂p‖
− Dnα

ω

1
p⊥

L(g),

=
p‖
p⊥

ϕ0(g) − Dnα

ω

1
p⊥

L(g),

When this result is introduced either in Eq. (20), (21),
or in Eq. (30), the term with the ϕ0 operator is incorpo-
rated into the terms with (1− δjz), and in the other term the
denominator is cancelled, and Eq. (43) can be used to add
the Bessel functions which remain, along with the following
property.

+∞∑
n=−∞

Φ∗
i πz =

1
2

p‖
p⊥

δiy, (44)

The outcome is, in either case, Eq. (25), (26) or Eq. (31).

B The derivation of the effective di-
electric constant

Using Eq. (38) with the components of the effective dielec-
tric tensor as given by Eq. (30), we use the following results,

∑
ij

kiδijkj =
∑

i

kiki = k2, (45)

∑
ij

kiδizδjzkj = kzkz = k2
‖, (46)

∑
ij

ki(δiyδjz + δjyδiz)kj = 2kykz

= 2k‖k⊥ sin ψ , (47)

and obtain after some algebraic manipulations,

�

εl = 1 +
ω

k2

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

×
⎧⎨
⎩

(
∂fα

∂p⊥
− k‖

mαγαω
L(fα)

) ∑
ij

kiπ
∗
i πjkj

+
1
p‖

L(fα)
∑

i

kiπ
∗
i πzk‖

[
−1 +

k‖p‖
mαγαω

+
k⊥p⊥

mαγαω

n

bα

]}

+
ω

k2

∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
{[

1 − k‖p‖
mαγαω

− k⊥p⊥
mαγαω

n

bα

]
1
p‖

k⊥ sin ψf ′
α

∑
i

kiπ
∗
i πz

+
k⊥ sinψ

mαγαω
f ′

α

∑
ij

kiπ
∗
i πjkj

+
(

∂f ′
α

∂p⊥
− k‖

mαγαω
L(f ′

α)
) ∑

ij

ki(Φ∗
i πj)Hkj

+
1
p‖

L(f ′
α)

∑
i

ki(Φ∗
i πz)Hk‖

[
−1 +

k‖p‖
mαγαω

+
k⊥p⊥

mαγαω

n

bα

]}
. (48)

Using the definition of the πi, we obtain

∑
i

kiπi = Jn

(
n

bα
k⊥ + k‖

p‖
p⊥

)
(49)

∑
ij

kiπ
∗
i πjkj = J2

n

(
n

bα
k⊥ + k‖

p‖
p⊥

)2

(50)
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We also need the following quantity,

∑
ij

ki(Φ∗
i πj)Hkj =

1
2

[(
k · �Φ∗

)
(k · �π) + c.c.

]
.

Since the quantity kiπi is real,

1
2

[(
k · �Φ∗

)
(k · �π) + c.c.

]
= (k · �π)

(
k · Re�Φ

)
.

Using the definition of the Φi,

∑
i

kiReΦi = k⊥

[
n2Jn

b2
α

− Jn

2
− J ′

n

bα

]
sin(2ψ) cos ψ

+k⊥

{
Jn

2
−

[
n2Jn

b2
α

− Jn

2
− J ′

n

bα

]
cos(2ψ)

}
sin ψ

+k‖
p‖
p⊥

n

bα
Jn sin ψ

= ReΦ∗
z

(
k⊥

p⊥
p‖

n

bα
+ k‖

)
− k⊥

J ′
n

bα
sin ψ

Therefore, ∑
ij

ki(Φ∗
i πj)Hkj =

(∑
i

kiπi

)(∑
i

kiReΦi

)

=
(

k⊥
p⊥
p‖

n

bα
+ k‖

)
πz sin ψ

×
[

n

bα
πz

(
k⊥

p⊥
p‖

n

bα
+ k‖

)
− k⊥

J ′
n

bα

]
. (51)

Using Eqs. (50) and (51) in Eq. (48),

εl = 1 +
ω

k2

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

J2
n

(
n

bα
k⊥ + k‖

p‖
p⊥

)

×
{(

∂fα

∂p⊥
− k‖

mαγαω
L(fα)

)(
n

bα
k⊥ + k‖

p‖
p⊥

)

+L(fα)
k‖

mαγαω

[
−mαγαω

p⊥
+ k‖

p‖
p⊥

+ k⊥
n

bα

]}

+
ω

k2

∑
α

Xα

nα

k⊥ sin ψ

mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

Jn

×
(

n

bα
k⊥ + k‖

p‖
p⊥

)

×
{[

mαγαω

p⊥
− k‖

p‖
p⊥

− k⊥
n

bα

]
1

mαγαω
f ′

αJn

+
1

mαγαω
f ′

α

k⊥
k⊥

Jn

(
n

bα
k⊥ + k‖

p‖
p⊥

)}

+
ω

k2

∑
α

Xα

nα

sin ψ

mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
{(

∂f ′
α

∂p⊥
− k‖

mαγαω
L(f ′

α)
)(

k⊥
n

bα
+ k‖

p‖
p⊥

)
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×
[

n

bα
J2

n

(
k⊥

n

bα
+ k‖

p‖
p⊥

)
− k⊥

JnJ ′
n

bα

]

+L(f ′
α)

k‖ sin ψ

mαγαω

[
n

bα
J2

n

(
k⊥

n

bα
+ k‖

p‖
p⊥

)
− k⊥

JnJ ′
n

bα

]

×
[
−mαγαω

p⊥
+ k‖

p‖
p⊥

+ k⊥
n

bα

]}
.

After some simple algebraic manipulation, we obtain the following,

εl = 1 +
ω

k2

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

J2
n

×
(

n

bα
k⊥ + k‖

p‖
p⊥

) [
k⊥

n

bα

∂fα

∂p⊥
+ k‖

∂fα

∂p‖

]

+
ω

k2

∑
α

Xα

nα

k⊥ sinψ

mαΩα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

×J2
n

(
n

bα
k⊥ + k‖

p‖
p⊥

)
f ′

α

+
ω

k2

∑
α

Xα

nα

sin ψ

mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
[
nJ2

n

bα

(
k⊥

n

bα
+ k‖

p‖
p⊥

)
− k⊥

JnJ ′
n

bα

]

×
[
k⊥

n

bα

∂f ′
α

∂p⊥
+ k‖

∂f ′
α

∂p‖

]
. (52)

It is important to notice that none of the components ki labeled as coming from the magnetic fluctuations have survived
up to this point.

We now write (
n

bα
k⊥ + k‖

p‖
p⊥

)
f ′

α =
mαγα

p⊥

(
nΩα

γα
+

k‖p‖
mαγα

)

=
mαγα

p⊥
(ω − Dαn

) .

Inserting this expression into Eq. (52), and using
∑

n nJ2
n = 0,

∑
n J2

n = 1 and
∑

n n2J2
n(x) = x2/2, and also taking

into account that ∫
d3p ∂fα/∂p‖ = 0 ,

∫
d3p p⊥

∂f ′
α

∂p⊥
= −2

∫
d3p f ′

α ,

we obtain Eq. (39).

�
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