UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA 3
PROGRAMA DE POS-GRADUACAO EM COMPUTACAO

MARCIA CRISTINA CERA

Providing Adaptability to MPI
Applications on Current Parallel
Architectures

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Dr. Philippe O. A. Navaux
Advisor

Dr. Nicolas Maillard
Coadvisor

Dr. Olivier Richard
Partial Doctoral Fellowship Advisor

Porto Alegre, August 2012

CIP - CATALOGING-IN-PUBLICATION

Marcia Cristina Cera,

Providing Adaptability to MPI Applications on Current
Parallel Architectures /

Marcia Cristina Cera. — Porto Alegre: PPGC da UFRGS,
2012.

150 f.: il
Thesis (Ph.D.) — Universidade Federal do Rio Grande

do Sul. Programa de Pés-Graduacao em Computagao,
Porto Alegre, BR-RS, 2012. Advisor: Philippe O. A. Navaux;
Coadvisor: Nicolas Maillard; Partial Doctoral Fellowship Ad-
visor: Olivier Richard.

1. MPI, Adaptability, Malleability, Explicit Task Par-
allelism. 1. Navaux, Philippe O. A.. II. Maillard, Nicolas.
III.. Richard, Olivier. IV. Titulo.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pré-Reitor de Pos-Graduacao: Prof. Aldo Bolten Lucion

Diretor do Instituto de Informatica: Prof. Luis da Cunha Lamb
Coordenador do PPGC: Prof. Alvaro Freitas Moreira

Bibliotecaria-chefe do Instituto de Informatica: Beatriz Regina Bastos Haro

HERDEIRO DA PAMPA POBRE
Composicao: Gatcho da Fronteira - Vaine Darde

Mas que pampa é essa que eu recebo agora
Com a miss3o de cultivar raizes

Se dessa pampa que me fala a estéria

N&o me deixaram nem sequer matizes?

Passam as m3os da minha geracdo
Herancas feitas de fortunas rotas
Campos desertos que ndo geram pdo
Onde a ganancia anda de rédeas soltas

Se for preciso, eu volto a ser caudilho
Por essa pampa que ficou pra tras
Porque eu ndo quero deixar pro meu filho
A pampa pobre que herdei de meu pai

Herdei um campo onde o patrdo € rei
Tendo poderes sobre o pdo e as aguas
Onde esquecido vive o pedo sem leis
De pés descalgcos cabresteando magoas

O que hoje herdo da minha grei chirua
E um desafio que a minha idade afronta
Pois me deixaram com a guaiaca nua
Pra pagar uma por¢do de contas

ACKNOWLEDGEMENTS

I would like to thank all those contributed in the development of this thesis and
to do that I must write some words in Portuguese.

Preciso dizer mais uma vez um muito obrigado aos meus orientadores Prof.
Philippe O. A. Navaux e Prof. Nicolas Maillard. Além de exemplos profission-
ais vocés foram mais que mestres, foram amigos. Obrigada por acreditarem em
mim.

Agradeco também ao Prof. Olivier Richard, pela acolhida e ensinamentos du-
rante minha estada na Franca. (Je remercie également au Prof. Olivier Richard,
pour 'accueil et I'enseignement au cours de mon séjour en France.)

Agradego a Universidade Federal do Rio Grande do Sul (UFRGS), em especial
ao Programa de Pds-Graduagao em Computagao (PPGC), e a todos os professores
que contribuiram para a minha formagao. Adicionalmente, agradego a Coordenagao
de Aperfeicoamento de Pessoal de Nivel Superior (CAPES) pelo suporte financeiro
durante o doutorado e doutorado sanduiche.

Agradeco a Banca Examinadora, Andrea Charao, Jairo Panetta, Alexandre
Carissimi, pelas preciosas consideragoes sobre o meu trabalho.

Aos meus colegas de GPPD (Grupo de Processamento Paralelo e Distribuido)
agradecerei eternamente pelas boas discussoes, pelo amadurecimento cientifico, pelas
ajudas na correcao do inglés desta tese e também pelos momentos de descontracao.

A todos os meus amigos também os agradeco pelo incentivo.

Por dltimo mas nao menos importante, agradeco a minha familia pelo apoio
incondicional e peco desculpas pelas auséncias.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS
LISTOF FIGURES e e e e
LIST OF TABLES e e e e e e e
ABSTRACT e e e e e e e e
RESUMO e e e e

1 INTRODUCTION e e e e e e e e e e
1.1 Motivation
1.2 Hypothesis
1.3 Objectives
1.4 Outline e

I Adaptability: Background and Related Works

2 CONTEXT: ADAPTABILITY IN PARALLEL ENVIRONMENTS . . .
2.1 Adopted Taxonomy
2.1.1 Programming Nomenclature
2.1.2 Runtime Environment Nomenclature
2.2 Contextualizing Adaptability
2.2.1 Classification of the Parallel Applications: RMS View
2.2.2 Dealing with Unpredictable Needs
2.3 Typical Parallel Scenarios of Adaptability
2.3.1 Use Cases with Volatile Processors.
2.3.2 Use Cases with Unpredictable Needs
2.4 Requirements to support Adaptability
2.4.1 Requirements of Volatile Processors
2.4.2 Requirements of Applications with Unpredictable Needs
2.5 Program Structures and Adaptability
2.5.1 Single Program, Multiple Data
2.5.2 Master/Worker o
2.5.3 Loop Parallelism
254 Fork/Join
2.6 Conclusion

3 RELATED WORKS: RUNTIME ISSUES OF ADAPTABILITY
3.1 RMS Issues to support Volatile Processors
3.1.1 Implementation of the Adaptive Actions in Parallel Programs
3.1.2 Communication between RMS and Adaptive Applications
3.1.3 Scheduling Policies to deal with Volatile Processors
3.1.4 Summary of Adaptive Actions Implementations
3.2 APIs to deal with Unpredictable Needs of the Applications . .
3.2.1 APIs for Distributed-Memory Environments
3.2.2 APIs for Shared-Memory Environments
3.2.3 Summary of the APIs for Irregular Problems
3.3 Scheduling of Adaptive Applications
3.3.1 Starting Time Scheduling
3.3.2 Scheduling at Runtime
3.4 Conclusion

IT Providing Adaptability to MPI Applications

4 HOW TO PROVIDE ADAPTABILITY USING MPI?
4.1 Using features of the MPI-2: Dynamic Process Creation
4.1.1 Overview of the MPI Features
4.1.2 Dynamic Process Creation
4.1.3 Communication Relationships among Dynamic MPI Processes :
4.1.4 Analysing the Overhead of Processes Spawning
4.2 MPI Applications dealing with Volatile Processors
4.2.1 RMS and Malleable MPI Applications Interactions
4.2.2 Developing Malleable MPI applications
4.3 MPI Applications dealing with Unpredictable Needs
4.3.1 Developing Explicit Task Parallelism in MPI: D&C Algorithms
4.3.2 Requirements of Explicit Tasks MPI Applications
4.4 Exemplifying the development of Adaptive MPI Applications .
4.4.1 Examples of Malleable MPI Applications
4.4.2 Example of MPI Application following the Explicit Task Parallelism .
4.5 Conclusion

5 RUNNING MALLEABLE MPI APPLICATIONS IN CLUSTERS .
5.1 RMS and the Management of Volatile Processors
5.1.1 The OAR Resource Manager
5.1.2 Management of the Volatile Processors in OAR
5.1.3 Providing Malleable Jobs in OAR
5.2 MPI Application dealing with Volatile Processors
5.2.1 Malleability support on MPI Distributions
5.2.2 Issues on Mapping Dynamic MPI Processes
5.2.3 A Scheduler for Dynamic MPI Processes
5.2.4 The Dynamic Process Scheduler supporting Malleability
5.2.5 Interactions between OAR and Dynamic Process Scheduler
5.3 Execution of Malleable Jobs in a Cluster Environment
5.3.1 Performance of Malleable MPI Applications

5.3.2
5.4

Analysis of the Cluster Utilization using Malleability
Conclusion

6 EXPLICIT TASK PARALLELISM ON MPI APPLICATIONS

6.1 Defining Abstract MPI Tasks
6.1.1 Issues of Abstract MPI Tasks
6.1.2 Granularity of the Abstract MPI Tasks
6.2 Dependencies and Data Transfers among Abstract MPI Tasks
6.2.1 Synchronizations by Blocking Communication
6.2.2 Data Transfers Optimizations
6.3 On-line Scheduling of Abstract MPI Tasks
6.3.1 Mapping of Abstract MPI Tasks
6.3.2 On-line Load Balancing for Abstract MPI Tasks
6.4 Experimental Results
6.4.1 The Test Environment
6.4.2 Unfolding Parallelism of the MPI Applications
6.4.3 Performance of Explicit Task Parallelism in MPI Applications :
6.4.4 Controlling the Granularity of the Abstract MPI Tasks
6.4.5 Blueprint for Explicit Task Parallelism in MPT
6.5 Conclusion
7 CONCLUSION e e e e e e e e
7.1 Contributions
7.2 Future Works and Perspectives
REFERENCES e e e e e e e e e
APPENDIX A — RESUMO ESTENDIDO
Al Introducao
A.2 Contexto: Adaptabilidade em Ambientes Paralelos.
A.3 Trabalhos Relacionados: Execucao de Aplicagoes Adaptativas .
A.4 Como Prover Adaptabilidade usando MPI?
A.5 Executando Aplicagoes MPI Maleaveis em Clusters
A.6 Paralelismo de Tarefas Explicitas em Aplicagcoes MPI
A7 Conclusao

LIST OF ABBREVIATIONS AND ACRONYMS

AJS Adaptive Job Scheduler

AMPI Adaptive MPI

API Application Programming Interface

CCS Converse Client Server

CPU Central Processing Unit

DAG Directed Acyclic Graph

D&C Divide and Conquer

FJT Folding by JobType

HPC High-Performance Computing

KAAPI Kernel for Adaptative, Asynchronous Parallel and Interactive program-
ming

LRU Least Recently Used

MPI Message-Passing Interface

MPMD Multiple Programs, Multiple Data
OpenMP Open Multi-Processing

0S Operating System

PCM Process Checkpointing and Migration
PCMD PCM Daemon

PE Processing Element

QoS Quality of Service

RMS Resource Management System
SPMD Single Program, Multiple Data
TBB Threading Building Blocks

UE Units of Execution

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7

Figure 3.1
Figure 3.2
Figure 3.3

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10

LIST OF FIGURES

Nomenclature adoted in our work. 19
Use cases with volatile processors 24
Use cases with unpredictable needs 25
SPMD program structure 30
Master/Worker program structure 31
Iterative and parallel loop 33
Pseudo code of a Divide and Conquer program 34
Growth and shrinkage actions of malleable applications 37
Communication channel between RMS and malleable application 40
Work Stealing Strategy 49
Using intra and intercommunicators 54
Parameters of the MPI_Comm_spawn primitive 95
Dynamic process creation 56
Example of a dynamic MPI Program o7
Steps to establish a client/server intercommunicator 58
[ustration of the communication relationship 59
Execution time of Mandelbrot using MPI-1 and MPI-2 61
Speedup of Mandelbrot using MPI-1 and MPI-2 61
Throughput of MPI-2 Mandelbrot application 62
Twofold malleable applications requirements 63

Procedures aiming to support malleability in SPMD MPI programs 66

Procedures aiming at malleability in Master /Worker MPI programs 68
Pseudo code of a D&C MPI application. 70
Division of input (A and B) and output (C') matrices. 79
Requirements of malleability in RMS level 84

The behavior of a malleable job executing together with rigid ones 85

An OAR malleable job in a cluster with 4 quad-core processors 87
Requirements of malleability in application level 88
Managing the LAM/MPI network of lamd daemons 90
Managing the OpenMPI network of orted daemons 91
Round Robin process mapping 92
States of the nodes to OpenMPI 93
Scheduling library for dynamic MPI processes 94
Comparison between Round Robin and workload-based strategies 97

Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12

Changing the current number of nodes through LAM/MPI 99

Changing the current number of nodes through OpenMPI .. 101
Requirements of malleability 102
Execution time of the malleable MPI application when it grows . 104
Execution time of the malleable MPI application when it shrinks 104
Malleable jobs performing on free processors of a cluster 109

Moldable-Best Effort jobs performing on free processors of a cluster 109
Unfolding of the Fibonacci execution 112
Fibonacci with dynamic process creation (spawn_fib.c) 113
Pseudo code of a generic abstract task 115
Scheduling abstract MPI tasks. 116
Pseudo code illustrating the adaptive task creation (Adaptive) . . 117
Controlling of the recursion levels and process mapping 118
Adaptive Fibonacci implementation (adaptive fib.c) 120
Communication hierarchy and the Work Stealing 123
Fibonacci speedup: Naive and Adaptive implementations 128
Matrix Multiplication speedup: Naive and Adaptive versions . . . 128
Merge Sort speedups of the granularity control approaches 129
Matrix Multiplication speedups of the granularity control ap-

proaches 130

Table 2.1
Table 2.2

Table 2.3

Table 2.4

Table 3.1
Table 3.2
Table 3.3

Table 3.4
Table 3.5

Table 4.1

Table 5.1
Table 5.2

Table 5.3

Table 5.4
Table 6.1

Table 6.2

LIST OF TABLES

Parallel jobs classification according to Feitelson and Rudolph. . . 21
The main issues of environments with volatile processors and mal-
leable applications.o 27
The main issues of supporting unpredictable needs of evolving
applications. 28
Resume of the main features of the program structures and their
use on related works on adaptability.o 35

Strength and weakness of initiatives to support adaptive actions

in the programming context. 39
Strength and weakness of communication mechanisms of the re-

lated works. 41
Issues on support volatile processors as the related works. 43

APIs able to deal with irregular workloads in the related works. . 48
Supporting adaptive applications: related works and their main
features. L 51

Application efficiency while the number of workers increase. . . . 62

Testing the LAM/MPI Round Robin mapping of dynamic processes. 92
Round Robin process mapping using LAM/MPI and our schedul-

ing library to Fibonacci 95
Round Robin process mapping using LAM/MPI and our schedul-

ing library to search prime numbers 96
Speedup of the malleable MPI application 107

Speedups of Fibonacci and Matrix Multiplication with MPI and
OpenMP upon 1, 2, 4, and 8 cores of a multi-core machine. 126
Achieved improvements comparing Adaptive, Fork, and Lazy ap-
proaches. 132

ABSTRACT

Currently, adaptability is a desired feature in parallel applications. For instance,
the increasingly number of user competing for resources of the parallel architectures
causes dynamic changes in the set of available processors. Adaptive applications are
able to execute using a set of volatile processors, providing better resource utiliza-
tion. This adaptive behavior is known as malleability. Another example comes from
the constant evolution of the multi-core architectures, which increases the number
of cores to each new generation of chips. Adaptability is the key to allow parallel
programs portability from one multi-core machine to another. Thus, parallel pro-
grams can adapt the unfolding of the parallelism to the specific degree of parallelism
of the target architecture. This adaptive behavior can be seen as a particular case
of evolutivity. In this sense, this thesis is focused on: (i) malleability to adapt the
execution of parallel applications as changes in processors availability; and (i) evo-
lutivity to adapt the unfolding of the parallelism at runtime as the architecture and
input data properties. Thus, the open issue is “How to provide and support adaptive
applications?”. This thesis aims to answer this question taking into account the
MPI (Message-Passing Interface), which is the standard parallel API for HPC in
distributed-memory environments. Our work is based on MPI-2 features that al-
low spawning processes at runtime, adding some flexibility to the MPI applications.
Malleable MPI applications use dynamic process creation to expand themselves in
growth action (to use further processors). The shrinkage actions (to release proces-
sors) end the execution of the MPI processes on the required processors in such a way
that the application’s data are preserved. Notice that malleable applications require
a runtime environment support to execute, once they must be notified about the pro-
cessors availability. Evolving MPI applications follow the explicit task parallelism
paradigm to allow their runtime adaptation. Thus, dynamic process creation is used
to unfold the parallelism, i.e., to create new MPI tasks on demand. To provide these
applications we defined the abstract MPI tasks, implemented the synchronization
among these tasks through message exchanges, and proposed an approach to ad-
just MPI tasks granularity aiming at efficiency in distributed-memory environments.
Experimental results validated our hypothesis that adaptive applications can be pro-
vided using the MPI-2 features. Additionally, this thesis identifies the requirements
to support these applications in cluster environments. Thus, malleable MPI applica-
tions were able to improve the cluster utilization; and the explicit task ones were able
to adapt the unfolding of the parallelism to the target architecture, showing that
this programming paradigm can be efficient also in distributed-memory contexts.

Keywords: MPI, Adaptability, Malleability, Explicit Task Parallelism.

Provendo Adaptabilidade em Aplicagcoes MPI nas Arquiteturas
Paralelas Atuais

RESUMO

Atualmente, adaptabilidade é uma caracteristica desejada em aplicagbes para-
lelas. Por exemplo, o crescente niimero de usudrios competindo por recursos em
arquiteturas paralelas gera mudancas constantes no conjunto de processadores dis-
poniveis. Aplicagoes adaptativas sao capazes de executar usando um conjunto volatil
de processadores, oferecendo uma melhor utilizacao dos recursos. Este comporta-
mento adaptativo é conhecido como maleabilidade. Outro exemplo vem da constante
evolucao das arquiteturas multi-core, as quais aumentam o nimero de cores em seus
chips a cada nova geracao. Adaptabilidade é a chave para permitir que os pro-
gramas paralelos sejam portaveis de uma méaquina a outra. Assim, os programas
paralelos sao capazes de adaptar a extragao do paralelismo de acordo com o grau
de paralelismo especifico da arquitetura alvo. Este comportamento pode ser visto
como um caso particular de evolutividade. Nesse sentido, esta tese estd focada em:
(1) maleabilidade para adaptar a execucdo das aplicagoes paralelas as mudancas
na disponibilidade dos processadores; e (ii) evolutividade para adaptar a extracao
do paralelismo de acordo com propriedades da arquitetura e dos dados de entrada.
Portanto, a questao remanescente é “Como prover e suportar aplicagcoes adaptati-
vas?”. Esta tese visa responder tal questao com base no MPI (Message-Passing
Interface), o qual é a API paralela padrao para HPC em ambientes distribuidos.
Nosso trabalho baseia-se nas caracteristicas do MPI-2 que permitem criar processos
em tempo de execucao, dando alguma flexibilidade as aplicacbes MPI. Aplicacoes
MPI maleaveis usam a criagao dinamica de processos para expandir-se nas agoes de
crescimento (para usar processadores extras). As agoes de diminuicao (para liberar
processadores) finalizam os processos MPI que executam nos processadores requeri-
dos, preservando os dados da aplicacao. Note que as aplicagoes maledveis requerem
suporte do ambiente de execucao, uma vez que precisam ser notificadas sobre a dis-
ponibilidade dos processadores. Aplicacoes MPI evolutivas seguem o paradigma do
paralelismo de tarefas explicitas para permitir adaptacao em tempo de execugao.
Assim, a criagao dinamica de processos é usada para extrair o paralelismo, ou seja,
para criar novas tarefas MPI sob demanda. Para prover tais aplicacoes nés definimos
tarefas MPI abstratas, implementamos a sincronizacao entre elas através da troca
de mensagens, e propusemos uma abordagem para ajustar a granularidade das tare-
fas MPI, visando eficiéncia em ambientes distribuidos. Os resultados experimentais
validaram nossa hipdtese de que aplicagoes adaptativas podem ser providas usando
caracteristicas do MPI-2. Adicionalmente, esta tese identificou os requisitos no nivel
do ambiente de execucgao para suporta-las em clusters. Portanto, as aplicagoes MPI
maleaveis melhoraram a utilizacao de recursos de clusters; e as aplicagoes de tarefas
explicitas adaptaram a extracao do paralelismo de acordo com a arquitetura alvo,
mostrando que este paradigma também é eficiente em ambientes distribuidos.

Palavras-chave: MPI; Adaptabilidade; Maleabilidade; Tarefas Explicitas.

14

1 INTRODUCTION

1.1 Motivation

Nowadays, the challenge in the development of parallel programs is to provide
adaptability. Users of current parallel architectures compete for resources such as
processors, bandwidth, memory, and so on. This competition happens even on large-
scale environments, i.e., to scale the parallel environment does not guarantee to serve
the users’ demand. A main consequence of this competition is a dynamic availability
of the resources. In other words, the amount of resources allocated to a user (or
application) may change at runtime according to the environment utilization. For
example, consider that an application is able to run on unused processors of a cluster
aiming its full utilization. At starting time, the application uses the whole set of
unused processors, and this set will be updated at runtime as other applications
request or release processors. To allow the full cluster utilization, the application
must be able to adapt itself or, in other words, it must be malleable.

On the other hand, many researches are focused on other adaptive applications,
which can adapt their execution to a specific degree of parallelism as the target ar-
chitecture (REINDERS, 2007; LEISERSON, 2009; AYGUADE et al., 2009). Today,
multi-core architectures are widely spread, and their number of cores is increasing
from one chip generation to another. Thus, studies aim to provide means to explore
the algorithm parallelism at runtime, without considering how many cores exits on
the target architecture. In this sense, the explicit task parallelism programming
paradigm allows the definition of algorithmic abstract tasks and their dependencies.
Thus, the parallelism can be unfolded during the application execution, guiding the
explicit creation of tasks on demand. Notice that the abstract tasks are defined on
algorithmic level, which means that the potential parallelism to be explored depends
on the size of the input data.

To achieve efficiency on these scenarios, the key feature desired from parallel
applications is to be adaptive. CUNG et al. (2006) define adaptive algorithms as
those able to consider the availability of the resources or the input data properties
to guide their runtime adaptive actions. According to FEITELSON; RUDOLPH
(1996) there are two class of parallel jobs that include some flexibility: malleable
jobs that are able to adapt themselves to changes in the number of processors at
runtime; and evolving jobs that may require unpredictable changes in the number of
required processors at runtime due to inherent irregularity of the application (more
details in Section 2.2). As evolving applications are hard to be supported, many
initiatives try to schedule the irregular worload into the available processors. In this
sense, the explicit task parallelism can be seen as one these initiatives. Furthermore,

15

GHAFOOR (2007) defines adaptive applications as those have malleable or evolving
behaviors according to Feitelson’s classification. This thesis is focused on applica-
tions with both levels of adaptability: malleability to adapt to volatile processors
and evolving to adapt to unpredictable needs.

In this context, there is a critical open issue: “How to provide and support adap-
tive applications on current parallel architectures?”. The answer of this question
rises in three fronts: programming level or how to use current programming tech-
niques, mechanisms, and tools to develop parallel applications able to perform the
required reactions at runtime; environment level or how to provide communications
between applications and the runtime environment to satisfy the adaptability re-
quirements; and application scheduling level or how to provide on-line scheduling of
applications workload to ensure performance under adaptive conditions. This the-
sis aims to investigate these aspects to MPI (Message-Passing Interface) (GROPP;
LUSK; SKJELLUM, 1994) applications.

MPI is the focus of our work because it is widely used in HPC (High-Performance
Computing) applications to distributed-memory environments. Furthermore, MPI-2
specification defines interfaces to include some flexibility into MPI applications such
as to spawn new MPI processes at application runtime and establish client-server
communications among processes. Our goal is to take advantage of this flexibility to
implement MPI applications able to adapt themselves at runtime. For instance, to
get malleability in MPI applications, it is required means to increase and decrease
the number of used processors at runtime. MPI-2 dynamic process creation can
help to provide this behavior since it allows to change the number of processes at
runtime (more details in Section 4.2). To have evolving MPI applications, dynamic
process creation can also help to unfold the parallelism by the creation of new MPI
tasks (MPI processes) at runtime (more details in Section 4.3).

However, although dynamic process creation helps to provide adaptability, it
brings some challenges to provide and support adaptive MPI applications. Here, to
provide means to offer the programming issues to develop these applications, and
to support means to offer the runtime issues to allow the execution of the appli-
cations in current architectures. For example, once processes are spawned during
the application execution, their physical location, i.e. their mapping, must be de-
fined at runtime. Dynamic processes perform part of the applications workload,
but the granularity of these processes must be adjusted at runtime to ensure perfor-
mance. Furthermore, adaptive MPI applications only can be executed if the runtime
environment is able to support their adaptive actions, i.e. their dynamicity. Addi-
tionally, this support requires interactions between adaptive MPI applications and
the runtime environment. This thesis investigates these issues and proposes solu-
tions aiming to provide and support adaptive MPI applications in current parallel
architectures.

1.2 Hypothesis

Given the current tendency on parallel programming, this work suggests the
hypotheses that the MPI-2 features can provide the development of adaptive MPI
applications. In addition, providing the required runtime environment support,
these applications can be executed on current parallel architectures.

16

1.3 Objectives

The main goal of this thesis is to provide and support Adaptive MPI
applications in current parallel architectures.
In this sense, our specific goals are:

e To provide adaptive MPI applications using MPI-2 features. Adaptive appli-
cations aimed are:

e Malleable MPI Applications able to adapt themselves to changes in the
number of available processors at runtime;

e Evolving MPI Applications able to adapt the application execution as the
problem irregularity through the unfolding of the parallelism at runtime.

e To investigate the challenges and issues to provide and support adaptive MPI
applications, proposing solutions as the current features of parallel architec-
tures. This thesis investigates mainly:

e The mapping of dynamically spawned MPI processes;

e The adjusting of MPI tasks granularity aiming to balance the applications
workload at runtime;

e Ways to support the interactions between MPI applications and runtime
environment to allow adaptive actions.

e To analyse the performance of adaptive MPI applications on clusters of com-
puters with multi-core nodes.

To achieve these goals, we organized the remaining of this text as described
below.

1.4 Outline

This thesis is structured in two parts: Part I presents background and related
works about adaptability; and Part II explains how to provide adaptability into
MPI applications. In the first part, Chapter 2 contextualizes the needs of adaptabil-
ity in current parallel architectures, the requirements to support it, and the program
structures able to deal with such a kind of scenarios. Additionally, Chapter 3 shows
how to the related works deal with runtime issues of adaptive applications. In the
second part of this thesis, Chapter 4 answers the question: “How to provide adapt-
ability using MPI?” taking into account the MPI-2 features. To allow the execution
of adaptive MPI applications, Chapter 5 describes how to run malleable MPI ap-
plications in clusters of computers, while Chapter 6 shows how to provide evolving
MPT applications through the explicit task parallelism. Finally, Chapter 7 concludes
this thesis with our final remarks, contributions and future works.

Part 1

Adaptability: Background and
Related Works

17

18

2 CONTEXT: ADAPTABILITY IN PARALLEL EN-
VIRONMENTS

Adaptability is the key to allow an efficient utilization of the current parallel
architectures. The goal of this chapter is to present the context that requires adapt-
ability in these parallel environments. In a first moment, the nomenclature adopted
in this thesis is presented in Section 2.1. Then, there are the main concepts related
to adaptability reached in literature — Section 2.2. In the following, Section 2.3
describes some parallel scenarios aiming to show the main features and challenges
in this kind of environment. Afterward, Section 2.4 gathers the requirements to
support adaptability in the parallel architectures as well as in the applications. Sec-
tion 2.5 shows how to supply the adaptability requirements in the parallel program
structures, and their adoption in the related works. Finally, Section 2.6 concludes
this chapter highlighting the main issues exposed in this chapter.

2.1 Adopted Taxonomy

The goal of this section is to define the taxonomy that will be used in this the-
sis. Some examples are used to clarify the nomenclature and they will appear in
the remaining of the text. Figure 2.1 shows the correlation among the nomencla-
ture. We divided in two parts: the first exposes the programming nomenclature
(Section 2.1.1); and the second shows the runtime environment nomenclature (Sec-
tion 2.1.2).

2.1.1 Programming Nomenclature

Programming model: represents an abstraction of computer systems allowing
the development of programs taking into account architectural features. For
instance, a programming model defines the way in which processors are inter-
connected: shared-memory - processors share a common memory region and
the information exchanging happen through concurrent access to shared data
structures; distributed-memory - each processor has its own memory region
and the information must be transfered from one to another using a network
interface; and hybrid - processors access their own memory region as well as a
shared one;

Programming paradigm: represents the style or the methodology employed in
the development of programs. In other words, a programming paradigm de-
fines how to the basic units of the programs are represented. For instance,
object-oriented programming is a paradigm based on objects to represent

19

Programming Model
ITDrogramming Paradigm—l
Algorithm Structure
J_ Program Structure —I_ <—> | Units of work

Programming Language ~<— [Units of execution

Resources <~——> [Processing Elements

Figure 2.1: Nomenclature adoted in our work.

the programs data structures. Furthermore, the programming paradigm can
be linked with issues defined by the programming model. For example, the
message-passing programming paradigm is related to the distributed-memory
programming model, as well as the multi-threading paradigm with shared-
memory one;

Algorithm structure: represents the algorithm organization used to become easy
to solve a target problem. For instance, there are problems that can be seen
as a set of linear tasks, in which the Task Parallelism algorithm structure can
efficiently solve them. In addition, when these set of tasks perform recursive
decomposition, instead of Task Parallelism, it is more convenient to use Divide
and Conquer algorithm structure. These examples are based on tasks, but the
algorithm structures can also be based on data decomposition or flow of data;

Program design or structure: represents the conversion of the algorithm struc-
tures into source codes. In other words, a program design represents the pro-
gramming structures used to support or provide the behavior expected into
the algorithmic level. For instance, the set of tasks of the Task Parallelism
algorithm structure can be implemented as Master/Worker or SPMD (Sin-
gle Program, Multiple Data) program structures, while Divide and Conquer
algorithms are implemented using a Fork/Join program structures;

Programming Language: gathers the means to compose source codes, offering
implementations of the programming structures as the program design. For
instance, the Master/Worker program design requires units of execution with
two different behaviors: master and worker. The programming language of-
fers means to create units of execution and implement them with different
behaviors. Furthermore, a programming language can support more than one
programming paradigm and allows handling the abstractions defined by the
programming models. For example, the C language is procedural by default,
but it can implement the message-passing and multi-threading programming
paradigm helped by specific libraries.

2.1.2 Runtime Environment Nomenclature

Resources: in parallel environments aimed in this thesis, resources mean the pro-
cessors, memory, bandwidth, storage, etc., that are available to the users. Our
focus was in issues about processors availability;

20

Units of Execution (UE): represent the mechanism offered by the programming
language to perform the operations and actions defined by the program struc-
ture. In the context of our work, the units of execution (UEs) aimed are
processes and threads. This terminology is based on MATTSON; SANDERS;
MASSINGILL (2004);

Units of Work: represent the workload that must be performed by the units of
execution. Some authors name units of work as tasks, but to avoid misunder-
stood with the definition of task in MPI and in explicit task parallelism, we
opted by units of work;

Processing Elements: represent the computational hardware on which the units
of execution perform. This thesis is focused on processors and cores as process-
ing elements (PEs). This terminology is also based on MATTSON; SANDERS;
MASSINGILL (2004).

2.2 Contextualizing Adaptability

Nowadays, large-scale systems often have a dynamic or volatile set of proces-
sors, which become available and are released during the application execution?.
Furthermore, multi-core architectures are also figuring in these large-scale architec-
tures, which requires ways to profit of their high degree of parallelism. These issues
can be addressed using adaptability to allow the application reaction to changes
in processors availability, as well as to adjust the application behavior to specific
degrees of parallelism. According to CUNG et al. (2006), adaptive algorithms are
able to use strategic decisions based on the availability of the resources or on the
input data properties, both discovered at runtime. Notice that the size of the input
data is related to how much parallel an application can be.

However, the runtime environment must support the adaptive behavior of the
applications. This support can mean the spread of the dynamic availability of the
processors or the spread of the desired degree of parallelism. Part of this support
comes from the Resource Management Systems (RMS). Applications are named
as jobs in the RMS context, and it is responsible for schedule and to ensure jobs
execution. In general, RMS decisions are based on scheduling policies, which aim to
maximize the utilization of the resources and the throughput of the jobs (to serve
more users), and reduce the average response time, among other goals. The support
of adaptability in RMS comes from improvements in the scheduling decisions, in
such a way that issues about the dynamic availability and the degree of parallelism
can be used on on-the-fly decisions.

In the following, we describe a popular parallel job classification according to
the RMS view, aiming to show the complexity behind the support of adaptability.

2.2.1 Classification of the Parallel Applications: RMS View

FEITELSON; RUDOLPH (1996) proposed a job classification based on who
decides the number of processors (user or RMS) and when such a decision is taken
(at starting or at runtime). As shown in Table 2.1, Feitelson and Rudolph classifies
parallel jobs as:

Tn this document, we name processors with a dynamic availability as volatile.

21

Table 2.1: Parallel jobs classification according to Feitelson and Rudolph.

When is it decided
At starting time | At runtime
User Rigid Evolving
RMS Moldable Malleable

Who decides

e Rigid jobs: require a certain number of processors according to a user deci-
sion. All processors must be provided at starting time and do not soffer any
change during the job execution;

e Moldable jobs: also performs on a fixed number of processors defined at
starting time, but RMS decides how many ones. To guide RMS decisions, the
users provide a range (minimum and maximum number) of processors upon
which the application can perform efficiently. At starting time, the application
configures itself as the number of allocated processors;

e Malleable jobs: may adapt themselves to changes in the number of available
processors. The changes are required by RMS during the jobs execution, and
these jobs must have some flexibility to react properly to changes at runtime.
In practice, malleable jobs also have a range of processors representing the
application requirements (i.e., the minimum and maximum number of proces-
sors in which the parallel application can perform efficiently), which must be

known by RMS;

e Evolving jobs: may require changes in the number of available processors
due to unpredictable variations on application workload. These variations
change the applications needs at runtime, which must be supplied by RMS
to allow completing their execution. In practice, evolving jobs have an initial
need, which is informed and supplied by RMS at starting time. During the
execution, the application need changes without any previous knowledge, and
RMS must be able to supply it.

Regarding the Feitelson and Rudolph classification, there are two classes of
jobs that include some flexibility: malleable — adaptation to volatile processors;
and evolving — adaptation to changes in the application workload. In this sense,
GHAFOOR (2007) defines adaptive applications, according to the Feitelson and
Rudolph classification, as malleable or evolving applications. Ghafoor’s work mod-
els and simulates an adaptive parallel system in a distributed-memory environment.
Although his adaptive applications include evolving ones, Ghafoor only considers
malleable applications in his study. The reason is the difficulty to model an RMS
system able to supply the unpredictable needs of evolving applications.

To support evolving applications is a challenge. Aiming to solve it, some initia-
tives proposed solutions without involve the RMS, trying to solve imbalances caused
by the workload variations on application side. These initiatives are introduced in
the following.

22

2.2.2 Dealing with Unpredictable Needs

The challenge of supporting evolving applications is that RMS cannot ensure
that it will be able to supply all unpredictable requests of changes in the application
set of processors. This can be easily understood looking to applications composed
by multiple phases: each phase has a proper degree of parallelism and, thus, requires
different amounts of processors. For instance, suppose that an evolving application
starts using 10 processors and after some time it requires more 10 processors, thanks
to an unpredictable workload increase. If there are enough unused processors to
attend this extra needs, RMS can allocate them to the application. However, many
situations can be imagined in which the extra needs cannot be attended, for example,
if the number of unused processors is not enough (in the case, less than 10), if there is
no unused processor, if the evolving application already uses all parallel environment
processors, and so on.

To despite these hardly issues, many recent studies provide solutions to work-
load imbalances on the application side (REINDERS, 2007; AYGUADE et al., 2009;
LEISERSON, 2009). They explore the concept of explicit task parallelism, which is
a simple and elegant programming paradigm that allows unfolding parallelism of the
algorithms at runtime. In other words, unfold the parallelism means to adapt the ap-
plication execution to the specific degree of parallelism of the architectures through
the explicit creation of abstract tasks on demand. In the development of explicit
task applications, the programmer identifies independent units of work (abstract
tasks), the dependencies among them, and the runtime scheduler is responsible to
balance the workload distribution (MATTSON; SANDERS; MASSINGILL, 2004).

A key issue for explicit task parallelism is to provide load balancing. Moreover,
decisions must be taken at runtime, according to the aimed degree of parallelism
and the size of input data. The most used strategy to provide on-line scheduling is
the Work Stealing. In few words, this strategy considers that each element in the
computation? has a queue of ready tasks to be consumed when necessary. If a queue
become empty, the work stealing starts: it (the thief) chooses randomly another
element (the victim) to steal some ready tasks (BLUMOFE et al., 1996). If the
queue of the victim is also empty, the thief repeats the procedure choosing another
element, until eventually steal some tasks (the strategy includes a procedure to avoid
that the stealing requests are demanded indefinitely). This on-line algorithm is
theoretically proved efficient to fully strict programs (well-structured computations)
in terms of time, space, and communication (BLUMOFE et al., 1996).

Once we presented the background about adaptability in current parallel envi-
ronments, the next section will illustrate some practical scenarios and the impact of
their demands.

2.3 Typical Parallel Scenarios of Adaptability

Large-scale environments often have volatile resources due to users’ competition
for processors, bandwidth, memory, and so on. Dealing with volatile resources as a
whole is complex, because it involves issues such as to monitor their usage, to take
decisions and to react at runtime. Some researches show that on-the-fly reconfigu-

2In some implementations of Work Stealing strategy, each processor has a queue of tasks. In
others, each thread or process has a queue of tasks. For a general introduction of the strategy, we
opt to have elements of the computation with queues of tasks.

23

rations are able to improve the application performance (DU et al., 2004; BOERES
et al., 2005; WEATHERLY et al., 2006; SUDARSAN; RIBBENS; FARKAS, 2009).
They use rules or policies to take reconfiguration decisions according to the load
information collected by monitoring applications and resources. These initiatives
are designed taking into account specific features of controlled environments, and
thus, cannot be easily adopted in a generic context. In general, they hardly scale
since require that the collecting, storing and processing the load information, also
scale with the system.

To avoid issues as described above, many researches considered only the dynam-
icity in the level of processors. Thus, the processors have only two states possible:
available or not. So, if one processor is available, this means that it is offering
100% of its power to compute the application. In addition, this is very closer to the
exclusive allocation of the processors implemented by many RMS systems: when
processors are allocated to an application, they are exclusively used by it. However,
this environment is improved to allow the applications receive new or lose some
processors at runtime, as the RMS decisions. According to definitions presented
in Section 2.2, these applications are named malleable (FEITELSON; RUDOLPH,
1996; BUISSON, 2006; GHAFOOR, 2007), i.e. they have a constant computational

workload and are able to adapt to changes in the number of processors at runtime.

Aiming to clarify the situations that can change the processors availability in a
practical scenario, there are descriptions of some use cases in the following.

2.3.1 Use Cases with Volatile Processors

To illustrate the use cases, we will consider a typical scenario in which an RMS
receives submissions of parallel applications from users. During the submission, the
users provide to RMS all required information to execute the applications, such
as the name of binary, the number of processors, the execution time estimate, the
path of input files, and so on. RMS allocates processors to applications following
a scheduling policy that takes into account the overall number of processors, as
well as the sets of running and the waiting applications. When there are fewer
processors than those required by an application, it is inserted in a pending queue
until enough processors become available to serve it. In this context, we can identify
two situations that may cause changes in the availability of the processors:

Submission of new applications: When a new application is submitted, RMS
tries to allocate the required number of processors; otherwise the application
goes to the pending queue. However, if RMS is able to handle malleable appli-
cations, it may analyse if there are some able to release enough processors to
attend the arriving application. When there are, RMS requests the processors
launching shrinkage actions on the malleable applications. When processors
are released, RMS can serve the arriving application with all required pro-
cessors instead of enqueue it. This procedure is illustrated in Figure 2.2 (a).
Notice that the new application must wait while processors are released, but
its response time tends to be lower than when it must wait in the pending
queue.

Completion of the applications: Processors are released when an application
finishes. In general, if there are applications in the pending queue, RMS
allocates these free processors to them, otherwise processors will remain idle.

24

! 1
. User RMS Malleable Applications !
! 1
. submission [| | !
L e » requesting processors| ;" releasing™ !
' > % processors i |
(S " si;?'n"g] ----- . e X
! ici } OK < !
1 decision.. ok :
, launching !
! 1
! 1
! . 1
1 : 1
: new I
! application '
1(a) |

__ .

ending malleable

RMS application applications

1

1

1

1

1

1

1

1

1

1

1

free 1
-~

processors 1

1

1

1

1

1

1

1

1

1

1

1

...... adding processors

__

Figure 2.2: Use cases with volatile processors: (a) An user submit an application to
RMS, which identifies that there are not enough processors to attend it and requests
the missing processors from malleable applications; when the processors become
free, the arriving application is served. (b) An application finalizes releasing some
processors; RMS analyses the malleable application needs and decides to allocate
the free processors to them.

When there are malleable applications, RMS may analyse their needs, veri-
fying if they are able to receive more processors. In the affirmative case, the
free processors are allocated to malleable applications launching growth ac-
tions on them. The interactions of this procedure are illustrated in Figure 2.2
(b). Increasing the number of processors of running malleable applications, it
is expected improvements in their performance as well as in the utilization of
the parallel environment resources (processors, bandwidth, and so on).

RMS that supports malleable applications can offer QoS (Quality of Service)
advantages such as reductions in the response time, and improvements in resources
utilization (UTRERA; CORBALAN; LABARTA, 2004; HUNGERSHOFER, 2004
BUISSON et al., 2007). However, to support it the RMS must have a scheduling
policy able to deal with dynamicity. In other words, beyond its default behavior, the
RMS must consider the needs of malleable applications (for example, the minimum
and maximum number of processors) to takes its scheduling decisions. Furthermore,
an acknowledge mechanism is desirable to confirm the successful execution of the
malleable actions (growth or shrinkage), or even alert for some possible problem
during the malleable actions.

! 1
' (a) 1,(b) e e e e e !
' , : Iy evolving S
! evolving \'! RMS application !
X RMS application .| ;

! 1
| requesting | ! free !
: ~processors " processors ;
1 ta'ﬁi'."g | hy 7 1
: decision oK > :: :
1 || 1
! 1
! 1
! 1

Figure 2.3: Use cases with unpredictable needs: (a) The evolving application in-
creases workload and requires new processors to RMS, which takes the decision as
the scheduling policy. In the right, we illustrate the increasing of the workload
through dynamic generation of tasks. (b) The evolving application decreases work-
load and release some processors. In the right, the workload decreasing is illustrated
through the tasks finalization.

Malleable applications must be able to identify events from RMS that launch
malleable actions. After identifying these events, malleable applications must per-
form the coherent procedure, releasing or adding processors. Thus, the support of
malleability requires an integration and cooperation between RMS and malleable
applications (FEITELSON; RUDOLPH, 1996).

2.3.2 Use Cases with Unpredictable Needs

Nowadays, many problems require dynamic and irregular structures in their so-
lution (AYGUADE et al., 2009), causing variations on the workload at runtime.
Besides algorithmic features, dynamic variation in workload can be caused by the
nature of the problems, and the unpredictable non-uniform distribution of the input
data (GHAFOOR, 2007). Furthermore, the variations may be regular or not from
one execution to another. For instance, for the same input, the N-body simulations
solved with a parallel Fast Multipole algorithm will always have the same workload
variations. On the other hand, weather prediction algorithms may require quick
responses to sudden weather changes causing different workload variations from one
execution to another. In both cases, unpredicted variations may change the appli-
cation needs at runtime such as the number of processors, disk storage and network
bandwidth. As introduced in Section 2.2, these applications are named as evolving
and, we illustrate some use cases of them in the following.

We consider the typical scenario in which users submit applications to RMS, and
it schedules them on the available processors using a scheduling policy. In addition,
there is an evolving application running upon a set of processors. Thus, there are
two situations in which unpredictable needs can require adaptive actions:

Increasing of the workload: When the workload of the applications increases,
their demand for CPU, memory, disk space, bandwidth and so on, also in-
crease. For instance, explicit task applications increase the workload when it
unfolds the parallelism generating abstract tasks at runtime. There are two
options to supply the extra demand of the evolving applications: either RMS

26

is able to offer at runtime more resources or the application schedules the fur-
ther workload upon the existing set of resources, trying to reduce the impact
of the irregularity. The first option involves hard issues such as to ensure that
the environment will have enough resources to supply the application unpre-
dictable needs. Figure 2.3 (a) shows the iterations between RMS and evolving
applications as well as an illustration of increasing of the application work-
load. On the other hand, the second option tries to adapt the execution of the
applications using their previously allocated resources. This may causes some
loss of performance when compared with the first option, but it is independent
of RMS issues and widely used in the current researches.

Reduction of the workload: When the workload decreases, some resources trend
to have a low load or even become unused. Using explicit task applications
as an example, the workload decreases when some abstract tasks finalize. If
RMS provided extra resources to compute the further workload, when it ends,
some processors become unused, and then they can be released (returned to
RMS). Figure 2.3 (b) shows the iterations between RMS and evolving applica-
tions when the workload decreases as well as an illustration of the application
workload decreasing. On the other hand, if the applications schedule the
further workload among their previously allocated resources, when workload
decreases, the distribution becomes unbalanced again. Thus, new workload
redistribution is required to balance the load among the application resources.

As can be observed, the key issue to support evolving applications is to decide
if RMS will be involved or not in the adaptive actions. An RMS scheduling policy
that is able to deal with evolving applications is still hard due to their unpredictable
nature and, as far as we know, was never provided. On the other hand, there are
many studies aiming to provide load balancing on application side. Thus, we opt
for this last approach.

2.4 Requirements to support Adaptability

In the previous section, we show use cases that require adaptive actions, 7.e., sit-
uations that requires adaptation: to execute with volatile processors; and to adapt
the execution as unpredictable needs. During the explanations about the use cases,
we already show some requirements to support them. In this section, the focus is
to introduce further issues and requirements to support volatile processors - Sec-
tion 2.4.1; and unpredictable needs - Section 2.4.2.

2.4.1 Requirements of Volatile Processors

Section 2.3.1 described the importance of RMS to execute malleable applica-
tions upon a set of volatile processors is clear. It decides when the adaptive actions
must be launched, upon which applications, and involving how many processors.
Furthermore, malleable applications have their own needs informed by the users at
submission time. An example of needs is the range of processors, which determine
that applications fail when there are fewer processors than the minimum, and other-
wise, they can not improve performance using more processors than the maximum.
Moreover, some problems have algorithmic restrictions requiring a specific number
of processors on malleable actions, for example power of 2 processors.

27

Table 2.2: The main issues of environments with volatile processors and malleable
applications.

Who requests adaptive actions? The RMS.

When adaptive actions can be | When new applications are submitted
launched? or running ones are finalized.

What guides the adaptive actions? | The RMS scheduling policy based on
the availability of the processors, the
malleable application needs, and the
running and waiting queues.

Growth - some workload is destined to
NEeW Processors.

Shrinkage - some processors are re-
leased without compromising the appli-
cation results.

Growth - to select non-computed work-
load for new processors.

Shrinkage - to ensure that the loss of
processors will not affect the correct-
ness of the results.

What are the adaptive actions?

What are the main issues?

The design of an RMS scheduling policy able to deal with volatile resources is
considered out of the scope of this thesis. Thus, we consider that there is an RMS
able to manage the dynamic availability of the processors and deliver the decisions
to malleable applications (more details about the management of volatile processors
on RMS system will appear in Section 5.1). Thus, we can focus on the remaining
issues such as establishing a communication channel between RMS and malleable
applications, providing the identification of the dynamic events that launch the
adaptive actions, designing the procedures that implement the malleable actions,
and so on.

Malleable applications perform two adaptive actions: growth — to use more pro-
cessors than currently exists, and shrinkage — to release processors. The growth
includes a mechanism to delegate some workload to new processors. For instance,
this mechanism may launch or migrate units of executions (processes or threads) to
the new processors, according to the program design adopted. Thus, the challenge
is to continue the application execution identifying non-computed work to be dele-
gated at runtime. In consequence, this includes an additional care with correctness
of application results.

On the other hand, the shrinkage procedure must ensure that the applications
will continue running after losing some processors. As well as in growth, the imple-
mentation of this procedure depends on program design, in which the units of execu-
tion (UEs) running in releasing processors must be finalized or migrated. Moreover,
the loss of processors should not compromise the application results. For instance,
if an UE is finalized losing some already computed data, the application must be
able to identify it and restart the computation in the future.

Table 2.2 summarize the most important issues about environments with volatile
processors, and malleable applications.

28

Table 2.3: The main issues of supporting unpredictable needs of evolving applica-
tions.

Who requests adaptive actions? The application.

When adaptive actions can be | When the workload of the evolving ap-

launched? plications increases or decreases.

What guides the adaptive actions? | The natural application irregularity.
Adapt to workload increasing - to

. . o
What are the adaptive actions? schedule the further workload among

the units of execution.

Adapt to workload reduction - to restore
the load balancing among the units of
execution.

What are the main issues? Provide a scheduling strategy able to
deal with unpredictable needs at run-
time.

2.4.2 Requirements of Applications with Unpredictable Needs

Currently, explicit task applications (i.e., those are developed following the ex-
plicit task parallelism programming paradigm), which are a kind of evolving applica-
tion that execute without RMS interactions, have been widely studied. These appli-
cations are able to unfold the parallelism at runtime through the generation of the ab-
stract tasks. Parallel APIs such as Cilk++ (LEISERSON, 2009), OpenMP (CHAP-
MAN; JOST; PAS, 2008) and TBB (REINDERS, 2007) (these APIs will be de-
scribed in Section 3.2) use the explicit task parallelism to adapt the application
execution to the required degree of parallelism on shared-memory environments (fo-
cused on multi-core architectures). In distributed-memory, KAAPI (GAUTIER;
BESSERON; PIGEON, 2007) and AMPI (HUANG; LAWLOR; KALE, 2003) (will
be also detailed in Section 3.2) can adapt their executions and scheduling to ensure
performance taken into account the locality of the UEs on clusters of computers.

When users submit explicit task applications to RMS, the initial needs are de-
scribed (number of processors, and so on). Although application can be launched
based on these needs, they will become not ideal when the application workload
varies. Thus, adaptive actions are required to balance the workload distribution
and ensure efficiency. In this case, the adaptive actions involve some scheduling
strategy to provide load balancing, and further issues related to the programming
model. For instance, when tasks are generated at runtime (increasing of the work-
load), they must be assigned to units of execution (processors or threads). According
to the program design, one unit of execution can compute only one task and finalize
(probably tasks with a high granularity) or it receives a set of tasks maintaining a
queue of them.

As the problems solved by evolving applications are naturally irregular, the work-
load tends to become unbalanced at runtime. Furthermore, when tasks are fin-
ished (decreasing of the workload) some processors keep without or with low load.
Both situations require adaptive actions to rebalance the workload using an on-
line scheduling strategy. We will present further issues of explicit task applications
scheduling in Chapters 3 and 6.

29

Table 2.3 summarizes the main issues of these applications and their support on
current parallel environments.

2.5 Program Structures and Adaptability

As introduced previously, adaptive algorithms are able to take adaptive decisions
as resource availability or input data properties, both discovered at runtime (CUNG
et al., 2006). Furthermore, a runtime adaptation requires some procedures that
implement the coherent reactions when the set of resources is volatile or the input
data causes variations the application workload. Moreover, these issues must be
addressed by the program structures used by the adaptive applications. The question
remaining is: “What is the impact of an adaptive behavior according to the program
structure used by the application?

This section investigates answers to this question. It will introduce the program
structures mostly used in parallel applications as well as their adoption by the
related works involving adaptability. The program structures presented are: SPMD
(Section 2.5.1), Master/Worker (Section 2.5.2), Loop Parallelism (Section 2.5.3),
and Fork/Join (Section 2.5.4).

2.5.1 Single Program, Multiple Data

In Single Program, Multiple Data (SPMD) program structure, all units of exe-
cution compute the same program (Single Program) in parallel, but each UE has
its own set of data (Multiple Data). The UEs can follow different paths in source
code, which is determined by unique labels such as the process identifier (ID). This
program structure is widely used to implement MPI applications, since it is flexi-
ble and covers the most important algorithm structures used in scientific comput-
ing (MATTSON; SANDERS; MASSINGILL, 2004). Figure 2.4 shows the basic
elements of SPMD programs in which there are N UEs executing the same steps:

e As the parallel programming model, the UEs initialize;

Each UE gets its unique process ID;

Then, each UE computes the set of instructions on its own set of data, usually
driven by the process ID;

e An UE finalizes when the set of data were computed.

The last two steps may also involve the distribution and recombination of the
data according to environments features (shared or distributed memory) or pro-
gramming paradigm (shared access or data replication).

The SPMD program structure appears in adaptive initiatives that use the MPI
interface, because of its large use in scientific MPI applications. For example, the
AMPI or Adaptive MPI (HUANG; LAWLOR; KALE, 2003) converts SPMD MPI
programs in multi-partitioned ones, in which MPI processes are replaced by threads,
encapsulated into Charm-++ objects (KALE; KRISHNAN, 1993). AMPI programs
are able to adapt themselves to imbalances in the workload of physical proces-
sors through the migration of Charm++ objects. Furthermore, they can adapt to
volatile processors thanks to the Adaptive Job Scheduler (KALE; KUMAR; DES-
OUZA, 2000), which provides information about the processors availability to AMPI
programs.

30

UE O to N-1

| Initialization]

\
[Obtaining an unique ID]

Y

Run the program using
the ID to differentiate
the behavior of each UE

[Distribution of the data |

\
| Finalization |

Figure 2.4: SPMD program structure: N UEs executing the same source code guided
by their process ID.

Another initiative is Dynaco (BUISSON; ANDRE; PAZAT, 2007), which al-
lows the execution of adaptive applications able to deal with volatile processors.
In this initiative, malleability is a special case of adaptability. Dynaco is a generic
framework that supports several different program structures. The AFPAC mod-
ule (BUISSON; ANDRE; PAZAT, 2006) allows the execution of SPMD programs
in Dynaco, and thus, allows that several MPI-based applications become malleable.
The procedures implementing the adaptive actions are provided by the programmer
to Dynaco, which is responsible to call these procedures properly.

Similarly, PCM (Process Checkpointing and Migration) (MAGHRAOUTI et al.,
2007, 2009) is a library that allows MPI applications to adapt themselves to dynamic
changes in processors availability. Malleability is provided using process migration.
Furthermore, the library controls the granularity of the processes, splitting or merg-
ing them and redistributing their input data aiming to ensure performance.

2.5.2 Master/Worker

In this program structure, there are two types of UEs: master and workers. The
master starts the computation by setting up the problem and creating a bag-of-tasks.
The workers take tasks from the bag, compute, and return the results when they
are required. These steps are repeated as long as there are tasks in the bag. The
master finalizes when it receives all worker results and the bag-of-tasks is empty.
In classical implementations of Master/Worker programs, the master waits while
the workers compute their tasks. Improved implementations keep some tasks to be
computed by the master to avoid master idle standby. Furthermore, to reduce the
communication costs, workers can take a cluster of tasks instead of take only one
task at a time. In the same way, results may be returned in clusters instead of one
result at a time.

31

Master

[starting computation |

[setting up the problem |

creating the bag-of-tasks|

Workers
[launching workers .
““““ » initializing |
—
computing tasks
wait while l P 9 I
workers computes N @
Y
______ A exiting | {7
[collecting results Js-—=""""
v
| finalizing |

Figure 2.5: Master/Worker program structure: master starts the computation cre-
ating and managing tasks and workers; and workers take and compute tasks.

The Master/Worker program structure is usually adopted when there are no de-
pendencies among tasks. Furthermore, this program structure offers an automatic
load balancing among workers, since task assignment is made on demand. Although
the master may be a bottleneck when the number of workers is large, in the aver-
age case this approach usually provides a satisfactory load balancing. Thus, there
are many implementations of scientific problems following this problem structure.
Figure 2.5 illustrates an implementation of a Master/Worker program:

e Master: starts the computation by setting up the problem, creating the bag-
of-tasks, and launching the workers. It waits while workers compute and
collects worker results. When the collection ends, the problem is considered
solved and the master finalizes;

e Workers: Each worker initializes getting a cluster of tasks and while there
are tasks, it computes them. When there is no more tasks, the worker sends
results to master and ends its execution. Notice that workers only get task
once, which is a decision that aims to reduce communication costs. However,
this may be unefficient when the size of the cluster of the tasks is large.

Master/Worker program structure appears in adaptive initiatives because of its
great popularity. For instance, PCM (MAGHRAOUI et al., 2009) also has results
showing the adaptability of Master/Worker MPI programs allowing their execution
upon a variable set of processors.

Another example is shown in LEOPOLD; SUSS (2006); LEOPOLD; SUSS; BRE-
ITBART (2006), which provides Master/Worker adaptive applications combining
MPI-2 features and OpenMP threads. The target application is the WaterGAP
(Water - Global Assessment and Prognosis), which investigates the current and fu-
ture water availability worldwide. This application has irregular tasks of different
sizes. It adapts itself according to the architecture setup (number of processors/-
cores) combining process and thread creation, driven by the size of the tasks.

32

2.5.3 Loop Parallelism

The majority of scientific problems are overwhelmed with loop constructs. The
loop parallelism program structure aims to transform a serial program composed
by a set of compute-intensive loops into a parallel one, through the parallel execu-
tion of the loop iterations. This is an algorithmic strategy to provide a behavior
similar to older vector supercomputing on modern parallel computers (MATTSON;

SANDERS; MASSINGILL, 2004).

From a sequential loop-based program, loop parallelism program structure in-
volves:

e To find the most computationally intensive loops, which dominate the
program execution time, through an analysis of source code or performance of
the serial program;

e To eliminate dependencies among loop iterations changing or adapting
the source code, once loop iterations must be independent in loop parallelism;

e To parallelize the loops distributing the loop iterations among the UEs;

e To optimize the scheduling of the loop iterations aiming at load bal-
ancing among UEs.

Figure 2.6 shows an example of loop parallelism. There are two pseudo codes of
a for loop, computing N independent iterations, being N predefined as 100. In the
left, there is an iterative loop as well as an illustration of its execution. Notice that
loop iterations are executed sequentially, one after another. In the right, the same
for loop is shown with directive # ParFor that distributes the iterations among 10
UEs. The definition of the number of UEs involved is made direct in the runtime
system. The 100 iterations are distributed among the UEs, where each performs 10
iterations. Notice that all iterations of the loop have the same workload.

To clarify the impact of loop parallelism in applications performance, suppose
that to compute 1 iteration it is spent 1 second. Then, the iterative loop spends
100 x 1 = 100 seconds, whereas the parallel loop spends 10 x 1+ parallel _overhead =
10 + parallel_overhead seconds. The parallel_overhead means the time spent to
coordinate parallel tasks, such as task start-up and termination time, synchro-
nizations, software overhead, etc. In an ideal system, for efficiency reasons, the
parallel_overhead is less than the time spent in the parallel work. Then, we can
estimate that 10+ parallel_overhead > 10 and 10+ parallel _.overhead < 10+ 10. In
other words, even in the worst case, the parallel loop reaches a better performance
than an iterative execution.

An important issue of this program structure is that the loop parallelized must
have enough parallelism (i.e. iterations with large computing time or a large num-
ber of fine-grain iterations) to compensate the overhead of parallelization. Thus,
there are common practices such as: merge a sequence of loops with consistent loop
limits into a more complex loop iteration; and to coalesce nested loops combining
them into a single loop with a larger iteration counter. Notice that to allow the
distribution of the iterations among the UEs, the loop parallelism program struc-
ture requires that the number of iterations are previously known. Furthermore,
the parallel execution of iterations on a set of UEs requires some shared access of
the input data. Thus, mostly implementations with this program structure are in
shared-memory environments.

33

define N 100 define N 100

ParFor
for (i=0; i<N; i++) {

for (i=0; i<N; i4+){ 1.
: // independent '

: // independent :

// iteration // iteration

|

Figure 2.6: Iterative and parallel loop. In the left: an iterative loop with an illustra-
tion of its execution. In the right, the parallel loop (parallelism through # ParFor)
using 10 UEs.

Loop parallelism became popular in the HPC community because of the large
number of loop-based algorithms. OpenMP (CHAPMAN; JOST; PAS, 2008) was
the first parallel programming API to support constructs to parallelize loops. It
offers compiler directives to be included in the sequential source codes, signaling
loops that must be parallelized by the OpenMP compiler. Thus, the assignment
of iterations on UEs happens at compile time. Other examples of APIs that also
provide loop parallelism are Cilk++ (LEISERSON, 2009), and TBB (Threading
Building Blocks) (REINDERS, 2007) (more details about these APIs will appear in
Section 3.2).

Although loop parallelism has a great acceptance on the HPC community, the
natural restrictions of this program structure, blocks its use on adaptive applica-
tions. In fact, the units of work, or how many iterations each UE must perform,
are statically defined at compile time. In addition, the total amount of loop itera-
tions must be known at compile time and cannot be changed during the execution.
These static features difficult the development of adaptive applications based on
loop parallelism program structure.

2.5.4 Fork/Join

The Fork/Join program structure aims at problems that the algorithmic solution
imposes a dynamic creation of tasks (to fork new tasks) and their termination (to
join with the task that forked it), at runtime. Furthermore, Fork/Join programs
preserve the relationship among tasks while they are managed. For instance, the
recursive algorithms preserve the relationship between one level of recursion and an-
other. This kind of algorithm can be implemented following the Fork/Join program
structure: recursive calls fork new tasks, and when a task ends, it joins with its
forker (MATTSON; SANDERS; MASSINGILL, 2004).

A popular use of Fork/Join is to implement the Divide and Conquer (D&C) algo-
rithm structure. A problem is recursively split into subproblems until the computa-
tion become trivial (divide phase); the final solution is the merge of all subproblems
solutions (conquer phase). Thus, the divide phase can be implemented by forking
new tasks in each recursion level. In the conquer phase, a task can only join with
its forker when its children have already joined it (hierarchical dependency).

! 1. void DivideAndConquer (type_problem problem) { \

! 2. solution = divide(problem); ! i

v 3.}

4. . o “/ 1

: 2.?ype_solutlon divide (type_problem problem) — I ' ?miwmi
V7. type_problem subProblems[2]; i f """""" : 5) """""" 5
8 type_solution subSolution[2], solution; l/// \\, ,/

Ly o £ T - |

ElO. if (problem is trivial) ”i ,,,,,,,, 1mimm. -l
1. o j / \ j

112, solution = compute (problem); i i

113. }

114, else

5. Il I | T |

116. subProblem

split (problem);
] =

7. subSolution [0 divide (subProblem[0]);

118. subSolution[1] divide (subProblem[1l]);

i19. solution = conquer (subSolution);

120 }

121. return solution;

:22.} . x///j:>
123 :

24. type_solution conquer (type_solution subSolution){ .

125. return (subSolution[0] + subSolution[1l]); X

126. } '

Figure 2.7: Pseudo code of a Divide and Conquer program (left side) and its parallel
execution (right side).

Figure 2.7 shows a pseudo code of a D&C program and an illustration of its
parallel execution. The DivideAndConquer function (line 1) starts the divide phase
with the problem to be solved as parameter. The divide function (line 5) tests if
the problem is already trivial: if yes, it is computed, otherwise the problem is split
into two subproblems and, recursively, two divide calls are performed, one to each
subproblem. The recursion only stops when the problem becomes trivial. When the
subproblems solutions are available, they are merged through the conquer function
(line 24). The illustration on the right shows the parallel execution of the pseudo
code: on the top, the problem is split into subproblems until they become trivial
representing the divide phase; then, the conquer phase will merge the subproblems
solutions following their recursion level dependencies.

The Fork/Join program structure has a natural dynamic behavior since tasks
are forked and joined at runtime. Furthermore, the generation of dynamic tasks is
mostly, if not always, driven by the input data. For instance, in D&C applications,
the problem is often represented by a set of input data. When this set becomes
small enough to be computed efficiently, the divide phase stops. Thus, the Fork/Join
program structure can be used to provide adaptability according to the properties
of the input data.

There are many adaptive initiatives using the Fork/Join program structure. In
shared-memory context, the Fork/Join is used in applications that follow the ex-
plicit task parallelism programming paradigm. For instance, Cilk (BLUMOFE et al.,
1996; BENDER; RABIN, 2000) and its current release Cilk++ (LEISERSON, 2009),
OpenMP 3.0 (AYGUADE et al., 2009), and TBB (REINDERS, 2007) (these ini-
tiatives will be detailed in Section 3.2). Leaving aside the technical differences,
basically, all these approaches provide means for the programmers to define what

A
/]

\
I
o

35

is a task and what are the dependencies among them. The runtime environment
of these systems provide the dynamic generation of the tasks as well as their map-
ping and scheduling on UEs. In few words, the generation of the dynamic tasks at
runtime represents the fork, while the satisfaction of the dependencies among tasks
represents the join.

In the distributed-memory context, KAAPI (Kernel for Adaptative, Asynchronous
Parallel and Interactive programming) (GAUTIER; BESSERON; PIGEON, 2007)
has many similarities with Cilk and also uses the Fork/Join program structure.
Furthermore, KAAPI considers locality issues on the scheduling, since it aims at
distributed-memory systems such as clusters of computers and clusters of clusters.

2.6 Conclusion

The purpose of this chapter was to contextualize the adaptability needs in current
parallel environments. First of all, we described the taxonomy that will be employed
in this thesis. Then, we showed well-known classification of applications: rigid,
moldable, malleable and evolving. Our thesis is focused on the last two classes which
deal with volatile processors and irregular workload, respectively. We discussed
about some use cases to show typical scenarios that require adaptability to allow
efficiency. These use cases helped to compose a list of requirements to support
volatile processors and irregular workload (Tables 2.2 and 2.3).

Furthermore, this chapter presented the mostly used program structures for par-
allel programming and their use in related works that provide adaptive applications.
Table 2.4 resumes the four program structures described.

Table 2.4: Resume of the main features of the program structures and their use on
related works on adaptability.

Description Its use for adaptability
SPMD Copies of the same source | In approaches based on MPI
code executing in parallel, | applications: AMPI, Dy-
computing their own data | naco, and PCM
Master/Worker | A master manages a bag-of- | PCM (MPI-based) and
tasks and the workers com- | WatherGAP application

pute tasks from this bag

(MPI-2 and OpenMP)

Loop Parallelism

To compute loop iterations
in parallel

No related work on adapt-
ability was found

Fork/Join

Algorithm requires to fork
and join tasks at runtime

Based on explicit task
parallelism: Cilk, TBB,
OpenMP, and KAAPI

The key aspect of this chapter is that adaptive actions often require some support
from the runtime environment. In this sense, the next chapter aims to detail this
runtime support: (i) RMS and parallel applications interactions aiming to deal with
volatile processors; (ii) Application Programming Interfaces (API) able to adapt
the application execution at runtime; (ii) Scheduling issues required by adaptive
applications aiming at load balancing.

36

3 RELATED WORKS: RUNTIME ISSUES OF ADAPT-
ABILITY

Previously, we introduced the context of the current parallel environments and
the scenarios that require adaptability. This chapter gathers initiatives that provide
the execution of the adaptive parallel applications. The runtime environment issues
that will be analysed are:

e The support of volatile processors by the RMS systems — Section 3.1;

e The APIs features that allow adapting the application execution to unpre-
dictable needs — Section 3.2;

e The on-line scheduling required to deal with dynamicity at runtime — Sec-
tion 3.3.

Thus, its goal is to provide a view of the related works aiming at issues involving
the support of adaptability at the runtime environment level.

3.1 RMS Issues to support Volatile Processors

According to FEITELSON; RUDOLPH (1996), a good approach towards the
support of the dynamic availability of processors requires a co-design of runtime
system and programming environment. This statement refers the twofold issues of
supporting volatile processors: on the one hand, the application must inform its
basic needs and be able to adapt to variations in the processors availability (as well
as to confirm the execution of the adaptive actions). On the other hand, RMS must
be able to use the information about the basic needs of adaptive applications aiming
at a good allocation of the processors. RMS can only demand changes in processors
allocation when it can improve either the execution time of the running applications
(add new processors) or the response time of a arriving applications (require some
processors from running applications).

Thus, the support of volatile processors requires: (i) parallel programs able to
deal with changes in the number of processors at runtime; (7i) interactions between
the RMS and the programs aiming to exchange the required information; and (%ii)
specific scheduling policies to guide the RMS decisions about the allocations of the
processors. In the following, there is an analysis of the treatment of these aspects
in the related works.

37

Growth
>
P1 P1 P1
- Application g - Application - - -
P2 P2 Application P2
P3 Processor became free |P3 P3
P4 P4 P4
-
Shrinkage

Figure 3.1: Growth and shrinkage actions of malleable applications: in growth (left
to right) the application increases its number of used processors, while in shrinkage
(right to left) it can release processors.

3.1.1 Implementation of the Adaptive Actions in Parallel Programs

In Section 2.3.1, were introduced the use cases involving volatile processors and
the actions required to allow an on-the-fly adaptation to them. Applications able to
deal with volatile processors are named as malleable, and basically, they have two
special procedures:

e Growth action to allow the application to use new processors;

e Shrinkage action to allow the application to release some processors.

Figure 3.1 illustrates these adaptive actions. In the following, we will analyse
how to they are implemented by the related works.

3.1.1.1 PCM (Process Checkpointing and Migration)

PCM (MAGHRAOUI et al., 2007; DESELL; MAGHRAOUI; VARELA, 2007;
MAGHRAOQUI et al., 2009) includes an extension to provide malleability as a user-
level library for iterative MPI applications. PCM applications can reconfigure dy-
namically to changes in the availability of the processors through: (i) split and
merge operations - to change the number of running processes; and (ii) processes
migration - to change the locality of the processes. Split and merge allow any num-
ber of processes M to be split or merged into any number of processes N. The PCM
library offers four primitives to implement these operations: two for operations 1 to
N (PCM_Split and PCM Merge), and two for M to N (PCM_Split_Collective and
PCM_Merge Collective).

Basically, a set of PCM high-level primitives provide low-level issues for pro-
grammers. For example, they implement changes in the rank and number of the
MPI processes, as well as offer a malleable communicator called PCM_COMM_WORLD
that replaces the standard global communicator MPI_COMM_WORLD (more detail of this
standard communicator will appear in Section 4.1.1) As these operations change the
communication topology, they also requires data redistribution, which is provided
by the library. On the other hand, PCM requires that the programmers include the
PCM primitives into the MPI source code and specifies the data structures involved
in adaptive actions.

38

While split and merge operations change the communication topology and data
distribution, the processes migration changes the mapping of the processes into
physical resources (MAGHRAOUTI et al., 2009). The migration adjusts the process-
level granularity providing more scalable and flexible reconfigurations. PCM process
migration is implemented using MPI _Comm spawn to spawn new processes in the
target processors. A new process receives a checkpoint of the local data of the
migrating process (the spawner), and continues the computation of this local data.
Since the migration changes the location of the processes, the entire application
must known that changes are being performed. Thus, the PCM process migration
is a collective operation that blocks all processes of the application, until the end of
the transfer operation.

3.1.1.2 Adaptive MPI (AMPI)

AMPI (HUANG; LAWLOR; KALE, 2003) also takes advantage of migration to
adapt applications to changes in processors availability. In this case, Charm++
objects (which encapsulate threads that replaces the MPI processes) are transfered
in the adaptive actions. Since parallel applications were implemented according to
the AMPI specification, the adaptive actions are automatic and transparent. In
other words, once Charm++ objects can be instantiated, the AMPI environment
provides the migration of them, and thus, can adapt the application to changes
in the processors availability. Thus, when new processors become available some
objects are migrated to them. Otherwise, objects are migrated from processors that
are being released. This behavior avoids failures while the application performs with
volatile processors.

3.1.1.3 Dynaco

Dynaco (BUISSON; ANDRE; PAZAT, 2005; BUISSON et al., 2007) provides
adaptive applications through a special module AFPAC which allows malleability on
MPI-Based ones. Dynaco applications perform event-based adaptations according to
the dynamicity of the processors. When an application observes that new processors
are available, it may increase the parallel degree by spawning new processes (using
MPI-2 dynamic process creation: MPI Comm spawn). Otherwise, when processors
are requested, the processes that run on them are terminated (BUISSON; ANDRE;
PAZAT, 2005). To provide adaptability, Dynaco have four components:

e Observe: to monitor the environment and launch adaptive actions when some
relevant change happens;

e Decide: to find the best strategy that an application should use to adapt itself;

e Plan: to determine the set of actions that implement the strategy chosen in
the decide component;

e [recute: to schedule the actions listed in the plan.

The components described above compose a generic mechanism to provide adapt-
ability, but it does not consider application-specific issues. For instance, which
adaptive strategies are the most appropriated to a given class of problems; what
are the required actions to implement these adaptive strategies; what is the impact
of these actions on the application execution; etc. These issues cannot be solved
without involve the programmers, which must provide to Dynaco the decision pro-

39

cedure, the description of planning problems, and the implementation of adaptation
actions (BUISSON et al., 2007). Furthermore, if the adaptations occur while data
are being modified, it may cause inconsistencies on the application results. Thus,
Dynaco offers special states called points or annotations, which identifies in the appli-
cation source code, when adaptive actions can be performed without compromising
the results. The insertion of points in the source code is another responsibility of
the programmers that use Dynaco.

3.1.1.4 Strength and Weakness

Table 3.2 presents the strength and weakness of initiatives previously discussed.

Table 3.1: Strength and weakness of initiatives to support adaptive actions in the
programming context.

Initiatives

Strength

Weakness

PCM

It allows to control the process
granularity, changing the number
of running processes and their lo-
cality (through migration)

Programmers must known
deeply PCM primitives to be
able to insert them in their
source codes

AMPI Charm+-+ objects are automatic | Application development must
and transparently migrated to | follows AMPI specification
implement adaptive actions

Dynaco It is a robust framework able to | Programmers must provide the

provide adaptability taking ad-
vantage of the MPI-2 features

decisions, planning and to imple-
ment the adaptive actions

3.1.2 Communication between RMS and Adaptive Applications

Adaptive actions able to deal with volatile processors require updated informa-
tion about the availability of the processors. Malleable applications expect to receive
this information from a component of the runtime system. The Resource Manage-
ment Systems (RMS) usually has means to offer it, and many initiatives stablish a
communication channel between the RMS and the malleable applications, as shown
in Figure 3.2. In the following, we describe the exchanging mechanism in the related
works.

3.1.2.1 PCM

PCM receives information about the availability of the processes from a mid-
dleware — the IOS (Internet Operating System) (MAGHRAOUI; SZYMANSKI;
VARELA, 2006). It is composed by a peer-to-peer network of agents performing
as a specific RMS. 10S has three modules:

e Profiling to offer resource-level and program-level profiling;

e Decision to take reconfiguration decisions;

e Protocol to start Work Stealing requests.

The information collected in the program-level profiling is: processing, commu-

nication, data accesses and memory usage, whereas in resource-level profiling are:
CPU processing power, memory, disk storage, and network bandwidth and latencies.

40

RMS | Malleable Application |
if there are free processors — if grow[processors]
send grow[processors] ee— > launch growth()
- ..,
if processors are required — if shrink[processors]
send shrink[processors] launch shrinkage()

Figure 3.2: Communication channel between RMS and malleable application: RMS
decides based on processors availability informing its decision to the application.

These information guide decisions about reconfiguration, which will be described in
Section 3.1.3. The I0S agents perform Work Stealing requests to start reconfigura-
tions every time they receive a notification that there are new available processors
or when the existing ones become idle.

Through PCM, MPI programs and IOS interact using two interfaces: one to
allow the IOS to profile the MPI programs, and another to transmit the reconfigu-
ration decisions from IOS to MPI programs. The first interface is the IOS profiling
API, which defines a set of functions to collect the current state of programs com-
munications, and manage the profiling. The second interface uses a set of global
flags in PCMD (PCM Daemons). They are daemons running on each processor to
handle the checkpoint services and forward the reconfiguration requests. A master
process (chosen among the MPI processes) probes the PCMD and broadcasts the
reconfiguration notifications to the remaining processes. The status (PCM_Status)
that can be reached are: (i) PCM_MIGRATE when processes need to be migrated; (ii)
PCM_RECONFIGURE to notify that reconfigurations are being done; (7ii) PCM_SPLIT
when split operations are being done; (iv) PCM_MERGE when merge operations are
being done.

3.1.2.2 AMPI

AMPI applications receive information about the availability of the processors
through the Adaptive Job Scheduler - AJS (KALE; KUMAR; DESOUZA, 2000).
It allocates the AMPI applications, manages the use of the processors, ensures the
migration of Charm++ objects, and keeps the system Quality of Service (QoS).

Every time that the AJS communicates with running AMPI applications, it
happens via CCS (Converse Client Server) protocol. Communications are restricted
to a bit vector transmission, which describes the command required. This bit vector
is an easy manner to describe changes in the set of processors available to an AMPI
application: the positions set by 1 are processors currently available. Thus, the AJS
decides how many processes can be used by an application, sets up the bit vector
and sends it to the application. Based on this vector, the application reconfigures
itself migrating Charm++ objects when necessary.

41

3.1.2.3 Dynaco

Dynaco works together with the Koala multi-cluster resource manager (BUIS-
SON; ANDRE; PAZAT, 2007), which has specific mechanisms for data and processor
co-allocation, resource monitoring and fault tolerance. Interactions between Koala
and Dynaco happen through the Malleable Runner (MRunner). This runner includes
a complete instance of Dynaco, which allows the handling of adaptive actions over
the application. The MRunner receives notifications from Koala indicating changes
in the availability of the processors. These notifications are messages with grow and
shrink contents, which are propagated and translated into the appropriate adaptive
actions. When the adaptation ends, the MRunner sends back acknowledgments to
Koala confirming the adaptation to the new configuration of the processors.

3.1.2.4 Strength and Weakness

Table 3.2 exposes the strength and weakness of communication mechanisms im-
plemented by the initiatives previously discussed.

Table 3.2: Strength and weakness of communication mechanisms of the related
works.

Initiatives

Strength

Weakness

PCM

The application probes and re-
ceives reconfiguration notifica-
tions through global flags

Centralized solution (master pro-
cesses) which tends to lose ef-
ficiency in large scale environ-
ments

AMPI Runtime transmit the availabil- | Few changes in bit vector re-
ity of the processors through a | quires its retransmission and re-
bit vector (simple and easy) configurations

Dynaco Based on two phase commit pro- | This protocol can block waiting

tocol: notifications are sent by
Koala and the adaptations must
be confirmed

for agreements

3.1.3 Scheduling Policies to deal with Volatile Processors

RMS decisions are the key issue to support malleability. These decisions must
take into account processors availability and the applications requirements. This
section exposes the policies found in related works to manage volatile processors.

3.1.3.1 PCM
On the PCM approach, the IOS follows three policies: Transfer, Split and Merge.

The first policy purpose is to determine when to transfer load from one processor
to another and how much load must be transfered. The load of a processor is
proportional to the number of running processes and the amount of CPU-processing
power used. Based on the I0S peer-to-peer network, the Transfer policy tries to
adjust the load between two peers comparing load measures and calculating the
number of processes that must be transfered. Furthermore, IOS uses a heuristic to
pick the best candidates to migrate from one processor to another.

42

The Transfer policy can only be efficient when there are enough processes to be
migrated, adjusting the load balancing. Otherwise, the running processes can be
split to allow the adjustment of the load. The Split policy guides this operation
taking into account the percentage of the used processing power and the current
processing power of both peers involved. The most loaded processes are split into
fine grained ones so they can be migrated following the rules of Transfer policy.

On the other hand, when a node has a large number of running processes causing
a large rate of operating system context switching, PCM can decide to merge some
processes. The merge is a local operation guided by the Merge policy. This policy
uses information about the rates of context-switching, a history of CPU utilization
measures, and a measure of the stability of the surrounding environment (to verify
if the neighborhood is stable or reconfiguring often). Thus, PCM decides to merge
processes when it can improve the performance of the processor, the surrounding
environment is stable and the context-switching rate is higher than a given threshold.

3.1.3.2 AMPI

In AMPI, the adaptive decisions are taken when new applications are submitted.
The Adaptive Job Scheduler policy considers the priority of the AMPI applications
and the range (minimum and maximum number) of processors required by them.
Thus, the policy first tries to allocate the maximum number of processors required by
an AMPT application, even if AJS needs to launch shrinkage actions on lower priority
applications to achieve enough processors. If the maximum number of processors
cannot be achieved, AJS tries again aiming at the minimum number of processors.
When these two attempts fail, the arriving AMPI application is insert in a queue
of pending applications. Furthermore, the applications in the pending queue have
their priority increased aiming to avoid starvation.

3.1.3.3 Dynaco

In Dynaco, a malleable application starts to execute upon a set of processors
allocated by Koala, which represents at least the minimum number of required
processors. During the allocation, Koala follows one of its scheduling policies, such
as the Worst-Fit, Close-to-Files, Cluster Minimization, and so on (BUISSON et al.,
2007). These policies are common used to allocate processors by RMS systems.

Koala will decide about adaptive actions either when processors become available
or when a job can only start if the malleable applications release some processors.
It has two decision policies to guide adaptive actions: Favour Previously Started
Malleable Applications (FPSMA) or Equi-Grow & Shrink (EGS). The FPSMA starts
to grow from the earliest malleable application and shrink from the latest one. Thus
the previously started application is favored by receiving new processors or not
releasing them. The EGS policy aims to balance the distribution of the processes
among malleable applications. Thus, the allocations or releases occur equally on all
running malleable applications.

43

3.1.4 Summary of Adaptive Actions Implementations

Table 3.3 summarizes the issues on supporting volatile processors: the implemen-
tation of adaptive actions; the interactions between RMS and malleable applications;
and the specific scheduling policies.

Table 3.3: Issues on support volatile processors as the related works.

Adaptive Actions | Interactions Scheduling Poli-
cies

PCM MPI processes can be | IOS profiles the appli- | Transfer, Split and
split, merged or mi- | cations, which probe | Merge policies

grated PCMDs to know I0S
decision
AMPI | Based on Charm++ | AJS sends (via CCS) | Adaptive actions are
objects migration a bit vector describing | launched when new
reconfigurations to | applications arrive
applications

Dynaco | MPI processes can | Koala monitors the | Favour Previously
be spawned or termi- | processors usage and | Started Malleable
nated sends its adaptive de- | Applications and
cisions to MRunner Equi-Grow & Shrink

3.2 APIs to deal with Unpredictable Needs of the Applica-
tions

While Section 3.1 focused on issues of the related works to support volatile
processors, this section aims to analyse the initiatives able to deal with unpredictable
needs of the applications. As exposed in Chapter 2, applications with unpredictable
needs can be classified as evolving. This thesis will be focused on a particular sub-
class of them, the explicit task parallel ones or those who follow the explicit task
parallelism paradigm.

The inherent irregularity of these applications requires some support in the pro-
gramming interface to allow coherent reactions to adapt to unpredictable needs.
Moreover, according to MATTSON; SANDERS; MASSINGILL (2004), the devel-
opment of explicit task parallel programs involves three main aspects:

e The definition of abstract tasks;
e Means to solve dependencies among tasks;
e The on-line scheduling of the abtract tasks.

These aspects are analysed in some APIs, which are divided on distributed and
shared-memory contexts.

44

3.2.1 APIs for Distributed-Memory Environments

This section exposes two approaches: AMPI (Adaptive MPI) that was already
described in the previous section, and KAAPI (Kernel for Adaptative, Asynchronous
Parallel and Interactive programming) (GAUTIER; BESSERON; PIGEON, 2007).
Although these APIs have not been named for evolving applications (neither for
explicit task parallelism) their adaptive nature fits the main requirements of this
kind of application. Thus, we consider relevant to introduce their features in the
context of this document.

The approaches will be described according to the definition of tasks, the depen-
dencies among tasks, and the on-line scheduling decisions.

3.2.1.1 Definition of tasks

AMPI programs are MPI ones converted through the Charm-++ compiler. This
translation means to convert MPI processes into user-level threads that are encap-
sulated on Charm++ objects, together with the input data. The computation of a
program is divided into a large number of virtual processors (or Charm++ objects)
that are assigned and scheduled to physical processors. The programmer still follows
the MPI development design, but without being restricted by a number of physical
processors. Thus, the partitioning of the workload can be more flexible aiming to
best fit the nature of the parallel problem (HUANG et al., 2006). Furthermore,
AMPI ensures performance assigning multiple fine-grained Charm++ objects to
the physical processors, and thus, the AMPI Load Balancer (LB) can provide a
fine calibration of the processor utilization, transferring some objects when neces-
sary. Notice that AMPI already includes the guiding principle of the explicit task
parallelism paradigm: extract all potential parallelism of the algorithmic structures
defining abstract tasks (units of work), and leave the scheduling of the tasks on
account of the runtime system.

In KA API, tasks are functions calls, which return no value except through the
access of a global address space called global memory (GAUTIER; BESSERON;
PIGEON, 2007). To allow the creation of tasks at runtime, KAAPI has in its
high-level programming interface a special keyword fork, which is included in the
application source code before a function call. To Illustrate the use of this keyword,
consider a recursive implementation of the Fibonacci computation, in which the
n'™ Fibonacci number is the sum of the previous two (n — 1 and n — 2). Using
KAAPI, the source code line “fork fibonacci(n-1, resi1);” will create a new
task to compute Fibonacci for n-1 and the result will be stored in res1.

3.2.1.2 Dependencies among tasks

In AMPI, dependencies among tasks can be understood as information that
must be exchanged among Charm++ objects. Thus, all communications of AMPI
applications are powered by Charm-++ optimizations. For instance, using asyn-
chronous communications to overlap with computations the time that a CPU waits
for the end of data transferences; to cluster small messages; send several large mes-
sages in sequence; and special optimizations for collective communications defined at
application starting time. Furthermore, as AMPI allows the migration of Charm-+
objects, the library also provides messages forward to ensure that they will be de-
livery even after migration.

45

KAAPI solves dependencies through shared access of objects in the KAAPI
global address space or global memory. To declare objects on the global memory;,
KAAPI includes another keyword, shared. Using the Fibonacci example again,
“shared int resl;” declares the variable res1 in the global memory. This variable
will store the result of the computation: sum the result of Fibonacci to n — 1 and
n — 2. Furthermore, the function signature should specify the access mode of the
shared objects — read, write or access. For instance, the signature of the Fibonacci
function would be “void fibonacci(int n, shared_w int res)”, in which the
res has a write access mode.

3.2.1.3 On-line Scheduling Decisions

AMPI scheduling decisions are based on physical processors utilization. Its
Load Balancer (LB) component collects information about the utilization of pro-
cessors and object-communication pattern in background. When a balancing of
the load is required, LB redistributes the workload based on collected information.
In redistribution, objects from overloaded processors are migrated to underloaded
ones (HUANG et al., 2006). Notice that the fine-grain nature of the AMPI applica-
tions allows achieving an efficient load distribution.

KAAPI program are composed by a dynamic set of processes. Each process
is composed by several threads which execute KAAPI tasks. A runtime scheduler
associates threads to a fixed number of virtual processors (called kernel threads),
which are scheduled on physical processors. The load balancing of the KAAPI
applications is based on the Work Stealing strategy: idle threads steal tasks from
busy ones (more details in Section 3.3). There are two improvements in the strategy:
KAAPI implementation of the Work Stealing favors local stealing than remote ones;
and the stealing requests also are launched when a thread is blocked and there are
no others ready to compute (improvement in the thread scheduler).

3.2.2 APIs for Shared-Memory Environments

This section aims to introduce the shared-memory APIs able deal with irregular
problems. Three APIs will be described: Cilk (BLUMOFE et al., 1996; BENDER,;
RABIN, 2000), OpenMP 3.0 (AYGUADE et al., 2009; CHAPMAN; JOST; PAS,
2008), and TBB (Threading Building Blocks) (REINDERS, 2007). They also will
be described according to the definition of tasks, the dependencies among tasks, and
the on-line scheduling decisions.

3.2.2.1 Definition of tasks

Cilk is a C-based multi-threaded runtime system design at MIT (Massachusetts
Institute of Technology). It guides many other researches thanks to its theoretical
and practical results proving its efficiency on shared-memory environments. Re-
cently, Cilk has a C++ version, Cilk++ (LEISERSON, 2009), that provides some
abstractions to programming using threads aiming at multi-core architectures (LEIS-
ERSON; MIRMAN, 2008). Basically, a Cilk program is a collection of procedures
that are broken into a sequence of threads (BLUMOFE et al., 1996). Cilk has two
keywords to allow the definition of the tasks: cilk to declare functions that can be
performed by threads; spawn to call functions declared with cilk aiming to create
a new thread. The Cilk’s programmers define the abstract tasks using the cilk

46

keyword and they are dynamically created when the functions preceded by spawn
are executed. Thus, the Cilk tasks can be seen as the workload computed by each
thread, which is defined in program-level as functions.

OpenMP is a standard API for shared-memory platforms (CHAPMAN; JOST;
PAS, 2008). It is composed by a set of compiler directives, library routines, and
environment variables that influence the application behavior at runtime. The latest
version of OpenMP, version 3.0, includes a tasking model which aims to simplify the
development of parallel programs. Thus, the units of work are specified as explicit
tasks within structured blocks, termed as task regions (AYGUADE et al., 2009). The
programmer identifies the potential parallelism of the algorithms inserting the task
directive in the source code, which defines the task regions. Furthermore, OpenMP
programs include the parallel construct, which defines the parallel region of the
source code. Thus, task regions are inside of parallel ones.

Intel© Threading Building Blocks TBB (REINDERS, 2007) is a C++ runtime
library for multi-core architectures. TBB programs are developed in terms of tasks
and the runtime library has full responsibility of tasks scheduling. It defines tasks
as abstract units of work on user-defined classes, which derive from the abstract
class tbb: :task. In general, the concept behind the TBB programs is similar to the
previous approaches: instead of develop parallel programs aiming to distribute the
workload among a set of threads, the programmer identifies the potential parallelism
of the algorithm and leaves the TBB runtime maps tasks to threads as well as
provides load balancing.

3.2.2.2 Dependencies among tasks

Cilk represents the computation in DAGs (Directed Acyclic Graph), in which the
vertices are the threads and the edges are the relationship among them: a parent
thread creates a child; a thread creates a successor (thread to wait for children
results); and the child returns results to its parent. During the execution of a Cilk
program, its DAG is dynamically unfolded. Cilk programs are fully strict (or well-
structured): communications only occur between parent and children threads. Thus,
the dependencies among tasks on Cilk are restricted to parent/children information
exchanges. Cilk offers the sync keyword to force synchronization. Thus, through
sync, the programmer identifies points from which the execution can only continue
when the dependencies have been solved. In other works, the points in which the
parent must wait for children to be able to compute the next instructions.

OpenMP deals with dependencies among tasks through the taskwait con-
struct. It suspends the current task execution until all its children have completed.
Furthermore, tasks automatically synchronize always that a parallel block ends.
Thus, OpenMP has explicit barriers - set by the programmer through the taskwait
construct, and implicit ones - default synchronization in the ending of parallel blocks.

In TBB, dependencies can be expressed using one of the two styles: blocking
or continuation passing. In blocking style, the parent task must set the number of
children to be waited with tbb: :task::set_ref count method. Thus, the parent
blocks waiting for the execution of these children. The continuation passing style is
similar to the Cilk successor concept in which an additional task is forked to receive
children returns while the parent continues its execution.

47

3.2.2.3 On-line Scheduling Decisions

Cilk provides an efficient scheduling of the workload among threads thanks
to Work Stealing (BLUMOFE; LEISERSON, 1999). Each processor has a deque
(double-ended queue) of ready tasks and when one remains without work it chooses
randomly another one to steal some tasks. Further information about Work Stealing
will be described in Section 3.3, however the key issue is that the Cilk scheduling is
driven by consumption of the tasks on demand.

OpenMP tasks are scheduled into a team of threads, which are started by
the parallel directive. By default, the execution of a task is tied with the same
thread, but without implying in a continuous execution. A thread can suspend a
task execution and resume it later according to scheduling requirements, when a
scheduling point is reached. In this case, scheduling points are the task, taskwait,
explicit or implicit barrier construct, and upon completion of the task. Scheduling
decisions on OpenMP are based on several simple strategies that achieve satisfac-
tory performance. However, the tasking model is new on OpenMP and it is still
under development to include more complex strategies and some way to allow the
programmer to handle the scheduling.

TBB also has a task scheduler based on Work Stealing (BLUMOFE; LEISER-~
SON, 1999). It maps tasks to native threads for the most efficient usage of the
underlying hardware, aiming to minimize memory demands and cross-thread com-
munication. Hence, the runtime takes responsibility of scheduling for locality and
load balancing. Furthermore, usually TBB tasks include few instructions; since
the goal is to define tasks with the smallest grain possible and leaves the runtime
scheduler provide the best fit of them among the current threads.

3.2.3 Summary of the APIs for Irregular Problems

Table 3.4 summarizes the main aspects of the APIs able to deal with unpre-
dictable changes in application workload: how they define tasks; how they define
and solve dependencies among tasks; and what are the mechanisms used to take
scheduling decisions.

3.3 Scheduling of Adaptive Applications

Scheduling is a key issue to provide efficient adaptive applications since it guides
the adaptive actions and allows balancing the workload distribution among parallel
applications UEs. This section aims to show the main aspects of the scheduling of
the adaptive applications found in the related works. Thus, Section 3.3.1 regards
the efforts to schedule or map adaptive jobs according to their initial requirements.
Afterward, Section 3.3.2 describes the scheduling strategy mostly used to provide
load balancing to adaptive applications - the Work Stealing.

48

Table 3.4: APIs able to deal with irregular workloads in the related works.

\ Definition of tasks \ Dependencies \ Scheduling
Distributed-Memory
AMPI Fine-grained tasks | Optimized commu- | Based on workload
defined as MPI | nications among | measures
design Charm++ objects
KAAPI | Function calls pre- | Accessing objects in a | Work Stealing
ceded by fork shared memory region
Shared-Memory
Cilk Function calls pre- | Parent/children rela- | Work Stealing
ceded by spawn cre- | tionship (sync)
ating new threads
OpenMP | Units of work defined | Explicit barriers | Several simple strate-
as structured blocks | (taskwait) and im- | gies (still under de-
(task) plicit ones (end of | velopment)
structured blocks)
TBB User-defined classes | Blocking style: par- | Work Stealing
deriving from | ent blocks waiting for
tbb: :task class children; and continu-
ation passing: forks a
further task to wait

3.3.1 Starting Time Scheduling

Scheduling is a challenge that motivates many researches in different fields. In
parallel programming, the inherent complexity of the applications and the constant
evolution of the parallel architectures require efficient scheduling solutions to ensure
performance. Adaptive applications have extra scheduling complexities: the deci-
sions must supply the basic requirements of the applications as well as provide the
best utilization of the overall parallel architecture.

In this sense, many theoretical studies have been focused on scheduling strategies
for adaptability (LEPERE; TRYSTRAM; WOEGINGER, 2002; DUTOT; MOUNIE;
TRYSTRAM, 2004; DUTOT et al., 2005; JANSEN; ZHANG, 2005). The common
goal of these studies is to minimize: the makespan (i.e., the time spent in the
scheduling); the average completion time (i.e., assigning weights to applications
and executing first the smallest); the response time; and the waiting time. All these
cited studies provide efficient theoretical results using approximation algorithms.
These algorithms divide the problem of scheduling malleable applications into two
phases: allotment and makespan problems. In the first, the algorithm allocates as
many processors as allowing an efficient execution of the malleable applications. In
the second phase, scheduling algorithms for non-malleable applications are adopted,
aiming to provide an efficient distribution of the workload. Although the name mal-
leable was used in these studies, according to Feitelson and Rudolph classification
these applications are moldable (see Section 2.2), because the number of processors
is determined at starting time and does not change during the application execution.

Section 3.1.3 discussed the RMS scheduling policies able to deal with volatile pro-
cessors and the focus was the on-the-fly decisions required to provide adaptability.

49

1 " — 4 gy

Figure 3.3: Work Stealing Strategy: circles represent the processors in which each
one has its own queue of tasks (deque). The Pi processor becomes without tasks in
its deque, then it is a thief. Pj is randomly chosen as a victim and Pi steals tasks
from the top of Pj’s deque.

However, it may be observed that adaptability is used aiming at different goals. For
instance, Adaptive MPI (AMPI) takes decisions based on requirements of the arriv-
ing applications, launching adaptive actions aiming to reduce their overall response
time. Another use of the adaptability is to maximize the processors utilization. In
this case, adaptive applications run in low priority together with rigid or moldable
ones. Thus, they compute upon the free processors of a parallel architecture, i.e.

those who are not used by other applications, improving the overall utilization of the
resources (HUNGERSHOFER, 2004; BUISSON et al., 2007; CERA et al., 2010).

3.3.2 Scheduling at Runtime

Along the previous sections, we cited Work Stealing as a large used strategy to
provide efficient load balancing. In this section we will introduce some details about
the strategy and its different implementations.

BLUMOFE; LEISERSON (1998) devised the Work Stealing to schedule Cilk
tasks: each processor has a deque of ready tasks (named closure) and it inserts
and consumes tasks from the bottom of the deque. When a deque is empty, it
(the thief) chooses randomly another processor (the victim) to steal tasks from the
top of victim’s deque. Figure 3.3 illustrate this strategy. This algorithm is proved
as efficient in homogeneous environments for fully strict programs in terms of time,
space and communication (BLUMOFE et al., 1996). The proof relies on the random
choice of the victim and on the homogeneous distribution of the stealing requests.
Moreover, as Cilk has design for shared-memory, the cost of the thefts is independent
of processors physical location.

Another important feature of Cilk’s Work Stealing is the consumption of the
tasks from the ready deque. Processors insert and consume tasks from the bottom
and steal from the top. The reason to steal from the top is to allow the stealing
of large amounts of work, since tasks in the top tend to execute longer than those
in the bottom (remembering that Cilk tasks have a recursive nature). Thus, the
unbalancing tends to be solved with few steals and the cost of the scheduling causes
a low impact on the program performance. Moreover, tasks in the top of the deque
are also in the top of the DAG, and the computation of the thief will make progress
on the program critical path (BLUMOFE et al., 1996).

50

BENDER; RABIN (2000) proposed an enhanced scheduling for processors of
different speeds. Basically, during a random steal, if the deque of the victim is
empty and it has a speed slower than theft, the running thread of the victim is
interrupted and stolen. This approach allows adaptation to changes in processors
speeds at runtime, but it dependents of how many times slower a processor would be
to lose its thread, and the consequent migration of the thread probably adds costs.

NIEUWPOORT et al. (2006) proposed a variation of standard Work Stealing
aiming to be efficient in a cluster of clusters with heterogeneous network. They pro-
vide the Satin (NIEUWPOORT; KIELMANN; BAL, 2000; NIEUWPOORT et al.,
2006), which is a Java implementation of the Cilk model able to reach efficiency
in distributed implementation of Java. Satin’s Work Stealing has two-levels: first,
the thief starts a non-blocking stealing attempt to a processor in a remote cluster;
then, in parallel, it tries to steal tasks from processors in its local cluster. The first
answered request is served. Usually, it is the local one, but the other request still
get processed, and eventually the stealer will receive some tasks to process from a
remote cluster, without having to wait idly for it. In simulations and experimen-
tations, this Satin’s Work Stealing was more efficient than a random choice of the
victim in an environment with heterogeneous network connection.

As well as Satin, KAAPI (GAUTIER; BESSERON; PIGEON, 2007) also takes
into account locality: several local steals are performed before to request remote
ones. In KAAPI, each virtual processor has a set of threads and this set represent
the deque. Virtual processors are assigned to physical processors (or cores in multi-
core architectures). When a virtual processor becomes idle (when the executing
thread blocks and suspends) the scheduling starts regarding if there is a ready thread
waiting for the processor. If there is not, the KAAPI’s scheduler chooses randomly
a thread and verifies if it is ready to run. This rule is repeated until reach some
thread able to be activated.

TBB aims at shared-memory architectures and follows the same principles of
Cilk’s Work Stealing: random choice of the victim, insertion and consumption from
the bottom and stealing from the top of the ready deque (REINDERS, 2007). How-
ever, in TBB, the programs have a set of threads and each has a deque that stores
non-computed TBB tasks, i.e. instances of the user-defined class that derives from
the task abstract class.

3.4 Conclusion

This chapter exposed the main requirements to provide adaptive applications
focused on runtime environment issues. The related works description was focused
on three main aspects:

e Interactions between RMS and adaptive applications: implementation
of the adaptive actions in parallel programs; the means used to exchange
information between RMS and adaptive applications; and the specific RMS
scheduling policies to deal with volatile processors;

e APIs to develop adaptive applications: description of the APIs structure
that allows to deal with unpredictable variations in applications workload in
distributed as well as in shared-memory contexts;

o1

e Scheduling issues taken into account the dynamicity of the paral-
lel environments: solutions required at starting time and to balance the
workload at runtime.

This chapter concludes the first part of the thesis - Context: Adaptability in Par-
allel Environments - which aimed to contextualize the adaptability needs in current
parallel environments. Furthermore, the impact of adaptability in parallel program-
ming as well as in the runtime level was also presented. Table 3.5 summarizes the
main aspects of adaptability (the adopted program structure; the runtime support;
and Scheduling) in the related works. For space reasons, we used some acronyms:
M/W to Master/Worker; LPar to Loop Parallel; F/J to Fork/Join; and WS to Work
Stealing.

Table 3.5: Supporting adaptive applications: related works and their main features.

Program Structure Runtime Support | Scheduling

SPMD | M/W | LPar | F/J | RMS APIs WS
Cilk X* X X X
OpenMP X* X X
TBB X* X X X
AMPI X X
Leopold et al. X
Dymnaco X X
KAAPI X X X
Satin X X
PCM X X X

* It appears in the literature, but it is not used for adaptability.

The second part of this thesis - Providing Adaptability to MPI Applications
- will expose our efforts aiming to provide adaptive applications. Our work aims
at distributed-memory environments such as clusters or cluster of clusters. In this
context, the standard parallel API is the MPI. Thus, the question that guides our
research is:

How to provide adaptability using MPI?

52

Part 11

Providing Adaptability to MPI
Applications

93

4 HOW TO PROVIDE ADAPTABILITY USING MPI?

This chapter intends to answer the question above. Therefore, it investigates
how the MPI features can be used to provide an on-the-fly adaptation of the MPI
applications. In this sense, firstly this chapter describes the dynamic process creation
that is a feature figuring in MPI since 1998. Through this feature, MPI applications
can spawn new MPI processes during their execution. The means and consequences
of use dynamic process creation in MPI programs are described in Section 4.1.

We investigate two types of adaptability: (i) to volatile processors (i.e. proces-
sors with a dynamic availability); and (i) to unpreditable needs (i.e. applications
that adapt their execution to attend unpredictable needs). Thus, this chapter show
as the MPI features can be used to implement adaptive applications. Section 4.2
describes the development of malleable MPI applications i.e. those who are able
to deal with volatile processors. Likewise, Section 4.3 describes how to develop
MPT applications following the explicit task parallelism, which adapt the extraction
of the parallelism according to the architecture. To exemplify both, Section 4.4
presents a problem and its MPI implementations dealing with volatile processors
and unpredictable needs. Finally, Section 4.5 concludes this chapter.

4.1 Using features of the MPI-2: Dynamic Process Creation

This section introduces the dynamic process creation in MPI programs. Firstly,
Section 4.1.1 provides an overview of the MPI standard as well as the character-
istics required to understand the remaining of this document. In the following,
Section 4.1.2 introduces the MPI_Comm_spawn primitive and the main issues of its
utilization. The communication relationships due to the dynamic process creation
are described in Section 4.1.3. Concluding this introductory section, Section 4.1.4
presents an investigation about the overhead of dynamic processes creation in MPI
programs performance.

4.1.1 Overview of the MPI Features

MPI (Message-Passing Interface) (GROPP; LUSK; SKJELLUM, 1994) is the
standard parallel API for HPC in distributed-memory environments, which was
devised by the MPI Forum!. It is an interface that allows inter-processes communi-
cations, in which are defined issues about point-to-point and collective communica-
tions, as well as organization of the programs such as groups and topologies of the
processes, and communications contexts.

Lnttp: / /www.mpi-forum.org/ - last access in January 2011

o4

intercom

intracom1

~ -=7

MPI_Send(&i, 1, MPI_INT, 2, tag, intracom1);

a) MPI_Recv(&i, 1, MPLINT, 1, tag, intracom1, &st);

b) MPI_Send(&j, 1, MPL_INT, O, tag, intercom); MPI_Recv(&j, 1, MPLINT, O, tag, intercom, &st);

Figure 4.1: Using intra and intercommunicators: (a) message exchanging in a local
group using the intracommunicator intracomi; and (b) message exchanging between
local and remote groups through the intercommunicator intercom.

An MPI program is composed by a set of processes. Each process has its unique
identifier called rank that is defined at starting time, i.e. during the execution
of the MPI _Init (every MPI source code starts by MPI _Init and concludes by
MPI Finalize). The universe of communication among MPI processes is defined
by a structure called communicator. By default, every MPI process is inserted
on a global communicator called MPI_COMM_WORLD (global communication universe),
which provides point-to-point and collective communications.

MPI-1 (GROPP; LUSK; SKJELLUM, 1994) is the first MPI specification, in
which programs follow strictly the SPMD program structure and all processes are
created at starting time through the mpirun or mpiexec commands. These features
attend the requirements of the many scientific problems, thus MPI becomes a pop-
ular API in scientific researches. However, there are problems that require some
flexibility that cannot be achieved with MPI-1. Thus, the MPI Forum proposed
the MPI-2 (GROPP; LUSK; THAKUR, 1999), which is an extension of the MPI-1,
defining interfaces to create processes during the application execution, one-sided
communications, parallel /O, among other features. From the MPI-2 specifica-
tion, programs can be developed as MPMD (Multiple Programs Multiple Data), i.e.
multiple programs performing on multiple data.

After the diffusion of the MPI-2 norm, the concepts behind the communicators
become essential to develop improved MPI programs. While MPI-1 programs, in
general, use only the global communicator, MPI-2 programs can use several. Fur-
thermore, there are two types of communicators:

e Intracommunicator allowing message exchanges among processes of the
same local group. The global communicator MPI_COMM_WORLD is an intraco-
municator;

e Intercommunicators allowing communications between processes of a local
and remote groups.

95

To become clear these important concepts, Figure 4.1 exemplifies them. The
message exchanging represented by the Send/Receive pair in Figure 4.1 (a) happens
in an intracommunicatior (intracoml): the process 1 sends an integer data to pro-
cess 2, both participants of the same local group (dotted arrow a illustrates this
communication). However, the Send/Receive Figure 4.1(b) happens in intercommu-
nicator (intercom) that connects local and remote groups allowing the illustrated
message exchange between both processes 0 (dotted arrow b). It is important to
note that groups are named as local and remote according to whom is the sender
(local) and who is the receiver (remote). Furthermore, the sender must know the
rank of the receiver in the remote group.

4.1.2 Dynamic Process Creation

Although the MPI-2 was defined in 1998, its implementation only appears in the
MPI distribution in 2005. The first distribution to provide dynamic process cre-
ation was LAM/MPI2. Nowadays, most distributions offer this feature, for instance,
OpenMPI? (which is the continuation of the LAM/MPI project), MPICH2?, etc.

MPI-2 defines two primitives to create processes at runtime: MPI_Comm spawn
and MPI _Comm spawn multiple. The difference is that the first launches one or
more images of the same binary, while the second can receive multiples binaries as
parameter. We will focus on the first one. Conventionally, the process that calls
MPI _Comm_spawn is named as parent, and the processes dynamically created are
named as children. Figure 4.2 shows the parameters of MPI_Comm_spawn.

int MPI_Comm_spawn (

char *command, --———--——————————- > name of the binary to be spawned
char *argv[], -—-————--——--—---———- > arguments required by the binary
int maxprocs, —————————- > maximum number of processes to be started
MPI_Info info, --——-————---————- > information for the runtime system
int root, ---—-————""-"""——————— > rank of the parent processes
MPI_Comm comm, —-————-—————————————-— > intracommunicator of the parent
MPI_Comm *intercomm, —---—-—- > intercommunicator (parent and children)
int array_of_errcodes[] --—--------—————————————- > array of errors

Figure 4.2: Parameters of the MPI_Comm_spawn primitive.

It is important to highlight some aspects of the MPI_Comm_spawn primitive. The
fourth parameter, an MPI_Info variable, is a set of key-value pairs to inform the
runtime system where and how to start the MPI processes. The sixth parame-
ter is the intracommunicator of the parent, 7.e. the communicator that represent
the local group of the parent. This intracommunicator will be part of the inter-
communicator between parent and children — the seventh parameter. Thus, parent
and children can communicate as was shown in Figure 4.1. In the children side,
the MPI Comm get parent primitive allows to get the intercommunicator with the
parent.

2LAM/MPI - hitp://www.lam-mpi.org/ - last access in January 2011.
30penMPI - hitp://www.open-mpi.org/ - last access in January 2011.
AMPICH2 - http://www.mcs.anl.gov/research/projects/mpich2/ - last access in January 2011.

o6

)

(a) (b) (c)

Figure 4.3: Dynamic process creation: (a) a process will call MPI_Comm_spawn, (b)
a new process is being spawned in a remote group, and (c¢) the MPI_Comm_spawn
returns an intercommunicator between parent and child.

Moreover, notice that communications between parent and children requires that
both sides known the rank of the receiver in the remote group. The parent can easily
know this information, since it is responsible to create and decide how many process
will be created, thus it knows the rank of its children. However in children side,
this is not so easy, because the local group of the parent may have many other pro-
cesses, requiring the transmission of parent’s rank to children. To avoid this trans-
mission, another MPI predefined intracommunicator can be used: MPI_COMM_SELF.
It is a self communicator of the MPI processes, i.e. it represents a local group
composed uniquely by the caller process. Thus, any process, with any rank in the
MPI_COMM_WORLD, has also its self intracommunicator in which it rank is always equal
to 0. When MPI_COMM_SELF is used as the sixth parameter of the MPI_Comm spawn,
children always sent messages to parent using 0 as parent’s rank.

Figure 4.3 illustrates the dynamic creation of an MPI process. In Figure 4.3(a)
the marked process will call MPI_Comm_spawn. In Figure 4.3(b) the process is calling
MPI_Comm_spawn using its MPI_COMM_SELF communicator (represented by the elipse
around the process) and the new process is being spawned in a remote group. Finally
in Figure 4.3(¢) the MPI_Comm_spawn finishes and returns an intercommunicator
between local and remote groups (illustrated as a rectangle).

Aiming to show the usage of MPI_Comm spawn in practice, Figure 4.4 has an
example of a dynamic MPI program® according to the Fork/Join program structure.
In the left, there is the pseudo code of parent (main.c). It calls MPI_Comm_spawn
(line 8) to create 8 images of the task binary - pseudo code in the right. Notice
that as soon as children are started (execution of the MPI_Init— line 4), they call
MPI_Comm_get_parent (line 5) to identify the intercommunicator with the parent,
which is used to send back the results.

It is important to note that the same programming issues aiming efficient commu-
nications of traditional MPI program are also valid to dynamic ones. For instance,
in Figure 4.4 the parent starts a non-blocking reception (MPI_Irecv— line 11) while
it is performing multiple sends and after, it will wait for results from any children
(MPI_Waitany— line 13). The adoption of these techniques can reduce the impact of
synchronizations or barriers when they are required. Another possible improvement

5To provide a differentiation with static MPI programs, we often call programs able to spawn
processes at runtime as dynamic MPI programs.

o7

1. int main(int argc, char ** argv) { 1. int main(int argc, char ** argv) {
2. << declarations >> 2. << declarations >>
3. 3.
4. MPI_Init(argc, argv); 4. MPI_Init(argc, argv);
5. 5. MPI_Comm_get_parent (parentComm) ;
6. << computing the sequential work >> 6. MPI_Recv(&in, size_in, datatype_in, 0,
7. 100, parentComm, status);
8. MPI_Comm spawn("task", argv, 8, info, myrank, 7.
MPI_COMM_SELF, &childrenComm, err); 8.

9. for (i=0; i<8; i++){ 9.
10. MPI_Send(&in[i], size_in, datatype_in, i, 100, 10.

childrenComm) ; 11. << computing the input data >>
11. MPI_Irecv(&out[i], size_out, datatype_out, 12.

MPI_ANY_SOURCE, 100, childrenComm, 13.

request [i]); 14.
12. } 15.
13. MPI_Waitany(8, request, j, status); 16.
14. 17. MPI_Send(&out, size_out, datatype_out,
15. << continuing the execution >> 0, 100, parentComm) ;
16. 18. MPI_Finalize();
17. MPI_Finalize(); 19. }
18. }

pseudo code: main.c pseudo code: task.c

Figure 4.4: Example of a dynamic MPI Program: a main process spawns 8 new
tasks one as a Fork/Join program structure. In the left, there is the pseudo code of
the parent (main.c), and in the right the pseudo code of the children (task.c).

is to use a collective communication instead of multiple MPI_Send calls to transmit
the input data. Indeed, for the next version of the MPI standard — the MPI-3 — the
MPI Forum is working on asynchronous primitive (MPI_Icomm spawn), which tends
to reduce the overhead of processes creation.

Another issue in dynamic MPI programs is that, in many cases, the parent must
send input data to children. There are two possibilities: (i) input data is simple
(e.g. one variable) and it can be set as children argument (second parameter of
MPI_Comm_spawn); or (i) the input data is complex (e.g. data structures) and it
must be packed and sent using the intercommunicator (sixth parameter). In the
pseudo code of Figure 4.4, the second option was implemented: after parent spawns
children, it sends the input data (each child receives one part of the input data).
As soon as children are started and get their intercommunicator with the parent,
they receive the input. Notice that a data type called datatype_in was used (line
10 of main.c and 6 of task.c). This data type is a user-defined MPI data type
(MPI Datatype). Thus, the user data structures can be packed and sent using only
one message instead of several. The creation of a data type involves many MPI
primitives that were omitted, but can be easily found in MPI tutorials. Another
data type is created to pack the output data from children to parent (datatype_out
- line 17 of task.c and 11 of main.c).

Although there is a whole section to discuss about the communication topology
of the dynamic MPI programs (Section 4.1.3), the simple example of Figure 4.4
allows identifying interesting aspects. Dynamic processes establish communications
in a parent/children relationship through an intercommunicator. This means that
dynamic MPI programs have a structured pattern of communication which was not
usual in MPI programs, once, in general, MPI-1 programs have only one communi-
cation universe - MPI_COMM_WORLD. This feature can be used to solve problems that
require more structured communications than a unique communicator. For instance,
it can be used to implement fully strict (or well-structured) applications (BLUMOFE
et al., 1996), as will be described in Section 4.3.

o8

4.1.3 Communication Relationships among Dynamic MPI Processes

In the previous section, we have shown that dynamic process creation rises in a hi-
erarchical data exchanging between parent and children processes — parent /children
communication relationship. However, the MPI-2 has also defined how to establish
communication among processes that do not share a communicator. In this case, two
sets of processes that were launched independently (each with their own intracom-
municator) may establish an intercommunicator in a client/server communication
relationship.

MPI-2 defines client/server routines to connect servers (processes that indicate
interest to accept connections) and clients (processes that connect to servers). Fig-
ure 4.5 illustrates these routines. In the server side, it opens a port to receive
connections by MPI Open_port. Then, the name of the service and the previously
opened port are published through MPI_Publish name. Afterwards, the server blocks
in MPI_Comm_accept to wait for connections from clients. In the client side, it re-
trieves the pair (service name and port name) previously published by the server
using MPI_Lookup_name. Then, MPI_Comm_connect establishes a connection with the
server, i.e., there is now an intercommunicator between server and client intracom-
municators, allowing message exchanges.

Ha i
MPI_Open_port }(my_service, server_port) {i MPI_Lookup_name
MPI_Publish_name |
IMPI_Comm_accept intercommunicator i MPI_Comm_connectI
:
i
server j { client ;

Figure 4.5: Steps to establish a client/server intercommunicator: server opens a
port, publishes service and port name, and waits for connections; client lookups the
service and port name, and connects with the server.

Figure 4.6 illustrates the MPI communicators and their communication rela-
tionships. In Figure 4.6(a), there are five processes that share a unique universe
of communication, i.e., process can perform point-to-point or collective commu-
nications using a global intracommunicator such as MPI_COMM_WORLD. This is the
communication pattern most used in MPI-1 programs. Figure 4.6(b) represents the
parent/children communication relationship in which an intercommunicator allows
communications parent and the dynamic MPI processes. In Figure 4.6(c), there
is a representation of the client/server communication relationship: an intercom-
municator is established between two processes that do not share a universe of
communication using the MPI routines introduced in the previous paragraph.

This section showed new communication relationships allowed by the MPI-2. On
the one hand, these features increase the range of problems that can be solved using
MPI. On the other hand, the programmers must dominate the features of these
communication relationships and take them into account during the development
of the MPI programs. Furthermore, when dynamic MPI processes have been used,
there is an additional requirement aiming to control or manage their creation. For

99

@ of—
o Gl o

(a) (b) (c)

Figure 4.6: Illustration of the communication relationship: (a) global intracommu-
nicator such as MPI_COMM_WORLD; (b) parent/children intercommunicator in a hier-
archical communication relationship; and (¢) client/server intercommunicator.

example, the programmer decides what binary, when (in what moment of the appli-
cation execution), and where (in which processor) spawn through MPI_Comm_spawn
parameters. In Sections 4.2 and 4.3, we will show uses of MPI-2 features as well as
how the requirements of dynamic MPI processes can be answered.

4.1.4 Analysing the Overhead of Processes Spawning

A commonly question involving dynamic MPI processes is: What is the im-
pact of spawn processes in application performance? This section attempts to an-
swer this question through a comparison of the same problem solution implemented
using dynamic against static processes. We took an MPI-1 implementation of a
Master/Worker program and developed an MPI-2 version using MPI_Comm_spawn to
dynamically create the workers.

The Master/Worker program chosen was the Mandelbrot Set, which is a classi-
cal embarrassing problem, used frequently to test parallel APIs (WILSON; IRVIN,
1995). It is a set of points in the complex plane that forms a fractal. Mathematically,
Mandelbrot points are defined by the iteration of

{l’::IQ—yQ-i-yo (4.1)
y = 2zy + x9 '

to a given initial coordinates (zo,yo), until reaches an iteration limit or diverge
the values. Thus, the computation of each Mandelbrot point is independent of the
others.

The MPI-1 implementation of Mandelbrot has a master and as many workers
as processors, all them created at starting time (i.e. the number of processes is
set as an mpirun argument). The master starts by creating the bag-of-tasks. Each
task aims the computation of a fractal block with 40 x 40 pixels, having as input
the first (z,y) coordinates of the block and its size. Then, the master interacts
with workers sending tasks and receiving matrix of fractal points on demand. Each
worker receives a task, iterates the equations above, returns a matrix of points (i.e.
the fractal block) and waits for another task. When the bag-of-tasks is empty the
master sends a termination message to workers.

For the MPI-2, master and workers perform the same actions than the MPI-1,
except that the master spawns the workers. We tested two alternatives: (i) workers
compute one task and finalize, i.e. the master always spawn a worker when a task
is pushed from the bag; (ii) workers compute a task and wait for others, i.e. the
spawning of the worker happens only once (close to the MPI-1 design).

60

Figure 4.7 shows the execution time of Mandelbrot implementations with initial
coordinates of (0.5,0.5) and an iteration limit of 30500. The number of workers
increases until 24, 2 by 2, since the test infrastructure is a cluster with 12 dual
processors nodes. It was used the LAM/MPI distribution to provide the dynamic
process creation. Execution time values are averages of 15 executions with a stan-
dard deviation of at most 1.77. To clarify the difference among the application
versions, Figure 4.8 presents the speedups. In both graphs, the solid line is the
MPI-1 version and it has the best performance. The worst performance is when
only one task is executed by each worker (MPI-2 v1 in graphs), thanks to the great
number of spawns to compute fine-grain tasks. Furthermore, the performance gets
worst as the number of workers increases, achieving a speed difference with MPI-1 of
4.2 to 24 workers. Finally, the MPI-2 version that only spawns workers once (MPI-2
v2 in graphs) achieves a low performance than MPI-1 but the speedup difference is
around 2.2 to 24 workers, i.e. half of the other MPI-2 version.

Figures 4.7 and 4.8 confirm an expected behavior: to use dynamic processes to
implement a fine-grain parallel application with a regular workload, aiming to a fixed
number of processors is not efficient. On the other hand, a static MPI application
such as the Mandelbrot using MPI-1, cannot deal with dynamicity as can the MPI-2
one. Figure 4.9 illustrates the execution of the MPI-2 Mandelbrot from 2 nodes of
the cluster until 5, increasing 1 node each 45 seconds, in which the total number of
processes is always equal to the number of available nodes.

The on-the-fly addition of the processors is provided by the LAM/MPI lamgrow
command. In LAM/MPI each node of a cluster used by an MPI application runs
a lamd daemon composing a network of daemons. Thus the lamgrow launches a
lamd daemon in the further node and connect it with the other daemons in the
network. When lamgrow concludes, the number of available nodes was increased.
To identify increases in the number of available nodes, a procedure was inserted in
the application source code. Thus, when there are new nodes, the application spawns
one worker on each. The throughput in the Figure 4.9 shows that the application
was able to adapt dynamically to use new nodes. As the number of nodes was
been increased, there was an increasing in the number of tasks per second executed.
Thus, the application was able to use nodes added at runtime as well as improves
its performance.

Aiming to confirm the impact of use more nodes at runtime, Table 4.1 presents
the efficiency of the application. The values in the table are based in a formulation
proposed by HEYMANN et al. (2000), which takes into account the time spent by
workers computing, and suspended waiting for computing, i.e.:

TL_ Twor %
E = i=1 k’ (42>

n n
n=1 Tup,i - i=1 Tsusp,i

where,

n is the number of workers;

Twork,; is the time that a worker ¢ spent by making useful work;

T.p is the life time of the worker i;

Tsusp,i 1s the time that a worker ¢ keeps suspended.

61

T
Pl-2v] o

4. O—

=

500

400

300

Time (s)

200

100

1 2 4 6 8 10 12 14 16 18 20 22 24
Number of Workers

Figure 4.7: Timing vs. number of workers for Mandelbrot computation using MPI-1
(solid line) and two versions with MPI-2 (dotted lines).

MPI-2 y1 o
MPI-2 v2 - ---

Speedup

O 1 1 1 1 1 1 1 1 1 1 1 1
2 4 6 8 10 12 14 16 18 20 22 24
Number of workers

Figure 4.8: Speedups of the parallel implementation of the Mandelbrot Set using
MPI-1 and MPI-2.

62

Table 4.1: Application efficiency while the number of workers increase.

Number of workers | Application Efficiency
2 1
3 0.99
4 1
) 0.97
9 T T T T T T T T
throughput(Tasks/sec)s
8 b -
A S et - R —
B o @ W *-
(&}
(q/)) [— @ P —— PO SR DO DS 00 00aeeee 200 000 00 |
k)
@
I(—“ S R D @y 0000 G000 SELENN00 PORE SRNEE -
3 V00 00000 000000 00000 20000 - 5nodes *—
4 nodes
2 L OO o e i
3 nodes
[S 2 e T 1= SIS — I s A -
0 I I I I 1 1 1 1
0 20 40 60 80 100 120 140 160

Execution Time (sec)

Figure 4.9: Throughput of MPI-2 Mandelbrot application (Tasks/second) while the
number of processors was been increased.

As can be observed in Table 4.1, the efficiency of the application keeps closer
to 1 while the number of workers increases, i.e. the application uses efficiently the
further nodes added at runtime. Times required by the formulation were profiled
during the application execution.

The experiments showed in this section were performed at the beginning of this
thesis research. They verified the overhead of spawning processes at runtime. Fur-
thermore, we perceived that this overhead can be acceptable in situations that re-
quire some flexibility from the MPI application, for instance, when the set of used
processors varies at runtime. Thus, as a first step towards the execution of the MPI
applications upon volatile processors, we tested here the use of MPI_Comm_spawn to
adapt the application on-the-fly. We concluded that it can be efficient since we
achieved improvements in the application throughput and efficiency. Based on this
favorable scenario, we started to research other issues related to dynamicity in MPI
applications, as will expose in Sections 4.2 and 4.3.

63

A
Issues on
programming interface
‘ 5 aiming at malleability
\] Y :
4 4 shrinkavge growth
3 |3 3
addition 5
2 2 2 release A
. 4 |, 4
R 1 : Issues on
3 ; : 3 resource management
: aiming at
2 v HL 2 volatile processors
1 1 1

Figure 4.10: To run a malleable application it is required: (i) a programming level
support aiming to provide a malleable behavior (growth and shrinkage at runtime);
and (i) a resource management able to deal with volatile processors (change the
processors allotment at runtime).

4.2 MPI Applications dealing with Volatile Processors

Parallel applications able to execute upon a volatile amount of processors are
known as Malleable, as was been introduced in Chapter 2. In addition, we showed
that malleable applications require:

e Interactions with the RMS systems, aiming to exchange information about the
availability of the processors;

e Procedures implementing the adaptive actions.

Figure 4.10 illustrates the twofold requirements of malleable application: on
one hand the resource management must include policies able to deal with volatile
processors; and in the other hand, the application must be able to grow and shrink
at runtime. In Chapter 3 we shown how to the related works deal with these
requirements. All these aspects of malleable application will be taken into account
to answer the following question:

How to provide malleability in MPI applications?

The goal of this section is to show ways and means that the question above
can be answered. Thus, Section 4.2.1 will describe the requirements of malleable
MPI applications that must be supplied by the RMS, as well as when and what
information must be exchanged between application and RMS. Further, Section 4.2.2
will expose the effect of dynamicity in the application development as the features
of the adopted program structures.

64

4.2.1 RMS and Malleable MPI Applications Interactions

To illustrate the interactions between malleable MPI applications and RMS, we
will analyse the three main moments of application execution:

e At starting time - the submission of the application including its launch-
ing on the allocated processors. When malleable applications are submitted,
the users inform the range (minimum and maximum number) of required pro-
cessors. To be able to run, a malleable application must have at least its
minimum number of processors. For instance, a Master/Worker application
requires at least one processor to start the master. When a malleable appli-
cation starts, it uses all processors allocated by RMS (the decision is based in
RMS policies such as will described in Section 5.1.2). Thus, a communication
is required to transmit, from RMS to the malleable application, the number of
allocated processors. Then, applications keep running statically until receive
some changing notification (we name this notification as dynamic event);

e When adaptive actions are required - when occur changes in processors
availability, either increasing (growth action) or decreasing (shrinkage ac-
tion) the current number of processors. To require some change in a running
malleable application, RMS sends a dynamic event that causes either a growth
or a shrinkage action. This event, for instance, can be implemented as a signal
or a message. Furthermore, applications must known the processors involved
in adaptive actions. Thus, the RMS must inform, for example by a message,
their number and identification. The application receives this information and
it can either use the further processors or release the requested ones;

e At ending time - when the application finalizes. A malleable application ends
similarly to a traditional MPI application, i.e. every MPI process (including
those dynamically created) executes the MPI Finalize primitive. Thus, the
processors used by the application are released.

4.2.2 Developing Malleable MPI applications

Chapter 2 presented the adaptive actions that must be provided into parallel
application for a runtime adaptation to volatile processors. Through these actions,
the application is able to grow or shrink according to the processors availability.

The application growth involves: (i) a mechanism to identify increases in the
set of available processors, e.g. a procedure to catch the signal sent by the RMS;
and (ii) a procedure to allow the utilization of the new processors. In the malleable
applications aimed in this work, this last point is implemented using dynamic process
creation, then the growth procedure must ensure that the new MPI processes will
be placed into the new processors.

The application shrinkage involves: (i) similarly in growth, a mechanism to
identify that processors are being required by the RMS as well as which are them;
and (i) a procedure to release the required processors. Usually, there are two
most used ways to release the processors: migrate the processes from the required
processors; or finalize them (calling MPI Finalize). We chose the second option
since the migration of MPI processes is still an open issue and its investigation is
out of the goals of this thesis.

65

However, shrinkage requires some further care since the MPI applications must
continue to execute as expected even after losing some processes. Malleable appli-
cations in the context of this thesis implement the simplest solution: tasks that are
being executed when the shrinkage starts will be restarted in future computations.
Advanced solutions can restore the execution of the tasks, including a mechanism to
save the data already computed avoiding their re-calculation. However, this solution
brings extra transfer costs that depend of the problem being solved. We left the
analysis of such a cost to future works.

The goal of this section was to provide an overview of the adaptive actions
features aiming to allow MPI applications deal with volatile processors. However,
implementation issues of growth and shrinkage actions are directly linked with the
adopted program structure. Thus, we will focus on the most used program structures
in MPI applications: Single Program Multiple Data - SPMD (Section 4.2.2.1); and
Master/Worker (Section 4.2.2.2).

4.2.2.1 Malleability in SPMD MPI applications

Similarly to Section 4.2.1, the requirement of the SPMD MPI applications to
provide malleability will be described according to three execution moments:

At starting time. SPMD applications have a set of processes that are launched
at starting time and then they will compute their own data. Notice that the
global data is partitioned among processes at starting time. The distribution
of the global data can happen either by sending chunks of data to be stored
in the local memory, or by accessing shared data structures in which each
process accesses its own subset of data. MPI collective operations can be used
to improve data distribution. Usually, the number of processes of an SPMD
MPI application is equal to the number of available processors. Malleable
SPMD applications start following the same constraints that traditional MPI
ones. Furthermore, they have their minimum number of processors equal to
one, i.e. in the worst case, there is only one copy of the program computing
the entire application data.

When are required adaptive actions. SPMD applications must have a proce-
dure to allow the detection of changes in the availability of the processors.
Figure 4.11 shows an example of such a procedure (malleability handler).
Moreover, the main issue about supporting malleability in SPMD applica-
tions is the data redistribution. Once each process has its own data set
(determined at starting time), variations in the number of processes at run-
time requires data transferences. Furthermore, the time spent by the adaptive
actions will depend on how much data must be transfered.

Growth. Enabling an SPMD MPI application to use more processors than
those available involves two issues: (i) to create new processes to run on
new processors; and (i) the redistribution of the application data in such
a way that the new processes have their own data set to compute.

For MPI-2 malleable applications, the first issue is solved using the dy-
namic process creation (MPI_Comm_spawn). The second one involves the
repartition of the data considering the updated number of processes. For
instance, Dynaco uses a naive data redistribution which does not mini-
mize and equilibrates the amount of data transfered in data redistribu-

66

/** growth_action **/

void growth_action (int nb_new)
{
if (myrank == 0)
. MPI_Comm_spawn ("source_name", argv, nb_new,
/** malleability handler **/ info, root, MPI_COMM_SELF,
. . &comm_children, errcodes);
void malleability handler() num_procs += nb_new;
{ X) redistribute_data(num_procs, myrank);
if (# processors increased) }
growth_action(nb_new);

/** shrinkage_action **/
if (# processors decreased) 9o

shrinkage_action(nb_required); iiyoiqg shrinkage_action (int nb_required)

} {

num_procs -= nb_required;
redistribute_data(num_procs, myrank);

if (myrank IS_ONE_OF_THE releasing_ranks)
MPI_Finalize();

Figure 4.11: Procedures aiming to support malleability in SPMD MPI programs:
malleability handler to detect changes in processors availability; growth_action
to spawn processes into new processors and redistribute data; shrinkage_action to
redistribute data and release the required processors.

tions. In consequence, the adaptive actions pay the costs of this naive
redistribution and they can be not efficient in some cases. On the other
hand, data redistribution is a open research field and there are initiatives
offering efficient libraries (RAUBER; RUNGER, 2005; ZHANG et al.,
2009). These libraries can be used in the context of the malleable appli-
cations to reduce the costs of data transfers. Figure 4.11 shows a pseudo
code for growth actions (growth_action): one of the SPMD processes
(the process 0 in our example) spawns processes into the new processors
(set on info), then all processes update the current number of processors
and make a new data redistribution. Notice that data redistributions are
collective operations that use the MPI communicators to transfer data.

Shrinkage. The releasing of processors by SPMD applications requires: (i)

to transfer data from processes that will be stopped, i.e., the processes
running upon the required processors and (ii) safely finalize them.
The first issue can be solved using the same solution that in growth case,
where data redistribution libraries can improve the data transferring. The
second issue requires a procedure able to identify that a specific processor
is required and, after the completion of the data transferring, finalizes it,
i.e. to call MPI_Finalize. Figure 4.11 shows a pseudo code for shrinkage
actions (shrinkage action): SPMD processes update the total number
of processors, call redistribute _data to transfer data from processes
in releasing processors and then, each process test if it must finalize or
not. Notice that this procedure requires means to identify which are the
releasing processors.

At ending time. SPMD applications finalization includes the recombination of
data when they are stored in local memory. Again, MPI collective opera-
tions can be used to improve the transfers. After that results are merged, the
computation is shut down through MPI Finalize.

67

Section 4.4 will present deepest details of the adaptive actions showed here,
once there we will implement a problem solution according to the requirements of
malleable SPMD MPI applications.

4.2.2.2 Malleability in Master/Worker MPI applications

This section aims to show the requirements of malleable Master/Worker appli-
cations, as well as how the MPI-2 features can aid to supply them.

At starting time. In a malleable Master/Worker MPT application, at starting
time there is only the master running. It initiates the computation setting
up the problem and creating the bag-of-tasks. According to the different ways
that a Master/Worker application can be implemented using MPI, now the
master can:

1. To launch workers using the MPI_Comm_spawn;

2. To accept connections from workers that have been launched by indepen-
dent mpirun/mpiexec in a client/server relationship (MPI_Comm_connect/
MPI_Comm_accept);

3. To perform as an SPMD program — master and workers have the same
source code and are launched by the same mpirun/mpiexec, being the
behavior of each process determined as their rank (this is often found in
MPI-1 Master/Worker applications).

We use the first option in our malleable MPI applications. Once workers are
initiated, they receive tasks from the bag and start to compute. A malleable
Master/Worker application has the same initial requirements of the static one:
one worker will execute on each available processor. In addition, the minimum
number of required processors is one, which enables the starting of the master
(setting up the problem and creating the bag of tasks).

When are required adaptive actions. As well as in SPMD programs, it is re-
quired a procedure to allow the detection of changes in processors availability
as showed in Figure 4.11 - malleability handler. Furthermore, the main
issue of malleability in Master/Worker programs is the management of the
workers: dynamic creation and finalization.

Growth. When there are new processors available, a Master /Worker program
easily uses them by launching new workers on them. According to the
classic algorithm, once workers are created, they receive tasks and start
to compute. Thus, the Master/Worker program structure takes care of
forecasts some load to the new processors.

Using dynamic process creation, when growth is required, the master
creates new workers and the intercommunicator enables them to receive
tasks from the master bag of tasks. For example, PCM migrate pro-
cesses (workers) to new processors, using MPI_Comm spawn to implement
migration: the migrating process spawns a child in the new processor and
sends its current state (MAGHRAOUI; SZYMANSKI; VARELA, 2006).
Thus, the migrated processes are automatically connected with the MPI
application. Furthermore, PCM is able to split running processes before
migrations to have enough processes to migrate and divide the workload
in such a way to have a balanced data distribution. This last issue is

68

/** growth_action **/

void growth_action (int nb_new)
{
int i;
for(1 = 0; i < nb_new; i++)
{
MPI_Comm_spawn ("worker", argv, 1, info, myrank, MPI_COMM_SELF,
&w_comm[curr_w], err);
MPI_Send(&bag[next_t], 1, task, myrank, TAG, w_comm[curr_w]);
MPI_Irecv(&res[curr_w], 1, result, MPI_ANY_SOURCE, MPI_ANY_TAG,

w_comm|[curr_w], ®s[curr_w]);
curr_w++;
next_t++;
}
}
/** shrinkage_action in Master **/ /** releasing in Worker **/
void shrinkage_action (int nb_required) void releasing()
{ {
int i, J; . task = getCurrentTask();
num_procs —= nb_required; MPI_Send(&task, 1, task, myrank,
for (i = 0; 1 < nb_required; i++) TAG, m_comm) ;
{ MPI_Finalize();
j = get_releasing rank(i); }
MPI_Recv(&task, 1, task, MPI_ANY_SOURCE,
MPI_ANY_TAG, w_comm|[J 1, &st);
push_task_in_bag(task);
}
}

Figure 4.12: Procedures aiming to support malleability in Master/Worker MPI pro-
grams: growth action to spawn processes into new processors sending tasks to
them; shrinkage action to allow the Master to identify the workers that must be
stopped and receive their tasks; releasing to allow the worker to get the current
task and send it back to the master before finalizing.

related to migration and can be left aside in our proposal that creates
further workers to use new processors. Figure 4.12 illustrates a possible
growth action to Master/Worker programs: to each new processor, the
master spawns a worker, which will execute the next task from the bag.
The current number of tasks and workers is updated.

Shrinkage. When a Master/Worker program must release some processors,

processes running on them must be stopped in such a way do not compro-
mise the application execution. The restriction of this program structure
is that the master cannot be stopped, since it is responsible for the compu-
tation management. On the other hand, all processors that have workers
are candidates to be released.
To avoid the application crash during shrinkage, workers must be properly
finalized and their tasks must be replaced into the master bag of tasks.
Thus, these tasks will be eventually computed in the future, maintain-
ing the correctness of the application results. Furthermore, the master
must knows which workers had been finalized to avoid dealocks waiting
for finalized workers. Figure 4.12 shows the two required procedures:
shrinkage_action in master side to receive tasks from workers in releas-
ing processors and push they to bag of tasks; releasing in worker side
to get the current task and send it back to master before finalizing.

69

At ending time. In the classic Master/Worker algorithm, when the bag of tasks
is empty, the workers are informed and finalize (MPI_Finalize). The master
collects the workers results, merges them when necessary, and shuts down.
Moreover, since the number of workers had been updated during the adaptive
actions, a malleable Master/Worker application ends as expected.

In the last two sections, there were introduced the main requirements to provide
malleability in MPI application, according to features of the SPMD and Master/-
Worker program structures. In addition, we proposed solution to support these
requirements taking into account the MPI-2 features. Section 4.4 will exemplify
the development of malleable MPI applications in practice: for a target problem,
malleable SPMD and Master/Worker programs will be provided.

4.3 MPI Applications dealing with Unpredictable Needs

Applications able to adapt to unpredictable needs are named evolving as Feit-
elson and Rudolph job classification (Chapter 2), since they only known about the
needs at runtime. Furthermore, Chapter 3 introduced the Explicit Task Parallelism
and its increasing use in current researches as an efficient way to extract the degree
of parallelism required by the target architecture. We consider that applications im-
plemented according to the explicit task parallelism can be seen as evolving. Thus,
this section focuses on the development of these applications with MPI as well as
their main requirements. In the following, Section 4.3.1 describes how it is possi-
ble to implement MPI applications as the explicit task parallelism paradigm, and
Section 4.3.2 shows the requirements of these applications.

4.3.1 Developing Explicit Task Parallelism in MPI: D&C Algorithms

According to previously described in Section 2.5, Fork/Join is the program struc-
ture most appropriate to deal with unpredictable changes in the application work-
load. As an example, we showed that Divide and Conquer (D&C) algorithms can
be implemented following the Fork/Join program structure (Section 2.5.4). Further-
more, the explicit task parallelism paradigm fits with D&C algorithms: the divide
phase creates new tasks (dynamically unfolding the parallelism) until the problem
become trivial to be solved sequentially. Notice that the potential parallelism is
limited by the size of the problem, i.e. the input data.

This section aims to show the development of D&C applications using dynamic
process creation to unfold the parallelism at runtime. As an illustration, the pseudo
code of a D&C application provided in Figure 2.7 was translated to an MPI ap-
plication, as can be seen in Figure 4.13. Our previous work described issues in
development of D&C MPI applications (PEZZI et al., 2006).

Figure 4.13 exposes two pseudo codes: main.c and divide_and conquer.c.
The first starts the D&C computation setting up the problem (represented by
getProblem function - line 5) and spawning the first divide_and_conquer process (line
7). Furthermore, the main process sends the problem (line 8) and blocks waiting for
the child results (line 9), i.e. the problem solution. The divide_and conquer.c
pseudo code starts by getting the parent intercommunicator (line 5), since di-
vide_and_conquer processes are always dynamically created. Through this inter-
communicator, they receive the problem, i.e. the input data - line 6.

70

/******** main.c ******‘k*\

.int main(int argc, char ** argv)

. << Declarations >>

problem = getProblem() ;

MPI_Comm_spawn ("divide_and_conquer", argv, 1, info, myrank,
MPI_COMM_SELF, &child_comm, err);

8. MPI_Send(&problem, size_prob, datatype_prob, 0, tag, child_comm);
9. MPI_Recv(&solution, size_sol, datatype_sol, 0, tag, child_comm, st

)i

25. MPI_Send(&solution, size_sol, datatype_sol, 0, tag, parent_comm);

11.)
- - —
[KKK KKK KKk divide_and_conquer.c Kok Kk kA KK\ i
1.int main(int argc, char ** argv)
1 2.1
3. << Declarations >>
4.
5. MPI_Comm_get_parent (parent_comm);
6. MPI_Recv(&problem, size_prob, datatype_prob, 0, tag, parent_comm, st);
7.
8. if(problem is trivial)
9. {
10. solution = compute(problem); i
11. }
112. else
13. {
14. subProblem = split(problem);
15. for(i = 0; i < 2; 1i++)
16. {
17. MPI_Comm_spawn ("divide_and_conquer", argv, 1, info, myrank,
MPI_COMM_SELF, &children_comm([i], err);
18. MPI_Send(&subProblem([i], size_prob, datatype_prob, i, tag, !
children_comm[i]); !
19. MPI_TIrecv(&subSolution[i], size_sol, datatype_sol, i, tag,
,20 children_comm[i], req[i]);
. }
g%- MPI_Waitany(2, req, Jj, st);
%2' solution = conquer(subSolution);
)

Figure 4.13: Pseudo code of a D&C MPI application: main.c gets the problem
and spawns one divide_and_conquer process; divide_and_conquer.c computes the
problem if it is trivial sending the result to its parent, otherwise divides the problem
in two parts, spawns two children to compute them, waits for children results, and

sends the merge of sub-problems solutions to the parent.

71

Notice that to perform this first receive, as well as the other message exchanges,
the processes must know the size of the problem (second parameter of MPI_Recv- line
6). As it can only be known at runtime (the size depends of the how many divisions
have been made), the parent process must inform to children such a value either
as an argument of the new processes (second parameter of MPI_Comm _spawn- line 7
of main.c) or by a further message sent before the receiving of the problem (i.e.
data transfers use two messages: one to sent the size of the problem, and another
to transfer the problem data). In our example, we omitted it but the size is set as
process argument. Furthermore, this example takes advantage of the MPI_Datatype
to pack data in message exchanges (third parameter in MPI_Send, MPI Recv, and
MPI Irecv).

When the problem is available, divide_and_conquer processes test if it can be
trivially solved (line 8). When it can, the problem is computed sequentially and
the solution is sent back to the parent - lines 10 and 25. Otherwise, the processes
enter in the divide phase splitting the problem into sub-problems (line 14). Two
new divide_and_conquer processes are created to deal with each sub-problem (for
of lines 15 t0 20) until the problem becomes trivial. The conquer phase starts when
the result are returned by the children (MPI_Waitany- line 21), in which the process
merges them in the conquer function - line 23. After that, the solution is sent to
the parent - line 25.

Observing the processes creation in D&C MPI pseudo code of Figure 4.13, it is
possible verify their structured dependency according to the fully strict model (like
Cilk programs). Parent processes can only continue their execution when children
satisfy the dependency among them — sent the results. Thus, the divide phase creates
the dependencies: new processes are spawned and the parents wait for them. On
the other hand, in conquer phase dependencies are solved: processes receive children
results, merge and sent them to parent before finalizing.

4.3.2 Requirements of Explicit Tasks MPI Applications

To develop explicit task programs, it is required to define: (i) what is a task; (i)
what are the dependencies among tasks; and (7ii) to schedule them. In this section
we will analyse these issues taking into account the MPI-2 features.

The MPI specification defines MPI tasks as having their own address space
and most MPI distributions map a task to an OS process. In the pseudo code
of Figure 4.13, this statement is followed: one new process is spawned to each task
generated at runtime. However, this decision brings an important issue: how to
reach an efficient granularity to dynamically generated tasks?

In D&C applications, the granularity change at runtime. Basically, the three
moments of the application execution impact on workload:

e Dividing: granularity decreases as problem is split into sub-problems. Notice
that it can involve large amounts of data;

e Computation: once tasks have a computable size causing the stop of dividing
phase, they are sequentially computed;

e Conquering: granularity increases as sub-problems solutions are merged.
Again, it can involve large amounts of data.

72

In general, it is expected that computation is the dominant part of the exe-
cution. Thus, to implement efficient D&C MPI application, the stop condition of
the divide phase must be set to provide sufficient workload to overlap the costs of
data transmissions. Moreover, as we intend to create new processes at runtime, the
computation must also overlap the costs of spawn them.

The straightforward way to solve dependencies among dynamic MPI tasks is
through message exchanging as showed in Figure 4.13. The intercommunicator
between parent and children helps to solve their structured dependency (as the
fully strict model). On the one hand, the parent blocks waiting for children results
(MPI Recv in main.c and MPI Waitany in divide_and conquer.c). On the other
hand, the children always solve their dependency with the parent before finalizing
(last MPI_Send in divide_and conquer.c).

Issues related to scheduling dynamic MPI tasks can be seen in two topics: (i)
their mapping into the physical processors; and (ii) to balance the workload among
them. For the first, the MPI standard does not specify mapping schemes, but
each MPI distribution provides the allocation of dynamic processes between the
available processors. In general, the default mapping is simple as the Round-Robin
strategy. When the LAM/MPI distribution began to support MPI_Comm_spawn, its
Round-Robin mapping was unable to place the dynamic processes in the expected
processor. In CERA et al. (2006) we described and proposed a solution to this
problem. Some current MPI distributions, such as the OpenMPI, already solved this
kind of problem offering a satisfactory distribution of the dynamic MPI processes,
helping the exploration of explicit task parallelism.

For the second topic, the most used strategy to provide load balancing among
dynamically generated tasks is the Work Stealing (Section 3.3.2). In PEZZI et al.
(2007) we studied the adaptation of this strategy on MPI programs with dynamic
processes, in which it was implemented inside of the application source code. Through
this work, we identified that Work Stealing can be used in MPI applications since
some constraints are taken into account. For instance, the impact of the higher cost
of steals in distributed-memory environments than in shared-memory ones, and the
hierarchical structure of the communication channels.

This section highlighted issues and challenges to provide efficient implementa-
tions of explicit task parallelism in MPI. A further analysis of these issues will be
provided in Chapter 6. However, the next section shows how the explicit task par-
allelism can be used to solve a problem taking advantage of the dynamic processes
creation.

4.4 Exemplifying the development of Adaptive MPI Appli-
cations

Aiming to illustrate the design of the adaptive MPI applications as described in
Sections 4.2 and 4.3, this section implements matrix multiplication provide malleable
and evolving behaviors. The problem is solved computing the multiplication of two
matrices A and B with n x n elements, storing the result in a matrix C' also with
n X n elements:

73

Cll CV12 Cln All A12 Aln Bll B12 Bln
CY21 C(22 C2n . A21 A22 A2n % BZl BZZ BZn
Cnl Cn2 Cnn Anl An2 Ann Bnl Bn2 Bnn

Onxn - Anxn X ann

Following parallel implementations of the matrix multiplication decompose the
matrices into k x k blocks M; ; (i,j = 1...k), in which the size of each block is 7 x 7.
Through this decomposition, Vi,7 = 1...k there is a product of two matrices with
k x k elements as:

k
Cij =D A x By
k=1

Considering p the number of available processors and p < n, the value of k can
be chosen between 1 and /p. Thus, for k& == ,/p there is exactly 1 block per
processor, and for k£ < /p there are more blocks (and tasks) than processors.

4.4.1 Examples of Malleable MPI Applications

This section presents how to the matrix multiplication can be implemented with
SPMD (Section 4.4.1.1) and Master/Worker (Section 4.4.1.2) program structures to
deal with volatile processors.

4.4.1.1 SPMD Example

Being N the number of processes and p the number of processors, the SPMD
matrix multiplication starts with N == p, i.e. there are as many processes as
available processors. Listing 4.1 shows the matmul-spmd.c source code of an MPI
matrix multiplication. The initialization happens in lines 9 to 12, in which the
MPI starts and each process gets its unique identifier (rank), the total number of
processes (numprocs), and the size of input matrices (n). Matrices A, and By,
are partitioned into blocks (sub-matrices) A;; and B;; having 7 x 7 elements each
and k == /p. In other words, the input data is partitioned in such a way that all
units of processing have their own set of data. If there is only the minimum number
of processors available, p and £ are 1, resulting in a block with 7 x 7 elements or
the entire matrices computed by one process.

The partitioning of the data happens in lines 15 to 20: the size of sub-matrices
is calculated according to the number of processes and it is stored in the variable
K; then, sub-matrices are allocated in the processes local memory; and each process
gets its data as its rank and the K value. Notice that in get_input_* implementation,
data can either be received from other processes or be read from files. Processes
start to compute their own data in lines 23 to 29. No interactions are required during
this phase once the computations depends only the sub-matrices data. Afterward,
processes gather the output sub-matrices (line 31) to compose the final result and
then they shut down (MPI_Finalize in line 33).

© 0 N O U s W N

W OW W W W NNNNNNNNDNE S R e e e e e
A O R RO © 0 GE WN RO ®© NG WN = O

74

Listing 4.1: Source code of SPMD matrix multiplication using MPI: matmul-spmd.c.

int main (int argc, char xxargv){

int n; /* order of the matrices */

int myrank; /* unique identifier of the processes x/
int numprocs; /* number of processes x/

int K; /* order of the submatrices x/

int i, j, k;
double *sub_A, xsub_B, *xsub_C;

MPI_Init(&arge, &argv);

MPI_Comm _rank (MPLCOMM.-WORLD, &myrank);

MPI_Comm_size (MPLCOMM-WORLD, &num-_procs);

n = atoi(argv[1l]); /* getting n value from the arguments x/

/* data partitioning */

K = (n / numprocs); /* determining the submatrices order x/
sub_A = (double x)malloc(sizeof(double) x K x K);

sub_B = (double x)malloc(sizeof(double) x K x K);

sub_C = (double x)malloc(sizeof(double) x K x K);

get_input_A (sub_A, myrank, K); /x getting input data */

get_input_B (sub_B, myrank, K);

/* data computation */
for(i = 0; i <K ; i++){
for (j = 0; j <K; j++){
for (k = 0; k < K ; k++){
sub_.C[i * K+ j] 4= sub_A[i * K+ k] * sub. B[k « K+ j];
}
}

/* gathering results */
gather_output (sub_C, myrank, K);
/* ending the computation */
MPI_Finalize ();

Allowing the source code in Listing 4.1 to deal with volatile processors, it must
have a procedure to test the availability of the processors. Such a procedure was
been shown in Figure 4.11 - malleability_handler. For instance, in Listing 4.1,
the procedure can be inserted inside of the third nested loop (lines 25 to 27) causing
its iterative call. However, in this approach the time between one call and another
will be limited by the time spent to compute one iteration, and in some cases it can
be long. Another approach is to launch a thread to execute the handler procedure,
allowing an immediate response to changes.

These responses to changes are the application growth allowing using more pro-
cessors than currently, and the application shrinkage allowing releasing some pro-
cessors. Figure 4.11 illustrated how these procedures can be implemented to SPMD
programs. When the application growth, it must:

e To create new processes in further processors to maintain N == p. Using
MPI Comm spawn, one of the running processes can spawn the required pro-
cesses. However, an additional care must be take with the communications re-
lationships. As all SPMD processes are launched together by mpirun/mpiexec
they communicate using the global communicator (MPI_COMM_WORLD). When
processes are spawned, there is an intercommunicator connecting the parent
and children communicators. Thus, only the parent can exchange message
with the children;

e To update the number of processes to add the new ones;

75

e To redistribute data. The new processes must receive some data to com-
pute, thus the size of the sub-matrices must be recalculated to keep k == ,/p.
This will cause an updating in all sub-matrices. Data transfer libraries can
be used to improve these operations. Furthermore, the communications rela-
tionship among processes impact in data redistribution, mainly with the new
processes that are exclusively accessed through their parent.

On the other hand, the shrinkage of an SMPD MPI application requires:

e To update the number of processes to decrease the releasing ones;

e To redistribute data. The same issues of growth are valid to shrinkage:
recalculate the size of sub-matrices and transfer data taking care of the com-
munication relationships;

e To finalize processes that are placed in the releasing processors.

Data redistributions must also take into account the already computed data to
avoid re-computations. For instance, some dynamic programming method can be
adopted to express the state of the computation. Specifically in matrix multiplica-
tion, an auxiliary structure, such as an array, can be set according to the elements
of the sub-matrices sub_C are being computed. Thus, in some cases, the input data
related to already computed data may be left aside in redistributions, reducing the
amount of data to be transferred.

As could be observed in this section, to support volatile processors in SPMD
applications is not trivial. Most part of difficulties rise from data redistributions and
the communication relationship among processes. These issues can be solved during
the program development, but requires extra efforts from programmers or an extra
support from the programming environment. For example, PCM (Section 3.1.1)
provides data distributions taking advantage of checkpoints and a database to store
the application data, which can be accessed by the processes using a key with their
rank. Furthermore, to avoid problems in communication among dynamic and static
processes, PCM implements its own communicator, the PCM_COMM_WORLD since the
global communicator of MPI do not support changes in the number of processes as
well as in their ranks at runtime.

4.4.1.2 Master/Worker Example

Listing 4.2 shows the source code of the master: master.c. In lines 14 to 17,
the MPI process starts up, gets its rank and its arguments variables: n - size of the
matrices; and p - number of available processors at starting time. In lines 20 to 23,
the matrices A, B and C are allocated and filled up (get_input). The bag of tasks is
created by create_bag (line 25), which divide the input matrices into sub-matrices
Ayj and By; having 7 x 7 elements each, being k < /p. Thus, there are more tasks
(sub-matrices) in the bag than units of processing (p).

The structure s_task_t stores the tasks input, i.e. the coordinates (i and j),
the size and elements of the sub-matrices. The results of multiplications are stored
into s_result_t structure that has the coordinates, the size and the elements of the
resulting sub-matrix (sub_C). Both structures are used in master and worker sides.

Master launches p workers using MPI_Comm_spawn, sends one task to each worker
and calls an asynchronous receive to wait for their results (lines 30 to 36). Notice that
user-defined MPI Datatype task_t and result_t are used to encapsulate s_task_t

© 0 N O U s W N

W OW W W W NNNNNNNNDNE S R e e e e e
A O R RO © 0 GE WN RO ®© NG WN = O

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

76

Listing 4.2: Pseudo code for a Master/Worker matrix multiplication: master.c.

int main(int argc, char xxargv) {

int myrank, i, w, finished = 0;

int n; /x order of the matrices */

int p; /* number of processors x/

double *A, xB, xC;

s_task_t *bag; /* bag—of—tasks x/

s_result_t #*res; /* results */

MPI_Comm w_comm [MAX] ; /* intercomm between master and workersx/

MPI_Status st ;

MPI_Info info;

MPI_Request reqs [MAX];
MPI_Datatyepe task_-t, result_t;

MPI_Init(&arge, &argv);

MPI_Comm_rank (MPLCOMM WORLD, &myrank);
n = atoi(argv[1l]);

p = atoi(argv[2]);

/* allocating the matrices */
A = (double *) malloc(sizeof(double) * n * n);

B = (double #*) malloc(sizeof(double) * n * n);

C = (double %) malloc(sizeof(double) * n * n);

get_input (A, B, n); /* getting input data */

bag_size = create_bag (A, B, n, bag); /* creating the bag of tasks x/
allocate_results (res, p); /* allocating results */

task_t = create_task_Datatype();
result_t = create_result_Datatype ();

for (i = 0; i < p; i++) { /% launching workers */
MPI_Comm_spawn (” worker” , MPLLARGV.NULL, 1, info, myrank, MPI.COMMSELF,
&w_comm[i], errcodes);
MPI_Send(&bag[i], 1, task_t, myrank, TAG, w.comm]|[i]);
MPI_Irecv(&res[i], 1, result_-t , MPI.ANY.SOURCE, MPIANY.TAG, w_comm]|i],
greqs[i]);

while (p — finished > 0){
MPI_Waitany (p, reqs, &w, &st);
store_result (res[w]);
if(i < bag_size){
MPI_Send(&bag[i], 1, task_-t, myrank, TAG, w_comm[w]);
MPI_Irecv(&res [w], 1, result_t , MPILANY.SOURCE, MPI ANY.TAG, w_comm[w],

&reqs [w]);
i+
telse{
MPI_Send(&task_empty, 1, task_t, myrank, TAG, w_comm[w]);
finished++;
}
MPI_Finalize (); /* ending the computation */

}

and s_result_t structures in messages exchanges (these types are created in lines
27 and 28). Then, the master waits for any result while there are alive workers —
lines 37 to 49. When a worker sends its results, the master stores them and sends
another task to the worker while there are tasks in the bag. Otherwise, the master
sends an empty task to launch the finalization of the workers. Master finalizes
(MPI_Finalize) when all results had been waited.

Listing 4.3 shows the source code of workers - worker.c. Lines 11 to 15 shows
the MPI process sets up, where the intercommunicator with the master is get
(MPI_Comm get_parent), and the task and result data types are created. Then,
each worker (lines 17 to 37) receives a task and verifies its content. When the re-
ceived task is empty, the worker breaks the iteration and finalize (MPI_Finalize).

© 0 N O U s W N

W OW W W W NNNNNNNNDNE S R e e e e e
A O R RO © 0 GE WN RO ®© NG WN = O

35
36
37
38
39
40

7

Listing 4.3: Pseudo code for a Master/Worker matrix multiplication: worker.c.

int main(int argc, char xargv[]) {
int myrank;
int i, j, k;
int K;
s_task_t input;
s_result_t res;
MPI_Comm m_comm; /* intercommunicator with the master x/
MPI_Status st ;
MPI_Datatyepe task_-t, result_t;
MPI_Init(&arge, &argv);
MPI_Comm_get_parent(&m_comm) ; /* getting intercommunicator x/
MPI_Comm_rank (MPLCOMM_WORLD, &myrank);
task_t = create_task_Datatype ();
result_t = create_result_Datatype ();
while (1) {
/* receiving a taskx/
MPI_Recv(&input, 1, task_t, MPI.ANY_SOURCE, MPIANY_.TAG, m_comm, &st);
if (input != task_empty){ /+ if there is work, compute x/
res.sub_.C = (double x)malloc(sizeof(double) * input.K x input.K);
for(i = 0; i < input.K; i++){
for(j = 0; j < input.K; j++){
for(k = 0; k < input.K, k++){
res.sub_.C[i * input.K + j] += input.sub_A[i * input.K + k] =x
input.sub_B[k * input.K + j];
}
}
}
res.l = input.I;
res.J = input.J;
res . K = input .K;
MPI_Send(&res, 1, result_t , myrank, TAG, m_comm);
}else break; /* else, finalize the ezxecution */
}
MPI_Finalize ();
}

Otherwise, it allocates the results sub-matrix res.sub_C according to the input sub-
matrices size (input.K), computes the multiplication (nested for loop), and returns
the result (a variable of s_result_t data type).

Compared with SPMD programs, Master /Workers ones can easier support volatile
processors taking advantage of the centralized master control of the workload dis-
tribution. Thus, while the master waits for workers results (Listing 4.2, lines 37
to 49), it also can check the availability of the processors and launch the adaptive
actions. Here, can be used the same solutions described to SPMD programs: to call
a procedure in each iteration (such as the malleability handler in Figure 4.11)
or to create a thread to check the processors availability.

When the number of processors increases, the master launches workers into the
new processors and sends tasks to them (as shown in Figure 4.12). It is important to
note that after the growth the master must update the number of workers to allow
the new workers waiting (to add positions in w_comm array). Beside, in our example,
the task counter also must be updated since the bag of tasks was implemented as
an array. However, this last update can be avoided using a stack to implement the
bag, thus, the next task is always the one that is on top. On the other hand, as
all workers are spawned by the master, there is no communication restrictions since

78

the relationship between master and workers (including those created during the
growth) is always a parent/children one.

When some processors must be released, the shrinkage action will finalize the
workers running on required processors (remembering that the master must never
be stopped as the restriction of malleable Master/Worker programs). There are two
possibilities: (i) the master identifies the workers that must finalize and sends an
empty task to them; or (7i) the workers perceive themselves (for instance, catching a
signal) that they must stop the computation and finalize to release their processors.

In the first option, the master receives the requesting of processors (e.g., a list
of host names that must be released). It must be able to identify which workers
are running on them. The advantage of this approach is that changes are only
demanded in the master side, which must include the growth procedure. Whereas,
workers source code keeps equal to non-malleable programs. However, the releasing
of the processors can happen with a significant delay, once workers will only be able
to process the empty task after finish the computation of the previous one.

The second option has no delay since workers perform the shrinkage action stop-
ping immediately their computation and finalizing. However, the workers must send
back to master the task that has not been computed (e.g.. with a flag sets on to
identifying that it must be replaced in the bag). Once the master receives a non-
computed task, it replaces it in the bag of tasks, registers that the sender worker
is finalizing, and excluded it from the waiting list (reqs and w_comm arrays in List-
ing 4.2). Thus, this approach has a low delay when compared with the first one, but
it requires changes on both, worker and master ones.

4.4.2 Example of MPI Application following the Explicit Task Paral-
lelism

In Section 4.3, we introduced the main aspects to provide MPI programs able
to deal with unpredictable changes in the application workload. In this section we
illustrate these aspects aiming to provide an evolving MPI implementation or an
explicit task MPI implementation of the matrix multiplication.

Listing 4.4 shows a D&C implementation of the matrix multiplication - D_and_C.c.
We omitted the source code that get the input data and spawns the first D_and _C
process as shown in Figure 4.13. Thus, the D_and_C starts getting the parent com-
municator to receive the input data (lines 34 to 37). Likewise in Section 4.4.1.2, the
structures s_input_t and s_output_t encapsulates input and output data: matrices,
their sizes and the initial coordinates.

The function dec_mm starts testing the size of the input matrices in relation to a
predefined threshold. The threshold determines when a problem becomes trivial to
be solved sequentially, and as consequence, it stops the recursive partitioning of the
input data. When the size of the input matrices is less or equal to the threshold, the
function sequential iteratively computes the multiplication. Otherwise, the input
is partitioned - divide_input. This function divides the matrices A and B in such
a way that four new inputs are created: matrix A is divided into two sub-matrices
A; and A, with 5 x n elements each; B is also divided into two sub-matrices By
and By but with n x elements each; thus A X B = A; x By; Ay X By; Ay X By; and
Ay X By. Figure 4.14 illustrates the partitioning of the inputs as well as the waited
output.

© 0 N O U s W N

W OW W W W NNNNNNNNDNE S R e e e e e
A O R RO © 0 GE WN RO ®© NG WN = O

35
36
37
38
39
40
41
42

79

Listing 4.4: Pseudo code for a D&C matrix multiplication: D_and C. c.

void deccmm(s_input_t *in, s_output_t *out){
int i, err[1];
s_input_t ch_in [4];
s_output-t ch_out [4];
MPI.Comm ch_comm [4];
MPI_Request reqs [4];
MPI_Datatype input-t = create_input-t (), output-t = create_output_t ();

if (in—>kjA <= THRESHOLD){ // testing if granularity is small enough
sequential (in, out);
} else{
divide_input (in, ch_in);
// spawning children
for (i = 0; i < 4; i++){
MPI_Comm_spawn (” D_and_C” , MPLARGV.NULL, 1, info, rank, MPLCOMM SELF,

&ch_comm[i], err);
MPI_Send(&ch_in[i], 1, input-t, 0, CHTAG, ch.comm]|i]);
MPI_Irecv(&ch_out[i], 1, output_-t, MPLLANY.SOURCE, MPIANY_.TAG, ch_comm]|i],
&reqs[i]);

}
for(i = 0; i < 4; i++)
MPI_Waitany (4, reqs, &j, MPLSTATUSIGNORE);

merge_matrices (out, ch_out);
}
}
/% */
int main(int argc, char sxargv) {
s_input_t in;
s_output_-t out;

MPIL.Comm parent ;
MPI_Datatype input-t = create_input_-t(), output-t = create_output_t ();

MPI_Init(&arge, &argv);
MPI_Comm_get_parent(&parent);

MPI_Recv(&in, 1, input-t, MPLLANY.SOURCE, MPIANY_TAG, parent, &st);
deccmm(&in, &out);
MPI_Send(&out, 1, output-t, 0, P.TAG, parent);

MPI_Finalize ();

A x B = C A x B =Cpy
A x By= Cy,
A,x B, = Cyy
A,x By= C,

Figure 4.14: Division of input (A and B) and output (C') matrices.

After data partitioning, four new processes are spawned (Listing 4.4, lines 14 to
20): one to each operation showed in Figure 4.14 on the right. Then, as well as in
Listing 4.2, the parent sends the input data and starts an asynchronous receives of
the output. The parent blocks to wait for all children results through MPI Waitany
(lines 21 and 22). Then, merge matrices function merges the sub-matrices with
the partial results (C41; Ch2; Co1; and Cays) to compose the output.

80

The number of processes that will be created by this D& C matrix multiplication
depends on two parameters: the threshold value and the size of the input matrices.
Thus, the application can adapt itself according to its input size: the larger input
size, greater the number of processes spawned. In other words, the application
unfolds the parallelism at runtime, spawning processes to compute part of the input
data concurrently. Furthermore, the same algorithm structure can be used to extract
the parallelism with any input size.

However, the explicit task implementation of an MPI matrix multiplication
showed in Listing 4.4 rises on some open issues. For instance, the granularity of the
processes, or the ratio between computation and communication, depends of the
threshold chosen, which defines when the computation can be performed sequen-
tially. Furthermore, the granularity has different weights as the application phases:
dividing or the partitioning of the data; computing or the iteratives multiplication;
and conquering or merging of the data.

Another issues is related to mapping the dynamic processes i.e. in which avail-
able processors the new processes will be placed. Moreover, each level of recursion
creates four processes, thus the number of processes increases exponentially 4! be-
ing [the number of recursion levels. Furthermore, for some MPI distributions such
as OpenMPI, when a processor becomes oversubscribed (with more processes than
processors or cores) the performance of the programs goes down. Thus, all these
issues show that the development of MPI applications with a paradigm close to the
explicit task parallelism requires some cares to ensure a good performance. Chap-
ter 6 will present our considerations about the performance of this kind of evolving
MPI programs.

4.5 Conclusion

This chapter intended to answer the question: “How to provide adaptability us-
ing MPI?”. Thus, it started describing the dynamic process creation, its features
and impact in programs development. Then, Section 4.2 described how to dynamic
MPI processes can be used to allow an on-the-fly adaptation when the processors
have a volatile availability. To increase the number of used processors, malleable
MPI applications spawn new processes into further processors; and to decrease the
number of processors, processes into the required processors are finalized. In addi-
tion, it was described the required interactions between MPI applications and RMS
systems to exchange information about the processors availability, and the develop-
ment issues to provide malleable MPI applications as SPMD and Master/Worker
program structures.

Aiming to deal with unpredictable needs, Section 4.3 showed how to take ad-
vantage of the dynamic process creation to unfold the parallelism at runtime as the
target architecture. The section was focused on D&C algorithms and it was defined
the abstract MPI tasks, how to solve their dependencies through message passing
synchronizations, and how to achieve load balancing through the granularity control.
To clarify issues about the development of adaptive MPI programs, Section 4.4 pre-
sented the matrix multiplication problem as well as its malleable implementation as
SPMD and Master/Worker program structures and its explicit task implementation
as D&C algorithm structure (Fork/Join program structure).

81

The conclusion of this chapter is that the dynamic process creation can be used in
MPI programs to provide adaptability to volatile processors (malleable applications),
as well to unpredictable needs (explicit task applications). However, each class of
application has their own requirements, including runtime environments ones, which
must be provided to ensure the applications performance and correctness. The next
two chapters show the treatment of these requirements in practice. Thus, Chapter 5
focus on supporting issues of the malleable MPI applications, while Chapter 6 focus
on explicit task ones.

82

5 RUNNING MALLEABLE MPI APPLICATIONS IN
CLUSTERS

In the previous chapter, we show the requirements to allow the development
and execution of malleable MPI applications (Section 4.2). Furthermore, we show
how to use the MPI-2 features to implement these applications through a matrix
multiplication examples (Section 4.4.1). We could see that the main issues to support
malleability in current parallel environments are:

e An RMS system able to deal with malleable applications, 7.e. it must de-
cide the processors allocation taking into account the requirements of running
malleable applications;

e To ensure that adaptive actions provide expected reactions as happen changes
in processors availability, 7.e. to ensure the correctness of the growth and
shrinkage actions;

e To provide information exchange between malleable MPI applications and
RMS systems aiming to keep both updated.

This chapter aims to show the highlighted issues in practice, allowing the ex-
ecution of the malleable MPI applications in cluster architecture. In this sense,
Section 5.1 describes the RMS systems and their support to the requirements of
malleability as well as the RMS used in our experiments: OAR. In the following,
Section 5.2 describes features provided by the MPI distributions as well as their use
to support malleability. Furthermore, it shows a scheduling library proposed by us
aiming to provide the mapping of dynamic MPI process and its use in malleable
MPI applications. This scheduling library and the RMS system must interact to ex-
change information about the volatile processors, thus, the means used to implement
these interactions will be also exposed. Finally, Section 5.3 shows the experimental
results and analyses the performance of a malleable MPI application on clusters.

5.1 RMS and the Management of Volatile Processors

Section 3.1 exposed some initiatives that use specific middlewares to manage
volatile processors and support the execution of malleable applications. Excluding
these initiatives and according to our up-to-date knowledge, there is no existing
implementation of malleable jobs support upon a generic resource manager since it
is a rather complicated task.

83

Nevertheless, some works have studied specific prototypes aiming at malleability
with different constraints (HUNGERSHFOER; STREIT; WIERUM, 2001; UTR-
ERA; CORBALAN; LABARTA, 2004). For instance, UTRERA; CORBALAN;
LABARTA (2004) propose the Folding by JobType (FJT) technique that can vary
the number of processors used by a parallel job without requiring changes in the
application source codes. FJT associates three concepts:

e Moldability to decide the number of processors at starting time;
e Folding to provide malleability;
e Co-Scheduling to allow the sharing of the processors by some processes.

Thus, folding allows varying the number of processors at runtime: applications
can fold to release half of used processors; otherwise, they expand to duplicate the
current number of processors. In this way, folding happens in the runtime system
level being transparent to applications. Although this research dates from 2004 and,
as far as our knowledge, it was not continued by the authors, the use of folding to
provide malleability is attractive and can be implemented using recent features of the
Operating Systems (OS) such as the handle of the CPUSETs. Our research partners
studied this and additional information can be found in CERA et al. (2010).

In HUNGERSHFOER; STREIT; WIERUM (2001), a middleware called Appli-
cation Parallelism Manager (APM) provides on-line scheduling of malleable jobs on
shared-memory architectures (SMP). This approach combines advantages of time
and space sharing scheduling. They achieved 100% system utilization and a small
response time in their simulations. Nevertheless the system was not directly adapt-
able to distributed-memory machines with message-passing and this work, as far as
we know, keeps on simulation context.

Under this context, we investigate the support of malleable jobs considering
a generic resource management system: OAR. Figure 5.1 illustrates the support
awaited from OAR resource manager: to execute malleable applications in a cluster
environment, the RMS must provide the management of volatile processors as well
as ways to implement flexible job allocations allowing changes in their number of
processors during runtime. These requirement will be provided by OAR as will be
described in the next section.

5.1.1 The OAR Resource Manager

OAR! (CAPIT et al., 2005) is an open source resource manager for large scale
clusters that has been developed at Laboratoire d’Informatique de Grenoble (LIG).
It provides the main issues awaited for resource managers such as reservation, pri-
oritize jobs, resources matching, backfilling, etc. Thus, OAR is a robust solution,
used as a production system in various cases, for instance, in the management of
Grid5000 (BOLZE et al., 2006), and Ciment? infrastructures. Due to its open ar-
chitectural choices, based on high level components (Database and Perl/Ruby Pro-
gramming Languages), OAR can be easily extended to integrate new features and
treat research issues as those desired in our work.

Moreover, OAR offers Best Effort jobs that are a special type of job aiming at
improvements in processors utilization (GEORGIOU; RICHARD; CAPIT, 2007).
They are defined as jobs with minimum priority, able to harness the idle processors

Lhttp://oar.imag.fr/ - last access in January 2011
2hittps://ciment.ujf-grenoble.fr/cigri - last access in January 2011

84

A

Malleable

MPI

Application

:
4|, Set of processors) ¢ RMS supporting
P Volatile increase and volatile processors
3 3 : 3 CLpen s
Processors decrease at ¢ Flexibility in OAR

2 % 2 runtime job allocation
[][

Figure 5.1: Requirements of malleability in RMS level: (i) management of the
volatile processors; and (1) ways to include some flexibility in job allocation allowing
increasing and decreasing the number of processors at runtime.

of a cluster, but they will be directly killed when processors are required. The
idea of Best Effort jobs is comparable with the notion of ‘cycle stealing’ initiated by
Condor (LITZKOW; LIVNY; MUTKA, 1988) and the High Throughput Computing
approach. Best Effort jobs rise important features that can be used to support
malleability: the allocation of processors can be more flexible in such a way that
some can be added or released at runtime. In our research, we take advantage of
this kind of job to support the execution of malleable MPI applications.

Besides Best Effort jobs, the OAR team develop research to provide more flex-
ible processors allocations, i.e. its scheduling decisions are able to change the al-
location of the processors during the applications execution improving the resource
utilization as well as the response time. These issues were investigated in a PhD
thesis (GEORGIOU, 2010) at LIG. We cooperate with the French group in such a
way that our malleable applications use the volatile processors provided by OAR.
This cooperation helped to identify and solve issues in both fronts. Furthermore, a
CAPES/Cofecub International Cooperation Project between both research groups
supported this cooperation. This project supported my stage (sandwich scholar-
ship) in LIG laboratory during one year, and this chapter describes the main results
achieved in the cooperation.

5.1.2 Management of the Volatile Processors in OAR

In OAR, the management of volatile processors intents to improve the overall
utilization of the clusters. In this sense, OAR takes advantage of the malleable
jobs, running them along with rigid ones (i.e. the standard jobs managed by OAR)
on their unused processors. This is a known practice to improve cluster utiliza-
tion (HUNGERSHOFER, 2004; GHAFOOR, 2007; BUISSON et al., 2007). Due to
the modularity and flexible implementation of OAR, its team was able to construct
a prototype, aside of OAR core, which implements the support of malleable jobs.
Thus, the complexity and advantages of this strategy could be investigated before
the development of a production solution. We use this prototype in our experiments.

85

Malleable Job
P1 @
P2
+-125 126
P3

=
N
-]

P4;-;-;-::

I T
09:15 09:30 09:45 10:00 10:15 10:30 10:45 11:00 11:15

Figure 5.2: The behavior of a malleable job executing together with rigid ones.
Three scheduling decisions are required: (1) to identify the unused processors at
malleable job starting time; (2) to request one processor to serve a new job; and (3)
to provide a further processor that was released by a concluding job.

The prototype updates the OAR scheduling policy in such a way that if there
are malleable jobs available, they will execute on free processors of clusters. Free
processors are those that are not being used by rigid jobs and will keep idle until
an eventual allocation. Malleable jobs run with low priority while rigid ones have
high priority in OAR. The number of processors of malleable jobs, as well as the
variation on this number, is driven by the rigid jobs requirements:

e When a malleable job is submitted, OAR regards the current and near fu-
ture jobs allocations assigning all the unused processors to it. This provides
the initial amount of processors, which must be between the minimum and
maximum number of awaited processors by the malleable job;

e The number of processors of a malleable job change when:

e A new job starts. In this case OAR requests some processors from
malleable jobs to attend to new job requirements. OAR decides how
many processors each malleable jobs must release taking into account
their minimum required number;

e A running job concludes. The processors released by the concluded
job may be assigned to malleable jobs which have less than their maxi-
mum number of processors.

Notice that changes in the set of processors of malleable jobs happen when any
kind of job (malleable or rigid) concludes or starts. Furthermore, OAR takes deci-
sions considering the malleable jobs requirements (minimum and maximum number
of processors) as well as the rigid ones (required processors). The version used in our
experiences supports only one malleable job at a time to avoid issues on schedul-
ing processors among several malleable jobs. The OAR team intends to support
multiple malleable jobs in future works.

To identify the free processors of an infrastructure, the OAR team implemented
a resource discovery command. This command provides current and near future
available processors and it is called at malleable jobs starting time as well as when
adaptive actions are required. Basically, the resource discovery command queries
the OAR database identifying the current unused processors. Furthermore it looks

86

at the reservations to avoid the assignment of processors that will be required soon
by future jobs. The default time that OAR looks forward in reservations is 15
minutes, but this time slice can be changed according to features of the malleable
jobs. Although this strategy reduces the chances of release processors soon after the
malleable job starts to use them, it does not avoid the releasing when iterative jobs
are submitted. Iterative jobs are another kind of job offered by the OAR, which
have high priority and they start as soon as they are submitted, since there are
enough processors to attend them.

Figure 5.2 illustrates the execution of a malleable job in OAR. Supposing that a
malleable job was submitted during the execution of the job 125, it will only start
when some processors become unused. Thus, (1) represents when OAR identifies 2
free processors (through the resource discovery command) and allocates them to the
malleable job. In (2), OAR decides that the malleable job must release one processor
that will be allocated to the new job (j0b129). Finally, in (3), OAR allocates another
processor to the malleable job, since one of the running jobs concludes (in our
illustration is the same job 129). Then the malleable job continues to execute until
its completion. Notice that if another malleable job is waiting to start immediately
after the first one, the resource discovery command will identify 3 unused processors
(P1, P2, and P3), since the processor P4 was reserved to job 130, which will start
before the 15 minutes that OAR looks forward.

5.1.3 Providing Malleable Jobs in OAR

Malleable jobs in OAR are composed by two parts: rigid and Best Effort ones.
The rigid part represents the minimum requirements of a malleable application, i.e.
its invariable part that must never be released. Thus, this part is a rigid job (a
standard OAR job) and stays running during all application lifetime, so that it can
guarantee the job completeness. In Chapters 2 and 3 we introduced that malleable
jobs requires a minimum and maximum number of processors to execute. The
rigid part represents the minimum requirement. For instance, to a Master/Worker
application, the minimum number of processors is 1, in which at least the master
must always be running. In an OAR malleable job, the rigid part will have the
master running on a processor that will never be released during the application
execution.

The Best Effort part allows a dynamic behavior in OAR malleable jobs taking
advantage of the Best Effort job features. It includes everything that is not in the
rigid part of the malleable job, furthermore the size of the Best Effort part is defined
at starting time and can vary during the application execution. To allow a malleable
behavior at runtime, each processor of the Best Effort part runs one Best Effort job.
For instance, if the Best Effort part has 5 processors, there are 5 Best Effort jobs
running. Thus, this part of the malleable job can vary as the availability of the
processors, i.e. as the results of the resource discovery command:

e When the number of processors was increased: further Best Effort jobs
are submitted, one to each added processor, increasing the size of the Best
Effort part of the job, i.e. the malleable job grows;

¢ When the number of processors must decrease: the Best Effort jobs
running on the required processors are killed, releasing the processors and
decreasing the size of the Best Effort part, i.e. the malleable job shrinks.

87

CLUSTER
NODE1 NODE2 NODE3 NODEA4

CORE 1
CORE 2
CORE 3 L L
CORE 1 A_ Application Processes

- Rigid part of the malleable job

1
1
1
1
Shrinkage : |:| Best Effort part of the malleable jo
1
1
1
1

- Standard OAR jobs

- | L [e
T —|l > —
W |
~ll—~_

Figure 5.3: Illustration of an OAR malleable job in a cluster with 4 quad-core
processors: in the left, arrows are representing the growth; and in the right, arrows
representing the shrinkage.

OAR provides malleable jobs through bash scripts, thus they are transparent to
the users and do not request special care about their two parts. Furthermore, note
that when some processors must be released causing the killing of some Best Effort
jobs, this requires a reaction in application to avoid crashes. In our experiments,
processes running on required processors will be finalized and this can take some
time. Thus, OAR adds a grace time delay before kill the Best Effort job to allow
the finalization of the processes without failures. A grace time delay represents the
time slice waited by OAR before destinate a processor to another job, ensuring that
they are free.

Figure 5.3 illustrates an OAR malleable job running in a cluster with 4 quad-
core processors. node 1 has the rigid part of the malleable job, which computes 4
processes of the application to take advantage of the multi-core infrastructure. The
arrows in the left represent the growth action, in which further Best Effort jobs are
submitted allowing to increase the current number of processors at runtime. In the
right, the arrows represent the shrinkage action where Best Effort jobs running on
the required processors are killed to release them.

This section described issues to support malleable jobs on OAR resource man-
ager. In the following section we will describe the application requirements to allow
malleability.

5.2 MPI Application dealing with Volatile Processors

In Section 4.2, we showed that malleable MPI applications require:

e An interface between the malleable application and the RMS system allowing
notifications about the processors availability;

e To implement a procedure to identify changes in processors availability as
well as the procedures to grow (through dynamic process creation) and shrink
(through the finalization of processes) the application;

However, these requirements bring other issues such as the support of the MPI
distributions either to create dynamic processes or to allow to change the number of
processors at runtime. Moreover, to decide the process mapping on-the-fly is a key.

88

e Dynamic process
creation

& Mapping of
dynamic processes

e Support changes in the
set of used processors

Malleable Able to grow
MPI and shrink
Application | at runtime

Support on
MPI
Distributions

: Volatile
k Processors | OAR
o E3
Figure 5.4: Requirements of malleability in application level: (i) to support dynamic

process creation; (ii)to map dynamic MPI processes; and (7ii) means to change the
number of used processors at runtime.

N

Figure 5.4 illustrates the requirement expected from MPI distributions to provide
malleability in MPI applications. Malleable MPI applications are able to grow and
shrink at runtime as a reaction to changes in processors availability. To implement
this behavior, it is expected that the MPI distributions implement the dynamic
process creation (MPI_Comm spawn and correlated primitives) as well as allow to map
them at runtime. Furthermore, the number of processors used by MPI applications
must be able to vary at runtime, i.e. the application must be able to identify changes
in its set of processors and do not crash after changes.

Thus, this section is divided into: Section 5.2.1 that describes how MPI distri-
butions deal with changes in the set of used processors; Section 5.2.2 presenting the
default mapping offered by the MPI distributions and their restrictions; Section 5.2.3
that introduces our scheduling library to map dynamic processes; Section 5.2.4 shows
the changes on the scheduling library aiming to deal with volatile processors; and
Section 5.2.5 shows the implementation of the interactions between OAR and our
scheduling library to allow the execution of malleable MPI applications in cluster
environments.

5.2.1 Malleability support on MPI Distributions

Nowadays, dynamic process creation — MPI_Comm_spawn and correlated functions
(saw in Section 4.1.2) — is implemented by most current MPI distributions. However,
in some cases, the distributions fall short in issues about the support of volatile
processors. For instance, when a new processor becomes available, it must be known
or accessible by the others (i.e. those running before the addition). Thus, MPI
distributions must offer some way to update the applications about changes in the
set of used processors.

This section aims to show how these issues are provided in the MPI distribu-
tions. We selected two study cases: LAM/MPI (Section 5.2.1.1); and OpenMPI
(Section 5.2.1.2). As our up-to-date knowledge, these distributions exemplify the
scenarios commonly found in the current MPI distributions.

89

5.2.1.1 LAM/MPI
Using LAM/MPI, there are two ways to launch an MPI application:

e Running the lamboot command, providing as argument a list of host names,
and then launching the application (through mpirun/mpiexec commands);

e Using the options -machinefile <file> or -hostfile <file> of mpirun /
mpiexec, in which the <file> has the list of host names. This option provides
the lamboot transparently to the users.

In both cases, a lamd daemon is started in each node (processing elements are
called nodes in LAM/MPI, which can have more than one CPUs or cores) to compose
a network of daemons allowing to launch MPI processes on them. Thus, an MPI
application only knows the nodes that are part of its network.

LAM/MPI provides two commands that allow changing the current number of
nodes of a LAM/MPI network:

e lamgrow [-cpu <num>] [-n <nodeid>] <hostname> (briefly introduced in
Section 4.1.4);

e lamshrink [-w <delay>] <nodeid>.

The first command provides the growth of the LAM/MPI network: it launches a
lamd daemon in the new node connecting it with the others. The host name is given
by the <hostname> argument, as well as the optionals: number of CPUs (-cpu
<num>); and the node identifier -n <nodeid>. However, notice that the lamgrow
only acts on the LAM/MPI network without providing any notification to the run-
ning MPI processes. One specific LAM/MPI function (getntype()) allows to query
the LAM/MPI network to know about its current number of nodes tanks to special
mask (0x02). Thus, calling this function, MPI applications can verify the current
number of processors and take the appropriate reaction.

The second command allows the shrinkage of the LAM/MPI network: it kills
the lamd daemon running in the required node without crash the LAM/MPI net-
work. The lamshrink command requires the identifier of the releasing node as
argument. Furthermore, lamshrink provides a mechanism to delay the killing of
the lamd daemons. This delay is useful to give some time to MPI applications to
react to the future loss of nodes. When calling lamshrink with -w <delay> option,
the command warns the MPI processes on the target node about the impending re-
lease through a signal (SIGFUSE). Then the command pauses for the given <delay>
seconds before removing the node from the LAM/MPI network. Thus, the MPI pro-
cesses that catch the signal may finalize their execution while they are still connected
to the remaining application.

Figure 5.5 illustrates the LAM /MPI network after the execution of the commands
previously described. In the left, when the user calls lamboot myhosts, having four
host names in myhosts file, a lamd daemon is launched in each host composing
the illustrated network. After some time executing with four nodes, the user calls
lamgrow -n 5 newhost to add a new host in the network. When it is finishes the
command, the n5 node was included in the network being accessible by the MPI
application (in the middle). Then, the user requires the exclusion of n4 through
lamshrink -w 10 n4. This command warns the processes on n4 and will wait for
10 seconds before releasing the node. When lamshrink returns, the node n4 is no
longer part of the LAM/MPI network.

90

n2
)))
ni n2 /\ ni n2
ni n3
n4 n3 n5 n4 n5 n3
Slamboot myhosts S$lamgrow —-n 5 newhost Slamshrink -w 10 n4

Figure 5.5: Managing the LAM/MPI network of lamd daemons: (i) lamboot to
startup the network using the host set on myhost file; (i) lamgrow to increase the
number of nodes at runtime — adding the n5 node; and (%ii) lamshrink to release
nodes at runtime — removing the n4 of the network.

5.2.1.2 OpenMPI

OpenMPI also has a daemon running in each node used by MPI applications,
composing a network of daemons. This daemon is called orted and runs as a
message router. However, OpenMPI does not provide a special command to boot
the network (like lamboot in LAM/MPI), being started through mpirun/mpiexec
commands with -machinefile <file> or -hostfile <file> options. Thus, the
startup of the network of daemons happens transparently for the users (along with
the application launching).

OpenMPI does not provide any special command to increase or decrease the
number of nodes at runtime (like lamgrow and lamshrink previously introduced).
However, changes in the network are viable since some constraints are taken into
account. When an MPI process is spawned into a node out of the network of
daemons, this causes the background launching of the orted daemon before the
spawning of the process. Thus, the OpenMPI network increases at runtime. But to
allow this on-the-fly increase, the host name of all candidates to be add at runtime
must be provided at starting time in the <file> argument of the mpirun or mpiexec.
In other words, the application requires the host names of all its potential nodes at
starting time, including those that will only be used at runtime.

OpenMPI does not provide signal and wait mechanisms like LAM/MPI, but
this can be externally provided. Basically, when a node must be removed from the
OpenMPI network, we provided a procedure that warns the MPI processes on the
node through a signal (for instance, SIGTERM). Then a certain time is waited to
ensure the processes finalization. However, this approach raises a collateral effect:
once a orted daemon was started, it cannot be stopped before the application
finalization. This is because if an orted deamon is stopped, it breaks the message
routing causing a crash in the MPI application. According to OpenMPI developers
team, some research on fault tolerance is being done aiming to allow the stopping of
some orted daemons without crash the entire network. As there are no perspectives
of when such feature will be available, the exclusion of nodes can be provided keeping
the orted running on released nodes. Furthermore, orted consumes little CPU
power, thus it does not compromise the node performance when it is allocated to
other users.

91

/ n2 /n2 }\ n2 }\\\

n1 n3 n1 n3 nt |--/--——|host]
[host] [host] n4 [@ n4 [host]

At starting time using 3 nodes After the grow of n4 After the shrink of n3

Figure 5.6: Managing the OpenMPI network of orted daemons:in the left, the
application starts knowing five nodes, but uses only three that run orted daemons;
in the middle, a fourth node starts to be used through the spawning of processes on
it (growing of the network); in the right, the n3 node is requested and after its MPI
processes finalize, it keeps running the orted daemon to avoid loss of messages.

Figure 5.6 illustrates the OpenMPI network of orted daemons. At application
starting time, the user provided a file with five host names, but the application only
uses three of them, thus only these three hosts are part of the OpenMPI network,
having orted daemons running. Then, a further node is added in the network (n4)
through the spawning of dynamic processes on it. Before using the further node,
OpenMPI launches an orted and the node becomes known to the others. Finally,
when the n3 node is requested, the processes running on it are warned and after
some time the node has no MPI processes, but orted keeps running to allow the
routing of messages.

5.2.2 Issues on Mapping Dynamic MPI Processes

Previously, we described the two most common scenarios of volatile processors
support on MPI distributions. Once they allow changing the current number of
processors, this feature impacts on MPI process mapping, which is an important
issue even in static environments. To guide the dynamic process mapping, MPI
defines a data structure MPI_Info allowing informing, at runtime, how and where
new processes must be spawned (fourth argument of MPI_Comm_spawn— saw in Sec-
tion 4.1.2). The information is provided through key-value pairs, in which the MPI
standard defines a set of frequent used keys (for instance, host - the host name to
launch the processes on, and machinefile - file with a list of host names) and the
users can define their own keys.

In the following, we will describe how the MPI distributions deal with dynamic
process mapping issues and how the users can take advantage of MPI_Info structure.

5.2.2.1 LAM/MPI Mapping

LAM/MPI offers a Round Robin strategy to map the dynamic MPI processes:
given a circular list of hosts, when a new process must be placed, it always goes to
next host after the last that received a process. Thus, when all hosts received one
process, the strategy follows the same sequence to assign the second and so on. Fig-
ure 5.7 illustrates it: there is a circular list of host and a pointer to the next host able
to receive a process. When a process is assigned, the pointer is updated. LAM/MPI
allows that users set who is the first host in a Round Robin distribution through a
specific key of MPI_Info defined by LAM/MPI: lam spawn_sched _round_robin.

92

Figure 5.7: Round Robin process mapping: a circular list of the host is followed
assigning one process to each host; next pointer indicates the next host that must
receive a process and it is updated in each assignment.

Aiming to test the dynamic process mapping of LAM/MPI, we developed a
simple MPI program that spawns 20 processes implemented in two ways:

1. A loop calls MPI_Comm_spawn 20 times, creating one process at each time;
2. An unique MPI Comm spawn call to create 20 processes.

Thus, the difference is the third argument of MPI_Comm_spawn, which is set as 1 in
the first test, and as 20 in the second one. Table 5.1 shows the achieved distribution.
As can be seen, LAM/MPI Round Robin only works in the second test, i.e. when
all processes are launched from an unique MPI_Comm spawn call.

Table 5.1: Testing the LAM/MPI Round Robin mapping of dynamic processes.

Node 1 | Node 2 | Node 3 | Node 4 | Node 5
20 spawns of 1 process 20 0 0 0 0
1 spawn of 20 processes 4 4 4 4 4

In the first test, LAM/MPI places all processes in the same node, which is the
first one in the host list. This means that LAM/MPI is not able to keep the pointer
information from one execution to another. This undesirable behavior can be solved
storing this information in the application source code. To each MPI_Comm spawn
call, the lam spawn_sched round robin key is set with the next host in the list.
Thus, both approaches can provide a balanced distribution of the dynamic MPI
processes. We described this LAM/MPI issue, as well as proposed a library to
solve it transparently to the users in CERA et al. (2006) and CERA et al. (2006).
Section 5.2.3 will describe this library.

Notice that all the previous considerations about LAM/MPI only take into ac-
count the dynamic process mapping on static environments, i.e. without changes
in processor availability. However, once the LAM/MPT allows to change the num-
ber of processors at runtime through lamgrow and lamshrink commands, the same
issues are valid in a dynamic context. As the components of LAM/MPI network
can vary at runtime, the dynamic process mapping will take changes into account.
Furthermore, in Section 5.2.4 we will describe how these commands are used in the
management of the volatile processors.

93

5.2.2.2 OpenMPI Mapping

In OpenMPI the default mapping of dynamic MPI processes follows the Round
Robin strategy. Furthermore, it is able to take into account the number of proces-
sors or cores of the nodes during the process distribution, in such a way that each
processor or core receives one process. To OpenMPI, the same simple test performed
to LAM/MPI achieved a balanced distribution of the dynamic processes for both
tests: to multiple calls of MPI_Comm_spawn as well as to one MPI_Comm_spawn creating
multiple processes.

However, OpenMPI has two different executing modes that impact in the appli-
cation performance: aggressive and degraded. The aggressive mode is achieved when
the number of running processes is equal or less than the number of cores/processors
in a node. Thus, the node executes exactly- or under-subscribed in such a way that
each process will never give up voluntarily the processor during its execution. In
other words, this provides a kind of processor-affinity between MPI processes and
processors/cores, and thus, OpenMPI can ensure better performance.

On the other hand, OpenMPI falls in degraded mode when there are more pro-
cesses than available processors/cores. In this case, the nodes are oversubscribed,
i.e. processes will voluntarily give up the processor causing some loss of performance
(context switch and message routing). Figure 5.8 illustrates processors as rectangles
that are composed by two cores (rectangles partitioned in two parts) and the three
states as the process mapping.

==

under exactly over

Figure 5.8: States of the nodes to OpenMPI: under-subscribed - the number of
running processes is less than the number of cores; exactly-subscribed - there are as
many processes as cores; and, oversubscribed - there are more processes than cores.

OpenMPI is able to provide the expected mapping of dynamic processes in a
static environment, but it has no support to manage volatile processors during
the applications execution. Although this management can be externally provided
(as saw in Section 5.2.1.2), it requires the notification of the MPI processes about
changes to allow the coherent reaction in the application side. Thus, OpenMPI
can provide the mapping of dynamic processes, but it requires some external sup-
port to volatile processors. Section 5.2.4 exposes our proposed solution to provide
malleability using OpenMPI.

5.2.3 A Scheduler for Dynamic MPI Processes

When we started to research the development of MPI applications able to spawn
processes at runtime, only the LAM/MPI distribution was able to support this fea-
ture. Thus, we opted to use LAM/MPI, but in our first experiments, we have found
an unexpected behavior in dynamic process mapping described in Section 5.2.2.1.
Thus, our first effort was focused on improving the process distribution in distributed-
memory environments such as clusters of computers. We implemented a scheduler
to map the dynamic MPI processes, which will be described in this section.

94

RR: Round Robin WB: Workload—Based

Figure 5.9: Scheduling library for dynamic MPI processes: when there is an
MPI Comm spawn in the application source code, the scheduler daemon receives con-
nections from the MPI processes that must know where spawn new processes (dotted
arrows). Then, new processes are placed according to the scheduler decision — the
solid arrows represent the dynamic process creation. It is shown the Round Robin
strategy of process mapping (node 1 to node 2, and node 2 to node 3).

The scheduler is implemented as a user-library able to identify dynamic process
creation and provide which will be the physical location of new processes (CERA
et al., 2006). Our first objective was to solve the LAM/MPI problem, thus the
scheduler implements a Round Robin distribution of the dynamic processes, as will
be described in Section 5.2.3.1. Furthermore, we also implemented a strategy based
on processors workload, aiming at MPI-2 applications with irregular load (see Sec-
tion 5.2.3.2). The user can select between one of these mapping strategy at compile
time by setting the proper flags variables.

Basically, our scheduling library is composed by an interface that provides func-
tions to be used by the programmers and a scheduler daemon. To use the library, the
programmer must include its head in the MPI application source code (# include
<lib-dynamicMPI.h>). Then, at compile time, every call to MPI_Comm_spawn will
be overloaded by its library version. Library’s MPI_Comm spawn version includes a
procedure that queries the scheduler daemon asking where a new process must be
placed. Once the answer is available, the lam spawn _sched round robin key of
MPI Info is set, and the dynamic process creation is performed. As this key informs
where LAM/MPI must start the Round Robin distribution, the new process will
be placed as expected. The overloading of the MPI_Comm_spawn allows transparent
interactions between MPI application and scheduler daemon, i.e. without change
the structure of MPI application source code.

The scheduler daemon was implemented as an MPI process that runs along
with the MPI application. This decision makes the information exchanging between
scheduler and processes that are performing MPI_Comm spawn easier. Thus, when an
MPI process must know where to spawn its child, it can establish a client /server com-
munication with the scheduler daemon (this kind of communication was explained
in Section 4.1.3) and perform MPI_Send/MPI Recv. As the mapping strategy set up,
the daemon decides the physical location of new processes always that it is queried.

95

Figure 5.9 illustrates how our scheduling library works during the MPI applica-
tion execution. When an MPI process reaches an MPI_Comm_spawn, it connects to
the scheduler daemon requesting the physical location of the new process (dotted
arrows). When the answer is available, the processes are spawned (solid arrows). In
this illustration, the Round Robin policy was adopted, since the new processes are
mapped from node 1 to node 2, and node 2 to node 3.

5.2.3.1 Round-Robin Mapping

The scheduling library implements the Round Robin strategy keeping a reference
to the last used host in the host list, which follows strictly the same sequence of the
host names provided at application starting time. Thus, when the scheduler daemon
is requested during a process spawning, it computes:

next_resource = ((last_resource + 1)%total resources)

and sends back the next_resource. Then, the last_resource stores the value
of next_resource. As the last_resource information is stored from one request to
another, the daemon is always able to determine who the next host as the Round
Robin strategy is. The content of this section was published in CERA et al. (2006).

To test the process mapping of our scheduling library Round Robin strategy, we
implemented the Fibonacci computation (briefly introduced in Section 3.2.1). The
program returns the ith element in the Fibonacci sequence (0,1,1,2,3,5,8,13,...),
being each element the sum of the previous two. A recursive implementation calls
the Fibonacci function to search the n — 1 and n — 2 elements until n becomes less
than 2, since the Fibonacci of n < 2 is equal to n. In the MPI-2 implementation of
Fibonacci, the recursive calls are replaced by dynamic process creations, thus a new
MPI process is spawned to compute each value of n. Although this is not the most
efficient implementation of Fibonacci, since many recalculation are performed, it is
widely used as a didactic example and allows to test the dynamic process mapping.

Table 5.2 shows the distribution of the Fibonacci processes upon 5 nodes of a
cluster aiming to calculate the 6th element in the sequence. As can be observed,
the standard LAM/MPI distribution is not able to distribute the processes among
the available nodes. However, the same source code using the scheduling library
achieves the expected process mapping.

Table 5.2: Number of spawned processes per node to calculate 6th element of Fi-
bonacci, using the Round Robin strategy of LAM/MPI and our scheduling library.

Node 1 | Node 2 | Node 3 | Node 4 | Node 5
LAM/MPI 25 0 0 0 0
Scheduling library 5 5) 5)

Although the Fibonacci calculation is a good test to evaluate the distribution
of the processes since it requires many process creations at runtime, it is not a
good performance metric. This is because each Fibonacci process performs few
computations: it spawns two processes (to compute n — 1 and n — 2, respectively);
waits for their results; and sum the returned values. Thus, we tested the scheduling
library with an application that search for prime numbers. It computes on an interval
of number from 1 until N and is implemented as a Divide and Conquer algorithm
structure. The interval is divided in two parts, recursively, until a given threshold

96

Table 5.3: Number of spawned processes per node and the execution time (in sec-
onds) to search prime numbers in an interval from 1 until 20 million.

Node 1 | Node 2 | Node 3 | Node 4 | Node 5 | Time (sec)
LAM/MPI 39 0 0 0 0 181.15
Scheduling library 8 8 8 8 7 46.12

is reached. Then, the prime numbers are searched in the sub-intervals, those found
are sent to the upper level, which merges the two children results. When the top of
the recursion is reached, there are the primes numbers between 1 to N. The MPI-2
implementation replaces the recursive calls to dynamic process creation.

Table 5.3 shows the process mapping as well as the execution time of MPI prime
numbers application. The interval analysed is from 1 to 20 million with a threshold
equal to 1 million. As expected, the execution time shows that the application per-
formance was improved taking advantage of a balanced process distribution among
the available nodes. However, in some cases, provides only a balanced distribution
is not enough to provide high performance. For instance, the computation cannot
be egalitarian partitioned among the units of execution to irregular applications.
The search for prime numbers is an example of irregular application: the incidence
of prime’s numbers varies from interval to interval, thus the time spent searching,
and sending and merging them is different to each process. Aiming to improve
the execution of this kind of application, we proposed a workload-based strategy as
described in the following.

5.2.3.2 Workload-based Mapping

The goal of the workload-based strategy is to identify what is the node with
the lowest workload, which will be the best candidate to receive the spawning MPI
process. We proposed this strategy in CERA et al. (2006). The current workload
is determined collecting usage information from monitoring tools of the Operation
System running on the available nodes. Thus, we included two new components in
the scheduling library to deal with the monitoring issues.

One of them deals with the collection, storage and analysis of the usage informa-
tion. It was called load monitor and it is a daemon that is launched at starting time,
one to each used node of the application. It retrieves usage metrics (such as CPU,
memory, network usage, etc), which are stored in a LRU (Least Recently Used)
buffer, so the oldest values are thrown away, and the buffer reflects the current load
of nodes. The workload of a node is the average of the values in the buffer of its load
monitor in a given moment. This mechanism, known as Single Moving Average, is
used on Time Series Forecast Models based on the assumption that the oldest values
tend to a normal distribution (HAMILTON, 1994). The average also smoothes the
effect of floating variations of the load, that does not characterize the current usage
of nodes.

The other component is responsible to manage the load monitor daemons and
centralize their workload information. This component is named resource manager
- RM, because it maintains the nodes ordered according to their usage from the
lowest to the largest workload. Thus, to every new dynamic MPI processes, the
scheduler daemon requests the RM, which responds the first node of its list. Aiming
to minimize the impact of the communications between RM and the load monitors

97

T Tt R .
h h h h h h h “v:
T T
: : : : : : "’;Y :

o
@ 60

()

£

|_

N
o

20

oL i i i i i i i i

10x108 15x10%° 20x10® 25x10% 30x10% 35x10° 40x10® 45x10%° s0x10°
Size of the intervals

Figure 5.10: Comparison between Round Robin (dotted line) and workload-based
(solid line) strategies: The execution time of prime numbers application varying the
size of the intervals.

and avoid bottlenecks, the RM chooses randomly different intervals to query each
load monitor. Furthermore, the RM was planned including an interface that allows
using third-party resource managers or monitors. This can be useful for interaction
with grid middlewares like Globus (FOSTER, 2006).

To analyse the performance of the workload-based strategy, we collected the CPU
usage during the execution of the search for prime number previously described. The
nodes with the lowest CPU usage will be the best candidates to receive the dynam-
ically spawned processes. Figure 5.10 shows a comparison of the execution time
achieved with Round Robin and workload-based strategies, varying the size of in-
tervals in which the prime numbers are searched. Regarding the graph, we can see
the impact of taking into account on-line workload information to an irregular ap-
plication. The workload-based policy enables that under-loaded processors execute
more processes than over-loaded ones improving the application performance.

5.2.4 The Dynamic Process Scheduler supporting Malleability

In Section 5.2.2, we showed the support provided by the LAM/MPI and Open-
MPI distributions to manage volatile processors. However, we identified that there
are some issues to be externally provided to execute malleable MPI applications:

e LAM/MPI: lamgrow and lamshrink commands deal with volatile proces-
sors at runtime, but the changes are not automatically perceived by the MPI
applications. Furthermore, these commands require the identification of the
nodes involved, such as the host name of nodes or their node identifier;

98

e OpenMPI: although it does not provide a native support to volatile proces-
sors, this can be implemented since some constraints are taken into account,
such as to start the application including nodes that will be added at runtime,
and do not kill the orted daemon on released nodes. In OpenMPI, it is also
required to inform the application about changes in the processors availability
and identify the nodes involved in changes.

Thus, we take advantage of our previous work, the dynamic process scheduler
shown in Section 5.2.3, to provide these external information allowing the manage-
ment of the volatile processors as well as making applications aware of the changes.
Using the scheduling library we are able to manage (and know where are) the dy-
namic MPI processes in two moments: at starting time when the distribution hap-
pens on static processors; and after changes in the set of processors.

The information about the processors availability comes from RMS systems, in
our case, OAR. Thus, we updated the scheduler to allow interactions with OAR.
The ways in which the communication happens and further issues, will be exposed
in Section 5.2.5. In this section we will explain how the information is treated and
what are the reactions caused by them. Thus, for the moment, it is enough to
consider that the information is available. In the following, Section 5.2.4.1 exposes
the technical issues of the LAM/MPI distribution, and Section 5.2.4.2 shows the
OpenMPI ones.

5.2.4.1 Technical Issues using LAM/MPI

The scheduling library behavior described in Section 5.2.3 stayed the same for
this version that aims at malleability: a scheduler daemon runs along with the user
application; and every call to MPI_Comm_spawn is overloaded allowing querying the
scheduler daemon about the best physical location to new processes. In the following
we will describe the added features to deal with volatile processors as well as how
these features are implemented using LAM/MPI.

At starting time. On static environments, as those targeted in the first version of
the scheduling library, it was not required to keep a list of used nodes in the
scheduler daemon. However, using volatile processors, keeping this information
updated is important to guide the adaptive actions. Thus, at starting time
the scheduler fills a data structure storing the identification of each available
node, which will be updated whenever any change happens (as described in the
following items). The host names of the nodes are caught from the LAM/MPI
internal data structures. Furthermore, the scheduler also catches the number
of cores and counts the number of processes of each node. This is helpful in
multi-core environments to guide the process mapping: the scheduler tries to
keep each node with as many processes as cores;

When OAR provides further processors. When the scheduler daemon receives
a notification from OAR announcing new nodes, it identifies the host name
and executes a system call to run the lamgrow command to each new node.
Thus, the new nodes become part of the LAM/MPI network. Furthermore,
these nodes are inserted in the scheduler list. This ensures that they will be
taken into account during future requests of process mapping;

OAR

Scheduler
Daemon

LAM/MPI
network

MPI Malleable
Application

99

grow

lamgrow
ok

nodes
where spawn

A
A

A

shrink

Y

lamshrink signal

A

ok

Figure 5.11: Changing the current number of nodes through LAM/MPI: (i) to
increase - OAR announces new nodes (grow arrow), the scheduler calls lamgrow, the
application identifies the increase and performs the growth spawning new processes
into the new nodes; (i) to decrease - OAR request some nodes (shrink arrow), the
scheduler calls lamshrink, warns the running processes about the request, and the
warned processes finalize.

When OAR requires processors. When OAR requests some nodes, it can pro-
vide two information: (i) the number of requested nodes meaning that any
nodes can be released since the number is reached; or (i) a list of host names
identifying those that must be released. For the first kind of information, the
scheduler daemon will release nodes from the tail of its list of used nodes. For
the second, the scheduler searches for the exact host names in the list. In
both cases, the node identifier of the required nodes is set as parameter of the
lamshrink that is executed as a system call. Thus, the LAM/MPI network
releases the required processors, and they are deleted from the scheduler list.

Notice that the actions described above update the LAM/MPI network and
the scheduler daemon. However, the running application must be able to identify
changes in order to react. Our malleable MPI applications constantly query the
current number of nodes to LAM/MPI (using getntype()). When the number
is increased, the applications execute the growth action: as many processes are
spawned as there are further nodes. To each MPI_Comm_spawn call, the scheduler
daemon ensures that these new processes are placed in further nodes. When the
number is decreased, the applications execute the shrinkage action: processes run-
ning on required processors are warned, they inform which tasks are being executed
on them that must be recomputed, and finalize. To avoid crashes, the remaining
processes must also know about the releasing ones to update the waiting parameter
and wait no more for finished processes.

Figure 5.11 illustrates the reactions to the inclusion and releasing of nodes in
malleable MPI application at runtime. The grow arrow represents OAR announcing
further nodes to the scheduler daemon. The scheduler calls lamgrow to add the
nodes on the LAM/MPI network, when the command ends the LAM/MPI network
is updated (ok arrow), i.e. each further node runs a lamd daemon. Then, in one of

100

its periodical requests (# nodes arrow), the MPI application identifies the increase
in the current number of nodes. It reacts calling the spawn and the scheduler
ensures that the dynamic processes will be placed into the further nodes (where
Spawn arrow).

The shrink arrow represents OAR requesting some nodes of the malleable MPI
application. The scheduler daemon receives the request and identifies which nodes
are required. Then, it calls the lamshrink command to release them from the
LAM/MPI network. This command warns the running processes of the requested
nodes about the impending release by a signal (signal arrow). The lamshrink waits
for a certain time while the warned processes finish. The return of the lamshrink
means that the nodes were released, i.e. their lamd daemons were Kkilled.

5.2.4.2 Technical Issues using OpenMPI

Similarly to the previous section that described the technical issues of LAM /MPI
in the adaptation of the scheduling library to deal with malleability, this section is
focused on OpenMPI technical issues:

At starting time. The scheduler daemon keeps a list with all nodes that can be
used by the MPI application. This list is filled using the host names file
passed as parameter to the mpirun or mpiexec. However, notice that to allow
the growth at runtime, this file includes the current available nodes as well as
those that can be added at runtime (as explained in Section 5.2.1.2). Thus, the
scheduler is able to identify which are currently available to ensure that only
they will receive dynamic processes during the malleable application runtime.
In other words, the management of the list of nodes allows the scheduler
daemon to control the utilization of the nodes of the OpenMPI network;

When OAR provides further processors. In OpenMPI, the nodes that can be
added on-line are figuring in the scheduler list of nodes since the application
startup, but set as not available. When OAR announces further nodes, the
scheduler changes their status to available and then they will be taken into
account in future process mapping;

When OAR requires processors. The scheduler receives a request that can in-
form: (i) the number of required nodes; or (i) the host name of the required
nodes. Similarly to the LAM/MPI version, the scheduler either will release
the last nodes in its list until reaches the required number, or will search for
the specific host names. However, as OpenMPI do not offer a mechanism to
release nodes like the lamshrink, the scheduler implements such a mechanism
itself. Knowing which nodes must be released, the scheduler sends a signal
to their running processes warning about the release. Notice that the orted
daemon will keep running on released nodes as the OpenMP]I restriction.

Again, malleable MPI applications also must discover the changes in the Open-
MPI network allowing their reaction. As OpenMPI is not able to answer the current
number of nodes, applications query the scheduler daemon to retrieve this informa-
tion. When changes are detected, the application executes the coherent action:
growth or shrinkage. The instructions set of these actions is exactly the same de-
scribed to LAM/MPI.

101

Scheduler ~ OpenMPI MPI Malleable
OAR Daemon network Application

grow

nodes
where spawn |

>

A A

shrink > Signal

Figure 5.12: Changing the current number of nodes through OpenMPI: (i) to in-
crease - OAR announces new nodes (grow arrow), the scheduler sets the new nodes
as available, the application identifies the increase and performs the growth spawn-
ing new processes into the new nodes; (i) to decrease - OAR request some nodes
(shrink arrow), the scheduler identifies the requested nodes, warns their running
processes about the request, which finalize.

Figure 5.12 illustrates the actions to increase and decrease the current number
of nodes according to OAR decisions. When OAR announces further nodes (grow
arrow), the scheduler searches for them in its list of nodes and updates their state
to available. Then, when the MPI application identifies the increase (through the
request of the current number of nodes — # nodes arrow), it performs the growth
action spawning dynamic processes into the new processors thanks to the scheduler.
When OAR requests some nodes (shrink arrow), the scheduler identifies which are
requested and warns their running processes through a signal. When the application
catches the signal, it performs the shrinkage action informing which tasks were being
computed and finalizing the execution through MPI Finalize.

5.2.5 Interactions between OAR and Dynamic Process Scheduler

Section 5.1.2 presented how OAR decides about the availability of the processors.
In addition, Section 5.2.4 shows the actions performed in the application side to
provide adaptation as the changes are announced. The bridge between the decision
in the OAR side and the reactions in the application side will be introduced in
this section. The interactions between OAR and the dynamic process scheduler are
responsible by the success of malleable MPI applications executions. Figure 5.13
illustrates the combination of OAR decisions and the application adaptability.

As we saw in Section 5.2.4, the information required by the malleable applications
from OAR are:

e The host names of available nodes at malleable MPI application starting time;
e The host name of the nodes being added at runtime;

e The number of nodes or their host names when they are required at runtime.

102

Malleable
MPI Dynamic Process Scheduler

Application |
\ 4 |
3 |
N 2 IE
> i P?o?:gsiors OAR
2

2 2],
2 B
Figure 5.13: Requirements of malleability: OAR resource manager and the dynamic
process scheduler interacts changing information about the processors availability.

[OV RN | e~ | Oy}

BN

The mechanism chosen to implement the information exchanging between OAR
and the scheduler daemon was through files. In a traditional usage of OAR, it pro-
vides a file with the host names of the nodes allocated to a job, which it is accessible
by an environment variable — $0AR_NODEFILE. To malleable jobs, the host name of
starting nodes are also stored in this predefined file, satisfying the first item above.
In addition, we included two other files to the remaining items. The $0AR_GROWFILE
has the host names of the further available nodes and the $0AR_SHRINKFILE can have
either a number that represents how many nodes are required, or the host name of
the required nodes.

Once OAR provides files with the required information, the dynamic process
scheduler can read such information and then launch the coherent adaptive action.
To ensure that an addition or exclusion of nodes will only happen once, the scheduler
deletes the files every time that they are read. We implemented a mechanism that
to every write done by OAR either in $0AR_GROWFILE or $0AR_SHRINKFILE, the
scheduler is warned and proceed with the coherent treatment of the information.
This mechanism is transparently implemented through bash scripts and reduces the
delay between the OAR write and the scheduler read.

Notice that the solution previously described meets the goals of our first effort to
provide malleability in cluster environments managed by OAR. However, consider-
ing the goals of a production support of malleability, maybe this simple mechanism
to exchange information through files will not be efficient. The OAR team is inves-
tigating ways to improve this mechanism. Anyway, this simple solution supplies our
current demand that aims to test the execution of malleable MPI applications in a
cluster environment.

5.3 Execution of Malleable Jobs in a Cluster Environment

This section exposes results of our experiments with OAR supporting malleable
MPI applications. The cluster environment used in our tests is part of the Grid5000
platform (BOLZE et al., 2006). We used a cluster (IBM System x3455) composed by

DualCPU-DualCore AMD Opteron 2218 (2.6 GHz/2 MB L2 cache/800 MHz) and
4GB memory per node with Gigabit Ethernet. We used our dynamic process sched-

103

uler with LAM/MPI distribution version 7.1.4. We opt by LAM/MPI because it was
the most stable when we perform the executions (in 2008 to 2009). Furthermore,
the content of this section was published in CERA et al. (2010).

We implemented a malleable MPI application that computes the Mandelbrot
fractal (described in Section 4.1.4). We implement the procedures described in
Section 4.2.2.2 to provide a Master/Worker malleable MPI application. The mas-
ter identify changes in processors availability through a mechanism similar to the
malleability handle (see Figure 4.11). The growth action means to spawn new
workers in recently added processors, and int the shrinkage action, the worker catch
a signal that causes the stopping of current task computation, a send of a message
informing which is the current task, and the worker finalization.

Two series of experiments were performed. First, the adaptive actions were tested
without the intervention of OAR. Thus, we can evaluate the impact of malleability
in application performance without considering the issues related to the resource
management. These results are presented in the Section 5.3.1.

The second set of experiments evaluates the improvements of resource utilization
achieved using malleable jobs. Aiming to have a cluster loaded with rigid jobs in
such a way that we were able to repeat the experiments using different configuration,
we took workload traces of a production clusters. They are used to load a cluster of
the Grid5000 through OAR, in a mechanism of workload trace injection. The used
traces comes from the DAS2 grid platform (LI; GROEP; WOLTER, 2004), which
represent the workload of twelve months (year 2003) on 5 clusters. To provide the
results exposed in Section 5.3.2 we selected a specific cluster and a time range of the
DAS2 traces. Along with this injection mechanism, we have a demo that submits
malleable jobs which run on free processors of the cluster (i.e. those not used by
the rigid jobs). As a restriction of the OAR system, we will have one malleable job
at a time.

5.3.1 Performance of Malleable MPI Applications

In the experiments of this section, we used at most 64 cores from 16 nodes of
a Grid5000 cluster (2 CPUs with 2 cores per node) and with one MPI process on
each available core. Figures 5.14 and 5.15 show the execution time of the malleable
MPI application when it grows and shrinks, respectively. For Figure 5.14, the x
axis values are the initial number of cores (number of cores at starting time = 16,
32, or 48 cores), which represent 25%, 50% and 75% of the 64 cores available in the
cluster. At runtime, the number of cores is updated until achieve the 64 ones. On
the other hand, in Figure 5.15 the execution starts with 64 cores and is updated
until the values showed in the x axis (16, 32, or 48 cores). Both graphs represent
the average time of multiple executions to each configuration, in such a way that
the standard deviation is around of 1.2.

Furthermore, we controlled the intervals in which the growth and shrinkage ac-
tions happen in two ways: (i) providing a dynamic event at a time limit, and (%i)
providing gradually new dynamic events until a time limit. Time limit is defined as
25%, 50% or 75% of the parallel reference time (graphs include dotted lines pointing
these percentages). Reference time is always the execution time achieved with the
initial number of cores, i.e., x cores to growth and 64 cores to shrinkage.

104

600 : .
| with x cores &=~
: dynamic event at 25%
N ; dynamic event at 50%

S00 [Ny dynamic event at 75%

dynamic events until 25% ——

dynamic events until 50%

dynamic events until 75% E====
~with 64 cores mm—m

400 F0

300 H-

200

Execution Time (seconds)

100

Zzzz3

16 32
Number of Cores at Starting Time

Figure 5.14: Execution time of the malleable MPI application when it grows: at
starting time the application has as many processes as the number of cores showed
in the horizontal axis (16, 32, or 48 cores), and it grows until 64. Dynamic events
happen at or until a time limit.

600 T T
; with x cores
: dynamic event at 25%
N _ | dynamic event at 50% -
BOO [N ommn] dynamic event at 75% .
— b ; dynamic events until 25%
. o : dynamic events until 50% Coox
3 dynamic events until 75% E===
S 400 - ~with 64 cores .
8 i
\({)/
(0]
E 300
I_
c
Q
3
g 200 -
x
i
100 A\
0

16 32 48
Number of Cores at Ending Time

Figure 5.15: Execution time of the malleable MPI application when it shrinks: at
starting time the application has 64 processes and shrinks until as many processes
as the x values (16, 32, or 48 cores). Again, dynamic events happen at or until a
time limit.

105

In Figure 5.14, the first bar of each x value represents the reference time, i.e. the
execution time using x cores. Notice that, the reference time is greatest one (the
greatest bar), which means that the addition of new cores at runtime always improve
the application performance. The execution time with 64 cores is the last bar to
each x value, which represents the best case, i.e. when the application performs
with as many cores as possible. Moreover, regarding the results we can took two
other conclusions: (i) gradual addition of nodes (“dynamic events until”) is more
efficient than batch addition (“dynamic event at”) because the application is able
to use the new cores as soon as they are added. This can be seen comparing the
three bars of “dynamic event at” (second, third, and fourth bars) with the three of
“dynamic events until” (fifth, sixth, and seventh bars); (i) as soon as extra nodes
are available, greater is the improvement caused by them. To all initial numbers of
cores, the best performance is always achieved when the extra nodes are added until
25% of the reference time.

Figure 5.15 has the same organization of Figure 5.14: the first bar of each x is
the execution time with = cores and the last with 64. However, in these tests the
application starts using as many cores as possible (64 ones) and releases them at
runtime. Thus, the reference time is with 64 cores. We can observe that the time
when the application shrinks is always greater them the reference time, but never
greater than the time with x cores. This means that although the application loss
nodes at runtime, while they are available, they are able to provide some gains.
Notice that our solution does not avoid re-computations, because tasks running
on released nodes are restarted, and yet it is able to provide gains. As expected,
the shrinkage achieved the opposite behavior than growth: (i) the best gains are
achieved when the nodes are released at a time limit (comparing the “dynamic event
at” bars with “dynamic events until” ones); and (i) as longer it takes with nodes,
the best is the application performance. To all scenarios, the best performance is
when the dynamic events happen at 75% of the reference time.

In the following, we analyse the speedup achieved when the malleable application
grows and shrinks. Let p, be the number of cores on which a reference time ¢, has
been measured. Thus, the application performs W = ¢, x p, operations during
reference time collection. Then, the application progressively changes the number
of cores from p, to p:

e In the first experiment (dynamic events performed at a time limit), it runs
during at,.(0 < a < 1) seconds on p, cores, and then on p ones;

e In the second experiment (dynamic events performed until a time limit), it runs
during at,.(0 < a < 1) seconds on a gradual increasing or decreasing number of
cores, until p cores. Then it continues the execution until completion, without
any change. The number of cores changes at regular timesteps in ¢ units.
In fact, ¢ = 4, since the lamgrow command allows to add a whole node (2
CPUs with 2 cores) in LAM/MPI network. The number of gradual timesteps
is therefore ==, and each one lasts 6 = alr geconds.

p—pr

c

106

The ideal speedup in the first experiment. The execution on p, cores has duration
of at,. At this point, there are (1 — a)W operations to be performed by p cores.
Ideally, this second phase runs in (1 — «)W/p time. Therefore, the total parallel
time in this case is ¢, = at, + (1 — a)t,p,/p, and the speedup t,/t, is:

1
S_%(l—a)—l—a (5.1)

The ideal speedup in the second experiment. As in the previous case, the number
of operations performed during the first at, seconds, can be computed to obtain the
parallel time of the second part of the execution on p cores. At the ith timestep
(i = 0...2=2= — 1), the program is running with p, 4 ci cores in § seconds. Therefore,
the number of operations n; that were executed is d(p, + ¢i). When all the p cores

Z(p pr)/c—1

are available (i.e. at ot, time), n; operations have been run, leaving

W — Z(p prfel n; to be run by p cores. Thus, the second phase has duration:

trpr - ZEZ_OPT)/C_I 5(pr + CZ)

) 5.2
5 (5.2)
and the total execution time in this second experiment is therefore:
e — S0 o(p, + ci)
t, = at, + . (5.3)
p
Besides,
(p—pr)/c—1 . Ebr—1 _ P=pr _ 1\P=Pr
6(pr+cz'):5prp Py es > i = op, pT—l—cé(¢)= . (5.4)
1=0 c i=0 C 2
And since § = 2= the later equation yields:
(p—pr)/C—l Oétr
> 6(pr+ci) = atp, + 7(]9 —pr—c). (5.5)
=0
Therefore, the total parallel time in this case is:
trr_@rtr_atr r — C t'r
t, = at, + b b (b—p) =—2p, +alp—p+0). (5.6)
p 2p
And the parallel speedup ¢, /t, is:
2
P (5.7)

2y talp—prto)
Table 5.4 shows the speedups of the malleable MPI application when it grows
(upper table) and shrinks (lower table). The first and second columns show the
number of used cores before and after the changes, respectively. The third column
represents the ratio of the time in which the changes happen. The fourth and sixth
columns are the speedup in practice (t,/t,) for the first and second experiments,
respectively. Finally, the fifth and seventh columns are the ideal speedups of the
first (as Equation 5.1) and second (as Equation 5.7) experiments.

107

Table 5.4: Speedup of the malleable MPI application when it grows (upper table)
and shrinks (lower table): p, - cores at starting time; p - cores after the change; «
- ratio of reference time in which changes are performed ; S - speedup in practice
t,/tp to the first (fourth column) and second (sixth column) experiments; S(Eq.5.1) -
ideal speedup of the first experiment as Equation 5.1; and S(Fq.5.7) - ideal speedup
of the second experiment as Equation 5.7.

Speedup with Growth

Adding AT Adding UNTIL
| p | «@ S | S(Eq.5.1) | S | S(Fq.5.7)
0.25 | 2.12 2.29 2.70 2.84
16 | 64 | 0.50 | 1.53 1.60 2.20 2.21
0.75 | 1.17 1.23 1.91 1.80
0.25 | 1.51 1.60 1.71 1.75
32164 0.50 | 1.29 1.33 1.54 1.56
0.75 | 1.09 1.14 1.45 1.41
0.25 | 1.18 1.23 1.26 1.27
48 1 64 | 0.50 | 1.12 1.14 1.18 1.21
0.75 | 1.03 1.07 1.15 1.15

Speedup with Shrinkage
shrinking AT shrinking UNTIL
| p | « S | S(eq.5.1) | S | S(eq.5.7)
0.25 | 0.30 0.31 0.28 0.27
64 | 16 | 0.50 | 0.43 0.40 0.30 0.30
0.75 | 0.57 0.57 0.35 0.34
0.25 | 0.55 0.57 0.53 0.53
64 | 32| 0.50 | 0.68 0.67 0.55 0.56
0.75 | 0.77 0.80 0.60 0.60
0.25 | 0.77 0.80 0.76 0.77
64 | 48 | 0.50 | 0.86 0.86 0.77 0.79
0.75 | 0.89 0.92 0.81 0.81

In the speedups when the application grows (upper table), practical speedups
are slightly lower than the ideal ones, representing the overhead to perform the
spawning of new processes. According to LEPERE: TRYSTRAM; WOEGINGER
(2002) the standard behavior in on-the-fly resources addition is that such addition
cannot causes an increasing in overall execution time of the application. In Table 5.4,
we observe that the speedups with growth operations are always greater than 1,
meaning that the addition of new cores could improve application performance as
expected. In the speedups when the application shrinks (lower table), all speedups
values are lower than 1, because the exclusion of nodes decreases the performance.
In this case, practical speedup is quite similar to the theoretical and their variations
are due to the execution of shrinkage procedure: interrupt the task execution; inform
the current task and finalize the workers processes.

108

5.3.2 Analysis of the Cluster Utilization using Malleability

The goal of the experiments showed in this section is to evaluate the impact of
malleable MPI applications on cluster utilization. A workload with a slice time of 5
hours of DAS2 platform with 40% of cluster utilization was injected into OAR. This
workload loads the resources, representing the normal workload of the cluster. Along
with the rigid jobs, a malleable job is submitted and runs upon the free resources,
i.e. which are not used by the normal workload.

The jobs that compose the normal cluster workload (from DAS2 workload traces)
are empty jobs, i.e. processors allocated only to run sleep commands for a specific
time. Since the malleability is performed using whole nodes, there was no need to
perform real application in the jobs of the normal workload. As explained in the
Section 5.1.3, the OAR malleable job has two parts: the rigid part using only one
node (minimum unit manageable by LAM/MPI); and the Best Effort part that is
as large as the number of free processors less one (that runs the rigid part).

The execution of our malleable application is compared with a moldable-Best
Effort one. A moldable-Best Effort job is defined as a moldable job that can be
executed upon all the free processors, but it will be immediately killed, like a Best
Effort job, when arriving jobs request some of its processors. Thus, we change the
demo that launches malleable jobs on the unused processors to submit moldable- Best
Effort jobs. Thus, both jobs start in the same conditions allowing the comparison.

Figures 5.16 and 5.17 show the results of malleable and moldable-Best Effort
jobs, respectively. The white portions represent the time in which processors re-
maining unused. Thus, it can be observed a gain in cluster utilization with malleable
jobs. Furthermore, the white vertical lines of figures also represent the time between
the finalization of a job and the starting of the another. Additionally, OAR does not
assign processors that will be soon required by rigid jobs. The resource discovery
command operates with its default time to look forward in reservations (near-future
rigid jobs of the normal workload).

In terms of cluster utilization, the normal workload uses 40% of the cluster, thus,
there are 60% unused. Moldable-Best Effort jobs used 32% of the free processors,
arriving at 72% of overall cluster utilization. On the other hand, malleable jobs used
58% of the free processors, arriving at 98% of overall cluster utilization. Hence, an
improvement greater than 25% in cluster utilization is achieved when our malleable
approach is compared with a non-dynamic one.

Furthermore, we count the number of jobs executed during the 5 hours of ex-
perimentation. With the malleable jobs, we obtained 11 successfully ‘Terminated’
malleable jobs, compared to 3 ‘Terminated” and 7 in ‘Error State’ for the moldable-
Best Effort. The impact of the response time, for the normal workload, was also
measured. The results have shown 8 seconds of average response time to moldable-
Best Effort, compared to 44 seconds to malleable. These values are explained by
the OAR grace time delay (i.e. the time spent to wait the processes finalization in
shrinkage actions) that is 40 seconds for malleable jobs.

Although our initial experiments consider only one workload trace and one mal-
leable job at a time, they show the potential of malleable jobs as a tool to improve
cluster utilization. In other words, we achieved our experiments goal, which was to
verify if the efforts to enable malleable jobs on OAR would be outperformed by the
gain reached in processors utilization.

Number of cores used

109

70 T T T T T T T T
i Malleable m—
Normal Workload fro DAS2 —

60
50 ‘ ‘
40
30

20

10

0 2000 4000 6000 8000 10000 12000 14000 16000 1800!
Time of Cluster Execution (5 hours)

Figure 5.16: Malleable jobs performing on free processors of a cluster: the normal
workload uses 40% of the cluster while the malleable jobs use 58% of the 60%
remaining.

Number of cores used

Moldable—Best Effort s
Normal Workload (from DAS2) s

70 ! ! ! !

60

50

40

20

10

0 2000 4000 6000 8000 10000 12000 14000 16000 1800
Time of Cluster Execution (5 hours)

Figure 5.17: Moldable-Best Effort jobs performing on free processors of a cluster:
the normal workload uses 40% of the cluster while the moldable- Best Effort use 32%
of the 60% remaining.

110

5.4 Conclusion

This chapter discussed the main required issues to execute malleable MPI ap-
plications in cluster environments. In this sense, we presented the OAR resource
manager (Section 5.1) that has a scheduling policy able to manage volatile proces-
sors: it identifies the unused processors, providing them to malleable applications,
and managing their availability taking into account the requirements of the rigid
jobs (standard utilization of the cluster). Furthermore, OAR supports malleable
jobs, i.e. jobs that change their size at runtime, taking advantage of its Best Effort
jobs. Thus, a malleable job in OAR is composed by two parts: (i) a rigid part rep-
resenting the invariable part of the job; and (i) a Best Effort one that may change
its size at runtime offering some flexibility to the job.

In the following, we showed the main aspects required to allow MPI applications
to deal with volatile processors (Section 5.2). In other words, we showed the tech-
nical issues in the development and execution of malleable MPI applications. Thus,
we presented the MPI distributions and which support they offer to malleability:
allowing dynamic process creation and means to deal with volatile processors at run-
time. Furthermore, the mapping of dynamic processes is a key issue in malleability.
Then, we showed the default process mapping offered by MPI distributions, as well
as their deficiencies. We introduced our scheduler that map dynamic MPI processes
with two mapping strategies: the Round Robin and a workload-based. This sched-
uler was extended to supply the requirements of malleability. In this sense, the
scheduler goal is to balance the distribution of the processes taking into account the
current availability of the processors. Finally, to know about changes in the set of
available processors, our scheduler interacts with OAR. Thus, it is able to inform
the application when changes happen, and launch the required adaptations.

Due to an international cooperation with the LIG laboratory in France, we were
able to implement the integration of OAR with our scheduler, allowing the execution
of malleable MPI applications in cluster environments. Section 5.3 exposed our ex-
perimental results executing a malleable MPI application through OAR. It includes
an analysis of the application performance able to grow and shrink as the avail-
ability of processors and the improvements in cluster utilization achieved executing
malleable jobs along with the normal workload (standard rigid jobs).

We concluded that the complexity to support malleability is outperformed by
achieved gains. This conclusion is based on the experiments that showed a gain up
to 25% in cluster utilization using malleable jobs when compared to moldable- Best
Effort ones. We mesured it using real workloads traces to charge our cluster testbed
processors through OAR. Thus, the contribution of this chapter is a description
of the challenges to support malleability in resource manager (proper scheduling,
flexible allocation of the processors, etc) as well as in the MPI context (support to
dynamic process creation, the mapping of these dynamic processes, the launching
of adaptive actions, etc).

Once we identified that dynamic process creation can be used to develop mal-
leable MPI applications, we will focus the next chapter on issues of evolving MPI
applications. As previously mentioned, the evolving applications aimed in our work
are those follow the explicit task parallelism programming paradigm and we inves-
tigate the use of the MPI-2 features to help to unfold the parallelism at runtime.

111

6 EXPLICIT TASK PARALLELISM ON MPI APPLI-
CATIONS

This chapter aims to provide explicit task parallelism on MPI applications tak-
ing advantage of the MPI-2 features, in special the dynamic process creation. These
applications can be seen as a sub-class of evolving ones, because they are able to
exploit the potential parallelism at runtime, adapting themselves according to the
target architecture and input data. In Chapter 4, we introduced ways to develop
explicit task parallelism in MPI applications, their requirements and an example
in which a problem is solved based on this programming paradigm. We could ob-
serve that there are many challenges to provide this programming paradigm on a
distributed-memory context. This chapter discusses about their main issues:

e Definition of the abstract MPI tasks: how to allow the dynamic unfolding
of the parallelism in MPI programs; and how to determine the granularity of
the abstract tasks to achieve efficiency — Section 6.1;

e Solving dependencies among abstract MPI tasks: how to take advan-
tage of the MPI communication features to provide high performance data
transfers among abstract MPI tasks — Section 6.2;.

e Scheduling abstract MPI tasks at runtime: how to provide on-line de-
cisions to get load balancing — Section 6.3.

In Section 6.4, we present our first experiments executing MPI applications fol-
lowing the explicit task parallelism paradigm in a cluster environment. Additionally,
Section 6.4.5 presents our reflexions about the adaptation of the explicit task paral-
lelism into the MPI standard. Finally, Section 6.5 exposes the final considerations
of this chapter.

6.1 Defining Abstract MPI Tasks

Explicit task parallelism becomes popular as a powerful programming paradigm
to multi-core architectures, because of its efficient and elegant way to extract the
potential parallelism of the algorithms. It specifies units of work (abstract tasks)
that can be executed in parallel as well as their dependencies inside of the irregular
programs, leaving it up to the runtime to unfold the parallelism and schedule the
dynamic generated tasks. Thus it decides if tasks will be executed on different units
of execution (processes or threads), or simply run sequentially.

112

'int £ib(int n) {

if(n < 2) | fib2) | | i) | | fib) | [fibo) |
return n;
stsel [fiba) | [fib |

E int x, vy; II Il ” II "
: x = £fib(n-1);

: y = £fib(n-2);
E return(x + y);

> <

—————
~~~~~~~~
~~~~~~~
~~~~~

<. P
~~ -
~< -
~ -
~< -
~ e
~. -
~ -
~ -

Figure 6.1: Unfolding of the Fibonacci execution: the recursive calls of fib( n-1 )
and fib( n-2 ) can be performed in parallel as illustrated in the right; when the
results are available, the dependencies are satisfied.

Explicit task parallelism rises in Fork/Join programs (saw in Section 2.5.4): fork
— tasks are generated at runtime while there is parallelism to be explored (i.e., as the
input data and algorithm features); and join — executed tasks join to compose the
application results. As an example, we consider the Fibonacci computation (previ-
ously introduced) to illustrate the Fork/Join program structure (see Figure 6.1).

In the left of Figure 6.1, there is the sequential C function to search for the ith
element in Fibonacci (n), which performs recursive calls searching for n-1 and n-2.
According to the explicit task paradigm, this function can be seen as an abstract
task, which is dependent of the input — the argument n. Moreover, the recursive
calls represent the unfolding of the parallelism: tasks are generated at runtime; the
amount of tasks depends of the input value; and they represent an independent set of
instructions that can be performed in parallel. To return x + y, firstly the parallel
executions of £ib( n-1 ) and fib( n-2 ) must synchronize, which represents the
joining of tasks. In the right, there is an illustration of the parallel execution of the
Fibonacci for n = 4: the generation of the tasks happens while n > 2; then, the
tasks join merging their results.

In the following, we will present the issues to provide abstract MPI tasks.

6.1.1 Issues of Abstract MPI Tasks

As shown in Section 4.3, the dynamic process creation can be used to provide the
unfolding of the parallelism at runtime, generating MPI tasks on demand. Thus, the
abstract tasks of explicit task parallelism can be mapped to MPI ones. Remember
that MPI tasks have their own address space and, in general, are implemented as OS
processes. To avoid misunderstood with the standard MPI tasks and those aimed
in explicit task parallelism, we name this latter as abstract MPI tasks.



1

2

3

4. if( n < 2 )
5 MPI_Send( &n, 1, MPI_INT, O, 1, parent );

6 else/{

7 sprintf ( argv([0], "%d", n-1 );

8 MPI_Comm_spawn ( "spawn_fib", argv, 1, info, myrank,
MPI_COMM_SELF, &child[O0], err );

sprintf ( argv([0], "&d", n-2 );

10. MPI_Comm_spawn ( "spawn_fib", argv, 1, info, myrank,
MPI_COMM_SELF, &child[1l], err );

111, MPI_Recv( &x, 1, MPI_INT, MPI_ANY_SOURCE, 1, child[0], &st );

112. MPI_Recv( &y, 1, MPI_INT, MPI_ANY_SOURCE, 1, child[1l], &st );

:13. fibn = x + y;

:14- MPI_Send( &fibn, 1, MPI_INT, 0O, 1, parent );

:15. }

116.)

Figure 6.2: Fibonacci with dynamic process creation (spawn_fib.c): two new pro-
cesses are spawned to compute n-1 and n-2 in parallel; dependencies are satis-
fied through message exchanges — the parent wait for children results blocking in
MPI Recv in child[0] and child[1] intercommunicators while children send their
results to the parent through MPI_Send in parent intercommunicator.

Figure 6.2 presents Fibonacci abstract MPI tasks, in which MPI_Comm_spawn
replaces the recursive calls of Figure 6.1 and the messages solves dependencies.
The declaration and initialization of variables and the MPI environment (MPI_Init,
MPI Comm get parent,...) were omitted to keep the source code simpler. The par-
ent spawns children (launching two spawn_fib processes - lines 8 and 10), and blocks
to synchronize with them (MPI_Recv in child[0] - line 11 - and child[1] inter-
communicators - line 12). When children finish their computations, they return
the results through MPI_Send in parent intercommunicator - line 14. Remember-
ing, in the parent side, intercommunicators are returned from MPI_Comm spawn and,
in the children side, they are got by MPI_Comm get parent. The replacement of
the recursive calls by MPI_Comm_spawn is the simplest way to develop explicit task
parallel applications. This approach is widely used in shared-memory context, for
instance, in TBB and OpenMP (Section 3.2.2). However, it rises in further issues
to distributed-memory environments.

One of them is that the cost to create MPI tasks at runtime is greater than to
create abstract tasks in shared-memory context. Basically, shared-memory APIs
assign many fine-grained tasks to each thread (N tasks per thread - N : 1) and
the number of threads is decided at runtime as the parallel hardware. In other
words, the abstract tasks in shared-memory context are seen as the execution of few
instructions (functions, or block of instructions, or even user-defined classes — saw
in Section 3.2.2). Furthermore, the creation of these tasks has low costs once the
assignment and the access to the input data happen through shared data structures.

However, the source code of Figure 6.2 generates one new MPI process to com-
pute each abstract task (1 task per process - 1 : 1). Thus, it implies in several
process creations during the application execution. Abstract MPI tasks have higher



114

costs than to assign the execution of few instructions to threads, either in the time
of creations, or in memory space required. Furthermore, the input data must be
transmitted among distributed-memory regions (through argument or messages).
Programming techniques can help to reduce these overheads, but they will not be
eliminated.

Thus, we can observe two main problems of the straightforward replacement of
the recursive calls for MPI_Comm_spawn: (%) it brings the assignment of one task to
each MPI process (1 : 1) requiring many heavy-processes creations; and (i) fine-
grained tasks, as those in Figure 6.2, tend to be inefficient in MPI programs, since
the cost to create a new process and transfer the input data is not outperformed by
the computational time. Thus, the development of explicit task parallelism in MPI
applications requires ways to reduce the overhead of multiple dynamic creations of
MPI process. The next section explain how it can be solved adjusting the MPI tasks
granularity.

6.1.2 Granularity of the Abstract MPI Tasks

Granularity is a qualitative measure of the ratio of the time spent by parallel
programs computing to communicating (FOSTER, 1995). Thus, the efficiency of
the parallel programs depends of the grain size, since it allows maximizing processor
utilization and minimizing communication costs (FOSTER, 1995). In the context
of MPI, static programs (those have an invariable number of processes defined at
starting time — MPI-1 standard) the programmers control the granularity deciding
the amount of work each process (i.e. each MPI task) must perform. The MPI-2
standard allows to create new MPI tasks at runtime, however the granularity defini-
tion kept as a programmers duty: dynamic MPI tasks are standard MPI processes
spawned on demand. Thus, the same constraints must be supplied: the grain size
of the MPI tasks must be large enough to outperform the communication times.

In the context of the explicit task parallelism, the goal is to focus the program
development on the algorithmic issues, in such a way that programmers only identify
the potential parallelism of their programs, while the runtime environment takes care
of unfold it during the application execution according to the target architecture and
input data. Furthermore, there are no information about the optimal granularity of
these applications until runtime. The scheduling decisions are based on the avail-
ability of the processing elements (processors, cores), and on dependencies among
tasks, both discovered at runtime. Adaptive approaches can benefit from dynamic
mapping since they avoid machine specific parameters (CUNG et al., 2006).

Figure 6.3 shows a pseudo code of a generic abstract task according to the explicit
task parallelism. The program splits the input in two halves and forks a new task
for each half. A wait directive from the parallel API blocks the forker task until the
execution of the forked ones finishes. Then, the results are merged and returned.
We use input.Size() to return the input size - line 2, input.Split () to split the
input in half - lines 4 and 5, Fork(...) to fork a task with some input - lines
4 and 5, Wait_all children results() (line 6) to block and wait for children,
output.Merge() (line 7) to merge the children results, and Sequential() (line 9)
to execute sequentially the workload.

Notice that the THRESHOLD guides the forking of new tasks (line 2). It can be
used to indicate when the cost of new tasks creation is greater than the execution
of their work sequentially. Considering the Fibonacci code in Figure 6.1: it is not



115

/* Begin task */
. output_t Task ( input )
if input.Size () > THRESHOLD
then
outputl = Fork( Task ( input.Split () ))
output?2 = Fork( Task ( input.Split () ))
Wait_all_children_results ()
output .Merge ( outputl, output2 )
else
output = Sequential ( input )
end if

R O O O J o O bd W N+

P

return output
/* End task */

Figure 6.3: Pseudo code of a generic abstract task: tasks are dynamically forked
until the recursive threshold is reached - each task receives half of the input data.

efficient to generate dynamic tasks for short values of n, since the computation is just
a sum; otherwise, the program can stop the forking early and compute recursively
(locally) the remaining work. For instance, to compute n = 40 is more efficient to
generate new tasks until n > 20 and after to compute recursively than to generate
new tasks until the default n > 2. Furthermore, the parallel APIs for explicit task
parallelism such as TBB or OpenMP-3 recommend to use a threshold, which means
that they warn about the granularity.

Consequently, to use the explicit task paradigm in MPI programs, it is required
to keep the efficiency of the MPI tasks, i.e. to balance the distribution of the abstract
tasks into the MPI tasks (MPI processes or MPI units of execution). Most of the
parallel APIs for explicit task parallelism provides transparently the assignment
and balancing of the abstract tasks. In this sense, Section 6.1.2.1 describes some
challenges and issues to provide this transparency to the MPI users. On the other
hand, to control the MPI tasks granularity is considered an MPI-user duty in the
MPI standard. Thus, Section 6.1.2.2 shows how the users can implement such a
control in their applications.

6.1.2.1 Adjusting the Grain Size of Abstract MPI Tasks: a Runtime-Level Ap-
proach

This section shows the requirements to provide the assignment and mapping of
dynamically unfolded units of work, or abstract tasks, into MPI tasks, transparently
to the users. In the previous sections, we defined abstract tasks and shown that the
assignement of them is transparently provided in many explict tasks approaches.
To achieve a similar behavior over the MPI context, such as the source code of
Figure 6.2, the mean is to handle MPI_Comm_spawn calls.

Section 5.2.3 presented a scheduling library able to intercept MPI_Comm_spawn
calls and query a scheduler daemon about the best physical location to the new pro-
cesses. A similar mechanism can be used: to each MPI_Comm _spawn, the scheduler
decides if spawns new MPI tasks (processes) or increases the granularity of the run-
ning ones, assigning further units of work. Figure 6.4 illustrates it: MPI_Comm_spawn
is redefined to include a procedure to decide which actions must be done.



116

'MPI process Level |

______________________________________________

_MPI Comm_spawn( ... );:
_______________________ \\ | Scheduler Level |
' _MPI_Comm_spawn ( )
+ .
if ( there are unused processors ) {:
MPI_Comm_spawn( ... ); '
} else {

to assign the abstract task to
a running MPI Process

Figure 6.4: Scheduling abstract MPI tasks: in MPI process level — the redefinition
of the MPI_Comm_spawn provided by a user-library allows to execute a procedure to
deal with abstract task; in the scheduling level — it decides between to spawn a new
MPI process or to assign work (abstract task) to running ones.

Looking at Figure 6.4, the first issue is the condition that guides the decision be-
tween the spawning or the assignment. In our illustration we test if there are unused
processors, i.e. processors that do not run MPI processes. For efficiency reasons,
the common goal is to destinate one MPI process to each processor. For instance, in
OpenMPI this is the key condition to have an aggressive mode of execution, which
ensures high performance. Furthermore, in nowadays multi-core architectures, each
core is seen as a processor by the MPI distributions, then it is efficient to have as
many processes as cores on the target architecture.

Another issue is to decide how to assign abstract tasks or the units of work into
MPI processes, which requires some scheduling policy. For instance, an Equipartition
policy (BUISSON et al., 2007) provides an egalitarian distribution of the abstract
tasks among the running processes. Adaptive policies (GHOSE; KIM; KIM, 2005)
are another option in which the decision is based on resource utilization estimates
get through probing techniques. Thus, imbalances in task assignments can be solved
at runtime. Additionally, in Section 6.3, we will discuss about the requirements to
achieve load balancing in explicit task applications.

Furthermore, abstract tasks, or the units of work scheduled, in explicit task
parallelism are function calls. Thus, the assignment of abstract tasks means to set
the execution of a set of instructions for a specific input data to a target process.
As each process gathers many abstract tasks, they can be sorted in a queue as the
recursive calls constraints: lower levels calls are firstly executed to attend the upper
levels dependencies. This queue can be used to implement Work Stealing strategy
aiming to load balancing, as will show in Section 6.3.



117

/* Begin task */
. output_t Task ( input )
level.Increase ()
if input.Size () > THRESHOLD
then
if Nprocessors > level.Leaves ()
then
outputl = Fork( Task( input.Split () )
output?2 = Fork( Task ( input.Split () )
Wait_all_children_results ()
else
outputl = Task( input.Split () )
Task ( input.Split () )

output?2
end if
output .Merge ( outputl, output2 )
else
output = Sequential ( input )

end if

0 J o0 b WNE O VU OoWwJo o b whRE

PR R R R R R R R

return output
/* End task */

_______________________________________________________

Figure 6.5: Pseudo code illustrating the adaptive task creation (Adaptive): dynamic
MPI tasks are created while the number of leaves is less than the number of pro-
cessors, thereafter tasks are recursively computed until a given threshold from that
the computation is sequential.

6.1.2.2 Adjusting the Grain Size of Abstract MPI Tasks: an User-Level Approach

This section shows the development MPI applications following the explicit task
parallelism. Here, programmers are responsible to adjust the abstract MPI task
granularity. In other words, programmers implement a strategy in the application
source code able to schedule the units of work into the available MPI tasks (MPI
processes) at runtime.

The key to provide an user control of the abstract tasks assignment is the thresh-
old. Previously, we show its use as a parameter of the parallelism extraction: new
abstract tasks are generated just until their workload is large enough to bypass their
creation costs. This naturally increases the granularity of the tasks. In this section
we show that an additional stop condition (threshold) can guide the unfolding of
the parallelism as the number of available processing elements (processors, cores).
We call this approach as Adaptive.

Our approach distinguishes tasks according to their position in the call tree of
D&C applications:

e Leaves: which are able to run immediately (dark gray circles in Figure 6.6);

e Parents: which keep blocked until the return of the children results (light
gray circles in Figure 6.6).

Basically, the Adaptive approach spawns new MPI tasks (processes) until the
number of leaves is equal to the number of available processing elements. Thus,
it can provide a full utilization of the available processors. The additional thresh-



118

B
z=8 o o o

Recursion Levels

Process Mapping

Figure 6.6: Controlling of the recursion levels and process mapping: Adaptive un-
folds the parallelism until achieve 8 leaves (dark gray circle), which charge the avail-
able processors (rectangles).

old is responsible to control the spawning, which determines the exact level of the
parallelism that spawns must stop without performance loss due to extra process
creations. Thereafter, tasks perform recursive calls until achieve the algorithmic
threshold, and finally, they compute the instructions sequentially. The execution of
recursive calls increases the MPI process granularity and induces an egalitarian as-
signment of the workload: the input is split in two halves. However, Adaptive does
not have any trivial implementation and demands changes in application source
code.

Figure 6.5 shows a generic representation of the Adaptive approach. Notice
that the Fork(...) (lines 7 and 8) means the calling of MPI_Comm_spawn in MPI
applications. The additional stop condition (line 5) compares the number of pro-
cessors (Nprocessors) with the number of leaves in the current recursion level
(level.Leaves()). The first parameter of the condition is fixed and provided by the
runtime environment. To second one, we add a data structure to represent the level
of the recursive tree. At runtime, to each recursion level, a counter is incremented
(level.Increase() - line 2). Thus, the number of running processes as leaves can
be achieved (level.Leaves() of line 5) since it is 2/*** where level is the current
recursion level. Then, if the number of leaves is smaller than the number of pro-
cessors, further processes are dynamically generated. Otherwise, tasks are executed
recursively.

To exemplify the Adaptive approach, we illustrated the recursion levels of an ex-
plicit task application in Figure 6.6. There are 8 processors (rectangles) to execute
the application. Thus, the Adaptive approach explore the application parallelism
until reach the third recursion level, which provides 2° = 8 leaves (dark gray cir-
cles). The remaining processes (7 parents) are hierarchically distributed on the tree
(light gray circles). Thereafter, each left performs recursive calls as the algorithmic
requirements. In the right, there is a representation of the process mapping of the
Adaptive approach, in which each left is placed into an available processor.



119

6.1.2.3 Further Issues of Granularity

Regarding the previous approaches, they are focused on the adjustment of the
MPI tasks granularity by the management of the recursive calls. Although they
can improve the performance of MPI applications following the explicit task paral-
lelism, there are other alternatives. A promising one is related to the current pro-
gramming tendency aiming at multi-core architectures: the development of multi-
threading programs. Moreover, today clusters of computers are composed by multi-
core nodes, thus, parallel programs tends to be hybrid: intra-nodes computations
are performed by threads with fast local communications; and inter-nodes exchanges
happen through a fast standard inter-node interface (e.g., MPI).

Furthermore, many parallel APIs for explicit task parallelism achieve their ef-
ficiency taking advantage of the shared-memory features. Thus, as the parallelism
is extracted, threads can get units of work with a low overhead (accessing shared
data structures). However, to have explicit task applications running efficiently
on cluster environments, the inter-node communication, as well as its overhead,
must be considered. Additionally, a common practice in HPC programming is to
combine OpenMP threads (to achieve intra-node efficiency) with MPI (aiming at
high performance inter-nodes interactions) (LEOPOLD; SUSS; BREITBART, 2006;
KRAWEZIK; CAPPELLO, 2006).

MPI-2 specifies the interaction between MPI functions and user-created threads.
A fully thread-compliant MPI distribution supports MPI_THREAD MULTIPLE level of
thread safety, where multiple threads may make MPI calls at any time. Thus, an
MPI program can combine processes and threads, both representing the MPI tasks.
Although the performance gains using threads are obvious, the design of such MPI
programs is not trivial because it must consider processes and threads mapping,
and further, their safe communication. LIMA; MAILLARD (2009) investigate these
issues to POSIX threads, providing a granularity control that decides between cre-
ate threads or dynamic processes to avoid local nodes overloading. Furthermore,
they manage communications among threads: MPI_Send/MPI Recv communications
converted to shared-memory accesses.

In this work, we will keep focused on controlling the granularity of explicit task
MPI applications without take into account multi-threading issues. But these as-
pects are part of our future work perspectives.

6.2 Dependencies and Data Transfers among Abstract MPI
Tasks

In standard MPI tasks, dependencies are solved through message exchanging
taking advantage of its high performance communication interface. As could be
seen in Section 4.3.2 the abstract MPI tasks adopt the same solution.

MPI dependencies are expressed as messages or collective barriers within a group
of processes. MPI_Comm spawn returns a communication handler (intercommunica-
tor), which establishes an interconnection channel between two groups of processes:
parent and children ones. This notion of intercommunicator is useful since the re-
lation among processes is specific and simple. However, there is no trivial solution
for global synchronizations because of the hierarchical dependency between children
and parents (more details in Section 6.3).



120

E 1. int main( int argc, char **argv ) { E
E 2. int n, Nproc, level; E
E 3. MPI_Comm parent; E
. i
E 5. MPI_Init (&argc, &argv); E
I 6. MPI_Comm_get_parent ( &parent ); E
E 7. n = atoi( argv[1l] ); :
E 8. Nproc = atoi( argv[2] ); E
E 9. level = atoi( argvI[3] ); E
510, level++; E
Ell. if( Nproc > pow( 2, level ) ) E
512, spawn_fib ( n, level, parent ); E
513, else {

114, int fibn;
115. fibn = £ib( n );
'16. MPI_Send( s&fibn, 1, MPI_INT, O, 1, parent );:
17, )
518, MPI_Finalize () ; E
119. )

Figure 6.7: Adaptive Fibonacci implementation (adaptive fib.c): new Fibonacci
processes are spawned until that there are as many MPI processes as processors.
Thereafter, computations are recursively performed.

In the following, some aspects of the hierarchical communication required by MPI
applications in the explicit task parallelism context are described in Section 6.2.1.
Additionally, some opportunities to data transfers optimizations are discussed in
Section 6.2.2.

6.2.1 Synchronizations by Blocking Communication

To understand the communication among MPI processes following the explicit
task parallelism, Figure 6.7 applies the Adaptive approach in Fibonacci problem.
Notice that there is another MPI process that spawns the first adaptive_fib, which
was omitted. The execution of the adaptive_fib process starts setting up the MPI
environment (MPI_Init- line 5) and getting the parent intercomunicator (line 6).
Thereafter it stores the arguments: n is the Fibonacci number to be searched (line
7); Nproc is the number of processors (line 8); and level is the recursion level
counter (line 9). The process increases the level counter (which has —1 at starting
time) because it is a child - line 10.

Then, adaptive fib tests the stop condition to verify the number of MPI pro-
cesses and the number of processors - line 11. When there are fewer processes than
processors, it calls spawn_fib (line 12) which is similar to Figure 6.2. Basically, this
is a function that spawns two new adaptive_fib processes to compute n-1 and n-2
and blocks waiting for children results. Each new adaptive fib process repeats
the same instructions that its parent. Thus, it composes a hierarchical structure
of blocked parents. When all processors are used, adaptive fib processes start to
compute recursively (£ib - lines 13 to 17) as shown in Figure 6.1. When the results
are ready, children send they back to their parents (line 16), unblocking them.



121

Figure 6.2 showed the use of MPI Recv to block parent execution until children
results are available. This point-to-point communication implements the parent and
children synchronization, allowing that the parent continues to execute only after
the dependencies with children are solved. In shared-memory APIs for explicit tasks
parallelism, the synchronizations ensure that data is already updated and can be
accessed by the parent. Asin MPI context the environment is distributed-memory, a
message exchange is required to allow the parent knows the children results. Thus,
to implement synchronizations with a blocking point-to-point communications in
MPI applications is a suitable alternative.

But, MPI offers other means to block the parent, which are more efficient than
those showed in Figure 6.2. Instead of blocking in one MPI Recv and after in another,
forcing an receiving order of children results, the parent can start asynchronous re-
ceives. They are implemented through MPI_Irecv to start the asynchronous receiv-
ing; and MPI Waitany to block waiting for the results. These MPI primitives were
introduced in Chapter 4.

Depending on the features of problems being solved, advanced communication
mechanism can improve the MPI applications performance. In the following we
discuss about some possibilities.

6.2.2 Data Transfers Optimizations

MPI has powerful mechanisms to improve the parallel programs communication.
One example is the collective communications, which can also be used to synchronize
parent and children in explicit task applications. They provide a simpler and easier
source code organization than to implement several point-to-point communications.
Furthermore, explicit task applications can reduce communication costs using either
ad-hoc strategies or specific platform optimizations of an MPI distribution.

An ad-hoc design uses application specific characteristics to increase granularity
or locality, then reducing or eliminating process communications. For instance,
when the MPI process performs recursive calls in Adaptive approach, the process
granularity is increased and some communications are eliminated. In other words,
computations performed recursively do not require communication as when they are
computed by separate processes. Another way to increase the granularity is through
hybrid programs combining threads and MPI processes, such as proposed by LIMA;
MAILLARD (2009). Computations of hybrid programs require communications but
they have low costs since several of them happen in a shared-memory context.

On the other hand, MPI distributions can implement optimizations selecting a
communication mechanisms suited to the target architecture. For instance, to use
sockets on clusters, and shared-memory copies on multi-core processors (BALAJI
et al., 2009). These optimizations are becomming common on MPI distribution and
the MPI applications desired by us can also take advantage of them.

6.3 On-line Scheduling of Abstract MPI Tasks

The explicit task parallelism is focused on the algorithm — programmers define
which are the abstract tasks and their dependencies. However, it requires on-line
scheduling once tasks are generated on demand and at runtime. Scheduling allows
to fit abstract tasks into the available units of execution (processes or threads). Re-
membering that the amount of units of execution and abstract tasks are only know



122

at runtime, because the first depends on the architecture (shared or distributed-
memory, how many processing elements,...) and the second depends on the input
data. In the most popular programming tools that support the explicit task paral-
lelism, this on-line scheduling is part of their runtime support.

In this section, we describe the main issues involving the scheduling of the explict
task MPI applications. Section 6.3.1 focuses on the mapping of the abstract MPI
tasks according to LAM/MPI and OpenMPI distributions. In addition, we present
the challenges to provide load balancing to MPI applications with an explicit task
behavior, as well as the constraints to implement Work Stealing to these applications.

6.3.1 Mapping of Abstract MPI Tasks

Remembering that abstract MPI tasks are MPI processes, which compute ab-
stract tasks of the explic task MPI applications. Since these abstract MPI tasks
are generated at runtime, their mapping is a key issue to ensure a good utilization
of the available architecture. As shown in Section 6.1.1, we take advantage of the
dynamic process creation to implement the unfolding of the parallelism at runtime.
Thus, the mapping is dependent of the support provided by the MPI distributions.

In Section 5.2.2 we described the dynamic process mapping in two study cases
of MPI distributions: LAM/MPI and OpenMPI. The same constraints are valid to
explicit task parallelism in MPI applications.

e LAM/MPI: provides a Round Robin policy, however it performs poorly when
multiples processes are spawned at the same time. In Section 5.2.3 we pro-
posed a library to solve this problem and to provide a policy based on processes
workload. Under this context, to execute MPI applications with an explicit
task behavior on LAM/MPI, our proposed library must ensure a good cluster
utilization. Furthermore, the workload-based approach may bring satisfactory
results in this kind of MPI applications, once the underloaded processors re-
ceive the dynamic processes. Notice that to use a scheduling library to map
dynamic processes and to implement a runtime-level adjusting of the granu-
larity, as proposed in Section 6.1.2.1, are co-related solutions;

e OpenMPI: also provides a Round Robin policy, which performs as expected
to multiple process spawning. Thus, the explicit task parallel applications
can take advantage of the default mapping provided by OpenMPI. Although
Round Robin does not offer ways to adapt the mapping to processing ele-
ments utilization, it can be efficient since some load balancing strategy is
adopted. For instance, the user-level approach to adjust the process granular-
ity as showed in Section 6.1.2.2.

Notice that our observations above focus on to define MPI process granularity,
i.e. to decide how many abstract tasks each process must perform. However, in
some cases, this is not enough to ensure performance because of the irregular nature
of the problems, in which the execution time of the abstract tasks varies from one
to another. Theses cases require an on-line scheduling strategy able to provide
load balancing at runtime. The next section discusses about Work Stealing in MPI
applications.



123

parent/children
relationship
A

Figure 6.8: Communication hierarchy and the Work Stealing: parent/children com-
munication relationship and the transmission of the stealing requests.

6.3.2 On-line Load Balancing for Abstract MPI Tasks

Section 3.3.2 showed the Work Stealing as the most adopted strategy to provide
on-line scheduling thanks to its proved efficiency. So, many systems implemented
this strategy on different contexts. Our previous work (PEZZI et al., 2007) imple-
mented the Work Stealing inside of an MPI application source code, which spawn
processes at runtime (Section 4.3.2). This work highlighted the constraints to im-
plement the Work Stealing under this context, which are also valid to explicit task
MPI applications as described in the following.

The first constraint is related to the communication relationship. As previously
described, dynamic process creation brings hierarchical communications: processes
have parent/children relationship (Figure 6.8). MPI_Intercomm merge allows merg-
ing local and remote groups of processes in one intracommunicator. Although this
primitive can be used to create a unique communication universe, it is a collective
operation that requires global synchronizations in each process spawning. Thus, this
alternative is impracticable for performance reasons.

The hierarchical communication structure impacts on transmission of stealing
requests. As the victim is chosen randomly, many point-to-point communications
may be required to transmit the requesting. For instance, suppose that process A
chooses process B to steal tasks, as illustrated in Figure 6.8. To find it, the stealing
request must go upward until the root, and after downward until the leaf, which
means six point-to-point communications (dark branches). The response goes to
the inverse path. In the worst case, process B has no tasks, and another victim
must be chosen, requiring more communications. All these communications add
extra costs, which become inviable the Work Stealing implementation under this
context, because gains, in most cases, will be not outperformed by costs.

On distributed-memory environment, a well-known way to improve the Work
Stealing performance is to consider the locality (NIEUWPOORT et al., 2006; GAU-
TIER; BESSERON; PIGEON, 2007). In MPI applications with dynamic processes,
this is still more relevant due to the communication hierarchy. Thus, PEZZI et al.
(2007) proposed a Hierarchical Work Stealing algorithm that guides the victim choice
as the communication hierarchy. In few words, the stealer requests tasks from its
parent: if the parent has tasks, it sends back and the stealing finishes; otherwise, the
parent sends the request to the upper level, and this action is repeated until reach
tasks or identify that there are no tasks to be compute. The stealing is propagated
in the hierarchy only when the neighboring processes do not have tasks. Thus, the
stealing may happen with less communications than choosing the victim randomly.



124

Besides the impact of multiple point-to-point communications in Work Stealing,
naturally the cost to steal tasks in distributed-memory environments is greater than
in shared-memory ones. Notice that in shared-memory, the stealing costs shared
data structures accesses while in distributed, it costs inter-processes communica-
tions. Furthermore, the efficiency of the Work Stealing depends on the number
of stealing operations, which must be lower than the number of operations in the
critical path of the tasks graphs (BLUMOFE; LEISERSON, 1998). The higher is
the application degree of parallelism, smaller is the critical path. Thus, even for
highly parallel applications that require few stealing operations, their costs in MPI
are greater than in shared-memory context, which impacts in the global parallel ex-
ecution time. In this sense, the strategy must take into account the cost of stealing
as a parameter to decide to steal or not.

Notice that the previous paragraphs are focus on Work Stealing to balance the
workload distribution among MPI processes at runtime. Another work in our re-
search group studied the usage of this strategy to map dynamic processes (MOR,;
MAILLARD, 2009). This work can be seen as an extension of the scheduling li-
brary (saw in Section 5.2.3), which provides a distributed scheduler for D&C MPI
applications. It modified the dynamic process creation of MPICH2 distribution! in
order to allow distributed decisions about physical locations of new processes. This
implementation takes into account the MPICH2 features (such as its ring-based
communication) and allows increasing the size of the problems that could be solved.

To provide a generic implementation of the Work Stealing to MPI applications
with dynamic process creation is a challenge as can be seen by the constraints
described in this section. Our research group has been studying this topic, which
has a great relation to the applications aimed in this thesis. Thus, we decide to
discuss the main conclusions about this adaptation of the Work Stealing, in which
we were involved. However, its generic implementation was left to future researches
due to its technical challenges.

Without an implementation of the Work Stealing, we are not able to deal with
explicit task parallelism in MPT applications that have irregular workloads. However,
we decide to test our approach that is able to define abstract MPI tasks, to control
the granularity inside of the application source code, and satisfies dependencies
through message exchanges. In this context, we implement some benchmarks, which
are adopted for explicit task parallel APIs in shared-memory, to analyse our insights,
as show in the next section.

6.4 Experimental Results

In this section, we will present our experimental results with MPI applications
following the explicit task parallelism. Due to implementation issues, we are not
able to provide a generic solution to unfold the parallelism of the MPI applications
at runtime. But, we implemented solutions to these issues within applications source
code. The goals of the results exposed in this section are:

e To validate the extraction of the parallelism of our MPI approach through a
comparison with well-known shared-memory parallel API (Section 6.4.2);

'MPICH2 - http://www.mes.anl.gov/research/projects/mpich2/ last access in January 2011



125

e To analyse the performance of MPI applications following the explicit task
parallelism in a distributed-memory environment (Section 6.4.3);

e To verify the impact of our Adaptive approach when compared to other other
strategies to control the MPI process granularity (Section 6.4.4).

The results achieved shown that the explicit task parallelism paradigm can be
adopted in MPI applications (running on distributed memory environments).

6.4.1 The Test Environment

All the results have been obtained on the French Grid’5000, tested from the site
Porto Alegre, Brazil. Each node has two Intel(c) Xeon E5310 Quad Core 1.60 GHz
processor (eight cores per node) and 16 GB of memory. We have used GCC version
4.3 with the OpenMPI distribution. All measures are the speedup relative to the
best sequential running time, and each time is the mean of 30 executions. The
standard deviation of the samples has always been smaller than 3%.

We have developed three test applications using the current MPI features in
order to verify the efficiency of the MPI applications according to the explicit task
parallelism. They are based on recursive algorithms whose each recursive call is
a potential MPI task implemented as a dynamic process. The default OpenMPI
mapping decides the physical location of spawned processes. In all applications, a
recursive threshold is used to determine when sequential executions must replace
the dynamic process creation. To determine the threshold to each application we
estimate experimentally when the cost to create new processes is greater than the
time to compute the workload sequentially.

The Fibonacci calculation is one of our test applications. Although its overall
computation needs only few computational cycles, we aim to verify the behavior
of our approach with a larger number of lightweight tasks. We are aware the Fi-
bonacci is too simple to show an accurate measure of overall performance. However,
its numerous lightweight tasks are very suitable to show how tasks behave when
concerning granularity control and overall communication.

The second benchmark is the recursive implementation of the traditional matrix
multiplication algorithm as described in Section 4.4.2. The input matrices, A, x,
and B, «,, are partitioned in two halves, generating four new abstract tasks per level.
Each dynamic task computes one quadrant of the resulting matrix C,,«,. When the
results of the four abstract tasks are done, they are merged and sent to the upper
level. This benchmark has heavier tasks that perform many computations and use
memory intensively.

Merge sort is a well-known recursive sorting algorithm. Our parallel implementa-
tion works as the sequential version, where recursive calls are replaced by the forking
of the abstract tasks. It divides an initial input of size n in two smaller parts of
sizes n/2 for each abstract task. Then, this procedure is repeated until a threshold,
from which the sequential algorithm is used. The conquer phase merges the results
of two children and returns it to the upper level. Although most parallel merge
sort implementations use shared-memory arrays for input and output numbers, the
MPI version uses message passing for each new task. Experiments used n random
numbers as input.



126

Table 6.1: Speedups of Fibonacci and Matrix Multiplication with MPI and OpenMP
upon 1, 2, 4, and 8 cores of a multi-core machine.

Applications API Number of Cores
1 [ 2] 4] 8
Fibonacci MPI 1 1 1262 3.40

OpenMP | 0.55 | 1.09 | 2.07 | 3.89
Matrix Multiplication MPI 0.76 | 1.48 | 1.55 | 3.94
OpenMP | 1.17 | 1.77 | 2.25 | 2.47

6.4.2 Unfolding Parallelism of the MPI Applications

In this section, we validate the mechanism used to unfold the parallelism of MPI
applications at runtime. The parallelism extracted should enable a good (linear)
speedup. Therefore, we compare quantitatively the speedup achieved by our MPI
applications with the speedup of a well-known API for explicit task parallelism:
OpenMP. Notice that OpenMP generates dynamically as many fine-grained tasks
as possible, which are scheduled on the set of threads by its runtime, ensuring the
application performance. Aiming to achieve an optimum fit between the number of
MPI processes and the available processing elements, MPI versions implement the
Adaptive approach as described in Section 6.1.2.2.

The benchmarks used in this section are the Fibonacci computation and the
matrix multiplication. The results represent the parallel computation of the 53th
element in the Fibonacci sequence with a threshold equal to 46th element, which
means that from that value computations are locally performed. Matrix multiplica-
tion results are the computation of two input matrices of 8192 x 8192 elements with
a threshold of 256 x 256 elements. Besides, sequential executions took almost 1,240
seconds for Fibonacci and 80 seconds for matrix multiplication. Table 6.1 shows the
speedups of the benchmarks using MPI and OpenMP upon a shared-memory pro-
cessor with 1, 2, 4, and 8 cores. In our experiments, we used the CPUSETs handling
to isolate set of cores in the multi-core machines.

Observing the speedups of Table 6.1, it can be verified that the greatest speedup
is achieved by the MPI implementation of the Matrix Multiplication — near to 4
times better than the sequential version when are used 8 cores. Furthermore, for
the same configuration, the MPI speedup is about 38% better than the OpenMP
one (3.94 for MPI and 2.47 for OpenMP). We believe that this speedups differences
may be caused by cache issues, which explain the opposite behavior to Fibonacci.
However, it is required a deepest investigation, that was left for future works.

Notice that the MPI versions have dynamic process creation and communications
overheads without profit of the shared-memory advantages as OpenMP does. Thus,
MPI versions achieved mostly lower speedups than OpenMP. However, the difference
is low and MPI speedups are close to OpenMP (8% until 30% less performance), even
without an efficient use of shared-memory features. In this sense, we can conclude
that explicit task parallelism can be implemented on MPI applications achieving a
performance coherent with well-known APIs such as OpenMP.



127

6.4.3 Performance of Explicit Task Parallelism in MPI Applications

This section aims to verify the behavior of MPI applications implementing the
explicit task parallelism in distributed-memory environments. In this sense, we
analyse the speedups of Fibonacci and Matrix Multiplication benchmarks in cluster
architecture. We test two versions of each benchmark: one using our Adaptive
approach; and another using a Naive implementation of task parallelism. Naive
versions have only the threshold controlling the granularity of the tasks without
take into account the amount of processing elements. This was used as an example
in Section 6.1.1.

The speedups represent Fibonacci executions with the same input as in the pre-
vious section: 53th element in the sequence with a threshold of 46. Complying the
requirements of distributed-memory executions, we increased the Matrix multipli-
cation inputs to two matrices with 16384 x 16384 elements, keeping the threshold
256 x 256. The sequential execution time to Fibonacci keeps 80 seconds and almost
412 seconds to Matrix Multiplication.

Figures 6.9 and 6.10 show the speedups of Fibonacci and Matrix Multiplication,
respectively, from 1 processor, with 8 cores, to 8 processors, resulting in 64 cores.
To Fibonacci, the Adaptive approach reaches speedups mostly lower than the naive
version (Figure 6.9). Adaptive speedup is greater than naive one only to 40, 48, and
56 cores and the best improvement is about 15%. This is because Fibonacci tasks
involve few computations, and in this context to use a threshold is already enough
to ensure good performance.

On the other hand, an adaptive granularity control in Matrix Multiplication al-
lows a considerable gain of performance (Figure 6.10) — an improvement up to 90%
for 64 cores. As tasks take a long time computing, our simple effort to balance the
load already impacts. This behavior expresses that scheduling issues are fundamen-
tal to achieve efficiency executing these MPI applications on distributed-memory
environments.

6.4.4 Controlling the Granularity of the Abstract MPI Tasks

This section aims to analyse different mechanisms to provide a runtime adjust-
ment of the MPI process granularity. In this sense, we compare three approaches:
Fork, Lazy, and Adaptive. The latter was explained and used in the previous sec-
tions. The Fork approach is the Naive version described above: it spawns one new
process to each abstract task until a given threshold. In Lazy, a process (the par-
ent) spawns new processes to compute the abstract tasks, but it keeps one of them
to compute locally. In this way, the parent also computes while wait for children
results. Parent and children synchronize through a message receiving. As well as
the other approaches, Lazy fork tasks until a given threshold.



128

[0°0]
0
i
N
(@)
(a\]
. B F
b~
- Yo ==
© E g KK =
< < = < 0
‘_||—(ﬂ" — —
v
=)}
e
T
o~ =
w8 2
o0
e
(e}
S
Nm
=
[\p)
8 16 24 32 40 48 56 64

number of cores

© Naive: dynamic process creation limited by threshold.
m Adaptive: dynamic process creation limited by the processing elements.

Figure 6.9: Speedup comparing the sequential execution time with naive and Adap-
tive MPI implementations of the Fibonacci calculation from 8 to 64 cores (1 to 8

Ll

number of cores
8 Naive: dynamic process creation limited by threshold.

12.80
14.13
15.28
16.57

11.18

= Adaptive: dynamic process creation limited by the processing elements.

Figure 6.10: Speedup comparing the sequential execution time with naive and Adap-
tive MPI implementations of the Matrix Multiplication from 8 to 64 cores (1 to 8
nodes).



129

1 core 2 cores
fork @ 0.20 fork 0.47
lazy 0.35 lazy 0.61
adaptive 0.64 adaptive 0.96
4 cores 8 cores
fork -i76 fork 1.40
lazy 1.15 lazy 2.17
adaptive 1.76 adaptive 2.60

Figure 6.11: Merge Sort speedups of Fork, Lazy, and Adaptive approaches using
an input of 400 million elements and a recursive threshold of 1 million elements,
generating 1,023 tasks.

The Matrix multiplication benchmark keeps useful to measure Lazy and Adap-
tive’s efficiency. However, in this scenario, the didactic Fibonacci algorithm is use-
less, because benchmarking an I/O-bound parallel program while trying to speedup
CPU-bound programs makes no sense; the gain obtained using tasks very short-lived
is obvious. Therefore, we have to replace Fibonacci by a more suitable test-case when
evaluating Lazy and Adaptive approaches: the Merge Sort.

The Matrix multiplication inputs are 8192 x 8192 elements and a threshold of
256 x 256 elements. The Merge Sort input is 400 million of random elements and
a threshold of 1 million elements. Sequential executions took 80 seconds for Matrix
Multiplication and 153 seconds for Merge Sort. Each graphic shown in this section
represents the speedups of MPI applications designed with the three approaches
(Fork, Lazy, and Adaptive). They are presented non-cumulatively, to better evaluate
the individual gains. The execution is in shared-memory context with 1, 2, 4, and
8 cores, in which the isolation of cores happens through CPUSETs handling.

The Adaptive approach provides the greatest performance improvement as seen
in Figures 6.11 and 6.12. This is because this approach impacts in two performance
aspects: (i) it limits the number of process spawned, which limits also dynamic
creation overhead into application performance; and (%i) performing recursion calls,
synchronizations happen as functions return, instead of through message passing,
which also take some overhead. The influence of these overheads can be seen in the
difference from on approach to another for a given number of cores. Fork creates
the greatest amount of processes and has the smallest speedups; Lazy spawns an
intermediate amount of processes being the intermediate speedups; and Adaptive
with less dynamic processes has the highest speedups.

Analysing the results, we can also observe that as the number of cores increases,
the speedup of each approach also increases, thanks to the bigger degree of paral-
lelism. For instance, to Merge Sort the Fork achieved 0.20 to 1 core, 0.47 to 2 cores,
0.76 to 4 cores, and 1.4 to 8 cores - Lazy and Adaptive follow the same tendency.
However, comparing speedups of each approach for each number of cores, Merge



130

1 core 2 cores
fork 0.39 fork 0.63
lazy 0.47 lazy 0.77
adaptive 0.76 adaptive 1.47
4 cores 8 cores
fork 0.73 fork m3
lazy 1.02 lazy 1.33
adaptive 1.48 adaptive 3.96

Figure 6.12: Matrix Multiplication speedups of Fork, Lazy, and Adaptive approaches
using input matrices of 8192 x 8192 elements and a recursive threshold of 256 x 256
elements, generating 1,365 tasks.

Sort achieves the best gain when executed with 1 core: Adaptive is 68% more ef-
ficient than Fork (0.20 to 0.64). In other words, to reduce the number of running
processes impacts significantly in this context. The smallest gain is executing over
8 cores: Adaptive is 46% better than Fork. This is because the increasing in the
number of cores already provides relevant gains even to Fork approach (1 core: 0.20
to 8 cores: 1.4, i.e. the speedup with 8 cores is 85% better than with 1 core), thus,
with 8 cores, the reduction of the number of processes can not improve significantly
the speedup as with 1 core.

On the other hand, Matrix Multiplication has the best gain with 8 cores: Adap-
tive has a speedup 76% bigger than Fork. The smallest gain with 1 core: Adaptive
is 48% better than Fork. As Matrix Multiplication is more CPU-intensive than
Merge Sort, it is expected more gains over a larger number of processing elements,
i.e. more computations performed by cycles. Notice that the gains when the degree
of parallelism is increased to the Fork approach are smaller than to Merge Sort:
speedup with 1 core: 0.39 and with 8 cores: 0.93, 7.e. the speedup with 8 cores
is 58% better than with 1 core. Then, to reduce the number of processes impacts
more to the Adaptive approach than to Fork one: using 8 cores Fork has a speedup
of 0.93 wvs. 3.96 achieved by Adaptive.

However, to control the number of processes without provide load balancing is
not efficient. This can be concluded locking at Lazy results: it limits the number of
processes but its speedups are always nearer to Fork. This is because the processes
workload is unbalanced (parent keeps computing large abstract tasks), which impact
significantly in a CPU-intensive application.

Observing these results we can conclude that it is possible to implement task
parallelism using MPI-2, since some control of MPI process granularity is offered.
This goes against the claim that MPI is not suitable to task parallelism thanks to its
task-spawning overhead. Furthermore, there is a technical constraint in the creation
of large amounts of MPI tasks (processes): MPI distributions do not support more
than few thousand processes running together in the same processor. This guided
our choice about the number of dynamic MPI tasks and strengthens the need of a
grain size control to implement explicit task parallelism in MPI.



131

Despite the efforts presented throughout this section, MPI does not address op-
timizations on task creation, since the standard aims to be a portable interface.
It assumes an external solution from the MPI distribution or the programmer for
scheduling and granularity control, which are partially addressed here. Almost all
results confirmed the overhead on task creation and scheduling; our Adaptive ap-
proach probably offers performance gains to Fork-Join applications.

6.4.5 Blueprint for Explicit Task Parallelism in MPI

MPI has not been originally designed to support explicit task parallelism. How-
ever, the situation was the same for OpenMP, yet its forum has found means to
define tasks and their dependecies in the native interface. We belive that the same
result could be achieved to MPI, considering that a new standard, MPI-3, is being
discussed now.

MPI_Comm_spawn is a natural and native way to define and fork new MPI tasks.
The original MPI 1.2 norm already defined MPI tasks independently of the notion of
process (in the OS sense). However, the current MPI_Comm_spawn is meant to run new
images of MPI binaries, i.e. to create new processes. An interesting improvement
would be to allow the call of functions instead of, or together with MPI binaries.
Thus the programmer could easily control the granularity choosing between pro-
cesses creation or recursive calls (as introduced in Section 6.1.2.2). Furthermore,
MPI_Comm spawn would be closer to the model of POSIX Threads facilitating the
integration of both in MPI programs.

The choice between spawning functions or binaries could be let to the program-
mer by the use of a special field of MPI_Info parameter passed to MPI_Comm spawn,
or alternatively by providing a new MPI Datatype that would describe the func-
tion, or binary, to be run. The user could also provide hints to set the granularity
(threshold). This description would include the arguments of the task. Either they
can be described, as in the current MPI_Comm_spawn, by the argv/argc arguments;
or by the appropriate MPI _Datatypes (one per argument). With the latter solution,
parent/children exchanges of the input and output would be trivial.

Probably, the solution based on the current MPI_Comm_spawn and an extended
use of the MPI_Info parameter, is more coherent with MPI-2.

6.5 Conclusion

In this chapter, we presented the efforts to provide evolving MPI applications
through the explicit task parallelism. These applications are able to unfold the par-
allelism at runtime adapting the application execution according to the architecture
and input data. Our proposal takes advantage of the dynamic process creation to
implement the on-the-fly unfolding of the parallelism. However the development of
these applications requires 3 main aspects:

e To define abstract MPI tasks: Section 6.1 illustrated, with an example, the
main issues to implement abstract MPI tasks as required by the explicit task
parallelism paradigm. Furthermore, we shown that to adjust the MPI pro-
cess granularity is the key to achieve performance running these application in
shared-memory environments. We presented two approaches to control gran-
ularity of the abstract MPI tasks: runtime-level aiming to offer adjustments



132

Table 6.2: Achieved improvements comparing Adaptive, Fork, and Lazy approaches.

Application \ the best gain \ the smallest gain \ Fork gain
Merge Sort 68% with 1 core | 46% with 8 cores 85%
Matrix Multiplication | 76% with 8 cores | 48% with 1 core 58%

transparently to the programmers; and a wuser-level in which programmers
implement the adjustment of the granularity in the application source code,
following some strategy. In addition, we discussed about the controlling of
the granularity using threads, and thus, taking advantage of the multi-core
architectures;

e To solve dependencies among abstract MPI tasks: Section 6.2 explained
how to use the intercommunicator between parent and children processes and
the communication primitives to solve dependencies in the target applications.
Moreover, we discuss about the use of MPI high performance exchanges to
improve the application performance;

e To schedule abstract MPI tasks at runtime: Section 6.3 shown the two
main issues of abstract MPI tasks scheduling, both defined at runtime: their
mapping on the available processing elements, which is related to the MPI
distributions; and their load balancing to allows an on-the-fly adaptation to
workload variations. We described the challenges to develop a generic imple-
mentation of the Work Stealing strategy.

Our experimental results presented in Section 6.4, validated our proposal of
explicit task parallelism in MPI applications: to use dynamic process creation to
generate abstract MPI tasks (MPI processes) on demand as the exploration of the
parallelism. This proposal can not be implemented without: to provide synchroniza-
tions among abstract MPI tasks, which are implemented as messages exchanges;
and to control the MPI process granularity. Thus, we take care of these issues
within the applications source code. Although we do not have a generic solution
to achieve explicit task parallelism in MPI applications, our experiments showed
that this paradigm can also be efficient on distributed-memory environments, as in
shared-memory ones.

We used 3 benchmarks in our experiments. We validate the mechanism used to
extract the parallelism at runtime: to spawn processes as the input data and the
available processing elements, which provides granularity adjustments on demand.
In our experiments, the Adaptive approach was able to achieve a gain of 38%
when compared with the parallelism extraction provided by OpenMP (Section 6.4.2).
Notice that this gain is achieved even without take advantage of the shared-memory
properties as OpenMP does. Thus, the spawning of the MPI processes is able to
provide the adaptive behavior expected from explicit task applications in the MPI
context.

Furthermore, we also verify the behavior of the MPI applications following the
explicit task parallelism in cluster environments, which achieved, in our tests, an
improvement of 90% to the CPU-intensive application when compared to a Naive
implementation (Section 6.4.3). This result confirms that explicit task parallelism
can be efficient even in distributed-memory environments. However, to control the
amount of work that must be performed by each abstract MPI tasks is a key issue.



133

In this sense, we compared different approaches to control the granularity of the
abstract MPI tasks: Fork (as many MPI processes as abstract tasks), Lazy (to spawn
an MPI processes to an abstract task while compute the other locally), Adaptive (as
many MPI processes as processing elements). Table 6.2 presents the gains achieved
comparing the approaches on two different applications: the second column has the
best gains of Adaptive compared to Fork; the third has the smallest gains; and the
fourth has the improvement achieved by the Fork approach from 1 core until 8 ones
(Section 6.4.4). We can conclude that to take into account the degree of parallelism
of the target architecture could be more efficient to a CPU-intensive application
such as Matrix Multiplication.

The main contribution of this chapter was to confirm our hypothesis that MPI
applications can be developed according to the explicit task parallelism paradigm
thanks to MPI-2 features. However, to provide the unfolding of the parallelism at
runtime and transparently to the users is still an open issue to be researched. Fur-
thermore, we identify opportunities to extend the MPI standard in such a way to
include in its native interface ways to define abstract tasks and solve their depen-
dencies.



134

7 CONCLUSION

As the current tendency on parallel programming, this thesis aimed to provide
and support adaptive MPI applications. In this way, the range of problems addressed
by the MPI standard can be increased. Our hypothesis is that the MPI-2 features
can be used to provide adaptability, in special the dynamic process creation. We
focused our study on two aspects:

e To adapt the application execution to changes in availability of the
processors. Due to the increasing use of parallel architectures, users compete
for resources. So, the number of available processors may vary according to
users’ demands. When the set of processors used by an application change, it
must adapt itself to allow their efficient utilization, i.e. it must be Malleable.
Thus, the application must expand (to use further processors) and shrink (to
release some processors), without compromise its execution and the correctness
of its results. In this sense, the dynamic process creation is used to implement
the growth actions or to expand the number of used processors;

e To adapt the unfolding of the parallelism of the applications to the
available parallel architecture and input data. With the popularity
of the multi-core architectures, parallel applications must be able to adapt
their execution to any amount of processing elements. Thus, the Faxplicit
Task Parallelism comes as a powerful programming paradigm: it extracts the
algorithm parallelism at runtime, according to the degree of parallelism in the
target architecture and the input data. Dynamic process creation is used to
implement the unfolding of the parallelism: new processes are spawned on
demand and dependencies are solved through message exchanges.

Both aspects aimed in this thesis represent a new usage of the MPI standard.
Thus, the first issue is how to develop these adaptive MPI applications. Chap-
ter 4 explained the usage of MPI_Comm spawn primitive that creates processes at
runtime, and the resultant inter-processes communication relationship. It is pre-
sented an analysis of the requirements to support malleability in SPMD and Mas-
ter/Worker program structures. Prototypes of the required procedures to support
malleability are also presented. The basic ones are: malleability handle to iden-
tify changes in the set of processors and launch the adaptive action; growth_action
that spawns processes on further processors and give some workload to them; and
shrinkage_action to release the required processors ensuring the application cor-
rectness (transferring dieing process workload).



135

The requirements to support explicit task parallelism in MPI applications are
also described in Chapter 4. We focus on Fork/Join program structure and D&C
algorithms, which are widely used in explicit task parallelism because each recur-
sive call represents an abstract task. Our proposal is to replace recursive calls by
dynamic process creations. Thus we map abstract tasks to MPI tasks. Synchro-
nizations among abstract tasks (i.e. the function returns) are provided by message
exchanges. Under this context, the key point to have efficient MPI applications
following the explicit task parallelism is the scheduling: to map dynamic processes
into the available processing elements; and to adjust the MPI process granularity to
ensure load balancing.

Moreover, we illustrated how to use the MPI_Comm_spawn to support adaptabil-
ity through practical examples of Matrix Multiplication implementations, including
malleability and explicit task parallelism with the aimed program structures. Once
the technical issues to develop adaptive MPI applications were described, a common
point is the specific requirements to support each class of application: malleable ones
require interaction with the RMS to know about processors availability; and explicit
task ones require some mechanism to control the processes granularity.

Malleable applications adapt themselves to volatile processors, but the informa-
tion about processors availability must comes from the runtime environment. As
RMS manages the resources of clusters, it can also provide the information required
by malleable applications. In Chapter 5, we showed the OAR resource manager, its
functionality linked to the malleability support (Best Effort jobs), and its policy to
manage volatile processors. Best Effort are low-priority jobs that can be finished
at any time and without previous announcement. Thanks to this kind of job, we
could implement malleable jobs in OAR: to launch new Best Effort jobs in further
processors to increase the number of used processor; and to kill some Best Effort
jobs on the required processors to decrease the number of processors.

We observed in our experiments using benchmarks that malleable jobs could im-
prove up to 25% of cluster utilization when compared to a non-malleable approach.
This gain was measured on a real cluster: we used real workload traces to charge
our cluster processors representing a production cluster usage and combined mal-
leable and Best Effort-moldable jobs together with the rigid ones to measure their
impact on cluster utilization. However, the execution of the malleable applications
on clusters environments depends on interactions between RMS and applications to
update the processors availability. OAR interacts with malleable MPI applications
through our dynamic process scheduler, which is responsible to map the dynamic
process and to launch the adaptive actions. Thanks to this interaction, we could
test our malleable MPI applications in cluster production environments.

Evolving MPI applications aimed in this thesis spawn processes at runtime ex-
tracting the parallelism on demand. Chapter 6 defined the abstract MPI tasks,
showing: the spawning of new tasks as given conditions; the blocking to synchronize
parent and children; and the returning results to satisfy dependencies. In addition, it
is shown the relevance of a granularity control because MPI tasks have creation and
communications overheads that must be overlapped. Two approaches are shown: a
runtime-level able to control the granularity without programmers’ intervention; and
user-level that programmers implement the adjustment of the granularity inside of
application source code. Furthermore, these applications can take advantage of high
performance communication mechanisms to synchronize and solve dependencies.



136

As the unfolding of parallelism happens at runtime, MPI applications following
the explicit task parallelism require on-line scheduling to: map the new processes
into the available processors; and balance the workload among processes. The first
is addressed by the MPI distributions, and to the second we described the challenges
and constraints to implement a Work Stealing strategy as these applications features.
Although we are not able to implement a generic version of the Work Stealing to
provide a transparent load balancing, we implement the adjustment of the workload
distribution within the application source code.

Our non-generic approach allows to verify three main aspects: (i) we developed
MPI applications able to unfold the parallelism at runtime, in which our experiments
using benchmarks arrive to be 38% more efficient than OpenMP on shared-memory
context; (i1) on distributed-memory environments the adoption of the explicit task
paradigm can improve CPU-intensive application performance — our experiments
with benchmarks achieve improvements up to 90% when compared to a Naive im-
plementation; (7ii) to control the spawning of the MPT processes, adjusting the MPI
task granularity, to the specific degree of parallelism of the target architecture en-
sure gains to application performance — our experiments show from 46% to 68%
for a memory-intensive application (Merge Sort), and from 48% to 76% for a CPU-
intensive application (Matrix Multiplication). These results confirm our hypothesis:
explicit task parallelism can be efficient even on distributed-memory environments.
However, to offer it transparently to the users is still an open challenge.

7.1 Contributions

The main contributions of this thesis are:

e The hypothesis that MPI-2 features can be used to implement adap-
tive MPI applications was confirmed. Dynamic process creation adds the
required flexibility to the MPI applications allowing performing adaptive ac-
tions at runtime;

e This thesis proposed the design of malleable MPI applications. We
presented the procedures to implement adaptive actions taking advantage of
the dynamic process creation, allowing the execution of MPI application using
volatile processors. Furthermore, the specific issues of SPMD and Master/-
Worker program structures were described;

e To support malleable MPI applications, this thesis shows the inte-
gration of a generic RMS and our dynamic process scheduler. This
integration is the key to execute malleable applications in production cluster
environments, because the adaptive actions depend on processors availability,
which are managed by RMS systems. It was shown the required information
exchanges and the ways to implement it;

e This thesis proposed the design of explicit task parallelism in MPI
applications. To allow unfolding the application parallelism according to the
architecture and input data properties, we defined the abstract MPI tasks,
solved their dependencies through message exchanges, and implement an on-
line approach to balance the workload. Our solution was designed inside of the
applications source code, showing that explicit task parallelism is a promising
programming paradigm to shared-memory environments.



7.2

137

Future Works and Perspectives

During the development of this thesis, we achieve many research and technical
challenges. We focus on solve some of them to confirm our hypothesis, but there are
others that we can not attended. Furthermore, the achieved results show also new
research perspectives. In the following, we describe the most relevant ones.

We developed malleable MPI applications using simple solutions to implement
adaptive actions. Thus, a future work is to analyse the impact of advanced
solutions such as to use a mechanism of checkpointing-restart in shrinkage
actions to do not loss already computed data; and to use migration to transfer
processes on adaptive actions instead of kill them;

Parallel programming to multi-core architectures is naturally multi-threaded.
We highlight the improvements that can be achieved with hybrid programs
that combine MPI processes and threads (OpenMP or Posix ones). Our re-
search group has being developing studies with this focus and that is a promis-
ing perspective of future works. In addiction, hybrid programs can also aim
other kind of architectures such as GP-GPUs ones. Notice that to perform
efficiently in those heterogeneous environments adaptability is the key issue;

Our research group has being studying the adaptation of the Work Stealing
strategy to features of the MPI applications that spawn processes at runtime.
This study aims to propose a generic implementation of the strategy, but
many constraints are being achieved. Thus, the research group continues to
investigating these issues;

Considering hybrid programs aiming to multi-core architectures, another re-
search perspective is to narrow the Work Stealing target on the intra-node
scope (shared-memory), where it is proven efficient. Thus, combining an-
other strategy to distribute the workload on the inter-node scope (distributed-
memory), such as our Adaptive approach, with the Work Stealing intra-node
scheduling, it can be supported adaptive applications transparently on cluster
environments;

Related to the explicit task parallelism in MPI applications, our research is still
in an initial phase. Thus, we intent to continue verifying its efficiency, including
comparison with other APIs such as KAAPI, and extend our proposal that
control the extraction of the parallelism at runtime-level;



138

REFERENCES

AYGUADE, E. et al. The Design of OpenMP Tasks. IEEE Trans. Parallel Dis-
trib. Syst., [S.1], v.20, n.3, p.404-418, 20009.

BALAJIL, P. et al. Toward message passing for a million processes: characterizing
mpi on a massive scale blue gene/p. Computer Science-Research and Devel-
opment, [S.l.], v.24, n.1, p.11-19, 2009.

BENDER, M. A.; RABIN, M. O. Scheduling Cilk Multithreaded Parallel Programs
on Processors of Different Speeds. In: TWELFTH ANNUAL ACM SYMPOSIUM
ON PARALLEL ALGORITHMS AND ARCHITECTURES - SPAA, Bar Harbor,
Maine, USA. Anais. .. [S.l.: s.n.], 2000. p.13-21.

BLUMOFE, R. D. et al. Cilk: an efficient multithreaded runtime system. Journal
of Parallel and Distributed Computing, [S.l.], v.37, n.1, p.55-69, 1996. (An
early version appeared in the Proceedings of the 5th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’95), pages 207-216,
Santa Barbara, California, 1995.).

BLUMOFE, R. D.; LEISERSON, C. E. Space-efficient scheduling of multithreaded
computations. STAM Journal on Computing, [S.1.], v.27, n.1, p.202-229, 1998.

BLUMOFE, R. D.; LEISERSON, C. E. Scheduling Multithreaded Computations by
Work Stealing. Journal of the ACM, [S.1], v.46, n.5, p.720-748, 1999.

BOERES, C. et al. Efficient hierarchical self-scheduling for MPI applications exe-
cuting in computational Grids. In: MGC ’05: PROCEEDINGS OF THE 3RD IN-
TERNATIONAL WORKSHOP ON MIDDLEWARE FOR GRID COMPUTING,
New York, NY, USA. Anais... ACM Press, 2005. p.1-6.

BOLZE, R. et al. Grid’5000: a large scale and highly reconfigurable experimental
grid testbed. Int. Journal of High Performance Computing Applications,
[S.1], v.20, n.4, p.481-494, 2006.

BUISSON, J. Adaptation dynamique de programmes et composants par-
alleles. 2006. Tese (Doutorado em Ciéncia da Computagao) — INSA de Rennes.

BUISSON, J.; ANDRE, F.; PAZAT, J.-L. A Framework for Dynamic Adaptation
of Parallel Components. In: INTERNATIONAL CONFERENCE OF PARALLEL
COMPUTING: CURRENT & FUTURE ISSUES OF HIGH-END COMPUTING,



139

Department of Computer Architecture, University of Malaga, Spain. Proceed-
ings. .. Central Institute for Applied Mathematics: Jiilich: Germany, 2005. p.65—
72. (John von Neumann Institute for Computing Series, v.33).

BUISSON, J.; ANDRE, F.; PAZAT, J.-L. Afpac: enforcing consistency during the
adaptation of a parallel component. Scalable Computing: Practice and Expe-
rience, [S.1.], v.7, n.3, p.83-95, September 2006.

BUISSON, J.; ANDRE, F.; PAZAT, J.-L. Supporting adaptable applications in
grid resource management systems. In: IEEE/ACM INTERNATIONAL CONFER-
ENCE ON GRID COMPUTING (GRID 2007), 8., Austin, Texas, USA. Proceed-
ings. .. IEEE, 2007. p.58-65. ISBN 1-4244-1560-8.

BUISSON, J. et al. Scheduling Malleable Applications in Multicluster Systems.
In: IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING.
Anais. .. [EEE Computer Society, 2007. p.372-381.

CAPIT, N. et al. A batch scheduler with high level components. In: INT. SYMPO-
SIUM ON CLUSTER COMPUTING AND THE GRID, 5., Cardiff, UK. Anais...
[EEE, 2005. p.776-783.

CERA, M. C. et al. Improving the Dynamic Creation of Processes in MPI-2. In: RE-
CENT ADVANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASS-
ING INTERFACE, 13TH EUROPEAN PVM/MPI USER’S GROUP MEETING,
Bonn, Germany. Anais. .. [S.l.: s.n.], 2006. p.247-255. (Lecture Notes in Computer
Science, v.4192/2006). issn:0302-9743.

CERA, M. C. et al. Scheduling Dynamically Spawned Processes in MPI-2. In: JOB
SCHEDULING STRATEGIES FOR PARALLEL PROCESSING, 12TH INTER-
NATIONAL WORKSHOP, Saint Malo, France. Anais. .. Springer, 2006. p.33-46.
(Lecture Notes in Computer Science, v.4376). 3-540-71034-5.

CERA, M. C. et al. Supporting Malleability in Parallel Architectures with Dynamic
CPUSETs Mapping and Dynamic MPI. In: INTERNATIONAL CONFERENCE
ON DISTRIBUTED COMPUTING AND NETWORKING, 11., Kolkata, India.
Proceedings. .. Springer, 2010. p.242-257. (LNCS, v.5935).

CHAPMAN, B.; JOST, G.; PAS, R. van der. Using OpenMP: portable shared
memory parallel programming. Cambridge, MA: MIT Press, 2008. (Scientific and
Engineering Computation Series).

CUNG, V.-D. et al. Adaptive and Hybrid Algorithms: classification and illustra-
tion on triangular system solving. In: TRANSGRESSIVE COMPUTING TC’2006,
Granada, Spain. Anais... [S.l.: s.n.], 2006. p.131-148.

DESELL, T.; MAGHRAOUI, K. E.; VARELA, C. A. Malleable applications for
scalable high performance computing. Journal of Cluster Computing, [S.l],
v.10, n.3, p.323-337, 2007.

DU, C. et al. A Runtime System for Autonomic Rescheduling of MPI Programs. In:
INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP 2004),
33., Montreal, Quebec, Canada. Anais... IEEE Computer Society, 2004. p.4-11.



140

DUTOT, P.-F. et al. Scheduling on large scale distributed platforms: from mod-
els to implementations. International Journal of Foundations of Computer
Science, [S.1.], v.16, n.2, p.217-237, 2005.

DUTOT, P.-F.; MOUNIE, G.; TRYSTRAM, D. Scheduling Parallel Tasks: approx-
imation algorithms. In: LEUNG, J. T. (Ed.). Handbook of Scheduling: algo-
rithms, models, and performance analysis. USA: CRC Press, 2004. p.26-1-26-22.

FEITELSON, D. G.; RUDOLPH, L. Toward Convergence in Job Schedulers for Par-
allel Supercomputers. In: FEITELSON, D. G.; RUDOLPH, L. (Ed.). Job Schedul-
ing Strategies for Parallel Processing. [S.1.]: Springer-Verlag, 1996. p.1-26.
(Lecture Notes in Computer Science, v.1162).

FOSTER, I. Designing and Building Parallel Programs. [S.l]: Addison-
Wesley, 1995.

FOSTER, I. Globus toolkit version 4: software for service-oriented systems. Journal
of Computational Science and Technology, [S.1.], v.21, n.4, p.523-530, 2006.

GAUTIER, T.; BESSERON, X.; PIGEON, L. KAAPI: a thread scheduling runtime
system for data flow computations on cluster of multi-processors. In: PARALLEL
SYMBOLIC COMPUTATION, NY, USA. Anais... ACM, 2007. p.15-23.

GEORGIOU, Y. Contributions for Resource and Job Management in High
Performance computing. 2010. Tese (Doutorado em Ciéncia da Computagao) —
Université Joseph Fourier.

GEORGIOU, Y.; RICHARD, O.; CAPIT, N. Evaluations of the Lightweight Grid
CIGRI upon the Grid5000 Platform. In: THIRD IEEE INTERNATIONAL CON-
FERENCE ON E-SCIENCE AND GRID COMPUTING E-SCIENCE ’07, Wash-
ington, DC, USA. Anais... IEEE Computer Society, 2007. p.279-286.

GHAFOOR, S. K. Modeling of an adaptive parallel system with malleable
applications in a distributed computing environment. 2007. Tese (Doutorado
em Ciéncia da Computagao) — Mississippi State University, Mississippi State, MS,
USA. Adviser-Banicescu, Ioana.

GHOSE, D.; KIM, H. J.; KIM, T. H. Adaptive Divisible Load Scheduling Strategies
for Workstation Clusters with Unknown Network Resources. IEEE Transactions
on Parallel Distributed Systems, Piscataway, NJ, USA, v.16, n.10, p.897-907,
2005.

GROPP, W.; LUSK, E.; SKJELLUM, A. Using MPI: Portable Parallel Program-
ming with the Message Passing Interface. Cambridge, Massachusetts, USA: MIT
Press, 1994.

GROPP, W.; LUSK, E.; THAKUR, R. Using MPI-2 Advanced Features of the
Message-Passing Interface. Cambridge, Massachusetts, USA: The MIT Press,
1999. 382p.

HAMILTON, J. D. Time Series Analysis. Princeton, NJ, USA: Princeton Uni-
versity Press, 1994.



141

HEYMANN, E. et al. Adaptive Scheduling for Master-Worker Applications on
the Computational Grid. In: GRID’00: PROCEEDINGS OF THE FIRST
IEEE/ACM INTERNATIONAL WORKSHOP ON GRID COMPUTING, London,
UK. Anais. .. Springer-Verlag, 2000. p.214-227.

HUANG, C. et al. Performance Evaluation of Adaptive MPI. In: ACM SIGPLAN
SYMPOSIUM ON PRINCIPLES AND PRACTICE OF PARALLEL PROGRAM-
MING 2006. Proceedings. .. [S.L: s.n.], 2006.

HUANG, C.; LAWLOR, O. S.; KALE, L. V. Adaptive MPL In: INTERNATIONAL
WORKSHOP OF LANGUAGES AND COMPILERS FOR PARALLEL COMPUT-
ING (LCPC 2003), 16., College Station, TX, USA. Anais. .. Springer, 2003. p.306—
322. (Lecture Notes in Computer Science).

HUNGERSHFOER, J.; STREIT, A.; WIERUM, J.-M. Efficient Resource Man-
agement for Malleable Applications. [S.1.]: Paderborn Center for Parallel Com-
puting, 2001. (TR-003-01).

HUNGERSHOFER, J. Increased Scheduling Quality by Utilizing the Flexibility
of Malleable Jobs. In: INTERNATIONAL CONFERENCE ON PARALLEL AND
DISTRIBUTED COMPUTING SYSTEMS, 17. Anais. .. [S.L:s.n.], 2004. p.72-77.

JANSEN, K.; ZHANG, H. Scheduling malleable tasks with precedence constraints.
In: SPAA’05: PROCEEDINGS OF THE 17TH ANNUAL ACM SYMPOSIUM
ON PARALLELISM IN ALGORITHMS AND ARCHITECTURES, New York, NY,
USA. Anais... ACM Press, 2005. p.86-95.

KALE, L. V.; KRISHNAN, S. CHARM++: a portable concurrent object oriented
system based on C++. In: OOPSLA '93: PROCEEDINGS OF THE EIGHTH AN-
NUAL CONFERENCE ON OBJECT-ORIENTED PROGRAMMING SYSTEMS,
LANGUAGES, AND APPLICATIONS, New York, NY, USA. Anais... ACM
Press, 1993. p.91-108.

KALE, L. V.; KUMAR, S.; DESOUZA, J. An Adaptive Job Scheduler for
Timeshared Parallel Machines. [S.l.]: Parallel Programming Laboratory, Dep.
of Computer Science, University of Illinois at Urbana-Champaign, 2000. (00-02).

KRAWEZIK, G.; CAPPELLO, F. Performance comparison of MPI and OpenMP
on shared memory multiprocessors. Concurrency and Computation: Practice
and Experience, [S.1.], v.18, n.1, p.29-61, jan 2006.

LEISERSON, C. E. The Cilk++ concurrency platform. In: ANNUAL DESIGN
AUTOMATION CONFERENCE;, 46. Proceedings. .. ACM, 2009. p.522-527.

LEISERSON, C. E.; MIRMAN, I. B. How to Survive the Multicore Software
Revolution. [S.1.]: Cilk Arts, Inc, 2008. e-book.

LEOPOLD, C.; SUSS, M. Observations on MPI-2 Support for Hybrid Master /Slave
Applications in Dynamic and Heterogeneous Environments. In: RECENT AD-
VANCES IN PARALLEL VIRTUAL MACHINE AND MESSAGE PASSING IN-
TERFACE, 13TH EUROPEAN PVM/MPI USER’'S GROUP MEETING, Bonn,
Germany. Anais. .. Springer, 2006. p.285-292. (LNCS, v.4192).



142

LEOPOLD, C.; SUSS, M.; BREITBART, J. Programming for Malleability with Hy-
brid MPI-2 and OpenMP: experiences with a simulation program for global water
prognosis. In: EUROPEAN CONFERENCE ON MODELLING AND SIMULA-
TION, Bonn, Germany. Anais. .. [S.L.: s.n.], 2006. p.665 — 670.

LEPERE, R.; TRYSTRAM, D.; WOEGINGER, G. J. Approximation Algorithms
for Scheduling Malleable Tasks Under Precedence Constraints. Int. Journal of
Foundations of Computer Science, [S.1.], v.13, n.4, p.613-627, 2002.

LI, H.; GROEP, D. L.; WOLTER, L. Workload Characteristics of a Multi-cluster
Supercomputer. In: JOB SCHEDULING STRATEGIES FOR PARALLEL PRO-
CESSING, 10. Anais. .. Springer, 2004. p.176-193. (LNCS).

LIMA, J. V. F.; MAILLARD, N. Online mapping of MPI-2 dynamic tasks to pro-
cesses and threads. International Journal of High Performance Systems Ar-
chitecture, [S.1.], v.2, n.2, p.81-89, 2009.

LITZKOW, M.; LIVNY, M.; MUTKA, M. Condor - A Hunter of Idle Worksta-
tions. In: INTERNATIONAL CONFERENCE OF DISTRIBUTED COMPUTING
SYSTEMS, 8. Proceedings. .. [S.l.: s.n.], 1988.

MAGHRAOQOUI, K. E. et al. Dynamic Malleability in Iterative MPI Applications. In:
IEEE INTERNATIONAL SYMPOSIUM ON CLUSTER COMPUTING AND THE
GRID (CCGRID 2007), 7. Anais. .. IEEE Computer Society, 2007. p.591-598.

MAGHRAOQUI, K. E. et al. Malleable iterative MPI applications. Concurrency
and Computation: Practice and Experience, [S.1.], v.21, n.3, p.393-413, 2009.

MAGHRAOUI, K. E.; SZYMANSKI, B. K.; VARELA, C. A. An Architecture for
Reconfigurable Iterative MPI Applications in Dynamic Environments. In: PARAL-
LEL PROCESSING AND APPLIED MATHEMATICS, 6TH INTERNATIONAL
CONFERENCE, PPAM 2005, Poznan, Poland. Anais... Springer, 2006. p.258—
271. (Lecture Notes in Computer Science, v.3911).

MATTSON, T. G.; SANDERS, B. A.; MASSINGILL, B. L. Patterns for Parallel
Computing. [S.1.]: Addison Wesley, 2004. (Software Patterns Series).

MOR, S.; MAILLARD, N. Melhorando o Desempenho de Algoritmos do Tipo
Branch & Bound em MPI via Escalonador com Roubo Aleatério de Tarefas. In:
X SIMPOSIO EM SISTEMAS COMPUTACIONAIS, Sao Paulo, Brazil. Anais. ..
[S.l.: s.n.], 2009. p.11-18.

NIEUWPOORT, R. V. van et al. Adaptive Load Balancing for Divide-and-Conquer
Grid Applications. J. of Supercomputing, [S.1.], 2006.

NIEUWPOORT, R. V. van; KIELMANN, T.; BAL, H. E. Satin: efficient parallel
divide-and-conquer in java. In: Euro-Par 2000 Parallel Processing, Munich, Ger-
many. Anais. .. Springer, 2000. n.1900, p.690-699. (LNCS).

PEZZI, G. P. et al. Escalonamento Dinamico de Programas MPI-2 Utilizando Di-
visao e Conquista. In: VII WORKSHOP EM SISTEMAS COMPUTACIONAIS DE
ALTO DESEMPENHO, Ouro Preto, Brazil. Anais... [S.l.: s.n.], 2006. p.71-79.



143

PEZZI, G. P. et al. On-line Scheduling of MPI-2 Programs with Hierarchical Work
Stealing. In: SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH
PERFORMANCE COMPUTING (SBAC-PAD 2007), 19., Gramado - RS. Anais. ..
IEEE Computer Society, 2007.

RAUBER, T.; RUNGER, G. A Data-Re-Distribution Library for Multi-Processor
Task Programming. In: IEEE INTERNATIONAL PARALLEL AND DIS-
TRIBUTED PROCESSING SYMPOSIUM (IPDPS’05), 19., Washington, DC,
USA. Proceedings. .. IEEE Computer Society, 2005. p.205a.

REINDERS, J. Intel Threading Building Blocks: outfitting c+4 for multi-core
processor parallelism. Sebastopol, USA: O’Reilly & Associates, Inc., 2007.

SUDARSAN, R.; RIBBENS, C. J.; FARKAS, D. Dynamic Resizing of Parallel
Scientific Simulations: a case study using lammps. In: INTERNATIONAL CON-
FERENCE COMPUTATIONAL SCIENCE, PART I, 9. Anais... Springer, 2009.
p.175-184. (Lecture Notes in Computer Science, v.5544).

UTRERA, G.; CORBALAN, J.; LABARTA, J. Implementing Malleability on MPI
Jobs. In: IEEE 13TH INTERNATIONAL CONFERENCE ON PARALLEL AR-
CHITECTURES AND COMPILATION TECHNIQUES (PACT 2004), Antibes
Juan-les-Pins, France. Anais... IEEE Computer Society, 2004. p.215-224.

WEATHERLY, D. B. et al. Dyn-MPI: supporting mpi on medium-scale, non-
dedicated clusters. Journal of Parallel Distributed Computing, Orlando, FL,
USA, v.66, n.6, p.822-838, 2006.

WILSON, G.; IRVIN, R. Assessing and comparing the usability of parallel
programming systems. Technical Report CSRI-321, University of Toronto, 1995.

ZHANG, G. et al. Scheduling and Data Redistribution Strategies on Tree Plat-
forms. In: INTERNATIONAL JOINT CONFERENCE ONCOMPUTATIONAL
SCIENCES AND OPTIMIZATION, 2009. CSO 2009. Anais... [S.l.: s.n.], 2009.
v.1, p.105-108.



144

APPENDIX A — RESUMO ESTENDIDO

Este capitulo apresenta um resumo estendido, em portugués, do contetido abor-
dado nesta tese. Cada uma das secoes a seguir resumem os capitulos da tese expondo
as principais consideracoes, ideias e contribuicoes.

A.1 Introducao

O Capitulo 1 expos a motivagao desta tese, a qual se refere a necessidade de se
prover adaptabilidade as aplicagoes paralelas a fim de proporcionar um uso pleno
das potencialidades das arquiteturas paralelas atuais. Esta tese esteve focada em
dois niveis de adaptabilidade: maleabilidade - capacidade de adaptacao, em tempo
de execucao, a variagoes na quantidade de processadores disponiveis; e evolutivi-
dade - capacidade de adaptacao, em tempo de execucao, a variagoes na carga de
trabalho das aplicagoes que ocorrem sem que possam ser previstas. Nosso trabalho
foi voltado a prover adaptabilidade a aplicagoes MPI (Message-Passing Interface).
Esta interface foi escolhida por ser o padrao de facto para o desenvolvimento de
aplicacoes de alto desempenho para arquiteturas de memoéria distribuida. Nossa
proposta consistiu em tirar proveito da criacao dinamica de processos definida pelo
padrao MPI-2 para introduzir uma certa flexibilidade as aplicagoes MPI, possibili-
tando assim que as aplicagoes possam adaptar-se a variagoes tanto na quantidade de
processadores quanto na carga de trabalho. A hipdtese considerada nesta tese é que
o exploracao das caracteristicas do MPI-2, associado a implementagao do suporte
requerido no nivel do ambiente de execugao, torna possivel a execucao de aplicagoes
MPI adaptativas nas arquiteturas paralelas atuais.

Parte I — Adaptabilidade: Contexto e Trabalhos Relaciona-
dos

A.2 Contexto: Adaptabilidade em Ambientes Paralelos

O Capitulo 2 apresentou conceitos, incluindo a taxonomia adotada, e o contexto
onde requer-se adaptabilidade em ambientes paralelos. Inicialmente apresentou-se a
classificacao de Feitelson e Rudolph, a qual considera quem decide o nimero de pro-
cessadores necessarios para computar a aplicacao (usudrio ou o sistema gerenciador
de recursos) e quando esta decisdo é tomada (em tempo de inicializagao ou execugao).
Nela estao contemplados os jobs maleaveis e evolutivos, os quais representam os tipos
de adaptabilidade almejados nesta tese. Apos, apresentou-se cenarios tipicos e casos
de uso de jobs maleaveis e evolutivos, demonstrando tanto caracteristicas no nivel da



145

aplicacao para a implementacao da adaptabilidade, quanto o suporte requerido no
nivel do ambiente de execucao para que se possa prover adaptabilidade. Um levanta-
mento dos requisitos necessarios para viabilizar a maleabilidade (suporte a variagoes
no numero de processadores) e a evolutividade (suporte a variagoes imprevistas na
carga de trabalho) foram apresentados na sequéncia. Neste tltimo, o foco voltou-se
para o paradigma de paralelismo de tarefas explicitas (Ezplicit Task Paralellism), o
qual tem sido largamente utilizado como um modelo de extracao do paralelismo em
tempo de execucao eficiente para arquiteturas multi-core. Por fim, analisou-se qual
o impacto, em relagao a estrutura de programa utilizada, de se prover um compor-
tamento adaptativo a aplicacoes paralelas. Para isto, detalhou-se quatro estruturas
de programa (SPMD - Single Program, Multiple Data, Mestre/Trabalhador, Lago
Paralelo, Fork/Join) e como é possivel implementar adaptabilidade nelas de acordo
com a literatura.

A.3 Trabalhos Relacionados: Execugao de Aplicagoes Adap-
tativas

No Capitulo 3 foram apresentados os trabalhos relacionados a esta tese. A anélise
foi dividida conforme trés aspectos principais: (i) questoes relativas ao suporte re-
querido do sistema gerenciador de recursos (RMS - Resource Management System)
para suportar a alocacao de um conjunto varidvel de processadores a uma aplicagao
maledvel; (ii) APIs (Application Programming Interface) que permitem a imple-
mentacao de aplicagoes que suportam e tratam de variacoes imprevistas na carga
de trabalho de aplicagoes paralelas e (i) politicas de escalonamento on-line a fim
de proporcionar o balanceamento da carga de trabalho de aplicagoes adaptativas.

Parte II — Provendo Adaptabilidade a Aplicagcoes MPI
A.4 Como Prover Adaptabilidade usando MPI?

O Capitulo 4 buscou responder a seguinte pergunta: “Como prover adaptabili-
dade usando MPI?”. Nossa proposta consiste em tirar proveito da criacao dinamica
de processos, definida no MPI-2, como meio para implementar adaptabilidade em
aplicagoes MPI, respondendo assim ao questionamento. Inicialmente, o Capitulo 4
apresentadou as caracteristicas basicas do MPI, como é possivel criar novos proces-
sos MPI em tempo de execucao, a relagao de comunicagao que passa a existir entre
0 processo que cria (processo pai) e o processo criado (filho) e uma breve anélise
do custo extra proveniente da criacao de processos em tempo de execucao. Apos,
discutiu-se as interacoes necessdarias entre aplicacoes MPI maledveis e o RMS a fim
de permitir a execucao deste tipo de aplicacao em clusters de computadores. Con-
juntamente, apresentou-se como € possivel implementar aplicacoes MPI maleaveis
utilizando a criacao dinamica de processos. Para as aplicagoes evolutivas almejadas,
ou seja aplicagoes que seguem o paradigma de paralelismo de tarefas explicitas,
apresentou-se como ¢é possivel implementar este tipo de comportamento através da
criacao dinamica de processos e os requisitos necessarios para a execucao deste tipo
de aplicacao MPI. Exemplificando o desenvolvimento de aplicagoes MPI adaptativas,
sao apresentados pseudo-codigos MPI implementando maleabilidade e evolutividade
para uma aplicagao de multiplicacao de matrizes.



146

A.5 Executando Aplicagoes MPI Maleaveis em Clusters

O Capitulo 5 descreveu como foi possivel executar aplicacoes MPI maleaveis em
clusters de computadores e os resultados obtidos. Primeiramente, apresentou-se o
RMS utilizado, o OAR, o qual suporta o gerenciamento de um conjunto dindmico de
processadores e é capaz de interagir com aplicacoes MPI maledveis para as devidas
atualizagoes de informacoes. Apds, sao apresentados detalhes técnicos de diferentes
distribuicoes MPI que implementam a criacao dinamica de processos. Todas as
distribuigoes sao idénticas quanto a funcionalidade provida (criacdo de processos
em tempo de execucdo), entretanto elas diferem quanto a forma de se viabilizar
alteracoes na quantidade de recursos utilizados. Adicionalmente, descreveu-se o
escalonador desenvolvido para viabilizar a comunicacao e o gereciamento das men-
sagens trocadas entre RMS e aplicacao MPI maleavel. Os resultados obtidos permi-
tiram avaliar o desempenho obtido por uma aplicagao MPI maleavel. Foi possivel
observar ganhos de desempenho quando a aplicacao expandiu-se a fim de fazer uso
de novos processadores que foram disponibilizados em tempo de execucao. Quando
a aplicacao necessitou reduzir-se para liberar processadores que foram solitados pelo
RMS, a aplicacao sofreu perdas de desempenho. Entretanto, ¢ importante notar que
a aplicacao foi capaz de executar sem falhas sobre um conjunto variavel de proces-
sadores. Aplicagoes com este tipo de comportamento sao frequentemente utilizadas
para aumentar a taxa de utilizagao dos processadores em clusters de computadores.
Esta tese incluiu uma analise da utilizacao de um cluster executando job maleaveis
nos seus processadores ociosos. O conjunto de processadores ociosos de um cluster
varia constantemente conforme novos jobs vao sendo lancados e outros encerram sua
execucao. Comparou-se a utilizacao dos processadores obtida pelos nossos jobs MPI
maleaveis com job MPI moldéveis, ou seja, jobs que em sua inicializacao adaptam-
se a quantidade de processadores disponibilizados sem que seja possivel alterar esta
quantidade em tempo de execucao. Toda a execucao de um job moldével é encerrada
quando faz-se necessario liberar um ou mais processadores e este é incapaz de uti-
lizar processadores além da quantidade definida em tempo de inicializagao. No nosso
cenario de teste, os jobs MPI maleaveis permitiram que fosse possivel aumentar a
utilizagao do cluster em mais de 25% quando comparado aos jobs moldéveis.

A.6 Paralelismo de Tarefas Explicitas em Aplicagcoes MPI

O Capitulo 6 apresentou nossa proposta para o desenvolvimento e execucao de
aplicagoes MPI que sigam o paradigma de paralelismo de tarefas explicitas, as quais
correspondem ao tipo de job evolutivo almejado nesta tese. Inicialmente, é feita a
definicao de uma tarefa abstrata em MPI, a qual representa uma funcionalidade ao
invés de um processo, que é como geralmente as distribuicoes MPI implementam
as tarefas MPI. Tarefas abstratas serdo associadas a processos MPI (ou seja, asso-
ciadas as tarefas MPI conforme a nomenclatura do padrao), logo, faz-se necesséario
utilizar estratégias a fim de garantir que as tarefas MPI possuirao granularidade
suficiente para serem eficientes. A extracao do paralelismo em tempo de execucao
deve ser coerente com o grau de paralelismo da arquitetura paralela alvo (por exem-
plo, o nimero de cores numa arquiteturas multi-core) e com os dados de entrada
da aplicacao. Devido a caracteristicas inerentes do problema a ser solucionado, é
preciso definir as definir as dependéncias entre as tarefas abstratas e as consequentes



147

transferéncias de dados necessérias para satisfazé-las. No caso das aplicagoes MPI,
o meio convencional para solucionar dependéncias de dados ¢é através de trocas de
mensagens entre processos MPI, o qual sera empregado nas aplicagoes MPI evo-
lutivas propostas. As tarefas abstratas sao extraidas em tempo de execucao, em
consequencia, faz-se necessario mapea-las nos processos MPI e garantir que havera
um bom balanceamento de carga dos processos. Nosso trabalho buscou uma dis-
tribuicao igualitaria de tarefas abstratas entre os processos e baseou-se numa boa
distribuicao de carga para ajustar a granularidade a fim de garantir o balanceamento
de carga. Os resultados experimentais apresentados visaram validar a extracao do
paralelismo em aplicagoes MPI em tempo de execucao; analisar o desempenho obtido
por este tipo de aplicacao MPI e verificar o impacto da estratégia proposta para con-
trolar a granularidade dos processos MPI. Os resultados mostraram que é possivel
extrair o paralelismo em tempo de execucao fazendo uso da criagdo dinamica de
processos e fazendo uso da troca de mensagens para resolver as dependéncias de da-
dos. O desempenho obtido com as aplicagoes MPI evolutivas que foram propostas,
foi comparavel ao desempenho obtido por APIs que fornecem a extracao do pa-
ralelismo explicito como o OpenMP. Adicionalmente, verificamos que a extracao do
paralelismo em tempo de execucao em aplicacoes MPI com carga regulares atingem
niveis de eficiéncia satisfatorios.

A.7 Conclusao

O Capitulo 7 expos as consideracoes finais desta tese, a qual almejou prover e
dar suporte a aplicacoes MPI adaptativas. A proposta deste trabalho baseou-se
na flexibilizacao oferecida pela criagao dinamica de processos que foi utilizada para
implementar acoes adaptativas em aplicacoes MPI. Os estudos desta tese estiveram
focados em dois aspectos:

e Adaptar a execugao de aplicacoes MPI a alteragoes na disponibili-
dade do seu conjunto de processadores. Devido ao grande niimero de
usudrios de arquiteturas paralelas que competem por recursos, o nimero de
processadores disponiveis tende a variar constantemente. Quando o conjunto
de processadores utilizados por uma aplicacao sofre alteracoes, para usufruir
plenamente das potencialidades dos recursos, é necessario que a aplicagao
adapte-se a em tempo de execucao, ou seja, que ela seja maledvel. Esta
adaptacao envolve acoes de expansao, para fazer uso de novos processadores,
e de reducao para liberar processadores que estao sendo solicitados pelo RMS.
Estas acoes devem ocorrer de maneira que a aplicagao nao falhe ou retorne
resultados inconsistentes. A criacao dinamica de processos permite que a
aplicacao expanda-se, ou seja, crie novos processos para fazer uso de pro-
cessadores adicionais;

e Adaptar a extragao do paralelismo em tempo de execucgao de acordo
com a arquitetura paralela e os dados de entrada. A difusao das arquite-
turas multi-core requer que as aplicacoes paralelas possam adaptar-se a vari-
ados numeros de elementos de processamento (neste caso, diferentes nimeros
de cores). Neste contexto, o paralelismo de tarefas explicitas (Explicit Task
Parallelism) é um importante paradigma de programacao: ele extrai o para-
lelismo em tempo de execucao conforme o grau de paralelismo da arquitetura



148

alvo e os dados de entrada. A criagao dinamica de processos permite imple-
mentar a extracao do paralelismo: novos processos sao criados sob demanda e
suas dependéncias sao solucionadas através da troca de mensagens.

Os aspectos descritos acima representam um novo uso da interface MPI. Assim,
a primeira questao a ser tratada é como se desenvolve aplicagoes adaptativas com
MPI. Esta tese apresentou a primitiva MPI_Comm_spawn que proveé a criacao de novos
processos em tempo de execucao, seu funcionamento e a relagao hierarquica de co-
municacao resultante do uso desta primitiva. Adicionalmente, foram apresentados
0s requisitos para suportar maleabilidade em aplicagoes SPMD e Mestre/Traba-
lhador, assim como protétipos das rotinas requeridas. Basicamente sao requeridos:
malleability handle para identificar as mudancas ocorridas no conjunto de proces-
sadores e langar as agoes adaptativas; growth_action que langa processos nos pro-
cessadores disponibilizados depois do inicio da execucao da aplicagao, transferindo
a eles alguma carga de trabalho e shrinkage action que libera processadores fina-
lizando apropriadamente seus processos garantindo assim a corretude da aplicagao.

Os requisitos para suportar o paralelismo de tarefas explicitas em aplicacoes
MPI também foram descritos nesta tese. Nosso foco foram as aplicagoes Fork/Join
e algoritmos D&C, os quais sao largamente utilizados pois cada chamada recursiva
pode representar uma tarefa abstrata. Nossa proposta é substituir as chamadas re-
cursivas por criacoes dinamicas de processos, mapeando assim tarefas abstratas para
tarefas MPI. Entretanto, um mapeamento direto entre tarefas abstratas e tarefas
MPI leva a criacao excessiva de novos processos. Esta tese buscou ajustar esta as-
sociacao a fim de reduzir o impacto da criagao de processos em tempo de execugao.
As sincronizagdes entre as tarefas abstratas (ou seja, retorno das fungoes recursivas)
foram providos por trocas de mensagens no MPI. O ponto chave para obter desem-
penho neste tipo de aplicagao esta ligado ao escalonamento: mapear os processos
criados dinamicamente entre os processadores disponiveis e ajustar a granularidade
dos processos MPI para garantir um bom balanceamento de carga.

Exemplificou-se o uso do MPI_Comm_spawn como meio de suporte a adapatabili-
dade através de um exemplo pratico de duas versoes de uma multiplicacao de ma-
trizes: uma maledvel e outa seguindo o paralelismo de tarefas explicitas. Descreveu-
se as questoes técnicas no desenvolvimento de aplicacoes MPI adaptativas. Para
aplicacoes maledveis é necessario prover meios de interacoes entre a aplicacao e ao
RMS para transmitir as atualizagdo da disponibilidade dos processadores. Para
aplicagoes que implementa o paralelismo de tarefas explicitas é necessario algum
mecanismo para prover o controle da granularidade dos processos MPI.

Nos resultados desta tese foi utilizado o sistema gerenciador de recursos OAR,
sob o qual implementamos sua integracao com nossa proposta de aplicagoes MPI
maledveis. Este sistema possui um tipo especial de job, Best Effort, que permite im-
plementar a alteracao na quantidade de processadores disponiveis a uma aplicacao.
Adicionalmente, o OAR possui uma politica de gerenciamento capaz de lidar com as
demandas de jobs maledveis. Os jobs maleaveis no OAR foram implementados da
seguinte forma: novos processadores sao adicionados ao conjunto de uma aplicagao
através do lancamento de novos jobs Best Effort; processadores sao liberados em
tempo de execugao através da finalizacao de jobs Best Effort que executam nos
processadores requeridos.

Nossos resultados experimentais mostraram que os jobs maleaveis proporcionaram
um aumento de 25% na utilizacdo dos processadores de um cluster quanto com-



149

parado com uma abordagem moldéavel. Este ganho foi medido em um cluster de
produgao: nés utilizamos a carga de trabalho de um cluster real, onde foram exe-
cutados jobs rigidos, para carregar nosso ambiente de testes. Assim, foi possivel
repetir os testes com as mesmas condicoes para os jobs maledveis e moldaveis, onde
pode-se identificar o impacto do uso de cada um deles na utilizacao do cluster.

Nesta tese foi descrita nossa proposta de aplicacoes MPI seguindo o paradigma
de paralelismo de tarefas explicitas, representando as aplicacoes evolutivas alme-
jadas. Nele, foram definidas as tarefas MPI abstratas, as sincronizagoes necessarias
para satisfazer as dependéncias entre elas (tirando proveito da comunicacao eficiente
provida pelo MPI) e o controle da granularidade como meio de garantir o balancea-
mento de carga destas aplicacoes. Foram apresentadas duas alternativas: uma no
nivel do ambiente de execucao que é capaz de controlar a granularidade em tempo
de execucao sem requerer a intervencao do programador; e uma no nivel do de-
senvolvimento da aplicagao paralela onde o programador implementa o controle da
granularidade.

Como a extragao do paralelismo acontece em tempo de execucao, faz-se necessario
um escalonamento on-line para mapear os novos processos nos processadores dis-
poniveis e balancear suas cargas de trabalho. O mapeamento é atendido pelas dis-
tribuicoes MPI que o fornecem por padrao. De acordo com a literatura, a estratégia
mais eficiente para o escalonamento on-line é o Work Stealing. Noés descrevemos
nesta tese as restricoes que dificultam o oferecimento de um escalonar genérico
baseado nesta estratégia. Como nao foi possivel oferecer uma versao genérica do
Work Stealing para aplicacoes MPI com criacao dinamica de processos, nés optamos
por controlar a granularidade das tarefas como meio de garantir o balanceamento
da carga de trabalho em aplicacoes regulares.

Nossos resultados experimentais demonstraram que: (4) foi possivel desenvolver
aplicagoes MPI capazes de extrair o paralelismo em tempo de execugao atingindo um
desempenho similar ao OpenMP; (ii) foi possivel executar eficientemente aplicagdes
regulares implementando o paralelismo de tarefas explicitas em ambientes de memoria
distribuida; (%i7) o mecanismo de ajuste da granularidade das tarefas MPI pro-
posto possibilitou a adaptagao de acordo com o grau de paralelismo da arquite-
tura alvo (multi-core) e os dados de entrada para aplicagoes regulares. Através
destes resultados confirmamos nossa hipdtese de que é possivel obter eficiéncia na
execucao em memoria distribuida de aplicagoes regulares implementadas de acordo
com paradigma de paralelismo de tarefas explicitas. Entretanto, oferecer mecanis-
mos para tornar transparente aos desenvolvedores os detalhes técnicos da extracao
dinamica do paralelismo em aplicacoes MPI, da forma como propusemos nesta tese,
ainda é um desafio em aberto.

Contribuicoes
As principais contribuigoes desta tese sao:

e Determinar como as caracteristicas do MPI-2 podem ser usadas para imple-
mentar aplicacoes MPI adaptativas;

e Uma proposta de projeto de aplicagoes MPI maleaveis;

A proposta de um mecanismo de interagao entre o OAR e as aplicagoes
maledveis propostas nesta tese;

A proposta do projeto de aplicacoes MPI capazes de extrair o paralelismo em



150

tempo de execucgao;

Trabalhos Futuros e Perspectivas

Durante a elaboracao desta tese, nés nos deparamos com muitos desafios tanto
técnicos quanto de pesquisa. A seguir listamos algumas possibilidades de novas
pesquisas identificadas através desta tese.

e Nos implementamos aplicagoes MPI maleaveis usando solugoes simples para
prover as acoes adaptativas. Um possivel trabalho futuro seria analisar o
impacto do uso de outras solucoes, como por exemplo, usar um mecanismo
de checkpointing-restart para implementar as acoes de redugao. Assim, seria
possivel garantir que nao haveria nenhuma perda de trabalho ja computado.
Outra possibilidade neste sentido seria fazer uso da migracao de processos na
implementacgao das agoes adaptativas;

e O desenvolvimento de programas paralelos para arquiteturas multi-core é na-
turalmente multithreaded. Muitas pesquisas integram MPI e threads, por
exemplo providas pelo OpenMP, em programas hibridos. As aplicagoes MPI
adaptativas podem ser desenvolvidas de forma hibrida. Adicionalmente, estas
aplicacoes podem ser projetadas para atender a outros tipos de arquiteturas,
tais como as GP-GPUs, nas quais a adaptabilidade ajudaria a atingir eficiéncia;

e Nosso grupo de pesquisa tem estudado a adaptagao da estratégia Work Steal-
ing as caracteristicas das aplicacoes MPI com criacao dinamica de proces-
sos. Pretende-se prover uma implementacao genérica desta estratégia para
tais aplicagoes. Logo, um trabalho futuro consiste na investigacao de meios
para contornar as restricoes encontradas devido ao modelo de comunicagao
hierarquico;

e Consideranso programas hibridos (MPI e interface multithreaded), outra pers-
pectiva de pesquisa seria restringir o uso do Work Stealing num escopo intra-né
(memoria compartilhada), onde ele é provado como eficiente. Outra estratégia
para distribuir a carga no escopo inter-nés (memoria distribuida) poderia ser
combinada para garantir o desempenho. Por exemplo, aplicar a estratégia
Adaptive, descrita nesta tese, no escopo inter-nés associada ao Work Stealing
no escopo intra-nd, pode permitir o suporte a aplicagoes adaptativas de forma
transparente em clusters de computadores;

e Com relacao ao paralelismo de tarefas explicitas em aplicagoes MPI, nossa
pesquisa tem oportunidades para avancar. Por exemplo, ampliar a analise
do desempenho, incluindo comparacoes com outras APIs como o KAAPI, e
investir no desenvolvimento do controle da extragao do paralelismo no nivel do
ambiente de execucao, transparecendo ao programador as decisoes de criagao
de novos processos ou de associacao de tarefas abstratas.



	Acknowledgements
	Contents
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Abstract
	Resumo
	1 introduction
	1.1 Motivation
	1.2 Hypothesis
	1.3 Objectives
	1.4 Outline

	I Adaptability: Background and Related Works
	2 Context: Adaptability in Parallel Environments
	2.1 Adopted Taxonomy
	2.1.1 Programming Nomenclature
	2.1.2 Runtime Environment Nomenclature

	2.2 Contextualizing Adaptability
	2.2.1 Classification of the Parallel Applications: RMS View
	2.2.2 Dealing with Unpredictable Needs

	2.3 Typical Parallel Scenarios of Adaptability
	2.3.1 Use Cases with Volatile Processors
	2.3.2 Use Cases with Unpredictable Needs

	2.4 Requirements to support Adaptability
	2.4.1 Requirements of Volatile Processors
	2.4.2 Requirements of Applications with Unpredictable Needs

	2.5 Program Structures and Adaptability
	2.5.1 Single Program, Multiple Data
	2.5.2 Master/Worker
	2.5.3 Loop Parallelism
	2.5.4 Fork/Join

	2.6 Conclusion

	3 Related Works: Runtime Issues of Adaptability
	3.1 RMS Issues to support Volatile Processors
	3.1.1 Implementation of the Adaptive Actions in Parallel Programs
	3.1.2 Communication between RMS and Adaptive Applications
	3.1.3 Scheduling Policies to deal with Volatile Processors
	3.1.4 Summary of Adaptive Actions Implementations

	3.2 APIs to deal with Unpredictable Needs of the Applications
	3.2.1 APIs for Distributed-Memory Environments
	3.2.2 APIs for Shared-Memory Environments
	3.2.3 Summary of the APIs for Irregular Problems

	3.3 Scheduling of Adaptive Applications
	3.3.1 Starting Time Scheduling
	3.3.2 Scheduling at Runtime

	3.4 Conclusion


	II Providing Adaptability to MPI Applications
	4 How to provide Adaptability using MPI?
	4.1 Using features of the MPI-2: Dynamic Process Creation
	4.1.1 Overview of the MPI Features
	4.1.2 Dynamic Process Creation
	4.1.3 Communication Relationships among Dynamic MPI Processes
	4.1.4 Analysing the Overhead of Processes Spawning

	4.2 MPI Applications dealing with Volatile Processors
	4.2.1 RMS and Malleable MPI Applications Interactions
	4.2.2 Developing Malleable MPI applications

	4.3 MPI Applications dealing with Unpredictable Needs
	4.3.1 Developing Explicit Task Parallelism in MPI: D&C Algorithms
	4.3.2 Requirements of Explicit Tasks MPI Applications

	4.4 Exemplifying the development of Adaptive MPI Applications
	4.4.1 Examples of Malleable MPI Applications
	4.4.2 Example of MPI Application following the Explicit Task Parallelism

	4.5 Conclusion

	5 Running Malleable MPI Applications in Clusters
	5.1 RMS and the Management of Volatile Processors
	5.1.1 The OAR Resource Manager
	5.1.2 Management of the Volatile Processors in OAR
	5.1.3 Providing Malleable Jobs in OAR

	5.2 MPI Application dealing with Volatile Processors
	5.2.1 Malleability support on MPI Distributions
	5.2.2 Issues on Mapping Dynamic MPI Processes
	5.2.3 A Scheduler for Dynamic MPI Processes
	5.2.4 The Dynamic Process Scheduler supporting Malleability
	5.2.5 Interactions between OAR and Dynamic Process Scheduler

	5.3 Execution of Malleable Jobs in a Cluster Environment
	5.3.1 Performance of Malleable MPI Applications
	5.3.2 Analysis of the Cluster Utilization using Malleability

	5.4 Conclusion

	6 Explicit Task Parallelism on MPI Applications
	6.1 Defining Abstract MPI Tasks
	6.1.1 Issues of Abstract MPI Tasks
	6.1.2 Granularity of the Abstract MPI Tasks

	6.2 Dependencies and Data Transfers among Abstract MPI Tasks
	6.2.1 Synchronizations by Blocking Communication
	6.2.2 Data Transfers Optimizations

	6.3 On-line Scheduling of Abstract MPI Tasks
	6.3.1 Mapping of Abstract MPI Tasks
	6.3.2 On-line Load Balancing for Abstract MPI Tasks

	6.4 Experimental Results
	6.4.1 The Test Environment
	6.4.2 Unfolding Parallelism of the MPI Applications
	6.4.3 Performance of Explicit Task Parallelism in MPI Applications
	6.4.4 Controlling the Granularity of the Abstract MPI Tasks
	6.4.5 Blueprint for Explicit Task Parallelism in MPI

	6.5 Conclusion

	7 conclusion
	7.1 Contributions
	7.2 Future Works and Perspectives

	References
	Appendix A – Resumo Estendido
	A.1 Introdução
	A.2 Contexto: Adaptabilidade em Ambientes Paralelos
	A.3 Trabalhos Relacionados: Execução de Aplicações Adaptativas
	A.4 Como Prover Adaptabilidade usando MPI?
	A.5 Executando Aplicações MPI Maleáveis em Clusters
	A.6 Paralelismo de Tarefas Explícitas em Aplicações MPI
	A.7 Conclusão



