
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

FÉLIX CARVALHO RODRIGUES

Smoothed Analysis in Nash Equilibria and
the Price of Anarchy

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Profa. Dra. Luciana Salete Buriol
Advisor

Prof. Dr. Marcus Ritt
Coadvisor

Porto Alegre, December 2011



CIP – CATALOGING-IN-PUBLICATION

Rodrigues, Félix Carvalho

Smoothed Analysis in Nash Equilibria and the Price of
Anarchy / Félix Carvalho Rodrigues. – Porto Alegre: PPGC
da UFRGS, 2011.

87 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2011. Advisor: Luciana Salete Buriol; Coadvisor: Marcus
Ritt.

1. Algorithmic game theory. 2. Smoothed analysis. 3. Lemke-
Howson algorithm. 4. Bimatrix games. 5. Frank-Wolfe algorithm.
6. Network games. 7. Traffic assignment problem. 8. Price of
anarchy. I. Buriol, Luciana Salete. II. Ritt, Marcus. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPCG: Álvaro Freitas Moreira
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro



“A common mistake that people make when trying to design something
completely foolproof is to underestimate the ingenuity of complete fools.”

— DOUGLAS ADAMS

(THE HITCHHIKER’S GUIDE TO THE GALAXY)
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ABSTRACT

This thesis analyzes problems in game theory with respect to perturbation. It uses
smoothed analysis to accomplish such task and focuses on two kind of games, bimatrix
games and the traffic assignment problem.

The Lemke-Howson algorithm is a widely used algorithm to compute a Nash equilib-
rium of a bimatrix game. This problem is PPAD-complete (Polynomial Parity Arguments
on Directed graphs), and there exists an instance which takes exponential time (with any
starting pivot.) It has been proven that even with a smoothed analysis it is still exponen-
tial. However, no experimental study has been done to verify and evaluate in practice how
the algorithm behaves in such cases. This thesis shows in detail how the current known
worst-case instances are generated and shows that the performance of the algorithm on
these instances, when perturbed, differs from the expected behavior proven in theory.

The Traffic Assignment Problem models a situation in a road network where users
want to travel from an origin to a destination. It can be modeled as a game using game
theory, with a Nash equilibrium happening when users behave selfishly and an optimal
social welfare being the best possible flow from a global perspective.

We provide a new measure, which we call the Smoothed Price of Anarchy, based on
the smoothed analysis of algorithms in order to analyze the effects of perturbation on the
Price of Anarchy. Using this measure, we analyze the effects that perturbation has on the
Price of Anarchy for real and theoretical instances for the Traffic Assignment Problem.
We demonstrate that the Smoothed Price of Anarchy remains in the same order as the
original Price of Anarchy for polynomial latency functions. Finally, we study benchmark
instances in relation to perturbation.

Keywords: Algorithmic game theory, smoothed analysis, Lemke-Howson algorithm, bi-
matrix games, Frank-Wolfe algorithm, network games, traffic assignment problem, price
of anarchy.





RESUMO

Análise suavisada em equilíbrios Nash e no Preço da Anarquia

São analisados nesta dissertação problemas em teoria dos jogos, com enfoque no
efeito que perturbações acarretam em jogos. A análise suavizada (smoothed analysis)
é utilizada para tal análise, e dois tipos de jogos são o foco principal desta dissertação,
jogos bimatrizes e o problema de atribuição de tráfego (Traffic Assignment Problem.)

O algoritmo de Lemke-Howson é um método utilizado amplamente para computar um
equilíbrio Nash de jogos bimatrizes. Esse problema é PPAD-completo (Polynomial Par-
ity Arguments on Directed graphs), e existem instâncias em que um tempo exponencial
é necessário para terminar o algoritmo. Mesmo utilizando análise suavizada, esse prob-
lema permanece exponencial. Entretanto, nenhum estudo experimental foi realizado para
demonstrar na prática como o algoritmo se comporta em casos com perturbação. Esta
dissertação demonstra como as instâncias de pior caso conhecidas atualmente podem ser
geradas e mostra que a performance do algoritmo nestas instâncias, quando perturbações
são aplicadas, difere do comportamento esperado provado pela teoria.

O Problema de Atribuição de Tráfego modela situações em uma rede viária onde
usuários necessitam viajar de um nodo origem a um nodo destino. Esse problema pode
ser modelado como um jogo, usando teoria dos jogos, onde um equilíbrio Nash acontece
quando os usuários se comportam de forma egoísta. O custo total ótimo corresponde ao
melhor fluxo de um ponto de vista global.

Nesta dissertação, uma nova medida de perturbação é apresentada, o Preço da Anar-
quia Suavizado (Smoothed Price of Anarchy), baseada na análise suavizada de algoritmos,
com o fim de analisar os efeitos da perturbação no Preço da Anarquia. Usando esta me-
dida, são estudados os efeitos que perturbações têm no Preço da Anarquia para instâncias
reais e teóricas para o Problema de Atribuição de Tráfego. É demonstrado que o Preço da
Anarquia Suavizado se mantém na mesma ordem do Preço da Anarquia sem perturbações
para funções de latência polinomiais. Finalmente, são estudadas instâncias de benchmark
em relação à perturbação.

Palavras-chave: teoria dos jogos, análise suavisada, algoritmo de Lemke-Howson, jo-
gos bimatrizes, algoritmo de Frank-Wolfe, problema da atribuição de tráfego, preço da
anarquia.
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1 INTRODUCTION

Game theory is a field of applied mathematics that deals with decision making prob-
lems for more than one person. It assumes that a person making his decision behaves in a
noncooperative way while having knowledge of the decision of other persons participat-
ing in the game. In game theory, a game consists of players that choose various strategies
with different payoffs depending on the strategies of the other players. Players always
choose a strategy that maximizes their payoff, or equivalently minimizes their costs.

A Nash equilibrium is reached when all players select a strategy such that no player
can increase its payoff by changing its strategy. A Nash equilibrium is stable in the sense
that when equilibrium happens, the game is in a locked state, with no more changes in
strategies. There can be multiple Nash equilibria in a game, with different sum of payoffs.

There is a large number of problems in computer science as well as in other sciences
where game theory can be used as a tool for mechanism design or for analysis of a number
of processes. For example, game theory can be used in theoretical biology to analyze the
behavior of populations, using games such as the hawk-dove game.

In the hawk-dove game, also called the game of chicken, two animals want a single
resource, be it food, mating or group dominance, and can play one of two strategies: it
can fight the other animal, the “hawk” strategy, or it can bluff with a threat, the “dove”
strategy. If both players bluff, then neither gets the resource. If one fights and the other
bluffs, than the fighter gets the reward, while the bluffer gets injured. If both decide
to fight, then both die or get badly injured. This game can be seen in Figure 1.1 in its
extensive format, where each possible move is shown.

There are three Nash equilibria in this game. One of the players plays hawk and the
other dove, the opposite, or each player chooses between both strategies with a certain
probability. In the latter case, the equilibrium is called mixed. The equilibria found in
this game can give insight as to how animal population behaves, especially in relation to
territory dominance behavior.

The same game can be used to model brinkmanship, both in internal politics or be-
tween nations. Taking the debt ceiling debate in the USA as a recent example, the parties
have the option of compromising or not on a deal to extend the debt ceiling with a budget
accompanying it. If neither party compromises in a deal, the consequences for both would
be disastrous. If one gives in the other can push the deal to their ideals and win most of
its goals and if both compromise neither gets the totality of its goals.

These examples show the wide spectrum of possible applications of game theory, in
particular in predicting behavior of players.

There is also a notion of the best possible social welfare for a game. Social welfare
can be defined as the total sum of payoffs of a given game state. This optimal social
welfare notion can also be viewed as if all players cooperated selflessly to maximize the
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Figure 1.1: A Hawk-Dove Game, where P1 is one player and P2 is the other. p1 and p2
are the payoffs of each chosen strategy for each player.

total payoff. Note that a Nash equilibrium is not necessarily the best possible outcome for
maximizing the social welfare. In fact, it can be quite far from it depending on the game.

The most obvious example of a large difference between a Nash equilibrium and the
optimal social welfare is the tragedy of commons , usually known in game theory as the
CC-PP game, short for commonize costs - privatize profits game.

In the tragedy of commons, we assume that a number of shepherds share a common
grassland, i.e. the pasture is open to all herdsmen. Each shepherd tries to maximize its
gain by keeping as many sheep as possible on the common grassland. Adding a sheep to
its flock means he can sell it later with a certain profit, however the costs of raising the
animal is shared by all herdsmen that use the grassland, diluting it among them. Since
the costs of the added sheep are a fraction of the profits from it, each herdsmen will keep
adding sheep to its flock until the environment collapses, hurting all shepherds.

Using the hawk-dove game previously described as the starting game, what would
happen if the situation changes as to give one player an advantage on the fighting strategy
over the other? Suppose that two lions are in a dispute for control of a pride. One of
the lions steps on a hunting trap and injures one of its legs. If both choose to fight, the
healthy lion will win and get control of the pride every time, even if it gets injured. The
healthy lion now has a dominant strategy of always fighting, as long as the payoff of the
fight-fight strategy remains larger than a bluff-fight strategy, i.e. the value of controlling
the pride even when sustaining injury is greater than the minor injuries he would receive
if it bluffed. The equilibrium is now unique, with the healthy lion fighting and the injured
one bluffing.

Figure 1.2: A perturbation of the Hawk-Dove Game in Figure 1.1, with payoff 0 for P1

when the hawk-hawk strategy is chosen.
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Games of this kind are called bimatrix games. These games have two players, with
strategies usually explicitly given for each player. To find an equilibrium for this game,
several numerical methods can be used (CEPPI et al., 2010; SAVANI, 2006). When mod-
eled after real world systems, these games may present small perturbation in its input,
which may alter not only the precision of the equilibrium, but how the worst case in-
stances would behave if they suffered these inherent perturbations.

These games are often modeled after real world problems. However, these problems
are often subject of perturbations, with the payoffs changing depending on other external
variables. These perturbations may change the equilibria that existed in the game. A
game that previously had a simple equilibrium to spot may now with perturbations have
multiple or mixed equilibria or the opposite.

Another frequently used application of game theory is in analysis of network mod-
els. How the players are viewed depends on the specific network problem, but on most
problems of this kind they are trying to get from a source to a destination in the network,
e.g., they can be packets traveling on a computer network, cars on a traffic network, train
companies sharing a railway network, etc. The focus of these problems when using game
theory is on finding the equilibrium of the users, in contrast to traditional analysis where
the users are not free agents, and finding the system optimal of a network is the goal.

Finding an equilibrium in network games can be computationally hard, and perturba-
tion may affect the efficiency of the algorithms designed to solve these problems. Pertur-
bation in these kinds of games are common, and it can derive from multiple situations,
such as cable interferences, bad weather, road accidents and various others. In order to
analyze the effect that these perturbations have on games, particularly on the complexity
of finding a Nash equilibrium, smoothed analysis can be used.

Smoothed analysis is an alternative to worst-case analysis, as well as to the average-
case analysis. In this kind of analysis, the input instances are perturbed by a certain
magnitude, and the smoothed complexity takes both the number of instructions as well
as the magnitude of perturbation into account. In other words, it measures the worst case
complexity of an algorithm assuming that its input is subject to small perturbations.

This idea can also be used in similar fashion to analyze other information, such as
the Nash equilibria themselves or the distance from the equilibria to the optimal social
welfare.

This thesis analyzes how perturbation alters games using smoothed analysis for two
different games: for bimatrix games and for the traffic assignment problem, also known
as the selfish routing game.

1.1 Contributions

For bimatrix games, this thesis uses an exact implementation of the Lemke-Howson
method for finding a Nash Equilibrium, with rational strategy values. An experimental
analysis is done for known worst case instances for bimatrix games, using the concepts of
smoothed analysis to slightly perturb the instance.

The concept of a Smoothed Price of Anarchy is defined, based on the smoothed anal-
ysis of algorithms. Furthermore, this concept is then applied for the traffic assignment
problem.

Lower bounds on the Smoothed Price of Anarchy for both linear and polynomial
latency functions are proven, and an experimental analysis of perturbation is done for
large benchmark instances currently used for academic purposes.
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1.2 Structure of this Thesis

The remainder of this thesis is organized as follows:

• Chapter 2 overviews the basics of game theory. Furthermore, it provides a short
explanation of the PPAD complexity class and introduces two important class of
games: network games and bimatrix games. It presents a short explanation of the
Lemke-Howson algorithm used to find a Nash equilibrium on bimatrix games. Fi-
nally, it defines Price of Anarchy (PoA) and Price of Stability (PoS).

• Chapter 3 presents the Traffic Assignment Problem. It provides a description of
the Frank-Wolfe algorithm used to solve this problem, and models the problem us-
ing game theory. The chapter simplifies the Price of Anarchy definition present in
Chapter 2 to the specific case of the Traffic Assignment Problem. At last, it presents
two worst case analysis for Pigou instances, which are proved to be the worst pos-
sible instances for the PoA in TAP, for both linear and polynomial latencies.

• Chapter 4 introduces smoothed analysis of algorithms. It provides a definition of
several perturbation models that can be used in this type of analysis. Furthermore,
it defines a novel way to analyze perturbation on the Price of Anarchy, which we
name the Smoothed Price of Anarchy.

• Chapter 5 studies the effects of perturbation on bimatrix games. It describes how to
generate the known class of games for which the Lemke-Howson algorithm has an
exponential number of steps, and analyzes these instances with relation to perturba-
tion. Several experiments are performed on these instances and it is shown that they
drop to a polynomial number of steps even for polynomially small perturbations.

• Chapter 6 defines the Smoothed Price of Anarchy in relation to the Traffic Assign-
ment Problem. Furthermore, it provides new lower bounds on the SPoA which is
in the same order of magnitude for polynomial latencies as the worst case for the
PoA. Finally, experiments are performed on benchmark instances, measuring the
effect of perturbation on these instances.

• Chapter 7 summarizes this thesis and lists some possible avenues for future explo-
ration. It provides a possible path to find hard bimatrix instances for perturbation,
and lists possible applications of the Smoothed Price of Anarchy to different games.



23

2 GAME THEORY

Game theory is a branch of mathematics with a vast number of applications in areas
such as biology and economics. There are also a number of applications in computer
science, for example in network routing and optimization. In general, the goal of game
theory is to model situations where the benefit of the choices of an individual depends on
the choices of others.

A strategic game can be defined as a set of players, strategies and a payoff associated
to each strategy combination.

Definition 2.1. Let there be n players. Each player i has a set Si = {s1, ..., smi} of pure
strategies, where mi ≥ 2. A vector x = (x1, x2, ..., xn) ∈ S is a pure strategy profile,
where xi is a pure strategy for player i. The set S with all such strategies is defined as:

S = S1 × S2 × ...× Sn.

For each player i there is a payoff function fi : S → R, which defines the payoff fi(x)
of player i for a given strategy profile x ∈ S.

Then, a strategic game G is defined as the tuple consisting of the strategy set S and
the payoff function f for n players, i.e.

G = (S, f).

We use the prisoners’ dilemma, a well-known problem in this area, to illustrate these
definitions. The game is stated as follows. Two suspects of a crime are held by the police.
The police does not have enough evidence to incriminate both, and each prisoner has the
choice of either confess or remain silent. If both remain silent, the authorities will not
be able to prove charges against them and each will face a prison time of two years for
previous felonies. If only one of them confesses, he will face one year in prison and his
confession will be used to condemn the other to five years in prison. If they both confess,
each will have a sentence of four years.

Table 2.1: Prisoners’ dilemma.

P1 \ P2 Confess Silent
Confess −4,−4 −1,−5
Silent −5,−1 −2,−2

Table 2.1 presents the payoff matrix of the prisoners’ dilemma game. In this matrix,
the value in each cell i, j corresponds to the payoffs of the strategy in which prisoner P1
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chooses strategy i and prisoner P2 chooses strategy j. This way of describing a game
is known as normal form. For contrast, we can see the same game in extensive form in
Figure 2.1.

Figure 2.1: The prisoner’s dilemma game in extensive form

2.1 Nash Equilibria

A Nash equilibrium is a strategic profile in which each player, taking into considera-
tion other players strategies, does not have any incentive to unilaterally change its strategy.

Formally, let x−i be the vector of strategies played by all players except player i:

x−i = (x1, x2, ..., xi−1, xi+1, ..., xn) ∈ S−i
Definition 2.2 (Best Response w.r.t. x−i). A best response strategy for a player i is a
x ∈ Si such that, given a vector of strategies x−i of the other players, satisfies

max
∀xi∈Si

fi(xi, x−i).

Therefore, a strategy profile x∗ = (x∗1, x
∗
2, ..., x

∗
n) ∈ S is a Nash equilibrium if, for

each player i, x∗i is a best response to x∗−i. In other words:

Definition 2.3 (Nash Equilibrium). A game (S, f) is at a Nash equilibrium x∗ = (x∗1, ..., x
∗
n)

if:
∀i ≤ n,∀xi ∈ Si, xi 6= x∗i : fi(x

∗
i , x
∗
−i) ≥ fi(xi, x

∗
−i).

In the prisoners’ dilemma, clearly the only possible Nash equilibrium is the case where
both confess. If a prisoner remains silent, the other would have an advantage when he
confesses, reducing his prison time to one year.

In the example, if both prisoners remained in silence the best social welfare possible
would be obtained. This exemplifies that a Nash equilibrium does not always correspond
to a strategy solution with the optimal social welfare.

Another important fact is that a game can have multiple Nash equilibria, with different
payoffs for each equilibrium. A Nash equilibrium is stable, that is, once an equilibrium is
reached, no unilateral strategy change of a player is profitable for him.

A Nash equilibrium can either be a pure or mixed equilibrium. A pure equilibrium
happens when each player uses only one pure strategy at the equilibrium. A game has
a mixed equilibrium if it is allowed to play a set of strategies with a certain probability
distribution at the equilibrium. The support of a mixed strategy is the set of all pure
strategies which have a nonzero probability associated with them.
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Definition 2.4 (Mixed Strategy). Let ∆(X) denote the set of probability distributions over
X . Given a game G = (S, f) with n players, a mixed strategy of player i is a probability
distribution ρi ∈ ∆(Si).

Definition 2.5 (Mixed Nash Equilibrium). Given S∆ = ∆(S1) × ... × ∆(Sn). Let gi :
S∆ → R denote the expected payoff of player i, defined as

gi(ρ1, ..., ρn) =
∑
s∈S

ρ1(s1)× ...× ρn(sn)fi(s) .

A game (S, f) is at a mixed Nash equilibrium y∗ = (y∗1, ..., y
∗
n) if:

∀i ≤ n,∀yi ∈ ∆(Si), yi 6= y∗i : gi(y
∗
i , y
∗
−i) ≥ gi(yi, y

∗
−i).

An example of a game where a mixed equilibrium can be reached is a simplified
penalty kick game. In a soccer match, the penalty kicker can shoot the ball either to the
right or to the left, and the goalkeeper can defend right or left. If the kicker shoots to
the side, then the goalkeeper defends and the soccer game continues, with both players
having zero payoff. If the kicker shoots to a different side than the goalkeeper dives, then
the kicker scores, with the kicker getting a payoff of 1 while the goalkeeper gets −1.

Table 2.2: Penalty game, player K is the kicker and G is the goalkeeper.

K \ G Right Left
Right 0, 0 1,−1
Left 1,−1 0, 0

In this game, an equilibrium is met when the kicker plays right with a 50% chance
(and left with 50% chance too) and the goalkeeper also defends right with a 50% chance
(and to the left). Here, the “right” and “left” are from the perspective of the kicker. This
is also an example of a zero-sum game, where the amount lost by one player is equal to
the gain of the adversary.

Finally, the problem of finding a Nash equilibrium can be defined as:

Definition 2.6 (Problem NASH). Given a game (S, f), find a mixed Nash equilibrium
according to Definition 2.5.

There are other problems related to Nash equilibria, such as listing all possible equi-
libria, or finding a pure Nash equilibrium. In this thesis we are focusing in the problem
described in Definition 2.6, with different kinds of instances.

2.1.1 PPAD Complexity Class

Nash proved (NASH, 1951) that in any finite game there exists at least one mixed Nash
equilibrium. The method used to prove this fact is nonconstructive, it uses the Brouwer’s
fixed point theorem. This theorem says that, given a closed ballD in Rn, and a continuous
function f : D → D, there is a fixed point x ∈ D, i.e., a point such that f(x) = x, but
without providing a polynomial time method to find x.
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Therefore, Nash’s proof is not useful to develop an efficient algorithm to find an equi-
librium. In fact, it can be used to prove that NASH is as hard as the problem of finding a
Brouwer fix point. Daskalakis et al. (DASKALAKIS; GOLDBERG; PAPADIMITRIOU,
2006) proved that NASH is PPAD-complete for three or more players and Chen et al.
(CHEN; DENG, 2006) extended this proof to two player games.

The PPAD complexity class stands for Polynomial Parity Argument on Directed Graphs,
and is a subset of the TFNP (Total Function Nondeterministic Polynomial) complexity
class, which is the set of the function problems in FNP that are proven to be total.

Definition 2.7 (TFNP). Given a binary relation P (a, b), it belongs to TFNP if and only
if there exists a deterministic polynomial time algorithm which can state if P (a, b) holds
for a given a and b, and P (a, b) is total, i.e. for every a, there exists a b such that P (a, b)
is true.

The PPAD class is defined by (PAPADIMITRIOU, 1994) as the class of all problems
reducible in polynomial time to the problem called End-Of-Line. In addition, a problem
X is PPAD-Complete if X is in PPAD and End-Of-Line is reducible in polynomial time
to X.

Definition 2.8 (End-Of-Line). Let f(v) be a function that defines a directed graphG with
every vertex having at most one successor and one predecessor, with no isolated vertex,
where f(v) returns both successor and predecessor of vertex v, such that f(v) can be
computed in polynomial-time on the size of v.

Given f(v) and a vertex s ∈ G with no predecessor, find a vertex v′ 6= s such that v′

has no successor, or no predecessor.

Note that while f(v) needs to be polynomial in terms of the size of v, the graph G that
it defines does not. In fact, the graph G can have an exponential size. The graph G will
always have a sink node (a node with no successor), since the vertex s is guaranteed to be
a source vertex with no predecessor. Therefore we know that an answer exists. However,
finding it depends on the size of the graph G, which can be exponentially large. This kind
of graph is exemplified in Figure 2.2.

Figure 2.2: Example of a graph in the End-Of-Line problem.
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2.1.2 Network Games

Game theory can be used to analyze several traditional problems in networks from
a different perspective. Network games model the interaction between parts of systems
controlled by different parties which often have different objectives.

Figure 2.3: Example of a network game.

The most common approach for analyzing these network problems is to consider the
users of this network as players in a non-cooperative game. For instance, the players
could be packets on the Internet or cars in a traffic network, both of which act in a non-
cooperative way trying to maximize their own utility.

In these games, the set of strategies for each player is usually not explicitly given and
can be exponential in size, with the network being used to derive them as needed. As
a simple example we can take ISPs (Internet Service Providers) that need to send traffic
between each other. On the traffic routing between different ISPs, the chosen route of
each provider affects the cost of the other providers traffic.

In the example in Figure 2.3, we can see two choke points v1 and v2. While routing in
the ISP’s own network costs 1 per traveled link, routing traffic through the other provider
network costs 1 for the other provider. ISP A wants to send data from sa to ta, while ISP
B wants to send data from sb to tb. Clearly the equilibrium is to send all traffic through
vertex v1, even though the optimal solution for the whole network would be for them to
use vertex v2. Note that this particular example can be seen as a prisoner’s dilemma kind
of game, where choosing v1 is equal to confessing while choosing to use vertex v2 being
the same as remaining silent.

2.2 Bimatrix Games

In Bimatrix Games, two players have pure strategies given by matrices A and B, with
m strategies for the first player and n strategies for the second player. A Nash equilibrium
in this kind of game can be defined as a vector of probabilities for each player over the
pure strategies given in the players’ matrices.
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Definition 2.9 (Two-Player NASH). Consider a game in normal form, with two players
M and N , with m pure strategies for player M and n pure strategies for player M . In a
given play of the game, if M plays his ith pure strategy, and N plays his jth pure strategy,
the payoff to M is ai,j and the payoff to N is bi,j .

Let A and B be m× n matrices such that the (i, j)-element of A is ai,j and the (i, j)-
element of B is bi,j . Let x and y be mixed strategies of players M and N , respectively,
represented by a column of nonnegative elements such that xi represents the probability
that player M plays his ith pure strategy, and yj represents the probability that player N
plays his jth pure strategy.

Find a mixed strategy for playerM and one forN such that it is at a Nash equilibrium.

2.2.1 The Lemke-Howson Algorithm

The Lemke-Howson algorithm (LH) (LEMKE; J. T. HOWSON, 1964) is a well known
algorithm to find a Nash equilibrium in a two player game. This algorithm can have an
exponential number of steps to reach an equilibrium in the worst case scenario, as proved
by Savani and Stengel (SAVANI; STENGEL, 2004). However, little experimental study
has been performed on these worst case instances and on how small perturbations alter its
performance. It resembles the simplex method to solve linear programs. The core of the
algorithm is to perform iterated pivoting.

For a two player game, with a matrix A representing the payoffs of player P1 and a
matrix B representing the payoffs of player P2, the Lemke-Howson algorithm operates
by keeping a guess of what the supports should be, and, in each iteration, that guess is
slightly modified by a pivoting operation.

Another way of seeing the operation is using a representation of the game in the form
of two polytopes P and Q. In this representation, for a matrices A and B of order m×n
and n×m, respectively , the polytopes are defined as:

P =
{
x ∈ Rm | x ≥ 0, BTx ≤ 1

}
, Q =

{
x ∈ Rn | y ≥ 0, ATy ≤ 1

}
In this representation, the LH algorithm follows a path (the LH path) of vertex pairs

(x, y) of P ×Q starting at a point (0, 0), and ending in a Nash equilibrium. It alternately
follows edges of P or Q, while keeping the vertex in the other polytope fixed. This
corresponds to the iterated pivoting used to algebraically execute these steps.

To perform the LH algorithm, it makes use of a structure called tableau which rep-
resents the inequalities in matrices A and B by introducing slack variables to generate
equalities.

2.2.1.1 Example

Consider the following game shown in Table 2.3:

Table 2.3: Example Game.

A \ B 3 4 5
1 3, 4 5, 2 6, 3
2 6, 2 1, 4 5, 1

The correspondent polytopes P and Q are the ones shown in Figure 2.4:
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Figure 2.4: Polytopes P and Q representing the game from Table 2.3.

A tableau corresponding to the game should look like the following:

s1 = 1 −3x3 −5x4 −6x5

s2 = 1 −6x3 −x4 −5x5

s3 = 1 −4x1 −2x2

s4 = 1 −2x1 −4x2

s5 = 1 −3x1 −x2

Here s1, ..., s5 are the slack variables and the x1, ..., x5 are the decision variables.
Initially all slack variables are in the base, and the pivoting process begins by choosing
one variable to enter the base (the pivot) and one variable to leave the base. The first pivot
can be chosen arbitrarily, while the leaving variable is chosen by finding the lowest min-
ratio value, which is the lowest value of the current base value divided by the entering
variable coefficient negated.

From this point on the variable that was taken from the base will determine the next
pivot to enter the base. If variable si left the base, then variable xi should be the next pivot
in line.

Using the example, if x1 was to enter the base, s3 should leave, since it has the lowest
min-ratio. The tableau should look like the following:

s1 = 1 −3x3 −5x4 −6x5

s2 = 1 −6x3 −x4 −5x5

x1 = 1/4 −1/4s3 −1/2x2

s4 = 1/2 1/2s3 −3x2

s5 = 1/4 3/4s3 −1/2x2

This process executes until the initially chosen variable or its corresponding slack
variable leaves the base. In the example, the algorithm would terminate if either x1 or
s1 leaves the base. To obtain the probability distribution after the algorithm finishes, the
non-basic variables are set to zero and and these values are then normalized to sum one.

This algorithm does not take into consideration the effects of degeneration. In other
words, at each iteration of the pivoting one single variable must win the min-ratio test. In
general, a tie breaking rule must be applied in these degenerate cases. The lexicographic
method can be used to break such ties, as in (STENGEL, 2002).
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2.3 Price of Anarchy

The Price of Anarchy (PoA) is a measure of the inefficiency of equilibria that was in-
troduced by Koutsoupias and Papadimitriou (KOUTSOUPIAS; PAPADIMITRIOU, 1999).
It measures how well players in a game perform when they are at a Nash equilibrium,
compared to an optimum outcome that could be achieved if all players cooperated.

In a game with more than one Nash equilibrium, it takes the worst equilibrium and
compares it to the strategy with the best possible total sum of payoffs.

Definition 2.10 (Price of Anarchy). Let G be a strategic game with n players, with a set
of strategies Si for each player i and a cost function ci : S → R, where S = S1×· · ·×Sn.
Also let C : S → R be a social cost function that maps every strategy profile s ∈ S to
some non-negative cost of the game. Given an instance I = (G, (Si), (ci)), let NE(I) be
the set of strategy profiles s ∈ S that are a Nash equilibrium for I .

Then, the Price of Anarchy of I is defined as

PoA(I) =
maxs∈NE(I) C(s)

mins∈S C(s)
,

and the Price of Anarchy of a class of games G is defined as

PoA(G) = max
I∈G

PoA(I)

Using the Prisoners’ Dilemma seen in Figure 2.1 as an example, the social cost func-
tion would be defined as the sum of each played strategy. With that cost, we can easily
see that the best social welfare for this game is when both remain silent, with a cost of
−4, compared to one player staying silent while the other confesses with −6 and to both
confessing with −8, which is the Nash equilibrium. The Price of Anarchy in this case is
then PoA = −8/−4 = 2.

In the context of network games, the Price of Anarchy is one of the most important
measures to analyze, both as a tool to improve such networks or to assess how inefficient
a given network can be. Its importance is clear in network problems were there is no
direct control over players, leading to users eventually reaching a Nash equilibrium. The
equilibrium reached however is not necessarily the worst possible, so another measure
relating equilibria and optimal social welfare is also relevant. If instead comparing the
worst Nash equilibrium of a game with the system optimum, we use the best equilibrium,
we obtain a inefficiency measure called the Price of Stability (PoS).

Definition 2.11 (Price of Stability). Let G be a strategic game with n players, with a set
of strategies Si for each player i and a cost function ci : S → R, where S = S1×· · ·×Sn.
Also let C : S → R be a social cost function that maps every strategy profile s ∈ S to
some non-negative cost of the game. Given an instance I = (G, (Si), (ci)), let NE(I) be
the set of strategy profiles s ∈ S that are a Nash equilibrium for I .

Then, the Price of Stability of I is defined as

PoS(I) =
mins∈NE(I) C(s)

mins∈S C(s)

In this thesis, the Price of Anarchy will be the only inefficiency measure used, since
for the Traffic Assignment Problem analyzed in details in Chapter 3, all equilibria have
the same cost, making both terms interchangeable for this specific problem.
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3 THE TRAFFIC ASSIGNMENT PROBLEM

In the Traffic Assignment Problem (TAP), each user travels in a road network from a
source to a destination with an assigned traversal cost to each edge of the network. How
the users behave leads to two optimization problems. In the first problem users obey
Wardrop’s first principle of equilibrium (WARDROP, 1952), which states that each user
seeks to minimize his travel time non-cooperatively. For the second one, users behave
following Wardrop’s second principle of equilibrium, where they cooperatively choose
each route in order to guarantee that the average travel time of all users is minimum.

The road network is represented by a directed multigraph G = (V,E), where V is the
set of vertices and E is the set of arcs. The users are modeled by a set of commodities K
with each commodity i ∈ K having an associated vertex pair (si, ti) ∈ V ×V . Users that
have the same origin-destination pair (si, ti) are said to belong to the same commodity
i. For each commodity i ∈ K we are given a demand di which specifies the total flow
(corresponding to the users of commodity i) that has to be sent from si to ti.

The set of paths from si to ti is denoted as Pi. Let P = ∪i∈KPi. A flow f specifies
for each path P ∈ P a non-negative flow value that is sent along P , i.e., f is a function
f : P → R+. The flow on arc e ∈ E is defined as fe =

∑
P :e∈P fP , where P ∈ P . A

flow f is feasible if it satisfies the demand for every commodity, i.e.,
∑

P∈Pi fP = di for
every i ∈ K.

For each arc e ∈ E we are given a latency function le : R+ → R+ which maps the
flow fe of an edge e to the traversal time le(fe). The latency of a path P ∈ P is defined
as the sum of the edge latencies in the path, i.e., lP =

∑
e∈P le(fe). Subsequently, we use

(G, d, l) to refer to an instance of the Traffic Assignment Problem.
We assume that all latency functions are nonnegative, differentiable and nondecreas-

ing. For real-world instances, the most common type of latency functions originates form
the U.S. Bureau of Public Roads (Bureau of Public Roads, 1964), which can be expressed
as:

le(fe) = te

(
1 + α

(
fe
ce

)β)
. (3.1)

Here te is the free-flow travel time of edge e, i.e., the time it takes to travel through
road e if there is no congestion. The constant ce stands for the capacity of edge e and
α and β are tuning parameters, usually set to 0.15 and 4, respectively (all variables are
greater than zero).

In order to evaluate the total travel time of the network, we define a cost function
c(f) =

∑
e∈E le(fe)fe. The system optimum refers to a feasible flow that minimizes this

cost function.
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Definition 3.1 (System Optimum). A system optimum is a flow f ∗ that minimizes the
following program:

minimize
f

c(f) =
∑
e∈E

le(fe)fe

subject to
∑
P∈Pi

fP = di ∀i ∈ K∑
P∈P:e∈P

fP = fe ∀e ∈ E

fP ≥ 0 ∀P ∈ P .

(3.2)

A feasible flow f is a Wardrop flow (or user equilibrium) if the flow of every com-
modity i travels along a minimum latency path available. That is, for every commodity i
all flow-carrying paths have the same latency and all other paths have no smaller latency.
More formally:

Definition 3.2 (Wardrop flow). A flow f is a Wardrop flow if

∀i ∈ K, ∀P1, P2 ∈ Pi, fP1 > 0 : lP1(f) ≤ lP2(f). (3.3)

The problem of computing a Wardrop flow can be described by the following program:

minimize
f

∑
e∈E

∫ fe

0

le(x) dx

subject to
∑
P∈Pi

fP = di ∀i ∈ K∑
P∈P:e∈P

fP = fe ∀e ∈ E

fP ≥ 0 ∀P ∈ P .

(3.4)

Note that, while there can be multiple user equilibria, the cost c(f) of a Wardrop flow
f is unique (see (ROUGHGARDEN, 2003)).

An optimal flow corresponds to a Wardrop flow with respect to marginal cost func-
tions. In order for this equivalence to hold we further need to assume that all latency
functions are standard (ROUGHGARDEN, 2003), i.e., x · l(x) is convex. The marginal
cost function of edge e is defined as l∗e(x) = le(x) + x d

dx
(le(x)). Now, a feasible flow f ∗

is an optimal flow for (G, d, l) if and only if it is a Wardrop flow for the instance (G, d, l∗)
(see (ROUGHGARDEN, 2003) for details).

In order to have a intuition as to why this is true, consider the Karush–Kuhn–Tucker
(KKT) optimality conditions (KUHN; TUCKER, 1951). Suppose we are given an op-
timization problem of minimizing the expression

∑
e∈E he(fe), subject to the same re-

strictions as in 3.2. For all e ∈ E, let the function he be continuously differentiable and
convex. Then f is an optimal solution for this optimization problem if and only if for
every i ≤ n,

∀P1, P2 ∈ P , fP1 > 0 :
∑
e∈P1

h′e(fe) ≤
∑
e∈P2

h′e(fe). (3.5)



33

Using these conditions, we can determine functions he such that the KKT optimality
conditions seen in Equation 3.5 reduce to the Wardrop flow conditions in Equation 3.3.
Using this, together with the characterization given to Wardrop flows in Equation 3.4 and
the system optimum flow in Equation 3.2, it is possible to state that a flow f is an optimal
flow with respect to (G, d, l) if and only if f is a Wardrop flow with respect to (G, d, l∗),
where for each e ∈ E, l∗e(x) = (x · le(x))′.

3.1 The Frank-Wolfe Algorithm

Computing a Wardrop flow as well as an optimal flow can be done by using the Frank-
Wolfe Algorithm (FRANK; WOLFE, 1956). The Frank-Wolf Algorithm can solve prob-
lems where the objective function is convex. However, the constraints of the problem
must be linear for the algorithm to work.

The algorithm starts by finding a feasible solution to the linear constraints of the prob-
lem. Then, in each iteration, it finds a descent direction and a distance to descend, thereby
reducing the objective function value. The algorithm stops when no improvement can be
made to the objective function value.

Let z(x) be a convex objective function with a · x ≥ b as linear constraints, for the
program:

minimize
x

z(x)

subject to a · x ≥ b .
(3.6)

The Frank-Wolfe algorithm works as follows:

1. Set a basic feasible solution x0 to start the algorithm with counter k ← 0.

2. Find a feasible direction of descent pk.

In order to find pk, one must solve the problem obtained by replacing the function z
with the first-order Taylor expansion around xk, i.e., tk(y) = z(xk) +∇z(xk)(y −
xk). Since z(xk) is constant in this iteration and y is to be minimized, the linear
programming problem to be solved is:

minimize
y

∇z(xk)y

subject to a · y ≥ b .
(3.7)

Let yk be the optimal solution for this problem. Then pk = yk − xk, and since both
xk and yk have the same constraints, this is a feasible direction.

3. Find a step length αk that minimizes the new iteration point, i.e.:

minimize
0≤αk≤1

z(xk + αkpk) (3.8)

Note that αk must be in the interval [0, 1] in order for the solution to remain feasible.

4. Terminate the algorithm if a stopping criteria is fulfilled, otherwise let xk ← xk +
αkpk and k ← k + 1, then repeat from step 2.

For an exact computation of z(x∗), where x∗ is the optimal solution, the algorithm
should be stopped when tk(yk) = 0.
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While the Frank-Wolfe algorithm does converge to an exact solution, its rate of con-
vergence after a threshold that depends on the instance being computed is very slow.

There are several methods of accelerating the convergence to a degree, with several
published works such as (ARRACHE; OUAFI, 2008), (FUKUSHIMA, 1984) and (FLO-
RIAN, 1977). These improvements focus on several different attributes, such as improv-
ing the search directions or modify the line search to take longer steps. However, in all
these modified Frank-Wolfe algorithms there is still a threshold where the speed of the
convergence is too slow for most practical uses.

If a relative amount of error is allowed, a more practical stopping criterion can be
adopted. A criterion commonly adopted is to stop the algorithm if

z(xk)− tk(yk)
|zk(yk)|

≤ ε , (3.9)

where ε is the relative objective error allowed.

3.2 Traffic Assignment Problem in Game Theory

The Traffic Assignment Problem can also be defined as a game. Let the users be
defined as players, with each path that a user can take being a different strategy. The
payoffs that the players try to maximize can be seen as the negated latency costs of the
road network. A Wardrop flow f then can be said to be at a Nash equilibrium, while a
flow f ∗ at system optimum is the optimal social welfare of the game.

3.2.1 Price of Anarchy in the Traffic Assignment Problem

In the context of the Traffic Assignment Problem (TAP), the definition in 2.10 simpli-
fies to the following:

Definition 3.3 (Price of Anarchy on the TAP). Let I = (G, d, l) be an instance of TAP.
The Price of Anarchy of I is

PoA(I) =
c(f)

c(f ∗)
,

where f and f ∗ are a Wardrop flow and an optimal flow of I , respectively. (Recall that
the cost of a Wardrop flow is unique.)

The Price of Anarchy of TAP is defined as

PoA = max
I

PoA(I),

where the maximum is taken over all possible input instances.

The Price of Anarchy depends on which types of latency functions we allow our in-
stances to have. Roughgarden and Tardos (ROUGHGARDEN; TARDOS, 2002) proved
that for linear latencies the Price of Anarchy is 4

3
. Furthermore, Roughgarden proved

that the Price of Anarchy is independent of network topology (ROUGHGARDEN, 2003).
Besides other results, these studies reveal that the Price of Anarchy for polynomial la-
tency functions is admitted on very simple single-commodity instances consisting of two
parallel arcs, also known as Pigou instances.
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s t

Figure 3.1: Pigou instance with linear latency functions.

3.2.1.1 Linear case

Consider the instance I = (G, d, l) depicted in Figure 3.1. With one unit of flow to
be sent from s to t, there are two paths that can be chosen: either take the path e2 with a
constant cost of l2(x) = 1 or use e1 with a linear latency of l1(x) = x.

The user equilibrium happens when both paths have the same cost, therefore the flow
f2 must be one. The cost c(f) of the flow is consequently also one. In order to compute
an optimal flow, we exploit the equivalence that an optimal flow is a Wardrop flow with
respect to marginal cost functions l∗1(x) = 2x and l∗2(x) = 1. Again both paths must have
the same cost, so f ∗2 = 1/2 and f ∗1 = 1/2.

The cost of the total flow f ∗ is thus c(f ∗) = f ∗1 (1) + f ∗2 (f ∗2 ) = 1
2
1 + 1

2
1
2

= 3
4
. The

Price of Anarchy is accordingly

PoA(I) =
c(f)

c(f ∗)
=

4

3
. (3.10)

The same reasoning can be applied to the case where polynomial latency functions
are allowed, as shown next.

3.2.1.2 Polynomial case

s t

Figure 3.2: Pigou instance with polynomial latency functions.

Consider the instance I = (G, d, l) depicted in Figure 3.2. There is one unit of flow
that has to be sent from s to t. The respective latency functions of the upper edge e1 and
the lower edge e2 are l1(x) = xp and l2(x) = 1.

The Wardrop flow f sends the entire flow on e1, i.e., f1 = 1 and f2 = 0, and has a cost
c(f) = 1. In order to compute an optimal flow, we again exploit the fact that a flow at the
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system optimum is the same as a flow at the user equilibrium with respect to the marginal
cost functions l∗1(x) = (p + 1)xp and l∗2(x) = 1. Equalizing these latency functions, we
obtain that f ∗1 = (p+ 1)−1/p and f ∗2 = 1− (p+ 1)−1/p. The cost of this flow is

c(f ∗) = (p+ 1)−1/p
(
(p+ 1)−1/p

)p
+ 1− (p+ 1)−1/p =

(p+ 1)(p+ 1)1/p − p
(p+ 1)(p+ 1)1/p

.

The Price of Anarchy of this instance I is therefore

PoA(I) =
c(f)

c(f ∗)
=

(p+ 1) p
√
p+ 1

(p+ 1) p
√
p+ 1− p

. (3.11)

This PoA is actually the worst possible, and is Θ( p
ln p

). Roughgarden (ROUGHGAR-
DEN, 2003) showed that the Price of Anarchy of multi-commodity instances with poly-
nomial latency functions of degree at most p is at most PoA(I) as stated in (3.11). It is
also shown that the PoA(I) = 4

3
shown in (3.10) is the worst possible ratio for multi-

commodity instances with linear latency functions.



37

4 SMOOTHED ANALYSIS

Understanding the behavior of algorithms is critical in algorithm design. The most
common approach to the analysis of algorithms is the worst-case analysis. In this kind
of complexity analysis, the performance of an algorithm is analyzed by picking the worst
possible instance for a given size parameter n, as defined below.

Definition 4.1 (Worst-Case Complexity). Let TA(x) be the running time of algorithm A
for instance x. Let Xn be set of all inputs of A with size of n.

Then, the worst-case complexity of algorithm A for size n is:

W(A, n) = max
x∈Xn

[TA(x)].

This kind of analysis has the strong advantage that it does not need an input model
to be used, a worst case instance suffices. It also provides a strong upper bound on how
badly an algorithm can perform.

The worst case analysis can and has been used extensively to prove good perfor-
mance of some algorithms. However, there is plenty of algorithms, such as the sim-
plex algorithm (DANTZIG, 1963; MURTY, 1983) and algorithms for the knapsack prob-
lem (MARTELLO; TOTH, 1990), which have poor worst case complexity but are still
used in several real-world scenarios. These algorithms have exponential worst case com-
plexities, but perform rather well for “practical” scenarios.

Average case analysis was introduced to better understand these algorithms. It ana-
lyzes running time over a distribution of inputs, and depends entirely on this distribution.

Definition 4.2 (Average-Case Complexity). Let TA(x) be the running time of algorithm
A for instance x. Let Xn be set of all inputs of A with size less or equal to n.

Then, given a probability distribution µn on Xn, the average-case complexity of algo-
rithm A for size n is

AVG(A, n) = E
x∼µn

[TA(x)] ,

where x ∼ µn represents that x is a random instance chosen accordingly to distribution
µn.

A good average case complexity may be a hint that an algorithm performs well in
practice, but this evidence is highly dependent on the input distribution used in the anal-
ysis. A bound on the average case complexity on one distribution says nothing on the
behavior of the algorithm with respect to other distributions. Furthermore, defining a dis-
tribution that corresponds to those found on practice can be a difficult or impossible task
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to accomplish. It is often the case that the analysis is performed on simpler distributions
than found in real cases, in which case it may give a view of the algorithm that is too
optimistic.

While the worst-case analysis is a powerful tool to demonstrate that an algorithm can
be used with performance guarantees in real circumstances, it may not provide the best
argument against using an algorithm, since worst case instances may not appear in some
of real world scenarios. The average-case analysis can also not be ideal to analyze some of
these algorithms, since finding a distribution model that fits well with practical scenarios
is often a hard task. In many cases this means that the distribution used is oversimplified
and in many cases “too forgiving” on the algorithm being analyzed.

Moreover, even if worst case instances occur in practice, they might often have small
perturbations associated with it. This perturbation may be, for example, due to noise in
data gathering from physical instruments, or due to the fact that an algorithm can suffer
from small rounding errors due to floating point calculations. One might wonder whether
these worst case instances remain exponential if we are allowed to slightly perturb them
at random. The smoothed analysis contemplates this kind of algorithm analysis.

The smoothed analysis of algorithms was defined by Spielman and Teng in (SPIEL-
MAN; TENG, 2004). It is a relatively new approach to the analysis of algorithms in
contrast to the worst case and average case analysis. One of the main motivations for this
new kind of analysis is to understand the simplex algorithm, which has exponential worst
case behavior and still is an efficient algorithm in practice.

The smoothed complexity of an algorithm is the maximum over inputs of the expected
running time of the algorithm being analyzed under slight perturbations of that input. This
also means that smoothed complexity is measured not only in the size n of the input but
also in the magnitude σ of the perturbation.

Definition 4.3 (Smoothed Complexity). Let TA(x) denote the running time of algorithm
A for instance x. Let Xn be the set of instances of A with size n.

For an instance x and a magnitude parameter σ, let µσ(x) denote the set of instances
that can be obtained from x by applying random perturbations of magnitude σ. Then, the
smoothed complexity of algorithm A under perturbations of magnitude σ is:

S(A, n, σ) = max
x∈Xn

(
E

x̄∈µσ(x)
[TA(x̄)]

)
.

Figure 4.1: Illustration of different complexity analysis of the same algorithm A. The
magnitude σ1 is lower than σ2.
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One of the most important aspects of smoothed analysis is to analyze NP-Complete
problems, which have no known algorithms with polynomial worst case complexity. To
this end, we can say that an algorithm has polynomial smoothed complexity if it is poly-
nomially bounded in both n and 1

σ
.

Definition 4.4 (Polynomial Smoothed Complexity). Let TA(x) denote the running time
of algorithm A for instance x. Let Xn and µσ(x) be the same as in Definition 4.3.

Then, algorithm A has polynomial smoothed complexity if there exist constants n0,
σ0, c, k1, k2 such that for all n ≥ n0 and 0 ≤ σ ≤ σ0,

max
x∈Xn

(
E

x̄∈µσ(x)
[TA(x̄)]

)
≤ c nk1σ−k2 .

If the perturbation magnitude σ is set to zero, then the smoothed complexity is the
same as the worst case complexity, since there is no perturbation. As σ approaches infin-
ity, the analysis becomes more and more similar to the average case analysis, since the
perturbation is so large that the specific instance analyzed becomes irrelevant. An algo-
rithm with a good smoothed complexity and bad worst case complexity will perform well
on the neighborhood of all instances, even if for a specific worst case instance it behaves
badly. In other words, it is a strong evidence of good performance in practice, since even
if worst case instances exist, they are very susceptible to small perturbations.

In Figure 4.1, we can see an illustration of how these various complexity measures
relate. In the horizontal axis the set of all instances to A with size n are showed, for a
fixed n, while in the vertical axis the running time of those instances is presented. Note
that σ1 < σ2, and in this example it means that while the instance which gives the upper
bound for S(A, n, σ1) is b, for S(A, n, σ2) it is a.

4.1 Perturbation Models

There can be many different kinds of perturbations on the smoothed analysis. It al-
lows the type of perturbation to be specified depending on the particular algorithm being
analyzed. For continuous problems, two perturbation models are important to note: the
uniform perturbation model and the Gaussian model.

In the uniform perturbation model, the perturbed instances are chosen from a uni-
formly random range that is defined by the perturbation magnitude σ and the original
instance. These perturbations can be either additive or relative. The same reasoning ap-
plies to the Gaussian perturbation model, only now the perturbations are derived from a
Gaussian distribution.

For instances in the Rn, the above ideas can be formally defined as follows.

Definition 4.5 (Uniform Perturbations). Let x = (x1, ..., xn) ∈ Rn be an instance of
algorithm A.

A uniform perturbation of magnitude σ of x is a random vector x̄ = (x̄1, ..., x̄n), where
x̄i = xi + εi, and εi is taken independently uniformly at random from the range [−σ, σ].

Definition 4.6 (Relative Uniform Perturbations). Let x = (x1, ..., xn) ∈ Rn be an in-
stance of algorithm A.

A uniform perturbation of magnitude σ of x is a random vector x̄ = (x̄1, ..., x̄n),
where x̄i = xi(1 + εi), and εi is taken independently uniformly at random from the range
[−σ, σ].
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An alternative definition can be made for these perturbation models, where the range
where the deviation is taken is never negative, i.e., from 0 to σ. For Gaussian perturba-
tions, similar definitions are stated below.

Definition 4.7 (Gaussian Perturbations). Let x = (x1, ..., xn) ∈ Rn be an instance of
algorithm A.

A Gaussian perturbation of magnitude σ of x is a random vector x̄ = (x̄1, ..., x̄n),
where x̄i = xi + εi, and εi is a Gaussian random variable with standard deviation σ.

Definition 4.8 (Relative Gaussian Perturbations). Let x = (x1, ..., xn) ∈ Rn be an in-
stance of algorithm A.

A Gaussian perturbation of magnitude σ of x is a random vector x̄ = (x̄1, ..., x̄n),
where x̄i = xi(1 + εi), and εi is a Gaussian random variable with standard deviation σ.

4.2 Smoothed Price of Anarchy

While the original idea of the smoothed analysis was to measure the time complexity
of algorithms, it is suited to analyze several other quality measures, like space or the
number of cache-misses of an algorithm. A particular quality measure that has not been
explored to the present moment is to compare the Price of Anarchy ratio used in game
theory.

We extend the smoothed analysis idea for time complexity analysis to analyze the
Price of Anarchy measure. The idea is to randomly perturb a given input instance and
to analyze the expected Price of Anarchy on the perturbed instances. We first define the
Smoothed Price of Anarchy of an instance I .

Definition 4.9 (Smoothed Price of Anarchy of I). Suppose that we are given a class of
games G. Given an instance I = (G, (Si), (ci)) ∈ G, we randomly perturb I by adding
some random noise to the input data.

Let Ī be an instance that can be obtained from I by random perturbations and let σ be
a parameter for the magnitude of perturbation. The Smoothed Price of Anarchy (SPoA)
of I is then defined as

SPoA(I, σ) =
maxs∈NE(Ī) E[C̄(s)]

mins∈S E[C̄(s)]
,

where the expectation is taken over all instances Ī that are obtainable from I by random
perturbations of magnitude σ. Here C̄ refers to the cost of the perturbed instance.

Note that there might be several ways to perturb the input instance, as seen in Sec-
tion 4.1. How this should be done depends on the underlying application. Finally, the
Smoothed Price of Anarchy of a game G can be defined.

Definition 4.10 (Smoothed Price of Anarchy). Using the same assumptions from Defini-
tion 4.9, the Smoothed Price of Anarchy of G is then

SPoA(G, σ) = max
I∈G

SPoA(I, σ) .
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5 SMOOTHED COMPLEXITY OF BIMATRIX GAMES

Bimatrix games are usually presented in explicit normal form, with the payoffs often
taken as measurements from real world scenarios. Therefore, it is useful to study how
perturbations affect the behavior of algorithms used to find equilibria in these games.

As seen in Section 2.2, the Lemke-Howson Algorithm is used to find an equilibrium
in bimatrix games. It works in practice by shifting variables around a tableau, and is very
susceptible to numerical errors, which makes using smoothed complexity for analysis of
this particular algorithm very important. The smoothed complexity of the Lemke-Howson
algorithm can be defined as below.

Definition 5.1 (Smoothed Complexity of the Lemke-Howson algorithm). Let T (A,B)
denote the running time of the LH algorithm on the bimatrix game defined by (A,B)
and let Ā, B̄ denote perturbations of magnitude σ of A and B, respectively. Then, the
smoothed complexity of the LH algorithm under perturbations of magnitude σ is:

SLH(n, σ) = max
A,B∈Rn×n

EĀ,B̄ [T (Ā, B̄)] ,

Note that the type of perturbation is not described. For perturbations on bimatrix
games, additive perturbations can be common. As seen in Chapter 4, the two of the
most common ones are uniform and Gaussian perturbations. In the Gaussian model, the
new values āi,j, b̄i,j are obtained from ai,j, bi,j by adding independent random variables
distributed as Gaussians with mean 0 and standard deviation σ. In the uniform model, the
new values are randomly and uniformly chosen from [ai,j−σ, ai,j+σ] and [bi,j−σ, bi,j+σ].

In (CHEN; DENG, 2006), it is proved that the smoothed complexity of LH algorithm
is not polynomial, both for uniform perturbations as for Gaussian perturbations. The
authors prove that there is no algorithm that finds an ε-approximate Nash equilibrium
in polynomial time. It then proceeds to prove that this is equivalent to saying that the
problem of finding a Nash equilibrium of a bimatrix game is not in smoothed polynomial
time under σ-perturbations.

The way the proof is constructed does not provide a constructible instance, making it
harder to assess how likely is this instance to happen in practice. Hence, in our experi-
ments we generated the instances described by Savani and Stengel (SAVANI; STENGEL,
2004), which are the only ones known to be exponential for the LH algorithm.

In this chapter we describe how the only known worst case instances are generated,
and then show the experiments we conducted on them. We analyze these instances with
perturbations with different magnitudes and show that these instances are not the same as
the one predicted by the results of(CHEN; DENG, 2006).
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5.1 Known Worst-Case Instances

In (SAVANI; STENGEL, 2004), Savani and Stengel introduced instances for which
the LH algorithm takes an exponential number of pivoting iterations to find a Nash equi-
librium. Exponentially long paths have been discovered for the LCP (linear complemen-
tary problem) in (MURTY, 1978) and (FATHI, 1979). However, even though a Nash
equilibrium can be a solution to some LCPs, the problems covered in these papers are not
bimatrix games. Therefore, these instances are, to the best of our knowledge, the only
known instances where a bimatrix game has an exponential LH path.

These worst case instances are based on dual cyclic polytopes (ZIEGLER, 2001;
GRUNBAUM, 2003) with dimension d and 2d facets. The inequalities that define this
kind of polyhedra are known in arbitrary dimensions (GRUNBAUM, 2003), which make
these polytopes a good start for creating scalable worst case instances. These polytopes
can also be used to construct games with an exponential number of equilibria (STENGEL,
1999).

Given two players P1 and P2, with corresponding payoff matrices A and B with size
d × d, a worst case instance is constructed based on the polytopes described by these
matrices. In order to construct these worst case instances and record them in the two
matrices A and B, we first construct the polytope P , which can be seen as the payoff
matrix B of the player P2. Using this matrix, we can then derive the payoff matrix A of
the player P1.

In order to obtain this dual cyclic polytope P , we first obtain a cyclic polytope P ′

with 2d vertices, where each vertex µ(ti) is obtained from the moment curve µ : x 7−→
(x, x2, ..., xd), for 1 ≤ i ≤ 2d. It is known that a cyclic polytope can be formed by the
vertices of the moment curve as long as t1 < t2 < ... < t2d, any set of ti ∈ R is a possible
choice. For further details see (GRUNBAUM, 2003).

This polytope is then translated in order to ensure that it has the origin in its interior.
A simple way of doing that is by subtracting the arithmetic mean µmean of the points for
each vertex, thus resulting in the following polytope:

P ′′ =
{
z ∈ Rd|ciz ≤ 1, 1 ≤ i ≤ 2d

}
, ci = µi − µmean

These inequalities can be divided into two d×d matrices C and D, with C containing
c1, ..., cd and D containing cd+1, ..., c2d. The polytope P is defined in the following way:

P =
{
x ∈ Rd|x ≤ 0, −DC−1x ≤ r

}
, r = 1−DC−11

We must now re-normalize the inequalities so that the right-hand side is one. This
is done in order to make this polytope also a set of strategies for one of the players. By
multiplying −DC−1 by a diagonal matrix S such that si,i = 1

ri
and si,j = 0 if i 6= j, we

accomplish this goal. The normalized polytope can be defined as:

P =
{
x ∈ Rd|x ≤ 0, −SDC−1x ≤ 1

}
.

Finally, the payoff matrix B is defined by B = (−SDC−1)T . The symmetric case
where matrix A = BT does not work in this case, since it leaves a short path as the
solution. Hence, we must obtain the payoff matrix A by copying the matrix B with some
permutations in place. The function λ defined below helps to define these permutations:
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λ(k) =


k, k = 1 or k = d,
k + (−1)k, 2 ≤ k ≤ d− 1,
k − (−1)k, d+ 1 ≤ k ≤ 2d.

The matrix A and its entries a(i, j) then can be obtained from the entries b(i, j) of B
by the following relation:

a(λ(i), λ(j + d)− d) = b(j, i) 1 ≤ i, j ≤ d.

This ensures that this bimatrix game has exactly one equilibrium and that the LH
algorithm will take an exponentially long path to find it.

5.2 Results

5.2.1 An Exact Implementation of the Lemke-Howson Algorithm

For the LH algorithm, two implementations were tested, one from Codenotti et al.
(CODENOTTI; ROSSI; PAGAN, 2008) and one from the GAMBIT (MCKELVEY; MCLEN-
NAN; TUROCY, 2010) project. The implementations are open source (GNU GPLv2) and
freely available.

We developed a solution based on the implementation of Codenotti et al. The software
is written in C/C++ and originally used a floating point representation of the game’s pay-
offs. This could easily lead to incremental errors and numerical instability in the solver.
We extended the software to deal with rational numbers using the GMP (GNU Multiple
Precision Arithmetic Library) (GRANLUND et al., 2011). Even though our solver can-
not handle irrational numbers, note that any irrational number on the input would not be
treated as such by using the old representation as well. Using this representation, all the
results are exact, even though the running time can be slower depending on how big the
operands are.

The solver with these modifications proved to be more stable and faster than GAM-
BIT’s implementation. Our implementation is available at (RODRIGUES, 2011).

The generator of the instances used in our experiments was developed using the SAGE
software system (STEIN et al., 2010). SAGE is a collection of various open source soft-
wares intended to join numerous packages into a single interface based on Python. It
consists of nearly 100 open-source packages in an unified interface. It has many tools in
areas such as combinatorics, graph theory and symbolic linear algebra.

5.2.2 Experimental Results

For our experiments, the tests were performed varying the number of strategies n from
2 up to 20. The starting pivot used was also a variable ranging from 1 to 2n.

Table 5.1 reproduces the results of (SAVANI; STENGEL, 2004). The columns repre-
sent the number of pure strategies available for each player, i.e. the size of the matrices,
while the rows inform which variable is chosen to enter the base on the first step of the
LH algorithm (refer to Section 2.2 for more details on the Lemke-Howson algorithm).
The measure used is the number of times the algorithm performs a pivoting operation.
This measure is denoted as LH path lengths. Note that while the path lengths are directly
related to the execution times for these instances, this may not hold for all instances, since
our implementation uses an exact representation of rational numbers. Since the perturba-
tions used are so small, this can lead to rationals with big numerators and denominators,
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Table 5.1: Path lengths for worst case instances.
Pivot Number 2 4 6 8 10 12 14

1 4 20 88 376 1596 6764 28656
2 4 8 24 92 380 1600 6768
3 4 8 24 92 380 1600 6768
4 4 20 24 40 108 396 1616
5 10 24 40 108 396 1616
6 10 88 92 108 176 464
7 10 36 92 108 176 464
8 10 36 376 380 396 464
9 16 146 380 396 464

10 16 146 1596 1600 1616
11 36 42 612 1600 1616
12 36 42 612 6764 6768
13 42 152 2586 6768
14 42 152 2586 28656
15 146 68 618 10948
16 146 68 618 10948
17 152 178 2592
18 152 178 2592
19 612 178 644
20 612 178 644
21 618 288
22 618 288
23 2586 644
24 2586 644
25 2592
26 2592
27 10948
28 10948

forcing our implementation to use big integer representations to deal with these compli-
cations. This can lead to a substantive decrease in performance.

For the perturbations of the generated worst case instance, the uniform perturbation
model was used. For the matrix values ai,j and bi,j , a new value was uniformly chosen
from the intervals [ai,j − σ, ai,j + σ] and [bi,j − σ, bi,j + σ].

In Figure 5.1, the parameter σ has been set to 10i, for i = 0,−1, ...,−8. The starting
pivot was fixed to be n, since this is the worst case for the algorithm. For each of the worst
case instances (with n ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}) and each σ, 100 uniformly
perturbed instances were generated and executed, and their average is the data used on
the plot.

In Figure 5.2, the magnitude σ has been set from 10−2 down to 10−8, with the starting
pivot fixed at n. For each of the tested magnitudes, 100 uniformly perturbed instances
were generated and executed.

Both plots indicates that, contrary to what one might expect due to the proof by Chen
et al., the running times the worst case instances of Savani and Stengel do indeed drop to
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Figure 5.1: Path length for each perturbed instance as its size grows with constant pertur-
bation magnitudes. Note that the list on the legend is in inverse order to the data on the
graphic.

Figure 5.2: Path length for each perturbed instance as its perturbation magnitude grows
with the size of the input fixed n = 10.
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a polynomial running time with very small perturbations. Note that these perturbations
are extremely small ones, since the values of the original instances can go up to (2n)n.

Another indication that this may be the case comes from Figure 5.3. In this plot the
perturbation was set as a function of the input size. There we can see that even when the
σ gets polynomially small (σ = 1

n4 ), it does not keep up with the worst case instance. The
polynomial decrease in σ ends up behaving in a similar fashion to the fixed sigma, further
illustrating our point.

Figure 5.3: Path length for each perturbed instance as its size grows for perturbation
magnitudes as functions of n. Note that the list on the legend is in inverse order to the
data on the graphic.

These worst case instances having smoothed polynomial running times does not con-
tradict the proof by Chen et al. The proof only shows that there is at least one worst case
instance where the smoothed complexity does not drop to polynomial time. Hence, what
these experiments seen to indicate is that, while this instance should exist, it has not yet
been discovered. Observe that these conclusions are based on a limited set of measure-
ments. In particular, we could only measure small dimensions (n ≤ 20) but we try to
extrapolate an assumption behavior from these data.

The fact that this hard instance is not yet known is a strong indicator that these cases
are very rare in real life instances, and that the LH algorithm performs quite well to
most known cases, and very well for known worst case instances, assuming that small
perturbations are allowed on the input.

Such perturbations are in fact common on real instances, usually caused by a floating
point representation that is not precise enough. In fact, had we not made our solver use
an exact rational representation, errors caused by the more common floating point repre-
sentation would have caused changes in the original worst case instance with dimensions
as small as 10 in the machines used for the experiment.
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Figure 5.4: Time measured for each perturbed instance as its size grows (in seconds).
Note that the list on the legend is in inverse order to the data on the graphic.

In order to draw definite conclusions, it would be preferable to execute instances larger
than n = 20. However, even though there is a significant decrease in the LH path length,
the running time does not drop as much as the path length. In Figure 5.4, we present
the running times for the same instances. We can see that the perturbed instances are
a lot closer to the worst case instance, even slower in some cases. This is due to the
extra precision required to compute the equilibrium in an exact manner with very small σ
values. When a perturbation as small as 10−8 is added, much of the algorithm execution
time is dedicated to perform operations on big integers that would overload if not treated
correctly.

In Table 5.2, Table 5.4 and Table 5.6, results are presented for all possible choices of
pivots, with the average values presented for the perturbation magnitude σ of 0.01, 0.2 and
1, respectively. Table 5.3, Table 5.5 and Table 5.7 show the minimum and maximum path
length for each starting pivot choice and instance size. The maximum dimension showed
is 14, resulting in a maximum of 28 possible starting pivots. In these tables it is possible
to notice that there is a big variation on the path lengths for the perturbed instances, as
shown in the difference between the minimum path lengths and maximum path lengths
observed. Often the minimum path length is lower than 50, which demonstrates how
much such small perturbations can make the instances easier for the LH algorithm.
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Table 5.2: Average path lengths for σ = 1
Pivot Number 2 4 6 8 10 12 14

1 2.90 7.40 11.04 30.15 76.80 58.40 86.05
2 2.80 7.10 11.52 15.80 22.65 44.50 153.45
3 3.65 6.40 14.85 26.90 78.75 61.30 90.70
4 2.45 8.45 18.42 32.50 35.95 45.00 61.00
5 7.05 14.09 20.50 65.40 54.45 75.20
6 6.30 17.71 29.05 45.85 72.50 122.00
7 6.20 18.09 20.85 54.40 40.60 81.35
8 6.30 7.33 31.65 47.05 81.35 166.50
9 13.19 28.35 40.60 48.20 99.15

10 10.66 15.50 48.30 89.55 198.40
11 15.95 25.35 42.85 55.70 111.60
12 9.90 13.70 35.70 146.85 220.40
13 22.40 42.50 111.70 153.00
14 17.45 21.80 88.50 278.35
15 32.75 50.85 69.45 182.45
16 19.15 28.95 22.05 189.30
17 28.35 61.35 127.40
18 35.80 38.00 33.70
19 50.20 51.90 105.25
20 50.50 47.35 50.30
21 39.20 57.25
22 48.60 65.90
23 84.25 69.20
24 46.00 66.90
25 108.20
26 80.85
27 245.05
28 83.35
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Table 5.3: Path with minimum and maximum lengths for σ = 1
Pivot Number 2 4 6 8 10 12 14

1 2 – 5 4 – 15 5 – 33 5 – 140 5 – 268 20 – 303 20 – 500
2 2 – 4 4 – 15 5 – 27 8 – 43 11 – 48 14 – 113 26 – 566
3 2 – 5 4 – 10 4 – 40 5 – 140 5 – 273 21 – 385 21 – 515
4 2 – 4 4 – 17 5 – 35 9 – 79 11 – 95 21 – 130 21 – 186
5 4 – 14 4 – 37 4 – 83 5 – 174 21 – 235 20 – 538
6 4 – 15 4 – 34 9 – 66 11 – 119 21 – 177 21 – 465
7 4 – 13 5 – 27 4 – 65 5 – 111 21 – 159 21 – 373
8 4 – 14 4 – 13 8 – 73 9 – 144 21 – 225 21 – 783
9 4 – 33 9 – 57 4 – 150 20 – 158 21 – 419

10 7 – 27 8 – 30 8 – 192 21 – 228 21 – 851
11 4 – 28 9 – 52 9 – 133 20 – 340 20 – 538
12 7 – 20 7 – 26 10 – 131 20 – 521 21 – 1390
13 8 – 58 9 – 112 20 – 611 37 – 649
14 7 – 45 7 – 68 25 – 184 20 – 1405
15 11 – 72 9 – 135 21 – 189 21 – 599
16 7 – 60 7 – 104 10 – 42 25 – 816
17 8 – 95 21 – 193 21 – 484
18 7 – 137 21 – 108 10 – 105
19 9 – 173 20 – 135 21 – 283
20 7 – 156 21 – 196 21 – 135
21 16 – 86 21 – 187
22 21 – 258 21 – 220
23 10 – 346 20 – 200
24 21 – 177 21 – 261
25 23 – 408
26 21 – 504
27 10 – 1086
28 21 – 495
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Table 5.4: Average path lengths for σ = 0.2
Pivot Number 2 4 6 8 10 12 14

1 4.00 7.70 19.40 42.00 69.05 128.90 191.80
2 4.00 8.45 11.60 21.15 39.60 100.00 87.90
3 4.00 7.15 15.30 45.75 63.10 83.90 118.05
4 4.00 13.25 22.60 30.25 28.45 42.25 67.25
5 9.90 11.95 32.35 59.60 56.75 95.15
6 6.60 29.65 28.95 62.40 80.70 117.75
7 11.00 23.00 22.95 54.60 79.60 62.65
8 7.00 11.10 49.40 72.25 118.55 182.75
9 17.75 34.25 49.90 67.60 49.30

10 11.80 19.85 84.55 124.95 245.70
11 21.85 32.05 70.95 89.85 73.45
12 12.10 13.60 42.20 135.50 357.65
13 16.45 53.70 86.70 301.25
14 25.25 22.35 111.80 252.20
15 18.65 47.35 68.80 231.00
16 31.05 35.10 24.95 245.15
17 24.60 54.20 193.30
18 56.00 38.05 36.30
19 68.20 57.70 164.00
20 71.15 63.10 32.90
21 72.90 89.50
22 78.00 75.80
23 135.90 76.90
24 82.15 116.30
25 110.15
26 139.75
27 152.25
28 118.85
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Table 5.5: Path with minimum and maximum lengths for σ = 0.2
Pivot Number 2 4 6 8 10 12 14

1 4 – 4 4 – 16 5 – 76 5 – 104 20 – 383 20 – 996 20 – 1027
2 4 – 4 6 – 15 8 – 18 12 – 55 14 – 82 29 – 190 24 – 399
3 4 – 4 4 – 15 5 – 44 5 – 144 21 – 264 20 – 767 20 – 1207
4 4 – 4 6 – 22 9 – 46 9 – 59 15 – 66 21 – 110 21 – 183
5 6 – 16 4 – 24 5 – 93 21 – 240 21 – 281 20 – 745
6 4 – 10 8 – 58 9 – 86 21 – 176 21 – 246 21 – 432
7 8 – 15 9 – 38 4 – 60 20 – 150 21 – 358 21 – 502
8 5 – 8 4 – 29 8 – 136 21 – 186 21 – 497 21 – 932
9 8 – 32 9 – 69 10 – 210 20 – 193 20 – 320

10 7 – 31 10 – 42 20 – 337 21 – 747 21 – 1008
11 9 – 43 9 – 74 20 – 328 24 – 208 20 – 402
12 7 – 32 7 – 40 18 – 85 20 – 773 21 – 1211
13 8 – 32 21 – 156 21 – 452 106 – 880
14 7 – 73 10 – 109 25 – 336 20 – 689
15 9 – 62 20 – 79 21 – 278 21 – 585
16 7 – 110 13 – 84 10 – 71 34 – 698
17 14 – 109 20 – 230 21 – 522
18 25 – 164 21 – 86 10 – 146
19 10 – 184 20 – 212 21 – 430
20 24 – 325 21 – 238 21 – 73
21 16 – 199 21 – 229
22 21 – 349 21 – 283
23 10 – 306 20 – 190
24 21 – 377 21 – 726
25 35 – 408
26 21 – 1361
27 10 – 508
28 21 – 622
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Table 5.6: Average path lengths for σ = 0.01.
Pivot Number 2 4 6 8 10 12 14

1 4.00 16.75 38.00 41.90 159.90 179.90 734.10
2 4.00 9.90 18.90 49.30 73.55 122.85 424.35
3 4.00 7.30 31.60 35.35 142.15 188.70 586.85
4 4.00 19.05 29.15 41.20 53.40 81.10 102.45
5 10.50 20.70 34.15 53.10 94.50 365.95
6 8.80 54.25 98.10 139.50 157.40 172.15
7 9.90 27.60 35.80 51.60 56.80 338.55
8 8.80 25.85 109.70 219.55 254.15 207.65
9 15.25 77.75 90.15 88.40 169.10

10 14.95 56.25 222.35 291.20 338.55
11 27.50 43.35 140.15 167.20 213.85
12 29.80 16.25 118.70 425.20 609.90
13 25.30 94.65 324.30 370.85
14 30.80 28.95 164.05 727.15
15 53.15 49.40 202.00 328.60
16 38.60 36.55 62.90 332.10
17 58.10 98.95 263.15
18 71.75 49.75 175.65
19 123.20 93.70 206.25
20 119.70 107.05 79.35
21 115.70 187.20
22 123.75 165.00
23 166.50 107.50
24 139.95 303.85
25 171.85
26 427.90
27 638.60
28 556.30
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Table 5.7: Path with minimum and maximum lengths for σ = 0.01.
Pivot Number 2 4 6 8 10 12 14

1 4 – 4 8 – 21 20 – 78 20 – 190 20 – 890 21 – 750 21 – 5965
2 4 – 4 8 – 14 10 – 28 26 – 88 24 – 226 24 – 440 27 – 1422
3 4 – 4 6 – 8 20 – 46 21 – 96 21 – 680 21 – 762 21 – 4668
4 4 – 4 18 – 20 22 – 42 21 – 72 21 – 122 38 – 243 40 – 216
5 10 – 12 10 – 30 20 – 75 20 – 225 21 – 601 21 – 1007
6 8 – 10 33 – 91 21 – 186 21 – 310 35 – 472 37 – 582
7 9 – 11 22 – 38 12 – 92 20 – 176 20 – 350 21 – 988
8 8 – 10 10 – 42 20 – 229 21 – 468 35 – 770 37 – 1256
9 12 – 32 21 – 144 34 – 222 20 – 348 21 – 510
10 10 – 26 25 – 114 20 – 502 35 – 1047 35 – 1618
11 10 – 41 20 – 70 21 – 263 82 – 492 20 – 770
12 21 – 38 10 – 37 34 – 262 34 – 1288 35 – 5315
13 15 – 50 21 – 187 35 – 929 47 – 978
14 21 – 56 10 – 64 53 – 558 34 – 5456
15 10 – 145 20 – 89 35 – 770 35 – 1154
16 21 – 106 21 – 80 16 – 160 90 – 1524
17 30 – 124 34 – 241 35 – 1043
18 21 – 254 23 – 150 42 – 328
19 10 – 357 34 – 231 35 – 447
20 21 – 529 23 – 330 23 – 243
21 36 – 434 35 – 383
22 23 – 313 23 – 459
23 37 – 677 34 – 567
24 23 – 505 23 – 1217
25 41 – 606
26 23 – 2594
27 35 – 2444
28 23 – 3380
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6 SMOOTHED PRICE OF ANARCHY IN THE TRAFFIC
ASSIGNMENT PROBLEM

The Traffic Assignment Problem (FLORIAN; HEARN, 1995; WARDROP, 1952)
models applications in which traffic participants (also called users) choose routes in a
given road network so as to minimize their individual travel times. As seen in Chap-
ter 3, each arc of the network has an associated latency function that expresses the flow-
dependent delay that users experience if they travel along that arc. The goal of every user
is to choose a path from his origin to his destination such that the total delay to travel
along this route is minimized.

A user equilibrium is a flow that happens when no player can unilaterally reduce his
travel time by using a different path to its destination. A system optimum on the other
hand is an optimal flow which happens when the assignment for all players minimizes
the total travel times on the network. Because the delay of each user also depends on
the choices made by the others, this problem can also naturally be interpreted as a strate-
gic game in which players (users) compete for resources (roads) and every player acts
selfishly in the sense that he attempts to choose a route of minimum delay.

There exist multiple ways to influence user equilibria, usually through the use of
tolls (HEARN; RAMANA, 1998), with the intent of making the gap between the user
equilibrium and the system optimum minimal. Perturbations in real world scenarios are
almost guaranteed to happen. It is then useful to know how much perturbation really af-
fects the equilibrium calculated for an instance. In other words, how much it can alter
the difference between the user equilibrium and the system optimum. If it can completely
alter this relationship, much of the current knowledge of traffic assignment can’t be used
without adjusting for perturbation.

In our context, we perturb TAP instances by adding some random noise to the latency
functions. Our perturbations thus reflect fluctuations in the travel times of the edges. More
specifically, suppose that we are given an instance I = (G, d, l) of TAP. We then define
perturbed latency functions l̄ as follows.

Definition 6.1 (Perturbed Latency Functions). Given an instance I = (G, d, l), then per-
turbed latency functions are defined as:

∀e ∈ E : l̄e = (1 + εe)le, εe
i.u.r←− [0, σ]. (6.1)

Note that εe is chosen independently uniformly at random out of the range [0, σ] for
every edge e ∈ E. We can then define the Smoothed Price of Anarchy of the Traffic
Assignment Problem as follows.
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Definition 6.2 (Smoothed Price of Anarchy of I in TAP). Let fI and f ∗I denote a Wardrop
flow and an optimal flow, respectively, for a given instance I = (G, d, l). The Smoothed
Price of Anarchy of I is then defined as

SPoA(I, σ) =
E[c̄(fĪ)]

E[c̄(f ∗
Ī
)]
,

where c̄ refers to the total cost with respect to the perturbed latency functions, i.e., c̄(f) =∑
e∈E l̄e(fe)fe for a given flow f .

As in Definition 4.9, the expectation is taken over all instances Ī that are obtainable
from I by perturbations. The Smoothed Price of Anarchy in with respect to a game can
then be defined.

Definition 6.3 (Smoothed Price of Anarchy of TAP). Let G be the set of possible instances
for the Traffic Assignment Problem. Furthermore, let I ∈ G be an instance of TAP.

The Smoothed Price of Anarchy of G is then defined as

SPoATAP (σ) = max
I∈G

SPoA(I, σ) .

Clearly, other smoothing models are conceivable as well. However, here we have
chosen the one above because of its good trade-off between simplicity and relevance.
Note that a consequence of our relative perturbation model is that the effect of random
perturbations is more severe on edges that are sensitive to variations in traffic rate while
it is less severe on edges which are rather insensitive to changes in traffic rate.

Note that for our real-world instances, whose latency functions are of the form indi-
cated in Equation (3.1), the above perturbation is equivalent to substituting the free-flow
travel time te with (1 + ε)te.

6.1 Lower Bounds

In this section we present lower bounds for the Smoothed Price of Anarchy for the
Traffic Assignment Problem for both linear and polynomial latency functions. We make
use of the fact that the Pigou instances, described in Section 3.2, are worst case instances
to the unperturbed Price of Anarchy of TAP. We show that the lower bound for the poly-
nomial latency functions case is actually very close to the worst case PoA for TAP, being
bound asymptotically by the same function.

6.1.1 Linear Latencies

For the lower bounds on the Smoothed Price of Anarchy with linear latency functions,
we use Pigou instances with linear latency functions. We derive exact bounds on this
instance using the perturbation model seen in Definition 6.1.

Theorem 6.1. The Smoothed Price of Anarchy of the Pigou instance with linear latency
functions and perturbation magnitude σ is

SPoA(I, σ) =


4σ(3 + σ)

6σ(2 + σ)− (3 + σ(3 + σ)) ln[1 + σ]
for 0 ≤ σ ≤ 1

24σ2(3 + σ)

5 + σ(3 + 25σ(3 + σ))− 6(1 + σ)3 ln[2] + 6 ln[1 + σ]
for σ > 1
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Proof of Theorem 6.1. Let I be the original Pigou instance with two vertices s and t, a
demand of 1 unit of flow and latency functions l1(x) = x for e1 and l2(x) = 1 for e2 as
introduced in Section 3.2.1.1. We perturb the latency functions of this instance according
to the perturbation model described in Definition 6.1. Figure 6.1 shows the perturbed
instance with latency functions

l1(x) = (1 + ε1)x and l2(x) = 1 + ε2,

where ε1, ε2 ∈ [0, σ] are random variables.

s t

Figure 6.1: Pigou instance with linear latency functions and perturbations ε1, ε2 ∈ [0, σ].

The flow at a user equilibrium will use the edge e1 so long as its latency remains lower
than e2. Thus

f1 ≤
1 + ε2

1 + ε1

.

The flow f1 will be one if ε2 ≥ ε1, since that is our total demand. Therefore, for this case
c(f) = 1 + ε1.

If ε2 ≤ ε1, the flow f1 will be 1+ε2
1+ε1

, and thus

c(f) =
1 + ε2

1 + ε1

(1 + ε1)
1 + ε2

1 + ε1

+

(
1− 1 + ε2

1 + ε1

)
(1 + ε2) = 1 + ε2.

In order to determine E[c(f)] for ε1, ε2 chosen uniformly at random from [0, σ], we
need to solve the double integral combining the two possible total costs divided by the
combined probability density function 1

σ2 .

E[c(f)] =

∫ σ

0

∫ ε2

0

1 + ε1

σ2
dε1dε2 +

∫ σ

0

∫ σ

ε2

1 + ε2

σ2
dε1dε2

=
3 + σ

6
+

3 + σ

6
= 1 +

σ

3

To compute the optimum flow of the system, we exploit the fact that an optimal flow
is a Wardrop flow with respect to the marginal cost functions l∗1(x) = (p + 1)(ε1 + 1)xp

and l∗2(x) = 1 + ε2. Then

f ∗1 ≤
1 + ε2

2(1 + ε1)
and f ∗2 ≥ 1− 1 + ε2

2(1 + ε1)
.

Note that both f ∗1 and f ∗2 must be in the interval [0, 1]. If σ ≤ 1, then f ∗1 is 1+ε2
2(1+ε1)

. If
that is the case, then
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c(f ∗) =
1 + ε2

2(1 + ε1)
(1+ε1)

1 + ε2

2(1 + ε1)
+

(
1− 1 + ε2

2(1 + ε1)

)
(1+ε2) = (1+ε2)− (1 + ε2)2

4(1 + ε1)
.

(6.2)
The expectation over the random choices ε1, ε2 ∈ [0, σ], with σ ≤ 1, is therefore

E[c(f ∗)] =

∫ σ

0

∫ σ

0

(1 + ε2)

σ2
− (1 + ε2)2

4σ2(1 + ε1)
dε1dε2

=
6σ(2 + σ)− (3 + σ(3 + σ)) ln[1 + σ]

12σ

Thus, for σ ∈ [0, 1],

SPoA(I, σ) =
4σ(3 + σ)

6σ(2 + σ)− (3 + σ(3 + σ)) ln[1 + σ]
, for 0 ≤ σ ≤ 1.

For σ > 1, there are two cases: if ε1 ≤ ε2−1
2

, then the flow f ∗1 is one, and c(f ∗) =
1 + ε1. Otherwise, if ε1 >

ε2−1
2

, then f ∗1 is the same one used in equation 6.2 and thus so
is c(f ∗).

Taking the expectation over the random choices ε1, ε2 ∈ [0, σ] for these ranges with
different total cost functions, we obtain

E[c(f ∗)] =

∫ 1

0

∫ σ

0

(1 + ε2)

σ2
− (1 + ε2)2

4σ2(1 + ε1)
dε1dε2 +

∫ σ

1

∫ ε2−1
2

0

(1 + ε1)

σ2
dε1dε2

+

∫ σ

1

∫ σ

ε2−1
2

(1 + ε2)

σ2
− (1 + ε2)2

4σ2(1 + ε1)
dε1dε2

=
5 + σ(3 + 25σ(3 + σ))− 2(1 + σ)3 ln[8] + 6 ln[1 + σ]

72σ2

Thus, the SPoAfor this case is

SPoA(I, σ) =
24σ2(3 + σ)

5 + σ(3 + 25σ(3 + σ))− 6(1 + σ)3 ln[2] + 6 ln[1 + σ]
, for σ ≥ 1.

Combining both equations for both ranges of σ, we have that

SPoA(I, σ) =


4σ(3 + σ)

6σ(2 + σ)− (3 + σ(3 + σ)) ln[1 + σ]
for 0 ≤ σ ≤ 1

24σ2(3 + σ)

5 + σ(3 + 25σ(3 + σ))− 6(1 + σ)3 ln[2] + 6 ln[1 + σ]
for σ > 1

(6.3)

Figure 6.2 shows the SPoA bound for Pigou as a function of σ, for σ ≤ 1 , while
Figure 6.3 illustrates the SPoA bound for much bigger values of σ. While the decrease is
fast for big values of σ, it is always larger than 1.15, staying almost in the middle of the
best possible ratio of one and the worst possible ratio of 4/3.
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Figure 6.2: Smoothed Price of Anarchy of Pigou instances with linear latency functions
for σ ≤ 1.
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Figure 6.3: Smoothed Price of Anarchy of Pigou instances with linear latency functions
for big perturbation magnitudes σ.
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Note that a σ of one means that the latencies can double their costs, and greater magni-
tudes makes the smoothed price of anarchy behave more like the average price of anarchy
would. For a σ of less than one, the drop on the PoA ratio is significant, with a SPoA of
1.21692 for σ = 1.

This method of finding bounds can be extended for other types of latency functions,
and is extended for polynomial latency functions in the next section.

6.1.2 Polynomial Latencies

We consider Pigou instances with polynomial latency functions. We will derive exact
bounds on the Smoothed Price of Anarchy under our random perturbations for these in-
stances. These bounds also establish a lower bound on the Smoothed Price of Anarchy for
general multi-commodity instances. We leave it as an important open problem to derive
bounds on the Smoothed Price of Anarchy for multi-commodity instances and polynomial
latency functions.

Theorem 6.2. The Smoothed Price of Anarchy of the Pigou instance with polynomial
latency functions of degree p is

SPoA(I, σ) =
3 + σ

3 + 3σ
2

+
3p3((1+p)(1+σ))−1/p

(
−1+(1+σ)

2+ 1
p

)(
−1−σ+(1+σ)

1
p

)
(1+2p)(−1+p2)σ2

(6.4)

Proof of Theorem 6.2. Let I be the original Pigou instance with two vertices s and t, a
demand of 1 unit of flow and latency functions l1(x) = xp for e1 and l2(x) = 1 for e2

as introduced in Section 3.2.1.2. After perturbing the latency functions of I as described
above, we obtain the instance depicted in Figure 6.4 with latency functions

l1(x) = (1 + ε1)xp and l2(x) = 1 + ε2,

where ε1, ε2 ∈ [0, σ] are random variables.

s t

Figure 6.4: Pigou instance with polynomial latency functions and perturbations ε1, ε2 ∈
[0, σ].

We first determine a Wardrop flow. With the addition of perturbation, edge e1 is used
as long as its latency is lower than the latency of e2. Therefore

f1 ≤ p

√
1 + ε2

1 + ε1

.
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Since this can be greater than our maximum flow,

f1 = min

(
p

√
1 + ε2

1 + ε1

, 1

)
and f2 = 1−min

(
p

√
1 + ε2

1 + ε1

, 1

)
.

The flow f1 is going to be 1 as long as ε2 ≥ ε1. If this is the case, then c(f) = 1 + ε1.
If ε2 ≤ ε1, then

c(f) = p

√
1 + ε2

1 + ε1

(1 + ε1)

(
p

√
1 + ε2

1 + ε1

)p
+

(
1− p

√
1 + ε2

1 + ε1

)
(1 + ε2) = 1 + ε2.

In order to determine E[c(f)] for ε1, ε2 chosen uniformly at random from [0, σ], we
need to solve the following double integral. (Note that the combined probability density
function is 1

σ2 ).

E[c(f)] =

∫ σ

0

∫ ε2

0

1 + ε1

σ2
dε1dε2 +

∫ σ

0

∫ σ

ε2

1 + ε2

σ2
dε1dε2

=
3 + σ

6
+

3 + σ

6
= 1 +

σ

3

In order to compute the system optimum flow, we exploit the fact that an optimal flow
is a Wardrop flow with respect to the marginal cost functions l∗1(x) = (p + 1)(ε1 + 1)xp

and l∗2(x) = 1 + ε2. Then

f ∗1 = p

√
1 + ε2

(p+ 1)(ε1 + 1)
and f ∗2 = 1− p

√
1 + ε2

(p+ 1)(ε1 + 1)
.

Note that σ must be at most p for the optimum flow f ∗1 to remain below the maximum
flow. The cost of f ∗ is

c(f ∗) = p

√
1 + ε2

(p+ 1)(ε1 + 1)
(1 + ε1)

(
p

√
1 + ε2

(p+ 1)(ε1 + 1)

)p

+

(
1− p

√
1 + ε2

(p+ 1)(ε1 + 1)

)
(1 + ε2)

= 1 + ε2 − p(1 + p)−1− 1
p (1 + ε1)−

1
p (1 + ε2)1+ 1

p .

Taking the expectation over the random choices ε1, ε2 ∈ [0, σ], we obtain

E[c(f ∗)] =

∫ σ

0

∫ σ

0

1 + ε2 − p(1 + p)−1− 1
p (1 + ε1)−

1
p (1 + ε2)1+ 1

p

σ2
dε1dε2

= 1 +
σ

2
+
p3((1 + p)(1 + σ))−1/p

(
−1 + (1 + σ)2+ 1

p

)(
−1− σ + (1 + σ)

1
p

)
(1 + 2p) (−1 + p2)σ2

Thus

SPoA(I, σ) =
3 + σ

3 + 3σ
2

+
3p3((1+p)(1+σ))−1/p

(
−1+(1+σ)

2+ 1
p

)(
−1−σ+(1+σ)

1
p

)
(1+2p)(−1+p2)σ2

(6.5)
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Figure 6.5: Smoothed Price of Anarchy of Pigou instances with polynomial latency func-
tions as a function of σ for p = 2, 3, 4.

Figure 6.6: Smoothed Price of Anarchy of Pigou instances with polynomial latency func-
tions as a function of p for σ = 0, 0.1, 0.5 and 1.

Figure 6.5 illustrates the SPoA bound for Pigou instances for p = 2, 3, 4 as a function
of σ, while Figure 6.6 shows the SPoA bound as a function of p, with fixed σ = 0, 0.1, 0.5
and 1.
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Recall that the Pigou instance is the worst-case instance for the Price of Anarchy.
Clearly, the Smoothed Price of Anarchy either stays the same or improves (i.e., decreases).
As our bound shows, it improves but the decrease is rather low. Even for perturbations of
the magnitude σ = 1, the decrease is about 10% only. Note that in this case we may double
the latency functions. With increasing degree, this decrease becomes more significant. If
we restrict σ to be less than or equal to 1

p
, which can be seen in Figure 6.7, then the

Smoothed Price of Anarchy asymptotically remains Θ( p
ln p

) as in the deterministic case.

Figure 6.7: Smoothed Price of Anarchy of Pigou instances shown to remain Θ( p
ln p

)

6.2 Experimental Results in Benchmark Instances

6.2.1 Experimental Setup

In order to evaluate if real world instances behave in a different manner in rela-
tion to the worst case instances for the Price of Anarchy, we tested a few benchmark
instances freely available for academic research from the Transportation Network Test
Problems (BAR-GERA, 2011).

In these instances, the latencies follow the U.S. Bureau of Public Roads definition,
shown in (3.1), with α = 0.15 and β = 4. We chose a few instances to compare and
perturb, with both big and small instances evaluated. The instances details can be seen in
Table 6.1.

To find the user equilibrium and system optimum, we used the Frank-Wolfe algo-
rithm (FRANK; WOLFE, 1956). The algorithm was implemented in C++ and compiled
in 64 bit gcc version 4.4.5, in a Linux kernel version 2.6.35. The machine used for the
tests has an Intel R© CoreTM i7 CPU with 4 cores, with 12 GB of RAM memory.
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Table 6.1: List of benchmark instances used in the experiments.
Instance Name |V| |E| |K| |E|·|K|

Sioux Falls 24 76 528 40,128
Friedrichshain 224 523 506 264,638

Chicago Sketch 933 2,950 83,113 245,183,350
Berlin Center 12,100 19,570 49,689 972,413,730

6.2.2 Results

We perturbed the instances with σ ∈ {10−9, 10−8, ..., 10−2}. We also evaluated in-
stances with a greater perturbation, with σ ∈ {0.1, 0.2, ..., 0.9}. The algorithm was
stopped when it reached a relative gap less than of 10−5, except the Sioux Falls instance
which the minimum relative gap was set to 10−6. For each perturbation magnitude σi,
10 runs were executed and the average value was considered. In Table 6.2, the Price of
Anarchy of the instances are presented. Also, for the perturbed instances, for among all
averages for the different values of σ, the mean, the standard variation, the minimum and
maximum values are presented.

Table 6.2: Original PoA and perturbed PoA related measures found for each instance.
Instance Name POA Mean Minimum Maximum Std. Deviation

Sioux Falls 1.039682 1.039689 1.039676 1.039707 8.049609× 10−6

Friedrichshain 1.086374 1.086422 1.086345 1.086599 4.996005× 10−5

Chicago Sketch 1.023569 1.023567 1.023561 1.023572 2.137639× 10−6

Berlin Center 1.006141 1.006142 1.006133 1.006155 3.831177× 10−6

In Table 6.3 we can see the average time that the perturbed instances executed. It is
clear that for these instances the perturbations did not significantly alter their execution
time. Note that the Sioux Falls instance takes longer than the Friedrichshain instance due
to the smaller relative gap used on the Sioux Falls instance.

Table 6.3: Execution time found for original instances and the average for the perturbed
instances, in seconds. Here, “UE” refers to user equilibrium and “SO” to system optimum.

Instance Name UE time SO time Average UE time Average SO time
Sioux Falls 1.58 1.6 1.59 1.61

Friedrichshain 0.43 0.92 0.43 0.96
Chicago Sketch 27.99 36.89 27.34 36.56
Berlin Center 233.91 360.07 220.97 360.64

In Figures 6.8, 6.9, 6.10 and 6.11, we present graphics for each tested instance, with
σ ∈ {0.1, ..., 0.9} in the top and σ ∈ {10−9, ..., 10−2} on the bottom for each instance.

Both the smoothed and the original Price of Anarchy are close to one for all tested
instances, which gives some empirical evidence that the worst case is not so likely to
occur in real world instances. Furthermore, when we look at the Smoothed Price of
Anarchy for all instances, as shown in Figures 6.8, 6.9, 6.10, 6.11, we notice that even for
relatively large σ, the Smoothed Price of Anarchy remains almost constant and very close
to the original Price of Anarchy.

The small trend that the Smoothed Price of Anarchy tends to follows on these in-
stances seems to be related more with the particular instance than with a more general
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rule. This can be seen on the difference between the Friedrichshain instance and the
Chicago instance, while in the Berlin instance it appears to remains constant.

The fact that the Smoothed Price of Anarchy does not drop significantly from the
original Price of Anarchy, allied with these experimental results, shows that while pertur-
bation does occur frequently in real world scenarios, it does not have a great influence on
the actual distance from users equilibrium to the overall system optimum.
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Figure 6.8: Experimental Smoothed Price of Anarchy for the Sioux Falls instance, with
σ ∈ {0.1, ..., 0.9} in the top and σ ∈ {10−9, ..., 10−2} in the bottom.
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Figure 6.9: Experimental Smoothed Price of Anarchy for the Friedrichshain instance,
with σ ∈ {0.1, ..., 0.9} in the top and σ ∈ {10−9, ..., 10−2} in the bottom.
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Figure 6.10: Experimental Smoothed Price of Anarchy for the Chicago sketch instance,
with σ ∈ {0.1, ..., 0.9} in the top and σ ∈ {10−9, ..., 10−2} in the bottom.
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Figure 6.11: Experimental Smoothed Price of Anarchy for the Berlin Center instance,
with σ ∈ {0.1, ..., 0.9} in the top and σ ∈ {10−9, ..., 10−2} in the bottom.



69

7 CONCLUSIONS

In this thesis we studied two important subjects in game theory with respect to the
effect of perturbation. For bimatrix games, we analyzed known worst case instances for
the Lemke-Howson algorithm, and displayed evidence that perturbation can greatly affect
those instances.

A bimatrix game is a game of two players in normal form. The game is specified by
two m× n matrices of pure strategies, with the matrices’ values being the payoffs of the
players. The Lemke–Howson algorithm is a complementary pivoting algorithm which
is widely used for finding a Nash equilibrium of a bimatrix game. These games can be
subject to a small amount of perturbation, specially if the game is based around data and
situations from real-world scenarios.

One important complexity model that can analyze these cases with perturbation is
called smoothed analysis (SPIELMAN; TENG, 2004). For bimatrix games, Chen et al.
proved (CHEN; DENG, 2006), under some assumptions, that there exists at least one
worst case instance that remains exponential even with small perturbations. In the proof,
however, no explicit instance construction is provided. It also does not contain an assess-
ment of the likelihood of these hard instances in real cases, leaving room to experimental
exploration.

In this thesis we studied the effect of perturbation on the only known (to the best of our
knowledge) class of games that take exponential time for the Lemke-Howson algorithm
to solve. In (SAVANI; STENGEL, 2004), the author presented a class of bimatrix games
for which the LH algorithm, no matter which starting pivot is chosen, uses a path that
is exponential on the game size. Their construction relies on dual cyclic polytopes from
polytope theory.

We perturbed the instances described in (SAVANI; STENGEL, 2004) according to
smoothed analysis, using a uniform perturbation model. Even for polynomially small
perturbation magnitude σ values such as 1

n4 , our experiments give reason to believe that
the number of steps the LH algorithm takes dropped to polynomial running times. This
indicates that the worst case instance for the smoothed complexity of bimatrix games has
not been discovered yet, and does not happen often on practice. Note that these conclu-
sions are made based on a relatively small instance size of 20, since it was not feasible to
run experiments for larger sizes. Also relevant is the fact that to simulate these very small
perturbations, an exact implementation of the LH algorithm was built (RODRIGUES,
2011).

We extended the idea of smoothed analysis to analyze the Price of Anarchy. The Price
of Anarchy (KOUTSOUPIAS; PAPADIMITRIOU, 1999) is a measure in game theory
that compares the optimal social welfare of a game with the worst possible Nash equi-
librium. We proposed a measure of perturbation of the Price of Anarchy based on the
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smoothed analysis for algorithms, the Smoothed Price of Anarchy.
We also analyzed the effects of perturbation on a network problem that can be modeled

in game theory. The Traffic Assignment Problem is concerned with the choice of routes
in a road network given a set of users with an origin and a destination. It is of extreme
importance for traffic planning, and, in real world cases, perturbation occurs frequently.
Therefore, it is useful to have a notion of how much can this perturbation affects its in-
stances. It is of particular interest how the Price of Anarchy is affected in these situations,
since the goal of road network planning is usually to approximate the user equilibrium to
the system optimum.

Using the Smoothed Price of Anarchy, we propose a perturbation model for the Traffic
Assignment Problem. We give a lower bound for the Smoothed Price of Anarchy using
this perturbation model that is of the same order as the worst case Price of Anarchy for
polynomial latencies. A bound on the SPoA for linear latency functions is also presented.

Finally, we show experimentally that the effects of perturbation on the Price of Anar-
chy of real world instances, at least for the known instance benchmarks in the literature
present in the Transportation Network Test Problems, are severely limited and show no
general trend.

This thesis is also the basis for the paper (RODRIGUES et al., 2011), entitled “On the
Smoothed Price of Anarchy of the Traffic Assignment Problem”, a joint work with Guido
Schäfer, Luciana Buriol and Marcus Ritt.

7.1 Discussion and Future Work

For bimatrix games, a very important extension is to find an instance where the proof
by Chen et al. holds true, i.e., to find an exponential time instance where small perturba-
tions does not make the running time drop to polynomial time.

One possible approach is as follows. In the paper by Chen et al. (CHEN; DENG;
TENG, 2006), in order to prove that no ε-approximation for two player NASH exists,
several reductions from other PPAD-complete problems are performed. Perhaps if one
was to take a worst case instance from these problems and perform the transformations
explained in the paper a worst case instance of such kind could appear.

The problem with this approach is that there is no guarantees that this new instance
behaves in the desired manner, since the original paper does not mention an instance.

7.1.1 Hypercube based instances

Another option is to create an instance from scratch that behaves in that manner. It
is possible to make instances by taking different polytopes as the origin. An interest-
ing experiment is to create an instance that represents the Klee-Minty polytope (KLEE;
MINTY, 1972), which is a well known worst case instance for the simplex algorithm, and
to apply the already developed transformations to generate both matrix A as well as B
required for the LH algorithm.

The path used by the Klee-Minty’s instances are exponential in the dimension of the
polytope being searched. In Figure 7.1 we give the path for the three dimensional case,
using a cube to represent the instance. In this representation, each hyperplane is an in-
equality of the problem, with the solution always being in one of the polytope vertices.

To generate this instance, one would have to start with a hypercube for one of the
polytopes and attempt to generate the other polytope so that at least one of the chosen
starting pivots maintains its exponentially long path.
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Figure 7.1: Klee-Minty’s instances behavior in the three dimensional case.

Figure 7.2: Lemke-Howson exponential instance for the three dimensional case.

Table 7.1: Normal form game for Figure 7.2.

A \ B 3 4 5
1 1, 0 0, 1 0, 1
2 0,−2 1, 0 0, 1
3 0, 2 0, 1 1, 0

One possible polytope which behaves this way is the one in Figure 7.2 and presented
in Table 7.1. This polytope has been found solving a system of inequalities that guarantees
the Lemke-Howson path to behave exactly as the one found on the Klee-Minty’s instances
for simplex up to about half of path, when the equilibrium is found. Since there are two
polytopes in the Lemke-Howson algorithm, instead of just one as in simplex, the number
of steps remains the same.

The challenge is to find a way to grow this instance to higher dimensions in a feasible
way, preferably with a polynomial time algorithm. It is unclear if this approach is possible,
and how to handle the possible starting pivot choices, since this instance only has an
exponential path in relation to size n for a few selected pivots.
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7.1.2 Smoothed Price of Anarchy in different contexts

The idea of analyzing the Price of Anarchy with respect to perturbation is interesting
to a number of games other than the one studied in this thesis. For example, this could
be done for several other congestion games, such as finite congestion games, potential
games and others. For games with Nash equilibria with different total costs, an extension
to include a definition of Smoothed Price of Stability is also of interest.

Another area for further research is on perturbation models for the Traffic Assignment
Problem. More complex models for relative perturbation are needed to make the theoret-
ical analysis closer to practice, as well as restricting further the type of latency functions
allowed. Deriving bounds on the SPoA for additive perturbation models is also impor-
tant, specially for situations modeled by the Traffic Assignment Problem other than road
congestion.

A type of perturbation that is closer to practice and that would be interesting to study
is a kind of error propagation model, where one link suffers a somewhat significant per-
turbation, which spreads to adjacent links on the network. This models more closely a
situation where weather and roadblocks affect more vulnerable roads, such as when there
is heavy rain in some cities: certain roads remain with their capacities unaltered, while
other roads may experience flooding.

Finally, it would be important to find upper bounds on the Smoothed Price of Anarchy
for the Traffic Assignment Problem, specially for linear latency functions. An approach
to accomplish this is to try to adapt the proof in (ROUGHGARDEN, 2003) to work with
our perturbed instances. That would lead to the upper bounds of the SPoA being the same
as the ones found in this thesis.
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APPENDIX A ANÁLISE SUAVISADA EM EQUILÍBRIOS
NASH E NO PREÇO DA ANARQUIA

RESUMO DA DISSERTAÇÃO EM PORTUGUÊS

A.1 Teoria dos Jogos

Teoria dos jogos é um ramo da matemática com diversas aplicações em áreas como
economia, biologia, ciências política, entre muitas outras. Existem também muitas apli-
cações na área da ciência da computação, como problemas relacionados com a Internet e
roteamento. A teoria dos jogos visa formalizar o comportamento em situações em que o
benefício das escolhas de um indivíduo depende das escolhas dos outros.

Os jogos estudados são matematicamente definidos como um conjunto de jogadores,
um conjunto de estratégias puras e um payoff associado a cada combinação de estratégias.

Definition A.1 (Jogo). Existem n jogadores. Cada jogador i tem um conjunto Si =
{s1, ..., smi} de estratégias puras, onde mi ≥ 2. O conjunto S = S1×S2× ...×Sn repre-
senta a combinação de todas as estratégias possíveis, onde um vetor x = (x1, x2, ..., xn) ∈
S representa um perfil de estratégias puras, sendo que xi é uma estratégia pura para o
jogador i.

Para cada jogador i existe uma função de payoff fi : S → R, a qual define o payoff
fi(x) do jogador i para um dado perfil de estratégia x ∈ S.

Um jogo estratégico G é então definido como a tupla consistindo do conjunto S e a
função de payoff f para n jogadores, i.e.

G = (S, f).

O equilíbrio de Nash é uma estratégia de solução no qual cada jogador, levando em
conta as estratégias dos outros jogadores, não tem nenhum incentivo para mudar a sua
estratégia. Um equilíbrio de Nash é estável. Uma vez que um equilíbrio seja obtido,
nenhuma alteração unilateral da estratégia é lucrativa para qualquer jogador.

Um dos exemplos mais conhecidos na área de teoria de jogos é o dilema do pri-
sioneiro. Nele, dois suspeitos são presos pela polícia. A polícia não tem provas suficientes
para condená-los. Cada um tem a escolha de confessar o crime ou ficar em silêncio. Se
ambos ficarem em silêncio, não haverá provas para condená-los por esse crime e eles fi-
carão na cadeia por um breve período de dois anos por crimes anteriores. Caso somente
um deles confesse, o seu tempo de cadeia será de apenas um ano e o outro ficará com
cinco anos. Caso ambos confessem, eles terão uma sentença de quatro anos.
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Table A.1: Dilema do prisioneiro
P1 \ P2 Confessar Negar

Confessar −4,−4 −1,−5
Negar −5,−1 −2,−2

A Tabela A.1 apresenta a matriz de payoffs do jogo do dilema do prisioneiro. Nesta
matriz, os números de cada célula i, j representam os payoffs da estratégia em que o
prisioneiro P1 escolhe a estratégia i e o prisioneiro P2 escolhe a estratégia j. Esta forma
de representar um jogo é conhecida como forma normal, na qual uma matriz mostra todos
os jogadores, estratégias e payoffs.

Esse exemplo deixa claro que nem sempre um equilíbrio de Nash corresponde a uma
estratégia de solução com o maior benefício mútuo. Outra característica importante é que
um jogo pode ter múltiplos equilíbrios de Nash, com payoffs completamente diferentes
entre eles. O perfil de estratégias que fornece o maior benefício mútuo, isto é, a estratégia
que otimiza a soma dos payoffs presentes nela em relação a todas as outras possíveis
estratégias é chamada de ótimo do sistema.

Um equilíbrio de Nash pode ser puro ou misto. Um equilíbrio é puro se cada jogador
i utiliza somente um perfil de estratégias puras xi, enquanto que em um equilíbrio misto é
permitido aos jogadores utilizar um conjunto de estratégias com uma certa probabilidade
associada a cada perfil de estratégia pura.

A.2 Jogos Bimatrizes

Em jogos bimatrizes, dois jogadores P1 e P2 tem suas estratégias puras determinadas
por matrizes A e B, respectivamente, com m estratégias para o jogador P1 e n estratégias
para o jogador P2. Um equilíbrio de Nash neste tipo de jogo pode ser definido como um
vetor de probabilidades para cada jogador indicando qual a chance de cada estratégia pura
ser utilizada neste equilíbrio.

A.2.1 O algoritmo de Lemke-Howson

O algoritmo de Lemke-Howson (LEMKE; J. T. HOWSON, 1964) foi formulado para
encontrar um equilíbrio de Nash em um jogo de dois jogadores em forma normal. No
seu pior caso, ele pode ter um número exponencial de passos para achar um equilíbrio
válido, sendo que instâncias que provoquem esse comportamento podem ser encontradas
em (SAVANI; STENGEL, 2004). Apesar de existirem esses piores casos, pouco estudo
experimental foi realizado nestas instâncias, particularmente em como perturbações al-
teram a performance do algoritmo.

O algoritmo utiliza uma técnica de pivoteamento iterado (iterated pivoting). Seja
a matriz A e B a representação dos payoffs dos jogadores P1 e P2, respectivamente,
uma operação de pivoteamento em A é realizada como um primeiro passo e usa-se o
resultado desta operação como parte na decisão de onde fazer o pivoteamento na matriz
B do jogador P2.

Outra forma de visualizar esse processo é através da representação baseada em polí-
topos. Nesta representação, o polítopo P é formado pela matriz B (transposta) como um
conjunto de desigualdades e o polítopo Q é formado pela matriz A transposta. Eles são
definidos como:
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P =
{
x ∈ Rm | x ≥ 0, BTx ≤ 1

}
, Q =

{
x ∈ Rn | y ≥ 0, ATy ≤ 1

}
A.3 Preço da Anarquia

O Preço da Anarquia (Price of Anarchy (PoA)) é uma medida da possível ineficiên-
cia de equilíbrios Nash introduzido por Koutsoupias e Papadimitriou (KOUTSOUPIAS;
PAPADIMITRIOU, 1999). Em um dado jogo, o ela compara o melhor resultado possível
do sistema como um todo em relação ao pior equilíbrio Nash possível neste jogo, tendo
como métrica a soma dos payoffs de todos os jogadores neste equilíbrio.

Definition A.2 (Preço da Anarquia). Seja G um jogo estratégico com n jogadores, com
um conjunto de estratégias Si para cada jogador i e uma função de custo ci : S → R,
onde S = S1 × · · · × Sn. Ainda, seja C : S → R uma função do custo social que mapeie
todo perfil de estratégia s ∈ S para um valor não negativo que represente o custo do
jogo. Dada a instância I = (G, (Si), (ci)), NE(I) é o conjunto de perfis de estratégias
s ∈ S que são equilíbrios de Nash para I .

O Preço da Anarquia de I é definido como

PoA(I) =
maxs∈NE(I) C(s)

mins∈S C(s)
,

e o Preço da Anarquia da classe de jogos G é definido como

PoA(G) = max
I∈G

PoA(I)

A.4 Problema de Atribuição de Tráfego

No Problema de Atribuição de Tráfego (Traffic Assignment Problem (TAP)) , cada
usuário navega em um grafo representando uma rede viária a partir de uma origem para
um destino. Cada aresta desse grafo tem um determinado custo associado. De que
maneira que os usuários desta rede se comportam conduz a dois problemas de otimização.
Os usuários podem ter como objetivo simplesmente minimizar o seu próprio tempo, se
comportando de maneira egoísta, análoga a como os jogadores se comportam segundo a
teoria dos jogos. Em contrapartida, os usuários podem se comportar de forma cooperativa,
buscando minimizar o tempo médio de viagem de todos os usuários.

Esses comportamentos foram definidos por Wardrop, em (WARDROP, 1952). O
primeiro princípio de equilíbrio de Wardrop corresponde ao comportamento egoísta dos
usuários, enquanto que o segundo princípio corresponde ao comportamento cooperativo
entre os usuários. Se considerarmos os usuários como jogadores, o primeiro princípio de
equilíbrio é equivalente, neste contexto, ao equilíbrio de Nash. Além disso, o segundo
princípio de equilíbrio é análogo ao ótimo do sistema, no qual o custo total dos usuários
é minimizado.

Uma rede viária neste contexto é representado como um multigrafo direcionado G =
(V,E), onde V é o conjunto de vértices e E é o conjunto de arestas. Os usuários (jo-
gadores) são modelados por um conjunto de commodities K com cada commodity i ∈ K
tendo um par de vértices associado (si, ti) ∈ V × V . Usuários que possuem o mesmo
par origem-destino (si, ti) pertencem a mesma commodity i. Para cada commodity i ∈ K
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existe uma demanda di que especifica o fluxo total (correspondendo aos usuários da com-
modity i) que necessita viajar de si para ti.

O conjunto de caminhos de si para ti é denominado como Pi. Seja P = ∪i∈KPi.
Um fluxo f especifica para cada caminho P ∈ P um valor não negativo de fluxo que
atravessa P , i.e., f é uma função f : P → R+. O fluxo na aresta e ∈ E é definida como
fe =

∑
P :e∈P fP , onde P ∈ P . Um fluxo f é factível se ele satisfaz a demanda para cada

commodity, i.e.,
∑

P∈Pi fP = di para cada i ∈ K.
Para cada aresta e ∈ E é dado uma função de latência le : R+ → R+ que mapeia o

fluxo fe de uma aresta e para o tempo de travessia le(fe). É assumido para esse problema
que todas as funções de latência são não-negativas, diferenciáveis e não-decrescentes. A
latência do caminho P ∈ P é definida como lP =

∑
e∈P le(fe). Por consequência, usa-se

(G, d, l) para se referir a uma instância do Problema de Atribuição de Tráfego.
Para se avaliar o tempo total de travessia de uma rede, é definido uma função de custo

c(f) =
∑

e∈E le(fe)fe. O ótimo do sistema (system optimum), ou fluxo ótimo é um fluxo
factível f ∗ que minimize esse tempo total de travessia determinado por c(f ∗).

Um fluxo factível f é denominado um equilíbrio de usuário, ou um fluxo Wardrop, ou
ainda um equilíbrio Nash para o TAP se o fluxo de cada commodity i viaja por um caminho
de latência mínima disponível. Isto é, para cada commodity i todos os caminhos que
tenham algum fluxo positivo tem o mesmo valor de latência e todos os outros caminhos
não possuem latência menor.

Definition A.3 (Fluxo Wardrop). Um fluxo f é um fluxo Wardrop se

∀i ∈ K, ∀P1, P2 ∈ Pi, fP1 > 0 : lP1(f) ≤ lP2(f). (A.1)

Note que, enquanto é possível existir múltiplos equilíbrios, o custo c(f) de um fluxo
Wardrop f é único (mais detalhes em (ROUGHGARDEN, 2003)).

Um fluxo ótimo corresponde a um fluxo Wardrop com relação a funções de custo
marginais (marginal cost functions). A função de custo marginal de uma aresta e é
definida como l∗e(x) = le(x) + x d

dx
(le(x)). Um fluxo factível f ∗ é um fluxo ótimo para

(G, d, l) se e somente se ele é um fluxo Wardrop para a instância (G, d, l∗) (mais detalhes
em (ROUGHGARDEN, 2003)).

A.4.1 Preço da Anarquia para o Problema de Atribuição de Tráfego

No contexto do Problema de Atribuição de Tráfego (TAP), a definição descrita em A.2
pode ser simplificada para o seguinte:

Definition A.4 (Preço da Anarquia para o TAP). Seja I = (G, d, l) uma instância do TAP.
O Preço da Anarquia de I é

PoA(I) =
c(f)

c(f ∗)
,

onde f e f ∗ é um fluxo Wardrop e um fluxo ótimo de I , respectivamente.
O Preço da Anarquia para o TAP é definido como

PoA = max
I

PoA(I),

onde o máximo é tomado sobre todas as possíveis instâncias de entrada.

O Preço da Anarquia é dependente diretamente de quais os tipos de funções de latência
as instâncias do TAP podem ter. Roughgarden e Tardos (ROUGHGARDEN; TARDOS,
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2002) provaram que para latências lineares o Preço da Anarquia é 4
3
. Além disso, Rough-

garden provou que o Preço da Anarquia é independente da topologia da rede viária (ROUGH-
GARDEN, 2003). Entre outros resultados, estes estudos revelam que o Preço da Anar-
quia para funções de latência polinomiais acontecem em instâncias bastante simples que
consistem de somente dois arcos paralelos, também conhecidos como instâncias Pigou
(Figura A.1). Para o caso polinomial, foi provado que o PoA é PoA(I) = (p+1) p

√
p+1

(p+1) p
√
p+1−p ∈

Θ( p
ln p

), onde p é o grau do polinômio permitido.

s t

Figure A.1: Instância Pigou com funções de latência lineares.

A.5 Análise Suavizada (Smoothed Analysis)

A análise suavizada (Smoothed Analysis) de algoritmos foi definida por Spielman e
Teng em (SPIELMAN; TENG, 2004). Ela é uma abordagem relativamente nova à análise
de algoritmos, em contraste à análise de pior caso e à análise de caso médio. Uma das
principais motivações desse tipo de análise é para tentar entender o algoritmo Simplex,
que tem uma complexidade de pior caso exponencial e ainda sim é um algoritmo muito
eficiente na prática.

A complexidade suavizada de um algoritmo é o máximo sobre as entradas do tempo
de execução esperado desse algoritmo sob pequenas perturbações nestas entradas. Isso
significa que a complexidade suavizada é medida não somente no tamanho n da entrada
mas também sobre uma magnitude de perturbação σ.

Definition A.5 (Complexidade Suavizada (Smoothed Complexity)). Seja TA(x) o tempo
de execução do algoritmo A para a instância x. Seja Xn o conjunto de instâncias de A
com o tamanho n.

Para uma instância x e um parâmetro de magnitude σ, e µσ(x) denote um conjunto
de instâncias que podem ser obtidas a partir de x ao se aplicar perturbações aleatórias
de magnitude σ. Então, a complexidade suavizada do algoritmo A sob perturbações de
magnitude σ é:

S(A, n, σ) = max
x∈Xn

(
E

x̄∈µσ(x)
[TA(x̄)]

)
.

A.6 Complexidade Suavizada de Jogos Bimatrizes

Em (CHEN; DENG, 2006), é provado que a complexidade suavizada do algoritmo
Lemke-Howson não é polinomial, tanto para perturbações uniformes quanto para pertur-
bações Gaussianas. Os autores provam que não existe um algoritmo que computa um
equilíbrio de Nash ε-aproximado em tempo polinomial. Segue-se do artigo que esse fato
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é equivalente ao problema de se encontrar um equilíbrio de Nash não estar em tempo
polinomial suavizado sob perturbações σ.

A maneira que a prova é construída entretanto não fornece uma forma direta de con-
struir uma instância que cause que o algoritmo LH se comporte exponencialmente mesmo
com perturbações a esta instância. Isso torna mais difícil verificar o quão provável é de se
encontrar esse tipo de instância em um cenário realista. Consequentemente, nos experi-
mentos realizados as instâncias geradas foram as descritas por Savani e Stengel (SAVANI;
STENGEL, 2004), as quais são as únicas conhecidamente exponenciais para o algoritmo
LH.

A.6.1 Resultados Experimentais para Jogos Bimatrizes

Foi desenvolvido uma implementação do algoritmo LH baseado na implementação
de Codenotti et al. (CODENOTTI; ROSSI; PAGAN, 2008). O software foi escrito em
C/C++ e foi adaptado para utilizar números racionais, utilizando-se a biblioteca GMP
(GNU Multiple Precision Arithmetic Library) (GRANLUND et al., 2011), ao invés da
representação em ponto flutuante utilizada originalmente. Esta implementação com estas
modificações provou ser mais estável e com melhor performance do que a implemen-
tação usada no pacote GAMBIT (MCKELVEY; MCLENNAN; TUROCY, 2010), que é o
pacote mais utilizado atualmente para a análise de equilíbrios Nash.

Figure A.2: Tamanho do caminho utilizado pelo LH para cada instância perturbada em
função do tamanho da instância e com perturbações constantes. Note que a lista na leg-
enda está em ordem inversa aos dados no gráfico.

Na Figura A.2, o parâmetro σ foi definido como 10i, para i = 0,−1, ...,−8. O pivô
inicial foi fixado como n, uma vez que este é o pior caso para o algoritmo. Para cada uma
das instâncias de pior caso (com n ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}) e para cada σ, 100
instâncias uniformemente perturbadas aleatoriamente foram geradas e executadas, e suas
médias foram usadas como os dados para o gráfico. Para a Figura A.3, a magnitude σ é
definida como uma função de n.
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Figure A.3: Tamanho do caminho utilizado pelo LH para cada instância perturbada em
função do tamanho da instância e com perturbações em função de n. Note que a lista na
legenda está em ordem inversa aos dados no gráfico.

Ambos os gráficos indicam que, ao contrário do que se possa esperar pela prova de
Chen et al., o tempo de execução para as instâncias de pior caso de Savani e Stengel,
quando aplicadas perturbações, mesmo que muito pequenas, realmente tem um tempo de
execução polinomial ao invés de exponencial. Note que esta conclusão é feita levando em
conta um tamanho de instância n relativamente pequeno de somente 20.

A.7 Preço da Anarquia Suavizado (Smoothed Price of Anarchy)

Enquanto que a ideia original da análise suavizada é para medir a complexidade tem-
poral de algoritmos, o conceito é também adequado para analisar outras medidas de qual-
idade. Uma medida de qualidade ainda não explorada a fundo até o presente momento é
utilizar a análise suavizada para analisar a medida Preço da Anarquia presente em teoria
dos jogos.

A ideia de análise suavizada é estendida aqui para analisar o Preço da Anarquia. A
ideia é para se perturbar aleatoriamente uma dada entrada e analisar a esperança (valor
esperado) do Preço da Anarquia nas entradas perturbadas. Primeiro é definido o Preço da
Anarquia Suavizado para uma instância I .

Definition A.6 (Preço da Anarquia Suavizado de I). Seja G uma classe de jogos. Dado
uma instância I = (G, (Si), (ci)) ∈ G, ela é aleatoriamente perturbada adicionando-se
ruído randômico aos dados de entrada.

Seja Ī uma instância que possa ser obtida de I por perturbações aleatórias e seja σ o
parâmetro para a magnitude desta perturbação. O Preço da Anarquia Suavizado (SPoA)
de I é

SPoA(I, σ) =
maxs∈NE(Ī) E[C̄(s)]

mins∈S E[C̄(s)]
,
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onde a expectância é tomada sobre todas as instâncias Ī que podem ser obtidas a partir
de I por perturbações aleatórias de magnitude σ. A função C̄ se refere aqui ao custo da
instância perturbada.

Finalmente, o Preço da Anarquia Suavizada de um jogo G pode ser definido.

Definition A.7 (Preço da Anarquia Suavizado). Usando as mesmas suposições de A.6, o
Preço da Anarquia Suavizado de G é

SPoA(G, σ) = max
I∈G

SPoA(I, σ) .

A.8 Preço da Anarquia Suavizado para o Problema de Atribuição de
Tráfego

No contexto do Problema de Atribuição de Tráfego (TAP), as instâncias são pertur-
badas ao se adicionar um ruído aleatório para as funções de latência. Estas perturbações
refletem as flutuações comuns em casos reais que podem acontecer nas arestas da rede
viária. Mais especificamente, suponha que é dada uma instância I = (G, d, l) do TAP. As
funções de latência perturbadas l̄ são definidas abaixo.

Definition A.8 (Funções de Latência Perturbadas). Dado uma instância I = (G, d, l),
então funções de latência perturbadas são definidas como:

∀e ∈ E : l̄e = (1 + εe)le, εe
i.u.r←− [0, σ]. (A.2)

Note que εe é escolhido uniformemente independentemente ao acaso do intervalo
[0, σ] para cada aresta e ∈ E. O Preço da Anarquia Suavizado para o Problema de
Atribuição de Tráfego pode então ser definido como abaixo.

Definition A.9 (Preço da Anarquia Suavizado de I para o TAP). Seja fI e f ∗I fluxos
Wardrop e ótimos, respectivamente, para uma dada instância I = (G, d, l). O Preço da
Anarquia Suavizado de I é definido como

SPoA(I, σ) =
E[c̄(fĪ)]

E[c̄(f ∗
Ī
)]
,

onde c̄ se refere ao custo total com respeito as funções de latência perturbadas, i.e.,
c̄(f) =

∑
e∈E l̄e(fe)fe para um dado fluxo f .

Como na Definição A.6, a expectância é tomada sobre todas as instâncias Ī que pos-
sam ser obtidas a partir de I por perturbações de magnitude σ.

Considere as instâncias Pigou mostradas na Seção A.4.1 com funções de latência poli-
nomiais. São derivados limites exatos no Preço da Anarquia Suavizado para perturbações
uniformes para estas instâncias. Esses limites também estabelecem um limite inferior no
Preço da Anarquia Suavizado para instâncias multi-commodity gerais.

Theorem A.1. O Preço da Anarquia Suavizado da instância Pigou com funções de latên-
cia polinomiais de grau p é

SPoA(I, σ) =
3 + σ

3 + 3σ
2

+
3p3((1+p)(1+σ))−1/p

(
−1+(1+σ)

2+ 1
p

)(
−1−σ+(1+σ)

1
p

)
(1+2p)(−1+p2)σ2

(A.3)
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Prova do Teorema A.1. Seja I a instância Pigou original com dois vértices s e t, uma
demanda de 1 unidade de fluxo e latências l1(x) = xp para e1 e l2(x) = 1 para e2. Após
perturbar as funções de latências de I , é obtido a instância representada na Figura A.4
com latências

l1(x) = (1 + ε1)xp and l2(x) = 1 + ε2,

onde ε1, ε2 ∈ [0, σ] são variáveis aleatórias.

s t

Figure A.4: Instância Pigou com latências polinomiais e perturbações ε1, ε2 ∈ [0, σ].

Primeiro é determinado um fluxo Wardrop. Com a adição da perturbação, o arco
e1 é utilizado na sua totalidade desde que sua latência seja menor que a latência de e2.
Portanto,

f1 ≤ p

√
1 + ε2

1 + ε1

.

Uma vez que esse valor pode ser maior que o fluxo máximo factível,

f1 = min

(
p

√
1 + ε2

1 + ε1

, 1

)
e f2 = 1−min

(
p

√
1 + ε2

1 + ε1

, 1

)
.

O fluxo f1 será 1 desde que ε2 ≥ ε1. Se este é o caso, então c(f) = 1 + ε1. Se ε2 ≤ ε1,
então

c(f) = p

√
1 + ε2

1 + ε1

(1 + ε1)

(
p

√
1 + ε2

1 + ε1

)p
+

(
1− p

√
1 + ε2

1 + ε1

)
(1 + ε2) = 1 + ε2.

Para determinar E[c(f)], para ε1, ε2 escolhidos uniformemente ao acaso de [0, σ], é
necessário calcular a seguinte integral dupla. (Note que a função densidade combinada é
1
σ2 ).

E[c(f)] =

∫ σ

0

∫ ε2

0

1 + ε1

σ2
dε1dε2 +

∫ σ

0

∫ σ

ε2

1 + ε2

σ2
dε1dε2

=
3 + σ

6
+

3 + σ

6
= 1 +

σ

3

Para se computar o fluxo ótimo do sistema, é explorado o fato que um fluxo ótimo é
um fluxo Wardrop com respeito as funções de custo marginais l∗1(x) = (p+ 1)(ε1 + 1)xp

e l∗2(x) = 1 + ε2. Então

f ∗1 = p

√
1 + ε2

(p+ 1)(ε1 + 1)
e f ∗2 = 1− p

√
1 + ε2

(p+ 1)(ε1 + 1)
.
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Note que σ precisa ser menor do que p para que o fluxo ótimo f ∗1 permaneça abaixo do
fluxo máximo. O custo de f ∗ é

c(f ∗) = f ∗1 (1 + ε1) (f ∗1 )p + (f ∗2 ) (1 + ε2)

= 1 + ε2 − p(1 + p)−1− 1
p (1 + ε1)−

1
p (1 + ε2)1+ 1

p .

Calculando a expectância sobre as escolhas aleatórias ε1, ε2 ∈ [0, σ], é obtido

E[c(f ∗)] =

∫ σ

0

∫ σ

0

1 + ε2 − p(1 + p)−1− 1
p (1 + ε1)−

1
p (1 + ε2)1+ 1

p

σ2
dε1dε2

= 1 +
σ

2
+
p3((1 + p)(1 + σ))−1/p

(
−1 + (1 + σ)2+ 1

p

)(
−1− σ + (1 + σ)

1
p

)
(1 + 2p) (−1 + p2)σ2

Portanto,

SPoA(I, σ) =
3 + σ

3 + 3σ
2

+
3p3((1+p)(1+σ))−1/p

(
−1+(1+σ)

2+ 1
p

)(
−1−σ+(1+σ)

1
p

)
(1+2p)(−1+p2)σ2

(A.4)

Conforme mostrado na Seção A.4.1, o PoA da instância Pigou com latências polino-
miais PoA(I) = (p+1) p

√
p+1

(p+1) p
√
p+1−p ∈ Θ( p

ln p
) é o pior caso para o Preço da Anarquia para o

TAP. O limite inferior provado aqui mostra que apesar de o Preço da Anarquia melhorar
com as perturbações, esta melhora é pequena. Mesmo para perturbações de magnitude
σ = 1, a diminuição no PoA é de apenas 10%. Note que neste caso as funções de latência
podem no mais extremo até mesmo dobrar de valor comparadas com as originais. Con-
forme o grau do polinômio cresce, esta melhora se torna mais significante. Se o σ for
restrito a menor ou igual a 1

p
, então o Preço da Anarquia Suavizada permanece assimptot-

icamente Θ( p
ln p

), assim como no caso determinístico.

A.8.1 Resultados Experimentais em Instâncias de Benchmark

Para avaliar se instâncias em cenários realistas se comportam de maneira diferente
em relação aos piores casos para o Preço da Anarquia, foram testadas algumas instân-
cias de benchmark disponíveis gratuitamente para pesquisa acadêmica em Transportation
Network Test Problems (BAR-GERA, 2011).

Para computar o equilíbrio de usuário e o ótimo do sistema, foi utilizado o algoritmo
de Frank-Wolfe (FRANK; WOLFE, 1956). O algoritmo foi implementado em C/C++
e compilado para um sistema Linux, com um kernel versão 2.6.35. A máquina utilizada
para os testes tem um Intel R© CoreTM i7 CPU com 4 cores, com 12 GB de memória RAM.

As instâncias foram perturbadas com σ ∈ {10−9, 10−8, ..., 10−2}. Foram também
avaliadas instâncias com perturbações maiores, com σ ∈ {0.1, 0.2, ..., 0.9}. O algoritmo
foi terminado no momento em que fosse atingido um gap relativo de menos de 10−5,
exceto para a instância Sioux Falls, na qual o gap relativo mínimo foi definido como 10−6.
Para cada magnitude de perturbação σi, foram executadas 10 computações e o valor médio
foi considerado. Na Tabela A.2, o Preço da Anarquia das instâncias é apresentado. Na
mesma tabela também é apresentado os resultados para as instâncias perturbadas, sendo
que a média, o desvio-padrão, os valores mínimo e máximo são apresentados para todos
os diferentes valores de σ combinados.
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Table A.2: PoA original e medidas para o PoA perturbado encontrados para cada instân-
cia.

Nome POA Média Mínimo Máximo Desvio-Padrão
Sioux Falls 1.039682 1.039689 1.039676 1.039707 8.049609× 10−6

Friedrichshain 1.086374 1.086422 1.086345 1.086599 4.996005× 10−5

Chicago Sketch 1.023569 1.023567 1.023561 1.023572 2.137639× 10−6

Berlin Center 1.006141 1.006142 1.006133 1.006155 3.831177× 10−6

Tanto o Preço da Anarquia original quanto o Preço da Anarquia Suavizado para as
instâncias de benchmark estão bastante próximos de 1 para todas as instâncias testadas, o
que fornece um pouco de evidência de que o pior caso não é muito provável de ocorrer
em cenários realistas. Além disso, quando o Preço da Anarquia Suavizado é analisado,
mesmo para σ relativamente grandes, o Preço da Anarquia Suavizado permanece quase
constante e extremamente próximo ao Preço da Anarquia original.

A.9 Conclusões

Nesta dissertação foram estudados dois importantes assuntos em teoria dos jogos com
relação ao efeito de perturbações. Para jogos Bimatrizes, foi analisado piores casos con-
hecidos na literatura para o algoritmo de Lemke-Howson (SAVANI; STENGEL, 2004)
utilizando-se da análise suavizada, e foi encontrado evidência que perturbações nestas
instâncias têm grande influência no seu tempo computacional. Para poder simular corre-
tamente estas perturbações extremamente pequenas, uma implementação exata do algo-
ritmo Lemke-Howson foi construída (RODRIGUES, 2011).

A ideia da análise suavizada foi estendida para se estudar o efeito de perturbações no
Preço da Anarquia. O Preço da Anarquia (KOUTSOUPIAS; PAPADIMITRIOU, 1999) é
uma medida em teoria dos jogos que compara o ótimo do sistema com o pior equilíbrio de
Nash possível. Foi proposto uma medida da perturbação do Preço da Anarquia baseado
em smoothed analysis para algoritmos, que foi denominada de Smoothed Price of Anarchy
(Preço da Anarquia Suavizado, SPoA).

Utilizando o Smoothed Price of Anarchy, foi proposto um modelo de perturbação
para o Problema de Atribuição de Tráfego (Traffic Assignment Problem). Foi provado um
limite inferior para o Smoothed Price of Anarchy utilizando esse modelo de perturbação
que é da mesma ordem do pior caso para latências polinomiais para o Preço da Anarquia.
Um limite para o SPoA para latências lineares também foi provado.

Finalmente, é mostrado experimentalmente que os efeitos de perturbações no Preço
da Anarquia para instâncias realistas, pelo menos para as instâncias de benchmark pre-
sentes na literatura atual, são severamente limitadas e não mostram nenhuma tendência
em particular.

Essa dissertação é também a base para o artigo (RODRIGUES et al., 2011) aceito no
“11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems”, com o título de “On the Smoothed Price of Anarchy of the Traffic Assign-
ment Problem”, um trabalho conjunto com Guido Schäfer, Luciana Buriol e Marcus Ritt.


