
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSITUTE OF COMPUTING

COMPUTER SCIENCE COURSE

GERMANO THOMAS

Expert System for Device Ranking

End of Course Paper.

Prof. Dr. Rosa Maria Vicari

Advisor

M.Sc. Claudia Nass

Co-Advisor

Porto Alegre, July 2012.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Rector: Prof. Dr. Carlos Alexandre Netto

Vice-Rector: Dr. Rui Vicente Oppermann

Graduation Dean: Dr. Valquiria Linck Bassani

Director of Institute of Computing: Prof. Dr. Luís da Cunha Lamb

Computer Science Coordinator: Dr. Raul Fernando Weber

Chief Librarian of Institute of Computing: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

I want to express my gratitude to my parents for my education, care and constant

support. I want to thank my advisor, Rosa Maria Vicari, for her advises and time; and

also to Ricardo Naisse, for helping me in the integration with the Fraunhofer institute.

This project would be impossible without all the great opportunities that UFRGS had

offered.

TABLE OF CONTENTS

LIST OF ACRONYMS ... 6

LIST OF FIGURES .. 7

LIST OF TABLES ... 8

RESUMO .. 9

ABSTRACT .. 10

1. APPROACH .. 11

1.1 Multi-criteria Evaluation .. 11

1.2 State of Art ... 12

2. REQUIREMENTS SCHEMA FOR INTERACTION DEVICES 15

2.1 Requirements Decision Model TORE .. 15

2.2 Requirements for the Selection of Interaction Devices .. 17

3. METHOD FOR THE SELECTION OF INTERACTION DEVICES 19

3.1 Requirements Models .. 19

3.2 Device Model .. 20
3.2.1 Suitability ... 21

3.3 Expert Knowledge ... 22

3.4 Programming Language ... 22

4 IMPLEMENTATION OF THE EXPERT SYSTEM 24

4.1 Choosing the Expert System ... 25

4.2 Metafacts .. 26

4.3 Rule Modeling .. 27
4.3.1 Rule Types ... 28
4.3.2 Conditions and Actions .. 29
4.3.3 Rule Loading ... 30

4.4 Creating and updating Device Database ... 31

4.5 Knowledge session ... 34

4.6 Interface ... 34

5 PROGRAM EXECUTION .. 39

CONCLUSION .. 41

REFERENCES .. 43

ATTACHMENT DROOLS USERS AND SOFTWARE OFFERING DROOLS
INTEGRATION ... 46

APPENDIX A: TABLE OF EVALUATED EXPERT SYSTEM ENGINES ... 47

APPENDIX B: CLASS DIAGRAMS OF THE REQUIREMENTS 50

APPENDIX C: CLASS DIAGRAM OF THE DEVICE 54

LIST OF ACRONYMS

MCE Multi-criteria evaluation

MCDM Multi-criteria decision making

MCDA Multi-criteria decision aid

ADiWa Alliance digital warenfluss

IESE Institute for experimental software engineering

ES Expert system

UI User interface

GUI Graphical user interface

EMF Eclipse modeling framework

DRL Drools rule language

WYSIWYG What you see is what you get

LIST OF FIGURES

Figure 2.1: Scheme of requirements‟ origin ... 15
Figure 2.2: Fraunhofer Decision Model TORE .. 15
Figure 2.2.1: TORE with highlighted used decision points ... 17
Figure 3.1.1: Activity class diagram ... 20
Figure 4.1.1: ES selection scheme .. 25
Figure 4.2.1: Metafact declaration code ... 26
Figure 4.3.1.1: Rule types scheme .. 29
Figure 4.3.2.1: Simplified rule model... 30
Figure 4.3.3.1: Rule loading scheme .. 31
Figure 4.4.1: Google Squared smartphones search .. 32
Figure 4.4.2: Levenshtein distance from house to hostel ... 33
Figure 4.6.1: Loading window ... 34
Figure 4.6.2: GUI of the software of this work .. 35
Figure 4.6.3: Simplified Options menu and submenus .. 35
Figure 4.6.4: Simplified File menu and submenus ... 36
Figure 4.6.5: GUI of the software of this work with device rank................................... 36
Figure 4.6.6: Example of combo box in use, User 0 is selected 37
Figure 4.6.7: Example of device rank with applied rules ... 37
Figure 4.6.8: Example of option dialog .. 38
Figure 4.6.9: Example of warning dialog ... 38
Figure 4.6.10: Example of error dialog .. 38
Figure 5.1: Program execution scheme .. 40

LIST OF TABLES

Table 3.2.1: Example of devices to be ranked .. 22
Table 3.2.2: Example of device ranking ... 22

Sistema especialista para ordenamento de

dispositivos

RESUMO

Torna-se cada vez mais comum o uso de dispositivos eletrônicos não apenas como

ferramenta de trabalho, mas também como auxílio à atividade a ser executada. Na área

de logística da empresa ADiWa, diferentes partes interessadas desempenhando

diferentes papeis devem lidar com a mesma informação em locais possivelmente

distintos, como escritórios, áreas de estoques ou até em veículos, caracterizando um

problema de multi-criteria. Essa informação deve ser mostrada pelo dispositivo

adequado em termos de tamanho, autonomia e muitas outras características. Decidir

qual o melhor dispositivo em relação a todas essas informações não é tarefa fácil,

portanto o uso de um sistema de apoio à tomada de decisão torna-se fundamental.

A ADiWa contratou a organização Fraunhofer para desenvolver o sistema de apoio.

Fraunhofer é a maior organização de pesquisa aplicada da Europa, com mais de 80

institutos de pesquisa. Seus clientes incluem companhias da indústria, de serviços e

também órgãos públicos. O Fraunhofer Institute for Experimental Software Engineering

(IESE) usa métodos com base empírica e processos para software voltados para a

indústria, assim como o desenvolvimento de sistemas.

No contexto do Fraunhofer IESE foi desenvolvida uma ferramenta que, dadas várias

características de uma empresa, da tarefa a ser executada, do ambiente dessa tarefa e do

perfil do usuário do dispositivo, entre outros aspectos, retorna uma lista de dispositivos

ordenados pela sua adequação àquelas características e auxilia o processo de decisão.

Fraunhofer é a maior organização de pesquisa a aplicada da Europa. Isso foi feito

usando-se Drools, uma plataforma de integração de lógica de negócios que oferece um

sistema especialista baseado em regras e eventos.

Sistemas especialistas tentam imitar as habilidades de decisão de um humano sobre

um domínio específico e podem ser considerados o primeiro grande sucesso da

Inteligência Artificial. Surgiram na década de 70 e se popularizaram na década de 80,

sendo reconhecidos como uma ferramenta capaz de resolver problemas reais. Uma das

áreas de aplicação é o suporte à decisão em sistemas complexos, como é o caso deste

trabalho.

No primeiro capítulo o problema vai ser caracterizado (como multi-criteria) e

soluções para problemas similares serão apresentadas. No segundo capítulo serão

explicados os requerimentos e suas origens. O terceiro capítulo trata da modelagem dos

requerimentos e dos dispositivos, que inclui o atributo “adequação” que será usado na

solução. No quarto capítulo é descrito o desenvolvimento do programa, da escolha do

sistema especialista até o desenvolvimento da interface gráfica com o usuário. No

quinto capítulo é feita uma breve descrição do funcionamento do programa.

Palavras-Chave: Dispositivo, Sistema Especialista, Drools, Multi-criteria.

ABSTRACT

It is becoming increasingly common the use of electronic devices not only as a

working tool but also as an aid to the activity being performed. In the logistic of the

company ADiWa different stakeholders playing different roles must deal with the same

information in different places such as offices, areas of inventory or even vehicles,

featuring a multi-criteria problem. This information should be displayed for the

appropriate device in terms of size, autonomy and many other features. Deciding the

best device for all this information is not an easy task, so the use of a support system for

decision making is fundamental.

ADiWa hired the Fraunhofer organization to develop the support system. Fraunhofer

is the largest organization for applied research in Europe, with more than 80 research

institutes. Its contractor and clients include industrial companies, service companies and

the public sector. The Fraunhofer Institute for Experimental Software Engineering

(IESE) stands for empirically based methods and processes for industrial software and

systems development.

In the environment of Fraunhofer IESE was developed a tool that, given various

characteristics about the company, the task to be performed, the environment of the task

and also about the user of the device, among other things, returns a device rank by the

suitability with those characteristics and this rank will assist the decision-making. This

was done using Drools, an integration platform that provides business logic of an expert

system based on rules and events.

Expert systems attempt to mimic the abilities of a human decision-making ability

about a specific domain and can be considered the first great success of Artificial

Intelligence. Emerged in the 70s and became popular in the 80s, being recognized as a

tool to solve real-world problems. One area of application is the decision support in

complex systems, such as in this study.

In the first chapter the problem will be characterized (as multi-criteria) and solutions

to similar problems will be presented. In the second chapter will be explained the

requirements and their origins. The third chapter deals with the modeling of applications

and devices, which includes the attribute "suitability" to be used in the solution. The

fourth chapter describes the development of the program, from the choice of the expert

system to the development of graphical user interface. In the fifth chapter there is a brief

description of the operation of the program.

Keywords: Device, Expert System, Drools, Multi-criteria.

11

1. APPROACH

In a company there are several entities that will engage in the choosing of the device

for the employers. To choose the most suitable (or adequate) device is not an easy job.

It is not an attempt to make an usability evaluation, because that would focus only on

the user interface (UI) and part of the system design [24]; it‟s a lot more than that. The

whole process to determine suitability will deal with needs and necessities called

requirements and each of them will have several attributes, which influences differently

on the suitability of the devices. The decision-makers have to decide which device is the

best one, but sometimes even defining what is a good device is not clear. They are

likely to conflict on their decisions, so the software of this work will have to aid the

decision making in a transparent and natural process.

One of the concerns in the design phase of the developing the software was to define

the solution to be reached. To simply try to find the device that meets all the

requirements would often lead to no device at all; in the other way, if the requirements

are in limited number or just are easy to match, a large number of devices would be a

viable option and the decision would rely almost only on the decision makers. The goal

of the software of this work is to compare the devices in terms of requirements to order

them and the solution will be a rank, on which the most suitable device will be the first.

Determining the suitability of the device depends of several things. What is very

important to one requirement may not be that influent to other, therefore each

requirement can be seen as different criteria, making this work similar to a multi-criteria

evaluation (MCE)
1
. MCE is used when there are variables that cannot be directly

compared between each other and/or when their influence is strong but not

deterministic. It also can handle a large number of data, relations and objectives in a

multidimensional fashion[1][2]. Another characteristic that makes MCE a good option

is that it can handle the mixture of attribute types. The attributes of each requirement

will be mostly nominal; although cardinal, interval and ratio attributes will also be

present. This can be seen as a mixture of qualitative and quantitative data.

1.1 Multi-criteria Evaluation

This section will explain a little more the characteristics of a MCE and how it relates

to the decision making.

MCE is a good solution for the conflicting requirements of this work and Nijkamp

express that:

1
 MCE is also known as multi-criteria analysis.

From an operational point of view, the major strength of multi-criteria

methods is their ability to revolve questions characterized by various

conflicting evaluations. Multi-criteria evaluation techniques cannot solve all

conflicts, but they can help to provide more insight into the nature of

conflicts thus increasing the transparency of the choice process (1998).

Algorithm solutions to multi-criteria problems tend to leave the problem

unstructured and improvements are harder to be implemented. Making structures for the

decision situations and modeling the preferences of the decision makers are important

steps for any decision methodology. Additionally a solution that is optimal for all

criteria it‟s unlike to exist[4].

MCE may be disjointed into two types: the solutions that use one mathematical

formula can be identified as Multi-criteria decision-making (MCDM) and can only be

applied when the preferences of the decision maker are also bound to a formal and

explicit specification[1], which will be often difficult to achieve. What we will use in

this work is the other type, the Multi-criteria decision aid (MCDA). The objective is to

build something, in this case a rank and the rules applied to each device, that will guide

the process and shape the preferences of the decision makers.

The search for the solution explores the objectives in a way that the understanding of

the problem is easier and the justification of the decision is clearer[3]. Also, “It makes it

possible to analyze the trade-offs between different objectives and concerns, thus

supporting the analysis of the pros-and-cons of different options in a transparent and

effective way” (BEINAT, 1998).

To form a rank, the devices will have to be evaluated and compared with each other.

Comparison may not be simple. The different types of comparability can be seen below:

• Strong comparability: all options may be ordered in one single measurement

scale. Strong comparability is divided in strong commensurability, in which

the options will be measured in a cardinal scale; and weak commensurability,

in which the options will be measured in an ordinal scale (a rank).

• Weak comparability: one option may prevail over another in one criterion, but

lose in other, making their comparison more difficult. This has the

characteristics of incommensurability, which means that options cannot be

compared using a single measurement scale, so other approaches must be

used.

The aim of the software is taking devices with weak comparability and creating a

rank, which implies in strong comparability.

1.2 State of Art

MCE aids the identification of the most suitable solution for a given purpose,

including management solutions, multiple decision alternatives and land-use options

[3]. Below some cases of MCE being used into the site selection field will be presented.

These lands range from urban planning and industrial locations to agricultural

watersheds.

The MATISSE[6] is a software that aids the choosing of a new location for an

industrial company and is the acronym to “Matching Algorithm, a Technique for

13

Industrial Site Selection”. The objective is to find locations that meet the spatial

production requirements according to the organizational characteristics of the firm. The

problem is that there are many factors that have to be taken in account: accessibility,

investments and operation are considered together with other ones.

Just to exemplify, the site accessibility is broken in three directives: raw materials

transportation, finished goods transportation, and the transportation of workers from and

to that site. These directives may conflict, and to match the sites to the sets of

requirements they use a knowledge based decision support system (KSS) and decision

tables, which display actions according to the result of relevant conditions.

The software of this work does not use decision tables, but, as in MATISSE, a

knowledge based system is used to display the results according to relevant conditions.

In fact, choosing a location according to the firm‟s characteristics and requirements is

similar to find a device according to the characteristics of the firm, the user and other

requirements. Another noticeable similarity is that they use the term „site suitability‟.

On the other hand, the agricultural site selection also is characterized as a MCE[7].

As the ground conditions may not be perfect, the weather is also a problem. Droughts or

a low quality land will result in reduced crops production. Weather prediction and

statistics will be an indicator, but the lack of water can be handled by artificial

irrigation, which adds the problem of efficient water supply. Therefore, the watershed

will also play an important role on the land suitability.

In a study about watersheds by Reshmidevi, Eldho and Jana (2009), a fuzzy expert

system was made. 16 attributes were identified and were classified in “surface water

potential” or “land potential”. It was discovered that such a simple classification to use a

fuzzy system would demand too much work, so they made 5 intermediary groups and

the result of each one was used in a rule-based system to estimate the suitability.

That is an interesting study for this work because it is an expert system solving a

multi-criteria problem. One distinct characteristic of the solution is the creation of

intermediary groups, which can be compared to our requirements. They also solve the

MCE by using a ruled-based system and expressing it in the form of IF-THEN rules. It

will be explained further that our rules also have conditions and actions.

Forest planning also has a multi-criteria related work[8]. It uses multi-criteria

approval voting. Voting is a method known by almost everyone. It is a simple, yet

efficient, way of making choices among decision alternatives. There are several types of

voting methods and they have in common is that decision makers vote on the

alternatives and the alternative with the most votes is the winner. We are using a voting

system in this work, and some voting methods will be explained below.

The most used voting method is the plurality voting, on which each decision maker

give one vote to the best candidate in his/her view (e.g. elections). One issue with this

type of voting is that one decision maker may influence others to vote on the candidate

of his/her choice. To avoid manipulations, another voting method was proposed: the

approval voting, on which each decision maker vote on all candidates that he/she

approves. It‟s harder to manipulate, but tends to “elect” mediocre candidates. Fraser and

Hauge (1998) state that “The overall objective of approval voting is to elect a candidate

that is widely acceptable to many decision makers, which is parallel to the objective of

MCDM which is to select an alternative that satisfies many criteria.“. There are some

other voting methods, and the one that we are using in the software is similar to

approval voting.

Since each decision maker will separate the candidates (devices) into two groups,

the approved and the disapproved ones, the only thing left to each of them is to

determine the threshold between the two groups. The software will simulate voting

decision makers, each one will be a rule and the threshold will be explicit on its

condition. The sum of the votes of a device is called suitability and it‟s one of its

attributes. The suitability and the rules will be explained further in this work.

15

2. REQUIREMENTS SCHEMA FOR INTERACTION

DEVICES

A requirements specification is the consistent, complete, unambiguous, correct,

verifiable, traceable documentation of the requirements on a system written in notations

that are understandable to the respective stakeholders. The requirements of this work are

divided in 8, depending on their actors and its actions. This chapter will explain what

the Requirements Decision Model TORE (Task Oriented Requirements Engineering) is

and how the 18 decision points of this model are related to our 8 requirements.

Figure 2.1: Scheme of requirements‟ origin

2.1 Requirements Decision Model TORE

TORE – Task Oriented Requirements Engineering – is a decision model for the task

oriented elicitation and specification of requirements. It has been developed by

Fraunhofer IESE[18] and since was applied successfully in several projects.

TORE encapsulates 18 decisions on four different levels of abstraction that typically

have to be made during requirements engineering for information systems (see figure

2.2).

Figure 2.2: Fraunhofer Decision Model TORE

The benefit of thinking in these decisions is that TORE can serve as a conceptual

model independent of concrete processes or notations, allowing high applicability in

many different contexts.

As a basis for the requirements specification, decisions must be made regarding the

design of the context and the system. Since one cannot deal with all the aspects at the

same time, one must decide the order of the decisions. The context may demand more

focus for specific decisions, but all of the decisions must be made; regarding goals,

tasks, technical needs, system usage and system design.

Tasks may be considered the basis for the other decisions. Customers, users, and

other stakeholders have goals that are operationalized by means of tasks. These tasks

are supported by systems. If these systems are developed in a task-oriented manner,

each system feature can motivate and constructively ensure that goals are achieved.

Additionally, both scientific experts and developers understand the concept of tasks, so

a communication bridge is created between them.

TORE is divided into five levels:

1. Goal and task level: helps deciding which stakeholders is the system useful for

and what are their goals and tasks. Profiles and personas are created for each

stakeholder, goals are represented via AND / OR trees, and individual core

features of the system are derived from these. Tasks are identified and later

described by means of observation, study of documents and events in

business processes and business interactions, surveying entities directly

related to the users, like marketing, sales, hotline, coaches, or by directly

surveying the users.

2. Domain level: helps deciding which data are important in the domain, what the

concrete responsibilities of the system will be, how the tasks change with the

introduction of a system and how the tasks are currently performed. Not only

tasks are identified, but also tasks workflows. Task workflows are described

in structural text or may be represented graphically (e.g., by using UML

diagrams). Tasks are refined into activities. As-Is activities are identified, To-

Be activities are defined. System responsibilities (system-supported To-Be

activities) are classified into system activities, user activities, and system-

supported activities. Finally, the data is described and dependencies are

defined.

3. Interaction level: helps deciding which functions the system offer, how the user

interact with the system, which data are exchanged between the user and

system and how the overall functionality is divided into sub-functionalities.

For each activity, at least one Use Case is created. These are then used to

create a Use Case diagram. In order to avoid redundancy, the Use Cases are

optimized, then prioritized and bundled. In doing so, exceptions and quality

requirements are also included. Functions and data that belong together are

grouped into work areas.

4. System level (application core): helps deciding what the GUI looks like

concretely, how can the user actually work with the GUI, what the system

architecture looks like, which internal data schemas are there and which

function building blocks exist.

17

5. System level (GUI): helps deciding how the data is represented on the screen,

how the functions are offered on the screen, how the user can monitor the

execution of a function and which help functions are necessary to monitor

calculations as well as navigation between screens. Design laws and text

guidelines must be followed, and perception effects must be taken into

account. Dialogs can be described as state transition diagrams. The elements

of the GUI level can be developed in parallel, but must be continually

aligned with each other. Screen structure and UI data are derived from the UI

structure and by doing so, the navigation functions are defined. Then dialog

models are created for complex Use Cases, which are integrated into an

overview diagram. In this step, semantic help functions are introduced.

Finally, the screen structure is refined.

2.2 Requirements for the Selection of Interaction Devices

From the 18 decision points of TORE, 7 were used to describe the 8 requirements of

this work, half of them belong to the first abstraction level (Goal and task) and the other

half belong to the second (Domain) and third (Interaction) level. None of them belongs

to the fourth (System) level. The used decision points are highlighted in figure 2.2.1.

Figure 2.2.1: TORE with highlighted used decision points

The reason for this distribution in the firsts levels is that the interaction with the

Devices differs more on hardware and what the hardware offers to the User than on

which System and applications it supports. The eight decision points were classified in

seven Requirements as described below:

• Activity: the TORE name for this Requirement is “To-Be Activities”; it

describes some general information about the tasks and processes to be

performed. This includes input and output for the activities, their types (that

can be store modify or show), number of people working in parallel in the

same device and what type of activities should have a higher priority. Those

types are: Input, Retrieval (or output) and Modification.

• Stakeholder tasks: this Requirement is the only one that covers two decision

points: Supported Stakeholders and Stakeholder`s Tasks; it describes more

accurately the activities, defining the type, input, processing and output of a

task, as well as in how many dimensions an object will be shown or

modified.

• Domain data: describes how the data will be transferred (communication

interface) and represented (numbers, text, images, movies or sounds) by the

Device. The amount of the data is also described by this requirement.

• Environmental context: describes the working place of the User. It includes what

will influence on the User senses, such as noise and brightness, which will

make interaction harder, and also what will add needs to the Devices, such as

temperature resistance or energy supply. Some aspects will influence both

Users and Devices, such as moving or static working place and distance from

the User to the device.

• Goals and constraints: this describes relevant information about the company.

Goals are company`s interests or focus. It can be the style of the device, its

color or also usability, which can be higher efficiency, more effectiveness or

higher employee satisfaction. Constraints in the other way denotes the

company`s restrictions, such as money. The decision point of this

requirement is the Stakeholder‟s Goals.

• Interaction: this requirement describes how the User interacts with the device. It

considers what body part of the user is interacting. It can be hand, foot or

voice, the precision or coordination needed and the interaction type, which

can be enter a text or a value, draw a line or interactions with objects, such as

select, position and orient. Those object interactions can be in one, two or

three dimensions.

• Interaction data: this is about the representation and some resources that should

be available. It includes colors, two/three-dimensional representations and

detail levels.

• User: this requirement describes the person that will be using the Device. It

includes education, occupation, technical affinity, languages and physical

characteristics like age, gender, senses used as well as limitations such as

impairments. User is a supported stakeholder.

To avoid misunderstandings between the decision maker that will be using the

software and the Requirement User, the first one will be called “end-user” from now on.

19

3. METHOD FOR THE SELECTION OF

INTERACTION DEVICES

Each Requirement will influence the selection of the Device in different ways. The

end-user will have to inform the characteristics of the Requirements so the software can

work on them. This set of the informed characteristics is called Scenario. To know

which Device is the best for a given Scenario, a Device rank will be made. With this

rank it will be possible not only to know which one to use, but also to compare them

with each other. Together with the rank will be also a track of the activity, so the end-

user can know why the Device is on that position in the rank.

The software will use an Expert System (ES) engine to build the rank via approval

voting. We need to create a set of Devices candidates that will be evaluated depending

on the Scenario inputted by the end-user. The correlation between Scenario and Devices

will be done with rules that, among other things, will evaluate how suitable each Device

is for that Scenario. The Requirements, the Devices and the rules need to be modeled to

be used by the engine.

3.1 Requirements Models

Models try to capture real-world behaviors and give structure to them. They are

useful to organize and split concepts into smaller and simpler elements that can be read

more clearly. The use of models also makes maintenance easier[22]. Concepts can infer

several semantics, but models should be formal enough to be interpreted

unambiguously. They can be used by team members to communicate with each other.

The relation between Requirements and Devices will be clearer if there is a way to

represent both of them. In order to use the Scenario, we need to express it in a more

formal shape to be understood by the developers and the machine. It has to be

constrained enough to avoid distortions on its representation, but flexible enough to

cover a big range of Scenarios in an easy and clear way.

The Requirements Schema for Interaction Devices can be called our Conceptual

model, and there is one Domain model (or class diagram[10]) for each Requirement.

Each model specifies several attributes, which are the characteristics of that

Requirement, such as `Gender` of the Requirement User. Most of the times the value of

the Attribute is not a number, but belongs to a limited set of elements, such as `Male` or

`Female` of the attribute `Gender`. Each of these elements is called attribute instance.

The 8 Requirements have a total of 39 attributes and 195 attribute Instances. Below

there is the Activity class diagram as an example; all 8 requirements‟ diagrams can be

seen in Appendix B.

Figure 3.1.1: Activity class diagram

In the diagram, the main class has the same name as the Requirement. The

requirement attributes consist of the attributes of the main class and its getters. The

requirements attributes, plus the attributes inside the getters are called Instances. If an

attribute is an enumeration, each of its items will be counted as an Instance instead of

the enumeration itself. Careful not to mistake the Instances of the attributes with the

instances of the Requirements; when the end-user creates an object of the main class it

will also be called an instance, but the context is other. The end-user will be able to

create new instances for each requirement and they will be stored in the database

(bottom of figure 3.1.1).

The instances describe a type, a general idea and not an individual entity of that

Requirement. E.g. when we create an User Requirement we do not specify one person,

but the general characteristics of that type of User. An User with the Instance `male`

does not mean that this User have to be `male`, but that in most cases it will be. It even

can be `Male` and `Female` at the same time, indicating that both genders can execute

that task. Furthermore, the identification of an User is not made by a born name, but

with a label just used for identification, like `Young driver`. This happens with all the

Requirements.

The Domain models of the Requirements are already a form of knowledge base and

will be broadly used in the development of the software. Classes and attributes are built

directly from them, in a very transparent way. Modifying the models is unadvised, but if

becomes necessary, it will not require much rework because of the objectivity and

clearness that the translation is done.

3.2 Device Model

The Devices will form a set of candidates that will be ranked and our goal is to

create a fair rank. The better the Devices are modeled, the closer the result will be in the

software and in the real world. The rules will also be more effective with proper

modeling. Differently from the Requirements, the Device model will usually define a

specific Device and not the type or a category.

21

The model describes the device hardware such as weight, size, battery and operating

temperatures; peripheral such as screen, speakers, microphone and other sensors; and

some software aspects such as operating system and language. Besides the hardware

and software description there is an auxiliary structure used to build the rank. The

auxiliary structure is the Suitability of the Devices and will gather its votes. As the end-

user will not be able to modify this field, it is not modeled in the diagram. The class

diagram of the Device can be found in Appendix C.

As said before, the voting system used will be the approval voting. Each voter will

vote on all devices that he/she approves. The voters will be simulated by rules on which

the threshold of acceptance or rejection will rely on more specific aspects and not all of

them at the same time. Instead of evaluating if a device is good for the whole Scenario,

they will evaluate if a device‟s attribute is sufficiently good to one or a few requirement.

E.g. Rule_05 will approve a device only if it has sufficient battery for the workspace of

the activity.

3.2.1 Suitability

Each Device has a Suitability attribute associated with it. A high, or good, suitability

means that the device is broadly approved and should be used, and a low, or bad,

suitability means that the device does not fit the requirements. At the start of the

execution of the engine, the Suitability of all devices is reset to zero. During the

execution the engine will change the Suitability, not the Devices‟ attributes, and at the

end of the execution, the Suitability will be used to rank Devices from the more suitable

to the less suitable ones.

Suitability is divided in „pros‟ and „cons‟. Both are integer numbers. Cons are

increased every time a rule infers that the Device does not meet the requirements. It can

be when it does not have something that is needed or when it has something that goes

against the Requirements, that is, will only disturb. This is the case when a rule votes

against the device. Pros are used as a secondary attribute of suitability and are increased

each time a rule infers that the Device has a characteristic that will help but it is not

needed; in other words, it‟s optional. Both increases are equal to the weight of the rule.

Default weight is 1 and more details about the rules can be found in chapter 4.3.

The rank is built by comparing the suitability of each Device at the end of the

execution of the engine. It sorts the Devices using Java Collections class, specifically

the sort Method[26]. As Devices are not a primitive data type the comparison function

between them must be defined. It can be changed easily and one possible simple

extension to this work is to add more untie conditions. The definition of this function is

described below. Condition 2 will be used only if condition 1 ties, and condition 3 will

be used only if conditions 2 and 1 tie.

1. Devices with a lower cons will be ranked first.

2. Device with a higher pros will be ranked first.

3. Device with smaller device Name according to String Hash code[31].

The 3
rd

 condition works similarly to a casting vote: only in case that both cons and

pros tie, the device name will untie it. This untie option is there only for consistency

reasons, so the rank will always be the same for the same Scenario and set of Devices.

In the final rank the suitability of each device is visible, so the end-user will be able to

see when the firsts 2 conditions tie. There will be no ties in this 3
rd

 condition because

the name is a unique key by the construction of the model.

E.g.: On table 3.2.1 we have arbitrary devices to be evaluated and on table 3.2.2 we

have the same devices properly ranked.

Table 3.2.1: Example of devices to be ranked

Name Cons pros

Device_1 3 12

Device_2 1 1

Device_3 2 4

Device_4 2 3

Table 3.2.2: Example of device ranking

Rank Position Name Cons pros

1 Device_2 1 1

2 Device_3 2 4

3 Device_4 2 3

4 Device_1 3 12

Note that what matters is the low suitability cons, and pros is used only when cons

ties, so they are not compensatory and that is a desirable characteristic for MCE[1]. As

most of the rules are restrictive, a lower value of suitability doesn‟t mean that we know

little about the device, but that it fits what is needed. An implication of using Suitability

as described above is that the rules that specify a need of a requirement are stronger to

specify the rank than rules that specify what the Device is good for. E.g.: “a driver

needs a microphone” is stronger than “a microphone helps drivers”.

3.3 Expert Knowledge

The Expert Knowledge is how the expertise is expressed in more formal terms. It

includes the models of the Requirements and Devices, and also a database of its

instances and rules that correlate them. The rules will define the needs of the

Requirements, which characteristics of a Device are good or bad for the Requirements,

make the Device rank and even stop the engine. The implementation will have to load

the expert knowledge to form the knowledge base used by the expert engine.

3.4 Programming Language

At this point, the selection of a Programming Language to create the models is

needed. Java was chosen, because it supports multiple platforms, it is broadly used and

23

has a wide community and support[13]. There are Integrated Development

Environments (IDEs) for Java that help programmers to build their applications quicker.

Besides writing and editing source code, an IDE shows errors as the code is being

typed, automate repetitive tasks like creating classes, methods, and properties and even

provides code-completion[12].

The IDE Eclipse was chosen because of the familiarity of the developers with this

IDE and it already has a tool for modeling: the Eclipse Modeling Framework

(EMF)[16]. EMF will automatically generate java code based on a structured model and

if changes are made to the model a regeneration of the code to reflect the changes is

simple. The structured models will be specified using EMF and later on they will be

used to build most of the interface and to create and expand the database which will be

used by the engine. EMF can be used to model Rule-Based Systems[11] and the

implementation and operation of the system is described in chapter 4.

4 IMPLEMENTATION OF THE EXPERT SYSTEM

ESs try to mimic the decision-making ability of an human among a specific field and

may be considered the first truly success of Artificial Intelligence. Their origins were

back in the 70s and they spread and became popular at the 80s, being acknowledged as

a successful tool for solving real problems[32]. Even back in 1986 there was studies of

how ESs could help to improve Human-Computer interactions[23].

ESs are designed to reach solution through reasoning about the knowledge and not

by following a procedure written by the developer. Instead of representing the

knowledge in a static way, rule-based expert systems gather information about what to

do and what to conclude from the given circumstances[34]. The process includes the

acquisition and modeling of the expertise to build the knowledge base.

The knowledge base is made of facts and rules. The facts are strongly related to the

scenario and compose what the engine knows about it. E.g.: “the User is a driver”. The

rules are applied to the facts to create new facts and to build the rank, going towards the

solution. Example of a rule that may create a new fact: “if the User is a driver then he

has his sight overloaded”. Example of a rule that changes suitability: “if the User has his

sight overloaded and the Device has only the screen as output, then increase Device`s

„cons‟ by 1”.

Another component of an inference engine is the stop condition. There are three

types of stop condition. The rules will be fired until the solution is reached; no more

rules can be fired, that is, no new facts can be discovered; or when a rule halts the

execution. The solution is a Device rank that will be improved as the engine is running,

and there is no practical perfect ranking to be achieved, so only the second condition

will be used.

An easy way to improve the result is to improve the knowledge base, and not the

engine itself. This means that one doesn‟t need to change the code of the engine, trying

to improve the algorithm of reasoning, but can just enlarge the database adding more

information about the subject or refine it to be more accurate. This way the ES can be in

constant growth without the need of a developer and an expert because the end-user can

also increment the system with its own (sometimes empirical) experience.

There is no need to develop an ES from scratch because there is a large number of

ESs available and the type of problems that an ES can solve is more related to the

knowledge base, not to the engine. ESs range from academic works to ones that include

an entire development environment, from open source or free ones to paid, and even the

program language used can be declarative or imperative. They also differ in speed,

memory used and syntax, that makes the understanding of what`s done more difficult or

clearer. The choosing of the ES used in this work is described below.

25

4.1 Choosing the Expert System

The selection of the ES engine was made in three steps. The first step was to create a

set of engines to be analyzed, the second step was to reduce them to a small set and the

final step was to create an initial prototype using each of the remaining ones. The steps

are described as follows:

1. Creation of the set: The ES engine should be free and preferably open source. ES

engines were searched and a set of 22 free candidates was made. A short

description was made for each engine, listing the application area / technique

when possible, advantages and disadvantages even some example of rules. A

table of this early analysis can be found in Appendix A.

2. Reduction of the set: The engines have been analyzed in terms of power, which

is what can be expressed, quality of support, size of documentation, recent

activities and understandability of the rules; program-like rules are more

familiar to the developers. The engines that use Java Language had special

consideration, because the existing models for the requirements were already

in Java, and that would make integration easier. From the original set of 22

engines, 12 used Java. The remaining candidates have been analyzed by their

possibilities of integrating with Eclipse - an important matter to choose the

engine. After some analysis the 22 engines were reduced to two: Drools[14]

and Mandarax[15].

3. Initial Prototype: As this last two ES seem to be similar in quality and effort, an

empirical approach was needed to determine which one would be the best to

develop our software. We had problems installing Mandarax and we could

not integrate it with Eclipse. Drools was installed much easier and the

integration with eclipse is very simple (via plugin). No further trials were

made with Mandarax. Drools prototype creates a very simple scenario with a

Driver User, 5 hard-coded rules and 3 fictional devices. Drools was evaluated

in terms of the usability (what must be done when starting from scratch or

when you want to export you project to other developer, how to change a fact

or a rule, error and warning messages), understandability (how the rules and

facts are created and represented, logic and intuitive code structure) and the

easiness to learn (how to find and use the engine`s resources, how to

integrate with existing models and the time spent to make this initial

prototype work). The syntax and semantics used in the engine had an

important role on this step and previous characteristics were evaluated with

more accuracy.

Figure 4.1.1: ES selection scheme

Drools was chosen because it has easy integration with Eclipse, good evaluation in

the aspects above, program-like rules and it is a mature project. It is so easy to learn that

even an advanced feature called Metafact was used in the prototype. The other

candidate, Mandarax, was unsuccessful to fulfill the task of creating a prototype: it

requires more time to install and configure than was expected. Drools platform is used

world-wide and a list of some users and also software offering Drools integration may

be found in the attachment.

4.2 Metafacts

Drools has a feature called Type Declaration. Type Declaration allows users to

expand a model directly with the rule engine, adding new entities or metadata at runtime

to be used in the reasoning process. Metadata is extra information that can be associated

with a fact. In the implementation, each Type Declaration will be used as metadata for a

Requirement or for a Device.

Any metadata created with Type Declaration will be treated as a fact once it‟s

created and will be called „Metafact‟ from now on. The Metafacts can be considered as

a sub-set of the facts, therefore any reference to facts applies to Metafacts too. They are

defined by the user together with the rules and can already be used by the rules. At

runtime they will become extra attributes for the Requirements and Devices.

The declaration of a Metafact is as follows: a “declare” Drools keyword is used and

is followed by the Metafact name, or identifier (such as “SensesOverload”). Then the

keyword “@role” appears, which is used to specify the type of the Metafact, which can

be either “fact” or “event”. “fact” means that it will be treated as a regular fact. “event”

means that it will have some additional information and semantics associated with time.

In our implementation only the role “fact” is used; it is automatically set and is not in

the model. Then a list of the attributes of the Metafact appears and finally the “end”

keyword.

Figure 4.2.1: Metafact declaration code

 “target” is a special attribute that will be explained in chapter 4.3.

Metafacts will be used for three main purposes:

• Efficiency: the goal is to reduce re-calculations. An example would be the

following condition: When the engine needs to know if the only output

available for a Device is the screen, all the outputs of that Device need to be

checked. Creating a Metafact for Device, a Boolean called “Only Screen

Output”, will make that all this checkings happen only once to set the

Metafact to true or false and then the conditions will only need a single

check.

• Abstraction: Metafacts can be used to turn numbers (quantitative data) into

symbolic values (qualitative data), making the rules more clear,

understandable, and easier to change. An example will be the Device

attribute called `Price`. Price is a Double that represents the price of the

Device, in dollar. We can create a Metafact called “MetaPrice” and with one

rule we can turn this Double value into a discrete value, like `Cheap`,

27

`Normal` and `Expensive`. Instead of writing rules using price boundaries

every time, a condition like “if Device.Price < 300” can be turned in “if

Device.MetaPrice == Cheap”. This way the rule expresses better the

semantics of the condition, and later on if the concept of what is cheap

changes, we only need to change the rule that sets the MetaPrice to `Cheap`

instead of every rule that would use boundaries.

• Expansion: Sometimes the models do not cover every need of the rules, the

Scenario is way different from what was predicted or even there is extra

information that the end-user don‟t need to specify. For those reasons we can

create an extra attribute that is used only internally. An example of this last

case is the Metafact for User called “Senses Overloaded”. There are several

reasons that a sense can be overloaded and yet, there is no such attribute on

the User model. That‟s because this is always made implicitly (and

automatically) using rules. E.g.: “a Driver always has `Vision` overloaded”.

When the end-user informs that the User is a Driver, Senses Overloaded will

be set to true to that user at run-time via reasoning.

4.3 Rule Modeling

We could write every rule according to drools syntax and semantic. It is easy to

identify that the rules must follow a well-defined pattern that is repeated constantly. By

modeling the rules and developing a converter of those modeled rules to Drools rules

we can guarantee that they would follow Drools syntax and semantics and also to

reduce manual, hard-coded work. This restricts Drools power, but the gain in the

clearness and abstraction of the rules to the knowledge base is worthy.

Comparing the rules that we have in our knowledge database with Drools‟s power,

only a small subset of the functionality of the engine is needed. An analysis of the

existing set of rules was made and the rules were grouped by their impact on the

requirements and the time of activation. The model for the rules covers all the rules on

our knowledge base, and they can be organized and classified.

Each rule applies to only one Requirement of each type or only one Device. The

Requirements and Devices become Targets of the rules. For that reason, when an

element can be either a Requirement or a Device it will be called “Target” from now on.

The restriction that only one Target of each type could be used at the same time

simplified the rules and significantly reduced manual hard-work because they don‟t

need any labels (they are implicitly done). Instead of defining a Target type as an

instance with a label and then using the same label on the rule, it can be specified only

which Targets are used and the model will take care of the declarations.

The implicit declaration is especially useful when declaring and using Metafacts.

The Metafact model has a special attribute called „target‟. When creating a new

Metafact only its identifier and its Target are needed; attributes are optional. As a

Metafact is specific for only one Target type, when using a Metafact on a rule the

association with the Target is done automatically when loading the rules. Besides

reducing manual-work, Metafact models also increase the consistency of the rules that

uses them. E.g.: a Device Metafact cannot be used in a User, only in a Device.

4.3.1 Rule Types

First the early Rule classification will be presented, then its flaws will be pointed

and finally the updated Rule Types will be explained. Initially four kinds of rules were

identified, depending on what time they were fired and their order was defined by a

Drools rule attribute called Salience. Salience can be seen as priority: if more than one

rule can be fired at the same time, the ones that have a higher Salience will be fired first.

We will use priority instead of salience from now on. The four rule types are described

below and they are fired each execution:
 Prepare: this set of rules don‟t read nor increase suitability. The main goal is

optimization. It makes an early reasoning on the Scenario, Devices and

Metafacts, instantiating the possible ones. Priority: 200.

 Exclusion: main rules, they eliminate Devices that are unsuitable. What they do

is change the suitability for the unsuitable device to -200. Priority: standard

(zero).

 Additive: take only the devices that have not been eliminated and point which of

them have what suits according to the Scenario and add suitability to them

according to the weight of the rule. The default weight is 30. Priority: -100.

 Output: does not change any entity, it is used just debug and feedback to the

end-user. Usually used for results (the device rank). Priority: -2000

There are some problems with the four types of rules defined above. The first of

them is that all Devices may be excluded before the Additive rules can take place. In

this case the rank would be a list of Devices all of them with suitability -200. There are

a bunch of arbitrary numbers, the default weight 30 is unintuitive and will be turned into

1, so the end-user can easily count how many rules are against or favor to a Device. The

worst flaw is that priority doesn‟t always mean order.

The problem using priority is: a rule with a higher priority will not always fire first.

If a rule with lower priority has all its condition matched and all the ones with higher

priority have not, the rule with lower priority will be fired. If this fired rule modifies or

inserts new facts that matches all the (remaining) conditions of a higher priority rule, it

will be fired after.

To try to control all the order of the execution of an inference engine by means of

priority implies that the developer will make a lot of manual work. If any errors occur in

the code of the rule ordering, the performance of the engine and even its accuracy may

be compromised[33]. So other rule classification was needed. The rules were separated

by what Targets they modify.

The first thing done was to gather the Exclusion and Additive rules in only one type

called “Main” because they both modify suitability. The second thing was to make the

Output outside the inference engine: the device rank is show only once in the end of the

execution of the engine and the few feedbacks that are used during the execution are

together in the “Main” rules. The final step was to split the Prepare rules into

“Preparation Once” and “Preparation”.

Each of the new rule types is applied independently and has its own set of rules.

Once the set stop firing rules it goes to the next set and the previous sets are not

evaluated again in the same execution of the engine. In Drools this functionality is

called “Agenda-group”, and Priority is not used anymore. Besides organize and give

29

some structure to them, this classification has performance goals, as a smaller set of

rules will be evaluated each time, and when it is known that a rule type will not be fired

again they don`t need to be re-evaluated. The new rule types are described below:

1. Preparation Once: this set of rules is applied only to the Devices because they

are independent from the scenario. As they don`t change after the engine`s

execution, it does not need to be fired every time, just when the Devices are

loaded or updated. These rules are fired shortly after the scenario is loaded,

therefore before all the others.

2. Preparation: This set of rules don‟t read nor increase suitability and will be fired

each execution. The main goal is optimization. It makes an early reasoning

on the Scenario and Metafacts, instantiating the possible ones. What is

interesting to notice is that once a Metafact it`s instantiated, the rule for

instantiating this Metafacts don‟t need to be fired again, and this type will

make sure that it won´t even be re-evaluated.

3. Main: All remaining rules, most of them will modify suitability. Those that don‟t

modify are there to insert new facts, for debug or to provide end-user

feedback. They will be fired each execution. When this set of rules is over

the execution of the engine will be complete and the rank will be ready.

Showing this result is not a task for the engine and is made just after the

engine`s execution.

Figure 4.3.1.1: Rule types scheme

There is a special fourth type of rule called Arbitrary Rule that allows writing a plain

text and the engine will try to interpret and execute it. This type of rule is a free model

and gives flexibility to use Drools in all its power. This functionality will cover special

cases and should be used only when none of the three types above can be used as a

model for the rule.

4.3.2 Conditions and Actions

Conditions describe why a rule is activated and may be only one of three types:

• Suitability: this considers the suitability of the Devices. Can be useful to have

more control to untie Devices or to exclude them (e.g.: a rule will only apply

to devices with no cons) and may be used for testing and debug.

• Attribute: condition upon any Target. It compares the attribute of an instance

with certain value. It`s the most used condition.

• Metafact: it is an attribute condition upon a Metafact or its attributes.

Actions are made of very similar types as conditions, but instead of just checking,

they modify the Targets, describing what a rule will do.

• Suitability: change the suitability of a Device. Can affect `pros` or `cons`. It is

the most important action because this is what builds the Device ranking.

Suitability actions can be weighted to refine the rank. The higher the weight,

more impact the rule will have.

• Attribute: changes the value of an instance`s attribute. Attribute actions should

not be performed on Devices, as they are persistent from one execution of the

engine to another. What is not persistent in the Devices is the suitability, and

only suitability rules can modify that. When firing a rule of this type, the

modified Target must be updated, and it will possibly re-fire some rules.

• Metafact Insertion: creates a previously declared Metafact, initializes its

attributes and inserts this new Metafact in the database. This insertion will

possibly re-fire several rules and it‟s very important for reasoning.

In figure 4.3.2.1 a figure of part of the rule class diagram is show, where the three

types of the actions and conditions can be seen. Verbose output is used just for

debug. It‟s a string that is shown on the screen each time the rule is activated.

Figure 4.3.2.1: Cropped rule class diagram

4.3.3 Rule Loading

To guarantee that the rules will be correctly interpreted by the engine three steps

must be followed:

1. EMF should be used to create a dynamic instance of a model that the end-user

will add, remove and modify the rules. Besides guiding the end-user of

restrictions of the rule model, it also validates the formed rules to indicate if

something is missing, like a rule without a condition.

2. The modeled rules are then read by the software and it automatically writes in a

Drools Rule Language file according to Drools‟s syntax and semantics. That

file has the „drl‟ extension and will be called DRL file from now on. Each

modeled rule is evaluated separately and if some of them don‟t follow the

model the ones that do will be written anyway, and a warning message is

shown to the user. This step is done in run-time and can be skipped by using

an existent DRL file. Later this file can be manually modified as any text file.

3. The third step is done entirely by Drools engine. It uses a Knowledge Builder

that reads the DRL file to create the knowledge base. The knowledge base is

31

a repository that contains all of the application's knowledge definitions. It

may contain rules, processes, functions and type models. The Knowledge

Base itself does not contain instance data, (known as facts).

Figure 4.3.3.1: Rule loading scheme

4.4 Creating and updating Device Database

The Device set will be turned into a database. That way the program can handle the

storage, modification and retrieving of Devices more easily. This database is called

Device Database. Each Device must follow the Device model, and thus must be

constructed using specific methods. There is not only the main class in the device model

(see appendix C: class diagram of the device) and to set an attribute of a nested class the

right setter method should be used. E.g.:

Device doesn‟t have height of screen resolution as one of its attributes, but has,

among other attributes, a Screen Class Object with again several attributes and among

them there is another Object Class called Resolution that has height and width. So to get

the screen resolution height you need to get the Screen, then the Screen Resolution and

finally the height.

To make the construction of the Devices easier and quicker, a Google Spreadsheet

(GSpreadsheet)[28] was created. Each row represented a Device and each of the

columns represented an attribute, being the Device name the key value. When reading

the spreadsheet the program automatically creates the subclasses if needed. The reading

of this spreadsheet is described further on this chapter; first we will explain how this it

is created.

The basic approach to create this spreadsheet is to do it manually. You search for a

Device and then create a new row on the spreadsheet with its name and then input each

relevant attribute on a column. There are some collections of Devices that will make

this work easier, because they are gathered in the same place and even categorized. One

of those collections is the Bill Buxton's device collection[30], which gathers prototypes,

innovative, and also modern devices. Some of them were manually inserted into our

Device Database.

The other approach is to use tools like Google Squared (GS) or Wolfram Alpha[21]

that uses semantic webs to build and update a database more easily, reducing manual

work and making this process more efficient. The Device database is not modified by

the engine`s execution, but once a new Device is released by a company it would be

good if we could quickly find it and introduce it into the database without much effort.

It is easier to get answers out of a database where everything is neatly labeled,

stamped, and categorized. The semantic web tries to integrate several databases with

less need of human intervention. It achieves that by using a kind of machine-readable

content, where you specify your “language”, that is, what your information means and

also translations between them[20]. Several small and big companies and interest

groups are researching and improving the current Semantic Web technologies[17].

A trial was made using GS to find several Devices and attributes
2
. We did not

create a new semantic, but used GS tool and its semantic to quickly create a spreadsheet

of Devices (row) and their attributes (columns). There is an option to export that

spreadsheet to a GSpreadsheet. Each Device had 21 attributes and 24 Devices were

easily added to the database. An example of a search can be seen in figure 4.4.1.

Figure 4.4.1: Google Squared smartphones search

Wolfram Alpha is another tool that does much effort in semantic webs, but cannot

be used to be a replacement for GS because it has a relatively small database. When

searching for “Device” it returns nothing. Even if it did, it wouldn`t update its

database as quickly as GS. Finally, assimilating the info from Wolfram Alpha would

be harder, since the output rarely is a spreadsheet.

Besides the tool to build the spreadsheet, once it‟s built it must be read by our

software and create the Device instance. This reading was made by using the

GSpreadsheet API[29], and each cell returned a string. Some manual work is

required, such as conversions of currencies (like Brazilian R$ to US$) and weights

(like ounce to pounds), the identification of different currencies and weights (dollar

appears as USD, $, US$, American dollar, etc.) and also some more restrict

formatting. E.g.:

For the attribute “Screen resolution” the format is “width x height” and the tool may

find a result like “4:3 ratio-1024px by 768px”. In those cases that cell needs to be

manually changed to “1024 x 768”.

Some techniques were applied after reading the cell to minimize that manual work

in order to set the attribute properly:

2
 Unfortunately Google Squared was shut down as part of the phasing out of Google Labs on September

5, 2011, and the Semantic Web concerning the Devices is lost. The database and the spreadsheet of the

Devices is still used, but must be updated manually.

33

• Ignore cell: the first thing we have to care about is what cells should be ignored.

This is applied to all cells and the most obvious cell to be ignored is an

empty cell. The other conditions to ignore cells are if its content is only “no”

or “none”. This happens because tools also explicit when an attribute is not

present. E.g.: the Device attribute “Video card” is “none”. Therefore this cell

can be ignored and no “Video card” will be set for that Device.

• Existent: if the attribute is a Boolean, it doesn‟t matter what is written, as long as

is not ignored. The software only wants to know if there is something in the

cell: if the cell is ignored the result is “false”, otherwise the result is “true”.

E.g.: a cell USB is “Three USB 2.0 ports”. That means that USB presence is

true.

• Consider only numerals: if the result should be a numeral value, it considers

only numerals and dots. If no numerals are found the cell will be ignored.

E.g.: A cell with “weight 7.4 ounces” can be read as “7.4”.

• Simple conversions: Converts string to real or integer numbers if needed, if a

real number should be an integer it is converted also. This is an

automatization that can be improved to more complex conversions as future

work.

• If several values are needed the software can read only one cell and split it in

substrings to apply techniques individually. E.g.: the string “4:3 ratio-1024px

by 768px” can be split by spaces and return four substrings: “4:3”, “ratio-

1024px”, “by” and “768px”. Then if we apply the technique above to

consider only numerals it would result in: “43”, “1024”, “768” and also an

empty string, as the “by“ substring doesn‟t have any numerals.

• Case insensitive: always when dealing with string attributes, upper case and

lower case characters are considered the same.

• Word matching: when the result should be a word and the string of the cell is

composed by several words it compares each word with the possible results.

That result is used if exactly one perfect match is found. E.g.: Let‟s say that

an Attribute called “Card Type” can be either “Audio” or “Video”. In these

cases cells with “audio on”, “High Audio Definition” and “Integrated audio”

would result in Card Type Audio.

• String similarity: this is used only if word matching fails to find a result. All the

spaces of our string are suppressed and each possible option will be

compared with the read string and will be used the option that has the lowest

Levenshtein Distance[27], which is the minimum amount of edits needed to

transform the option string into the read string. The edits are: insert, remove

or switch a letter (char). E.g.: “house” and “hostel” have distance 3.

Figure 4.4.2: Levenshtein distance from house to hostel

4.5 Knowledge session

Knowledge Sessions are created from the Knowledge Base and they store and

execute the run-time data like facts and process instances respectively. The creation

of a session is a resource-intensive process. There are two types of Sessions:

 A Stateful Knowledge Session is from where the process can be started, namely

the method fireAllRules(). They will run until the method dispose() is called.

It`s is possible to call iterative methods, like Insertion (to insert a new fact in

the session), Retraction (to remove a fact from the database) and Modify (to

update a fact). All those calls may cause re-firing of rules. Retractions may

fire a rule that has a condition of “non-existence” of a fact and Modify calls a

revaluation of all the rules of the active “Agenda-group” that has the updated

fact as a condition.

 A Stateless Knowledge Session is used in relation to decision service-type

scenarios and encapsulates all the calls above. You cannot call fireAllRules()

nor the three interactive calls described above. The execute() method takes all

the facts as a parameter and do the other calls: instantiates a Stateful

Knowledge Session internally, insert all the facts, call fireAllRules() and

finally dispose() method.

Initially a Stateless Knowledge Session was used due to the lack of temporal events,

all of them happened at the same time. After some research of both sections‟

behaviors it was found that the Stateless section uses a Stateful one internally, so it

is not faster than the Stateful. The software of this work uses a Stateful Knowledge

Session because there are some things that will rarely change, like the rules and the

Devices (Devices are changed just when explicitly reloaded). It`s quicker to add and

remove the Scenario every time and maintain the session running than to re-create it

each time.

4.6 Interface

The Graphical User Interface (GUI) allows the end-user to interact with the program

and vice-versa. The software uses it to give feedback to the end-user, and the end-

user uses it to modify the Scenario and the database, as well as to execute the

engine. Java already has an Application programming interface (API) toolkit to

provide GUI called Swing[25]. One downside of Swing is that the visual result is

only possible at runtime. A GUI designer tool called visualswing4eclipse[19]

provides a Swing designer for Eclipse for Java developers. It allows the programmer

to generate the GUI visually with a WYSIWYG approach and auto-generates Swing

code based on the visual interface.

When the program is launched, the first thing that appears is a loading.

Figure 4.6.1: Loading window

35

The steps of loading are:

1. Loading Devices: load devices from database.

2. Creating knowledge session: this part consumes most of the time of the

loading. It first loads the rules from database, then creates the DRL file if

that option is on (can be set only via programming), then creates the

knowledge session and already inserts the devices loaded on step 1 on it.

3. Loading Scenarios: loads all the Instances of all the Requirements from

database.

4. Adjusting Initial Values: fire „preparations once‟ rules.

When the steps of the loading window are done, it closes and the main window is

drawn (see figure 4.6.2).

Figure 4.6.2: GUI of the software of this work

The main window is divided in three parts:

1. Menu bar: the Menu bar has 2 menus: the File menu (Figure 4.6.4) that allows

the end-user to save or reload all Scenarios at once and also to reload all

scenarios from spreadsheets or from file; and the Options menu (Figure 4.6.3),

which includes the option to show the name of the rules applied on execution.

Figure 4.6.3: Simplified Options menu and submenus

Figure 4.6.4: Simplified File menu and submenus

2. Tabbed Panel: the Tabbed has one tab for each Requirement. Each tab has 3

main components:

a. Scroll panel: shows the Scenario and allows the end-user to modify it. It

is build based on the Requirement Models, so a modification on

the model will instantly modify the interface and, on the other

hand, using the interface is guarantee to follow the model. Each

class on the model will become a new label; ENUM (fixed set of

constants) Attributes will become a single “Combo Box” (a list of

attributes that you have to choose only one); Boolean attributes

become Check boxes; and every other Attribute will become a

text field. All Buttons can be seen in figure 4.6.5 below.

b. Special Buttons: they are the same for all tabs and are located around the

scroll panel. There are four data buttons, that are used for modify

the database. Their functions are: Delete a Target and remove it

from scenario and database; Create new empty Target and insert

it into the scenario; and Load and Save current Target from/to

database, if the Target has been modified. There is the Execute

engine! button which launches the engine (see figure 4.6.5).

Figure 4.6.5: GUI of the software of this work with device rank

37

c. “Combo Box”: stores the instances of the Scenarios, showing each one

and allowing the end-user the switch between them. The selected

instance of a Requirement is the one that will be inserted on the

Knowledge Session when executing the engine.

Figure 4.6.6: Example of combo box in use, User 0 is selected

3. Text Panel: is the right half of the interface and shows the device rank, the name

of the rules applied, when this option is on (see figure 4.6.7), confirmation of

actions performed by the end-user, like pressing a Button, and also can be used

for debug. It can be used to warning and errors messages, although usually

dialogs have that purpose.

Figure 4.6.7: Example of device rank with applied rules

There is another small interface component called Dialog. Dialogs are pop-up

windows that halt the program and ask for end-user action, they wait for

confirmation or choice. They are used to give options to the end-user (see figure

4.6.8 and to show warning and error messages (see figures 4.6.9 and 4.6.10). A

warn message alerts the end-user that something can cause problems in the future.

An error message is shown when a problem had already occurred.

Figure 4.6.8: Example of option dialog

Figure 4.6.9: Example of warning dialog

Figure 4.6.10: Example of error dialog

39

5 PROGRAM EXECUTION

This chapter will be a brief description of the internal computations made on each

step of the software. There is the startup, the end-user actions, the execute engine

and the suitability rank. Those four steps are described below:

1. Startup: When running the software the first thing that it will do is to load the

engine, the Scenarios and the Interface. It creates a loading window (Figure

4.6.2) that inform the end-user an overview of what`s being made, because it can

take several seconds. The steps are:

a. Initialize engine: creates empty databases for each Target, store the getter

methods for them and also store the xmi file path.

b. Load Devices: create device database by loading them from file or from

GSpreadsheet. The Devices are loaded in a separate function from the

requirements because it may need internet access. If this step doesn‟t

work, the devices are loaded from file.

c. Create knowledge session: load the rules to create the Knowledge Base

and then create a Stateful Knowledge Session from it.

d. Loading Scenarios: each Target has a corresponding xmi file. In this step

the empty databases will be filled with the data loaded from a xmi file

using the xmi path file from step 1. In case of reloading the Scenario,

each database will be overwritten using the same path.

e. Adjusting initial Values: with the session created and the devices already

inserted, the engine will fire the “Preparation Once” rules.

f. Create interface: The last step is to close the loading window and create

the end-user interface (Figure 4.6.5).

2. End-user actions: In this step the end-user will modify his/her scenario, loading

and saving the requirements; may create new instances and change the options

(see Figure 4.6.4). When the scenario is done the Execute engine step may take

place.

3. Execute engine: When the end-user wants to know which Device is the most

suitable for the Scenario, he/she should press the „Execute Engine!‟ button.

Before the result is shown, a process chain is unleashed and the end-user cannot

see nor interact with it:

a. Takes current Scenario and pack it to Drools Engine: each requirement

has one active instance, which is the selected one. The software takes

each selected instance and adds them to a list. This list is then sent to

Drools Engine.

b. Insert Scenario in the knowledge session: insert the list in the session,

storing the handlers necessary to remove the scenario later.

c. Reset suitability of the devices: all pros and cons are set to 0. The devices

don`t need to be re-inserted because only their suitability will change

during engine`s execution.

d. Fire “Preparation Rules”. Preparation rules are explained on session

4.3.1.

e. Fire “Main Rules”: Main rules are explained on session 4.3.1.

f. Retract Scenario: remove the Scenario from the knowledge session using

the handlers from step 2. Remember that Devices are not retracted.

4. Suitability rank: rank construction is detailed on session 3.2.1 Suitability. With

the rank built the solution is reached. The rank is then shown to the end-user

with the position of each Device, their pros and cons. The end-user may

continue to modify the scenario and execute the engine again, as the step goes

back to the “End-user actions”.

Figure 5.1: Program execution scheme

41

CONCLUSION

The basic steps of the work done were:

1. MCE and state of art

2. Identification of the relevant Requirements of the Model TORE.

3. Modeling of Device and all the Requirements on Eclipse.

4. Make it possible load and save the Scenarios.

5. Define a Scenario and rules that will be applied on it.

6. Choose Drools as our ES engine.

7. Model the rules as an interface to Drools.

8. Update Devices from a spreadsheet. This spreadsheet was built using GS.

9. Create GUI using visualswing4eclipse.

10. Able end-user to modify/expand the Requirement database (remove, change or

add).

After all this steps the software has a database of Devices and allows end-users to

specify and expand Scenarios so the software can build a Device rank from it. The

best devices for the scenarios tested are similar, if not the same, as the ones chosen

by experts. The tool of this work fulfills its objective.

One issue is that sometimes the Device configuration is being chosen and not the

Device itself. The same desktop can have different screen sizes or resolutions and

may or may not have a keyboard or mouse plugged. Unfortunately all this is treated

as a solid block by definition. If we introduced a peripheral in our device database, it

would be treated as a singleton and therefore will have few characteristics (and

requirements matches) and even if it did reach a good ranking, another device would

be necessary for it to work.

An appropriate solution for peripherals would be to look at the

requirements/attributes of the Devices and if one of them is an additional Device, we

would have to check if there are money, slots, etc. enough to fulfill it. If so, we

could set the pros and cons of both devices against each other. Even the combination

of several Devices trying to heighten its ranking would be possible. It was not done

because this issue was identified only in the end phase of the software, and the

potential gain in suitability does not compensate the reformulation, remodeling and

recoding required.

As future work more rules should be created to explore the attributes of the Targets

better. Right now a not all the attributes influences the final rank and if this subset is

not specified then is expected that the final rank has many ties. Ties can be avoided

by improving the comparison functions between two devices and also by weighting

the rules, which would require more expert knowledge acquisition.

Some possible features for this software would be a better interface, maybe even a

rule editor via interface or also reducing even more the manual work of building the

Devices by making an automatic converter between currencies and weights. A

substitute to GS would be required to efficiently update the Device database,

otherwise manual update will be needed.

43

REFERENCES

1 WAGNER, P. Working Paper of COST Action 356, WG 3 meeting,

Task 3.2, Torino: Oct. 2007.

2 MUNDA, G. “Measuring Sustainability”: A Multi-Criterion

Framework. Journal of Environment, Development and

Sustainability, Barcelona, v.7, n.1: Springer Netherlands, 2003.

3 BEINAT, E.; NIJKAMP, P. Multi-criteria analysis for land-use

management. Dordrecht: Kluver Academic Publishers, 1998.

4 TIMMERMANS, H. J. P.; JEIJDEN, R. E. C. M. van der. Uncovering

spatial decision-making processes: a decision net approach

applied to recreation choice behavior. Tijdschrift voor

Economische en Sociale Geografie, v.78, n.4,[S.l.]: Royal Dutch

Geographical Society KNAG, Sep. 1987. p. 297 – 304.

5 ADiWa. Available at: <http://www.adiwa.net>. Access: jun. 2012.

6 WITLOX, F. MATISSE - a relational expert system for industrial site

selection. Expert Systems with Applications Journal, Gent:

Pergamon, 2003.

7 RESHMIDEVI, T.V.; ELDHO, T.I.; JANA, R. A GIS-integrated fuzzy

rule-based inference system for land suitability evaluation in

agricultural watersheds. Expert Systems with Applications Journal,

v. 101, n. 1–2,[S.l.]: Elsevier, jun. 2009. p. 101 – 109.

8 LAUKKANEN, S.; KANGAS, A.; KANGAS, J. Applying voting

theory in natural resource management - a case of multiple-

criteria group decision support. Journal of Environmental

Management, v. 64, n. 2, set. 2001. p. 127-137. Available at:

<http://www.sciencedirect.com/science/article/pii/S03014797019051

10>. Access: jun. 2012.

9 FRASER, N. M.; HAUGE, J. W. Multicriteria approval: application

of approval voting concepts to MCDM problems. Journal of

Multi-Criteria Decision Analysis, Ontario, v.7, n.5: John Wiley &

Sons, 1998.

10 OLDFIELD, P. Domain Modelling. [S.l.] : Appropriate Process Group,

2002

11 WU, C. G. Modeling Rule-Based Systems with EMF.[S.l.]: The

Eclipse Foundation, Nov. 2004 Available at:

<http://www.eclipse.org/articles/Article-Rule Modeling With

EMF/article.html>. Access: jun. 2012.

12 NOURIE, D. Integrated Development Environment.[S.l.:s.n] mar.

2005. Available at:

<http://java.sun.com/developer/technicalArticles/tools/intro.html>.

Access: Sep. 2011.

13 Java. Available at: <http://java.com/en/download/faq/whatis_java.xml>.

Access: Jul. 2012.

14 Drools. Available at: <http://www.jboss.org/drools>. Access: may. 2011.

15 Mandarax. Available at: <http://mandarax.sourceforge.net/>. Access:

may. 2011.

16 The Eclipse Modeling Framework. Available at:

<http://www.eclipse.org/emf/>. Access: mai. 2011.

17 World Wide Web consortium (W3C) Semantic Web. Available at:

<http://www.w3.org/2001/sw/>. Access: set. 2011.

18 ADAM, S. et al. Using Task-oriented Requirements Engineering in

Different Domains - Experiences with Application in Research

and Industry. IEEE International Requirements Engineering

Conference v.17, n.9, Kaiserslautern: IEEE Computer Society, 2009.

p. 267 – 272.

19 visualswing4eclipse. Available at:

<http://code.google.com/p/visualswing4eclipse/>. Access: jun. 2011.

20 SWARTS, A.; HENDLER, J. The Semantic Web: A Network of

Content for the Digital City, Second Annual Digital Cities

Workshop, Kyoto:[S.n], Oct. 2001.

21 Wolfram Alpha. Available at: <http://www.wolframalpha.com/>.

Access Jul. 2011

22 KUNŠTÁR, J.; ADAMUŠČÍNOVÁ, I.; HAVLICE, Z. Principles of

Models Utilization in Software System Life Cycle, Košice: Acta

Electrotechnica et Informatica, Faculty of Electrical Engineering and

Informatics Technical University of Košice, v.9, n.3, 2009. p. 48 –

53.

23 WILSON, M.; BARNARD, P.; MACLEAN, A. Using an expert system

to convey HCI information. M.D. Harrison & A.F. Monk (Eds.),

People and Computers: Designing for Usability, Cambridge:

Cambridge University Press. 1986. p. 482 – 497.

24 NIELSEN, J. Usability Engineering. Boston: Academic Press, 1993.

45

25 Swing (Java). Available at: <http://en.wikipedia.org/wiki/Swing_(Java)>.

Access: mail. 2011.

26 java.util Class Collections sort. Available at:

<http://download.oracle.com/javase/1.4.2/docs/api/java/util/Collectio

ns.html#sort(java.util.List, java.util.Comparator)>. Access: may.

2011.

27 Levenshtein distance. Available at:

<http://en.wikipedia.org/wiki/Levenshtein_distance>. Access: Jul.

2011.

28 Google Spreadsheets. Available at: <http://www.google.com/google-d-

s/spreadsheets/>. Access: jun. 2011.

29 Google Spreadsheets API. Available at:

<https://developers.google.com/google-apps/spreadsheets/>. Access:

jun. 2012.

30 Buxton Collection. Available at: <http://research.microsoft.com/en-

us/um/people/bibuxton/buxtoncollection/>. Access: jan. 2012.

31 String Hashcode. Available at:

<http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/String.html#h

ashCode>. Access: Dec. 2011.

32 RUSSEL, S. J.; NORVIG, P. Artificial Intelligence: A Modern

Approach. Chapter 1.3: The History of Artificial Intelligence, New

Jersey: Prentice Hall, 2003.

33 HICKS, R. C. The no inference engine theory – Performing conflict

resolution during development, Decision Support Systems, Volume

43, Issue 2, Laredo: Elsevier, may. 2007 p. 435 – 444.

34 GROSAN, C.; ABRAHAM, A. Rule-Based Expert Systems. In:

Intelligent Systems: A Modern Approach. [S.l]: Springer, 2011 p.

149 – 185.

ATTACHMENT DROOLS USERS AND SOFTWARE

OFFERING DROOLS INTEGRATION

Users:

Innovision

DeCare Systems

Kiala

Betfair

actis.bsp

Sabre Holdings

Auster

German Aerospace Center

Chooze-it

EAS EA Evaluator

Advanced Engineering Solution (AES)

Integrators:

JBoss (jBPM, Seam, ESB, MicroContainer)

Zementis ADAPA

Mule

Sidonis

Service Mix

Pogamut

Intalio

Cisco Active Network Abstraction

Source: http://www.jboss.org/drools/sightings

47

APPENDIX A: TABLE OF EVALUATED EXPERT

SYSTEM ENGINES

Name Area/Technique Advantages Disadvantages Language

Sweet Rules Tools for Semantic

Web Rules and

Ontologies, including

Translation,

Inferencing, Analysis,

and Authoring.

Has prioritized

conflict handling,

seems to be

flexible, has a

discussion forum

It‟s still a work in

progress, with

several minor

bugs

Java

SHOP Ordered task

decomposition, which

is a type of

Hierarchical Task

Network (HTN)

planning. The tasks are

broken into subtasks

until primitives are

reached.

Can do mixed

symbolic/numeric

conditions

Weak

documentation,

uses a list-like

syntax, that can

be hard to debug

Java, Lisp

Pellet Web Ontology

Language (OWL 2)

reasoner. Provides

standard and cutting-

edge reasoning

services for OWL

ontologies. It

incorporates

optimizations for

nominals, conjunctive

query answering, and

incremental reasoning.

The interface used

is the same as

Jena, support

punning (ifAll,

ifAny, etc.),

comes with

several simple

examples, so it

seems to be easy

to learn. Rules are

not verbose.

Axioms (facts)

about individual

equality and

difference must

be about named

individuals.

Java

OpenRules Full-scale Business

Rules Management

System (BRMS).

Easy to use (rules

are made via

spreadsheets),

 multi-user

environment

Non-rete, it seems

that it‟s not a

reasoner, and it

has a commercial

version that is the

focus

Excel +

Java

Mandarax Backward chaining

(using prova). It

include unification

Algorithms and

selection policy

can be

The computation

is slower due to

some emphasis on

Java

http://www.w3.org/TR/owl2-overview/
http://clarkparsia.com/pellet/features
http://clarkparsia.com/pellet/features
http://www.prova.ws/

algorithm, loop

checking algorithm.

configured.

There‟s an eclipse

plugin for

inserting the

rules. There is an

interface.

reducing the

memory usage

JTP Backward-chaining

reasoner

Uses a set logic,

using

subPropertyOf

and subclassOf

Has no interface,

the end-use would

have to code to

interact with it or

it would have to

be embed into

something else.

Java

JLisa Lisa: Rete + Clips

(lisp)

Can use the

features of Lisp

No

documentation,

will have to look

at Lisa

documentation

(which is good);

uses a different

order of operands,

which is

unintuitive

Java, Lisp

JEOPS Forward chaining,

first-order production

rules

Rules are very

clear; while still

running, keeps a

base of previous

calculations

Lack of

abstraction of the

rules, they are

also quite

verbose.

Java

CLIPS Basic rule-based

engine

Simple, fast &

“efficient”. There

are some

suggested tweaks

to include Rete or

Bayesian

network.

Restrict. Has to

implement one

fixed rule per

device. The result

doesn‟t have any

degree of fitness.

C

d3Web Medical diagnosis,

documentation, and

therapy. Similar to

CLIPS with Rete

Algorithm. Uses more

complex techniques,

such as decision trees,

(heuristic) rules, and

set-covering models.

Returns a list of

possibilities,

suggested and/or

refused.

Complexity may

not be the answer,

and the questions

need to be quite

straightforward.

Java

EGanges Law/quality control.

Uses

Ishikawa_diagram.

You set the nodes to

yes/no/uncertain that

you know. You can

User can answer

or not a node,

independent from

order, If there‟s

inconsistencies

the expert system

This is often used

when you know

the objective and

wants to know if

is valid or not.

We‟ll have to

make multiple

Java

http://en.wikipedia.org/wiki/Ishikawa_diagram

49

follow the flow or not. warns you. objectives. The

answer doesn‟t

have any degree

of fitness.

Jena2 There are two Internal

rule engines: one is

forward chaining

RETE engine and the

other is a tabled

datalog engine

Broad and Broad

and solid

documentation

The focus is on

the Framework

and queries, the

rule engine is not

that developed

Java

Apache

OFBiz

Uses logic

programming

languages to combine

queries and facts

New way of

thinking

Adding an axiom

is quite

complicated, and

logic programing

is unusual

Logikus

(Prolog)

InfoSapient Business processes,

uses fuzzy systems

Rules are

externalized from

the application

and database, they

are easy to change

Would have to

halt the fuzzy

method before

completion and

analyze the partial

result so we can

have a list of

products instead

of only the best

one. Doesn‟t

support ifAny,

ifAll, or

ifNoneOf.

Java

OpenExpert It‟s a toy software, not

for company use

Very simple and

functional

It‟s a toy

software, have

weak

documentation,

only one final

result, still a work

in progress

PHP,

MySQL

Euler Backward-chaining

with Euler path

detection, it is used for

academic purposes

only. It‟s somehow

similar to CLIPS

Easy to add facts,

available in

several languages

Syntax is a little

confusing and

may be hard to

use, used for

academic

purposes only

Java, C#,

Python,

JavaScript

or Prolog

Drools Rules, Workflow and

Event Processing

Broad and

complete

documentation,

has side by side

rule flow

authoring with

rules, event

processing, etc.

May be too

big/complex.

Java

APPENDIX B: CLASS DIAGRAMS OF THE

REQUIREMENTS

Activity:

Domain Data:

51

Environmental Context:

Goals and Constraints:

Interaction Data:

Interaction:

53

Stakeholder Tasks:

User:

APPENDIX C: CLASS DIAGRAM OF THE DEVICE

