
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

BACHELOR OF COMPUTER SCIENCE

GABRIEL MARQUES PORTAL

An Algorithmic Study of the Machine
Reassignment Problem

Final Report presented in partial fulfillment of the
requirements for the degree of Bachelor of
Computer Science

Prof. Marcus Rolf Peter Ritt
Advisor

Porto Alegre, June 2012

CIP – CATALOGING-IN-PUBLICATION

Portal, Gabriel Marques

An Algorithmic Study of the Machine Reassignment Problem
/ Gabriel Marques Portal. – Porto Alegre: UFRGS, 2012.

48 f.: il.

Final Report (Bachelor) – Universidade Federal do Rio
Grande do Sul. Bachelor of Computer Science, Porto Alegre,
BR–RS, 2012. Advisor: Marcus Rolf Peter Ritt.

1. Heuristic algorithms. 2. Scheduling. 3. Resource optimiza-
tion.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitora de Graduação: Profa. Valquiria Link Bassani
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do CIC: Prof. Raul Fernando Weber
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

CONTENTS

LIST OF FIGURES . 5

LIST OF TABLES . 6

ABSTRACT . 7

RESUMO . 8

1 INTRODUCTION . 9

2 PROBLEM DEFINITION . 11
2.1 Context . 11
2.2 Problem Elements . 11
2.3 Hard Constraints . 13
2.3.1 Capacity Constraints . 13
2.3.2 Conflict Constraints . 13
2.3.3 Dependency Constraints . 14
2.3.4 Transient Usage Constraints . 14
2.4 Objective Function . 14
2.4.1 Load Cost . 15
2.4.2 Balance Cost . 15
2.4.3 Process Move Cost . 16
2.4.4 Machine Move Cost . 16
2.4.5 Service Move Cost . 16
2.4.6 Total Objective Cost . 16
2.5 Numerical Example . 16
2.5.1 Instance Data . 16
2.5.2 Original Assignment . 18
2.5.3 New Assignment . 19
2.6 Instances . 19

3 INTEGER PROGRAMMING FORMULATION 21
3.1 Formulation . 21
3.1.1 Decision Variables . 21
3.1.2 Constraints . 22
3.1.3 Objective Function . 23
3.2 Results . 24

4 LOWER BOUND . 26
4.1 Load Cost Lower Bound . 26
4.2 Balance Cost Lower Bound . 27
4.3 Combined Lower Bound . 28

5 LOCAL SEARCH METHODS . 31
5.1 Randomized Local Search . 31
5.1.1 Neighborhoods . 31
5.1.2 Data Structures . 31
5.1.3 Local Search Procedure . 33
5.1.4 Results . 34
5.2 Simulated Annealing . 35
5.2.1 Algorithm . 37
5.2.2 Parameter Setting . 37
5.2.3 Results . 39

6 SERVICE ROTATION . 41
6.1 Insight and Modeling . 41
6.2 Results . 42

7 TWO-MACHINE NEIGHBORHOOD . 44
7.1 Algorithm . 44
7.2 Results . 45

8 CONCLUSION . 47

REFERENCES . 48

LIST OF FIGURES

Figure 2.1: Usage of the machines in the original assignment. 18

Figure 6.1: Assignment Problem for the service rotation. 42

LIST OF TABLES

Table 2.1: Informations about the machines. 17
Table 2.2: Informations about the processes. 17
Table 2.3: Machine move costs. 17
Table 2.4: Information about instances. 20

Table 3.1: CPLEX results. 25

Table 4.1: Lower bounds. 29
Table 4.2: Lower bound values. 30

Table 5.1: Comparison between First Improvement and Best Improvement heuris-
tics. 35

Table 5.2: Improved local search algorithms results. 36
Table 5.3: Results of the Simulated Annealing on instances A. 40
Table 5.4: Results of the Simulated Annealing on instances B. 40

Table 6.1: Results using Service Rotation. 43

Table 7.1: Results for the Randomized Two Machine movements. 46

ABSTRACT

In this work, an approach to solve the Machine Reassignment Problem is proposed.
The problem consists in optimizing the usage of computational resources given a set of
processes that must be executed. Therefore, an assignment of processes to machines must
be find. Besides, there are plenty of constraints for increasing safety and reliability of
the system. The problem has an important practical relevance nowadays. The increas-
ing usage of cloud computing concepts forces the resource optimization of these huge
computational infrastructures.

This is a very complex NP-Hard combinatorial optimization problem. Thus, the
choice of an heuristic method is natural for solving the problem approximately. The
proposed solution is an heuristic based on Simulated Annealing that uses two neighbor-
hoods. The results are satisfactory since near-optimal solutions are found in less than five
minutes.

Besides the proposed algorithm, this work presents some other contributions. An
integer programming formulation is proposed and implemented, being capable of finding
optimal solutions for small instances of the problem. To evaluate the solutions found by
the proposed method for big instances, a lower bound was developed. The lower bounds
seem to be good approximations of the optimal solutions in most cases.

The Machine Reassignment Problem was proposed in the context of the ROADEF /
EURO Challenge, an international challenge proposed by the French Society of Oper-
ations Research. The presented problems always are important in Industry. This year,
Google proposed the problem, interested in methods for optimizing its computational in-
frastructure. Among 83 participating teams, 30 have been classified for the final phase,
and our team (representing UFRGS) ranked fourth with a preliminary version of the pro-
posed method. The final results are not yet published as of the publication date of this
work.

Keywords: Heuristic algorithms, scheduling, resource optimization.

RESUMO

Estudo Algorítmico do Problema de Reatribuição de Máquinas

O trabalho realizado propõe uma abordagem para resolver o problema de Reatribuição
de Máquinas (Machine Reassignment Problem). O problema consiste em otimizar o uso
de recursos computacionais dado um conjunto de processos que devem ser executados.
Portanto, deve-se encontrar uma atribuição de processos a máquinas. Além disso, existem
diversas restrições para aumentar a segurança e confiabilidade do sistema. O problema
tem uma relevância prática bastante grande atualmente. Com um uso cada vez maior
de computação nas nuvens (Cloud Computing), é importante a otimização dos recursos
dessas grandes infra-estruturas computacionais.

Este é um problema de otimização combinatorial NO-Difícil muito complexo. Por-
tanto, é natural a escolha de um método heurístico para resolvê-lo de forma aproximada.
A solução proposta é uma heurística baseada em Simulated Annealing que utiliza duas
vizinhanças. Os resultados são bem satisfatórios, visto que soluções quase-ótimas são
encontradas em pouco tempo.

Além do método de solução proposto, obteve-se outras constribuições no decorrer do
trabalho. Uma formulação com programação inteira foi proposta e implementada, sendo
capaz de encontrar soluções ótimas para instâncias pequenas. Para avaliar a solução en-
contrada pelo método para instâncias grandes, foram desenvolvidos limitantes inferiores
para a solução ótima. Os limitantes inferiores encontrados parecem ser bons comparados
com a solução ótima na maioria dos casos.

O problema de Reatribuição de Máquinas foi proposto no contexto do desafio ROA-
DEF, um desafio internacional proposto pela Sociedade Francesa de Pesquisa Operacio-
nal. O problema apresentado para ser resolvido é sempre um problema com relevância
no meio industrial. Este ano, quem propôs o problema foi a empresa Google, interessada
em métodos para otimização de sua infra-estrutura computacional. Dentre as 83 equi-
pes participantes, 30 classificaram-se para a fase final e a nossa equipe (representando
a UFRGS) ficou em quarto lugar com uma versão preliminar do método proposto. Os
resultados finais ainda não haviam sido publicados na data de publicação deste trabalho.

Palavras-chave: algoritmos heurísticos, escalonamento, otimização de recursos.

9

1 INTRODUCTION

In the context of huge service providers like Google and Amazon, there is a big in-
frastructure to be dealt with. A lot of resources are purchased in order to provide a high
quality service to the client. It is natural that these service providers have a great interest
in optimizing the usage of their resources, otherwise more resources would have to be
purchased to compensate this non-optimal usage. One of the main resources to be opti-
mized in the technology environment is the computer power.

It is important to maximize the utilization of given resources, however there are other
factors that also must be considered in this context. For example, it is necessary to guar-
antee the robustness of the system. The impact of a machine failure must be minimized
and even if a whole data center shuts down it is desired to keep the system running. Also,
an overload of the system increases the probability of failure and should be avoided. So,
the goal is to optimize the resources keeping a high reliability.

This is a timely subject because of the increase of cloud computing services. It means
that computing and storage capacity are being offered as services in the Internet. End
users access all their information using a terminal with Internet connection. That shows
the importance of the reliability of the system: in case of a breakdown, users may lose
access to their data.

This work approaches a combinatorial optimization problem called Machine Reas-
signment Problem. This problem tries to model the main characteristics of this practical
problem, even though this is not an easy task. There is a set of machines: the available
resources. There is also a set of processes responsible for providing one or more services.
The objective is to find an assignment of processes to machines that optimizes the usage
of the machines while still guaranteeing the reliability of the system.

This problem is proposed in the context of the ROADEF/EURO challenge 2012. The
ROADEF challenge is in its eighth edition. It is organized in partnership between an in-
dustrial enterprise and the french society of researches in operational research (ROADEF
- la Société Française de Recherche Opérationnelle et d’Aide à la Décision). The chal-
lenge has already counted with the partnership of Renault, France Telecom, EDF and
Amadeus. This time, the industrial partner is Google. The challenge is being organized
jointly with the European Operational Research Society (EURO) in this edition. In the
words of the organizers:

The goal of this challenge is twofold. On the one hand, it allows some
of our industrial partners to witness recent developments in the field

10

of Operations Research and Decision Analysis, and young researchers
to face up to a complex decisional problem occurred in industry. The
challenge will give them an opportunity to explore the requirements and
difficulties encountered in industrial applications. On the other hand, we
hope that this challenge will help to establish a permanent partnership
between manufacturers and young scientists on industrial size projects
which require both high scientific qualification and the real-life practices
in companies making use of decision analysis.

(ROADEF [2009])

The subject of the challenge was provided in 8th June of 2011, when the challenge
effectively began. The competitors had until 8th December of 2011 to send their meth-
ods for the qualification phase. Eighty three (83) teams all over the world registered and
submitted their programs, but only thirty (30) teams qualified for the next phase. Our
team placed 4th in this preliminary ranking. Then, the teams had until 8th June of 2012 to
send their final methods. The final results will be published in 8th July of 2012 in Vilnius
(Lithuania), during the EURO conference. So, in the moment of finalizing this work, we
do not know the final results of the competition.

The team representing the UFRGS (Universidade Federal do Rio Grande do Sul) was
composed by Gabriel Portal, Marcus Ritt, Luciana Buriol, Leonardo Borba and Alexander
Benavides.

11

2 PROBLEM DEFINITION

In this section, the Machine Reassignment Problem will be defined. First, the context
of the problem will be exposed. Next, the main elements that compose the problem will
be presented. The hard and soft restrictions, as well as the objective function, are then
defined formally. At the end of the chapter, a small example is constructed step-by-step.

2.1 Context

In the Machine Reassignment Problem, the main elements are a set of machines and
a set of processes. There is also an initial assignment of processes to machines. The ob-
jective is to improve the machine usage by finding a better assignment

The practical utility of the problem is very easy to understand. Google, who proposed
the problem definition, has thousands of machines spread over the world, each of them re-
ceiving a huge number of requests every day due to all the offered services. It is natural to
try to optimize the usage of the available resources. The concept of optimizing resources
will be clearer with the definition of the objective function.

Although the proposed name of the problem is Machine Reassignment, it seems more
natural (and that is how the problem will be referenced in this work) that processes are as-
signed to machines and not the other way. That is mainly because the relation assignment
of processes to machines is functional: each process is assigned to one single machine at
a time. However, the opposite is not true: a machine usually has many processes assigned
to itself.

For the original definition of the problem, we refer the reader to ROADEF/Google
[2011].

2.2 Problem Elements

In this section, the elements of the problem will be presented. They will be useful
for later defining the constraints and the objective function. As it was previously stated,
the main elements of the problem are a set of machines M and a set of processes P .
An assignment of processes to machines, a solution to the problem, is the definition of
a function A : P 7→ M that maps every process p ∈ P to a machine m ∈ M. Then,
A(p) = m means that process p is assigned to machine m in solution A. The function A0

will represent the initial assignment of processes to machines.

12

Furthermore, each machine has available resources. For example, the processing ca-
pacity (CPU) and memory (RAM) are two important resources in the context of com-
puters. Physical storage capacity (HD) could be a considered resource too. These are
the most “classical”. More practical “resources” may be: the number of simultaneous
network connections, the network bandwidth, the number of simultaneous processes or
threads, the number of open files, etc. As each machine has a quantity of each resource
available, each process has an associated requirement for each resource. It will be natural
that a constraint of the problem will be to respect the resource capacities of each machine.
Formally, let R be the set of resources, C(m, r) be the capacity of machine m ∈ M for
resource r ∈ R and R(p, r) be the requirement of process p ∈ P for resource r ∈ R.

A resource may have transient usage costs. A resource that needs transient usage
occupies space on the origin and destination machines while being transfered. A good
example is the disk space (HD): when moving a process from one machine to another,
disk space will be used (or reserved) in both machines. Formally, T R ⊆ R is the subset
of the resources that need transient usage.

Processes are partitioned into services. This means that each process is associated
to a single service. Let S be the set of services, then ∀p ∈ P ,∃s ∈ S | p ∈ s. The
semantics associated with services is a set of processes that have a common objective.
In the context of Google, examples would be the email service GMail or the localization
service GMaps. There are many processes, spread over many machines, that act to deliver
a service of quality to the client.

Machines are partitioned in locations. Let L be the set of locations, then ∀m ∈
M,∃l ∈ L | m ∈ l. Locations could mean geographical positioning. Considering
that Google has many clusters of machines spread over the world, each cluster could rep-
resent a location (set of machines).

Machines are also partitioned in neighborhoods. Let N be the set of neighborhoods,
then ∀m ∈ M,∃n ∈ N | m ∈ n. The semantics associated with neighborhoods is the
ease of communication. Two machines will be in the same neighborhood if they can ex-
change data fast enough to answer the requests of an user in acceptable time. Intuitively,
neighborhoods would be a refinement of locations: the answer time is so small that two
machines must be in the same geographical location to cooperate (and this is not always
enough). Another possibility is that locations are a refinement of neighborhoods, assum-
ing a more flexible response time for requests. So, a group of locations are sufficiently
near to cooperate with each other. The formal definition of the problem does not make any
of these assumptions. Therefore, locations and neighborhoods are independent partitions
of the set of machines.

It is important to note that the semantical interpretations of the elements of the prob-
lem are, in majority, assumptions of the author of this work. Possibly, these assumptions
do not reflect the ideas of the creators of the problem. It is also possible that the assump-
tions in relation to the infrastructure of the enterprise Google (used as example) are not
correct.

13

2.3 Hard Constraints

Hard constraints must be respected by any valid solution for the problem. In contrast,
the soft constraints are penalized by a cost in the objective function when they are violated.
In this section, the five hard constraints that compose the Machine Reassignment Problem
will be explained:

• capacity constraints,

• conflict constraints,

• spread constraints,

• dependency constraints and

• transient usage constraints.

2.3.1 Capacity Constraints

Capacity constraints guarantee that the usage of the resources of a machine does not
exceed its capacity. These are the most intuitive constraints in the sense that it is not pos-
sible to use resources that do not exist – resources not available in the machine. So, it is
very natural that it is a hard constraint.

Let U(m, r) be the usage of resource r ∈ R in machine m ∈ M. Considering an
assignment function A, we have

U(m, r) =
∑

p∈P|A(p)=m

R(p, r). (2.1)

Therefore, the capacity constraints are

U(m, r) ≤ C(m, r), ∀m ∈M, ∀r ∈ R. (2.2)

2.3.2 Conflict Constraints

Conflict constraints guarantee that no two processes of the same service on the same
machine. This constraint aims to minimize the trouble caused to a single service in case
of failure of a machine. In this case only one process of each service will be affected. The
impact is spread more evenly among the services.

Therefore, conflict constraints are as follow:

A(pi) 6= A(pj), ∀s ∈ S, pi ∈ s, pj ∈ s. (2.3)

2.3.2.1 Spread Constraints

Spread constraints guarantee that the processes of a service will be sufficiently spread
among the machine locations, i.e. geographically dispersed. So, in case of failure of all
the machines of a location, the services will still be able to answer their requests. Failures
in all the machines of a region could be due to a natural catastrophe or even focused at-
tacks (in case of war, or even elimination of sensible information).

14

Let spreads, s ∈ S , be the minimal number of locations that must be occupied by
processes of service s. Let L(P ′) be the set of locations occupied by processes in P ′,
where P ′ ⊆ P .

L(P ′) = {l ∈ L | ∃m ∈ l, p ∈ P ′ : A(p) = m}. (2.4)

The definition of the spread constraints is

|L(s)| ≥ spreads, ∀s ∈ S. (2.5)

2.3.3 Dependency Constraints

Dependency constraints guarantee the efficiency of communication between services.
Naturally, the neighborhoods will be involved in the definition of these constraints. Let
service si depend on service sj , there must be at least one process of service sj in the
same neighborhood of each process of service si. This definition implies that any process
of service sj may answer to the information requests of service si.

Formally, si ⇒ sj indicates that service si depends on service sj . This way, we have
the following constraints:

∀pi ∈ si, ∃pj ∈ sj, ∃n ∈ N | A(pi) ∈ n ∧ A(pj) ∈ n (∀si ⇒ sj). (2.6)

2.3.4 Transient Usage Constraints

Transient usage constraints complement the capacity constraints. Since some re-
sources consume twice its requirements during the migration between machines, this extra
usage of resources must be taken into account. For example, it is not possible to free the
disk space on the origin machine before the content is copied to the target machine, how-
ever this space must be already reserved there.

So, capacity constraints of transient usage resources will be slightly different from
Equation 2.2, but the former inequalities still apply. In this new formulation, the sum of
requirements of processes originally assigned to machine m ∈M or being assigned to m
in the new solution must be considered for verification of capacity. We have∑

p∈P|A0(p)=m∨A(p)=m

R(p, r) ≤ C(m, r), ∀m ∈M, r ∈ T R (2.7)

2.4 Objective Function

In this section, it will be described how to evaluate a solution. The elements of the ob-
jective function may be called soft constraints, since they define desirable characteristics
of a solution but are not mandatory. The objective function is composed of the following
components:

• load cost,

• balance cost,

• move cost

15

– process move cost
– machine move cost
– service move cost

2.4.1 Load Cost

Load cost is the term of the objective function responsible for avoiding overload of the
machines. Even though a machine has a maximum capacity for a resource, it is desirable
to keep the usage of this resource lower for a better operation of the machine. For ex-
ample, if the memory resource of a machine is completely used, any non-usual operation
(e.g. for the operational system) would exceed the available capacity and compromise
the performance of the machine. This constraint formalizes the desire to keep a security
margin over the capacity of the resources, even though this is not mandatory.

Let SC(m, r) be the safety capacity of machine m ∈ M for resource r ∈ R. It is
desired that the usage of the resource r in machine m to be less than SC(m, r), otherwise
it will be paid linearly for the overload. Note that a usage exceeding C(m, r) is not
allowed. Therefore, it makes sense that C(m, r) ≥ SC(m, r). The load cost for a given
resource is stated as

load(r) =
∑
m∈M

max(0, U(m, r)− SC(m, r)). (2.8)

Let weightlc(r) be the weight of the load cost for resource r. The load cost over all
the resources is

loadCost =
∑
r∈R

weightlc(r) load(r). (2.9)

2.4.2 Balance Cost

Balance cost is the term of the objective function responsible for balancing resources
in the machine. The balance of resources is especially important for future usage of the
machine. It is pointless, for example, to have free memory space on a machine if there are
no processing resources available. This constraint states a kind of “dependency” between
resources: if a machine has x available units of resource ri, it needs to have at least tx
available units of resource rj , for a constant t.

Let B be the set of dependencies between resources. This dependency is defined by a
pair of resources and a target ratio. Formally, we have b = (r1, r2, t) ∈ B and B ⊆ R2×N.
We will use projection functions to access the elements of a triple. So, T (b), R1(b) and
R2(b) represent the elements of the balance cost b. Let F (m, r) be the free space of
resource r ∈ R in machine m ∈M. Then

F (m, r) = C(m, r)− U(m, r). (2.10)

The balance cost for a given b ∈ B is

balance(b) =
∑
m∈M

max(0, T (b) F (m,R1(b))− F (m,R2(b))). (2.11)

Let weightbc(b) be the weight of balance cost b. Then, the total balance cost is

balancecost =
∑
b∈R

weightbc(b) balance(b). (2.12)

16

2.4.3 Process Move Cost

Moving processes around is undesirable because they will not answer requests during
the transfer time. Besides, some processes are more costly to move than others, due to the
amount of data to be transfered, for example. Let PMC(p) be the move cost of process
p ∈ P and weightpmc be the weight of the process move cost. Then, the total process
move cost is

processMoveCost = weightpmc

∑
p∈P|A(p)6=A0(p)

PMC(p). (2.13)

2.4.4 Machine Move Cost

Moving a process between machines that are in the same room may be different from
moving a process between machines in different continents. At least, the network speed
will be different, thus the transfer time will also be different. Let MMC(mi,mj) be the
cost of transferring a process from machine mi to machine mj . Naturally, MMCm,m = 0
for every machine m ∈M. Also, let weightmmc be the weight of the machine move cost.
The total machine move cost is

machineMoveCost = weightmmc

∑
p∈P

MMCA0(p),A(p). (2.14)

2.4.5 Service Move Cost

Service move cost measures how the services were affected by the transfer of pro-
cesses for the new assignment. This cost reflects the maximum number of moved pro-
cesses of a service, over all services. Let MS(s) be the set of processes of service s that
moved out from their original machines. So,

MS(s) = {p ∈ s | A(p) 6= A0(p)}. (2.15)

Let weightsmc be the weight of the service move cost. The service move cost will be

serviceMoveCost = weightsmc

∑
s∈S

|MS(s)| . (2.16)

2.4.6 Total Objective Cost

After defining all the components of the objective function, the definition of the total
objective function is the sum of all these terms. Therefore,

totalCost = loadCost + balanceCost +

processMoveCost + machineMoveCost + serviceMoveCost. (2.17)

2.5 Numerical Example

In this section an instance will be presented with the objective of illustrating many
aspects of the problem. All the data will be shown and a new solution will be proposed.

2.5.1 Instance Data

In our working example, there will be 3 machines and 7 processes. So, M = {m1,
m2,m3} and P = {p1, p2, p3, p4, p5, p6, p7}. There are only two resources R = {r1, r2}

17

Table 2.1: Informations about the machines.

Machine r1 r2 Location Neighborhood
m1 16 (5) 170 (50) l1 n1

m2 9 (8) 150 (30) l1 n2

m3 17 (13) 140 (70) l2 n2

Table 2.2: Informations about the processes.

Process r1 r2 PMC Service A0

p1 9 60 15 s1 m1

p2 5 20 7 s2 m1

p3 4 10 5 s2 m2

p4 2 50 7 s4 m2

p5 2 40 6 s3 m2

p6 3 10 4 s3 m3

p7 3 20 5 s1 m3

and one of them is a transient usage resource T R = {r2}. Table 2.1 presents the capacity
of each machine for each resource (safety capacities are given in parentheses), as well
as the location and neighborhood of each machine. Table 2.2 presents the requirements
of each process for each resource, as well as process move cost, original machine and
service it belongs to. Finally, Table 2.3 presents the machine move costs.

Regarding Table 2.1, we can see there are two locations L = {l1, l2} and two neigh-
borhoods N = {n1, n2}. Namely, l1 = {m1,m2}, l2 = {m3}, n1 = {m1} and
n2 = {m2,m3}. Table 2.2 shows there are four services S = {s1, s2, s3, s4} and we
have s1 = {p1, p7},s2 = {p2, p3},s3 = {p5, p6} and s4 = {p4}. The spread values for
each of these services is 2, 1, 1, 1, respectively.

There is only one dependency: service s2 depends on service s1, s2 ⇒ s1. There is
also only one balance tripleB = {b1} and b1 = 〈r1, r2, 10〉. The weights are weightlc(r1) =
90, weightlc(r2) = 10, weightbc(b1) = 5 and the other weights are all 1.

Table 2.3: Machine move costs.

x m1 m2 m3

m1 0 25 125
m2 25 0 5
m3 125 5 0

18

2.5.2 Original Assignment

First, we will analyze the original assignment to confirm that it respects all the con-
straints. The usage of the resources of the machines are as follows: U(m1, r1) = 14,
U(m1, r2) = 80, U(m2, r1) = 8, U(m2, r2) = 100, U(m3, r1) = 6 and U(m3, r2) = 30.
These values are less than the stated capacities in Table 2.1. Figure 2.1 illustrates the
usage of the machines.

m1 m2
m3

r1 r2 r1 r2 r1 r2

 p1 p2 p3 p4 p5 p6 p7

16

 5

170

50

14

80

9
8

30

100

150 17

13

6
30

70

140

Figure 2.1: Usage of the machines in the original assignment.

The conflict constraint is also respected because the processes of a service are always
in a different machine. A value 1 of minimum spread is trivially respected because a pro-
cess of a service will always be assigned to some machine, and this machine must be in
some location, resulting in a spread of at least 1. The only non-trivial spread constraint
is for service s1, which is respected since p1 is on machine m1 (location l1) and p7 is on
machine m7 (location l2).

The only dependency constraint is the following: service s2 depends on service s1.
The processes of s2 are present in neighborhoods n1 and n2, so there must be at least
a process of service s1 in each of these neighborhoods. Process p1 is in neighborhood
n1 and process p7 is in neighborhood n2, respecting the constraint. Finally, the transient
usage constraint is trivially respected because no process was moved.

All hard constraints were verified, and now we will calculate the cost of the initial
assignment. For resource r1, we have load(r1) = 9 + 0 + 0 = 9 and for resource
resource r2, load(r2) = 30 + 70 + 0 = 100. Then, the total load cost is loadCost =
90× 9+10× 100 = 1810. For the balance cost, we must first calculate the free resources
in the machines: F (m1, r1) = 2, F (m1, r2) = 90, F (m2, r1) = 1, F (m2, r2) = 50,
F (m3, r1) = 11 and F (m3, r2) = 110. The target ratio of b1 is 10, but after multiplying
the usage of resource r1 by 10 the values are still smaller than the free space of resource
r2. This way, the terms would be negative and the operator max sets the total balance cost
to 0. There is obviously no move cost, since no process was moved. The total value of
this solution is 1810.

19

2.5.3 New Assignment

The new proposed assignment is the following: A(p1) = m3, A(p2) = m2, A(p3) =
m3, A(p4) = m1, A(p5) = m3, A(p6) = m2 and A(p7) = m1. First, it is neces-
sary to check if the hard constraints are being respected. The usage of the machines are
U(m1, r1) = 5, U(m1, r2) = 70, U(m2, r1) = 8, U(m2, r2) = 30, U(m3, r1) = 15 and
U(m3, r2) = 110. It is clear that these values are below the capacity constraints. The
conflict constraint is also respected, since processes in the same machine do not belong to
the same service.

The spread constraints can be easily verified: processes of service s1 are spread over
machines from locations l1 and l2. With regard to the dependency constraint, both pro-
cesses from service s2 are in neighborhood n2, so it is enough to exist a process of service
s1 in this neighborhood. Indeed, process p7 from service s1 is neighborhood n2.

All the processes were moved in this new assignment, so the transient usage constraint
must be verified for resource r2. For machine m1, processes p1, p2, p4 and p7 were there
originally or are there in the new assignment, accumulating an use of 150 in resource r2
(below the capacity). For machine m2, the sum of requirements over all concerned pro-
cesses is 130, also below the capacity. And for machine m3, the sum of the requirements
is 100, which is below 140.

Since all hard constraints are respected, this is a valid assignment. Then, the value
of this assignment will be calculated. load(r1) = 2 and load(r2) = 60, resulting in
loadCost = 780. The free space in the machines is F (m1, r1) = 11, F (m1, r2) =
100, F (m2, r1) = 1, F (m2, r2) = 120, F (m3, r1) = 2 and F (m3, r2) = 30. The only
not balanced machine according to b1 is m1 because T (b) F (m1, r1) ≥ F (m1, r2). So,
balance(b1) = 10 and balanceCost = 50. All processes were moved, so the process
MoveCost = 49, the machineMoveCost = 315 and the serviceMoveCost = 2. Summing
all these values, we have totalCost = 1196.

2.6 Instances

During the ROADEF Challenge 2011/2012, 20 instances were made available. Be-
fore the qualification phase, ten A instances were given to the competitors to test their
methods. After the qualification phase, another 10 larger instances were given. Table 2.4
shows some information about these instances, which we used during the development of
this work. The table shows the number of processes (|P |), the number of machines (|M |),
the number of resources (|R|), the number of services (|S|), the number of locations (|L|),
the number of neighborhoods (|N |), the number of dependencies (dep.), and the number
of balance costs (|B|) of each instance. It is also presented the value of the objective
function for the original assignment (Initial Solution).

It is worth noting that the number of locations and neighborhoods is the same as the
number of machines in all instances. Together with the conflict constraint, it means that
every process of a service will be in a different location and a different neighborhood. As
a direct consequence, the spread constraint is trivially satisfied in all these instances.

20

Table 2.4: Information about instances.

Instance |P| |M| |R| |S| |L| |N | dep. |B| Initial Solution
A1-1 100 4 2 79 4 4 0 1 49528750
A1-2 1000 100 4 980 100 100 40 0 1061649570
A1-3 1000 100 3 216 100 100 342 0 583662270
A1-4 1000 50 3 142 50 50 297 1 632499600
A1-5 1000 12 4 981 12 12 32 1 782189690
A2-1 1000 100 3 1000 100 100 0 0 391189190
A2-2 1000 100 12 170 100 100 0 0 1876768120
A2-3 1000 100 12 129 100 100 577 0 2272487840
A2-4 1000 50 12 180 50 50 397 1 3223516130
A2-5 1000 50 12 153 50 50 506 1 787355300

B-1 5000 100 12 2512 100 100 4412 0 7644173180
B-2 5000 100 12 2462 100 100 3617 1 5181493830
B-3 20000 100 6 15025 100 100 16560 0 6336834660
B-4 20000 500 6 1732 500 500 40485 1 9209576380
B-5 40000 100 6 35082 100 100 14515 0 12426813010
B-6 40000 200 6 14680 200 200 42081 1 12749861240
B-7 40000 4000 6 15050 4000 4000 43873 1 37946901700
B-8 50000 100 3 45030 100 100 15145 0 14068207250
B-9 50000 1000 3 4609 1000 1000 43437 1 23234641520

B-10 50000 5000 3 4896 5000 5000 47260 1 42220868760

21

3 INTEGER PROGRAMMING FORMULATION

An Integer Programming (IP) formulation is a mathematical formulation of a problem
using integer variables. The stated constraints (or inequalities) and the objective function
must be linear.

It is a good practice to state the problem in a mathematical form to be sure that there
are no ambiguities or misunderstandings in its definition. An integer programming for-
mulation is an interesting option even being a little restrictive (due to linearity constraints)
because there are optimized solvers available. This way, the IP solver is also a standard
parameter to compare methods against.

In this section, an integer programming formulation for the Machine Reassignment
Problem will be presented. This formulation was implemented in the CPLEX solver and
the results are also presented.

3.1 Formulation

3.1.1 Decision Variables

• xpm ∈ {0, 1} indicates the assignment of process p ∈ P to machine m ∈M.

• yp ∈ {0, 1} indicates whether the process p ∈ P changed from its original machine.

• Umr ∈ R+ indicates the usage of machine m ∈M for resource r ∈ R.

• Asl ∈ {0, 1} indicates whether service s ∈ S has a service in location l ∈ L.

• Bsn ∈ {0, 1} indicates whether service s ∈ S has a service in neighborhood n ∈ N .

• loadmr ∈ R+ is the load cost in machine m ∈M for resource r ∈ R.

• lcost ∈ R+ is the total load cost.

• balancebm ∈ R+ is the balance cost b ∈ B for machine m ∈M.

• bcost ∈ R+ is the total balance cost.

• pmcost ∈ R+ is the total process move cost.

• service ∈ R+ is the service move cost.

• smcost ∈ R+ is the total service move cost.

22

• machinep ∈ R+ is the machine move cost for process p ∈ P .

• mmcost ∈ R+ is the total machine move cost.

• totalcost ∈ R+ is the total cost, which must be minimized.

3.1.2 Constraints

We must assign each process to exactly one machine∑
m∈M

xpm = 1 ∀p ∈ P . (3.1)

A process changed from its original machine if it is not assigned to it

yp = 1− xpA0(p) ∀p ∈ P . (3.2)

The usage of resource r ∈ R on machine m ∈M is defined by

Umr =
∑
p∈P

xpmR(p, r), (3.3)

and, therefore, the capacity constraints are

Umr ≤ C(m, r) ∀m ∈M, r ∈ R \ T R. (3.4)

Note that only the non-transient resources are being considered, even though the con-
straint would also be correct for them. However stronger constraints will be defined for
them.

The conflict constraints permit at most one process of a service on a machine. They
are guaranteed by ∑

p∈s

xpm ≤ 1 ∀s ∈ S,m ∈M.1 (3.5)

The definition of Asl is guaranteed by the following constraints

Asl ≤
∑

m∈l,p∈s

xpm ∀s ∈ S, l ∈ L. (3.6)

Note that if there is no process from service s in location l, variable Asl is forced to be 0.
Otherwise, it is free to assume any value, however the optimization process will force it
to be 1 if necessary. Together with∑

l∈L

Asl ≥ spreads ∀s ∈ S, (3.7)

these constraints guarantee that spread constraints are being respected. To satisfy Equa-
tion 3.7, it is desirable that variables Asl assume the value 1 when possible, and therefore
these variables in conjunction with Equation 3.6 assume the right values.

1Constraints xsm + xtm ≤ 1 for all s 6= t ∈ S and all m ∈M are weaker.

23

The definition of Bsl is guaranteed by

Bsn ≤
∑

m∈n,p∈s

xpm ∀s ∈ S, n ∈ N . (3.8)

Note that this variable is defined similar to variables Asl. The same observations apply
here and some other constraint will have to force these variables to be 1. These constraints
are

Bsn ≥
∑

m∈n,p∈s

xpm/min{|n|, |s|} ∀n ∈ N , s ∈ S. (3.9)

If there is no process of service s in neighborhood n, the constraint is always satisfied.
Otherwise, the right side of the inequality will be greater than 0 but at most 1 because the
number of processes from service s in neighborhood n is at most min{|n|, |s|}. Then,
the constraint will force variable Bsn to be 1. Finally, the dependency constraints are
guaranteed by

Bsn ≤ Btn ∀n ∈ N , s⇒ t. (3.10)

Besides considering the usage of a machine, transient resources must consider the
usage of resources in original machines. Transient usage constraints are, then, defined by

Umr +
∑

p∈P |A0(p)=m

ypR(p, r) ≤ C(m, r) ∀m ∈M, r ∈ T R. (3.11)

3.1.3 Objective Function

The variable loadmr is defined by

loadmr ≥ Umr − SC(m, r) ∀m ∈M, r ∈ R (3.12)

and the total load cost is

lcost =
∑

m∈M,r∈R

weightlc(r) loadmr. (3.13)

Variables loadmr could be arbitrarily big by these constraints, but since they must be
minimized by the objective function, an optimal solution will satisfy the restrictions with
equality.

In a similar way, the balance cost is defined by

balancebm ≥ T (b)(C(m,R1(b))− Um,R1(b))− (C(m,R2(b))− Um,R2(b)), (3.14)

then the total balance cost is

bcost =
∑

m∈M,b=∈B

weightbc(b) balancemb. (3.15)

The definition of process move cost is

pmcost = weightpmc

∑
p∈P

yp PMC(p). (3.16)

24

The service move cost is constrained by

service ≥
∑
p∈s

yp ∀s ∈ S. (3.17)

Then the total service move cost is simply

smcost = weightsmc service. (3.18)

The machine move cost for process p ∈ P is

machinep =
∑
m∈M

xpm MMCA0(p),m ∀p ∈ P . (3.19)

Then, the total machine move cost is

mmcost = weightmmc

∑
p∈P

machinep. (3.20)

The total objective function is

totalcost = lcost + bcost + pmcost + mmcost + smcost (3.21)

and the objective of the problem is

min totalcost. (3.22)

3.2 Results

The proposed formulation was implemented in the software CPLEX version 12.3. Ba-
sically, a branch-and-bound algorithm is used to solve the problem. However, CPLEX is a
proprietary software and the details of the used techniques are not open to the community.

Instances A were solved by CPLEX using two threads and a maximum time limit of
one hour. These results are shown in Table 3.1, in column “CPLEX [1h]”, as well as the
gap from the internal lower bound found by CPLEX (column “Gap1[%]”) and the spent
time (column “time1 [s]”). The instances A-1, A1-3 and A1-5 were solved optimally, as
can be observed by the gap, and also the execution ended before the stipulated limit. As
some gaps were highly unsatisfactory, some instances were solved again with four threads
and a time limit of 10 hours. These results are presented in the column “CPLEX2 [10h]”
of the table, as well as its gap (column “Gap2[%]”) and time (column “time2 [s]”). The
quality of these solutions is much better, even though it demanded a computational effort
20 times higher. Note that a gap of 0% may not indicate an optimal solution since CPLEX
informs the gap only to a precision of two digits.

The formulation of instances B for CPLEX could not fit in the main memory of the
computer (12GB in the tested machine). Therefore, instances B were considered too big
to be solved by integer programming.

Note that in the ROADEF challenge, the time limit to solve each instance was 300
seconds. This is a tight time limit considering the size of the instances and it was expected
that the plain integer programming approach would not provide a competitive method.
The objective, from the beginning, was to provide good bounds for the instances. This
explains the extra computation time given to the CPLEX solver.

25

Table 3.1: CPLEX results.

Instance CPLEX [1h] Gap1[%] time1 [s] CPLEX2 [10h] Gap2[%] time2 [s]
A1-1 44306501 0.0 0.0 - - -
A1-2 778318293 0.1 3600.0 - - -
A1-3 583005925 0.0 25.4 - - -
A1-4 303303782 20.01 3600.0 272728697 7.91 36000
A1-5 727578313 0.0 4.9 - - -
A2-1 2350329 1298424.3 3600.0 181 0.0 36000
A2-2 1096122427 37.93 3600.0 794668498 0.0 36000
A2-3 1414426104 9.48 3600.0 - - -
A2-4 3018472741 79.62 3600.0 2040289999 21.41 36000
A2-5 706922741 129.85 3600.0 - - -

26

4 LOWER BOUND

Ideally, we would like to know the optimal solution for all the instances. That way, it
is very easy to judge the quality of a method by the deviation of the found solutions from
the optimal known solutions.

An useful approach is to determine lower bounds for the problem. A lower bound
is a value that is certainly below (or equal) the optimal solution in a minimization prob-
lem. It should be as close as possible of the optimal solution because we will use this
value to evaluate the quality of the solutions. Lower bounds are also very useful in ex-
act methods, such as branch-and-bound. These methods search the entire solution space
and good estimates of the optimal solution may result in pruning a great part of this space.

A lower bound is usually found by solving optimally a relaxed version of the problem.
The most common relaxation for Integer Programming is the linear programming relax-
ation. The constraint that forces the variables to be integer is ignored and the problem
can be solved by the Simplex method (or any other linear programming method). On the
other hand, to find good problem specific lower bounds can be difficult.

In our context, the IP formulation for CPLEX was used in the beginning of the chal-
lenge, when the instances were not very large (instances A). CPLEX uses the linear pro-
gramming relaxation of the problem, but this proved to be good enough for our initial
evaluations.

When we had to work with the larger B instances, our IP formulation could not fit in
the memory of the computer, i.e. that we could not determine a linear programming lower
bound and should develop our own lower bound to evaluate our methods. This lower
bound will be presented in this section.

4.1 Load Cost Lower Bound

Here, a lower bound for the load cost will be given. If we take, for every resource, the
sum of the requirements over all processes and the sum of the safety capacities over all
machines, the excess of resource requirements is a lower bound for the load cost. Let call
it LBloadCost, then

LBloadCost =
∑
r∈R

weightlc(r) max(0,
∑
p∈P

R(p, r)−
∑
m∈M

SC(m, r)). (4.1)

The proof of the validity of this lower bound is given by manipulating the definition

27

of load cost. A valid identity that will be used here is the following:∑
m∈M

U(m, r) =
∑
p∈P

R(p, r), ∀r ∈ R. (4.2)

Another valid manipulation that will be used is that the sum of positive numbers of a
sequence is greater than, or equal to, the maximum between 0 and the sum of the numbers
of the same sequence. This will be useful to manipulate the max operator of the formulas.∑

x∈X

max(0, x) ≥ max(0,
∑
x∈X

x) (4.3)

Therefore, the proof proceeds like that:

loadCost =
∑
r∈R

weightlc(r)
∑
m∈M

max(0, U(m, r)− SC(m, r)) ≥∑
r∈R

weightlc(r) max(0,
∑
m∈M

(U(m, r)− SC(m, r))) =∑
r∈R

weightlc(r) max(0,
∑
m∈M

U(m, r)−
∑
m∈M

SC(m, r)) =∑
r∈R

weightlc(r) max(0,
∑
p∈P

R(p, r)−
∑
m∈M

SC(m, r))

4.2 Balance Cost Lower Bound

A lower bound for the balance cost can be obtained in a similar way than the lower
bound for the load cost. Instead of analyzing each machine separately for verifying the
difference of free space for the considered resources, it is considered the free space for all
machines and the requirements over all processes. Let call this lower bound LBbalanceCost,
then we have

LBbalanceCost =
∑
b∈B

weightbc(b) max(0, T (b)E(R1(b))− E(R2(b))), (4.4)

where E(r) is the excess of the total capacity for resource r over the total requirements
for this resource, defined as

E(R) =
∑
m∈M

C(m, r)−
∑
p∈P

R(p, r). (4.5)

To understand this lower bound, it is necessary to understand the meaning of the
balance cost. Its objective is to balance the free space of resources in the machine and not
the usage of resources. The proof of this lower bound is a manipulation of the definition
of balance cost. In the following proof, we will use the identity

∑
m∈M

F (m, r) =
∑
m∈M

(C(m, r)− U(m, r)) =∑
m∈M

C(m, r)−
∑
m∈M

U(m, r) = E(r)

(4.6)

28

Then we have the following:

balanceCost =
∑
b∈B

weightbc(b)
∑
m∈M

max(0, T (b) F (m,R1(b))− F (m,R2(b))) ≥∑
b∈B

weightbc(b) max(0, T (b)
∑
m∈M

F (m,R1(b))−
∑
m∈M

F (m,R2(b))) =∑
b∈B

weightbc(b) max(0, T (b) E(R1(b))− E(R2(b)))

4.3 Combined Lower Bound

Since the load cost and balance cost enter separately into the objective function, we
can combine them to obtain a lower bound for the problem:

LB = LBloadCost + LBbalanceCost. (4.7)

The derived lower bound might not be very strong. It ignores move costs and also con-
sider load cost and balance cost independently. A tighter lower bound could be achieved
solving a relaxed problem considering both costs.

Table 4.1 shows the lower bounds for all instances. For each instance, it shows the
load cost lower bound (LBloadCost), the balance cost lower bound (LBbalanceCost) and the
final lower bound (lowerBound). It can be verified that for instances which have no bal-
ance cost (see Table 2.4), the LBbalanceCost is naturally equal to 0.

Table 4.2 presents an evaluation of the proposed lower bound and a comparison with
the lower bound generated by the linear programming relaxation of the problem. For
each instance, it is presented the best known value (BKV), lower bound as presented in
this section (lowerBound), the ratio of this lower bound in relation to the best known
value (ratio1), the linear programming lower bound obtained by CPLEX (LP-LB), the ra-
tio of this alternative lower bound (ratio2) and the time taken to generate this lower bound
(time).

Evaluating first our own lower bound, we note there are many values close to 0% in
column ratio1. This means that the lower bound is reasonably good in general. There
are, however, some instances for which the lower bound is far from the best known value.
Instances A2-2 and A2-3 have very high ratio1 values, indicating that the lower bound is
probably far from the optimal solution. Besides, instance A2-1 has a lower bound of 0.

Comparing the lower bound with the linear programming relaxation (columns LB and
LP Lower Bound of Table 4.2), we can see that LB values are always worse. This is
expected since the linear relaxation deals with all elements of the problem, while our
lower bound deals only with some elements and in an independent way. However, it is
worth noting that the values are usually very close. Besides that, our lower bound is much
simpler to calculate and it can be found in a very short time while this is not always true
for linear relaxation (column time is there to show that some relaxations took a long time).
Due to these factors, our lower bound allowed us to evaluate our methods with instances
B while the linear programming relaxation could not be used because of memory and/or
time constraints.

29

Table 4.1: Lower bounds.

Instance LBloadCost LBbalanceCost LB
A1-1 31011730 13294660 44306390
A1-2 777530730 0 777530730
A1-3 583005700 0 583005700
A1-4 0 242387530 242387530
A1-5 602301710 125276580 727578290
A2-1 0 0 0
A2-2 13590090 0 13590090
A2-3 521441700 0 521441700
A2-4 1450548890 229673490 1680222380
A2-5 307035180 0 307035180

B-1 3290754940 0 3290754940
B-2 31188860 983965000 1015153860
B-3 156631070 0 156631070
B-4 0 4677767120 4677767120
B-5 922858550 0 922858550
B-6 0 9525841820 9525841820
B-7 0 14833996360 14833996360
B-8 1214153440 0 1214153440
B-9 10050999350 5834370050 15885369400

B-10 0 18048006980 18048006980

30

Table 4.2: Lower bound values.

Instance BKV LB ratio1[%] LP-LB ratio2[%] time[s]
A1-1 44306501 44306390 0.00 44306481 0.00 0.0
A1-2 777532813 777530730 0.00 777530748 0.00 27.4
A1-3 583005717 583005700 0.00 583005701 0.00 23.4
A1-4 252728589 242387530 4.26 242394539 4.26 7.6
A1-5 727578309 727578290 0.00 727578296 0.00 0.2
A2-1 181 0 ∞ 66 174.24 2.5
A2-2 794668498 13590090 5747.41 29349216 2607.63 725.7
A2-3 1291984008 521441700 147.77 573189496 125.40 676.2
A2-4 1680487588 1680222380 0.01 1680230778 0.01 40.4
A2-5 307561267 307035180 0.17 307040661 0.17 28.0

B-1 3401204973 3290754940 3.35 - - -
B-2 1015712460 1015153860 0.05 - - -
B-3 157005237 156631070 0.22 - - -
B-4 4677989734 4677767120 0.00 - - -
B-5 923255957 922858550 0.04 - - -
B-6 9525859674 9525841820 0.00 - - -
B-7 14835997267 14833996360 0.01 - - -
B-8 1214522871 1214153440 0.03 - - -
B-9 15886044480 15885369400 0.00 - - -

B-10 18049083542 18048006980 0.00 - - -

31

5 LOCAL SEARCH METHODS

In this section, the methods developed to solve the Machine Reassignment Problem
will be presented. At first, a randomized local search was developed. This method did not
produce good results, but contained some important characteristics such neighborhoods
and data structures. In the following, a Simulated Annealing heuristic was proposed.
This is the best method presented in this work and uses some important elements from
the randomized local search.

5.1 Randomized Local Search

In the first steps of working with the problem, we studies local search algorithms.
These methods evolved into a randomized local search and, later, to a Simulated Anneal-
ing heuristic. Next, two simple neighborhoods used in these algorithms will be presented.
Also, the data structures that permit fast operations will be explained. Finally, the ran-
domized local search algorithm and its results are presented.

5.1.1 Neighborhoods

The first neighborhood, given a valid assignment, moves a process from one machine
to another machine. We will call it the Move Neighborhood. The size of this neighbor-
hood (number of neighbors of a given a solution) is O(|P||M|).

The second neighborhood will be called the Swap Neighborhood. Given a valid
assignment, a movement of this neighborhood consists in swapping two processes lo-
cated on two different machines. For example, let A1(p1) = m1 and A1(p2) = m2. A
swap move between processes p1 and p2 will produce the following neighbor solution:
A2(p1) = m2 and A2(p2) = m1. The size of this neighborhood is O(|P|2). Since it is
expected that |P| > |M|, the size of this neighborhood is likely bigger than the move
neighborhood.

5.1.2 Data Structures

In any local search algorithm, there are some core operations that will be used repeat-
edly: 1) we must verify if a movement of the neighborhood is valid; 2) we must calculate
the cost of the neighbor solution; 3) and finally, we must execute the move. Here, the
data structures to execute these operations fast and utilization in the context of the move
neighborhood will be presented. Its extension to the swap neighborhood is similar.

The used data structures are

32

• machineResource: |M|×|R| integer matrix for storing the usage of each resource
in each machine. So, machineResourcemr indicates the usage of resource r ∈ R in
machine m ∈M.

• transientUsage: |M| × |R| integer matrix that indicates the usage of transient
resources in machines. transientUsagemr indicates the usage of resource r ∈ R in
machine m ∈M by processes that were originally in machine m and were moved.

• serviceMachine: |S|× |M| boolean matrix used for indicating if a service has any
processes in a machine. Therefore, serviceMachinesm indicates the existence of a
process from service s ∈ S in machine m ∈M. Note that at most one process of a
service may be in a machine at some time, so this matrix is composed of booleans.

• serviceLocation: |S| × |L| integer matrix where serviceLocationsl indicates the
number of processes of service s ∈ S are assigned to machines of location l ∈ L.

• serviceNeighborhood: |S|×|N | integer matrix indicating the number of processes
of a given service in a neighborhood. serviceNeighborhoodsn indicates the number
of processes of service s ∈ S are present in machine of neighborhood n ∈ N .

• serviceLocationCount: |S| integer vector used to store the current spread factor of
the services. serviceLocationCounts indicates the number of locations that have
processes of service s ∈ S.

• serviceChanged: |S| integer vector. serviceChangeds indicates the number of
processes of service s ∈ S that are not assigned to their original machines.

• serviceChangedCount: |P| integer vector where serviceChangedCountk indi-
cates the number of services that have exactly k processes which changed from
their original machines. In fact, its size can be the size of the biggest service.

• maxServiceChanges: an integer indicating the maximum number of processes of
the same service that changed from machine. It is the service move cost of the
solution before multiplying by weightsmc.

Note that this information is redundant. In fact, all this data can be gathered from the
current assignment. The reason for keeping all this redundant data updated is to execute
the desired operations very fast (mostly in constant time). The memory usage of these
data structures is O(|M||R| + |M||S| + |S||L| + |S||N | + |P|). This will usually be
dominated by the term |M||S|. In the challenge ROADEF, there were some big instances
but the memory usage never exceeded 64 MB.

Suppose we are moving process p ∈ P to machine m ∈ M. Let service(p) be the
service of process p and location(m) be the location of machine m. In order to respect
the conflict constraint, machine m must not have a process of service s. This is easily
achieved by verifying if serviceMachineservice(p),m > 0. For the capacity constraints, we
must verify if the requirements of process p plus the current usage of the machine plus
the transient usage of the machine are lower than its capacity. Note that transient usage
constraints are being verified jointly. However, if A0(p) = m, then the constraints are
automatically verified because the requirements of process p will be summed in the usage
of the machine but decreased of its transient usage. The cost of the verification is O(|R|).

33

Spread constraints are verified in constant time by making sure that the movement
will not lower the spread of service s below its minimum requirements. This happens
if process p is the only one of service(p) in its current location and location(m) al-
ready has some processes of service(p), also serviceLocationCountservice(p) must be equal
spreadservice(p).

The most complicated constraint is the dependency constraint. Let neighborhood(m)
be the neighborhood of machine m. We must guarantee that neighborhood(m) has pro-
cesses that satisfy all the dependencies of service(p). Besides, if process p is the only
one in its current neighborhood and there is any process that depend on it, then process
p cannot move out. All these verifications can be done in O(|D|), if we call D the set of
all dependencies. However it is probably less than that since only dependencies involving
service(p) are verified. In summary, the whole verification cost is O(|R||D|).

The delta cost of the new solution in relation to the current one can be calculated in
O(|R||B|). The load cost can be calculated in O(|R|) by verifying the state of the source
and destination machines. Balance cost is calculated in O(|B|) also by verifying the state
of the involved machines if the move is made. Move costs can be calculated in constant
time.

Considering the execution of the move, all the data structures must be updated to
reflect the new assignment. This can be done in O(|R|). This cost is due to the update
of machineResource and transientUsage matrices, all other data structures are updated in
O(1).

5.1.3 Local Search Procedure

Given a current solution, the randomized local search selects one of the k best neigh-
bors using the move neighborhood. If the current solution is a local minimum of this
neighborhood, the swap neighborhood is used instead. The search stops when a local
minimum of both neighborhoods is found. This process is then repeated from the begin-
ning until the time limit. For our experiments, a value k = 5 was used.

This method is a mixture of randomized best improvement local search with a vari-
able neighborhood search. In our experiments, the best improvement heuristic produced
better results than the first improvement because it made more significant changes in the
solution, even though it took more time. The first improvement heuristic takes the first
movement that makes an improvement, however many movements represent an insignifi-
cant improvement, especially due to the move costs. The variable neighborhood technique
is used to escape a local minimum using a heavier neighborhood. The randomized nature
of the algorithm was introduced to utilize all the available time for the challenge, since
each execution of the search could potentially lead to a different solution.

Algorithm 1 shows the pseudo-code of the randomized local search. Note that a can-
didate in a given neighborhood must improve the current solution, otherwise it is not
considered a candidate. Also, the choice of a random candidate is made among the best k
candidates.

In the reported experiments, the results of a first improvement and best improvement
heuristics are presented. A first improvement heuristic is a technique that runs through

34

Algorithm 1 Randomized Local Search
Input: initial solution S
Output: new solution

while improved current solution do
if there is a candidate in move neighborhood then

choose a random candidate
perform the move

5: else if there is a candidate in swap neighborhood then
choose a random candidate
perform the swap

else
return S

10: end if
end while

a neighborhood and chooses the first neighbor of the current solution that improves the
cost. The process is repeated until no neighbor improves the solution, which is called a
local minimum solution. In our experiments, we used the move neighborhood. In the
other hand, the best improvement heuristic runs through a neighborhood and chooses the
best neighbor among all of them. The process is also repeated until a local minimum and
the move neighborhood was used in the experiments. Usually, the first improvement is
a faster method because it does not iterate over all the neighborhood before choosing its
target. Also, the best improvement strategy does not guarantee a better solution in the end.

As it turned out in the experiments, a reasonable strategy would be to mix first and
best improvement. Choose the first process that generates an improvement, like first im-
provement. But when considering a process, take the best machine to perform a move,
like best improvement. We will call this strategy the fixed-process best improvement (FP).

5.1.4 Results

Table 5.1 presents a comparison between the first improvement and the best improve-
ment heuristics. For each instance, we give the value obtained by the first improvement
(FI), the execution time and the relative deviation with relation to the best known values
(Table 4.2) calculated as dev = (sol− bkv)/bkv. The same information is presented for
the Best Improvement heuristic (BI).

It can be seen that many of the executions were stopped because of the time limit
of 300 seconds. Therefore, the solutions found are not necessarily local minima. In
our case the best improvement strategy showed better results due to its more significant
changes in the solution. Note that in the time of testing these algorithms, only instances A
were available and a superior algorithm had already been developed when the B instances
came out. If choosing a pure local search technique, nor first improvement neither best
improvement should be chosen since they could not even achieve a local minimum within
the time limit.

Table 5.2 presents the results of the improved local search algorithms. FP shows the
results of the fixed-process best improvement heuristic just presented. This heuristic was
implemented for comparison purposes after the end of ROADEF challenge due to the

35

Table 5.1: Comparison between First Improvement and Best Improvement heuristics.

Instance FI time [s] Dev. [%] BI time [s] Dev. [%]
A1-1 44307410 0.003 0.002 44306501 0.003 0.000
A1-2 847270158 1.005 8.969 830092537 0.374 6.760
A1-3 583384093 0.013 0.065 583373292 0.024 0.063
A1-4 340779893 1.940 34.840 305472822 1.113 20.870
A1-5 728088666 0.020 0.070 727578809 0.025 0.000
A2-1 28633567 6.099 15819550 21045707 2.683 11627362
A2-2 1475332347 2.300 85.654 993139356 2.066 24.975
A2-3 1823648909 2.362 41.151 1479599923 1.755 14.522
A2-4 2129868604 8.406 26.741 2014010786 2.067 19.847
A2-5 648316715 2.564 110.793 615442775 1.217 100.104

B-1 4563358943 67.958 34.169 3598178892 51.634 5.791
B-2 1585983541 300.00 56.145 1223973932 124.316 20.504
B-3 3188092285 300.00 1930.911 515164541 300.00 228.175
B-4 7456692502 300.00 59.400 6142786122 300.00 31.313
B-5 9242619109 300.00 901.090 3803071974 300.00 311.920
B-6 10906388931 300.00 14.492 9720586589 300.00 2.044
B-7 37216794965 300.00 150.855 37234576480 300.00 150.975
B-8 11182536419 300.00 820.735 4165958519 300.00 243.012
B-9 21097555215 300.00 32.806 21633896455 300.00 36.182

B-10 41570497323 300.00 130.319 41738070246 300.00 131.248

poor performance of the classical local search strategies in the big instances. RLS states
for the results of the randomized local search algorithm. This algorithm always use all the
available time, so the column “time” is omitted.

It can be seen that both algorithm outperform the best improvement and first improve-
ment algorithms. Although the fixed-process best improvement heuristic produces worst
results in some instances, it outperforms the other heuristics in the big instances due to its
fast processing of the neighborhood while still making significant moves. The random-
ized local search (RLS) was our best algorithm for a while, however it can be seen that its
performance is weak in big instances because it relies heavily on the best improvement
strategy.

5.2 Simulated Annealing

Simulated Annealing is an approach for combinatorial optimization proposed by Kirk-
patrick et al. [1983]. As proposed, moves are chosen randomly with a probability of being
accepted that depends on a temperature variable and the quality of the new solution. The
temperature is initialized with a high value which has the effect that much worse solutions
might be accepted. However, the temperature decreases gradually reducing the probabil-
ity that worse solutions will be accepted. In the limit, the algorithm behaves like a local
search.

36

Table 5.2: Improved local search algorithms results.

Instance FP time [s] Dev. [%] RLS Dev. [%]
A1-1 44307006 0.003 0.001 44306501 0.000
A1-2 861988695 0.04 10.862 783616972 0.782
A1-3 583502292 0.013 0.085 583006016 0.000
A1-4 337809296 0.055 33.665 267766740 5.950
A1-5 727580826 0.015 0.000 727578709 0.000
A2-1 47277617 0.136 26120130 4545638 2511302
A2-2 1440056956 0.09 81.215 985560727 24.022
A2-3 1774226850 0.12 37.326 1396948864 8.124
A2-4 2181492430 0.175 29.813 1782251046 6.056
A2-5 646157082 0.108 110.091 485170386 57.748

B-1 4760518814 0.82 39.966 3490328296 2.620
B-2 1352634450 4.161 33.171 1146912050 12.917
B-3 335672599 7.063 113.834 533086150 239.592
B-4 4678045536 81.44 0.001 6180081570 32.110
B-5 1055122757 16.976 14.283 3838230409 315.728
B-6 9525937752 80.181 0.001 9726660908 2.108
B-7 16647366341 300.0 12.209 37234576780 150.975
B-8 1382321502 30.579 13.816 4258795460 250.656
B-9 15889231476 219.605 0.020 21636685245 36.199

B-10 20158430473 300.0 11.687 41738070446 131.248

For the acceptance probability of a given move, a formula that comes from the Metro-
polis-Hastings algorithm is usually used. Let d = v(s)−v(s′), where v(s) is the objective
value of the solution s, s is the current solution and s′ is the target solution. If d ≥ 0,
the solution is automatically accepted. Otherwise, the solution is accepted with proba-
bility ed/T , where e is the Euler constant and T is the current temperature. Note that
limT→0 e

d/T = 0.

The intuition for this technique comes from annealing in metallurgy. In this technique,
a material is heated and then it passes by a process of controlled cooling. The slow cool-
ing permits to find configurations of low internal energy, and therefore a material with
less defects.

Bertsimas and Tsitsiklis [1993] provide a good mathematical analysis of the behav-
ior of the Simulated Annealing method. Using Markov chains, the convergence of the
method can be demonstrated. However, there is no rigorous justification of its speed of
convergence. Anyway, this is an heuristic used successfully in practice for various prob-
lems.

A detailed empirical study of the technique was performed by Johnson et al. [1989]
and Johnson et al. [1991]. The first one studies the behavior of Simulated Annealing
for the classical Graph Partitioning Problem. The second paper makes a similar analysis

37

studying Graph Coloring and Number Partitioning.

5.2.1 Algorithm

The proposed Simulated Annealing combines the two neighborhoods presented: move
and swap neighborhoods. In each iteration of the method, the move neighborhood is cho-
sen with probability p and the swap neighborhood with probability 1 − p. Probability
p = 0.7 was chosen for our experiments.

Given a neighborhood, the Simulated Annealing proceeds by selecting a random
neighbor of the current solution. An important detail is the choice of a feasible neigh-
bor of the current solution. Ideally, this would be a random choice among the neighbors.
Since the neighborhoods can be large, the feasibility test would incur a large time over-
head. We therefore opted for a more efficient sampling strategy.

For the move neighborhood, a process p and a machine k are selected at random.
Then, we consider machines (k + i)%|M| for 0 ≤ i ≤ c, where c is a constant (in the
computational experiments we used c = 100). The first valid assignment of process p to a
machine in the given order, if any, is chosen. Otherwise, process p is considered unmov-
able and the move is rejected. A similar procedure is used for the swap neighborhood: a
process is fixed and a sequence of c other processes is chosen to perform the movement.
This strategy guarantees an efficient choice of the neighbor which is constant in the size
of the instance.

A cooling cycle of the simulated annealing starts with an initial temperature t0, holds
the temperature constant for n iterations and then reduces it with a cooling rate r. This
kind of temperature reduction is called geometrical cooling scheme, since temperatures
form a geometrical progression tk = t0r

k.

When the current best solution is not updated for 20n iterations and the number of ac-
cepted moves is less than 0.1% we consider the solution “frozen” (Johnson et al. [1989]).
In this case, we reheat the system by increasing the temperature to t0/100. The objective
of this reheating procedure is to perform more significant perturbations to the current so-
lution, hoping to escape local minimum.

Algorithm 2 shows an outline of the Simulated Annealing method. It uses a method
called sa_move that executes a movement and returns a flag indicating if it was success-
ful. This method is presented in Algorithm 3. In this method, getMoveNeighbor and
getSwapNeighbor are methods for choosing a neighbor of a given neighborhood. Also,
getCost is a function that returns the difference in cost of the current solution and the
solution after performing the indicated move.

5.2.2 Parameter Setting

In the ROADEF challenge, we had available two processors and a time limit of 5
minutes (300 seconds) for solving each instance. We chose to execute two independent
threads with different parameters and return the best solution found. So, the choice of
parameters of each thread had to be made.

We systematically tested several combinations of parameters values applied to a sub-

38

Algorithm 2 Simulated Annealing Method
Input: initial solution sol
Input: initial temperature t0
Input: the allowed time limit TIME_LIMIT
Input: number of iterations per temperature n
Input: decrease factor of the temperature r
Input: minimum ratio of accepted moves MIN_PERCENT
Input: number of temperature iterations without an update FREEZE_LIM
Output: final solution

bestSolution⇐ sol
T⇐ t0
freeze⇐ 0
while time() < TIME_LIMIT do

5: it⇐ 0
ac⇐ 0
for i = 1→ n do

if sa_move(sol, T) then
ac⇐ ac+ 1

10: end if
it⇐ it+ 1
if sol.cost < bestSolution.cost then

bestSolution⇐ sol
freeze⇐ 0

15: end if
end for
T⇐ r × T
if ac/it < MIN_PERCENT then

freeze⇐ freeze + 1
20: if freeze = FREEZE_LIM then

freeze⇐ 0
T⇐ t0/100

end if
end if

25: end while
return bestSolution

39

Algorithm 3 Simulated Annealing Movement
Input: current sol
Input: current temperature T
Input: probability p of choosing each neighborhood
Output: boolean value indicating if the movement was accepted

if random() < p then
move⇐ getMoveNeighbor(sol)
delta⇐ getCost(sol, move)
if delta < 0 or random() > e−delta/T then

5: makeMove(sol, move)
return True

else
return False

end if
10: else

move⇐ getSwapNeighbor(sol)
delta⇐ getCost(sol, move)
if delta < 0 or random() > e−delta/T then

makeSwap(sol, move)
15: return True

else
return False

end if
end if

set of the instances. The subset chosen was: A1-4, A2-2, A2-3, A2-5, B-1 and B-3, since
these were considered the most difficult instances for our method. The values of the pa-
rameters we tested were the following: n ∈ {104, 105, 106}, r ∈ {0.91, 0.95, 0.97} and
t0 ∈ {107, 108, 109}. All the combinations of these values were tested and for each pa-
rameter setting and instance, we ran five executions with different seeds. With the values
of the average for each considered instance, we calculated scores (relative distance to the
optimum) for each parameter setting. Finally, we ranked the results by score. The best
score was achieved with parameters: n = 105, r = 0.97 and t0 = 108.

This parameter setting performed well in the tested instances, but it could be very slow
for some instances, spending too many iterations per temperature combined with a slow
decrease of temperature. This could be seen especially for instance B-5, which was not
considered in the subset of tested instances, for which some “lighter” parameter settings
performed better. To balance this condition, the parameter setting of the second thread
was chosen to be faster than the first one (and complementary): n = 70000, r = 0.95 and
t0 = 108.

5.2.3 Results

Table 5.3 shows the results of the proposed Simulated Annealing method on the in-
stances A. We present the best results of qualification phase (Qualification), these are the
best results over the solutions of all competitors of the challenge, together with its devi-
ation in relation to the best known values of the instances. We also give the results of

40

Table 5.3: Results of the Simulated Annealing on instances A.

Instance Qualification Dev. [%] SA_v1 Dev. [%] SA_v2 Dev. [%]
A1-1 44306501 0.000 44306501 0.000 44306935 0.001
A1-2 777532896 0.000 782071851 0.584 777533311 0.000
A1-3 583005717 0.000 583006016 0.000 583009439 0.001
A1-4 252728589 0.000 282606396 11.822 260693258 3.151
A1-5 727578309 0.000 727578709 0.000 727578311 0.000
A2-1 198 9.392 250103 138078 222 22.652
A2-2 816523983 2.750 836004186 5.202 877905951 10.474
A2-3 1306868761 1.152 1335318573 3.354 1380612398 6.860
A2-4 1681353943 0.052 1697598024 1.018 1680587608 0.006
A2-5 336170182 9.302 406634034 32.212 310243809 0.872

the first version of Simulated Annealing (SA_v1) and its relative deviation. This was the
version used in the qualification phase. It differed from the presented method in the sense
that only the move neighborhood was used. And the results of the final version of the
Simulated Annealing (SA_v2) are also presented with their relative deviation.

Note that the solution for some easy instances is worse in the final version. This is
because in the qualification version, the Random Local Search Algorithm was executed a
couple of times to handle these instances. However, this procedure was not applied in the
final version because of the long time this algorithm was taking for big instances (as can
be seen in Table 5.2). In general, the results are better compared to the first version of the
algorithm.

Table 5.4 shows the results on the instances B. The same information as before is
presented, with the exception of column Qualification (and its deviation) because these
instances were not used in the qualification phase.

In this table, the superiority of the final version can be perceived. Using only the move
neighborhood, the search procedure was trapped frequently in local minima. So, the swap
neighborhood helped a lot in exploring other parts of the solution space. Based on these
results we conclude that the final Simulated Annealing method is superior than the first
method and it is a good option for solving the problem.

Table 5.4: Results of the Simulated Annealing on instances B.

Instance SA_v1 Dev. [%] SA_v2 Dev. [%]
B-1 3480944379 2.344 3455971935 1.610
B-2 1025478846 0.962 1015763028 0.005
B-3 793646781 405.577 215060097 37.000
B-4 4678188847 0.004 4677985338 0.000
B-5 2029086024 119.775 923299310 0.005
B-6 9525863457 0.000 9525861951 0.000
B-7 15073216111 1.599 14836763304 0.005
B-8 4216917662 247.208 1214563084 0.003
B-9 15886827597 0.005 15886083835 0.000

B-10 18220528250 0.950 18049089128 0.000

41

6 SERVICE ROTATION

6.1 Insight and Modeling

During the development of the work, we noticed an interesting structural characteris-
tic of a solution. This generated an optimization routine that we called Service Rotation.
This was not incorporated in the final method, but it is worth explaining since it could be a
useful element in a solution procedure which can spend more than the alotted 300 seconds.

Let s ∈ S be a service. It is known that every process p ∈ s is assigned to a dif-
ferent machine due to the conflict constraint. We will show that, if keeping every other
assignments as they are, any bijection between processes of service s and their respective
machines will automatically respect some of the hard constraints.

Since it is a bijection between processes and machines, the conflict constraint will be
automatically satisfied: every process will be assigned to a different machine. The spread
constraint is also being respected because the set of machines occupied by service s is the
same, and therefore the same set of locations. And finally, the dependency constraints are
also satisfied. All processes of service s have the same needs in terms of dependencies,
and any of them is able to satisfy their dependents. Therefore, we can exchange them be-
tween their machines without affecting the dependencies. Having said that, the only hard
constraints that are not guaranteed are the capacity constraints (including transient usage).

We will model the problem of finding the best assignment of process to machines
as the classical Assignment Problem. The problem consists on finding the minimum
weighted matching in a weighted bipartite graph. In the classical example, there are n
workers and n machines. Each worker performs the job on each machine in a different
time. The objective is to find an assignment that minimizes the sum of utilization time
of the machines. This is reasonable considering that the cost is propotional to the time
machines are on.

In our case, we have a bipartite graph with processes of service s in one part and their
respective machines in the other part. There is an edge between process p and machine
m if this assignment respects the capacity constraints of machine m. The cost of this as-
signment, if allowed, can be calculated by the new state of machine m. This cost includes
load costs, balance costs and move costs. Figure 6.1 illustrates the bipartite graph that
must be created.

Before the procedure, we virtually take out the processes involved of their machines.

42

 P1 M1

c(P1, M1)

Process i

Machine j

c(P2, M2)

c(P1, M2)

c(Pk, M3)

c(Pk, Mk)

 P2 M2

 Pk Mk

 Pi

 Mj

c(P3, M3)
 P3 M3

c(P2, M3)

Figure 6.1: Assignment Problem for the service rotation.

Then, for calculating the new state of machine m if process p is assigned to it, we just
have to sum its resource requirements. With this information, the capacity constraints
may be verified for the existence of the edge. Also, load costs and balance costs are easily
calculated.

Process move cost can be included by summing PMC(p), unless A0(p) = m. The ma-
chine move cost is also easily included by summing to the cost of the edge MMC(A0(p),
m). The only problem with this modeling is the service move cost. It seems not possible
to include the service move cost in this context because it is a global cost, while all other
costs could be calculated locally.

The most famous algorithm for solving the assignment problem is the Hungarian Al-
gorithm, that runs in O(n3). The algorithm is also known as the Munkres Assignment
Algorithm.

6.2 Results

The service rotation has the drawback of always keeping the processes in the same
set of machines. It should, therefore, be combined with some other method for a better
exploration of the solution space.

Service rotation was not incorporated in our final method because the strength of our
simulated annealing lies in the number of iterations done. Service rotation was more
costly than our current neighborhoods. The technique could be also used as a post-
optimization method. However, the modeling problem with service move cost resulted
in some worse results.

The results of some pre-tests made with instances A are present in Table 6.1. The ser-
vice rotation can be considered a movement where the neighborhood consists of solution
where the processes of some service has been permuted. Then, a movement consists in
choosing a service an executing the service rotation optimization with this service. Col-

43

umn SR presents the results obtained with this technique. The initial solution column
presents the value of the original assignment for comparison purposes.

Note that some instances are not optimized at all. This is natural for instances where
the services do not play an important role. In instance A2-1, for example, all services are
composed of a single machine. Looking at the results, we reiterate that this method should
be combined with some other optimization procedure. However, we still believe that this
might be an interesting approach because it takes advantage of a structural property of the
problem.

Table 6.1: Results using Service Rotation.

Instance Initial Solution SR Dev. [%]
A1-1 49528750 44307420 0.002
A1-2 1061649570 1061659570 36.542
A1-3 583662270 583582202 0.099
A1-4 632499600 409192743 61.910
A1-5 782189690 774241960 6.414
A2-1 391189190 391189190 216126524
A2-2 1876768120 1836542091 131.108
A2-3 2272487840 2246721569 73.897
A2-4 3223516130 2306511773 37.253
A2-5 787355300 644687050 109.613

44

7 TWO-MACHINE NEIGHBORHOOD

From the data presented so far, it can be perceived that instance A2-1 is singular. Ta-
ble 4.2 shows that its best known value is extremely low and also its lower bound is 0.
In fact, this instance has no balance cost and its best solution has a load cost value of 0.
Therefore, its cost is composed only of move costs. Also, from most experimental data
like that presented in Table 5.2, the gap values for this instance are very large due to its
low optimal solution.

While studying this particular instance, we saw that most constraints are trivially sat-
isfied: the instance has no dependencies, no balance costs and all services are composed
of one process, so conflict and spread constraints are trivially respected. In some sense,
this instance is very similar to a multi-dimensional vector bin-packing problem (see Csirik
et al. [1990]) - a multi-dimensional bin-packing where the dimensions are independent.

This encouraged us to develop some methods that could deal with this instance in
particular because our methods performed very poorly at the time. The two machines
movement is one of these methods, even though the simulated annealing evolved and
outperformed it after all. So, it is being presented here as a separate technique which may
be interesting for instances with a special structure.

7.1 Algorithm

The idea is to have a costly movement that is capable of performing a better optimiza-
tion. Given a solution, take two machines and solve the original problem optimally for
these machines. It means to solve the problem considering two machines and the pro-
cesses assigned to them.

Some processes may be fixed because of dependency or spread constraints. For all
the other processes, they have two possibilities of assignment. Therefore, a brute-force
solution would take O(2n), where n is the number of free processes. Since each process
has two possibilities of assignment, there are 2n possible assignments. We tried to solve
such small subproblems with CPLEX, but the number of performed movements was too
low. The solution was to use a simple branch-and-bound solver limiting the number of
considered processes. If n > 20, choose 20 processes randomly. The achieved solution
was not the optimal solution considering the two machines, but the computation was fast
enough to perform about ten movements per second.

Although being a brute-force solution, there was some pruning cuts to make the

45

method faster. If the capacity of any of the machines is exceeded at some node of the
search tree, the method backtracks. Also, if the cost of any partial solution is more than
the best solution found so far, the method prunes the current branch of the tree. Note that
some special attention must be taken considering balance cost because the assignment of
new processes may lower its cost. So, it is necessary to ignore this cost when computing
partial solutions cost. Algorithm 4 shows the pseudo-code of this procedure.

Algorithm 4 Two-machine Neighborhood
Input: process p
Input: current capacities
Input: current assignment

if current capacities exceeded then
return

end if
if partial solution cost > best solution then

5: return
end if
if all processes assigned and current solution < best solution then

update best solution
return

10: end if
update capacities of m1

assign process p to m1

branch(p+1, capacities, assignment)
undo updates and assignment

15: update capacities of m2

assign process p to m2

branch(p+1, capacities, assignment)

7.2 Results

Table 7.1 shows the results of a local search using the two machines movement (RTM).
The moves, that consists in choosing two machines, are selected randomly and then the
optimization is performed. Although the results are not very good in general, note that
the achieved result for instance A2-1 is very acceptable compared to the ones of the qual-
ification method (see Table 5.3). In fact, the load cost was reduced to 0 and the value
is composed only of move costs. So, it can be stated that the two machines movement
was promising. However, the improvement in our Simulated Annealing heuristic outper-
formed these results in a simpler way and this idea was not pursued further.

46

Table 7.1: Results for the Randomized Two Machine movements.

Instance RTM Dev. [%]
A1-1 44307208 0.002
A1-2 788728808 1.440
A1-3 583009440 0.001
A1-4 294135970 16.384
A1-5 727593403 0.002
A2-1 996 450.276
A2-2 1186148908 49.263
A2-3 1579477162 22.252
A2-4 1716759534 2.158
A2-5 370576994 20.489

B-1 3785633467 11.303
B-2 1202542636 18.394
B-3 1225478752 680.667
B-4 5261398180 12.471
B-5 4444227935 381.365
B-6 10068911100 5.701
B-7 21722526481 46.418
B-8 5082005877 318.436
B-9 16610387387 4.560

B-10 30315773140 67.963

47

8 CONCLUSION

The main contribution of this work is a fast heuristic method for solving the Machine
Reassignment Problem. The method is a Simulated Annealing meta-heuristic that uses
two simple neighborhoods. The main operations are performed very quickly and, there-
fore, a great part of the solution space can be explored in a short time. Conceptually, the
method is very simple, but it is capable of achieving near optimal solutions for very large
instances.

We also propose a lower bound for the problem that seems to be good approximation
of the optimal solution in most cases. An integer programming formulation has also been
presented, even though it seems not practical for solving medium or large instances. At
last, two alternative ideas for solving the problem were discussed. The techniques were
not used in the final heuristic solution, but may be interesting if we allow more time than
300 seconds to find better solutions.

There were some ideas that we pursued during the development of this work, but
did not deserve their own section here. At the beginning, a Constraint Program was for-
mulated, however it was not implemented for comparing with the integer programming
formulation. Also, for improving the Simulated Annealing method, we tried to allow vis-
iting infeasible solutions. The challenge in such approach is to develop a mechanism to
rapidly guide the search to a feasible solution when the allotted time ends. Some prelimi-
nary tests showed that an objetive function penalizing infeasible solutions is not sufficient
to achieve this. A path-relinking method was also developed, however most visited solu-
tions were infeasible and the search could not improve the current solutions. Finally, it
was tried a lot to develop a constructive method for finding different initial solutions and
exploring other areas of the solution space. However it is a very complicated task that
deserves its own optimization method for achieving feasibility. Therefore, we decided to
use the given solution as a starting point.

The developed method seems to be efficient on the tested instances. For the final phase
of the ROADEF challenge, the methods will be tested against other instances. The results
of the challenge will be published the 8th June of 2012 and can be verified on the site of
the competition (see ROADEF [2011]).

48

REFERENCES

D. Bertsimas and J. Tsitsiklis. Simulated annealing. Statistical Science, 8:10–15, 1993.

János Csirik, J. B. G. Frenk, Martine Labbé, and Shuzhong Zhang. On the multidimen-
sional vector bin packing. Acta Cybern., 9(4):361–369, 1990.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by Simulated
Annealing. Part I, Graph Partitioning. Operations Research, 37:865–892, 1989.

D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon. Optimization by simulated
annealing: An experimental evaluation; part II, graph coloring and number partitioning.
Operations Research, 39(3):378–406, 1991.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220:671–680, 1983.

ROADEF. Main page for ROADEF challenge 2009. http://challenge.roadef.
org/2009/en/, 2009.

ROADEF. Main page for ROADEF challenge 2011/2012. http://challenge.
roadef.org/2012/en/, 2011.

ROADEF/Google. Google ROADEF/EURO challenge 2011–2012: Machine
Reassignment. http://challenge.roadef.org/2012/files/problem_
definition_v1.pdf, 2011. Version 1.

