
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

VANESSA DE PAULA BRAGANHOLO

From XML to Relational View
Updates: applying old solutions to

solve a new problem

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr. Carlos Alberto Heuser
Advisor

Profa. Dra. Susan B. Davidson
Coadvisor

Porto Alegre, November 2004

CIP - CATALOGAÇÃO NA PUBLICAÇÃO

Braganholo, Vanessa de Paula

From XML to Relational View Updates: applying old solu-
tions to solve a new problem / Vanessa de Paula Braganholo.
– Porto Alegre: PPGC da UFRGS, 2004.

198 f.: il.

Thesis (doctor) – Universidade Federal do Rio Grande
do Sul. Programa de Pós-Graduação em Computação,
Porto Alegre, BR–RS, 2004. Advisor: Carlos Alberto Heuser;
Coadvisor: Susan B. Davidson.

1. Updates through views. 2. XML. 3. Relational
databases. I. Heuser, Carlos Alberto. II. Davidson, Susan
B. III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora Adjunta de Pós-Graduação: Profa. Valquiria Link Bassani
Diretor do Instituto de Informática: Prof. Philippe Olivier Alexandre Navaux
Coordenador do PPGC: Prof. Carlos Alberto Heuser
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

To my parents...

ACKNOWLEDGMENTS

To my parents José Carlos and Alice, who always supported me. It is impossible
to list everything they did an still do for me. This work would not be a reality with-
out them. To my sisters Karla, Tatiana, Larissa and Marcela, and to my beautiful
niece Bruna, thanks for all your love.

All my heart to Leonardo Murta, who understood my long year at University
of Pennsylvania, and who supported me in all possible ways. He was there in the
worst snow storms; he was there when the apartment heat was off in a night of
-15◦C; he was there when a group of boys threw a snow ball in our backs. But
more importantly, he was there to make me laugh, to give me love and to face the
challenges with me. For all of this, I’ll be thankful forever.

To my advisor Carlos Heuser, for all the excellent work and advices. Thanks for
all the opportunities and for the guidance on this work. Guidance which started by
the choice of the topic, which I loved since the first time he suggested, passes through
the core of the solution, and continues until now with advices about my career. To
my co-advisor Susan Davidson, who received me at University of Pennsylvania as if
I were one of her own students. Thanks for everything she did for me, and for her
great contribution to this work. Not less important, to my undergraduate advisor
Clesio Saraiva dos Santos, who taught me to do and to like doing research.

To the UFRGS Database Group as a whole, for the suggestions and for the
harmonious relationship. A special thanks to those who shared the 215 lab with me
for all these years.

To my special friends Renata Galante and Carina Dorneles, who had enormous
patience to hear me during my crises, who read and reviewed most of the papers
resulting from this thesis, and who read and reviewed the thesis itself. Thanks for
being more than colleagues. Thanks for being my real friends. I’ll always remember
our movies together, coffees, lunches, gym, laughs... Also, thanks to Mirella Moro
for keeping me company in almost all of the conferences I’ve been to. Her sense of
humor is fantastic, and she is a wonderful company. A special thanks to the "group
of five" (you know who you are).

I would also like to thank Angelo Agra for implementing the Relational View
Updater Module of the PATAXÓ System, which is the prototype implementation
of the ideas of this thesis. Sérgio Mergen also contributed in the implementation
of several methods of PATAXÓ. Another special thanks to Leonardo Murta, who
helped me start using CVS to manage versions of the source code. Thanks for him
and for Alexandre Dantas for helping me with complicated data structures in Java.

To Marcelo Arenas, Byron Choi, Carina Dorneles, Juliana Freire, Alon Halevy,
Zack Ives, Eduardo Kroth, Cristiano Leivas, Leonardo Murta, Dan Suciu and Yifeng

Zheng, thanks for the help on getting data for the evaluation of query trees in real
world XML views (chapter 8).

To Instituto de Informática and PPGC, for providing this excellent environment
for learning and researching. To all my teachers in the 8 years I spent at UFRGS,
thanks for teaching me the passion for academia. To all the workers of Instituto de
Informática and PPGC, who were always there when I needed. Specially to Luís
Otávio, Lourdes, Silvania, Elisiane, Angela, Eliane, Júnior, Jorge, Ismael, Sula,
Margareth, Ida and Bea.

To CNPq, who has been financially supporting me since undergraduation, and
to Capes, for the sandwich scholarship (BEX 1123/02-5).

Finaly, to all of those who have contributed to this work in a way or another.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 11

LIST OF FIGURES . 13

LIST OF TABLES . 15

ABSTRACT . 17

RESUMO . 19

1 INTRODUCTION . 21
1.1 Motivation and Goals . 21
1.2 Running Example and Overview 21
1.3 Contributions . 25
1.4 Organization of the text . 25

2 UPDATES THROUGH VIEWS . 27
2.1 Problem Statement . 28
2.1.1 Minimality Requirements . 31
2.2 Updates through Relational Views 32
2.2.1 The approach of Dayal and Bernstein 36
2.3 Chapter Remarks . 45

3 XML EXTRACTION FROM RELATIONS 47
3.1 Building and Querying XML views over Relational Databases . 47
3.1.1 SilkRoute . 48
3.1.2 XPERANTO . 52
3.2 Extracting XML Documents from Relational Databases 56
3.2.1 DB2 XML Extender . 59
3.3 Storing and Querying XML documents in Relational Databases 60
3.3.1 Updating XML documents stored in Relational Databases 63
3.4 Chapter Remarks . 63

4 BUILDING AND UPDATING XML VIEWS 65
4.1 Query Trees . 65
4.1.1 Query Trees Defined . 66
4.1.2 Abstract Types . 68
4.1.3 Semantics of Query Trees . 70
4.1.4 DTD of a Query Tree . 70

4.2 Update Language . 72
4.2.1 Schema conformance . 73
4.3 Chapter Remarks . 74

5 FROM XML VIEWS TO RELATIONAL VIEWS 77
5.1 Mapping XML views to Relational Views 77
5.1.1 Map . 77
5.1.2 Split . 78
5.1.3 Correctness . 81
5.2 Mapping Updates over XML views to updates over Relational

Views . 86
5.2.1 Insertions . 87
5.2.2 Modifications . 89
5.2.3 Deletions . 90
5.2.4 Correctness . 91
5.3 Chapter Remarks . 92

6 ON THE UPDATABILITY OF XML VIEWS 93
6.1 Updatability of NRA Views . 94
6.1.1 Nest-last XML views . 94
6.1.2 Nest-last Project-Select-Join Views 96
6.1.3 Well-nested NPSJ . 97
6.2 Updatability of Query Tree Views 100
6.3 Chapter Remarks . 102

7 QUERY TREES APPLIED IN PRACTICE 103
7.1 UXQuery . 104
7.1.1 Normalization to XQuery . 107
7.1.2 From UXQuery to Query Trees . 111
7.2 PATAXÓ: The Prototype . 113
7.2.1 UXQuery Processor . 114
7.2.2 Update Manager . 115
7.2.3 Graphical User Interface . 116
7.2.4 Main Difficulties . 117
7.3 Chapter Remarks . 118

8 EVALUATION . 121
8.1 Limitations of Query Trees . 121
8.2 Power of Expression . 123
8.3 Real applications . 127
8.4 Normalized XML documents . 128
8.5 XQuery use cases . 128
8.6 XML documents stored in relations 128
8.7 Chapter Remarks . 129

9 CONCLUSIONS . 131
9.1 Contributions . 131
9.2 Published Papers . 132
9.3 Comparison with Related Work . 134
9.3.1 SilkRoute . 134

9.3.2 XPERANTO . 135
9.4 Future Work . 136

REFERENCES . 139

APPENDIX A EXTENDING QUERY TREES TO SUPPORT GROUP-
ING . 149

A.1 Query Trees Redefined to Support Grouping 149
A.2 Modifications to the map and split Algorithms 150
A.3 Updatability . 150

APPENDIX B DEALING WITH QUERY TREES WITH REPEATED
NODE NAMES . 157

B.1 Numbering Schemas . 157
B.2 Applying the Global Order Encoding in Query Trees 158

APPENDIX C REAL XML VIEWS . 163
C.1 The Tobacco Company . 163
C.2 The XBrain Project . 169
C.3 The Mondial Database . 188

APPENDIX D CONTRIBUIÇÕES . 197

LIST OF ABBREVIATIONS AND ACRONYMS

BCNF Boyce Codd Normal Form

BNF Backus-Naur Form

CSP Constraint Satisfaction Problem

DAD Document Access Definition

DBA Database Administrator

DBLP Digital Bibliography & Library Project

DTD Document Type Definition

EBNF Extended BNF

FD Functional Dependency

PATAXÓ Permitting updates on relational databases through XML views

QGM Query Graph Model

RDBMS Relational Database Management System

UML Unified Modeling Language

W3C World Wide Web Consortium

XFD XML Functional Dependency

XMark XML Benchmark Project

XML eXtensible Markup Language

XQGM XML Query Graph Model

XSL Extensible Stylesheet Language

XSLT XSL Transformations

LIST OF FIGURES

Figure 1.1: XML view containing vendors, books and dvds 22
Figure 1.2: Sample Database . 23
Figure 1.3: Overview of the proposed solution 24
Figure 1.4: XML view showing books and vendors 24

Figure 2.1: Sample views over database of Figure 1.2 28
Figure 2.2: Classification of work on updates through relational views 32
Figure 2.3: View trace graph for view VendorBook 38
Figure 2.4: FD-node f corresponding to the FD f : B1, . . . , Bk →Ri

A 39
Figure 2.5: View Dependency Graph for view VendorBook 39
Figure 2.6: A path from Y = {C1, . . . , Cn} to A through FD-node f 40

Figure 3.1: Definition of the Public View . 49
Figure 3.2: Definition of the Application query and its result 49
Figure 3.3: View forest corresponding to the view definition of Figure 3.1: (a)

tree representation (b) internal representation 51
Figure 3.4: SQL queries for the nodes of the view forest of Figure 3.3 52
Figure 3.5: User defined view in XPERANTO 54
Figure 3.6: Definition of a new XML view defined over the view of Figure 3.5 54
Figure 3.7: XQGM corresponding to view definition of Figure 3.5 57
Figure 3.8: Expansion of box 6 in Figure 3.7 58
Figure 3.9: View definition in DB2 XML Extender 61

Figure 4.1: Example of query tree . 66
Figure 4.2: Query tree for the XML view of Figure 1.1 68

Figure 5.1: Partitioned query tree for τN (book) 80
Figure 5.2: Partitioned query tree for τN (dvd) 81
Figure 5.3: Tuples resulting from evalRel(eval(qt, d)) for the query tree of

Figure 4.2 . 82
Figure 5.4: Tuples resulting from relOuterUnion({ViewBook,ViewDVD}, d) . 83
Figure 5.5: Tuples on ViewBook . 83
Figure 5.6: Tuples on ViewDVD . 84
Figure 5.7: The stubs(x) relation for the XML view x of Figure 1.1 84
Figure 5.8: Modified query tree, resulting of the execution of the replace al-

gorithm over the query tree of Figure 4.2 86

Figure 6.1: An instance of NRA1 . 94
Figure 6.2: NRA1 represented in XML . 95

Figure 6.3: NRA2: Tuples resulting from unnesting NRA1 95
Figure 6.4: View graph . 96
Figure 6.5: An instance of NRA3 . 97
Figure 6.6: Graph GF for view NRA3 . 99
Figure 6.7: Graph GF for view NRA1 . 99

Figure 7.1: Example of a simple query that retrieves vendors and deposits . . 105
Figure 7.2: XML view resulting from the query of Figure 7.1 106
Figure 7.3: EBNF of UXQuery . 107
Figure 7.4: Example of a query that uses the xnest operator (lines 1-23) and

its translation to regular XQuery syntax (lines 24-49) 108
Figure 7.5: Example of a query with two element groups (lines 1-33) and its

translation to regular XQuery syntax (lines 34-72) 109
Figure 7.6: Example of UXQuery that joins two relations and its query tree . 111
Figure 7.7: Query tree corresponding to the query of Figure 7.5 113
Figure 7.8: PATAXÓ System architecture 114
Figure 7.9: UXQuery Processor . 116
Figure 7.10: Update Manager . 117
Figure 7.11: System taskbar . 117
Figure 7.12: User Interface . 118
Figure 7.13: Alternative interface to update the XML view 119
Figure 7.14: DTD Tab of PATAXÓ System 120
Figure 7.15: Relational Views Tab of PATAXÓ System 120

Figure 8.1: Example of query tree . 122
Figure 8.2: XQuery representation of query tree of Figure 4.2 125
Figure 8.3: EBNF of the subset of XQuery corresponding to query trees . . . 126

LIST OF TABLES

Table 2.1: Check list regarding the problems of Section 2.1 34
Table 2.2: Comparison of work on updates through relational views 35

Table 3.1: XQGM Operators . 55
Table 3.2: XML Functions and the operators in which they can appear . . . 55

Table 9.1: Comparison with Related Work 134

ABSTRACT

XML has become an important medium for data exchange, and is frequently
used as an interface to - i.e. a view of - a relational database. Although lots of work
have been done on querying relational databases through XML views, the problem of
updating relational databases through XML views has not received much attention.
In this work, we give the first steps towards solving this problem.

Using query trees to capture the notions of selection, projection, nesting, group-
ing, and heterogeneous sets found throughout most XML query languages, we show
how XML views expressed using query trees can be mapped to a set of corresponding
relational views. Thus, we transform the problem of updating relational databases
through XML views into a classical problem of updating relational databases through
relational views.

We then show how updates on the XML view are mapped to updates on the
corresponding relational views. Existing work on updating relational views can
then be leveraged to determine whether or not the relational views are updatable
with respect to the relational updates, and if so, to translate the updates to the
underlying relational database.

Since query trees are a formal characterization of view definition queries, they
are not well suited for end-users. We then investigate how a subset of XQuery
can be used as a top level language, and show how query trees can be used as an
intermediate representation of view definitions expressed in this subset.

Keywords: Updates through views, XML, Relational databases.

RESUMO

De Atualizações sobre Visões XML para Atualizações sobre Visões
Relacionais: aplicando soluções antigas a um novo problema

XML vem se tornando um importante meio para intercâmbio de dados, e é
frequentemente usada com uma interface para - isto é, uma visão de - um banco de
dados relacional. Apesar de existirem muitos trabalhos que tratam de consultas a
bancos de dados através de visões XML, o problema de atualização de bancos de
dados relacionais através de visões XML não tem recebido muita atenção. Neste
trabalho, apresentam-se os primeiros passos para a solução deste problema.

Usando query trees para capturar noções de seleção, projeção, aninhamento,
agrupamento e conjuntos heterogêneos, presentes na maioria das linguagens de con-
sulta XML, demonstra-se como visões XML expressas através de query trees podem
ser mapeadas para um conjunto de visões relacionais correspondentes. Consequente-
mente, esta tese transforma o problema de atualização de bancos de dados relacionais
através de visões XML em um problema clássico de atualização de bancos de dados
através de visões relacionais.

A partir daí, este trabalho mostra como atualizações na visão XML são mapeadas
para atualizações sobre as visões relacionais correspondentes. Trabalhos existentes
em atualização de visões relacionais podem então ser aplicados para determinar se
as visões são atualizáveis com relação àquelas atualizações relacionais, e em caso
afirmativo, traduzir as atualizações para o banco de dados relacional.

Como query trees são uma caracterização formal de consultas de definição de
visões, elas não são adequadas para usuários finais. Diante disso, esta tese investiga
como um subconjunto de XQuery pode ser usado como uma linguagem de definição
das visões, e como as query trees podem ser usadas como uma representação inter-
mediária para consultas definidas nesse subconjunto.

Palavras-chave: Atualização através de visões, XML, Bancos de dados relacionais.

21

1 INTRODUCTION

1.1 Motivation and Goals

XML is frequently used as an interface to relational databases. In this scenario,
XML documents (or views) are exported from relational databases and published,
exchanged, or used as the internal representation in user applications. This fact
has stimulated much research in exporting and querying relational data as XML
views (FERNÁNDEZ et al., 2002; SHANMUGASUNDARAM et al., 2000, 2001;
CHAUDHURI; KAUSHIK; NAUGHTON, 2003). However, the problem of updat-
ing a relational database through an XML view has not received as much attention:
Given an update on an XML view of a relational database, how should it be trans-
lated to updates on the relational database? To the best of our knowledge, this
question remains unanswered until now.

Since the problem of updates through relational views has been studied for more
than 20 years by the database community, it would be good to use all that work to
solve the new arising problem of updates though XML views. Specifically, is there
a way to leverage existing work on updating through relational views to map XML
view updates to the underlying relational database?

The main goal of this thesis is to try to answer both of the above questions. To
do so, we present an approach that maps an XML view to a set of relational views,
and use existing work on updates through relational views to map the updates to
the underlying relational database.

In the relational case, attention has focused on updates through select-project-
join views since they represent a common form of view that can be easily reasoned
about using primary key and foreign key information. Similarly, we focus on a
common form of XML views that allows nesting, composed attributes, heterogeneous
sets and repeated elements.

1.2 Running Example and Overview

An example of an XML view is shown in Figure 1.1. In this XML view, book
and dvd nodes are nested under the products node, and the address node composes
attributes in a nested record format.

In this example, and in every example of this thesis, we use the database shown
in Figure 1.2. Its schema is composed of six tables: Vendor, Deposit, Book, DVD,
SellBook and SellDVD. Table SellBook establishes a relationship between tables
Vendor and Book, registering prices of books sold by a given vendor. The table
SellDVD plays the same role for dvds and vendors. A vendor has several deposits,

22

vendors

vendor

@id

“01”

vendorName

“Amazon”

address

state

“WA”

1

2

3 4 5

76
country

“USA”

@bprice

“38”

products

book

btitle

“Unix Network
Programming”

isbn

“1111”

@bprice

“29”

book

btitle

“Computer
Networks”

isbn

“2222”

dvd

dtitle

“Friends”

asin

“D1111”

vendor

@id

“02”

vendorName

“Barnes
and Noble”

address

state

“NY”

country

“USA”

products

book

btitle

“Unix Network
Programming”

isbn

“1111”

book

btitle

“Computer
Networks”

isbn

“2222”

8

10

9

11 12
14

13

15 16

17

19 20

21

22

23 24

25 26

27

28

30 31

32

34 35
@dprice

“29”

18

@bprice

“38”
29

@bprice

“38”
33

Figure 1.1: XML view containing vendors, books and dvds

where he stores the goods he sells.
In the XML view of Figure 1.1, the data was extracted from tables Vendor, Book,

DVD, SellBook and SellDVD. To specify how the XML view is constructed from the
relational source, we represent XML view expressions as query trees. Query trees
can be thought of as the intermediate representation of a query expressed by some
high-level XML query language, and provide a language independent framework in
which to study how to map updates to an underlying relational database. They are
expressive enough to capture the XML views that we have encountered in practice,
yet are simple to understand and manipulate. Their expressive power is equivalent
to that of DB2 DAD files (CHENG; XU, 2000). Throughout the thesis, we will use
the term “XML view” to mean those produced by query trees.

The strategy we adopt is to map an XML view to a set of underlying relational
views. Similarly, we map an update against the XML view to a set of updates against
the underlying relational views. It is then possible to use any existing technique on
updates through relational views to both translate the updates to the underlying
relational database and to answer the question of whether or not the XML view
is updatable with respect to the update. An overview of our solution is shown in
Figure 1.3.

In preliminary work (BRAGANHOLO; DAVIDSON; HEUSER, 2003a), we used
the nested relational algebra (NRA) as the view definition language. In this ap-
proach, each XML view is mapped to a single relational view. However, NRA views
are not capable of handling heterogeneity. Thus, the NRA is capable of representing
the XML view of Figure 1.4 but not that of Figure 1.1. To make this clearer, in this
context, heterogeneity means distinct DTD types. In the example of Figure 1.1, the
node products has heterogeneous children – that is, it has children of types: book
and dvd. In oppose to that, in Figure 1.4 there are no heterogeneous nodes.

Since views such as the one in Figure 1.1 are very common in practice, we
have decided to adopt a more general view definition language – query trees. As
mentioned before, a single XML view produced by a query tree can be mapped to a
set of relational views. The cause of there being more than one underlying relational
view for an XML view expressed by query trees is the presence of heterogeneous sets.
For example, the XML view of Figure 1.1 is mapped to two corresponding relational
views: one for vendors and books (ViewBook), and another one for vendors and
DVDs (ViewDVD). We must then identify to which relational views an XML update
should be mapped to.

23

Vendor
vendorId vendorName url state country
01 Amazon www.amazon.com WA USA
02 Barnes and Noble www.barnesandnoble.com NY USA

Deposit
depId vendorId address city state country
D1 01 1245, Bourbom Street Seatle WA USA
D2 02 1478, 25th Avenue New York NY USA
D3 01 4545, 15th Avenue Seatle WA USA

Book
isbn Title publisher year
1111 Unix Network Programming Prentice Hall 1998
2222 Computer Networks Prentice Hall 1996

Dvd SellDvd
asin title genre nrDisks vendorId asin price
D1111 Friends Comedy 4 01 D1111 29

SellBook
vendorId isbn Price
01 1111 38
01 2222 29
02 1111 38
02 2222 38

Constraints:
On table Vendor:

- primary key(vendorId)
On table Deposit

- primary key(depId)
- foreign key(vendorId) references

Vendor
On table Book

- primary key(isbn)
On table Dvd

- primary key(asin)

On table SellBook

- primary key(vendorId, isbn)
- foreign key(vendorId) references

Vendor
- foreign key(isbn) references Book

On table SellDvd
- primary key(vendorId, asin)
- foreign key(vendorId) references

Vendor
- foreign key(asin) references Dvd

Figure 1.2: Sample Database

As a concrete example, suppose we wish to insert a new book

<book bprice="29">

<btitle>Birding in North America</btitle>

<isbn>5555</isbn>

</book>

at the point in the XML document specified by the following update path expression:
/vendors/vendor[@id="01"]/products (node 8). Using the techniques of this thesis,
this update to the XML view of Figure 1.1 would be mapped to the following SQL
insert statement over ViewBook :

INSERT INTO VIEWBOOK (id, vendorName, state, country, bprice, isbn, btitle)

VALUES ("01", "Amazon", "WA", "USA", 29, "5555", "Birding in North America");

Using existing relational techniques (in particular, that of (DAYAL; BERN-
STEIN, 1982a)), we would then detect that the update is side-effect free and map
the update on the relational view to a set of updates against the underlying relations.

We also address the problem of checking if an update respects the DTD of the
XML view. As an example, the DTD of the XML view of Figure 1.4 is shown below:

24

.........

Existing work on
u p d a te s th rou gh
re l a tiona l v ie ws
Existing work on
u p d a te s th rou gh
re l a tiona l v ie ws

View definition

View instance

View definition

View instance

<view>
{ f o r $ c in t a b l e(“ c o n f er en c e”)
r et u r n
<c o n f er en c e>
{ $ c / c o n f I d }
{ $ c / c o n f N a m e}

</ c o n f er en c e>
}

</ view>

C R E A T E V I E W V 1 A S
S E L E C T … F R O M … W H E R E …
C R E A T E V I E W V 2 A S
S E L E C T … F R O M … W H E R E …

…

C R E A T E V I E W V 1 A S
S E L E C T … F R O M … W H E R E …
C R E A T E V I E W V 2 A S
S E L E C T … F R O M … W H E R E …

…

Figure 1.3: Overview of the proposed solution

Figure 1.4: XML view showing books and vendors

<!ELEMENT vendors (vendor*)>

<!ELEMENT vendor (book*)>

<!ATTLIST vendor id CDATA #REQUIRED>

<!ELEMENT book (vendorName, isbn, title, price)>

<!ELEMENT vendorName (#PCDATA)>

<!ELEMENT isbn (#PCDATA)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT price (#PCDATA)>

If a user tries to insert the XML tree <bike>Giant</bike> using the update
path /vendors/vendor[@id="01"], we would determine that the update is not correct
with respect to the DTD of the XML view, and would not attempt to map it to the
underlying relational database.

Query trees are a formalism that is not well suited for end-users, since it has not
a syntax users can use to specify XML views. In order to show how our approach
can be used in practice, we have defined a subset of XQuery, which we call UXQuery,
that users can use to specify XML views. We then map UXQuery view definitions
into query trees and use the results of this thesis to translate the updates to relational

25

views. We have implemented our approach in a system that we call PATAXÓ.

1.3 Contributions

In summary, the main contributions of this thesis are:

• A formalism to specify XML views over relational databases, which can be
used as an intermediate representation of a top-level language.

• Mapping algorithms to map an XML view to a set of corresponding relational
views, and also to map updates over the XML view to updates over the re-
lational views. We thus transform the open problem of updating relational
databases through XML views, into a well-studied problem, that of updating
relational databases through relational views.

• An updatability study of XML views.

• A subset of XQuery, as an example of how a top-level language can be used
in conjunction with query trees.

1.4 Organization of the text

The outline of this thesis is as follows:

• Chapters 2 and 3 present related work. In Chapter 2, we present work on
updates through relational views, identifying the problems related to updates
through views. In Chapter 3, we show approaches that build XML views over
relational databases.

• Chapter 4 defines query trees, their abstract types, and the resulting XML
view DTD, and shows how query trees are used to extract XML views from
the relational database. It also presents a simple update language to update
XML views and shows how to detect whether or not an update is correct with
respect to the XML view DTD.

• Chapter 5 presents the algorithm for mapping an XML view to a set of under-
lying relational views, and proves its correctness. It also presents an algorithm
for mapping insertions, modifications and deletions on XML views to updates
on the underlying relational views, and proves its correctness.

• Chapter 6 presents an updatability study, based on the approach of (DAYAL;
BERNSTEIN, 1982a). The study identifies classes of XML views for which
updates are translatable without causing side-effects. The notion of side-effect
free translations is defined by Dayal and Bernstein, and is explained in Chapter
2.

• On Chapter 7, we present a practical application of query trees. We define
a subset of XQuery, which we call UXQuery, to define the XML views, and
show how query trees can be used as its intermediate representation. We also
show PATAXÓ, a prototype that implements the ideas of this thesis, using
(DAYAL; BERNSTEIN, 1982a) to translate updates from the relational views
to the underlying relational database.

26

• Chapter 8 discusses the expressive power of our language, and evaluates our
technique with respect to existing proposals on extracting XML views of rela-
tional databases.

• We conclude in Chapter 9 with a summary of the thesis main contributions,
a list of published papers, comparison with related work and a discussion of
future work.

In Appendix A, we show how query trees can be easily extended to add group-
ing capabilities, and present an updatability study for these extended query trees.
Appendix B presents an extension to query trees to support repeated node names.
Finally, Appendix C shows three real world XML views we found, and how they can
be expressed using query trees.

27

2 UPDATES THROUGH VIEWS

The problem of updates over XML is new and started to gain attention only
recently. Despite of that, most of the work on updates over XML has focused on
update languages for XML (ABITEBOUL et al., 1997; TATARINOV et al., 2001;
BONIFATI et al., 2002; LAUX; MARTIN, 2000) and on schema conformance af-
ter updates (BOUCHOU; ALVES, 2003; PAPAKONSTANTINOU; VIANU, 2003).
The problem of schema conformance consists on verifying if an updated XML doc-
ument is still valid according to its original schema. The focus is on performing this
verification without having to revalidate the entire document.

Both of these problems are also relevant when solving the problem of updating
relational databases through XML views. In this specific field, there is also lots of
research on extracting XML views over relational databases (we will study them on
chapter 3). However, there is a lack of proposals in literature that deals with the
core problem on updates through XML views: Given an XML view over a relational
database, how are the updates over the view translated back to the underlying
database?

To the best of our knowledge, the only work on literature that deals with updates
through XML views is that of (WANG; MULCHANDANI; RUNDENSTEINER,
2003; WANG; RUNDENSTEINER, 2004). In (WANG; MULCHANDANI; RUN-
DENSTEINER, 2003), the XML views are XML documents stored in relational
databases and reconstructed using XQuery. For this class of views, they prove that
it is always possible to correctly translate the updates back to the database. How-
ever, they do not give details on how such translations are made. This approach
differs from ours since we deal with XML views constructed over legacy databases.
The approach in (WANG; RUNDENSTEINER, 2004) presents an extension to the
notion of clean source of Dayal and Bernstein. They use this extended notion to
study the updatability of XQuery views published over relational databases. Their
results are analogous to the results of our WebDB 2003 paper (BRAGANHOLO;
DAVIDSON; HEUSER, 2003a). It is important to state that both of these work do
not deal with how the updates are translated to the underlying relational database.

Since there is this lack of related work on updates through XML views, we have
studied work on updates through relational views. This helped us identifying the
main problems in updates through views, and also helped us find the directions to
solve the XML view update problem.

In the sections that follow, we overview work on updates through relational
views, emphasizing problems and solutions.

28

V1 = σ(vendorId=1)(Deposit)
Deposits of vendor 1

V2 = σ(state=’WA’)(Vendor)
Vendors of WA

V3 = π(vendorId, vendorName)(Vendor)
Projection of vendorId, vendorName on Vendor

V4 = π(city)(Deposit)
Projection of city on Deposit

V5 = Vendor * SellBook
Natural join of Vendor and SellBook

V6 = σ(count(depId)≥2)(γ(vendorId)(Deposit))
Deposits grouped by vendorId and restricted to count(depId) ≥ 2

V7 = π(depId, url)(Deposit * Vendor)
Deposit joined with Vendor (on vendorId) and projected on depId and url

Figure 2.1: Sample views over database of Figure 1.2

2.1 Problem Statement

The problem of updates through views can be stated as follows: "Given a particu-
lar update on a particular view, what updates need to be applied to what underlying
database tables in order to implement the original view update?" (DATE, 2000).
Answering this question can be very complicated, especially because depending on
the view structure, several problems may occur.

The main problems and implications of updates through views were enumerated
by Furtado in (FURTADO; CASANOVA, 1985), and are listed below. For each of
the identified points, we present an example based on the views of Figure 2.1, which
were defined over the database of Figure 1.21. The examples were adapted from
(FURTADO; CASANOVA, 1985).

1. A constraint may be violated.

Suppose the following insertion on V1:

INSERT INTO V1 (depId, vendorId, address, city, state, country)

VALUES ("D2", "01", "1478, 25th Avenue", "New York", "NY", "USA")

The natural translation of this insertion would be to insert this tuple into the
Deposit base table. However, this violates two constraints: (i) the functional
dependency DepId → VendorId, since D2 is already assigned to Vendor 02 in
the database; (ii) the primary key of table Deposit.

Similarly, the translation of the deletion

1The view V6 on Figure 2.1 was defined using the extended algebra of (ULLMAN; WIDOM,
1997), where γ is the grouping operator.

29

DELETE FROM V2

WHERE vendorId="01" AND vendorName="Amazon" AND

url="www.amazon.com" AND state="WA" AND country="USA"

violates the constraint Deposit[vendorId] ⊆ Vendor[vendorId], because there
are two deposits in table Deposit assigned to vendor Amazon. Similarly, this
deletion violates the constraints SellBook[vendorId] ⊆ Vendor[vendorId] and
SellDVD[vendorId] ⊆ Vendor[vendorId].

2. A result that does not conform to the view definition may be produced.

The translation of the insertion:

INSERT INTO V2 (vendorId, vendorName, url, state, country)

VALUES ("03", "XYZ", "www.xyz.com", "PA", "USA")

would violate the view definition, since V2 is restricted to vendors whose state
is "WA".

3. A result conforming to the view definition may be produced, but tuples lying
outside the view may be involved.

Consider the following modification:

UPDATE VENDOR

SET state = "WA"

WHERE vendorId = "02"

This example shows that updates made outside the view may affect the tu-
ples of a given view. In this example, the update was made directly on
the Vendor table, but it caused a new tuple ("02", "Barnes and Noble",
"www.barnesandnoble. com", "WA", "USA") to appear on V2.

Although this is one of the problems identified by (FURTADO; CASANOVA,
1985), it is not addressed in most of the work on updates through virtual
relational views. This problem is more directly related to the maintenance
of materialized views (AGRAWAL et al., 1997; SALEM et al., 2000; ZHUGE
et al., 1995).

4. An effect different from that expected from the nature of the operation may
be produced.

The replace operation

UPDATE V2

SET state = "NY"

WHERE vendorId="01" AND vendorName="Amazon"

AND url="www.amazon.com" AND state="WA" AND country="USA"

will cause the tuple to be deleted from V2, so the effect of the update (deletion)
is not the one expected by the user (modification). Notice that the deletion
from the view occurs because the modified tuple does not satisfy the view
definition anymore. Despite of that, the tuple remains in the Vendor table.

30

5. It may be necessary to include undefined values (nulls).

An insertion over a view that projects out attributes of the base tables, such
as V3, causes null values to be inserted on those attributes. As an example,
the insertion

INSERT INTO V3(vendorId, vendorName)

VALUES ("03", "XYZ")

would be translated to inserting ("03", "XYZ", null, null, null) into Vendors.

6. Attributes outside the view may be affected.

Consider the following deletion:

DELETE FROM V4

WHERE city="Seattle"

This would mean to delete all tuples which have "Seattle" in the city column of
the Deposit table. In this case, information about deposits D1 and D3 would
be completely lost.

7. Multiple effects on the stored relations may be produced.

The translation of the replacement

UPDATE V4

SET city="Toronto"

WHERE city="Seattle"

would replace all tuples having "Seattle" as city in the table Deposit by another
one containing "Toronto" in the city column. The implication here is that the
update specification involves a single tuple from the view, but it causes several
database tuples to be modified.

8. A multiple effect on the view may be visible.

The modification

UPDATE V5

SET vendorName="Amazon.com"

WHERE vendorId="01" AND vendorName="Amazon"

AND state="WA" AND country="USA" AND isbn=1111 AND price=38

makes that tuple ("01", "Amazon", "www.amazon.com", "WA", "USA") be
replaced by ("01", "Amazon.COM", "www.amazon.com", "WA", "USA").
However, this translation would modify all tuples referring to the Amazon
vendor in V5, and not only the desired tuple.

9. An entire group of tuples or none at all, may be changed.

INSERT INTO V6 (depId, vendorId, address, city, state, country)

VALUES ("D4", "02", "4444, 52nd Avenue", "New York", "NY", "USA")

31

This insertion would be translated as an insertion of a tuple in table Deposits.
However, two tuples would be inserted in the view, and not only the desired
one. This is because before the insertion, there was no tuple corresponding
to vendor 02 in V6, because count(depId) of vendor 02 was equal to one (1).
After the update, deposit D2 would also be inserted in the view, since now
count(depId) of vendor 02 is greater or equal to two (2).

10. More than one translation may exist.

Consider the following modification request over V7:

UPDATE V7

SET url="www.barnesandnoble.com"

WHERE depId="D1" AND url="www.amazon.com"

Since ("D1", x) is in the Deposit table, and (x, "www.amazon.com") and
(y, "www.barnesandnoble.com") are in the Vendor table, there are two pos-
sible translations for this replacement. The first one is to replace ("D1",
x) for ("D1", y) in Deposit, which associates D1 with the Barnes and No-
ble vendor. The second option is to replace (x, "www.amazon.com") by (x,
"www.barnesandnoble.com") on table Vendor, which changes the URL of the
Amazon vendor.

2.1.1 Minimality Requirements

Despite of taking into account the problems of the previous section, an update
translator should also have a minimal effect on the base relations. Thinking on that,
Keller (1985) has defined five rules that should be followed by update translators:

1. No database side effects. The only database tuples affected by the update
translation should have keys that match their respective values in the tuples
mentioned in the view update request. This is to solve problem 8 of previous
section (a multiple effect on the view may be visible).

2. Only "one step" changes. Each database tuple is affected by at most one step
of the translation for any single view update request. Specifically, a translation
cannot replace an inserted tuple, or delete a replaced tuple, or replace a tuple
twice in succession. This requirement serves to avoid problems in the view
update translation, since the original tuple would have disappeared after the
execution of the first update.

3. Minimal change: no unnecessary changes. Given two translations of an update
request, if one is a proper subset of the other, then the minimal set of updates
should always be used.

4. Minimal change: replacements cannot be simplified. Considering two (alter-
native) database replacement requests where both specify to replace the same
tuple, a database replacement that does not involve changing the key is simpler
than one where the key changes.

5. Minimal change: no delete-insert pairs. Candidate translations cannot include
both deletions and insertions on any relation, since they may be converted into
replacements.

32

View as an abstract data type
(ROWE; SHOENS, 1979)
(TUCHERMAN; FURTADO; CASANOVA, 1983)

Automatic translation for view updates

Side-effect free translations
(FURTADO; SEVCIK; SANTOS, 1979)
(DAYAL; BERNSTEIN, 1982a)
(KELLER, 1985)
(KELLER, 1986)
(LANGERAK, 1990)

View complement
(BANCILHON; SPYRATOS, 1981)
(LECHTENBÖRGER, 2003)

Views as conditional tables
(SHU, 1998)

Object-based views
(BARSALOU et al., 1991)

Figure 2.2: Classification of work on updates through relational views

2.2 Updates through Relational Views

Although the problems of Section 2.1 were identified on relational views, they
also hold for XML views. As a consequence, in order to be able to update relational
databases through XML views, it is necessary to study how the above problems have
been addressed in the literature of updates through relational views.

A large amount of work has been done on updates through relational views, and
several different techniques have been proposed. These proposals can be grouped in
two distinct categories. The first one treats a view as an abstract data type, and
the second one tries to define automatic translators for view updates. Figure 2.2
presents the classification of the existing proposals into these two categories. The
category of automatic translators is further divided into four classes of approaches,
according to the correctness criteria they adopt for the translations. We summarize
the existing approaches and classify them below:

View as an abstract data type: In this approach (ROWE; SHOENS, 1979; TU-
CHERMAN; FURTADO; CASANOVA, 1983), the DBA defines the view to-
gether with the updates it supports. The effect of updates on the base relations
is explicitly defined. This means that the DBA must implement the code that
will be executed every time an insertion, deletion or modification is issued
against the view.

Automatic translations for view updates: Proposals that follow this approach
try to define automatic translators for view updates. Some of them present

33

algorithms for the update translations, while others just present guidelines and
criteria to identify when a translation is correct.

There is an additional approach (MEDEIROS; TOMPA, 1985) that comprises
both types of translators. The approach consists on an analysis algorithm that
predicts whether the desired update really occurs in the view, and whether it causes
side-effects. The inputs to the algorithm are the view definition, a set of constraints,
as well as the update that is to be analyzed. The authors claim that the algorithm
can be used both by general update translators, as well as by abstract data type
approaches. Notice that the proposed algorithm does not automatically translate
the update. In fact, the update translation is one of the algorithm’s inputs. It only
checks the effect of the update on the database and on the view.

As mentioned before, the proposals that follow the automatic translations ap-
proach can be further classified into four categories, depending on the criteria they
adopt for correctness of the update translations. We now present these four cate-
gories and overview the approaches in each of them:

Side-effect free translations: An update translation is side-effect free as long as
it corresponds exactly to the specified update and does not affect anything else
in the view (KELLER, 1985). Finding side-effect free updates corresponds to
solving problem 8 (a multiple effect on the view may be visible) of Section 2.1.

In (KELLER, 1985), Keller defines five criteria that the translations should
respect in order to be correct and minimal, and present algorithm sketches
that satisfy the five criteria. An exception is made to algorithms for views
involving joins. For those, Keller allows side-effects to occur. In (KELLER,
1986), Keller uses the algorithms proposed in (KELLER, 1985) together with
user (DBA) input to choose a view update translator. The DBA answers
dialogs at view definition time to define a view update translator that better
suits the semantics of the view.

Dayal and Bernstein (DAYAL; BERNSTEIN, 1982a) propose a translation
mechanism that uses view graphs to decide if a given update translation is
correct. The view graphs are constructed based on the syntax of the view
definition and on the functional dependencies of base relations. Although
Dayal and Bernstein use the term exact translation to denote correctness, this
is equivalent to the notion of side-effect free translation of Keller (1985).

In (FURTADO; SEVCIK; SANTOS, 1979), a general approach for translation
is discussed, depending on the relational algebra operations used in the view
definition. General translations are presented for each combination of the re-
lational operations. A more recent work is presented in (LANGERAK, 1990),
but it does not consider views involving selections, which are very common in
practice.

View complement: The view complement approach considers an update transla-
tion to be correct if it does not affect any part of the database that is out-
side the view (BANCILHON; SPYRATOS, 1981; LECHTENBÖRGER, 2003).
This corresponds to solving problem 6 (attributes outside the view may be af-
fected) of Section 2.1. The denomination "data outside the view" matches
what Bancilhon and Spyratos in (1981) called the view complement. Years

34

Table 2.1: Check list regarding the problems of Section 2.1
1 2 3 4 5 6 7 8 9 10

Furtado et al., 1979
√ √ × √ × × × √ √ ×

Bancilhon et al., 1981
√ √ × √ √ √ × √ √ √

Dayal et al., 1982
√ √ × √ × × × √ √ ×

Keller, 1985
√ √ × √ × × × P

√ ×
Keller, 1986

√ √ × √ × × × P
√ ×

Langerak, 1990
√ √ × × × × × P × ×

Barsalou et al., 1991
√ √ × √ × × × P

√ ×
Shu, 1998

√ √ × √ √ × × √ √ √

Lechtenbörger, 2003
√ √ × √ √ √ × √ √ √

Legend:
√

: solves the problem
×: does not address the problem
P: partially solves the problem
– : unknown

later, Cosmadakis and Papadimitriou (1984) proved that finding a view com-
plement may be NP-complete even for very simple view definitions. A recent
work (LECHTENBÖRGER, 2003) on view complements, however, states that
it is not necessary to actually calculate the view complement in order to know
if it was changed by the view update translation. It is enough to know if
the view update can be undone. If so, then it is guaranteed that the view
complement was not affected by the view update translation.

Views as conditional tables: A more recent technique consists in transforming
a view update problem into a Constraint Satisfaction problem (CSP) (SHU,
1998). In this approach, views are represented as conditional tables and view
updates are translated to a disjunction of CSPs. Each solution to the con-
straint satisfaction problem corresponds to a possible translation of the view
update.

Object-based views: An extension of (KELLER, 1986) to deal with object-based
views is proposed in (BARSALOU et al., 1991). In this work, Barsalou
proposes algorithms for propagating updates in a hierarchical structure of
objects. An implementation of this proposal is discussed in the Penguin
Project (TAKAHASHI; KELLER, 1994; KELLER; WIEDERHOLD, 2001).

In Table 2.1 we analyze each of the existing proposals in literature to check if
they solve the problems identified in Section 2.1. Each problem is identified by a
number from 1 to 10 which corresponds to the numbers used in Section 2.1.

Based on Table 2.1, it is easy to see that the existing approaches do not address
all the problems identified by Furtado and Casanova (1985). In fact, some of those
problems are specifically connected to the notion of correctness in the existing pro-
posals of automatic translators for view updates. With some exceptions, each author
adopts some of those problems as the notion of correctness for update translations.
An exception is the approach of (LANGERAK, 1990), which does not clearly de-
fine a correctness criterion. It presents translation algorithms for Project-Join views
(they do not treat selections), and allow side-effects to occur both in insertions and
in some types of modifications.

In our work, we are interested in automatically translating updates to the un-
derlying base tables. We did not want to require the user to build a program to

35

Table 2.2: Comparison of work on updates through relational views
algorithms
for update
translation

correctness
criteria

correctness
criteria for the
algorithms

criteria of
Section 2.1

Furtado et al., 1979
√ √ √

8

Bancilhon et al., 1981 × √ × 6, 8

Dayal et al., 1982
√ √ √

8

Keller, 1985
√ √ × 8

Keller, 1986
√ √ × 8

Barsalou et al., 1991
√ √ × 8

Langerak, 1990
√ × × –

Shu, 1998
√ √ √

6

Lechtenbörger, 2003 × √ × 6, 8
Legend:

√
: solves the problem

×: does not address the problem
– : does not apply

translate the updates for each XML view he specifies. Table 2.2 analyzes the ex-
isting approaches to check if they provide algorithms for update translations, and,
if so, if they present the conditions under which the algorithms work (correctness
criteria). In this table, we analyze only work on automatic translations.

Based on the above observations, in our work we could have taken three main
paths in order to solve the problem of updates through XML views:

1. To define an automatic update translator based on one of the existing ap-
proaches for relational views;

2. To define a completely new update translator for XML views, together with
the correctness criteria for the update translator (based on the problems of
Section 2.1).

3. To transform the problem of updates through XML views into the problem
of updates through relational views, so that all the work on updates through
relational views could be applied;

We have chosen the third alternative mainly because it is more flexible. In this
approach, one can use any update translator available in literature. Thus, we are not
fixing a specific update translator, but we are creating conditions for existing ones
to be applied in XML. In fact, this idea appeared before in literature in (DAYAL;
BERNSTEIN, 1982b). In this work, Dayal and Bernstein map the database network
model to the relational model, and then use their work on updates through relational
views (DAYAL; BERNSTEIN, 1982a) to translate the updates and to check for
correctness.

Also, we have avoided defining a fixed update translator to be able to deal with
cases where the semantics of the view is not well suited for automatic translators.
There is a classical example (KELLER, 1986; ABITEBOUL; HULL; VIANU, 1996)
that illustrates this. It is a view that is formed by employees of a company who
play in the company’s soccer team (play-soccer-team = yes). This view has a special
semantics regarding insertions and deletions: deleting an employee from the view
means that the employee does not play in the soccer team anymore, but it does not
mean that the employee was fired from the company. This deletion, as a consequence,

36

could not be translated to a deletion on the employee table. Instead, it should be
translated to modifying the attribute play-soccer-team to no. Since in our approach
we are not specifying how the updates are translated to the underlying relational
database, one can use any existing approach or, in the absence of one that comprises
the semantics of that specific view, define a customized update translator to that
view (by either using (KELLER, 1986) or the abstract data type approach).

Despite of being possible to use any of the existing work on updates through re-
lational views to translate the updates, in our implementation (discussed in chapter
7) we have chosen one of them. Our choice was made among the approaches that
present algorithms for update translations, namely (FURTADO; SEVCIK; SAN-
TOS, 1979), (DAYAL; BERNSTEIN, 1982a), (KELLER, 1985), (BARSALOU et al.,
1991), (LANGERAK, 1990) and (SHU, 1998). We discard (KELLER, 1986) and
(BARSALOU et al., 1991) because they use user input to choose the update trans-
lator, while we are looking for a completely automatic process. Despite of that,
at a first glance, one could argue that the approach of (BARSALOU et al., 1991)
is a good option, since object-views are hierarchical in the same way as XML. It
turns out that object views are a subset of the underlying database structural model.
That is, given a relational database and its referential and integrity constraints, one
obtains a model that Barsalou et al. calls structural model. A view object is then
defined as a subset of this model, but no restructuring is allowed. This considerably
limits the set of possible views one can construct, so we decided not to take this
solution path.

Among the remaining options, only (DAYAL; BERNSTEIN, 1982a), (FUR-
TADO; SEVCIK; SANTOS, 1979) and (SHU, 1998) fully present algorithms and
conditions for the algorithms to produce correct translations (as shown in empha-
sized column of Table 2.2). From these three options, we have chosen the approach
of Dayal and Bernstein because it provides general algorithms. Their algorithms
comprise select-project-join views, and work for any combination of such algebra
operators. As oppose to that, (FURTADO; SEVCIK; SANTOS, 1979) presents spe-
cific algorithms for each combination of the relational algebra operators. Although
this is not a problem, this would require an additional analysis on the view structure,
in order to identify which algorithm to apply to translate a given update. Besides,
some of the conditions for the correctness of the translations are instance based
conditions, while we would like to leave the reasoning at the schema level. As for
the approach of (SHU, 1998), all the reasoning is done at instance level.

We would like to emphasize that we could have implemented our approach with-
out choosing any update translator. In this way, the system would map an XML
view to a set of relational views, and map updates over the XML view to updates
over the relational views. The user could then use any translator he wanted. How-
ever, we have decided to include a translator in our implementation to better show
the feasibility of our approach.

In the next section, we present the approach of Dayal and Bernstein in details.

2.2.1 The approach of Dayal and Bernstein

The relational views considered by Dayal and Bernstein (1982a) are select-
project-join views, where the join conditions are specified as equalities. It is also
possible to use selection conditions, comparing attributes with a constant value (c),
as long as the comparison is an equality. Formally, we have: Let a relational view

37

V (Z), with Z = {D1, . . . , Dn} be defined as:

CREATE VIEW V (D1, ..., Dn)

AS SELECT ti1 .Ai1, ..., tin
.Ain

FROM R1 t1, ..., Rm tm
WHERE <qual>

where t1, ..., tm are aliases of relations R1, ..., Rm, with m ≥ 1. Each ti.Ajk (with 1 ≤
i ≤ m and 1 ≤ k ≤ n) is an attribute of relation Ri, and {ti1 , ..., tin} ⊆ {t1, ..., tm}.

Also, the qualification <qual> contains only clauses of the form "t.A = c" or
"t.A = u.B" (t and u may be the same). We say that the attribute Ajk generates
the view attribute Dk, for each k in [1, n]. We call Rels(V) the set {R1, . . . , Rm},
which is the set of relations over which V is defined.

To be able to reason about the correctness of the translation algorithms (pre-
sented in Section 2.2.1.3), Dayal and Bernstein (1982a) use the structure of the view,
as well as the functional dependencies of the source database schema, to build two
auxiliary graphs: the view trace graph and the view dependency graph. We elaborate
more on them in the sections that follow.

2.2.1.1 View Trace Graph

The structure of the view definition is captured by defining a labeled directed
graph G(V), called View Trace Graph, constructed as follows:

1. For every attribute A of each relation Ri occurring in the FROM clause, there
is a node in the graph labeled "Ri.A";

2. For every view attribute Di there is a node labeled V.Di;

3. For each view attribute Dk there are arcs (V.Dk, Rik .Aijk
) and (Rik .Aijk

, V.Dk),
if Aijk

generates Dk;

4. For every clause (ti.A = tj.B) in <qual> there are arcs (Ri.A, Rj.B) and
(Rj.B, Ri.A);

5. For every clause (ti.A = c) in <qual> introduce a node labeled c (called a
constant node) and arcs (c, Ri.A) and (Ri.A, c).

If G(V) has a path from node D to node Ri.A, then we say Ri.A is traceable
from V , and D is a V-trace for Ri.A.

Example 2.1 As an example, consider the following relational view, defined over
the database schema of Figure 1.2.

CREATE VIEW VENDORBOOK (vendorId, vendorName, isbn, title, price)

AS SELECT v.vendorId, v.vendorName, b.isbn, b.title, sb.price

FROM Vendor v, SellBook sb, Book b

WHERE v.vendorId = sb.vendorId AND b.isbn = sb.isbn

The view trace graph for this view is shown in Figure 2.3. In this figure, Ven-
dorBook.isbn is a V-trace for Book.isbn and SellBook.isbn.

38

Figure 2.3: View trace graph for view VendorBook

2.2.1.2 View Dependency Graph

The View Dependency Graph (F (V)) is obtained by enriching G(V) with the
information provided by the functional dependencies in the database schema.

In the relational model, functional dependencies are not explicitly represented.
The only information we have are the database schema and its constraints, such
as foreign key constraints. However, assuming that the database is in the BCNF,
we can infer the functional dependencies of a given table R, since in this normal
form, all non-trivial dependencies in R are of type {A1, ..., An} → B, where B is an
attribute of R and {A1, ..., An} is a superkey of R (ULLMAN; WIDOM, 1997). As
a consequence, we can infer functional dependencies of type primary key → B, for
each B in R that is not part of the primary key.

As an example, in the table Vendor we have the following functional dependen-
cies:

vendorId → vendorName
vendorId → url
vendorId → state
vendorId → country

Notice that by the rules of BCNF, we can also have functional dependencies
like vendorId, vendorName → url, since {vendorId, vendorName} is a superkey of
Vendor. However, this functional dependency is not necessary. The reason for that
will be explained after we show Dayal’s definition of paths.

The view dependency graph is constructed as follows.

1. For every FD f : B1, . . . , Bk →Ri
A, add the FD-node f and the arcs of

Figure 2.4. If A and B are singletons, then for convenience we denote the FD
f : B →Ri

A by a single arc (Ri.B, Ri.A).

2. If Ri.A is traceable from a constant node c, then for every attribute B of every
relation Ri in the FROM clause, draw arc (Rj.B, Ri.A).

As an example, Figure 2.5 shows the view dependency graph for the view Ven-
dorBook (example 2.1). To emphasize the differences between this graph and the
view trace graph, we have chosen to show the added arcs in dashed lines. Notice

39

Figure 2.4: FD-node f corresponding to the FD f : B1, . . . , Bk →Ri
A

Figure 2.5: View Dependency Graph for view VendorBook

that there is an FD-node involving a non-singleton set from {SellBook.vendorId,
SellBook.isbn} to SellBook.price.

Having defined view graphs, it is necessary to define paths on view graphs.
Let A, B, B1, B2, . . ., Bn be nodes and W , Y and Z be sets of nodes in F (V).

A path in F (V) is defined as follows:

• There is a path from every node to itself;

• If there is an arc (B, A), then there is a path from B to A;

• Let f be an FD-node representing f : B1, . . . , Bk →Ri
A. If there is a path from

Y to every Bj, 1 ≤ j ≤ k, then there is a path from Y to A (see Figure 2.6).

• If there is a path from a subset of Y to A, then there is a path from Y to A.

• If there is a path from Y to every node in Z, then there is a path from Y to
Z.

• If there is a path from Y to Z, and a path from Z to W , then there is a path
from Y to W .

The notation Y →V Z says that there is a path in F (V) from Y to Z.
As an example of path, in the view dependency graph of Figure 2.5, there is

a path from VendorBook.id to Vendor.country, denoted VendorBook.id →V Ven-
dor.country, but there is no path from Vendor.country to VendorBook.id.

Now it is easy to see why we do not need to include functional dependencies con-
sidering all of the superkeys of a relation R in the view dependency graph. Consider
the functional dependency vendorId, vendorName → url derived by the superkey

40

Figure 2.6: A path from Y = {C1, . . . , Cn} to A through FD-node f

rule on table Vendor. If one needs to find a path from {vendorId, vendorName}
to {url}, it is enough that there is a path from vendorId to url 2. This shows that
functional dependencies derived from superkeys are not necessary, since a path can
always be found using only the functional dependencies derived from the primary
key of the relation.

Before showing the translation algorithms, we want to give the intuition of paths
in the View Dependency Graph. In (DAYAL; BERNSTEIN, 1982a), Dayal and
Bernstein define sources and clean sources. Loosely speaking, a tuple t in the
database is the source of a tuple v in the view if t was used to construct the view
tuple v. Additionally, a tuple t in the database is a clean source of a tuple v in the
view, if t is a source of v, but it is source of no other tuple in the view. This means
that when v is updated, the update can be translated to affect t, and this will surely
affect no other tuple in the view (no side-effects). In this way, traces in the View
Trace Graph denote sources, and paths in the View Dependency Graph denote clean
sources.

2.2.1.3 Translation Algorithms

Dayal and Bernstein consider simple3 update operations over relational views.
We now present the translation algorithms for insertions, deletions and modifications
over a relational view V .

Deletions

Let V be a relational view. A simple deletion on V is a deletion u(Y) of the
form:

DELETE

FROM V v
WHERE v.D1 = c1 AND ... AND v.Dk = ck

where Y is the set of the view columns Di specified in the condition on the WHERE
clause.

The translation procedure for deletions is:

2By using the rule "If there is a path from a subset of Y to A, then there is a path from Y to
A".

3Simple update operations are the ones whose qualifications are conjunctions of equirestrictive
clauses (DAYAL; BERNSTEIN, 1982a).

41

Step 1 Choose one relation Ri occurring in the FROM clause of V .

Step 2 The translation of the deletion will be

DELETE FROM Ri WHERE Ri.Ki IN (SELECT ti.Ki FROM R1 t1, ..., Rm tm WHERE

<qual> AND SOURCE(D1) = c1 AND ... AND SOURCE(Dk) = ck)

where Ki is the primary key of Ri, and SOURCE (Dj) denotes the ex-
pression Rl.Amj

if Amj
generates Dj.

As an example, consider the following deletion over the view VendorBook of
Example 2.1.

DELETE

FROM VENDORBOOK

WHERE title = "Computer Networks"

This would be translated to:

DELETE

FROM SellBook

WHERE (SellBook.vendorId, SellBook.isbn) IN

(SELECT v.vendorId, b.isbn

FROM Vendor v, SellBook sb, Book b

WHERE v.vendorId = sb.vendorId AND b.isbn = sb.isbn

AND b.title = "Computer Networks")

Correctness: Dayal proves that this procedure always exactly translates u(Y) to
the underlying relational database iff Xi →V Y , where Ri(Xi) is the relation scheme
chosen in Step 1 and Y is the set of the view columns Di specified in the condition
on the WHERE clause of the deletion over the view. The term exact translation
means side-effect free, as explained in Section 2.2.

In the case of the example, the translation is exact because there is a path from
the attributes of SellBook to the view attribute title, that is, {SellBook.vendorId,
SellBook.isbn, SellBook.price} →V {VendorBook.title} holds (see Figure 2.5).

Notice that there may be more than one translation for a given deletion. In the
case of the example, we could have chosen any of the relations Vendor, SellBook
or Book to translate the deletion. However, choosing Vendor would lead to a non
exact translation, because there is no path from the attributes of Vendor to Vendor-
Book.title in the view dependency graph of Figure 2.5. Additionally, choosing Book
would exactly translate the deletion, but there would be a problem when executing
the deletion if deletions do not cascade in the database. In our implementation, we
order the tables according to foreign key constraints, so that SellBook will always be
chosen before Book and Vendor to translate a deletion. In case using SellBook re-
sults in a non exact translation, we try the next base table until we find a table that
satisfies the conditions for exact translation. There may be cases, however, where
no base table satisfies the conditions. In such cases, it is not possible to translate
the deletion without causing side-effects.

42

Insertions

In Dayal’s approach, insertions can have a particular behavior when dealing with
NULL values in view tuples. Dayal’s translation mechanism works in a way that,
if there is a tuple v in the view that has NULL values in some of its attributes,
and the insert operation is trying to insert a tuple v′ that is the same as v, but
has some non-null values in some of the attributes that v has NULLs (that is, v ′

is more defined than v), then remove v and insert v′. In cases where v′ contains
less information than v, or is exactly equal to v, then the insertion is ignored. This
procedure is called reduce. The procedure tries to determine whether or not the
tuple that is being inserted is a new tuple. This notion of determining when two
tuples represent the same tuple was first introduced in literature by (FURTADO;
SEVCIK; SANTOS, 1979).

Let u be an insertion of a tuple v on a view V .

INSERT INTO V (D1, . . . , Dn)

VALUES (c1, . . . , cn)

This insertion is translated as follows.

For each relation Ri ∈ Rels(V) (recall that Rels(V) is the set of relations over
which view V is defined), define a tuple ti to be inserted into Ri as.

INSERT INTO Ri (A1, . . . , Ak) VALUES (FindValue(A1), ..., FindValue(Ak))

where function FindValue(A) is given in Algorithm 2.1.

function findValue(A)

if A has a V-trace v.D AND v[D] <> NULL then

return v[D]
else

if exists an FD L → A in Ri AND exists ti’ in Ri AND ti’[L] = ti[L] AND ti’[A] <> NULL
then

return ti’[A]
else

if exists Rj .B, such that there is a path from Rj .B to Ri.A in G(V) then

return tj [B]
else

return NULL
end if

end if

end if

Algorithm 2.1: Dayal and Bernstein’s function findValue

As an example, consider the following insertion over view VendorBook shown in
Example 2.1.

INSERT INTO VENDORBOOK (id, vendorName, isbn, title, price)

VALUES ("03", "Saraiva", 1111, "Unix Network Programming", 38)

43

This insertion would be translated as follows:

INSERT INTO VENDOR (vendorId, vendorName, url, state, country)

VALUES ("03", "Saraiva", null, null, null)

INSERT INTO SELLBOOK (vendorId, isbn, price)

VALUES ("03", 1111, 38)

INSERT INTO BOOK (isbn, title, publisher, year)

VALUES (1111, "Unix Network Programming", "Prentice Hall", 1998)

Notice that the insertion on table Book will be eliminated by the reduce algo-
rithm, since there is a tuple in table Book exactly like the one that is trying to
be inserted. Notice also that the function findValue found a value for attributes
publisher and year that were neither in the original insertion nor in the view itself.

Correctness: Assuming that the insertion of ti does not violate any FD in Ri,
this procedure will produce exact translations for u if the following conditions are
satisfied (DAYAL; BERNSTEIN, 1982b):

1. The primary key of each Ri ∈ Rels(V) must be traceable from V; and

2. The definition of V can be expressed as a sequence of definitions of views
V1, . . . , Vk, where each Vi(Zi) is defined over two base relations R(X), S(Y),
such that

(a) X →Vi
Zi AND

(b) (Y →Vi
Zi OR (R and S are equijoined on A, B respectively AND R[A] ⊆

S[B] AND B → Y in S)).

In the example, we have an exact translation, since the above conditions are sat-
isfied. Condition 1 is satisfied because the primary keys Vendor.vendorId, Book.isbn
and SellBook.vendorId, SellBook.isbn are traceable from the view VendorBook. Con-
dition 2 requires that the view can be specified as a sequence of view definitions where
each new view is defined over two base relations. In the case of the example, we
have two pairs of relations: (Vendor, SellBook) and (SellBook, Book). For each of
these pairs, we need to check conditions 2a and 2b.

• For the pair (Vendor, SellBook), lets assume R = SellBook and S = Vendor.
Consequently, X are the attributes of SellBook and Y are the attributes of
Vendor.

Condition 2a requires that there is a path in the view dependency graph from
the attributes of SellBook to all attributes of the view originated from SellBook
and Vendor. This condition holds, and can be easily verified in the graph of
Figure 2.5. Condition 2b is an OR. The first condition of this OR does not
hold, since there is no path from the attributes of Vendor to all the attributes
of the view originated from SellBook and Vendor. However, the second con-
dition of the OR does hold. The second condition is an AND of three other
conditions: (i) Vendor and SellBook are equijoined on SellBook.vendorId and
Vendor.vendorId ; (ii) SellBook.vendorId ⊆ Vendor.vendorId, by definition of
foreign key; (iii) Vendor.vendorId → {Vendor.vendorName, Vendor.url, Ven-
dor.state, Vendor.country} holds, since vendorId is the primary key of Vendor.

So, all the conditions hold for this pair of base relations.

44

• For the pair (SellBook, Book), lets assume R = SellBook and S = Book.

Condition 2a requires that there is a path in the view dependency graph from
the attributes of SellBook to all attributes of the view originated from SellBook
and Book. This condition holds, as explained above. Condition 2b is an OR.
The first condition of this OR does not hold, since there is no path from the
attributes of Book to all the attributes of the view originated from SellBook
and Book. However, the second condition of the OR does hold. The second
condition is an AND of three other conditions: (i) Book and SellBook are
equijoined on SellBook.isbn and Book.isbn; (ii) SellBook.isbn ⊆ Book.isbn;
(iii) Book.isbn → {Book.title, Book.publisher, Book.year} holds.

Consequently, all the conditions hold for the second pair of relations, which
proves that the above update translation is exact.

Modifications

Let u be a replacement on a view V . Let W be the set of view attributes specified
for replacement in u. Let Y be the set of attributes specified in the qualification of
u.

UPDATE V

SET Wi = ri

WHERE Yi = vi

Let TLRels(u) be the set of relations Ri which has some attribute with a V-trace
D ∈ W .

The translation procedure is as follows:

Step 1 For each relation Ri ∈ TLRels(u), do.

UPDATE Ri SET SOURCE(Wi) = ri

WHERE Ri.Ki IN (SELECT ti.Ki FROM R1 t1, ..., Rm tm WHERE <qual> AND

SOURCE(Yi) = vi)

where Ki is the primary key of Ri, and SOURCE (Dj) denotes the expression
Rl.Amj

if Amj
generates Dj.

Consider the following modification over the view of Example 2.1.

UPDATE VENDORBOOK

SET title="New Title"

WHERE id="01" AND isbn="1111"

This modification is trying to change the title of book whose isbn is 1111 for
vendor 1. This will be translated as follows:

45

UPDATE BOOK

SET BOOK.title="New Title"

WHERE BOOK.isbn IN

(SELECT b.isbn

FROM Vendor v, SellBook sb, Book b

WHERE v.vendorId = sb.vendorId AND b.isbn = sb.isbn

AND v.vendorId="01" AND b.isbn="1111")

Correctness: Dayal and Bernstein (1982a) prove that this procedure will always
exactly translate the replacement u iff

1. For all Ri(Xi) ∈ TLRels(u), there is a path Xi →V Y ; and

2. For all D ∈ W , if D is a V-trace of some Ri.A that appears in a join clause
in the view qualification, then there is a path Xi →V Z, where Z is the set of
attributes in the view V .

Also, u must not set to NULL a V-trace of any primary key attribute of any
relation name Ri occurring in the FROM clause of V .

Checking the above conditions against the example, we conclude that the trans-
lation is not exact. This is because according to condition 1, there must be a path
from the attributes of Book to {VendorBook.id, VendorBook.isbn}. However, there
is no such path, because VendorBook.id is not reachable from any attribute of Book.
Since condition 1 does not hold, condition 2 does not need to be checked.

It is easy to understand why the example translation is not exact. In the view,
there is more than one occurrence of the book whose isbn is 1111. However, we are
trying to modify just one of them – the one associated with vendor 01. Clearly,
if we update the title of book 1111 in table Book, this would also affect the other
occurrences of that book in the view, and not only the one associated with vendor
01. Thus, we have a side-effect, since the translated update does not affect only the
tuples specified by the user update.

2.3 Chapter Remarks

The absence of a proposal that allows a user to update a relational database
through XML views constructed over legacy relational databases motivated the de-
velopment of this thesis. We have studied the requirements of view update transla-
tors, but decided against defining a specific translator for XML updates. Instead,
we have decided to take advantage of the existing proposals on updates through
relational views.

We do this by mapping XML views to relational views, and mapping updates on
the XML view to updates on the corresponding relational views. In our implemen-
tation, we have chosen to use the approach of (DAYAL; BERNSTEIN, 1982a). In
Chapter 6, we discuss how we use this approach to study the updatability of XML
views, and on Chapter 7 we present the architecture of the Update Module, which
uses the approach of Dayal and Bernstein to translate the updates to the underlying
relational database.

46

47

3 XML EXTRACTION FROM RELATIONS

There has been a lot of work addressing the problem of building and query-
ing XML views from relational databases; storing XML documents in relational
databases and reconstructing them; and extracting XML documents from legacy
databases.

In this chapter, we overview such approaches and present in details two ap-
proaches of building and querying XML views over relational databases, and one
approach of extracting XML documents from relational databases. They are, re-
spectively, SilkRoute (FERNÁNDEZ et al., 2002), XPERANTO (SHANMUGA-
SUNDARAM et al., 2001) and DB2 XML Extender (CHENG; XU, 2000). To illus-
trate these approaches, we will show how they would construct the XML view of
Figure 1.1. We have chosen these approaches since we consider them to have caused
more impact in the database community. We do not study in details any of the
approaches to store XML documents in relational databases, since this is not the
goal of our work.

The remaining of this chapter is organized as follows: Section 3.1 overviews ap-
proaches to build and query XML views over relational databases. Particularly,
it presents SilkRoute and XPERANTO in details. Section 3.2 overviews the ap-
proaches that extract XML documents over relational databases, giving special at-
tention to DB2 XML Extender. Section 3.3 overviews the approaches to store XML
documents in relational databases. In Section 3.3.1, we present approaches that are
capable of updating XML documents stored in relational databases. Finally, Section
3.4 concludes with final remarks.

3.1 Building and Querying XML views over Relational Data-
bases

Several approaches in literature explore the subject of building and querying
XML views over relational databases (FERNÁNDEZ et al., 2002; SHANMUGA-
SUNDARAM et al., 2001; BOHANNON et al., 2002; CHAUDHURI; KAUSHIK;
NAUGHTON, 2003; SHANMUGASUNDARAM et al., 2000). Most of them ap-
proach the problem by building a default XML view from the relational source and
then using an XML query language to query the default view (FERNÁNDEZ et al.,
2002; SHANMUGASUNDARAM et al., 2001; BOHANNON et al., 2002; CHAUD-
HURI; KAUSHIK; NAUGHTON, 2003). They usually allow the definition of views
over views and their concern is basically the following:

1. How to compose queries with view definitions, in order to get a single resulting

48

expression that represents both the query and the view;

2. How to use the relational engine to execute the query resulting from Step 1;

3. How to use the relational tuples resulting from Step 2 to build the resulting
XML document.

Each of the existing approaches uses a different technique to construct the XML
view using the relational engine to retrieve data. Some transform the XML view def-
inition into extended SQL (SHANMUGASUNDARAM et al., 2000, 2001; CHAUD-
HURI; KAUSHIK; NAUGHTON, 2003), other use internal representations to map
the XML view to several SQL queries (FERNÁNDEZ et al., 2002; BOHANNON
et al., 2002). We now present SilkRoute and XPERANTO in details.

3.1.1 SilkRoute

SilkRoute was first proposed in 2000 (FERNÁNDEZ; TAN; SUCIU, 2000). At
that time, XML-QL (DEUTSCH et al., 1999) was the query language used to query
the XML views. A different language (RXL) was used to define the public view1.
SilkRoute has not stopped in time, and it evolved in a very nice way through the past
years (FERNÁNDEZ et al., 2001; FERNÁNDEZ; MORISHIMA; SUCIU, 2001).
The current proposal (FERNÁNDEZ et al., 2002) uses XQuery to both define the
public view and to query it.

In SilkRoute, initially there is an XML view called canonical XML view. It
consists of a default representation of the underlying relational tables. For example,
the relational table Book of Figure 1.2 is represented in the canonical view as follows:

<Book>

<Tuple>

<isbn>1111</isbn>

<title>Unix Network Programming</title>

<publisher>Prentice Hall</publisher>

<year>1998</year>

</Tuple>

<Tuple>

<isbn>2222</isbn>

<title>Computer Networks</title>

<publisher>Prentice Hall</publisher>

<year>1996</year>

</Tuple>

</Book>

From this canonical view, the DBA defines a public view. This is what corre-
sponds to the default view, and this is the view that will be queried by users. The
public view is defined in XQuery. To access data from the canonical view, SilkRoute
offers a special variable called $CanonicalView. In the same way, users write queries
over the public view using XQuery, and refer to the public view by a special variable
called $PublicView.

To exemplify, suppose the DBA wants to construct the XML view of Figure 1.1
to play the role of the public view. The corresponding XQuery expression is shown
on Figure 3.1. Notice that tuples of table Vendor are referenced in the query by
$CanonicalView/Vendor/Tuple.

49

1. <vendors>

2. {for $v in $CanonicalView/Vendor/Tuple

3. return

4. <vendor id=’{$v/vendorId/text()}’>

5. <vendorName>{$v/vendorName/text()}</vendorName>

6. <address>

7. <state>{$v/state/text()}</state>

8. <country>{$v/country/text()}</country>

9. </address>

10. <products>

11. {for $sb in $CanonicalView/SellBook/Tuple

12. for $b in $CanonicalView/Book/Tuple

13. where $sb/vendorId = $v/vendorId and

14. $b/isbn = $sb/isbn

15. return

16. <book bprice=’{$sb/price/text()}’>

17. <btitle>{$b/title}</btitle>

18. <isbn>{$b/isbn}</isbn>

19. </book>

20. }

21. {for $sd in $CanonicalView/SellDVD/Tuple

22. for $d in $CanonicalView/DVD/Tuple

23. where $sd/vendorId = $v/vendorId and

24. $d/asin = $sd/asin

25. return

26. <dvd dprice=’{$sd/price/text()}’>

27. <dtitle>{$d/title}</dtitle>

28. <asin>{$d/asin}</asin>

29. </dvd>

30. }

31. </products>

32. </vendor>

33. }

34. </vendors>

Figure 3.1: Definition of the Public View

<books>

{for $v in $PublicView//vendor

let $sb := $v//book

let $c := count($sb)

return

<vendor vendorId="{$v/@id}">

{$v/vendorName}

<sellsBooks>{$c}</sellsBooks>

</vendor>

}

</books>

<books>

<vendor vendorId="01">

<vendorName>Amazon</vendorName>

<sellsBooks>2</sellsBooks>

</vendor>

<vendor vendorId="02">

<vendorName>Barnes and Noble</vendorName>

<sellsBooks>2</sellsBooks>

</vendor>

</books

Figure 3.2: Definition of the Application query and its result

The result of this query applied over the database of Figure 1.2 is exactly the
XML view shown in Figure 1.1. SilkRoute, however, does not compute this view. It
assumes the user is aware of its schema, and allows him to formulate queries over it.
An example of a user query would be to select vendors and the quantity of books
they sell. Such query is called an application query, and is shown in Figure 3.2. The
result of the query is also shown on Figure 3.2.

In order to execute such query, SilkRoute composes the definition of the public

1The public view is the view that is visible to users. We give more details on it later.

50

view with the application query, obtaining a single resulting query. This composi-
tion, however, is done on an intermediate representation data structure called view
forest. Each query in XQuery is mapped to a view forest, and then the view forests
are composed into a single view forest. This view forest is then translated to one or
more SQL queries over the relational database and to an XML template that will
be used to obtain the resulting XML document.

A view forest is a forest (of trees) where each node is labeled with an XML label
and an SQL fragment over the base relations. Internal nodes have SQL fragments
consisting of a FROM clause and an optional WHERE clause. Leaf nodes have a
required SELECT clause and optional FROM and WHERE clauses. To exemplify,
Figure 3.3 shows the view forest corresponding to the query of Figure 3.1 (the public
view).

The view forest is constructed from the XQuery query, taking variable bindings
and using them in the FROM clauses, and taking leaf element constructors and
using them in the SELECT clauses. WHERE clauses are constructed from the
where clause in XQuery. As an example, node N1.1(<vendor>) has an SQL FROM
clause FROM Vendor v because it is being returned by an XQuery for clause that
binds variable $v to the tuples of table Vendor (line 2 of Figure 3.1). Notice that the
variable $v is being used as an alias in the SQL FROM clause. In the same way, node
N1.1.4.1(<book>) has a FROM and a WHERE SQL clause corresponding to lines
11-14 of Figure 3.1. Leaf nodes have a SELECT clause that simply selects the value
that was used to construct that node. As an example, node N1.1.1.1(string)

has a SELECT clause SELECT v.vendorId since the attribute vendorId was used
to construct the attribute @id in the XML view (line 4 of Figure 3.1).

This view forest is then composed with the view forest that corresponds to the
application query. The resulting view forest is then used to generate SQL queries.
We will not give details on how view forests are composed. For more information,
please refer to (FERNÁNDEZ et al., 2002).

To exemplify how the resulting XML document is constructed, we will use the
view forest of Figure 3.3 (supposing that this view forest is a result of a query
composition - which in fact is not, but it serves to our purpose of exemplifying the
generation of the XML instance). For each node in the view forest, a complete SQL
query is generated. The query is obtained as follows: the FROM clause of a node n
is the concatenation of the FROM clause of n and all of its ancestors. The WHERE
clause is computed in the same way. The SELECT clause is the SELECT clause of
n, or SELECT * if n is not a leaf node. As an example, the complete SQL queries
for the nodes of the view forest of Figure 3.3 are shown on Figure 3.4.

Each of these SQL queries are then executed and associated to its corresponding
node n. For each tuple associated with n, one XML element is generated. These
elements are then glued together in a tree (or forest). A node d is connected below
a node a if d is a child of a in the view forest, and if their corresponding tuples have
the same variable bindings for the variables that are common to d and a. As an
example, node N1.1.4.1(<book>) may have multiple children, as long as they agree
in the bindings of variables v, b and sb. In the same way, a node N1.1.4.1(<book>)
is connected to N1.1.4(<products>) if they agree on the binding of variable v. The
XML instance resulting from this process is that of Figure 1.1.

As we could see from the example, SilkRoute does not extract the relational
tables in XML, nor does it execute XQuery queries. Instead, it translates XQuery

51

N1
<v e n d o r s >

N1.1
<v e n d o r >

N1.1.1
@i d

N1.1.1.1
s t r i n g

N1.1.2
<v e n d o r Na m e >

N1.1.2.1
s t r i n g

N1.1.3
<a d d r e s s >

N1.1.3.1
<s t a t e >

N1.1.3.2
<c o u n t r y >

N1.1.3.2.1
s t r i n g

N1.1.4
<p r o d u c t s >

N1.1.4.1
<b o o k >

N1.1.3.1.1
s t r i n g

N1.1.4.1.1.1
f l o a t

N1.1.4.1.1
@b p r i c e

N1.1.4.1.2.1
s t r i n g

N1.1.4.1.2
<b t i t l e >

N1.1.4.1.3.1
s t r i n g

N1.1.4.1.3
<i s b n >

N1.1.4.2
<d v d >

N1.1.4.2.1.1
f l o a t

N1.1.4.2.1
@d p r i c e

N1.1.4.2.2.1
s t r i n g

N1.1.4.2.2
<d t i t l e >

N1.1.4.2.3.1
s t r i n g

N1.1.4.2.3
<a s i n >

(a)
N1(<vendors>) := FROM()

N1.1(<vendor>) := FROM Vendor v

N1.1.1(@id) := FROM()

N1.1.1.1(string) := SELECT v.vendorId

N1.1.2(<vendorName>) := FROM()

N1.1.2.1(string) := SELECT v.vendorName

N1.1.3(<address> := FROM()

N1.1.3.1(<state>) := FROM()

N1.1.3.1.1(string) := SELECT v.state

N1.1.3.2(<country>) := FROM()

N1.1.3.2.1(string) := SELECT v.country

N1.1.4(<products>) := FROM()

N1.1.4.1(<book>) := FROM Book b, SellBook sb

WHERE sb.vendorId = v.vendorId AND b.isbn = sb.isbn

N1.1.4.1.1(@bprice) := FROM()

N1.1.4.1.1.1(float) := SELECT sb.price

N1.1.4.1.2(<btitle>) := FROM()

N1.1.4.1.2.1(string) := SELECT b.title

N1.1.4.1.3(<isbn>) := FROM()

N1.1.4.1.3.1(<string>) := SELECT b.isbn

N1.1.4.2(<dvd>) := FROM DVD d, SellDVD sd

WHERE sd.vendorId = v.vendorId AND d.asin = sd.asin

N1.1.4.2.1(@dprice) := FROM()

N1.1.4.2.1.1(float) := SELECT sd.price

N1.1.4.2.2(<dtitle>) := FROM()

N1.1.4.2.2.1(string) := SELECT d.title

N1.1.4.2.3(<asin>) := FROM()

N1.1.4.2.3.1(<string>) := SELECT d.asin

(b)

Figure 3.3: View forest corresponding to the view definition of Figure 3.1: (a) tree
representation (b) internal representation

52

N1.1(<vendor>) := SELECT * FROM Vendor v

N1.1.1(@id) := SELECT * FROM Vendor v

N1.1.1.1(string) := SELECT v.vendorId FROM Vendor v

N1.1.2(<vendorName>) := SELECT * FROM Vendor v

N1.1.2.1(string) := SELECT v.vendorName FROM Vendor v

N1.1.3(<address> := SELECT * FROM Vendor v

N1.1.3.1(<state>) := SELECT * FROM Vendor v

N1.1.3.1.1(string) := SELECT v.state FROM Vendor v

N1.1.3.2(<country>) := SELECT * FROM Vendor v

N1.1.3.2.1(string) := SELECT v.country FROM Vendor v

N1.1.4(<products>) := SELECT * FROM Vendor v

N1.1.4.1(<book>) := SELECT * FROM Vendor v, Book b, SellBook sb

WHERE sb.vendorId = v.vendorId AND b.isbn = sb.isbn

N1.1.4.1.1(@bprice) := SELECT * FROM Vendor v, Book b, SellBook sb

WHERE sb.vendorId = v.vendorId AND b.isbn = sb.isbn

N1.1.4.1.1.1(float) := SELECT sb.price FROM Vendor v, Book b, SellBook sb

WHERE sb.vendorId = v.vendorId AND b.isbn = sb.isbn

N1.1.4.1.2(<btitle>) := SELECT * FROM Vendor v, Book b, SellBook sb

WHERE sb.vendorId = v.vendorId AND b.isbn = sb.isbn

N1.1.4.1.2.1(string) := SELECT b.title FROM Vendor v, Book b, SellBook sb

WHERE sb.vendorId = v.vendorId AND b.isbn = sb.isbn

N1.1.4.1.3(<isbn>) := SELECT * FROM Vendor v, Book b, SellBook sb

WHERE sb.vendorId = v.vendorId AND b.isbn = sb.isbn

N1.1.4.1.3.1(<string>) := SELECT b.isbn FROM Vendor v, Book b, SellBook sb

WHERE sb.vendorId = v.vendorId AND b.isbn = sb.isbn

N1.1.4.2(<dvd>) := SELECT * FROM Vendor v, DVD d, SellDVD sd

WHERE sd.vendorId = v.vendorId AND d.asin = sd.asin

N1.1.4.2.1(@dprice) := SELECT * FROM Vendor v, DVD d, SellDVD sd

WHERE sd.vendorId = v.vendorId AND d.asin = sd.asin

N1.1.4.2.1.1(float) := SELECT sd.price FROM Vendor v, DVD d, SellDVD sd

WHERE sd.vendorId = v.vendorId AND d.asin = sd.asin

N1.1.4.2.2(<dtitle>) := SELECT * FROM Vendor v, DVD d, SellDVD sd

WHERE sd.vendorId = v.vendorId AND d.asin = sd.asin

N1.1.4.2.2.1(string) := SELECT d.title FROM Vendor v, DVD d, SellDVD sd

WHERE sd.vendorId = v.vendorId AND d.asin = sd.asin

N1.1.4.2.3(<asin>) := SELECT * FROM Vendor v, DVD d, SellDVD sd

WHERE sd.vendorId = v.vendorId AND d.asin = sd.asin

N1.1.4.2.3.1(<string>) := SELECT d.asin FROM Vendor v, DVD d, SellDVD sd

WHERE sd.vendorId = v.vendorId AND d.asin = sd.asin

Figure 3.4: SQL queries for the nodes of the view forest of Figure 3.3

to SQL and uses the relational engine to execute the query. An important remark
here is that the large amount of SQL queries generated by this approach may lead
to low performance in the generation of the XML view.

3.1.2 XPERANTO

XPERANTO (SHANMUGASUNDARAM et al., 2001) is a proposal of IBM
Almaden Research Group, so it uses resources of DB2 to process queries. In its
first proposals (CAREY; KIERNAN; SHANMUGASUNDARAM; SHEKITA; SUB-
RAMANIAN, 2000; CAREY; FLORESCU; IVES; LU; SHANMUGASUNDARAM;
SHEKITA; SUBRAMANIAN, 2000), XPERANTO also used XML-QL to define
XML views. In the current proposal, views are defined using XQuery. A default
XML view that represents the underlying relational database is used as source data
in the user’s view definitions.

The default view referring to the database of Figure 1.2 is as follows:

53

<db>

<book>

<row>

<isbn>1111</isbn>

<title>Unix Network Programming</title>

<publisher>Prentice Hall</publisher>

<year>1998</year>

</row>

<row>

<isbn>2222</isbn>

<title>Computer Networks</title>

<publisher>Prentice Hall</publisher>

<year>1996</year>

</row>

</book>

<vendor>

<row>...</row>

...

</vendor>

...

</db>

In the user-defined view, the user accesses the default view by using a new input
function called view. There is also an statement of create view, through which
users assign names to views. As an example, the XML view of Figure 1.1 is generated
as shown in Figure 3.5. Notice that the input function view is used to get relational
data directly from the default view.

XPERANTO accepts views to be defined over views. As an example, if now one
wants to query the view of Figure 3.5 to extract vendors and the number of books
they sell, this could be done as shown in Figure 3.6. Another way of doing this
would be a normal query instead of a new view definition. Both are acceptable by
XPERANTO.

To process queries, XPERANTO also uses the relational engine as much as pos-
sible. First, it processes the query and converts it to an intermediate representation
called XML Query Graph Model (XQGM). XQGM is very similar to QGM (Query
Graph Model) (HAAS et al., 1989), which is the internal representation of SQL
queries in DB2. As a consequence, this step facilitates using the relational engine
to execute the query.

Differently from view forests, XQGM is a low level representation of queries. It
is composed of a series of functions and operations that captures the semantics of
XML queries. These functions and operators comprise both data retrieval and XML
construction. In fact, the XML tagging is done outside the relational engine, but
it uses the information on the XQGM together with data retrieved using the data
retrieval functions to produce the final result.

Table 3.1 (taken from (SHANMUGASUNDARAM et al., 2001)) shows the op-
erators allowed in a XQGM graph. As one can see, they are basically the relational
algebra operators incremented by three additional operators: table, view and unnest.
The operators table and view are used to access relational data, and unnest is used
to unnest XML lists. Additionally, the project operator is used to call functions as
well as to project attributes in the output.

The XML functions that can appear in an XQGM are shown in Table 3.22.
2This table was also taken from (SHANMUGASUNDARAM et al., 2001).

54

1. create view vendors as (

2. <vendors>

3. {for $v in view("default")/vendor/row

4. return

5. <vendor id=’{$v/vendorId/text()}’>

6. <vendorName>{$v/vendorName/text()}</vendorName>

7. <address>

8. <state>{$v/state/text()}</state>

9. <country>{$v/country/text()}</country>

10. </address>

11. <products>

12. {for $sb in view("default")/sellbook/row

13. for $b in view("default")/book/row

14. where $sb/vendorId = $v/vendorId and

15. $b/isbn = $sb/isbn

16. return

17. <book bprice=’{$sb/price/text()}’>

18. <btitle>{$b/title}</btitle>

19. <isbn>{$b/isbn}</isbn>

20. </book>

21. }

22. {for $sd in view("default")/selldvd/row

23. for $d in view("default")/dvd/row

24. where $sd/vendorId = $v/vendorId and

25. $d/asin = $sd/asin

26. return

27. <dvd dprice=’{$sd/price/text()}’>

28. <dtitle>{$d/title}</dtitle>

29. <asin>{$d/asin}</asin>

30. </dvd>

31. }

32. </products>

33. </vendor>

34. }

35. </vendors>)

Figure 3.5: User defined view in XPERANTO

create view books as (

<books>

{for $v in view("vendor")//vendor

let $sb := $v//book

let $c := count($sb)

return

<vendor vendorId="{$v/@id}">

{$v/vendorName}

<sellsBooks>{$c}</sellsBooks>

</vendor>

}

</books>)

<books>

<vendor vendorId="01">

<vendorName>Amazon</vendorName>

<sellsBooks>2</sellsBooks>

</vendor>

<vendor vendorId="02">

<vendorName>Barnes and Noble</vendorName>

<sellsBooks>2</sellsBooks>

</vendor>

</books

Figure 3.6: Definition of a new XML view defined over the view of Figure 3.5

55

Table 3.1: XQGM Operators
Operator Description

Table Represents a table in a relational database
Project Computes results based on its input
Select Restricts the input
Join Joins two or more inputs
Groupby Applies aggregate functions and grouping
Orderby Sorts input based on column values
Union Unions two or more inputs
Unnest Unnests an XML list
View Represents a view
Function Represents an XQuery function

Table 3.2: XML Functions and the operators in which they can appear
XML Function Description Operator

cr8Elem(Tag, Atts, Clist)
Creates an element with tag name Tag, at-
tribute list Atts, and contents Clist

Project

cr8AttList(A1, ..., An)
Creates a list of attributes from the attributes
passed as parameters

Project

cr8Att(Name, V al)
Creates an attribute with name Name and
value V al

Project

cr8XMLFragList(C1, ..., Cn)
Creates an XML fragment list from the con-
tent (element/text) parameters

Project

aggXMLFrags(C)
Aggregate function that creates an XML frag-
ment list from content inputs

Groupby

getTagName(Elem) Returns the element name of Elem Project, Select

getAttributes(Elem) Returns the list of attributes of Elem Project, Select

getContents(Elem)
Returns the XML fragment list of contents (el-
ements/text) of Elem

Project, Select

getAttName(Att) Returns the name of attribute Att Project, Select

getAttValue(Att) Returns the value of attribute Att Project, Select

isElement(E)
Returns true if E is an element, returns false
otherwise

Select

isText(T)
Returns true if T is text, returns false other-
wise

Select

unnest(List) Superscalar function that unnests a list Unnest

56

The process of translating an XQuery view definition to XQGM is very complex.
In (SHANMUGASUNDARAM et al., 2001), this is shown through an example, but
general translation rules are not given (probably because this project is associated
with a commercial DBMS). In general lines, a query in XQuery is translated to a sin-
gle SQL query that contains several sub-queries that are put together by a correlated
join operation. This operation, however, is not efficient, so they transform the query
(by a decorrelation process) into a query that uses joins to compute intermediate
results, and outer joins to relate nested elements with their ancestors.

An example of an XQGM is shown in Figure 3.7. It represents the view defini-
tion of Figure 3.5. It is important to notice that this is only a try of showing an
XQGM graph, since the paper does not provide enough details on how the graph is
constructed.

This figure represents the XQGM before the decorrelation process. Each box
corresponds to one of the operations of Table 3.1. Notice that first (box 1), the
data in table Vendor is retrieved. Each element book and dvd is constructed by a
subquery (boxes 2-7 and 8-13, respectively) that is later joined with vendor (box
14).

The XML templates of this figure (boxes 6, 12, 15 and 17) are shown just for
a better understanding. In fact, they are XML function calls that construct XML
elements using the functions of Table 3.2. As an example, box 6 of Figure 3.7
corresponds to the function applications shown in Figure 3.8.

A view definition in XQGM is composed with the view definitions referenced in
the original query to produce a single XQGM that will be executed. More details
on how the composition is done are available in (SHANMUGASUNDARAM et al.,
2001).

3.2 Extracting XML Documents from Relational Databases

The goal of the approaches that extract XML documents from relational data-
bases is very similar to the approaches that build XML views from relational data-
bases, shown in the previous section. The difference is that they do not explicitly
consider the resulting XML document as a view. That is, the resulting XML docu-
ment is usually directly used by an application, and there is no support for queries
over the resulting documents. This is in fact a very small difference, since once we
have the XML document, we can use XQuery to query it without having to use the
relational engine to do so. Summarizing, the approaches we present in this section
do not comprise queries over the views, and as a consequence, they do not perform
query composition. From now on, we call the XML documents extracted from the
relational databases, XML Views.

There are several tools that are capable of doing so. Some of them apply a default
mapping over an SQL query specified by the user (TURAU, 2001). Others allow the
user to specify an XML template, together with SQL instructions that will be used
to generate the resulting XML document (INTELLIGENT SYSTEM RESEARCH,
2001). Still others require the user to explicitly identify how database columns
and tables are mapped to XML elements and attributes (MERGEN; KELLER;
KROTH, 2002). As for updates, the AXIS tool (MERGEN; KELLER; KROTH,
2002) allows the insertion of XML documents in the database, as well as some kinds
of updates and deletions. The limitation of this approach resides in the absence of

57

table: vendor

$vendorId $vendorName $state $country

1

project: $vendor =
<vendor id=$vendorId>
<vendorName>$vendorName</vendorName>
<address>

<state>$state</state>
<country>$country</country>

</address>
<products>

$books
$dvds

</products>
</vendor>

$vendor

project: $result =
<vendors>$vendors</vendors>

$result

View Result

join (correlated):

$vendorId $vendorName $state $country $books $dvds

table: book

$isbn $title

table: sellbook

$isbn $s-vendorId $price

join:

$s-vendorId $isbn $title $price

select: $s-vendorId = $vendorId

$s-vendorId $isbn $title $price

project: $book =
<book bprice=$price>

<btitle>$title</btitle>
<isbn>$isbn</isbn>

</book>

$book

groupby: $books = aggXMLFrags($book)

$books

table: dvd

$asin $title

table: selldvd

$asin $s-vendorId $price

join:

$s-vendorId $asin $title $price

select: $s-vendorId = $vendorId

$s-vendorId $asin $title $price

project: $dvd =
<dvd dprice=$price>

<dtitle>$title</dtitle>
<asin>$asin</asin>

</dvd>

$dvd

groupby: $dvds = aggXMLFrags($dvd)

$dvds

2 3

4

5

6

7

8 9

10

11

12

13

14

15

groupby: $vendors = aggXMLFrags($vendor)

$vendors

16

17

Correlation on
vendor.vendorId

Figure 3.7: XQGM corresponding to view definition of Figure 3.5

58

cr8Elem(book,

cr8AttList(cr8Att(bprice, $price)),

cr8XMLFragList(cr8Elem(btitle,

cr8AttList(),

cr8XMLFragList($title)),

cr8Elem(isbn,

cr8AttList(),

cr8XMLFragList($isbn)),

)

)

Figure 3.8: Expansion of box 6 in Figure 3.7

a view definition language. The user specifies the mapping database/XML using
a graphical tool. Also, update operations are associated with database tables, and
not XML documents or explicit update operations. In this way, when an XML
document is submitted to the tool, some of the elements may be inserted, some
may be deleted, and some may be updated, depending on to which relational table
they correspond. We think that this may lead to confusions in some cases. It is
important to state that the goal of this tool is to provide ways of permitting data
exchange among companies with heterogeneous databases.

The commercial relational databases also offer support for extracting XML views
over relational databases. IBM DB2 XML Extender (CHENG; XU, 2000) uses a
mapping file called DAD (Data Access Definition) to specify how a given SQL query
is mapped to XML. This mapping file is very complex, and is generally built using a
wizard. Oracle 9i release 2 uses SQL/XML (EISENBERG; MELTON, 2002). SQL
Server extends SQL with a directive called FOR XML (CONRAD, 2001a). It also
provides an alternative way of expressing XML views, which can be done by an
annotated XML Schema. The schema reflects the view structure the user wants to
construct, and it is incremented by annotations that tells where (database table and
column) that element must come from. The XML instance is not generated from
the schema. The user needs to specify an XPath query over the view in order to get
the instance (or portions of it).

As we can see, most commercial databases have their own way of dealing with
XML, which makes it difficult to use them for accessing legacy databases. As for
updates, DB2, which allows the creation of XML documents from relational tables,
requires that updates be issued directly to the relational tables. In SQL Server
an XML view generated by an annotated XML Schema can be modified using up-
dategrams. Instead of using INSERT, UPDATE or DELETE statements, the user
provides a before image of what the XML view looks like and an after image of
the view (CONRAD, 2001b). The system computes the difference between these
images and generates corresponding SQL statements to reflect changes on the rela-
tional database. Oracle offers the option of specifying an annotated XML Schema,
but the only possible update operation is to insert XML documents that agree with
an annotated XML Schema.

Since SQL Server appears to be the most complete solution regarding updates,
let’s take a look on their solution more carefully. Their idea of updategrams is very
similar to our fist proposal of updates through views (BRAGANHOLO; HEUSER;
VITTORI, 2001). However, at that time, we did not had an explicit command to

59

provide the before and after images of the updated view. Instead, we would simply
compare the original view with the updated one, detect what had changed and map
the updates to the underlying database. In SQL Server, the user explicitly writes an
XML code to inform the change. As an example, let’s assume that the vendors.XSD
is the annotated XML Schema that generates the view of Figure 1.1. To modify the
address of a vendor, the user specifies:

<ROOT xmlns:updg="urn:schemas-microsoft-com:xml-updategram">

<updg:sync mapping-schema="vendors.XSD" >

<updg:before>

<vendor id="01">

<vendorName>Amazon</vendorName>

<address>

<state>WA</state>

<country>US</country>

</address>

</vendor>

</updg:before>

<updg:after>

<vendor id="01">

<vendorName>Amazon</vendorName>

<address>

<state>PA</state>

<country>US</country>

</address>

</vendor>

</updg:after>

</updg:sync>

</ROOT>

The problem with this approach is that they do not provide details on how the
updates are mapped to the database. They also do not provide details on the power
of expression of these annotated XML Schemas. Besides, it is an specific solution
for SQL Server, so database instances stored in a different RDMS can not benefit
from this approach unless we migrate it to SQL Server. This option, however, is not
the best one, since SQL Server is a proprietary solution.

Native XML databases like XIndice (APACHE SOFTWARE FOUNDATION,
2002), Timber (JAGADISH et al., 2002) and Tamino (SOFTWARE AG, 2002;
SCHÖNING, 2001) also support updates. However, the goal of all these systems
differs from ours since they do not update through views, nor the source data is
relational.

We now analyze DB2 XML Extender in details.

3.2.1 DB2 XML Extender

DB2 XML Extender (CHENG; XU, 2000) provides ways of both storing XML
documents in relational databases, as well as extracting XML documents from pre-
existing relations. In this section, we focus on this latter feature.

In order to be able to create XML documents from stored relational data, it
is necessary to provide a mapping file called DAD (Document Access Definition).
DAD files can express the mapping XML-relations in two distinct ways: using the
method SQL_stmt or using the method RDB_node. The SQL_stmt method restricts

60

the view to be built from a single SQL statement. As a consequence, views such as
the one in Figure 1.1 can not be expressed.

On the other hand, the RDB_node method allows the specification of the table
and attributes that are used to construct a given element, so it allows more flexible
views. As an example, Figure 3.9 shows how the XML view of Figure 1.1 would be
specified in DB2 XML Extender, assuming the database of Figure 1.2.

The mapping file requires that the user specifies all the relational tables that
will be used in the generation of the XML file, right under the element root (lines
7-14). It is also necessary to specify the join conditions for those tables (lines 12-13).
Additional selection conditions can also be specified (such as sellbook.price > 30, for
instance). After that, each text XML element has to specify the relational source
data, using the elements table and column. As an example, the id attribute is
taken from table Vendor and column vendorId (lines 16-18).

This approach has some limitations. First, the mapping file is rather complex.
Second, it only works with DB2, thus it can not be used to extract XML documents
of other RDBMSs. Finally, we have no access to more detailed information. That
is, it is not clear how the DAD file is used to generate the XML document. This
sometimes makes it difficult to predict the result of a given mapping file.

3.3 Storing and Querying XML documents in Relational Da-
tabases

(ABITEBOUL; CLUET; MILO, 1993) was one of the first proposals to suggest
the use of relational database engines to query data in files. For this purpose,
the file contents should be stored in the relational database using some mapping
schema. For this to be possible, the file should have a "strict inner structure". This
requirement resembles XML documents which have a DTD or schema.

Based on this observation, lots of work arose with the goal of storing (FLO-
RESCU; KOSSMANN, 1999; DEUTSCH; FERNANDEZ; SUCIU, 1999; SHANMU-
GASUNDARAM et al., 1999; LEE; CHU, 2000; CHEN; DAVIDSON; ZHENG, 2002,
2003) and querying (SHANMUGASUNDARAM et al., 1999; MANOLESCU; FLO-
RESCU; KOSSMANN, 2001; SHANMUGASUNDARAM et al., 2001; TATARINOV
et al., 2002; DEHAAN et al., 2003) XML documents using relational databases. The
interesting point is that some of the solutions explore the XML structure (parent-
child) to be able to store documents that do not have DTDs (FLORESCU; KOSS-
MANN, 1999; DEHAAN et al., 2003).

These approaches are different from ours because they consider a different ques-
tion: they query XML documents stored in relational databases, while we query rela-
tional databases to extract XML views. Therefore, the underlying assumptions used
are different. For example, querying XML documents stored in relational databases
must preserve document order, while in our case, order is not important, since the
relational model is unordered. Another difference, pointed by (TATARINOV et al.,
2001), is that a relational repository for XML is usually automatically generated
based on the schema of the XML instances, while XML views are constructed over
pre-existing relational tables, together with a view definition.

On the other hand, the flat nature of relational databases may cause redundancy
when translated to XML views, which may cause problems regarding updates. That
is, a well designed relational database does not imply a redundancy-free XML view.

61

1. <DAD>

2. <dtdid>c:\dxx\dtd\vendors.dtd</dtdid>

3. <validation>NO</validation>

4. <Xcollection>

5. <prolog>?xml version="1.0"?</prolog>

6. <doctype>!DOCTYPE vendor SYSTEM "c:\dxx\dtd\vendors.dtd"</doctype>

7. <root_node>

8. <element_node name="vendors">

9. <RDB_node>

10. <table name="vendor"/><table name="book"/><table name="sellbook"/>

11. <table name="dvd"/><table name="selldvd"/>

12. <condition>vendor.vendorId=sellbook.vendorId AND sellbook.isbn=book.isbn AND

13. vendor.vendorId=selldvd.vendorId AND selldvd.asin=dvd.asin</condition>

14. </RDB_node>

15. <element_node name="vendor" multi_occurrence="YES">

16. <attribute_node name="id">

17. <RDB_node><table name="vendor"/><column name="vendorId"/></RDB_node>

18. </attribute_node>

19. <element_node name="vendorName">

20. <text_node>

21. <RDB_node><table name="vendor"/><column name="vendorName"/></RDB_node>

22. </text_node>

23. </element_node>

24. <element_node name="address">

25. <element_node name="state">

26. <text_node>

27. <RDB_node><table name="vendor"/><column name="state"/></RDB_node>

28. </text_node>

29. </element_node>

30. <element_node name="country">

31. <text_node>

32. <RDB_node><table name="vendor"/><column name="country"/></RDB_node>

33. </text_node>

34. </element_node>

35. </element_node>

36. <element_node name="products">

37. <element_node name="book" multi_occurrence="YES">

38. <attribute_node name="bprice">

39. <RDB_node><table name="sellbook"/><column name="price"/></RDB_node>

40. </attribute_node>

41. <element_node name="btitle">

42. <text_node>

43. <RDB_node><table name="book"/><column name="title"/></RDB_node>

44. </text_node>

45. </element_node>

46. <element_node name="isbn">

47. <text_node>

48. <RDB_node><table name="sellbook"/><column name="isbn"/></RDB_node>

49. </text_node>

50. </element_node>

51. </element_node>

52. <element_node name="dvd" multi_occurrence="YES">

53. <attribute_node name="dprice">

54. <RDB_node><table name="selldvd"/><column name="price"/></RDB_node>

55. </attribute_node>

56. <element_node name="dtitle">

57. <text_node>

58. <RDB_node><table name="dvd"/><column name="title"/></RDB_node>

59. </text_node>

60. </element_node>

61. <element_node name="asin">

62. <text_node>

63. <RDB_node><table name="selldvd"/><column name="asin"/></RDB_node>

64. </text_node>

65. </element_node>

66. </element_node>

67. </element_node>

68. </element_node>

69. </element_node>

70. </root_node>

71. </Xcollection>

72. </DAD>

Figure 3.9: View definition in DB2 XML Extender

62

This problem is not critical for XML documents stored in relational databases since
well designed XML documents (EMBLEY; MOK, 2001; ARENAS; LIBKIN, 2002)
tend not to be redundant. Additionally, existing proposals for updating XML doc-
uments stored in relational databases do not consider updates through views.

We now overview the approaches:

Edge The Edge approach (FLORESCU; KOSSMANN, 1999) uses a single relation
to store the XML document. Each element or attribute of the XML document
is stored in a tuple of this relation.

Attribute This approach requires one relational table for each element or attribute
in the XML instance. Elements with the same name are stored in the same
relation.

Shared Inlining The Shared Inlining method (SHANMUGASUNDARAM et al.,
1999) explores the DTD to reduce the number of joins required to reconstruct
the document. It does so by storing children together with their parents every
time this is possible. As an example, in an XML document that stores infor-
mation about vendors and the books they sell, information about vendor such
as name and id would be stored in a single relation.

Hybrid Inlining This approach (SHANMUGASUNDARAM et al., 1999) is similar
to the Shared Inlining approach. The difference is that this method reduces
even more the number of generated relations by exploring additional features
of the DTD.

Dynamic Interval The dynamic interval approach (DEHAAN et al., 2003) pro-
poses to store the XML instance in a single relation. The relation stores the
tag name (or atomic value), and an interval (start, end). The interval can be
calculated by a depth-first traversal in the document, assigning consecutive
numbers to each node. Every time a node is reached, the start attribute re-
ceives the current number. Then when all the descendants of that node were
visited, the end attribute is closed with the current counting value. In this
way, the interval of children nodes is always contained in the interval of the
parent node. The approach is called dynamic because it is possible to leave
gaps in the intervals to accommodate insertion of new nodes.

Constraints Some of the approaches construct the relational schema based on
constraints of the XML documents. (LEE; CHU, 2000) explores DTD con-
straints such as cardinalities and referential integrity. On the other hand,
(CHEN; DAVIDSON; ZHENG, 2002) uses XML key and keyref, while (CHEN;
DAVIDSON; ZHENG, 2003) explores XML functional dependencies (XFDs)
to generate a relational schema that has as few redundancy as possible.

The querying techniques depend on the method adopted to store the XML in
relations. The edge and attribute approaches require lots of joins to recompute the
document. The dynamic interval uses sub-queries and the union all operator to
reproduce the original XML instance.

63

3.3.1 Updating XML documents stored in Relational Databases

There are three proposals for updating XML documents stored in relational
databases (TATARINOV et al., 2001, 2002; WANG; MULCHANDANI; RUNDEN-
STEINER, 2003). All of them assume a default mapping of the XML document
to relations, such as the shared inlining method (SHANMUGASUNDARAM et al.,
1999), or the approach of (LEE; CHU, 2000).

Tatarinov et al. (2001) propose an extension to XQuery to support updates. This
extension comprises primitives such as UPDATE, DELETE, INSERT (AFTER|BEFORE),
REPLACE and RENAME. They then discuss how those updates could be translated to
the underlying relational database, in order to update XML documents stored there
using the shared inlining method. Notice that these translations are straightforward,
since this is a direct update, not an update through views.

In (TATARINOV et al., 2002), Tatarinov et al. uses the XQuery extension
proposed in (TATARINOV et al., 2001) to deal with ordered XML documents. They
propose an storage method for ordered XML documents in relations, and show how
updates that affect order can be translated.

Finally, (WANG; MULCHANDANI; RUNDENSTEINER, 2003) provides an up-
datability study for XML documents stored in relational databases. First, they
require that the storage mapping be both a lossless data loading and a lossless
constraints loading. That is, the storage mapping preserves all XML data, and
also all the XML constraints such as cardinalities, hierarchy, etc. In this work,
Wang, Mulchandani and Rudensteiner use the storage mapping of (LEE; CHU,
2000). They consider the following scenario: given an XML document stored in a
relational database, and given an XQuery expression over the database that recon-
structs exactly the original XML document, then using an update language similar
to that of (TATARINOV et al., 2001), it is possible to translate all the updates to
the database without changing the view complement (they adopt the view comple-
ment approach (BANCILHON; SPYRATOS, 1981) as their correctness criteria). In
this work, however, the authors do not specify what is exactly the update language
that is being used, and how updates are translated to the database.

3.4 Chapter Remarks

Most of the existing proposals to extract XML from relational databases translate
the view definition to SQL in order to be able to use the relational engine to execute
the query. As will be clear in Chapter 7, in our approach we have not taken this
direction. We have decided to extract the relevant portions of relational tables to
XML, and use an existing XQuery processor to generate the view. Notice, however,
that this was done in order to simplify the view generation, since our focus was on
updates, and not on the view generation.

We claim that we could have used an approach similar to the ones presented in
this chapter to generate the view, in order to make it more efficiently. Specifically,
we believe that an approach similar to SilkRoute could be very easily adapted to
work with query trees.

The most important aspect taken from this bibliographical study is that there
is no proposal in literature that is capable of updating the underlying relational
database through XML views. In this aspect, we believe this thesis gives a significant
contribution. We explain our approach in details in the next chapters.

64

65

4 BUILDING AND UPDATING XML VIEWS

In this chapter, we present the basis of our solution. We present a formalism –
query trees – which we use to extract XML views from a relational database, and
an update language that we use to update the XML view. In the next chapter,
we show how XML views constructed by query trees can be mapped to a set of
corresponding relational views, and how updates to the XML view can be mapped
to updates over this set of relational views. We thus transform a new problem
- updating relational databases through XML views - into an existing problem -
updating relational databases through relational views.

A paper that presents an overview of query trees and of our mapping to relational
views was published at the International Conference on Very Large Data Bases
(BRAGANHOLO; DAVIDSON; HEUSER, 2004a).

4.1 Query Trees

Query trees are used as a representation of the XML view extraction query. We
use this abstract representation rather than an XML query language syntax for
several reasons:

• First, reasoning about updates and the updatability of an XML view is per-
formed at this level. The characteristics considered in these reasonings are the
structure of the XML view and the source of each XML element/attribute.
These are syntax independent features, which allow us to work on a syntax
independent level.

• Second, they are easy to understand yet expressive enough to capture sev-
eral important aspects of XQuery such as nesting, composed attributes, and
heterogeneous sets.1

Query trees can therefore be thought of as the intermediate processing form for a
subset of many different XML query languages. For example, we have developed an
implementation of our technique that uses a subset of XQuery (BRAGANHOLO;
DAVIDSON; HEUSER, 2003b) as the top-level language. This will be shown in
chapter 7.

After defining query trees, we introduce a notion which will be used to describe
the mapping to relational queries: the abstract type of a query tree node. We use
this notion of typing to define the semantics of query trees, and then present their
result type DTD.

1They can also capture grouping, and we present such extension in Appendix A.1.

66

name = ‘books’

name = ‘book’
[$b := table(“Book”)]

[$sb := table(“SellBook”)]
[where $sb/price > 30 and

$sb/isbn=$b/isbn]

name = ‘@isbn’
value = $b/isbn

name = ‘ title’
value = $b/title

name = ‘price’
value = $sb/price

*

Figure 4.1: Example of query tree

4.1.1 Query Trees Defined

An example of a query tree can be found in Figure 4.1, which retrieves books
that are sold for prices greater than $30. The query tree resembles the structure
of the resulting XML view. The root of the tree corresponds to the root element
of the result. Leaf nodes correspond to attributes of relational tables, and interior
nodes whose incoming edges are starred capture repeating elements. The result of
this query is as follows:

<books>

<book @isbn="1111">

<title>Unix Network Programming</title>

<price>38</price>

</book>

<book @isbn="2222">

<title>Computer Networks</title>

<price>29</price>

</book>

...

</books>

Query trees are very similar to the view forests of (FERNÁNDEZ et al., 2002)
and schema-tree queries presented in (BOHANNON et al., 2002). The difference
is that, instead of annotating all nodes with the relational queries that are used to
build the content model of a given node, we annotate interior nodes in the tree using
only the selection criteria (not the entire relational query).

An annotation can be a source annotation or a where annotation. Source anno-
tations bind variables to relational tables, and where annotations impose restrictions
on the relational tables making use of the variables that were bound to the tables.

In the definitions that follow, we assume that D is a relational database over
which the XML view is being defined. T is the set of table names of D. AT is the
set of attributes of a given table T ∈ T.

Definition 4.1 (Query Tree) A query tree defined over a database D is a tree
with a set of nodes N and a set of edges E in which: Edges are simple or starred
("*-edge"). An edge is simple if, in the corresponding XML instance, the child node

67

appears exactly once in the context of the parent node, and starred otherwise. Nodes

are as follows:

1. All nodes have a name that represents the tag name of the XML element as-
sociated with this node in the resulting XML view. Names of leaf nodes that
start with “@” are considered to be XML attributes.

2. Leaf nodes have, and only leaf nodes, a value (to be defined).

3. Starred nodes (nodes whose incoming edge is starred) may have one or more
source annotations and zero or more where annotations (to be defined). A leaf
node may be a starred node.

Since we map XML views to relational views, nodes with the same name in
the query tree may cause ambiguities in the mapping (a relation can not have two
attributes with the same name (ULLMAN; WIDOM, 1997)). For simplicity, in this
thesis we will ignore this problem and use unique names for nodes in the query trees.
We deal with such problem in Appendix B.

Returning to the example in Figure 4.1, there is a *-edge from the root (named
books) to its child named book, indicating that in the corresponding XML instance
there may be several book subelements of books. There is a simple edge from the
node named book to the node named title, indicating that there is a single title
subelement of book. The node named @isbn will be mapped to an XML attribute
instead of an element.

Before giving an example of how values are associated with nodes, we define
source and where annotations on nodes of a query tree.

Definition 4.2 (Source Annotation) A source annotation s within a starred
node n is of the form [$x := table(T)], where $x denotes a variable and T ∈ T is a
relational table. We say that $x is bound to T by s.

Definition 4.3 (Where Annotation) A where annotation on a starred node n
is of the form [where $x1/A1 op Z1 AND ... AND $xk/Ak op Zk], k > 1, where
Ai ∈ ATi

and $xi is bound to Ti by a source annotation on n or some ancestor of n.
The operator op is a comparison operator {=, 6=, >, <, 6, >}. Zl is either a literal
(integer, string, etc.) or an expression of the form $y/B, where B ∈ AT and $y is
bound to T by a source annotation on n or some ancestor of n.

Definition 4.4 (Node Value) The value of a leaf node n is of form $x/A, where
A ∈ AT and $x is bound to table T by a source annotation on n or some ancestor
of n.

In Figure 4.1, the node book has source annotations and where annotations. The
source annotations bind variable $b to the relational table Book, and variable $sb to
the relational table SellBook. The where annotations restrict the books that appear
in the view to those with price greater than $30, and specify the join condition
of tables Book and SellBook. The value of the node @isbn is specified as $b/isbn,
indicating that the content of the XML view attribute isbn will be generated using
column isbn of the table Book.

A more complex example of a query tree can be found in Figure 4.2 (ignore
for now the types τ associated with nodes). This query tree retrieves vendors, and

68

Figure 4.2: Query tree for the XML view of Figure 1.1

for each vendor, its @id, vendorName, address and a set of books and dvds within
products. The root vendors has a set of vendor child nodes (*-edge). The vendor
node is annotated with a binding for $v (to table Vendor), and has several children
at the end of simple edges (@id, vendorName, and address). The value of its id
attribute is specified by the path $v/vendorId, and that of vendorName is specified
by the path $v/vendorName. The node address is more complex, and is composed
of state and country subelements.

The node products has two *-edge children, book and dvd. Source annotations
of the book node include bindings for $b (Book) and $sb (SellBook) and its where
annotations connect tuples in SellBook to tuples in Book, and tuples in SellBook
with tuples in Vendor (join conditions). Node dvd has source annotations for $d
(DVD) and $sd (SellDVD). Its where annotation connects tuples in SellDVD to
tuples in DVD and tuples in SellDVD with tuples in Vendor. The result of this
query tree is shown in Figure 1.1.

From now on, we assume that a query tree is non-empty, i.e. that it consists of
more than a root node.

4.1.2 Abstract Types

In our mapping strategy, it will be important to recognize nodes that play certain
roles in a query tree. In particular, we identify five abstract types of nodes: τ , τT ,
τN , τC and τS. We call them abstract types to distinguish them from the type or
DTD of the XML view elements.

Nodes in the query tree are assigned abstract types as follows:

1. The root has abstract type τ .

69

2. Each leaf has abstract type τS (Simple).
3. Each non-leaf node with an incoming simple edge has abstract type τC (Com-

plex).
4. Each starred node which is either a leaf node or whose subtree has only simple

edges has an abstract type of τN (Nested).
5. All other starred nodes have abstract type τT (Tree).

Note that each node has exactly one type unless it is a starred leaf node, in which
case it has types τS and τN .

As an example of this abstract typing, consider the query tree in Figure 4.2,
which shows the type of each of its nodes. Since book and dvd are repeating nodes
whose descendants are non-repeating nodes, their types are τN rather than τT .

The motivation behind abstract types is as follows. To map updates in the XML
view to updates in the underlying relational database, we must be able to identify
a mapping from the column of a tuple in the relational database to an element or
attribute in the XML view. Ideally, this mapping is 1:1, i.e. each attribute of a
tuple occurs at most once in the XML view and can therefore be updated without
introducing side-effects into the view. In general, however, it may be a 1:n mapping.
The class of views allowed by our query trees and its associated abstract type views
captures this mapping intrinsically.

Specifically:

• τT /τN identifies potential tuples in the underlying relational database. Nodes
of type τT /τN are mapped to tuples, and the node itself serves as a tuple
delimiter. A node of type τT may have children of type τT , i.e. nesting is
allowed.

• τS identifies relational attributes (columns). A node of type τS must have a
node of type τT or τN as its ancestor. Starred leaf nodes are an exception to
this rule: they need not to have such ancestor.

• τC identifies complex XML elements. Since they do not carry a value, this
type of node is not mapped to anything in the relational model. Nodes of type
τC are present in our model to allow more flexible XML views, but are not
important in the mapping process.

We call the XML views produced by query trees and their associated abstract
types well-behaved because, as we will show in the next section, they can be easily
mapped to a set of corresponding relational views. However, before turning to the
mapping we prove two facts about query trees that will be used throughout the
thesis.

Proposition 4.1 There is at least one τN node in the abstract type of a query tree
qt.

Proof: Since query trees are assumed to be non-empty, qt must have at least one
leaf. This means that qt must have at least one starred node n, since the leaf node
has a value which involves at least one variable which must be defined in some source
annotation attached to a starred node. Since the tree is finite, at least one of these
starred nodes is either a leaf node or has a subtree of simple edges, i.e. the starred
node is a τN node.

70

Proposition 4.2 There is at most one τN node along any path from a leaf to the
root in the abstract type of a query tree qt.

Proof: Suppose there are two τN nodes, n1 and n2, along the path from some leaf
to the root of qt. Without loss of generality, assume that n1 is the ancestor of n2.
By definition of τN , n2 must be a starred node. Therefore n1 has a *-edge in its
subtree, a contradiction.

We will refer to the abstract type of an element by the abstract type that was
used to generate it followed by the element name. As an example, the abstract type
of the element dvd in Figure 4.2 is referred to as τN (dvd), and its type (DTD) is
<!ELEMENT dvd (dtitle, asin)>.

4.1.3 Semantics of Query Trees

The semantics of a query tree follows the abstract type of its nodes, and can be
found in Algorithm 4.1. The algorithm constructs the XML view resulting from a
query tree qt recursively, and starts with n being the root of the query tree. The
basic idea is that the source and where annotations in each starred node n are
evaluated in the database instance d, producing a set of tuples. The algorithm then
iterates over these tuples, generating one element corresponding to n in the output
for each of these tuples and evaluating the children of n once for each tuple.

The bindings{} hash array keeps the values of variables, taken from the under-
lying relational database. We assume that values in bindings{} are represented as
$x/A = 1, $x/B = 2, where $x is a variable bound to a relational table T , A and
B are the attributes of T and 1 and 2 are the values of attributes A and B in the
current tuple of T .

4.1.4 DTD of a Query Tree

Query tree views defined over a relational database have a well-defined schema
(DTD) that is easily derived from the tree. Given a query tree, its DTD is generated
as follows:

1. For each attribute leaf node named @A with parent named E, create an at-
tribute declaration
<!ATTLIST E @A CDATA #REQUIRED>

2. For each non-attribute leaf node named E, create an element declaration <!EL-
EMENT E (#PCDATA)>

3. For each non-leaf node named E, create an element declaration
<!ELEMENT E (E1, . . . , Ek)>, where E1, ..., Ek are non-attribute child nodes
of E connected by a simple or starred edge. In case Ei is connected to E by
a starred edge, add a "*" after Ei. In case k = 0, then create an element
declaration <!ELEMENT E EMPTY>

As an example, the DTD of the view produced by the query tree shown in
Figure 4.2 is:

<!ELEMENT vendors (vendor*)>

<!ELEMENT vendor (vendorName, address, products)>

<!ATTLIST vendor id CDATA #REQUIRED>

<!ELEMENT vendorName (#PCDATA)>

71

eval(qt, d)

{qt is the query tree and d is the database instance}
evaluate(root(qt), d)

evaluate(n ,d)

{Assume a node type has functions abstract_type(n), name(n), value(n), children(n), sources(n), and where(n)
(with the obvious meanings).}
Let bindings{} be a hash array of bindings of variable attributes to values, initially empty.
case abstract_type(n)

τ |τC : buildElement(n, d)
τT |τN : table(n)
τS : print "<name(n)>value(n)</name(n)>"

end case

buildElement(n, d)

let tag = "name(n)"
for each attribute c in children(n) do

add "name(c) = value(c)"to tag
end for

print "< tag >"
for each non-attribute c in children(n) do

evaluate(c, d)
end for

print "</name(n)>"

table(n)

let w be a list of conditions in where(n)
for each w[i] do

if w[i] involves a variable v in bindings{} then

substitute the value binding{v} for v
end if

end for

calculate the set B of all bindings for variables in sources(n) that makes the conjunction of the modified w[i]’s
true, using d
for each b in B do

add b to bindings{}
buildElement(n)
remove b from bindings{}

end for

Algorithm 4.1: The eval algorithm

<!ELEMENT address (state, country)>

<!ELEMENT state (#PCDATA)>

<!ELEMENT country (#PCDATA)>

<!ELEMENT products (book*,dvd*)>

<!ELEMENT book (btitle, isbn)>

<!ATTLIST book bprice CDATA #REQUIRED>

<!ELEMENT btitle (#PCDATA)>

<!ELEMENT isbn (#PCDATA)>

<!ELEMENT dvd (dtitle, asin)>

<!ATTLIST dvd dprice CDATA #REQUIRED>

<!ELEMENT asin (#PCDATA)>

<!ELEMENT dtitle (#PCDATA)>

Note that all (#PCDATA) elements are required. When the value of a relational
attribute is null, we produce an element with a distinguished null value. This makes
it easier for the user to distinguish between a value which is not known (null) and
a value which is known to be the empty string.

We could also have chosen to omit the element tag when the value of that element
is null. However, we feel our choice of using a distinguished null value has several
advantages over this option. First, it facilitates modifying a null value to some other
value: if tag t is omitted from the view, the user must understand the view definition
to know whether or not an element with tag t can be added at a particular point in

72

the XML view. Second, it makes our update translation easier: If modifying a null
value required inserting a new tag in the view, then this insertion in the view would
translate to a modification in the underlying relational database. Similarly, changing
from some known value to null would require a deletion in the view but would be
mapped to a modification in the underlying relational database. Our strategy is to
map an update (e.g. insertion, deletion or modification) in the XML view to the
same type of update in the underlying relational database.

4.2 Update Language

In this section, we present a simple update language for XML views, and describe
how we check for schema conformance after updates.

Although no standard has been established for an XML update language, sev-
eral proposals have appeared (ABITEBOUL et al., 1997; TATARINOV et al., 2001;
BONIFATI et al., 2002; LAUX; MARTIN, 2000). The language described in this
section is much simpler than any of these proposals and in some sense can be thought
of as an internal form for one of these richer languages (assuming a static2 trans-
lation of updates (BONIFATI; FLESCA; PUGLIESE, 2003)).The simplicity of the
language allows us to focus on the key problem we are addressing.

Updates are specified using path expressions to point to a set of target nodes in
the XML tree at which the update is to be performed. For insertions and modifica-
tions, the update must also specify a ∆ containing the new values.

Definition 4.5 (Update Operation) An update operation u is a triple <t, ∆,
ref>, where t is the type of operation (insert, delete, modify); ∆ is the XML tree to
be inserted, or (in case of a modification) an atomic value; and ref is a simple path
expression in XPath (CLARK; DEROSE, 1999) which indicates where the update is
to occur.

Definition 4.6 (Update Path) An update path ref is of the form p1/p2/.../pn

where pi is either a label li or a qualified label li[c1 and c2 and ... cm]. Each pi is
called a step of P . Each ci is a qualification of the form A = x, where A is a label
and x is an atomic value (string, integer, etc).

The path expression ref is evaluated from the root of the tree and may yield a
set of nodes which we call update points. In the case of modify, it must evaluate to a
set of leaf nodes. We restrict the filters used in ref to conjunctions of comparisons of
attributes or leaf elements with atomic values, and call the expression resulting from
removing filters in ref the unqualified portion of ref. For example, the unqualified
portion of /vendors/vendor[@id="01"] is /vendors/vendor.

Definition 4.7 (Valid Update Path) An update path ref is valid with respect
to a query tree qt iff the unqualified portion of ref is non-empty when evaluated on
qt.

For example, /vendors/vendor[@id="01"]/vendorName is a valid path expression
with respect to the query tree of Figure 4.2, since the unqualified path /vendors/

vendor/vendorName is non-empty when evaluated on that query tree.

2Static updates are complex update operations that do not "see"the changes produced by
previously applied updates (those that are part of the same complex update).

73

The semantics of insert is that ∆ is inserted as a child of the nodes indicated
by ref ; the semantics of modify is that the atomic value ∆ overwrites the values of
the leaf nodes indicated by ref ; and the semantics of a delete is that the subtrees
rooted at nodes indicated by ref are deleted.

The following examples refer to Figure 1.1:

Example 4.1 To insert a new book selling for $38 under the vendor with id=“01”
we specify:
t = insert,
ref = /vendors/ vendor[@id= "01"] /products ,

∆ = {<book bprice = "38">

<btitle>New Book</btitle><isbn>9999</isbn>

</book>}.

Example 4.2 To change the vendorName of the vendor with id = "01" to Ama-
zon.com we specify:
t = modify,
ref = /vendors/ vendor[@id= "01"] /vendorName ,
∆ = {Amazon.com}.

Example 4.3 To delete all books with title "Computer Networks" we specify:
t= delete,
ref = /vendors/ vendor/ products/ book[btitle= "Computer Networks"] .

4.2.1 Schema conformance

Note that not all insertions and deletions make sense since the resulting XML
view may not conform to the DTD of the query tree (for details, see Section 4.1.4).
For example, the deletion specified by the path /vendors/vendor/vendorName would
not conform to the DTD of Figure 4.2 since vendorName is a required subelement
of vendor. We must also check that ∆’s inserted and subtrees deleted are correct.

Definition 4.8 (Correctness of Update Operation) An update <t,∆,ref>
against an XML view specified by a query tree qt is correct iff

• ref is valid with respect to qt, according to definition 4.7;

• if t is a modification, then the unqualified portion of ref evaluated on qt arrives
at a node whose abstract type is τS;

• if t is an insertion, then the unqualified portion of ref + the root of ∆ eval-
uated on qt arrives at a node whose incoming edge is starred (equivalently, its
abstract type is τT or τN);

• if t is a deletion, then the unqualified portion of ref evaluated on qt arrives
at a node whose incoming edge is starred;

• if nonempty, then ∆ conforms to the DTD of the element arrived at by ref.

74

For example, the deletion of example 4.3 is correct since book is a starred subele-
ment of products. However, the deletion specified by the update path /vendors/

vendor/vendorName is not correct since vendorName is of abstract type τS. Addi-
tionally, the deletion specified by the invalid update path /vendors/vendor/dvd is
also incorrect.

As another example, the insertion of example 4.1 is correct since book (arrived at
by /vendors/vendor/products) is a starred subelement of products, the DTD for book
is <!ELEMENT book (btitle, isbn)>, and ∆ conforms to this DTD. However, the
following insertion would not be correct for the update path /vendors/vendor[@id=

"01"]/products and

∆ = {<book bprice="38"><rating>Children</rating></book>}

since the isbn and btitle subelements are missing, and book does not have a rating
subelement.

Definition 4.6 excludes descendant traversal (//) (CLARK; DEROSE, 1999).
The reason for excluding such axis traversal is that query trees can have distinct
nodes with the same name (although we are only considering query trees with dis-
tinct node names in this thesis, the Appendix B shows how to deal with such cases
– the solution is to include artificial numbers in the node names). Thus, a path
expression containing // would possibly lead to ambiguity. The main problem as-
sociated with this ambiguity is not identifying the update points, but to check for
schema conformance. Suppose a node book is being inserted in the XML view, and
the update point is specified as //. Suppose also that there are two nodes book in
the query tree, each of them with a different schema. It would not be possible to
know which schema portion to use to check for schema conformance in a case like
this. Notice that in this case, using a numbering schema to differentiate the nodes
would not solve the problem, since the numbering schema is used internally and the
user is not aware of that. That is, the user specifies update paths over the original
XML view, which does not contain any number associated to the nodes.

4.3 Chapter Remarks

In this chapter we have presented a formalism – query trees – to specify XML
views over relational databases, together with algorithms that show, given a query
tree and a database instance, how the XML view can be constructed. We have chosen
to keep query trees as simple as possible, to make them easier to manipulate and
understand. However, query trees can be extended to deal with more complicated
features such as grouping, aggregations, etc. In Appendix A.1, we show how query
trees can be extended to deal with grouping. With this extension, it is possible to
cluster tuples that agree with a given value under a single XML element. Please
refer to the Appendix A.1 for further details and examples.

Using query trees to define XML views provides us a series of advantages:

• It makes our proposal language independent - any language capable of con-
structing XML views from relational databases can be used to implement our
approach. All that needs to be done is to define how a given view definition
query in that language can be mapped to a query tree. We have done this for
a subset of XQuery, which we show in details in Chapter 7 3.

3Our implementation considers extended query trees (Appendix A.1).

75

• Being language independent allows us to disregard specific syntaxes and to
focus on the solution of the problem of how to update the underlying database
through the views constructed by query trees.

• Query trees provide a formal framework which makes it easier to prove prop-
erties about XML views and to reason about updatability (Chapter 6).

We also have shown how XML views can be updated using a simple update
language. This update language can also be thought of as an intermediate repre-
sentation of existing update languages. We have chosen to use this language to
simplify the presentation of our ideas. Besides, despite the efforts of the standard-
ization committees (W3C, 2004; ISO, 2004), no standard XML update language is
available yet.

The next chapter shows how XML views constructed by query trees can be
mapped to a set of corresponding relational views, and how updates over the XML
view can be mapped to updates over this set of relational views.

76

77

5 FROM XML VIEWS TO RELATIONAL VIEWS

In our approach, updates over an XML view are translated to SQL update state-
ments on a set of corresponding relational view expressions. Existing techniques
such as (DAYAL; BERNSTEIN, 1982a; KELLER, 1985; LECHTENBÖRGER, 2003;
BANCILHON; SPYRATOS, 1981; TUCHERMAN; FURTADO; CASANOVA, 1983)
can then be used to accept, reject or modify the proposed SQL updates.

In order to do so, it is first necessary to map an XML view to a relational view.
As we will show later in this chapter, there are cases where a single XML view must
be mapped to a set of relational views.

5.1 Mapping XML views to Relational Views

In this section, we discuss how an XML view constructed by a query tree is
mapped to a set of corresponding relational view expressions. There are two main
steps in the mapping process: map and split. The map process maps a query tree
with a single τN node to a relational view, and the split process deals with query
trees that have more than one node of type τN . It splits the query tree in several
split trees, so that each of them has a single node of type τN . Then, the map process
can be applied.

We start by showing the map process, and then we discuss the split process in
details.

5.1.1 Map

Given a query tree qt with only one τN node, the corresponding SQL view state-
ment is generated as follows:

• Join together all tables found in source annotations (called source tables) in
a given node n in qt, using the where annotations that correspond to joins
on source tables in n as inner join conditions. If no such join condition is
found then use “true” (e.g. 1=1) as the join condition, resulting in a cartesian
product. Call these expressions source join expressions.

• Use the hierarchy implied by the query tree to left outer join source join expres-
sions in an ancestor-descendant direction, so that ancestors with no children
still appear in the view. The conditions for the outer joins are captured as
follows: If node a is an ancestor of n and a where annotation in n specifies a
join condition on a table in n with a table in a, then use this annotation as the
join condition for the outer join. Similar to inner joins, if no condition for the

78

outer join is found, then use “true” as the join condition so that if the inner
relation is empty, the tuples of the outer will still appear.

• Use the remaining where annotations (the ones that were not used as inner or
outer join conditions) in an SQL where-clause and project the values of leaf
nodes. The resulting SQL view statement represents an unnested version of
the XML view.

According to the above procedure, source join expressions are as follows:

<source table> AS <source variable> INNER JOIN

<source table> AS <source variable> INNER JOIN ...

ON <inner joincond>

The complete SQL expression resulting from the mapping process is:

SELECT <leaf value> AS <leaf name>, ...,

<leaf value> AS <leaf name>

FROM (<source join expression> LEFT JOIN

<source join expression> ON <outer joincond>) LEFT JOIN ...

WHERE <remaining "where" annotation> AND ...

AND <remaining "where" annotation>

For example, the relational view corresponding to the query tree in Figure 4.1
is:

SELECT b.isbn AS isbn, b.title AS title, sb.price AS price

FROM (Book AS b INNER JOIN SellBook AS sb ON sb.isbn=b.isbn)

WHERE sb.price > 30

The mapping algorithm is presented in details by algorithm 5.1. The auxiliary
functions used in this algorithm have obvious meanings. The one that is not so
obvious is function variable(n). It returns the variable that was used in the value
of a leaf node, without the $ symbol. For example, if the value of node n is $x/A,
then variable(n) returns x. When the parameter is a source annotation s, then the
function returns the variable referenced in this source annotation, without the $ (e.g.
with s = $x in table("X"), function variable(s) returns x). Function attribute(n)
returns the relational attribute that was used to specify the value of a leaf node.
Using the example of value of leaf node n above, attribute(n) returns A.

5.1.2 Split

For a query tree with more than one τN node, this process is incorrect. As an
example, consider the query tree of Figure 4.2 which has two τN nodes (book and
dvd). If we follow the mapping process described above, the tables DVD and Book
will be joined, resulting in a cartesian product. In this expression, a book is repeated
for each DVD, violating the semantics of the query tree. We must therefore split a
query tree into sub-query trees containing exactly one τN node each before generating
the corresponding relational views. After the splitting process, each sub-query tree
produced is mapped to a relational view as explained above.

The splitting process consists in isolating a node n of type τN in the query tree qt,
and taking its subtree as well as its ancestors and their non-repeating descendants

79

map(qt[])

Let sql[] be an array of strings, initially empty; Let numberqt be the number of split trees in qt[]
for k from 1 to numberqt do

Let n be the node of type τN in qt[k]
sql[k] = "CREATE VIEW "+ "VIEW"+ name(n) + "AS "
sql[k] = sql[k] + "SELECT "
Let N be the list of leaf nodes in qt[k]
for i from 1 to size(N) do

get next n in N
if i > 1 then

sql[k] = sql[k] + ","+ variable(n) + "."+ attribute(n) + "AS "+ name(n)
else

sql[k] = sql[k] + variable(n) + "."+ attribute(n) + "AS "+ name(n)
end if

i = i + 1
end for

sql[k] = sql[k] + "FROM "; Let from = ""; Let N be the set of starred nodes in qt[k]
Let tabs= ""
for each n in N do

Let join = ""; Let S be the list of source annotations in n; Let W be the list of where annotations in n
while there is an s in S do

get next s in S
join = join + table(s) + "AS "+ variable(s)
if i ≥ 2 then

join = join + "INNER JOIN "
tabs = tabs + "$"+ variable(s)

end if

delete s from S
Let count = 0
Let i = 0
while i < size(W) do

get next w in W
if w is of the form $x/A op $y/B AND $x is bound to table X by a source annotation s ∈ S AND $y is bound to table
Y by a source annotation s′ ∈ S AND x is in tabs and y is in tabs then

if count = 0 then

join = join + "ON "+ x.Aopy.B
else

join = join + "AND "+ x.Aopy.B
end if

count = count + 1
end if

delete w from W
i = i + 1

end while

if count = 0 then

join = join + "ON (1=1) "
end ifjoin = "("+ join + ")"

end while

Let A be the set of starred ancestors of n; Let count = 0
if n has a starred ancestor then

join = "LEFT JOIN "+ join
for i = 1 to size(W) do

get next w in W
if w is of the form $x/B op $y/C AND (($x is bound to table X on node n AND $y is bound to table Y on a node a in
A) OR ($x is bound to table X on a node a in A AND $y is bound to table Y on node n)) then

if count = 0 then

join = join + "ON "+ x.B op y.C
else

join = join + "AND "+ x.B op y.C
end if

end if

i = i + 1; count = count + 1
end for

if count = 0 then

join = join + "ON (1=1) "
end if

from = "("+ from + join + ")"
end if

end for

sql[k] = sql[k] + from; Let W ′ be the set of all where annotations on nodes of qt[k]. Let count = 0
for each w′ in W ′

do

if w′ is of the form $x/A op Z AND Z is an atomic value then

if count = 0 then

sql[k] = sql[k] + "WHERE "+ x.A op Z
else

sql[k] = sql[k] + "AND "+ x.A op Z
end if

end if

end for

end for

return sql[]

Algorithm 5.1: The map algorithm

80

split(qt)

Let qt[] be an array of query trees, initially empty
Let i = 0
Let N be the set of nodes of type τN in qt
for each node n in N do

inc i
{initialize t[i] with qt}
qt[i] = qt
repeat

delete from qt[i] all subtrees rooted at a node z of type τN , where z 6= n
retype the ancestors of the deleted nodes

until n is the only node of type τN in qt[i]
end for

return qt[]

Algorithm 5.2: The split algorithm

Figure 5.1: Partitioned query tree for τN (book)

(types τC and τS) to form a new tree qti. Recall that qt must have at least one τN

node by Proposition 4.1.
The first step to generate qti is to copy qt to qti. Then, delete from qti all subtrees

rooted at nodes of type τN , except for the subtree rooted at n. Observe that deleting
a subtree r may change the abstract type of the ancestors of r. Specifically, if r has
an ancestor a with type τT , and r is a’s only starred descendant, then the type of a
becomes τN after the deletion of r. Continue to delete subtrees rooted at nodes of
type τN in qti and retype ancestors until n is the only node of type τN in qti. The
process is repeated for every node of type τN in qt and results in exactly one τN

node per split tree.
Formally, the split algorithm (algorithm 5.2) splits a query tree qt, producing

one split tree qti for each node of type τN in qt.
The result of this process for the query tree of Figure 4.2 is shown in Figures 5.1

and 5.2. Using these split trees, the corresponding relational views ViewBook and
ViewDVD are:

81

Figure 5.2: Partitioned query tree for τN (dvd)

CREATE VIEW VIEWBOOK AS

SELECT v.vendorId AS id, v.vendorName AS vendorName,

v.state AS state, v.country AS country,

sb.price AS bprice, b.isbn AS isbn, b.title AS btitle

FROM (Vendor AS v LEFT JOIN (SellBook AS sb INNER JOIN

Book AS B ON b.isbn=sb.isbn) ON v.vendorId=sb.vendorId);

CREATE VIEW VIEWDVD AS

SELECT v.vendorId AS id, v.vendorName AS vendorName,

v.state AS state, v.country AS country,

sd.price AS dprice, d.asin AS asin, d.title AS dtitle

FROM (Vendor AS v LEFT JOIN (SellDVD AS sd INNER JOIN

DVD AS d ON d.asin=sd.asin) ON v.vendorId=sd.vendorId)

As described above, split takes as input the original query tree qt and produces
as output a set of query trees {qt1, ..., qtn}, each of which has one τN node; map takes
{qt1, ..., qtn} as input and produces a set of relational view expressions {V1, ..., Vn},
where each Vi is produced from qti as described above. It follows directly from these
algorithms that:

Proposition 5.1 The number of relational view expressions in map(split(qt)) is
the number of τN nodes in qt.

In Appendix A.2 we show how the map and split algorithms can be modified to
support extended query trees with grouping capabilities.

5.1.3 Correctness

The correctness of the set of relational view expressions resulting from map and
split can be understood in the following sense: Each tuple in the bindings relations

82

id vendorName state country bprice btitle isbn dprice dtitle asin

t1 1 Amazon WA US 38
Unix Network Pro-
gramming

1111 NULL NULL NULL

t2 1 Amazon WA US 29 Computer Networks 2222 NULL NULL NULL
t3 1 Amazon WA US NULL NULL NULL 29 Friends D1111

t4 2
Barnes and
Noble

NY US 38
Unix Network Pro-
gramming

1111 NULL NULL NULL

t5 2
Barnes and
Noble

NY US 38 Computer Networks 2222 NULL NULL NULL

Figure 5.3: Tuples resulting from evalRel(eval(qt, d)) for the query tree of Figure
4.2

for the XML view is in one or more instances of the corresponding relational views.
To be more precise, we define the following:

Definition 5.1 (Evaluation Schema) The evaluation schema S of a query tree
qt is the set of all names of leaf nodes in qt.

As an example, the evaluation schema of the query tree of Figure 4.2 is S = (id,
vendorName, state, country, bprice, btitle, isbn, dprice, dtitle, asin).

Definition 5.2 (Evaluation Relation) Let x be an XML instance of a query
tree qt with evaluation schema S, in which the instance nodes are annotated by
the query tree type from which they were generated. Let n be the deepest τN or τT

instance nodes for some root to leaf path in x. Let p be the set of nodes in the path
from n to the root of x. An evaluation tuple of x is created from n by associating
the value of each leaf node l that is a descendant of n or of some node in p with
the attribute in S corresponding to the name of l, and leaving the value of all other
attributes in S null.

The multi-set1 of all evaluation tuples of x is called its evaluation relation and
is denoted evalRel(x).

For example, Figure 5.3 shows the result of evalRel(x) for the query tree of Figure
4.2 and the XML view of Figure 1.1.

Definition 5.3 (relOuterUnion) Let {V1, ..., Vn} be defined over a relational
schema D, and d be an instance of D. Then relOuterUnion({V1, ..., Vn}, d) denotes
the set of relational instances that result from taking the outer union of the evaluation
of each Vi over d: relOuterUnion({V1, ..., Vn}, d) = evalV(V1, d)

⋃
...

⋃
evalV(Vn,

d), where
⋃

denotes outer union, and evalV(V ,d) instantiates V over d.

For example, relOuterUnion({ViewBook, ViewDVD}, d) is the result of the outer
union of evalV (ViewBook, d) and evalV (ViewDVD, d), which is shown on Figure
5.4. The evaluations evalV (ViewBook, d) and evalV (ViewDVD, d) are shown in
Figures 5.5 and 5.6, respectively.

The correctness of the set of relational views resulting from map and split can
now be understood in the following sense:

1Note that SQL queries may return repeated tuples. Because of that, we can have repeated
evaluation tuples in evalRel. Thus, evalRel is a multi-set instead of a set.

83

id vendorName state country bprice btitle isbn dprice dtitle asin

t1 1 Amazon WA US 38
Unix Network Pro-
gramming

1111 NULL NULL NULL

t2 1 Amazon WA US 29 Computer Networks 2222 NULL NULL NULL

t3 2
Barnes and
Noble

NY US 38
Unix Network Pro-
gramming

1111 NULL NULL NULL

t4 2
Barnes and
Noble

NY US 38 Computer Networks 2222 NULL NULL NULL

t5 1 Amazon WA US NULL NULL NULL 29 Friends D1111

t6 2
Barnes and
Noble

NY US NULL NULL NULL NULL NULL NULL

Figure 5.4: Tuples resulting from relOuterUnion({ViewBook,ViewDVD}, d)

id vendorName state country bprice btitle isbn

t1 1 Amazon WA US 38
Unix Network Pro-
gramming

1111

t2 1 Amazon WA US 29 Computer Networks 2222

t3 2
Barnes and
Noble

NY US 38
Unix Network Pro-
gramming

1111

t4 2
Barnes and
Noble

NY US 38 Computer Networks 2222

Figure 5.5: Tuples on ViewBook

Theorem 5.1 (Correctness of the mapping process) Given a query tree qt
defined over a database D and an instance d of D, then evalRel(eval(qt, d)) ⊆
relOuterUnion(map(split(qt)), d).

Proof: The ⊆ operation needs the two multi-sets being compared to be union com-
patible. By definition, the schema of evalRel is the evaluation schema S, which is
composed of all leaf node names in qt. The execution of map(split(qt), d) results in
a set of relational views {V1, ..., Vn}. Each view Vi is a schema composed of names
of leaf nodes in qti (which is produced by split(qt)). By definition of split, each split
tree qti contains a single τN node ni: the subtrees rooted at τN nodes different from
ni are deleted from qti. However, nodes deleted in qti are preserved in qtj, so that
each node n in qt is in at least one of the qt1, ...qtn. Consequently, the schema of
V1

⋃
...

⋃
Vn equals S.

Assume t is in evalRel(eval(qt, d)), but not in relOuterUnion(map(split(qt)), d).
Let x be the XML view resulting from eval(qt, d). Since t is in evalRel(eval(qt, d)),
it was constructed by taking values from the leaf nodes in a given path p. The path
p starts in a node n which is the deepest node of type τN or τT in a given subtree and
goes up to the root of x. If n is of type τN , and Vi is the view corresponding to n,
then t is in evalV(Vi,d), and consequently, t is in relOuterUnion(map(split(qt)), d),
a contradiction. If n is of type τT , then the node that originated n in the query tree
has at least one node of type τN in its subtree. Assume Vj, ..., Vk are the relational
views corresponding to those τN nodes. Consequently, t is in Vj

⋃
...

⋃
Vk, and thus

in relOuterUnion(map(split(qt)), d), a contradiction.

Furthermore, the tuples in relOuterUnion(map(split(qt)), d) − evalRel(eval(qt,
d)) represent starred nodes with an empty evaluation (which we call “stubbed”
nodes). More precisely:

Definition 5.4 (Stubbed Tuple) Let x be an XML instance of a query tree qt

84

id vendorName state country dprice dtitle asin

t1 1 Amazon WA US 29 Friends D1111

t2 2
Barnes and
Noble

NY US NULL NULL NULL

Figure 5.6: Tuples on ViewDVD

id vendorName state country bprice btitle isbn dprice dtitle asin

t1 1 Amazon WA US NULL NULL NULL NULL NULL NULL
t2 2 Barnes and Noble NY US NULL NULL NULL NULL NULL NULL

Figure 5.7: The stubs(x) relation for the XML view x of Figure 1.1

with evaluation schema S, and n be a τN or τT instance node in x. A stubbed tuple
of x is created from n by associating the value of each leaf node l that is an ancestor
of n with the attribute in S corresponding to the name of l, and leaving the value of
all other attributes in S null. The set of all stubbed tuples of x is denoted stubs(x).

As an illustration of a stubbed tuple, consider tuple t6 in Figure 5.4. Since the
XML instance of Figure 1.1 does not have any dvd sold by vendor Barnes and Noble,
there is a tuple [2, Barnes and Noble, NY, US, null, null, null] in ViewDVD which
was added by the LEFT join. This is correct, since vendor is in a common part of
the view, so its information appears both in ViewBook and ViewDVD. However, t6

is not in Figure 5.3, since when the entire view is evaluated, this vendor joins with
a book.

The set stubs(x) for the XML view of Figure 1.1 is shown in Figure 5.7.

Theorem 5.2 (Stubs) Given a query tree qt defined over a database D and an in-
stance d of D, then every tuple t in relOuterUnion(map(split(qt)), d) − evalRel(eval
(qt, d)) ⊆ stubs(x).

Proof: Tuples in relOuterUnion(map(split(qt)), d) that are not in evalRel(eval(qt,
d)) are those resulting from left outer joins with no match in a given relational view
Vi ∈ map(split(qt), d). Since stubs(x) contains tuples that has nulls in attributes
related to descendant nodes, and a LEFT JOIN always keeps information of the
ancestor, then relOuterUnion(map(split(qt)), d) − evalRel(eval(qt, d)) ⊆ stubs(x).

Note that the statement of correctness is not that the XML view can be con-
structed from instances of the underlying relational views. The reason is that we do
not know whether or not keys of relations along the path from τN nodes to the root
are preserved, and therefore do not have enough information to group tuples from
different relational view instances together to reconstruct the XML view. When keys
at all levels are preserved, then the query tree can be modified to a form in which
the variables iterate over the underlying relational views instead of base tables, and
used to reconstruct the XML view. We call this algorithm replace.

Replace. For query trees that preserve the keys of each source table in the resulting
XML view, we can use the corresponding relational views to reconstruct the view.
Assuming that map(qt) = {V1,...,Vn}, the algorithm replace replaces references to
relational tables in the source and where annotations of qt by references to the set of

85

replace(qt)
Let qtr = qt
for each node n of type τN or τT in qtr do

remove all source and where annotations from n
if abstract_type(n) = τN then

def = createSourceDef(n,view(n))
else

Let n1, ..., nm be the set of nodes with abstract type τN in the subtree rooted at n
def = createSourceDef(n,(view(n1) UNION ... UNION view(nm)))

end if

Let s be a source annotation
s = [variable(n) := Table(X)], where X is defined as def
Annotate n with s
if n has a starred ancestor a then

Let w be a where annotation
Let W be a string
for each el in AttsAncestrals(n) do

W = W + var(a)/el = var(n)/el
if el is not the last element in AttsAncestrals(n) then

W = W + "AND "
end if

end for

Annotate n with w = [where W]
end if

end for

for each node n of type τS in qtr do

Let the value of n be of the form $x/A
Let a be the starred ancestor of n (if n is starred, then a = n)
Replace the value of n by var(a)/A

end for

return qtr

createSourceDef(n, viewName)

def = "SELECT DISTINCT " + AttsAncestrals(n) + "," + Atts(n) + "FROM " + viewName
return def

Algorithm 5.3: The replace algorithm

relational views V1,...,Vn. This must be done in a way such that for any instance d
of the underlying relational database D, evaluating qt over d is the same as applying
eval over replace(qt) using the evaluation of the relational views V1,...,Vn produced
by map(split(qt)).

Before presenting the algorithm, we present some definitions that will be used
within this section. We say view(n) is the relational view corresponding to node n,
if n is of type τN . Atts(n) is the set of leaf node names whose values are specified
using the variables declared on node n. For example, in Figure 4.2, Atts(book) =
{bprice, btitle, isbn}. Notice that we exclude the "@" from attribute names. In the
same way, the function AttsAncestrals(n) returns a set of leaf nodes whose values
are specified using variables declared in the ancestors of node n. As an example,
AttsAncestrals(book) = {id, vendorName, state, country, url}. The function var(n)
returns a unique variable name to be used in node n. Note that every call of var(n)
for the same node n returns the same variable name. The function var($x) finds
the node n in which variable $x was defined, and returns the result of var(n).

The replace(qt) algorithm (algorithm 5.3) takes each starred node n in qt and
analyzes it. It first removes all source and where annotations from n. Then, it
creates a single source annotation that bounds a new unused variable $x to X,
where X is defined over the relational views that carries values for node n. The
complete algorithm is shown on algorithm 5.3. It returns a modified query tree qtr,
which references V1,...,Vn instead of base tables.

86

Figure 5.8: Modified query tree, resulting of the execution of the replace algorithm
over the query tree of Figure 4.2

As an example of the result of the replace algorithm, the query tree of Figure 4.2
is modified as shown in Figure 5.8. Notice that now the source annotations refers
only to the views ViewBook and ViewDVD. No table from the underlying relational
database is used. The result of the evaluation of this query tree is the same of that
of Figure 4.2, which is shown in Figure 1.1. Notice also that the values of the leaf
nodes now reference the new variables created by the replace algorithm.

5.2 Mapping Updates over XML views to updates over Re-
lational Views

We now discuss how correct updates to an XML view are translated to SQL
updates on the corresponding relational views produced in the previous section.

Throughout this section, we will use the XML view of Figure 1.1, produced by
the query tree of Figure 4.2 as an example. The relational views ViewBook and
ViewDVD corresponding to this XML view were presented in Section 5.1.2.

The translation algorithm for insertions, deletions and modifications, transla-
teUpdate, is given in algorithm 5.4. What it does is to check the type of update
operation and call the corresponding algorithm to translate the update. All the
three algorithms (translateInsert, translateDelete and translateModify) assume that

87

translateUpdate(x, qt, u)
case u.t

insert : translateInsert(x, qt, u.ref , u.∆)
delete: translateDelete(x, qt, u.ref)
modify : translateModify(x, qt, u.ref , u.∆)

end case

Algorithm 5.4: The translateUpdate algorithm

translateInsert(V , qt, ref , ∆)

{Insert ∆ in the XML view V using ref as insertion point. ∆ must be inserted under every node resulting
from the evaluation of ref in V . qt is the query tree.} {Assume that view(n) returns the name of the rel. view
associated with node n}
Let p be the unqualified portion of ref concatenated with the root of ∆
Let m be the node resulting from the evaluation of p against qt
Let N be the set of nodes resulting from the evaluation of ref in V
for each n in N do

if abstract_type(m) = τN then

generateInsertSQL(view(m), root(∆), n, V)
else

Let X be the set of nodes of abstract type τN in ∆
for each x in X do

generateInsertSQL(view(x), x, n, V)
end for

end if

end for

generateInsertSQL(RelV iew, r, InsertionPoint, V)

{Inserts the subtree rooted at r into RelV iew}
sql = "INSERT INTO"+ RelV iew + getAttributes(RelV iew)
sql = sql + "VALUES ("
for i = 0 to getTotalNumberAttributes(RelV iew) - 1 do

att = getAttribute(RelV iew, i)
if att is a child n of r then

sql = sql + getValue(n)
else

Find att in V , starting from InsertionPoint examining the leaf nodes until V ’s root is found
Let the node found be m
sql = sql + getValue(m)

end if

if i < getTotalNumberAttributes(RelV iew) - 1 then

sql = sql + ", "
else

sql = sql + ")"
end if

end for

Algorithm 5.5: The tranlateInsert algorithm

the update specification u was already checked for schema conformance (see Section
4.2.1 for details on how update operations are checked against the view schema).

5.2.1 Insertions

To translate an insert operation on the XML view to the underlying relational
views we do the following: First, the unqualified portion of the update path ref is
used to locate the node in the query tree under which the insertion is to take place.
Together with ∆, this will be used to determine which underlying relational views
are affected. Second, ref is used to query the XML instance and identify the update
points. Third, SQL insert statements are generated for each underlying relational
view affected using information in ∆ as well as information about the labels and
values in subtrees rooted along the path from each update point to the root of the
XML instance.

Observe that by proposition 4.2, there is at most one node of type τN along the

88

path from any node to the root of the query tree and that insertions can never occur
below a τN node, since all nodes below a τN node are of type τS or τC by definition.

The algorithm translateInsert is presented in algorithm 5.5.
For example, to translate the insertion of Example 4.1, we use the unqualified

update path /vendors/vendor/products on the query tree of Figure 4.2, and find
that the type of the update point is τC(products). Continuing from τC(products)
using the structure of ∆, we discover that the only τN node in ∆ is its root, which is
of type τN(book). The underlying view affected will therefore be ViewBook. We then
use the update path ref = /vendors/vendor[@id="01"]/products to identify update
points in the XML document. In this case, there is one node (8). Therefore, a single
SQL insert statement against view ViewBook will be generated.

To generate the SQL insert statement, we must find values for all attributes in
the view. Some of these attribute-value pairs are found in ∆, and others must be
taken from the XML instance by traversing the path from each update point to the
root and collecting attribute-value pairs from the leaves of trees rooted along this
path. In Example 4.1, ∆ specifies bprice="38", btitle=“New Book” and isbn=“9999”.
Along the path from the node 8 to the root in the XML instance of Figure 1.1, we
find id=“01”, vendorName=“Amazon”, state=“WA” and country=“US”. Combining
this information, we generate the following SQL insert statement:

INSERT INTO VIEWBOOK (id, vendorName, state, country,

bprice, isbn, btitle)

VALUES ("01","Amazon","WA","US",38,"9999","New Book")

As another example, consider the following insertion against the view of Figure
1.1: t = insert, ref = /vendors,

∆={<vendor id="03">

<vendorName>New Vendor</vendorName>

<address>

<state>PA</state>

<country>US</country>

</address>

<products>

<book bprice="30">

<btitle>Book 1</btitle><isbn>9111</isbn></book>

<book bprice="30">

<btitle>Book 2</btitle><isbn>9222</isbn></book>

<dvd dprice="30">

<dtitle>DVD 1</dtitle><asin>D9333</asin></dvd>

</products>

</vendor>}.

The unqualified update path ref evaluated against the query tree of Figure 4.2
yields a node τ(vendors), which is the root. Continuing from here using labels in ∆,
we discover two nodes of type τN : τN(book) and τN (dvd). We will therefore generate
SQL insert statements to ViewBook as well as ViewDVD.

Evaluating ref against the XML instance of Figure 1.1 yields one update point,
node 1. Traversing the path from this update point to the root yields no label-value
pairs (since the update point is the root itself). We then identify each node of type
τN in ∆, and generate one insertion for each of them. As an example, traversing
the path from the first τN(book) node in ∆ yields label-value pairs bprice = "30",
btitle = "Book 1", and isbn = "9111". Going up to the root of ∆, we have id =

89

translateModify(V , qt,ref ,∆)
Let p be the unqualified portion of ref
Let m be the node resulting from the evaluation of p against qt
if abstract_type(m) = τN then

r = m
else

Let r be the ancestor of m whose abstract type is τT , τG or τN

end if

if abstract_type(r) = τN then

generateModifySQL(view(r), ∆, ref)
else

Let X be the set of nodes with abstract type τN under r
for each x in X do

generateModifySQL(view(x), ∆, ref)
end for

end if

generateModifySQL(RelV iew, ∆, ref)
sql = "UPDATE "+ RelV iew + "SET "
Let t be the terminal node in ref
sql = sql + t + "="+ ∆
for each filter f in ref do

if f is the first filter in ref then

sql = sql + "WHERE "+ f
else

sql = sql + "AND "+ f
end if

end for

Algorithm 5.6: The translateModify algorithm

"03", vendorName = "New Vendor", state = "PA" and country = "US". This
information is therefore combined to generate the following SQL insert statement:

INSERT INTO VIEWBOOK (id, vendorName, state, country,

bprice, isbn, btitle)

VALUES ("03","New Vendor","PA","US",30,"9111","Book 1");

In a similar way, information is collected from the remaining two τN nodes in ∆
to generate:

INSERT INTO VIEWBOOK (id, vendorName, state, country,

bprice, isbn, btitle)

VALUES ("03","New Vendor","PA","US",30,"9222","Book 2");

INSERT INTO VIEWDVD (id, vendorName, state, country,

dprice, asin, dtitle)

VALUES ("03","New Vendor","PA","US",30,"D9333","DVD 1");

5.2.2 Modifications

By definition, modifications can only occur at leaf nodes. To process a modifi-
cation, we do the following: First, we use the unqualified ref against the query tree
to determine which relational views are to be updated. This is done by looking at
the first ancestor of the node specified by ref which has type τT or τN , and finding
all nodes of type τN in its subtree. (At least one τN node must exist, by definition.)
If the leaf node that is being modified is of type τN itself, then it is guaranteed that
the update will be mapped only to the relational view corresponding to this node.

Second, we generate the SQL modify statements. The qualifications in ref are
combined with the terminal label of ref and value specified by ∆ to generate an
SQL update statement against the view. The corresponding algorithm is presented
in algorithm 5.6.

90

translateDelete(V , qt,ref)

{Deletes the subtree rooted at ref from V }
Let p be the unqualified portion of ref concatenated with the root of ∆
Let m be the node resulting from the evaluation of p against qt
if abstract_type(m) = τN then

generateDeleteSQL(view(m), ref)
else

Let X be the set of nodes of abstract type τN under m
for each x in X do

generateDeleteSQL(view(x), ref)
end for

end if

generateDeleteSQL(RelV iew, ref)
sql = "DELETE FROM "+ RelV iew
for each filter f in ref do

if f is the first filter in ref then

sql = sql + + "WHERE "+ f
else

sql = sql + "AND "+ f
end if

end for

Algorithm 5.7: The translateDelete algorithm

For example, consider the update in Example 4.2. The unqualified ref is /vendors/
vendor/vendorName. The τN nodes in the subtree rooted at vendor (the first τT or τN

ancestor of vendorName) are τN (book) and τN (dvd), and we will therefore generate
SQL update statements for both ViewBook and ViewDVD. We then use the qualifi-
cation id = "01" from ref = /vendors/vendor[@id="01"]/vendorName together with
the new value in ∆, to yield the following SQL modify statements:

UPDATE VIEWBOOK SET vendorName="Amazon.com" WHERE id="01";

UPDATE VIEWDVD SET vendorName="Amazon.com" WHERE id="01"

5.2.3 Deletions

Deletions are very simple to process. First, the unqualified portion of the update
path ref is used to locate the node in the query tree at which the deletion is to be
performed. This is then used to determine which underlying relational views are
affected by finding all τN nodes in its subtree. Second, SQL delete statements are
generated for each underlying relational view affected using the qualifications in ref.
The corresponding algorithm is presented in algorithm 5.7.

As an example, consider the deletion in Example 4.3. The unqualified update
path expression is /vendors/vendor/products/book. The only τN node in the sub-
tree indicated by this path in the query tree is τN(book). This means that the
deletion will be performed in ViewBook. Examining the update path /vendors/

vendor/products/book[btitle="Computer Networks"] yields the label-value pair bti-
tle=“Computer Networks". Thus the deletion on the XML view is translated to an
SQL delete statement as:

DELETE FROM VIEWBOOK WHERE btitle="Computer Networks"

It is important to notice that if a tuple t in one relation “owns” a set of tu-
ples in another relation via a foreign key constraint (e.g. a vendor “owns” a set of
books), then deletions must cascade in the underlying relational schema in order for
the deletion of t specified through the XML view to be allowed by the underlying
relational system.

91

5.2.4 Correctness

Since we are not focusing on how updates over relational views are mapped to
the underlying relational database, our notion of correctness of the update mappings
is their effect on each relational view treated as a base table.

Let x = eval(qt, d) be the initial XML instance, u be the update as specified in
Definition 4.5, and apply(x, u) be the updated XML instance resulting from applying
u to x. The function translateUpdate(x, qt, u) (shown in Section 5.2) translates u
to a set of SQL update statements {U11, ..., U1m1 , ..., Un1, ..., Unmn}, where each
Uij is an update on the underlying view instance vi = evalV(Vi,d) generated by
map(split(qt)).

We use the notation v′
i = applyR(vi, {Ui1, ..., Uimi

}) to denote the application
of {Ui1, ..., Uimi

} to vi, resulting in the updated view v′
i. If the set of updates for a

given vi is empty, then v′
i = vi.

Theorem 5.3 (Correctness of Update Mapping) Given a query tree qt de-
fined over database D, then for any instance d of D and correct update u over qt,
evalRel(apply(x, u)) ⊆ v′

1

⋃
...

⋃
v′

n, where
⋃

denotes outer union.

Proof: Since the update u does not change the view schema, and the application
of an update Uij over view vi also does not change vi’s schema, by theorem 5.1 we
have that evalRel(apply(x, u)) and v ′

1

⋃
...

⋃
v′

n have the same schema (are union
compatible).

Insertions Suppose t is a tuple in evalRel(apply(x, u)), resulting from a insertion
of a subtree in x. Assume t is not in v′

1

⋃
...

⋃
v′

n. Assume update Uij is the
translation of u.

Consider a tuple t′ which was inserted by update Uij in vi. Since Uij is the
translation of u, t′ has the values of one of the subtrees that were inserted in x
by u, and also the values of x that were above the update point ref of u. As a
consequence, t = t′, and t is in v′

1

⋃
...

⋃
v′

n, a contradiction.
The same applies for the insertion of a more complex subtree. It will generate

several tuples t1, ..., tn to appear in evalRel(apply(x, u)). Each of these tuples will
be inserted in the relational views by a set of updates Uij, ..., Ukl. So we have that
evalRel(apply(x, u)) ⊆ v′

1

⋃
...

⋃
v′

n holds for insertions.

Modifications Suppose t is a tuple in evalRel(apply(x, u)), resulting from a modi-
fication of a leaf value in x. Assume t is not in v′

1

⋃
...

⋃
v′

n. Assume update Uij is
the translation of u.

Consider a tuple t′ which was modified by update Uij in vi. Since Uij is the
translation of u, t′ had a single attribute modified - the one that was updated in x.
As a consequence, t = t′, and t is in v′

1

⋃
...

⋃
v′

n, a contradiction.
The same applies for modifications that affect more than one leaf in x, that is,

when ref in u evaluates to more than one update point. For every node affected by
the modification, will be generated one modification Uij. Since by theorem 5.1 all
tuples in evalRel(x) are in v1

⋃
...

⋃
vn, then evalRel(apply(x, u)) ⊆ v′

1

⋃
...

⋃
v′

n.

Deletions Following the inverse reasoning of insertions, every subtree deleted from x
makes a tuple to disappear from evalRel(apply(x, u))s. Analogously, the translation
Uij of u will make that tuple to disappear from v′

1

⋃
...

⋃
v′

n, so evalRel(apply(x,
u)) ⊆ v′

1

⋃
...

⋃
v′

n holds.

92

Theorem 5.4 (Stubs for Updated View) Given a query tree qt defined over a
database D and an instance d of D, then v ′

1

⋃
...

⋃
v′

n − evalRel(apply(x, u)) ⊆
stubs(apply(x, u)).

Proof: Insertions of uncomplete subtrees or deletions of uncomplete subtrees may
cause tuples to be filled in with nulls because of the LEFT JOINS in some v ′

i. These
tuples, however, will be in stubs. The reasoning is the same as in proof of theorem
5.2.

Note that a correctness definition like apply(eval(qt,d), u) ≡ eval(qt, d′), where
d′ is the updated relational database state resulting from the application of the
translated view updates {U11, ..., U1m1 , ..., Un1, ..., Unmn} to updates on d, does not
make sense due to the fact that we do not control the translation of view updates.
Therefore we cannot claim that they are side-effect free.

In the next chapter, we discuss a scenario in which this claim can be made.

5.3 Chapter Remarks

In this chapter, we have shown how an XML view can be mapped to a set of
corresponding relational views, and how updates over the XML views are mapped
to this set of relational views. We have also demonstrated the correctness of our
mapping process, both for the view and for the updates over the view. The mapping
process is published in (BRAGANHOLO; DAVIDSON; HEUSER, 2004a).

We consider this to be the most important contribution of this thesis. We
have shown how an open problem – that of updating XML views over relational
databases – can be mapped into a well studied problem – that of updating rela-
tional views over relational databases. The mapping presented in this chapter allows
the use of existing techniques to update relational views (DAYAL; BERNSTEIN,
1982a; KELLER, 1985; LECHTENBÖRGER, 2003; BANCILHON; SPYRATOS,
1981; TUCHERMAN; FURTADO; CASANOVA, 1983) to solve the XML view up-
date problem. Notice that these work can be used both to translate the updates
to the underlying relational database and to reason about the updatability of XML
views. In the next chapter, we show an updatability study using the approach of
Dayal and Bernstein (DAYAL; BERNSTEIN, 1982a).

As mentioned before, the mapping presented in this chapter does not consider
query trees which have nodes with the same names. An extension to deal with such
cases is shown in Appendix B. We have chosen not to include this extension in the
core of the thesis, because it would complicate the understanding of our approach.
Now that we have presented the mapping for the trivial case, the reader can refer to
the appendix to get more details in how to use XML numbering schemas to avoid
problems in the mapping.

93

6 ON THE UPDATABILITY OF XML VIEWS

In our approach, we have chosen to use the approach of Dayal and Bernstein
(DAYAL; BERNSTEIN, 1982a,b, 1978) to translate updates from the relational
views to the underlying relational database. Despite of the arguing presented in
Chapter 2, we now reinforce our choice:

Besides being one of the few proposals that fully presents translation algorithms,
(DAYAL; BERNSTEIN, 1982a) also present clear conditions for their algorithms
to work. Specifically, they prove that if certain conditions are satisfied, then the
translation found by their algorithm will never cause side-effects on the database 1.

Definition 6.1 (Side-effect Free Update) Given an XML view defined as a
function V over a relational database with schema S, an update u over the view
and a translation U of u over S, u is side-effect free if for any instance I of S,
u(V (I)) = V (U(I)) (KELLER, 1985).

Finally, their notion of correctness is less restrictive than other existing propos-
als. Although most of the other existing approaches also adopt the side-effect free
criteria, others add more restrictions on the correctness notion. In the view com-
plement approach (BANCILHON; SPYRATOS, 1981), a translation of an update
is correct iff it does not touch any portion of data outside the view. We chose not
to adopt this definition of correctness because we think it may be hard to the user
to understand why a given update translation was incorrect, if he had not seen any
erroneous effect on the view. A more recent work (LECHTENBÖRGER, 2003) gives
an easier interpretation to this notion: a translation of an update over the view is
correct if it can be undone by a user action, that is – if the user can issue another
update over the view that makes the database return to its previous state. As an
example, consider a view that is defined as a projection over a single base table R.
Suppose R has 3 attributes (A, B, C), but only (A, B) are projected in the view.
If a user removes a tuple from the view, he cannot undo this action by performing
an insertion. This is because the value of C was permanently lost (the user was
unaware of its value). We think it is too restrictive to consider such deletion as
incorrect. In fact, other authors have also come to the same conclusion (KELLER,
1987; LANGERAK, 1990).

Having reinforced our choice, we now proceed to an updatability study. In
Chapter 2, we have shown how Dayal and Bernstein translate updates over the
view to updates over the base tables, and how they assure that these translations

1In their work, they use the term exact translation to denote this situation.

94

vendorId vendorName Books

1 Amazon
isbn title price

1111 Unix Network Programming 38
2222 Computer Networks 29

2 Barnes and Noble
isbn title price

1111 Unix Network Programming 38
2222 Computer Networks 38

Figure 6.1: An instance of NRA1

are side-effect free. In this chapter, we use those results to reason about updatability
of XML views.

Our first updatability study was made using the Nested Relational Algebra (NRA)
(JAESCHKE; SCHEK, 1982; THOMAS; FISCHER, 1986) as the view definition
language (BRAGANHOLO; DAVIDSON; HEUSER, 2003a). We then extended the
results of this study to reason about the updatability of views constructed by query
trees (BRAGANHOLO; DAVIDSON; HEUSER, 2004a). We now summarize the
results for the nested relational algebra, and then present the results for query trees.

6.1 Updatability of NRA Views

The nested relational algebra contains the classical relational algebra operators
(σ, π, ∪, ×, ./, −) as well as the nest (ν) and unnest (µ) operators. In our study,
we identified three subclasses of NRA, each of them with different updatability
properties. They are nest-last views, nest-last project-select-join views (NPSJ) and
well-nested NPSJ views.

6.1.1 Nest-last XML views

A nest-last view is a view defined by a nested relational algebra expression of
form ν . . . νR, where R is any relational algebra expression. We claim that this
class of views can be treated by considering only the expression R, and that the
nesting introduces sets of tuples to be inserted, deleted or modified in the underlying
relational instance.

Example 6.1 As an example of such view, consider the following NRA expression
(NRA1):

νBooks=(isbn, title, price)(π(vendorId, vendorName, title, isbn, price)

(σ(Vendor.vendorId = SellBook.vendorId AND Book.isbn = SellBook.isbn)

(Vendor × SellBook × Book)))

An instance of NRA1, constructed over the database instance of Figure 1.2 is
shown in Figure 6.1. The corresponding XML view (using a straightforward map-
ping) is shown in Figure 6.2.

Proposition 6.1 Let ν . . . νR be a nest-last view and u an update over this view.
Let t(u) be the translation of u into an update over R. If R is updatable wrt t(u),
then ν . . . νR is updatable wrt to u.

95

Figure 6.2: NRA1 represented in XML

vendorId vendorName isbn title price

1 Amazon 1111 Unix Network Programming 38
1 Amazon 2222 Computer Networks 29
2 Barnes and Noble 1111 Unix Network Programming 38
2 Barnes and Noble 2222 Computer Networks 38

Figure 6.3: NRA2: Tuples resulting from unnesting NRA1

Proof: The proof is based on the fact that the nest (ν) operator is invertible
(JAESCHKE; SCHEK, 1982; THOMAS; FISCHER, 1986). That is, after a nest
operation, it is always possible to obtain the original relation by applying an unnest
(µ) operation. Since in this type of view the nest operation is always the last oper-
ation to be applied, we can apply a reverse sequence of unnest operators to obtain
the (flat) relational expression.

As an example, by unnesting on Books in the view of Example 6.1, we would
obtain a flat relational expression (NRA2):

π(vendorId, vendorName, isbn, title, price)

(σ(Vendor.vendorId = SellBook.vendorId AND Book.isbn = SellBook.isbn)

(Vendor× SellBook× Book))

The tuples resulting from this expression are shown in Figure 6.3.
Proposition 6.1 reduces the problem of investigating updatability of XML views

to the problem of updates through relational views. That’s why we are able to use
existing work on updates through relational views for XML views of this class.

For XML views constructed with NRA expressions, we consider the same Update
Language of Section 4.2. The mapping to updates over relational views is similar.
The difference is that it is not necessary to check to which view the update must
be mapped to, since an XML view constructed by the NRA is always mapped to a
single corresponding relational view.

As an example of update operation, consider the update u, where ref = /vendor/

vendor[vendorId="01"]/books/book[isbn="1111"]/title, ∆ = {new title} and t =
modification. This modification will be translated to NRA1 as follows:

UPDATE NRA1

SET title = "new title"

WHERE vendorId = "01" AND isbn = "1111".

96

Figure 6.4: View graph

6.1.2 Nest-last Project-Select-Join Views

We now investigate a special subset of nest-last views that are well behaved with
respect to updates.

Definition 6.2 (Nest-last Project-Select-Join View) A nest-last project-
select-join view (NPSJ) is a nest-last view with the following restrictions: the re-
lational expression is a project-select-join; the keys of the base relations are not
projected out; and joins are made only through foreign keys.

Lemma 6.1 (Updatability of NPSJ Views) NPSJ views are always updatable
for insertions.

Proof Sketch: Proposition 6.1 shows how to reduce an XML view to a relational
view. Based on this result, we are now able to use the technique of Dayal and
Bernstein (DAYAL; BERNSTEIN, 1982a) to prove that there is always an exact
translation for insertions for NPSJ views. Since the nest can be ignored, we start
by defining a general PSJ view that is the join of relations R1, R2, . . . , Rm, where
the keys of R1, R2, . . . , Rm are preserved in the view and joins are done over foreign
keys. We then draw a view graph for this view, as illustrated in Figure 6.4. Nodes
in this graph represent attributes. The upper nodes represent attributes of the base
relations, and the lower ones represent view attributes. Primary keys are represented
as P s and foreign keys as Bs. Edges represent functional dependencies between
attributes in the relations, join conditions or the derivation of view attributes. The
proof for insertions are based on finding paths in this directed graph, as discussed
in Section 2.2.1.3.

Insertions. For insertions, (DAYAL; BERNSTEIN, 1982b) divides the problem
into smaller ones. They claim that insertions are always exactly translatable if we
can express the view definition as a sequence of views definitions, each one defined
over only two relations, say R and S. In the case of NPSJ, this is obviously true. The
additional conditions are: (i) the two relations must be equijoined over foreign keys
(true by definition of NPSJ); (ii) and there must be a path from the attributes of R
to all view attributes that originated from these two relations (R and S); (iii) and
relation R contains a foreign key to S, which was used to join R and S. Conditions
(ii) and (iii) are also obviously true. By looking at the graph of Figure 6.4, it is easy
to see that the relation containing the foreign key has always the path required in
(ii). As an example, consider the two relations inside the dotted box in Figure 6.4.
There is a path from the attributes of R2 to all attributes in the view that originated
from R1 or R2. In this proof, R2 corresponds to R, and R1 corresponds to S.

97

vendorId vendorName Deposits

1 Amazon
depId address city state

D1 1245, Bourbom Street Seatle WA
D3 4545, 15th Avenue Seatle WA

2 Barnes and Noble
depId address city state

D2 1478, 25th Avenue New York NY

Figure 6.5: An instance of NRA3

For modifications and deletions, even in the relational case there may fail to be
an exact translation for certain types of updates over a PSJ view. This type of
update attempts to change (or delete) some but not all occurrences of data that is
repeated in the view, and thus causes side effects. As an example, consider NRA2,
the unnested version of the view 6.1. This view has the values of vendorId and
vendorName repeated in several tuples. An attempt to modify a vendor name could
be stated as

UPDATE NRA1

SET vendorName = "New Name" WHERE vendorId= "01".

This is exact, since it modifies all occurrences of tuples with that vendor name
(notice that vendorId is the key of the Vendor relation). However, consider this
same example with a slight modification.

UPDATE NRA1 SET vendorName= "New Name"

WHERE vendorId= "01" AND isbn="1111"

As one can easily see, there is no way to translate this request without causing
side effects, because tuples that do not satisfy the qualification of this modification
request would also be affected (more specifically, tuples with vendorId = "01" and
isbn 6= "1111"). The same problem happens for deletions.

6.1.3 Well-nested NPSJ

Fortunately, proper application of the nest operator can be used to avoid this
type of ambiguity. For example, for the view of Example 6.2 (NRA3) this kind of
bad modification (or deletion) request cannot happen.

Example 6.2 (NRA3):

νDeposits=(depId, addrees, city, state)(π(vendorId, vendorName, depId, address, city, state)

(σ(Vendor.vendorId = Deposit.vendorId)

(Vendor × Deposit)))

An instance of NRA3, is shown in Figure 6.5.

However, if we had nested this view in a different way, the same update would
fail to be exact. As an example, consider the same view, now nested by {vendorId,
vendorName} instead of {depId, address, city, state}. The same vendorId and
vendorName appear several times in the view, as in the relational case. Thus, not
all modifications and deletions over this view would be exactly translatable.

The updatability of NPSJ views with respect to modifications and deletions
depends on the way in which we traverse the foreign key constraints when nesting.

98

In view NRA3, we traverse the foreign key constraint from 1 to n. That is, for each
Vendor tuple there are many Deposit tuples, so we nest Deposit tuples (the n’s)
under their corresponding Vendor tuple (the 1’s). In the second example (where we
nested over {vendorId, vendorName}), we nested the 1’s under the n’s, causing the
1’s to appear several times in the resulting view.

To define when a NPSJ view is well-nested, we reason about the foreign keys of
the underlying relations. Recall that the syntax of a foreign key constraint C on
table R1 is given by CR1 FOREIGN KEY (FK1, . . . , FKn) REFERENCES R2 (K1,
. . . , Kn). When the attribute names (K1, . . . , Kn) are the same as (FK1, . . . , FKn),
they can be omitted, as in the example of Figure 1.2.

Definition 6.3 (Ambiguity Eliminating Nest) Let CR1 be a foreign key con-
straint, and V (R1) be the set of attributes of R1 that appear in the view. An am-
biguity eliminating nest with respect to CR1 is a nest of the form νX=(D), where
D = {V (R1)} − ∪iFKi.

The idea behind this definition is that by omitting the foreign keys of R1 and the
keys of R2 in the nest, we collect their values together thus eliminating ambiguity.
That is, each value appears just once in the view.

The view of Example 6.2 (NRA3) has an ambiguity eliminating nest since R1 =
Deposit, R2 = Vendor, FK = {vendorId}, V (R1) = {depId, vendorId, address, city,
state} and we are nesting over νDeposits = (depId, address, city, state).

Definition 6.4 (GF Graph) Given a set of relations R = {R1, ..., Rn}, and a
set F of foreign key constraints involving relations of R, we can build a directed
graph of foreign keys GF as follows:

1. For each table R in R, add a node in GF .

2. For each FK in Ri of type "CRi
FOREIGN KEY (FK1, . . . , FKn) REFERENCES

Rs (K1, . . . , Kn)" in F , add an arc from Rs to Ri (Rs,Ri).

Definition 6.5 (Nest-Path) A nest-path over GF is a path of arrows in GF ,
constructed as follows:

1. Start with a node Ri which has only outgoing edges in GF ;

2. Choose one of the non-visited outgoing edges of Ri and traverse this edge, reaching
node Rs. Include edge (Ri, Rs) in the nest-path. Mark (Ri, Rs) as visited.

3. Continue traversing nodes, starting from Rs. If there is no more non-visited outgoing
edges in Rs, go to step 1. Repeat this until all edges are marked as visited, or abort
in case a node with more than one incoming edge is found.

By definition, the graph GF has no nest-path if at least one node Ri in GF has more
than one incoming edge.

As an example, for the view NRA3, the graph GF is shown in Figure 6.6. The
nest-path for this graph is (Deposit, Vendor).

Definition 6.6 (Well-nested NPSJ View) A NPSJ view that involves two or
more base relations {R1, ..., Rn} is well nested if

99

Figure 6.6: Graph GF for view NRA3

Figure 6.7: Graph GF for view NRA1

1. It has one ambiguity eliminating nest for each foreign key constraint that was used
to join the base relations; and

2. There is a nest-path in the graph GF constructed over {R1, ..., Rn}; and

3. The ambiguity eliminating nests are executed in the order given by the pair of rela-
tions in the nest-path.

Notice that for the view of Example 6.1 (NRA1), it is not possible to find an order
of nests which makes NRA1 well-nested. This is because table SellBook implements
an n:n relationship of Vendor and Book, and there is no way of finding a nest-path in
GF over {Vendor, Book, SellBook} (Figure 6.7 shows the graph GF for view NRA1).
It is important to notice that for views with more than two source relations, there
may be more than one nest-path. This is no problem, as long as one of them is
chosen to order the nests in the NRA expression.

An example of well-nested NPSJ is the view of Example 6.2.

Lemma 6.2 (Updatability of Well-nested NPSJ Views) Well-nested NPSJ
views are always updatable with respect to modifications and deletions.

Proof Sketch: We divide the proof in two steps.

Modifications. In order to simplify the proof, we consider a view defined over
two base relations, say R1 ./ R2. The graph of this view corresponds to the dotted
box of Figure 6.4. Using the technique of (DAYAL; BERNSTEIN, 1982a), The
first condition states that there must be a path from the attributes of the relation
whose attributes are being modified to all view attributes that were specified in the
WHERE clause. In the case of well-nested NPSJ views, this is directly related to
how we specify the update against the relational view. In order for R1 and R2 to be
well-nested, R2 must be nested under R1. If we want to modify an attribute from
R1, the WHERE clause will have only attributes generated from R1. Obviously,
there is a path from the attributes in R1 to the view attributes generated from R1.
If we want to modify attributes from R2, the WHERE clause will have attributes
generated both from R1 and R2. Since it is possible to use the arrow R1.P1-R2.B2

to reach all the view attributes, the condition is satisfied.

100

The second condition states that if we are modifying a join attribute A, then
there must be a path from the attributes of the relation to which A belongs, to all
view attributes. Suppose B is a foreign key in table S referring to A on table R.
Since joins are made through keys and foreign keys, keys are kept in the view, and
we consider views are well-nested, then it is guaranteed that A is in the view, and B
is not. Thus, modifying a join attribute implies in modifying a primary key2. Since
we can modify any primary key of any of the relational tables in the view, we would
need to require the existence of paths from all relational tables in the view, to all
view attributes. Since this is too restrictive (for instance, there is not a path from
the attributes of table Vendor to all attributes of the view of Figure 6.5), we decided
not to allow modifications of primary keys, so that well-nested NSPJ are updatable
for all possible modifications, except those in which a primary key is modified.

The proof can be easily generalized to views defined over more than two base
relations.

Deletions. Deletions have a WHERE clause that specifies conditions that view
tuples must satisfy in order to be deleted. The condition for exact translation for
deletions says that there must be a path in the view graph from the relation chosen
to translate this deletion to all attributes specified in the WHERE clause. Our proof
supposes that all attributes of the view were specified in the WHERE clause, since
this is the "worst case". It is easy to see that one can always choose the last relation
joined to translate the deletion to the database because there is always a path from
the attributes on this relation to all view attributes (see Rm in Figure 6.4) due to
the edges introduced by join conditions.

Notice that despite we decided against the modifications of primary keys to
preserve updatability, the modification of a foreign key can be achieved by simply
deleting a subtree and inserting it under a different parent. For example, deleting a
deposit from the view of Figure 6.5 and inserting it under a new vendor.

6.2 Updatability of Query Tree Views

In the previous section, we define conditions under which XML views constructed
by "nest-last" nested relational algebra (NRA) expressions are updatable. Since
query trees also express nesting and are mapped to a set of corresponding relational
views, we can use these results to reason about the updatability of XML views
constructed by query trees. We assume the underlying relational database is in
BCNF (to be able to automatically determine the functional dependencies), and
impose three restrictions on the query tree and updates: (1) each table must be
bound to at most one variable; (2) each value in a leaf node must be unique, that is,
if the value of n is specified as $x/A, then this value specification does not appear
on any other node in the query tree; (3) comparisons on u.ref must be conjunctions
of equalities. These restrictions are imposed so that the resulting relational views
do not include joins of the same tables, and projections of the same attribute (as
required by (DAYAL; BERNSTEIN, 1982a)). The restrictions on equalities are also
required by (DAYAL; BERNSTEIN, 1982a).

2By definition of foreign key in the relational model, if B is a foreign key referring to A, then
A must be a primary key.

101

Theorem 6.1 (Side-effect Free XML Update) A correct update u to an XML
view defined by a query tree qt is side-effect free if for all (Ui, Vi), where Vi is the
corresponding relational view of qti and Ui is the translation of u over Vi, Ui is
side-effect free in Vi.

Proof: In our approach, a given XML update u can be mapped to a set of updates
over the corresponding relational views. Formally, u =

⋃i=1
i=n (Ui, Vi), n ≥ 1. The

update u is an atomic operation, that is, it has to be executed completely, or aborted.
Suppose one of the updates (Uk, Vk), 1 ≤ k ≤ n is not side-effect free. Since u is

an atomic operation, it needs all of its n components to work correctly to be con-
sidered successful. Consequently, if update (Uk, Vk) fails, u also fails. Additionally,
if update (Uk, Vk) is not side-effect free, then u is also not side-effect free.

Based on theorem 6.1, we can now answer a more general question: Is there
a class of query tree views for which all possible updates are side-effect free? To
answer this question, we summarize the results of (BRAGANHOLO; DAVIDSON;
HEUSER, 2003a) and (DAYAL; BERNSTEIN, 1982a) (presented in Section 6.1) for
conditions under which NRA views are updatable, and generalize them for XML
views constructed by query trees.

Insertions. An insertion over an NRA view is side-effect free when the correspond-
ing relational view V is a select-project-join view, the primary and foreign keys of
the source relations of V are in the view and joins are made only through foreign
keys. In terms of query trees, this means that the primary keys of the source rela-
tions of qti must appear as values in leaf nodes of qti and the where annotations in
qti specifies joins using foreign keys, for all split trees qti corresponding to a query
tree qt.

Deletions and modifications. Deletions and modifications over an NRA view
V are side-effect free when the above conditions for insertions are met and V is
well-nested (BRAGANHOLO; DAVIDSON; HEUSER, 2003a). We rephrase this
condition in terms of query trees as follows:

Definition 6.7 (Well-Nested Query Tree) A query tree qt is well-nested if
for any two source relations R and S in qt, if S is related to R by a foreign key
constraint then the source annotation for R occurs in an ancestor of the node s
containing the source annotation for S. Additionally, attributes of R must not appear
as values in the descendants of s.

The results above identify three classes of updatable XML views: one that is
updatable for all possible insertions; one that is updatable for all possible insertions,
deletions and modifications; and a general one whose updatability with respect to a
given update can be reasoned about using theorem 6.1. Furthermore, we can now
prove the following:

Theorem 6.2 (No side-effects) Given a query tree qt with the restrictions men-
tioned above and defined over a BCNF database D, then for any instance d of D and
correct update u over qt: apply(eval(qt,d), u) ≡ eval(qt, d′), where d′ is the updated
relational database state resulting from the application of the translated view updates
{U11, ..., U1m1 , ..., Un1, ..., Unmn} using the techniques of (DAYAL; BERNSTEIN,
1982a).

102

We leave the study of updatability using other existing relational techniques
for future work. We have also studied the updatability of query trees extended to
support group nodes. The results are shown in Appendix A.3.

6.3 Chapter Remarks

The updatability study shown in this chapter was published in two papers. The
first one (BRAGANHOLO; DAVIDSON; HEUSER, 2003a) comprises the updatabil-
ity of NRA views, and was published on the WebBD Workshop, held in conjunction
with SIGMOD 2003. The second one (BRAGANHOLO; DAVIDSON; HEUSER,
2004a) presents the updatability of query tree views, and was published on the VLDB
Conference of 2004. The main focus of this later paper was not the updatability
study, so some of the details were omitted. They are available in (BRAGANHOLO;
DAVIDSON; HEUSER, 2004b).

103

7 QUERY TREES APPLIED IN PRACTICE

To show the feasibility of our ideas, we have implemented our approach in a
system that we call PATAXÓ. PATAXÓ is the name of a native Brazilian tribe
(there are still a few living in Bahia) and stands for "Permitindo ATualizações
Através de visões Xml em bancos de dados relaciOnais", which is loosely translated
as permitting updates on relational databases through XML views.

As mentioned before, query trees are the formalism we chose to work with because
it facilitates reasoning about update translation and updatability. However, they
are not adequate for the end-user. A user needs a language in which he can specify
XML views, that is, he needs a syntax. Additionally, the user should not be forced
to learn another language just because he wants/needs to define XML views. In this
scenario, there were two options:

1. To use SQL, which is the standard query language for relational databases
(ISO, 2003a,b,c). SQL was extended to support XML, that is, it is able to
produce XML as a result of a query. This extension is called SQLX (EISEN-
BERG; MELTON, 2002) and it was standardized by ISO in 2003 (ISO, 2003d).

2. To use XQuery, which is the query language for XML. XQuery has been used
as the view definition language in some of the most important work in the
research area of XML extraction from relations – SilkRoute (FERNÁNDEZ
et al., 2002) and XPERANTO (SHANMUGASUNDARAM et al., 2001).

We chose XQuery as the XML query language since it is widely accepted, and is
becoming somewhat of a standard. We also borrowed some ideas from SQLX (EISEN-
BERG; MELTON, 2002): we use the SQLX representation for relational tables
(row), and define an input function to XQuery called table to access relational
tables. This function, however, is slightly different from the one proposed in SQLX.

We have not chosen SQLX for several reasons: First, SQLX is not implemented
yet in most of the RDBMSs. To the extent of our knowledge, the only RDBMS that
supports SQLX is Oracle (ORACLE CORPORATION, 2002). Second, to the user
well acquainted to XML, XQuery is more intuitive, since it allows him to specify
the output format in an XML like way. Notice that the XQuery syntax is not XML,
but it allows constructing XML elements by using XML tags. An XML syntax for
XQuery is being developed, but is not a W3C recommendation yet (MALHOTRA
et al., 2003).

In the next section we present our subset of XQuery, which we call UXQuery.
The UXQuery language was proposed in (BRAGANHOLO; DAVIDSON; HEUSER,
2003b), together with the mapping to query trees and from there to relational views.

104

It is important to state that the term auxiliary query tree in (BRAGANHOLO;
DAVIDSON; HEUSER, 2003b) corresponds to a previous version of our query trees.
We show how a query in UXQuery is mapped to the current version of query trees
in the next section. Section 7.2 shows the architecture of the PATAXÓ System and
gives more details on the implementation.

7.1 UXQuery

XQuery’s syntax is very broad and has lots of operators. Some of these operators
- such as order related operators - do not really make sense when we are produc-
ing views of relational databases in which there is no inherent order. Furthermore,
aggregate operators create ambiguity when mapping a given view tuple to the un-
derlying relational database. We will therefore ignore ordering operators and outlaw
aggregate operators. This means that the use of let in our subset of XQuery must
be very carefully controlled, and for this reason we will allow it only as expanded
by a new macro called xnest.

The subset we have chosen is called UXQuery (Updatable XQuery), and contains
the following:

• FWOR for/where/order by/return expressions (note that we do not allow
let expressions).

• Element and attribute constructors.

• Comparison expressions.

• An input function table, which binds a variable to tuples of a relational table
that is specified as a parameter to the function.

• A macro operator called xnest, which facilitates the construction of heteroge-
neous nested sets.

In this chapter, we assume the reader is familiar with XQuery, its syntax and
semantics. We will not get into details on the syntax and semantics that UX-
Query "inherited" from XQuery. For further details on XQuery, please refer to
(BOAG et al., 2004). The XQuery use cases are an easy way to understand XQuery
(CHAMBERLIN et al., 2003).

As a first example, we show a very simple view definition query in UXQuery
which retrieves vendors and their deposits. The query is shown in Figure 7.1. The
only difference from this query to a query in XQuery is the table input function.
Lines 2 and 6 show the invocation of such function. The name of the relational table
is passed as an argument to the function. The XML view resulting from this query
is shown in Figure 7.2.

This sample query and all queries in UXQuery must respect the EBNF of UX-
Query, which is shown in Figure 7.3. This EBNF was based on the EBNF of the
XQuery Core (BOAG et al., 2004), and it was simplified to remove operators not
allowed by UXQuery. We have also added the xnest operator, and the table input
function. In the EBNF we use a set of grammar definitions available in the XML
documentation. The basic tokens Letter and Digit are defined in (BRAY et al.,

105

1. <vendors>

2. {for $v in table(’Vendor’)

3. return

4. <vendor id=’{$v/vendorid/text()}’>

5. {$v/vendorname}

6. {for $d in table(’Deposit’)

7. where $v/vendorid=$d/vendorid

8. return

9. <deposit>

10. <idDeposit>{$d/depid/text()}</idDeposit>

11. <address>

12. <street>{$d/address/text()}</street>

13. {$d/city}

14. {$d/state}

15. {$d/country}

16. </address>

17. </deposit>

18. }

19. </vendor>

20. }

21. </vendors>

Figure 7.1: Example of a simple query that retrieves vendors and deposits

2004). The identifier QName is defined in (BRAY; HOLLANDER; LAYMAN, 1999).
Literals and numbers are defined in (BOAG et al., 2004).

The formal semantics of UXQuery matches the semantics of XQuery (DRAPER
et al., 2004) with the exception of the new input function table and the macro
xnest, which we discuss next.

Semantics of table(). XQuery has two input functions: collection and doc

(MALHOTRA; MELTON; WALSH, 2004). In UXQuery, the only input function
available to the user is table. This function takes as input a table from a relational
database and returns a set of tuples in the following form:

<row>

<!-- tuple attributes -->

...

</row>

...

Following SQLX (EISENBERG; MELTON, 2002), we translate this input func-
tion to XQuery as follows.

define function table($tableName as xs:string) as node*

{

let $tuples := doc(concat($tableName,".xml"))//row

return $tuples

}

For this input function to work, the relational table used as the parameter in
the function call must be represented in XML. As an example, the function call
shown in line 2 of Figure 7.1 assumes that table Vendor is available in a file named
vendor.xml which has the following structure:

106

<vendors>

<vendor id="01">

<vendorname>Amazon</vendorname>

<deposit>

<idDeposit>D1</idDeposit>

<address>

<street>1245, Bourbom Street</street>

<city>Seatle</city>

<state>WA</state>

<country>USA</country>

</address>

</deposit>

<deposit>

<idDeposit>D3</idDeposit>

<address>

<street>4545, 15th Avenue</street>

<city>Seatle</city>

<state>WA</state>

<country>USA</country>

</address>

</deposit>

</vendor>

<vendor id="02">

<vendorname>Barnes and Noble</vendorname>

<deposit>

<idDeposit>D2</idDeposit>

<address>

<street>1478, 25th Avenue</street>

<city>New York</city>

<state>NY</state>

<country>USA</country>

</address>

</deposit>

</vendor>

</vendors>

Figure 7.2: XML view resulting from the query of Figure 7.1

<vendor>

<row>

<vendorid>01</vendorid>

<vendorname>Amazon</vendorname>

<url>www.amazon.com</url>

<state>WA</state>

<country>USA</country>

</row>

<row>

...

</row>

...

</vendor>

Semantics of xnest. The xnest operator is used to specify possibly heterogeneous
sets of nested tuples that agree in the value of one or more attributes. The tuples are
clustered according to the value of these attributes, which we call nesting attributes.
A simple (non-heterogeneous) example of such a query is shown in Figure 7.4 (lines
1-23). The query specifies a join of tables Vendor, Book and SellBook. For each
vendor, it shows the vendor name, the vendor Id, and the books sold by that vendor
clustered by price. The nesting attribute in this case is price.

107

[1] UXQuery ::= QueryBody

[2] QueryBody ::= ElmtConstructor

[3] ElmtConstructor ::= "<" QName AttList "/>" | "<" QName AttList? ">" ElmtContent+ "</" QName ">"

[4] ElmtContent ::= ElmtConstructor | EnclosedExpr+

[5] AttList ::= ((QName "=" AttValue)?)+

[6] AttValue ::= (’"’ AttValueContent ’"’) | ("’" AttValueContent "’")

[7] AttValueContent ::= "{" PathExprAtt "}"

[8] PathExprAtt ::= "$" VarName "/" QName "/" NodeTest

[9] VarName ::= QName

[10] EnclosedExpr ::= "{" (FWRExpr | PathExpr | Nest) "}"

[11] Expr ::= OrExpr

[12] OrExpr ::= AndExpr ("or" AndExpr)*

[13] AndExpr ::= ComparisonExpr ("and" ComparisonExpr)*

[14] FWRExpr ::= ((ForClause)+ WhereClause? OrderByClause? "return")* ElmtConstructor

[15] ComparisonExpr ::= ValueExpr (GeneralComp ValueExpr)?

[16] ValueExpr ::= PathExpr | PrimaryExpr

[17] PathExpr ::= "$" VarName "/" QName ("/" NodeTest)?

[18] NodeTest ::= TextTest

[19] TextTest ::= "text" "(" ")"

[20] ForClause ::= "for" "$" VarName "in" TableExpr ("," "$" VarName "in" TableExpr)*

[21] TableExpr ::= "table (" ’"’ QName ’"’ ")" | "table (" "’" QName "’" ")"

[22] WhereClause ::= "where" Expr

[23] GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="

[24] OrderByClause ::= "order" "by" OrderSpecList

[25] OrderSpecList ::= OrderSpec ("," OrderSpec)*

[26] OrderSpec ::= PathExpr

[27] PrimaryExpr ::= Literal | ParenthesizedExpr

[28] Literal ::= NumericLiteral | StringLiteral

[29] NumericLiteral ::= IntegerLiteral | DecimalLiteral | DoubleLiteral

[30] ParenthesizedExpr ::= "(" Expr? ")"

[31] Nest ::= NestClause ByClause WhereClause "return" Header

[32] NestClause ::= "xnest "$" VarName "in" TableExpr ("," "$" VarName "in" TableExpr)*

[33] ByClause ::= "by" "$" VarName "in" UnionExpr ("," "$" VarName "in" UnionExpr)*

[34] Header ::= "<" QName (QName "=" NestAttValue)+ ">" ("{" ElGroup "}")+ "</" QName ">"

| "<" QName ">" (("{" "$" VarName "}") | ("<" QName ">" "{" "$" VarName "/" TextTest "}"

"</" QName ">"))+ ("{" ElGroup "}")+ "</" QName ">"

[35] NestAttValue ::= "’" "{" "$" VarName "/" TextTest "}" "’"

| ’"’ "{" "$" VarName "/" TextTest "}" ’"’

[36] ElGroup ::= ElmtConstructor

[37] UnionExpr ::= "(" "$" VarName "/" QName (("union" | "|") "$" VarName "/" QName)* ")"

Figure 7.3: EBNF of UXQuery

We believe xnest is an interesting addition to our subset of XQuery. In fact,
there have been lots of discussions at W3C to add an operator similar to xnest

to XQuery. Additionally, other researchers have also identified the need of such
operator. An example is the group by operator, proposed in (DEUTSCH; PA-
PAKONSTANTINOU; XU, 2004a,b).

7.1.1 Normalization to XQuery

A query containing an xnest operator can be normalized to one using pure
XQuery syntax. The normalized query corresponding to the query in Figure 7.4
(lines 1-23) is shown in Figure 7.4 (lines 24-49). The normalization process makes
sure that the nest variable (in the example, $price) appears in the Header element as
an attribute or a sub-element. In the example, the Header element is books. Notice
that in the normalized query, we still use the input function table.

Continuing with the example, the xnest operation (lines 6-20) is normalized to
the expression shown in lines 29-46. The expression consists of a let/for (lines
29-31) and an additional for (lines 34-44) for each ElGroup (lines 13-18) specified

108

1. <vendors>

2. {for $v in table("Vendor")

3. return

4. <vendor id="{$v/vendorid/text()}">

5. {$v/vendorname}

6. {xnest $b in table("Book"),

7. $sb in table("SellBook")

8. by $price in ($sb/price)

9. where $v/vendorid=$sb/vendorid

10. and $sb/isbn=$b/isbn

11. return

12. <books price="{$price/text()}">

13. {

14. <book>

15. {$b/isbn}

16. {$b/title}

17. </book>

18. }

19. </books>

20. }

21. </vendor>

22. }

23. </vendors>

24. <vendors>

25. {for $v in table("Vendor")

26. return

27. <vendor id="{$v/vendorid/text()}">

28. {$v/vendorname}

29. {let $b’ := table("Book"),

30. $sb’ := table("SellBook")

31. for $price in distinct-values($sb’/price)

32. return

33. <books price="{$price/text()}">

34. {for $b in table("Book"),

35. $sb in table("SellBook")

36. where $v/vendorid=$sb/vendorid

37. and $sb/isbn=$b/isbn

38. and $sb/price=$price

39. return

40. <book>

41. {$b/isbn}

42. {$b/title}

43. </book>

44. }

45. </books>

46. }

47. </vendor>

48. }

49. </vendors>

Figure 7.4: Example of a query that uses the xnest operator (lines 1-23) and its
translation to regular XQuery syntax (lines 24-49)

in the query. In the normalization process, we introduce new variables in the let

clause. These variables are primed (’), and correspond to the variables specified in
the xnest operator. There will be one primed variable in the let clause for each
variable specified in the xnest operator (XQuery does not accept variable names
with (’). However, we use them here for ease of explanation).

The normalization process also makes sure that nested elements are related to
the nesting variable. This is done by adding a new condition in the where clause.
In the example (line 38) we added a condition requiring that the book is sold by the
price specified by $price.

Note that this example shows a nesting over a single attribute, but that it is
possible to specify nests over more than one attribute.

The query of Figure 7.4 has a single element group (ElGroup) (lines 13-18). In
this example, it is not necessary to divide the conditions and variable bindings that
appear in the xnest operator through the corresponding fors in the normalized
query. We now show an example where this is necessary.

Figure 7.5 shows a query that has two element groups (lines 17-22 and 23-28).
In this case, the normalized query will have two fors, one for each of the element
groups (lines 46-56 and 57-67). The variable bindings and where conditions must
then be carefully analyzed in order to identify to each of the fors they belong to.
This is done by functions fs:SubVariable(i) and fs:SubExpr(i) of the normalization
process shown below.

The normalization process described through the above examples can be formally
stated as:

109

1. <vendors>

2. {for $v in table("Vendor")

3. return

4. <vendor id="{$v/vendorid/text()}">

5. {$v/vendorname}

6. {xnest $b in table("Book"),

7. $sb in table("SellBook"),

8. $d in table("DVD"),

9. $sd in table("SellDVD")

10. by $price in ($sb/price | $sd/price)

11. where $v/vendorid=$sb/vendorid

12. and $v/vendorid=$sd/vendorid

13. and $sb/isbn=$b/isbn

14. and $sd/asin=$d/asin

15. return

16. <products price="{$price/text()}">

17. {

18. <book>

19. {$b/isbn}

20. {$b/btitle}

21. </book>

22. }

23. {

24. <dvd>

25. {$d/asin}

26. {$d/dtitle}

27. </dvd>

28. }

29. </products>

30. }

31. </vendor>

32. }

33. </vendors>

34. <vendors>

35. {for $v in table("Vendor")

36. return

37. <vendor id="{$v/vendorid/text()}">

38. {$v/vendorname}

39. {let $b’ := table("Book"),

40. $sb’ := table("SellBook"),

41. $d’ in table("DVD"),

42. $sd’ in table("SellDVD")

43. for $price in

distinct-values($sb’/price | $sd’/price)

44. return

45. <products price="{$price/text()}">

46. {for $b in table("Book"),

47. $sb in table("SellBook")

48. where $v/vendorid=$sb/vendorid

49. and $sb/isbn=$b/isbn

50. and $sb/price=$price

51. return

52. <book>

53. {$b/isbn}

54. {$b/btitle}

55. </book>

56. }

57. {for $d in table("DVD"),

58. $sd in table("SellDVD")

59. where $v/vendorid=$sd/vendorid

60. and $sd/asin=$d/asin

61. and $sd/price=$price

62. return

63. <dvd>

64. {$d/asin}

65. {$d/dtitle}

66. </dvd>

67. }

68. </products>

69. }

70. </vendor>

71. }

72. </vendors>

Figure 7.5: Example of a query with two element groups (lines 1-33) and its trans-
lation to regular XQuery syntax (lines 34-72)

110

[xnest Variable1 in TableExpr1 , . . . , Variablen in TableExprn

by NestVariable1 in (Variable11
/QName11

| . . . | Variable1m
/QName1m

),

. . . , NestVariablek in (Variablek1
/QNamek1

| . . . | Variablekm
/QNamekm

)

where Expr return

<ElName AttName1="{NestVariable1/text()}". . . AttNamek="{NestVariablek/text()}">

{ElGroup1} . . . {ElGroupm} </ElName>]xnest

==

let Variable′1 := TableExpr1 , . . . , Variable′n := TableExprn

for NestVariable1 in distinct-values(Variable11
/QName11

| . . . | Variable1m
/QName1m

),

. . . , NestVariablek in distinct-values(Variablek1
/QNamek1

| . . . | Variablekm
/QNamekm

)

return

<ElName AttName1="{NestVariable1/text()}", . . . , AttNamek="{NestVariablek/text()}">

{for fs:SubVariable(1)

where fs:SubExpr(1) and (Variable11
= NestVariable1 and . . . and Variablek1

= NestVariablek)

return ElGroup1 }

. . .

{for fs:SubVariable(m)

where fs:SubExpr(m) and (Variable1m
= NestVariable1 and . . . and Variablekm

= NestVariablek)

return ElGroupm }

</ElName>

The notation for the normalization process is the same as that in (DRAPER
et al., 2004). The process assumes that:

• {Variable11, . . . , Variable1m , . . . , Variablek1, . . . , Variablekm} ⊆ {Variable1,
. . . , Variablen}

• The auxiliary function fs:SubVariable(i) returns all variables Vx referenced
in ElGroupi and also all variables Vy appearing in a condition of the form
"Vx/QNamex cmp Vy/QNamey" or "Vy/QNamey cmp Vx/QNamex" in Expr
in the where clause of the xnest operator; cmp ∈ {=, <, >, ! =, <=, >=}.

• The auxiliary function fs:SubExpr(i) returns every expression specified in Expr
in the where clause of the xnest operator that references a variable returned
by fs:SubVariable(i).

Returning to the example of Figure 7.5, the first element group (lines 17-22)
references variable $b. Additionally, there is a where condition that uses $b and ref-
erences $sb ($sb/isbn=$b/isbn, line 13). That’s why the function fs:SubVariable(1)
returns $b and $sb. These variables are used in the for clause corresponding to
this element group (lines 46-47). The where conditions for this element group are
found by function fs:SubExpr(1), which analyzes the where condition of the xnest

expression and takes all such conditions that references variables $b and $sb. A
condition requiring that each book is sold by the price specified by $price is also
added. The resulting where condition is shown in lines 48-50. The same process is
done with the second element group.

In Section 7.2, we show how the normalized query is used to produce the XML
view.

111

1. <vendors>

2. {for $v in table(’Vendor’)

3. return

4. <vendor id=’{$v/vendorid/text()}’>

5. {$v/vendorname}

6. {for $d in table(’Deposit’)

7. where $v/vendorid=$d/vendorid

8. return

9. <deposit>

10. <idDeposit>{$d/depid/text()}</idDeposit>

11. <address>

12. <street>{$d/address/text()}</street>

13. {$d/city}

14. {$d/state}

15. {$d/country}

16. </address>

17. </deposit>

18. }

19. </vendor>

20. }

21. </vendors>

Figure 7.6: Example of UXQuery that joins two relations and its query tree

7.1.2 From UXQuery to Query Trees

As mentioned before, query trees are used as an intermediate representation of
the view definition query. To be able to use query trees internally, it is necessary
to define how a view definition query expressed in UXQuery is translated to its
corresponding query tree. In the translation, we use query trees extended with
group nodes, since the xnest operator groups nodes together according to one or
more values. Appendix A shows details on this extension. To illustrate the mapping
to extended query trees, we start with the query of Figure 7.1. For readability
reasons, the query is presented again in Figure 7.6, together with its query tree.

Each XML element specified in the query is represented by a node in the query
tree. Each node in the query tree needs a name, and possibly a value (if it is a leaf
node). Since UXQuery allows constructing XML elements and attributes in three
distinct ways, we analyze each case separately:

• The leaf element is generated by an expression {$x/A}: in this case, the cor-
responding node in the query tree has name A and value $x/A.

• The leaf element is constructed by an expression <tagName> {$x/A/text()}

</tagName>: in this case, the corresponding node in the query tree has name
tagName and value $x/A.

• The leaf element is an attribute constructed by an expression attName =

"{$x/A/text()}": in this case, the node in the query tree has name @at-
tName and value $x/A.

As an example, the expression $v/vendorname in the query of Figure 7.6 is
mapped to a node named vendorname in the query tree. As an example of mapping
of an attribute, see node @id.

An exception to the above rules is an element or attribute which uses a nesting
variable to specify its content. For example, attribute price in the query of Figure

112

7.5 is constructed using variable $price as its content (line 16). The variable $price
was specified as $price in ($sb/price | $sd/price) (line 10). In this case, the
rules for the node name are the same as above, (in this example, the node will be
named price), but its value is GROUP($sb/price | $sd/price). GROUP is defined in
extended query tress (Appendix A). The formal rule for this case can be specified
as:

• The leaf element tagName is specified by a nesting variable $y, and is con-
structed as <tagName>{$y}</tagName>. Variable $y is in turn specified as
$y in ($x1/A1 | ... | $xn/An). The corresponding node will be named
tagName and its value will be GROUP($x1/A1 | ... | $xn/An).

• The attribute attName is specified by a nesting variable $y, and is constructed
as attName ="{$y/text()}". Variable $y is in turn specified as $y in ($x1/A1

| ... | $xn/An). The corresponding node will be named @attName and its
value will be GROUP($x1/A1 | ... | $xn/An).

Non-leaf elements can only be constructed with an expression of type <tagName>
{content} </tagName>, where content are other element constructors, fors and/or
xnests. In this case, the corresponding node in the query tree will have name
tagName, but no value. As an example, the XML element address in the query of
Figure 7.6 is a non-leaf element whose content are four element constructors. Its
corresponding node in the query tree is named address, and has no value.

Nodes in the query tree are connected to represent the parent/child relationship
of XML elements in the view definition query. As an example, the node address
is connected to nodes street, city, state and country in the query tree. In the
view definition query, elements street, city, state and country are children of
address. We will explain how starred edges are identified later.

Source and where annotations are identified as follows. Each for expression in
the view definition query has variable bindings, optional where conditions and a
return clause followed by an element constructor. Suppose this element is named e.
The variable bindings are placed as source annotations in the node e that represents
element e in the query tree. A variable binding of type $x in table("X") becomes
a source annotation of type [$x := table("X")]. The where conditions (if any) are
placed in node e as where annotations (where x becomes [where x]). After this,
change the edge that connects e to its parent to a *-edge. As an example, the
query of Figure 7.6 has a for expression at line 2. The expression has an element
constructor after the return clause that constructs the element vendor (line 4). As
a consequence, the node vendor in the query tree is a starred node, and it has a
source annotation [$v := table("Vendor")].

When a query has an xnest operation, the source and where annotations are
identified using the functions fs:SubVariable(i) and fs:SubExpr(i), shown in Section
7.1.1. The Header element is mapped to a node that has a *-edge, but no source
annotation. In the query of Figure 7.5, the Header element is products, and the
corresponding node is shown in the query tree of Figure 7.7. After this query tree
is typed, this node will receive a type τG.

The root element of each element group in the query receives a *-edge. The source
annotations are selected using the function fs:SubVariable(i) to identify the relevant
variables for that node. In the same way, the function fs:SubExpr(i) is used to iden-
tify the where annotations for the node. As an example, node book in Figure 7.7 has

113

name = ‘@id’
value = $v/vendorid

name = ‘@price’
value = GROUP ($sb/price | $sd/price)

name = ‘products’

name = btitle
value = $b/title

name = isbn
value = $b/isbn

name = ‘book’
[$sb := table(“SellBook”)]

[$b := table(“Book”)]
[where $sb/vendorid=$v/vendorid

and $b/isbn=$sb/isbn]

name = dtitle
value = $d/title

name = asin
value = $d/asin

name = ‘dvd’
[$sd := table(“SellDVD”)]

[$d := table(“DVD”)]
[where $sd/vendorid=$v/vendorid

and $d/asin=$sd/asin]

name = vendorName
value = $v/vendorname

τ

τS *

* *

τS
τG

τS

τSτS τSτS

τN τN

name = ‘vendors’

name = ‘vendor’
[$v := table(“Vendor”)]

τT

*

Figure 7.7: Query tree corresponding to the query of Figure 7.5

source annotations [$b := table("Book")] and [$sb := table("SellBook")]. Similarly,
its where annotation is [where $v/vendorid=$sb/vendorid AND $b/isbn=$sb/isbn].

After obtaining the query tree corresponding to a given view definition query
in UXQuery, it is possible to use the strategy specified in chapters 5 and 6 to map
updates over the resulting XML view to the underlying relational database. In the
next section, we show the system which implements this mechanism.

7.2 PATAXÓ: The Prototype

The PATAXÓ System implements the UXQuery language, and allows users to
issue updates over an XML view constructed by an UXQuery query. PATAXÓ was
implemented in Java (SUN MICROSYSTEMS, 1994) using the following additional
packages:

• To create, parse and manipulate XML we have used xerces.jar (APACHE
SOFTWARE FOUNDATION, 2000);

• To create, parse and manipulate DTDs we have used de.jar 1;

• To parse and execute XQuery queries we have used saxon7.jar (KAY, 2001);

• To create a parser for UXQuery we have used the JavaCC parser genera-
tor (SUN MICROSYSTEMS, 2001). JavaCC does not require any import of
packages in the source code of PATAXÓ. The only necessary package is the
UXQuery parser generated by JavaCC, which we called parser. JavaCC was
also used to build a parser for the XPath expressions used to provide update
paths. We called such parser xpathparser.

1http://www.rpbourret.com/xmldbms/docs/Package-de.tudarmstadt.ito.
schemas.dtd.html

114

Figure 7.8: PATAXÓ System architecture

The overall architecture of PATAXÓ is shown in Figure 7.8. The system is
composed of two main modules: the UXQuery Processor and the Update Manager.

The UXQuery Processor is responsible for processing the view query definition
and generating the XML view. The Update Manager receives update requests from
users and maps them to updates in the corresponding relational views. A sub-module
called Relational View Updater checks whether or not the updates are translatable to
the underlying relational database using the algorithm of (DAYAL; BERNSTEIN,
1982a). If so, this module produces the SQL insert/delete/update statements in
order to reflect the changes to the underlying relational database.

7.2.1 UXQuery Processor

The UXQuery processor (Figure 7.9) is the module responsible for processing
a view definition query expressed in UXQuery and producing the corresponding
XML view. In order to do this, it translates a query in UXQuery to a query using
pure XQuery syntax. The relational source data is then translated to XML by
a submodule called XML Extractor. XML Extractor takes a relational table and
encodes it in XML using an element row as a tuple delimiter. For example, the
Vendor table of Figure 1.2 is represented in XML as:

<vendor>

<row>

<vendorid>01</vendorid>

<vendorname>Amazon</vendorname>

<url>www.amazon.com</url>

<state>WA</state>

<country>USA</country>

</row>

<row>

...

</row>

...

</vendor>

115

Notice that the column names are represented in lower case, even though they
are in mixed case in the database of Figure 1.2. This is because we had to adopt a
standard for names in the implementation. Each relational database engine provides
the column names in an arbitrary format. Some of them use uppercase, others
provide the column names exactly like written by the user in the CREATE TABLE

command, still others use lower case. Since XML is case sensitive, we chose to use
lower case in the extraction of tables to XML, to avoid problems to the user. If
we had left the RDBMS to decide the case of the column names, the user would
need to "guess" how to reference those names in the view definition query. As
a consequence of our decision, the queries must always reference column names in
lowercase. See the queries in this chapter for examples.

In order to know which are the column names of each table of the underlying
relational database, the XML Extractor uses the metadata provided by the RDBMS.
The package java.sql provides methods to access such data.

The XML Extractor does not extract the entire table. It uses the selection
conditions specified in the UXQuery (where conditions) to eliminate unnecessary
tuples, and projects only the columns specified in the query. In this way, we avoid
extracting data that would be discarded by the XQuery processor.

The XQuery query is generated using the parse tree produced by the UXQuery
Parser. The parser was built using the JavaCC (SUN MICROSYSTEMS, 2001)
parser generator, and catches syntactic errors in the UXQuery query. The XQuery
generator uses the normalization rules presented in Section 7.1.1 to produce the
XQuery query.

The parse tree is also used to generate the query tree. In our implementation,
we use extended query trees (see Appendix A), since UXQuery supports clustering
XML elements according to a value or a set of values (xnest). This extended query
tree is used by the Relational View Mapper to generate the relational views that
correspond to the XML view as explained in Section 5.1. The query tree is also used
by the DTD Generator to generate the schema of the XML view (Section 4.1.4).

After extracting the XML files that represent the underlying relational tables
(XML Extractor) and producing the XQuery query (XQuery Generator), an external
XQuery processor (Saxon (KAY, 2001)) is used to process the query. The result of
this processing is the XML view which is returned to the user.

7.2.2 Update Manager

The Update Manager (Figure 7.10) is the module responsible for receiving update
requests and mapping the updates to the underlying relational database. In order
to do so, it first checks whether or not the update conforms to the view schema and
rejects updates that do not conform.

Using the query tree, the Relational View Update Generator takes the requested
update and translates it to the corresponding relational views (as specified in Section
5.2). The Relational View Updater then uses the techniques of Dayal and Bernstein
(DAYAL; BERNSTEIN, 1982a), which are shown in chapter 2, to translate the
updates to the underlying database. Updates with side-effects are rejected. The
Relational View Updater was implemented by Angelo Agra in his Bachelor Thesis
(AGRA, 2004).

116

Figure 7.9: UXQuery Processor

7.2.3 Graphical User Interface

We have developed a graphical interface through which the user can submit view
definition queries in UXQuery and updates over the resulting view.

When a user starts the PATAXÓ system, he must first establish a database
connection using JDBC. Figure 7.11 shows the system taskbar, where the Database
Connection is the first available button. The main screen of the system is shown in
Figure 7.12.

After establishing the connection, the user can either write a view definition
query, or load one from an existing text file. A click on "Execute query" sends
the view query to the UXQuery Processor, and the resulting XML view is shown
to the user as a tree in the graphical interface (Figure 7.13 (left hand side)). The
interface also shows the view DTD (Figure 7.14) and the schema of the corresponding
relational views (Figure 7.15).

The user can now issue updates against the XML view. Updates can be specified
in two ways through the graphical interface:

• by editing the XML tree directly;

• or by using the alternative update interface (right hand side of Figure 7.13).

The updates supported by editing the XML tree directly include changing the
value of a leaf node, deleting subtrees, and inserting subtrees. When finished,
the user informs the system that he wants the updates to be propagated to the
database by clicking the "Update" button. This sends the update request to the
Update Manager, which tries to propagate the updates to the underlying relational
database. In case of a problematic update, the user is informed and the operation
is rolled back.

To use the alternative interface (shown on the right hand side of Figure 7.13),
the user writes an update path expression to indicate the set of nodes affected by
the update. In the case of insertion and modification, the user must also specify

117

Figure 7.10: Update Manager

Figure 7.11: System taskbar

additional parameters to the update in a text area. This additional information
consists of:

• the new node value, if the update type is a modification;

• the subtree to be inserted under the nodes selected by the update XPath
expression, if the update type is an insertion;

Deletions do not require any additional information, since all nodes under the
nodes selected by the update XPath expression will be deleted.

The graphical interface simplifies the specification of updates as much as possible.
For example, an update path expression can be generated automatically by clicking
on a node in the XML tree and then clicking the "»" button.

7.2.4 Main Difficulties

When implementing PATAXÓ, we have faced some problems related to how SQL
is implemented is each RDBMS. Since PATAXÓ is Open Source, we would like to
test it with Open Source RDBMS’s like PostgresSQL (POSTGRESQL, 1995) and
MySQL (MYSQL AB, 1995). The problem is that we need nested queries in the
update translations, such as:

UPDATE Book

SET title="New Title"

118

Figure 7.12: User Interface

WHERE Book.isbn IN

(SELECT Book.isbn

FROM Vendor v, Book b, SellBook sb

WHERE v.vendorid=b.vendorid AND sb.isbn=b.isbn

AND isbn="1111")

and the current version of MySQL (4.0) (MYSQL AB, 1995) does not support such
queries. As for PostgreSQL, there is no problem regarding nested queries.

Another problem was faced when using the JDBC drivers provided by the devel-
opers of each RDBMS we used. Most of them do not implement access to metadata,
such as get the attribute names of a given table, the primary keys of a given table,
and so on. For this reason, we had to use specific drivers for each RDBMS we used.
This is not really a problem, but it creates an additional difficult for the user. He
has to get the correct driver on the internet in order to connect to the database.
Notice that we can not provide those drivers together with the distribution code,
since most of them are copyrighted.

7.3 Chapter Remarks

We have shown how the ideas presented in Chapters 4 and 5 were implemented
in a prototype called PATAXÓ. The prototype shows the feasibility of our ideas, and
was implemented in Java (SUN MICROSYSTEMS, 1994). Java was chosen because
it is platform independent.

The main contributions of this chapter are:

119

Figure 7.13: Alternative interface to update the XML view

• The definition of UXQuery – a subset of XQuery augmented with an input
function table and a macro called xnest.

• The definition of a mapping from queries in UXQuery to extended query trees,
which makes it possible to use the approach presented in the previous chapters
of this thesis.

We have also done an analysis of UXQuery and query trees with respect to real
world XML views. We show such evaluation in the next chapter.

We plan to improve the prototype in future work. One of the improvements we
are planning to add is related to the locking strategy of the prototype. In this sense,
we plan to add a comparison mechanism to PATAXÓ, which will help in cases where
the XML view is generated and updated after a long period of time. In the current
approach, the data used in the XML view stays locked until an update is issued
(and committed), or a certain amount of time is elapsed (time out). In this new
approach, no locking would be made when the XML view is constructed. When an
update against the view is issued, the system would check if the database is still in
the same status, and if so, translate the update to the base tables.

120

Figure 7.14: DTD Tab of PATAXÓ System

Figure 7.15: Relational Views Tab of PATAXÓ System

121

8 EVALUATION

For purposes of presentation, the query tree language presented in this thesis
was kept simple to highlight how the mapping of the query tree and updates are
performed.

Query trees can be extended in a number of ways, for example to deal with
grouping, aggregates, function applications and so on. An example of such extension
can be found in Appendix A, where we allow grouped values which allow tuples that
agree on a given value to be clustered together.

However, another consideration that must be kept in mind when extending the
language is whether or not the relational views resulting from the XML view are
updatable. The language presented in this thesis, with suitable restrictions on the
way in which joins and nesting are performed with respect to keys and foreign keys in
the underlying relational database, presents a subset of XQuery in which side-effect
free updates can be defined, as discussed in Chapter 6. While grouped values do
not affect these results, the addition of functions and aggregates would. Analogous
to work on updating views in relational databases which restricts views to select-
project-join queries, we have therefore initially decided against considering a richer
language (although we plan to do so in future work).

To evaluate our language, we first discuss the restrictions in our form of queries,
and what query trees can or cannot express. Second, we examine the power of ex-
pression of query trees, and compare it with existing proposals in literature. We
have also analyzed the “practicality” of XML views constructed by query trees by
collecting examples of real XML views extracted from relational databases and eval-
uating whether or not query trees can capture them. For these real XML views,
query trees were sufficiently expressive.

8.1 Limitations of Query Trees

Although query trees are quite expressive, there are some restrictions.

Values must come from the relational database. We do not allow constants to
be introduced as values in leaves, nor do we allow functions to calculate new values
from values in the database. Allowing constant values in leaves is potentially useful
(for example, to add a version number to the view), but they are not interesting
from the perspective of updates to the relational database nor can they themselves
be updated since they are not part of the database schema. Calculating a value
from a set of values (e.g. taking the average of a relational column) creates a one to
many mapping which cannot be updated; research on relational views also disallows

122

Figure 8.1: Example of query tree

this case. However, calculating a new value from a single value in the database (e.g.
translating length in centimeters to length in inches) could be allowed as long the
reverse function was also specified.

Queries are trees rather than graphs. This restriction disallows recursive
queries, which are also disallowed in SilkRoute (FERNÁNDEZ et al., 2002). For
example, suppose the relational database contained a relation Patriarchs(PName,
CName) with instance {(John, Marc), (John, Chris), (Justin, John)}. An XML
view of this that one might wish to construct would be:

<Patriarch>

<Name>Justin</Name>

<Children>

<Name>John</Name>

<Children> <Name>Marc</Name>

<Name>Chris</Name>

</Children>

</Children>

</Patriarch>

Since recursive queries cannot be mapped to select-project-join queries, our tech-
nique would have to be extended significantly to reason about them.

On the other hand, query trees are flexible enough to represent heterogeneous
structures (e.g. the view in Figure 4.2). It can also represent query trees with a
repeating leaf node, as shown in Figure 8.1 (note that vendor is labeled with τN and
τS). The XML view resulting from this query tree is as follows:

<result>

<sellBooks>

<vendor>Amazon</vendor>

<vendor>Barnes and Nobel</vendor>

</sellBooks>

<book><btitle>Unix Network Programming</btitle></book>

<book><btitle>Computer Networks</btitle></book>

...

<dvds>

<dvd><dtitle>Friends</dtitle></dvd>

...

123

</dvds>

</result>

It turns out that XML views with heterogeneous content and repeating leaves
arise frequently in practice, but that recursive views are not common. We therefore
believe that the above restrictions do not limit the usefulness of our approach.

8.2 Power of Expression

We have shown how to transform the XML view update problem into the well
studied relational view update problem. However, since our proposal is based on
query trees, the next question is: Are query trees expressive enough to be used in
practice? To answer this question, we compare the power of expression of query trees
with SilkRoutes’ view forests (FERNÁNDEZ et al., 2002); XPERANTO (SHAN-
MUGASUNDARAM et al., 2001); and DB2 DAD files (CHENG; XU, 2000).

Since most of these proposals are based on the XQuery (BOAG et al., 2004) query
language, we use XQuery on our comparison. In chapter 7, we have shown how a
query in UXQuery can be translated to a query tree. However, it is also possible
to do the opposite, that is, to generate a query in XQuery from a given query tree.
In this section, we first show how a query tree can be translated to an XQuery
query. Based on the structuring rules of query trees and on these translation rules,
we then present an EBNF for the subset of XQuery that query trees are capable of
expressing.

Given a query tree qt, an XQuery xq is generated by the generateXQuery algo-
rithm (algorithm 8.1). The algorithm is recursive, and it starts with n being the
root of qt. Function value(n) returns the value associated with a leaf node. For ex-
ample, suppose node n has value $x/A, then value(n) returns the expression $x/A.
Function name(n) returns the node name in qt. When n is an attribute, the function
returns the name without "@". As an example, if n has name @id, then name(n)
returns id.

As an example, the XQuery query corresponding to the query tree of Figure 4.2
is shown in Figure 8.2.

This translation algorithm assumes that each relational table X with attributes
A, B, C, ... is exported to XML as follows:

<X>

<row>

<A> ...

 ...

<C> ... </C>

...

</row>

...

</X>

According to the translation algorithm and to the structuring rules of query
trees, the XQuery queries corresponding to query trees follow the EBNF shown in
Figure 8.3. Notice that this EBNF is not equal to the EBNF of UXQuery (Figure
7.3). The difference is that the EBNF of UXQuery has the xnest operator, while
this EBNF considers pure XQuery operators (with the exception of the table input
function). In fact, when we normalize a query in UXQuery to XQuery (according to

124

generateXQuery(n)

case abstract_type(n)
τ |τC : buildElement(n)
τT |τN : table(n)
τG: group(n)
τS: leaf(n)

end case

buildElement(n)

let tag = "name(n)"
for each attribute c in children(n) whose value is grouped do

add "name(c) = ’$ name(c)/text()’"to tag
end for

for each other remaining attribute c in children(n) do

add "name(c) = ’value(c)/text()’"to tag
end for

print "< tag >"
for each non-attribute c in children(n) do

generateXQuery(c)
end for

print "</name(n)>"

leaf(n)

if n has a grouped value then

print "<name(n)>{$name(n)/text()}</name(n)>"
else

print "<name(n)>{value(n)/text()}</name(n)>"
end if

table(n)

print "{"
for each source annotation binding a table X to a variable $x in n do

print "for $x in document(’X.xml’)//row"
end for

Let W be the set of where annotations in n
Let count = 1
for each w in W do

if count > 1 then

print "AND w"
else

print "WHERE w"
end if

count = count + 1
end for

if n is a child of a node a, and abstract_type(a) = τG then

let G = {g1 , ... gs} be the GROUP children of n
for each gi in G do

Let value(gi) be of the form GROUP($x1/A1 | ... | $xk/Ak)
Find each of the xi in the value of gi that is declared in a source annotation in n
if count > 1 then

print "AND $ name(gi) = $xi/Ai"
else

print "WHERE $ name(gi) = $xi/Ai"
end if

count = count + 1
end for

end if

print "return"
buildElement(n)
print "}"

group(n)

let G = {g1, ... gs} be the GROUP children of n
let S be the set of source annotations in m, for all starred nodes m that are children of n
print "{"
for each s in S binding a variable $x to a table X do

print "let $x′ := document(’X.xml’)//row"{Notice that variable $x is primed in the generated let expression}
end for

for each gi in G do

Let value(gi) be of the form GROUP($x1/A1 | ... | $xk/Ak)
print "for $ name(gi) in distinct values ($x′

1
/A1 | ... | $x′

k
/Ak {Notice again the use of primed variables. They correspond to

the variables bound by the let expression on line (68)}
end for

buildElement(n)
print "}"

Algorithm 8.1: The generateXQuery algorithm

125

<vendors>

{for $v in document("Vendor.xml")//row

return

<vendor id=’{$v/vendorId/text()}’>

<vendorName>{$v/vendorName/text()}</vendorName>

<address>

<state>{$v/state/text()}</state>

<country>{$v/country/text()></country>

<web>

<url>{$v/url/text()}</url>

</web>

</address>

{let $sb’ := document("Sell-Book.xml")//row

let $b’ := document("Book.xml")//row

let $sd’ := document("Sell-DVD.xml")//row

let $d’ := document("DVD.xml")//row

for $price in distinct-values($sb’/price | $sd’/price)

return

<products price=’{$price/text()}’>

{for $sb in document("Sell-Book.xml")//row

for $b in document("Book.xml")//row

where $sb/vendorId = $v/vendorId and

$b/isbn = $sb/isbn and

$price = $sb/price

return

<book>

<btitle>{$b/title}</btitle>

<isbn>{$b/isbn}</isbn>

</book>

}

{for $sd in document("Sell-DVD.xml")//row

for $d in document("DVD.xml")//row

where $sd/vendorId = $v/vendorId and

$d/asin = $sd/asin and

$price = $sd/price

return

<dvd>

<dtitle>{$d/title}</dtitle>

<asin>{$d/asin}</asin>

</dvd>

}

</products>

}

</vendor>

}

</vendors>

Figure 8.2: XQuery representation of query tree of Figure 4.2

126

[1] XQuery ::= QueryBody

[2] QueryBody ::= ElmtConstructor

[3] ElmtConstructor ::= "<" QName AttList "/>" | "<" QName AttList? ">" ElmtContent+ "</" QName ">"

[4] ElmtContent ::= ElmtConstructor | EnclosedExpr+

[5] AttList ::= ((QName "=" AttValue)?)+

[6] AttValue ::= (’"’ AttValueContent ’"’) | ("’" AttValueContent "’")

[7] AttValueContent ::= "{" PathExprAtt "}"

[8] PathExprAtt ::= "$" VarName "/" QName "/" NodeTest

[9] VarName ::= QName

[10] EnclosedExpr ::= "{" (FWRExpr | LFWRExpr | PathExpr) "}"

[11] Expr ::= OrExpr

[12] OrExpr ::= AndExpr ("or" AndExpr)*

[13] AndExpr ::= ComparisonExpr ("and" ComparisonExpr)*

[14] FWRExpr ::= ((ForClause)+ WhereClause? OrderByClause? "return")* ElmtConstructor

[15] LFWRExpr ::= ((LetClause)+ (ForClauseDistinct)+ WhereClause? OrderByClause? "return")*

ElmtConstructor

[16] ComparisonExpr ::= ValueExpr (GeneralComp ValueExpr)?

[17] ValueExpr ::= PathExpr | PrimaryExpr

[18] PathExpr ::= "$" VarName "/" QName ("/" NodeTest)?

[19] NodeTest ::= TextTest

[20] TextTest ::= "text" "(" ")"

[21] ForClause ::= "for" "$" VarName "in" DocExpr

[22] ForClauseDistinct ::= "for" "$" VarName "in distinct-values" UnionExpr

[23] DocExpr ::= "table (" ’"’ QName ’"’ ")//row" | "table (" "’" QName "’" ")//row"

[24] WhereClause ::= "where" Expr

[25] GeneralComp ::= "=" | "!=" | "<" | "<=" | ">" | ">="

[26] OrderByClause ::= "order" "by" OrderSpecList

[27] OrderSpecList ::= OrderSpec ("," OrderSpec)*

[28] OrderSpec ::= PathExpr

[29] PrimaryExpr ::= Literal | ParenthesizedExpr

[30] Literal ::= NumericLiteral | StringLiteral

[31] NumericLiteral ::= IntegerLiteral | DecimalLiteral | DoubleLiteral

[32] ParenthesizedExpr ::= "(" Expr? ")"

[33] UnionExpr ::= "(" "$" VarName "/" QName (("union" | "|") "$" VarName "/" QName)* ")"

Figure 8.3: EBNF of the subset of XQuery corresponding to query trees

the rules on Section 7.1.1) the result is a query conforming to the EBNF of Figure
8.3.

XPERANTO (SHANMUGASUNDARAM et al., 2001) is quite expressive, and
can express all queries in XQuery. View forests (FERNÁNDEZ et al., 2002) are
capable of expressing any query in the XQueryCore that does not refer to element
order, use recursive functions or use is/is not operators. Query trees present the same
limitations as (FERNÁNDEZ et al., 2002), and are also not capable of expressing
if/then/else expressions; sequence of expressions (since we require that the result of
the query always be an XML document); function applications; arithmetic and set
operations. Input functions are also a limitation of query trees. It is not possible to
bind results of expressions to variables. Variables can only be bound to relational
tables, while in SilkRoute, they can be bound to arbitrary expressions.

DB2 XML Extender provides mappings from relations to XML through DAD
(Data Access Definition) files. DB2 DAD files with RDB_node method are equiva-
lent to query trees in expressive power, since all the data come directly from the
relational database and functions cannot be applied over the retrieved data. This is
meaningful, since DB2 DAD files represent features that are useful in practice, and
because this subset can easily be mapped to relational views.

It is important to state, however, that all of these three approaches are focused
in querying XML views, and not on updates. Therefore, it is understandable that

127

they are more expressive (with the exception of DB2 DAD files) than our approach.
We had to sacrifice a little bit on expressive power to favor updatability.

8.3 Real applications

We were able to obtain three real world applications:

• the XBrain Project (XBRAIN PROJECT, 2003);

• a Tobacco company (KROTH, 2003); and

• the Mondial Database (MAY, 1999).

The views produced by these applications are available in Appendix C.
The XBrain Project is an application of SilkRoute (FERNÁNDEZ et al., 2002).

The application queries a brain mapping database, over which an XML public view
is defined.

The Tobacco company example is the most interesting. The company needs
to send monthly reports to a Tobacco Producer’s Association1. The report shows
data about the producers from whom the company bought tobacco, as well as prices,
quantities, etc. The company stores all the transactions in a relational database, and
at the end of the month it generates an XML report containing all the information
solicited by the Producer’s Association.

The Mondial database is a case study for information extraction and integration.
Facts about global geography are extracted from the Web and integrated in a very
large database. An XML view over this database is then provided.

These applications highlight several characteristics of real XML views: They are
large and complex, typically involving several relational tables. They are also well
structured, which is no surprise since the source data is relational and therefore
structured. Additionally, joins are made through keys and foreign keys - a desired
property of updatable views. All of these views can be expressed using query trees
except for the portion of the Mondial view shown below:

<religions percentage="70">Muslim</religions>

<religions percentage="10">Roman Catholic</religions>

<religions percentage="20">Albanian Orthodox</religions>

As presented so far, query trees cannot represent this XML view since religions
has a child percentage but must be a leaf to have a value, a contradiction. The
same problem occurs in the Mondial view for an element called ethnicgroups. Note
that allowing attributes within atomic elements is similar to allowing mixed content
elements.

It turns out that query trees can easily be extended to deal with this case. We
can introduce a special attribute called textContent to represent the text content of
the element religions. The tree will be processed with this additional attribute, and
transformed back to its original structure before being presented to the user.

There are also three problematic attributes in the Mondial view: attribute mem-
bership of element country, and the attributes id and is_country_capital. These
attributes require computation to construct their value, and are therefore not ad-
dressed by our work as discussed earlier in this chapter.

1We omit the company and the association name for copyright reasons.

128

8.4 Normalized XML documents

A proposal to extract a nested normalized XML document (ARENAS; LIBKIN,
2002) from a relational database is presented in (WEIS, 2003). The proposal explores
keys and foreign key constraints to build a graph of dependencies between tables.
By traversing this graph, it is possible to decide which table(s) will be a top-level
element in the resulting XML document and how the remaining tables will be nested
under this element. When nesting a given table leads to redundancy, it is placed
directly below the root, and relationships are expressed using IDs and IDREFs. Such
views can be easily expressed using query trees, and are updatable for all correct
insertions, deletions and modifications.

8.5 XQuery use cases

For completeness, we also analyzed the relational use cases of XQuery (CHAM-
BERLIN et al., 2003). Of the eighteen queries presented in (CHAMBERLIN et al.,
2003), our query trees are capable of expressing only two (Q3 and Q4). This is
mainly caused by the use of aggregate operations. We believe that these use cases
highlight the difference between queries and view definitions, rather than demon-
strating shortcomings of query trees. Aggregate operators and specialized functions
are typically not considered in work on updating views.

8.6 XML documents stored in relations

XML documents are frequently mapped to relational databases for efficient stor-
age. We analyzed the most popular approach, hybrid inlining (SHANMUGASUN-
DARAM et al., 1999), to check if the XML view definitions resulting from this
mapping could be expressed by query trees.

We analyzed six different XML documents. Three of them represent information
about courses of different universities2. We also analyzed the SIGMOD Record (SIG-
MOD RECORD, 2002), the DBLP in XML (LEY, 2003) and the action XML file
of XMark (BUSSE et al., 2002).

All of the three course documents are fully compatible with query trees. DBLP
and XMark are also compatible except for one element that has mixed content (title
in DBLP and text in XMark). Although hybrid inlining does not support mixed
content, we mapped it by assuming an upper bound n on the number of fragments
of text content for an element, and used special attributes called textContent1, ...,
textContentn to capture the fragmented text values. The resulting mapping could
be expressed using query trees.

As for updates, since hybrid inlining introduces artificial primary keys, these keys
must be projected in the view in order to update the underlying relational database
through the reconstructed document. This can be handled by introducing an id
attribute that holds the primary keys in elements that represent database tuples.

2http://www.cs.washington.edu/research/xmldatasets/www/

129

8.7 Chapter Remarks

Query trees are able to capture many of the "real" XML views of relational
databases that we were able to find. The evaluations were also incredibly valuable
to identify extensions that should be made to our definitions, such as those to handle
atomic elements with attributes and mixed content elements.

As for the power of expression, we believe that the limitations of our approach
are completely justified by the need of updating the resulting view. In fact, work
on updates through relational views also considers only a subset of queries, namely
SELECT, PROJECT, JOIN.

130

131

9 CONCLUSIONS

We believe that this thesis has given the first step towards the solution of the (pre-
viously unsolved) problem of updates through XML views over relational databases.
The proposed solution takes advantage of existing work on updates through rela-
tional views. The XML views are constructed using query trees, which allow nesting
as well as heterogeneous sets of tuples, and can be used to capture most of the
features we encountered in real views.

The main contributions of this thesis are the mapping of the XML view to a
set of underlying relational views, and the mapping of updates on an XML view
instance to a set of updates on the underlying relational views. By providing
these mappings, the XML update problem is reduced to the relational view up-
date problem and existing techniques on updates through relational views (DAYAL;
BERNSTEIN, 1982a; KELLER, 1985; BANCILHON; SPYRATOS, 1981; LECHT-
ENBÖRGER, 2003) can be leveraged. As an example, we show how to use the
approach of (DAYAL; BERNSTEIN, 1982a) to produce side-effect free updates on
the underlying relational database.

Another benefit of our approach is that query trees are agnostic with respect to a
query language. Query trees represent an intermediate query form, and any (subset
of an) XML query language that can be mapped to this form could be used as the
top level language. In particular, we have implemented our approach in a system
called Pataxó that uses a subset of XQuery to build the XML views and translates
XQuery expressions into query trees as an intermediate representation.

Similarly, our update language represents an intermediate form that could be
mapped into from a number of high-level XML update languages. In our implemen-
tation, we use a graphical user interface which allows users to click on the update
point or (in the case of a set oriented update) specify the path in a separate window
and see what portions of the tree are affected.

The remaining of this chapter is structured as follows. We present a detailed
list of contributions in Section 9.1. A list of published papers resulting from this
thesis is presented in Section 9.2. Section 9.3 compares our work with related work.
Future work is discussed in Section 9.4.

9.1 Contributions

We now present a detailed list of the main contributions of this thesis:

A formalism to specify XML views over relational databases. Query trees
can be used as an intermediate representation of a top-level query language

132

(BRAGANHOLO; DAVIDSON; HEUSER, 2004a). This makes our approach
syntax independent. Any language that can be mapped to query trees can
be used to specify the views. We have made an evaluation of the power of
expression of query trees that shows that query trees are expressive enough to
be applied in practice.

Mapping from XML views to relational views. Given an XML view specified
by a query tree, we provide algorithms to map it to a set of corresponding re-
lational views. We also provide algorithms to translate updates over the XML
view to updates over the corresponding relational views (BRAGANHOLO;
DAVIDSON; HEUSER, 2004a). We thus transform an open problem – that of
updating relational databases through XML views – into an existing problem
– that of updating relational databases through relational views.

An XML updatability study. We have made an updatability study of XML
views constructed by query trees based on a preliminary study (BRAGAN-
HOLO; DAVIDSON; HEUSER, 2003a) that uses the nested relational algebra
as the view definition language. Our study is based on the side-effect free idea
of (DAYAL; BERNSTEIN, 1982a), and uses their theory to identify classes of
updatable views. We have identified three different classes of views: (i) one
that is updatable for all possible insertions; (ii) one that is updatable for all
possible insertions, deletions and modifications; and (iii) one whose updata-
bility can be reasoned about using Theorem 6.1.

A subset of XQuery to specify XML views over relational databases. We
have proposed and implemented a subset of XQuery which is capable of con-
structing XML views over relational databases (BRAGANHOLO; DAVID-
SON; HEUSER, 2003b). UXQuery uses query trees as an intermediate repre-
sentation to map the resulting XML view to relational views.

PATAXÓ. We have implemented our ideas in the Pataxó system to show the feasi-
bility of our approach. Pataxó uses UXQuery as the view definition language,
and uses the approach of (DAYAL; BERNSTEIN, 1982a) to translate updates
from the relational views to the underlying relational database.

9.2 Published Papers

This thesis has resulted in several published papers:

1. BRAGANHOLO, V.; DAVIDSON, S.; HEUSER, C. From XML View Updates
to Relational View Updates: old solutions to a new problem. In: Proceed-
ings of VLDB - International Conference on Very Large Databases, Toronto,
Canada, 2004. Pages 276–287(BRAGANHOLO; DAVIDSON; HEUSER, 2004a).

2. BRAGANHOLO, V.; DAVIDSON, S.; HEUSER, C. UXQuery: building up-
datable XML views over relational databases. In: Proceedings of SBBD -
Brazilian Symposium on Databases, Manaus, AM, Brazil, 2003. Pages 26–40
(BRAGANHOLO; DAVIDSON; HEUSER, 2003b). This paper was nominated
to the José Mauro de Castilho Best Paper Award.

133

3. BRAGANHOLO, V.; DAVIDSON, S.; HEUSER, C. On the updatability of
XML views over relational databases. In: Proceedings of WebDB, held in
conjunction with SIGMOD/PODS, San Diego, California, 2003. Pages 31–36.
(BRAGANHOLO; DAVIDSON; HEUSER, 2003a).

4. BRAGANHOLO, V.; HEUSER, C. Updating Relational Databases through
XML Views. In: Proceedings of WTDBD - I Workshop de Teses e Dissertações
em Banco de Dados, held in conjunction with SBBD 2002, Gramado, RS,
Brazil, 2002. Pages 67–71. (BRAGANHOLO; HEUSER, 2002a).

5. BRAGANHOLO, V.; HEUSER, C.; VITTORI, C. Updating Relational Data-
bases through XML Views. In: Proceedings of IIWAS 2001 - Third Interna-
tional Conference on Information Integration and Web-based Applications &
Services, Linz, Austria, 2001. (BRAGANHOLO; HEUSER; VITTORI, 2001).

There are also some papers not directly related with the thesis, but that are
results of the initial studies on XML.

1. BRAGANHOLO, V.; HEUSER, C. XML Schema, RDF(S) e UML: uma com-
paração. (Title in English: "XML Schema, RDF(S) and UML: a compari-
son"). In: Proceedings of IDEAS 2001 - 4th Iberoamerican Workshop on Re-
quirements Engineering and Software Environments, Santo Domingo, Heredia,
Costa Rica, 2001. Pages 78–90. (BRAGANHOLO; HEUSER, 2001).

2. MELLO, R.; DORNELES, C.; KADE, A.; BRAGANHOLO, V.; HEUSER,
C. Dados Semi-Estruturados. (Title in English: "Semistructured Data"). In:
Proceedings of SDDB 2000, João Pessoa, PB, 2000. Tutorial. (MELLO et al.,
2000).

We have also developed several technical reports. They are longer versions of
the published papers, including theorem proofs and details that were omitted from
the papers due to space restrictions.

1. BRAGANHOLO, V.; DAVIDSON, S.; HEUSER, C. Propagating XML View
Updates to a Relational Database. Technical Report RP-341. PPGC, UFRGS.
Porto Alegre, RS, Brazil. 2004. (BRAGANHOLO; DAVIDSON; HEUSER,
2004b).

2. BRAGANHOLO, V.; DAVIDSON, S.; HEUSER, C. Using XQuery to build
updatable XML views over relational databases. Technical Report MS-CIS-
03-18. University of Pennsylvania. Philadelphia, PA, USA. 2003. (BRAGAN-
HOLO; DAVIDSON; HEUSER, 2003c).

3. BRAGANHOLO, V.; DAVIDSON, S.; HEUSER, C. Reasoning about the up-
datability of XML views over relational databases. Technical Report MS-CIS-
03-13. University of Pennsylvania. Philadelphia, PA, USA. 2003. (BRAGAN-
HOLO; DAVIDSON; HEUSER, 2003d).

4. BRAGANHOLO, V.; HEUSER, C. Updating Relational Databases through
XML Views. Technical Report TP-328. UFRGS, Porto Alegre, RS, Brasil,
2002. 61 pages. (BRAGANHOLO; HEUSER, 2002b).

134

Table 9.1: Comparison with Related Work
Number of
nodes in the
tree

Number of SQL
queries

Data Input

Query Trees n

x, where x is the
number of τN nodes
on the tree, and
x < n

table input
function

SilkRoute n n
default vari-
ables

XPERANTO n 1
view input
function

Finally, but not less important, this thesis has also originated four Undergraduate
Final Projects. All of them were advised by Carlos Heuser (advisor) and Vanessa
Braganholo (co-advisor).

1. AGRA, A. Implementação de uma Proposta para Atualização de Bancos de
Dados através de Visões. (Title in English: "An implementation of a proposal
for updating Relational Databases through views"). Instituto de Informática,
UFRGS. July of 2004. (AGRA, 2004).

2. NONNENMACHER, M. Uma Extensão para a API DOM para Suportar
Atualização de Bancos de Dados Relacionais através de Visões XML. (Ti-
tle in English: "An extention to the DOM API to support updates through
XML views"). Instituto de Informática, UFRGS. March of 2003. (NONNEN-
MACHER, 2003).

3. VICTOLLA, F. Ferramenta para Automatização do Projeto Lógico de um
Banco de Dados e da Implementação do SGBD usando Transformações XSLT.
(Title in English: "A tool to automate the Logical Design of a Database and
its implementation using XSLT Transformations"). Instituto de Informática,
UFRGS. May of 2002. (VICTOLLA, 2002).

4. FEIJÓ, D. Extrator de Esquema de um Banco de Dados. (Title in English:
"Schema extractor of a Database"). Instituto de Informática, UFRGS. May
of 2002. (FEIJÓ, 2002).

9.3 Comparison with Related Work

We now briefly compare our approach with SilkRoute and XPERANTO. This
comparison comprises the way we generate the view, and what are the SQL queries
generated. Table 9.1 summarizes the comparison.

9.3.1 SilkRoute

In SilkRoute, for a view forest with n nodes, n SQL queries are generated. Each
of those queries are executed and one XML element is generated for each tuple in
the result set associated to n. Nodes are then glued together using variable bindings
to find out how to connect them. In our approach, we do not use the SQL engine

135

to generate the XML view. Instead, we use an XQuery engine to generate the view,
and we produce SQL statements to map an XML view to a set of relational views.

To illustrate, assume the query tree of Figure 4.2 and the view forest of Figure
3.3. They both generate the XML view of Figure 1.1. For that view forest we
have 26 SQL queries, while for the query tree we generate 2 relational views. The
interesting point is to compare the SQL queries generated for nodes book and dvd.
In the view forest, we have:

N1.1.4.1(<book>) := SELECT * FROM Vendor v, Book b, SellBook sb

WHERE sb.vendorId = v.vendorId AND b.isbn = sb.isbn

N1.1.4.2(<dvd>) := SELECT * FROM Vendor v, DVD d, SellDVD sd

WHERE sd.vendorId = v.vendorId AND d.asin = sd.asin

For the query tree, we have:

<book> :=

SELECT v.vendorId AS id, v.vendorName AS vendorName,

v.state AS state, v.country AS country,

sb.price AS bprice, b.isbn AS isbn, b.title AS btitle

FROM (Vendor AS v LEFT JOIN (SellBook AS sb INNER JOIN

Book AS B ON b.isbn=sb.isbn) ON v.vendorId=sb.vendorId);

<dvd> :=

SELECT v.vendorId AS id, v.vendorName AS vendorName,

v.state AS state, v.country AS country,

sd.price AS dprice, d.asin AS asin, d.title AS dtitle

FROM (Vendor AS v LEFT JOIN (SellDVD AS sd INNER JOIN

DVD AS d ON d.asin=sd.asin) ON v.vendorId=sd.vendorId)

Notice that the same base tables are used, and also the same join conditions.
The difference is the SELECT clause, since in SilkRoute a star was used, while in
our approach we select each attribute by its name. The star was used in SilkRoute
because there will be specific queries that will select the appropriate values for the
leaf nodes. Another difference is that we use LEFT JOIN, while SilkRoute uses
regular join. The reason for this difference is the same - there is one SQL query for
each node. In this way, the SQL query for node vendor will select only data from
table Vendor (see the SQL query corresponding to node vendor on Section 3.1.1).
This will retrieve all vendors, despite the fact that they sell or do not sell books or
DVDs. In our case, we use LEFT JOIN to make sure a vendor appears in the view
even if it does not sell any book or DVD.

Another difference between SilkRoute and our approach is the way in which
data is made available to queries. In our approach, we have an input function
table which is used to access relational data. In SilkRoute, the default variables
$CanonicalView and $PublicView are used to this purpose.

9.3.2 XPERANTO

In XPERANTO (SHANMUGASUNDARAM et al., 2001), a single SQL query is
generated for each view definition. This query, however, has several subqueries. It is
not possible to know the exact syntax of the SQL queries generated by XPERANTO,
since we have only access to its internal representation (XQGM). One similarity to

136

our work, however, is the use of outer joins to preserve top elements that have no
descendants. In XPERANTO, this is done after a process called query decorrelation.

Another similarity with our approach is the input function XPERANTO uses to
access relational data. They have defined an input function view, which is the only
input function available. This function accesses other XML views, as well as the
default view, which represents the database in a canonical XML. Our input function
table plays a similar role, but it can only access relational tables, not other XML
views.

9.4 Future Work

We now describe in details some open problems that could lead to future research
work:

Long Transactions An interesting direction is to support "long transactions".
The scenario is as follows: a user specifies an XML view, and this view is
sent to another application (or user) to be updated. The updated view may
take hours or days to return to the system. In this case, locking is not a good
solution. One possibility is to compare the original database state with the
current database state to detect if anything has changed – this can be done
simply by comparing the original view with a new view reconstructed from the
current database state, since only portions of data relevant to the view mat-
ters in this case. If nothing has changed since then, then the updates could
be propagated to the database. However, if something has changed, then it is
necessary to carefully study the possible actions. The Software Configuration
Management (ISO, 1995; IEEE, 1998, 1987) area can bring some light to this
problem. It studies both how to identify conflicts in data, and how to deal
with them.

Another problem in this scenario is to identify what had changed in the view.
Since we are using long transactions, we are assuming that the updates will
not be issued using an update language. Instead, the user or application would
alter (edit) the view directly. The changes would need to be "discovered" by
comparing the original XML view with the updated one, and finding deltas.
There is a master student that is currently starting to look at this problem.

User feedback Another important open problem in our approach is on how to
explain to users the reasons why a given update was refused. This happens
because of the mismatch between what users see (and how he understands the
system), and how updates are being translated. As an example, suppose the
user wants to delete a subtree t at the XML view. This update is translated
to a deletion over the corresponding relational view V . Suppose that this
update fails because the translation procedure found out that there would be
a side-effect. The side-effect was detected using the relational views and its
constraints, which the user is not aware of. The question is: how to explain
to the user the reason of the rejection of that update?

This gets even more complicate in our scenario, since any translation proce-
dure of updates through relational views can be used. Consequently, different
notions of correctness can be adopted, and different error messages can hap-
pen.

137

A nice future direction is then to investigate if it is possible to find a generic
mapping that explains the results of updates to users.

Expressive Power Query trees are obviously less expressive than XQuery. In par-
ticular, they are not capable of expressing aggregations and arbitrary restruc-
turing in the XML view. Although this is a trade-off imposed by our goal of
updating the relational database through XML views, it may be possible to
recognize updatable portions of views expressed in a more general language.
For example, if the view presented author information and the total number of
papers they had written, it is still possible to update author information even
if updating the total number of papers is not allowed. We plan to overcome
this limitation in future work.

We also plan to extend query trees to support mixed content elements and leaf
nodes with attributes using the directions suggested in Sections 8.3 and 8.6.

Order Another interesting direction is to support order. There are cases where
preserving order is important. An example is a database that stores papers
and their authors. Then, changing the order of the authors in the view means
something that can not be disregarded. We plan to study this carefully and
include order support in our approach. This becomes more interesting with
the adoption of a more powerful update language. We plan to adopt one as
soon as it becomes available.

Updatability We also plan to study the updatability of XML views using other
proposals of updates through relational views in the literature. It would be in-
teresting to compare the updatability results using different notions of correct
updates found in literature.

Optimization of view generation Another point we plan to address is the opti-
mization of the view generation process. We believe that we can use the rela-
tional engine to execute the data extraction part of the view definition. Our
initial studies show that it would not be difficult to implement an approach
similar to SilkRoute in order to improve the way XML views are generated.
However, we do not plan to generate as much SQL statements as SilkRoute
does, as this is also inefficient. We believe it is possible to use the SQL state-
ments of the relational views corresponding to a query tree to generate the
view.

Redundancy Detection We are currently studying the database constraints and
the view definition query to try do identify redundancy in the XML view. As
illustrated in this thesis, redundancy is a source of bad updates when we try to
update just some of the occurrences of a redundant data. By identifying the
redundant portions of an XML view, we can help users to construct update
paths that touches all the occurrences of a given redundant data.

138

139

REFERENCES

ABITEBOUL, S.; CLUET, S.; MILO, T. Querying and Updating the File. In: IN-
TERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, VLDB, 1993,
Dublin, Ireland. Proceedings. . . San Francisco: Morgan Kaufmann, 1993. p.73–84.

ABITEBOUL, S.; HULL, R.; VIANU, V. Foundations of Databases. [S.l.]:
Addison-Wesley, 1996.

ABITEBOUL, S.; QUASS, D.; MCHUGH, J.; WIDOM, J.; WIENER, J. The Lorel
Query Language for Semistructured Data. International Journal on Digital Li-
braries, [S.l.], v.1, n.1, p.68–88, 1997.

AGRA, A. Implementação de uma Proposta para Atualização de Bancos
de Dados através de Visões. 2004. Projeto de Diplomação — Instituto de Infor-
mática, UFRGS, Porto Alegre, RS, Brasil.

AGRAWAL, D.; ABBADI, A. E.; SINGH, A.; YUREK, T. Efficient View
Maintenance at Data Warehouses. In: INTERNATIONAL CONFERENCE ON
MANAGEMENT OF DATA, SIGMOD, 1997, Tucson, Arizona. Proceedings. . .
[S.l.: s.n.], 1997. p.417–427.

APACHE SOFTWARE FOUNDATION. Xerces Java Parser. 2000. Avaliable at:
<http://xml.apache.org/xerces-j/>. Visited on July 10, 2003.

APACHE SOFTWARE FOUNDATION. Apache Xindice. 2002. Available at:
<http://xml.apache.org/xindice>. Visited on Feb. 2, 2004.

ARENAS, M.; LIBKIN, L. A Normal Form for XML Documents. In: INTERNA-
TIONAL CONFERENCE ON PRINCIPLES OF DATABASE SYSTEMS, PODS,
2002, Madison, Wisconsin. Proceedings. . . [S.l.: s.n.], 2002.

BANCILHON, F.; SPYRATOS, N. Update Semantics of Relational Views. ACM
Transactions on Database Systems, TODS, [S.l.], v.6, n.4, Dec. 1981.

BARSALOU, T.; SIAMBELA, N.; KELLER, A. M.; WIEDERHOLD, G. Updating
Relational Databases through Object-Based Views. In: INTERNATIONAL CON-
FERENCE ON MANAGEMENT OF DATA, SIGMOD, 1991, Denver, CO. Pro-
ceedings. . . [S.l.: s.n.], 1991. p.248–257.

BOAG, S.; CHAMBERLIN, D.; FERNANDEZ, M. F.; FLORESCU, D.; ROBIE,
J.; SIMéON, J. XQuery 1.0: an XML query language. Available at: <http://www.

140

w3.org/TR/2004/WD-xquery-20040723/>. Visited on Aug. 10, 2004. W3C Working
Draft.

BOHANNON, P.; GANGULY, S.; KORTH, H.; NARAYAN, P.; SHENOY, P. Opti-
mizing View Queries in ROLEX to Support Navigable Result Trees. In: INTERNA-
TIONAL CONFERENCE ON VERY LARGE DATA BASES, VLDB, 2002, Hong
Kong, China. Proceedings. . . San Francisco: Morgan Kaufmann, 2002.

BONIFATI, A.; BRAGA, D.; CAMPI, A.; CERI, S. Active XQuery. In: INTER-
NATIONAL CONFERENCE ON DATA ENGINEERING, ICDE, 2002, San Jose,
California. Proceedings. . . [S.l.: s.n.], 2002.

BONIFATI, A.; FLESCA, S.; PUGLIESE, A. Semantic Issues of XML Updates.
[S.l.]: Istituto di Calcolo e Reti ad Alte Prestazioni, 2003. (Technical Report RT-
ICAR-CS-03-15).

BOUCHOU, B.; ALVES, M. H. F. Updates and Incremental Validation of XML
documents. In: INTERNATIONAL WORKSHOP ON DATABASE PROGRAM-
MING LANGUAGES, DBPL, 2003, Potsdam, Germany. Proceedings. . . Berlin:
Springer, 2003. p.216–232. (Lecture Notes in Computer Science, v.2921).

BRAGANHOLO, V.; DAVIDSON, S. B.; HEUSER, C. A. On the updatability of
XML views over relational databases. In: INTERNATIONAL WORKSHOP ON
THE WEB AND DATABASES, WEBDB, 2003, San Diego, CA. Proceedings. . .
[S.l.: s.n.], 2003.

BRAGANHOLO, V.; DAVIDSON, S. B.; HEUSER, C. A. UXQuery: building up-
datable XML views over relational databases. In: SIMPÓSIO BRASILEIRO DE
BANCO DE DADOS, SBBD, 2003, Manaus, AM, Brasil. Anais. . . Belo Horizonte:
Departamento de Ciência da Computação/UFMG, 2003. p.26–40.

BRAGANHOLO, V.; DAVIDSON, S. B.; HEUSER, C. A. Using XQuery to build
updatable XML views over relational databases. [S.l.]: Department of Com-
puter and Information Science, University of Pennsylvania, 2003. (MS-CIS-03-18).

BRAGANHOLO, V.; DAVIDSON, S. B.; HEUSER, C. A. Reasoning about the
updatability of XML views over relational databases. [S.l.]: Department of
Computer and Information Science, University of Pennsylvania, 2003. (MS-CIS-03-
13).

BRAGANHOLO, V.; DAVIDSON, S. B.; HEUSER, C. A. From XML View Updates
to Relational View Updates: old solutions to a new problem. In: INTERNATIONAL
CONFERENCE ON VERY LARGE DATA BASES, VLDB, 2004, Toronto, Canada.
Proceedings. . . San Francisco: Morgan Kaufmann, 2004. p.276–287.

BRAGANHOLO, V.; DAVIDSON, S. B.; HEUSER, C. A. Propagating XML
View Updates to a Relational Database. Porto Alegre, RS, Brasil: UFRGS,
2004. (TR-341).

BRAGANHOLO, V.; HEUSER, C. A. XML Schema, RDF(S) e UML: uma compara-
çao. In: IBEROAMERICAN WORKSHOP ON REQUIREMENTS ENGINEER-
ING AND SOFTWARE ENVIRONMENTS, IDEAS, 2001, Santo Domingo, Here-
dia, Costa Rica. Proceedings. . . [S.l.: s.n.], 2001. p.78–90.

141

BRAGANHOLO, V.; HEUSER, C. A. Updating Relational Databases through XML
Views. In: WORKSHOP DE TESES E DISSERTAÇÕES EM BANCO DE DADOS,
WTDBD, 2002, Gramado, RS, Brasil. Anais. . . [S.l.: s.n.], 2002. p.67–71.

BRAGANHOLO, V.; HEUSER, C. A. Updating Relational Databases through
XML Views. Porto Alegre, RS, Brasil: PPGC: UFRGS, 2002. (TR-328).

BRAGANHOLO, V.; HEUSER, C. A.; VITTORI, C. Updating Relational
Databases through XML Views. In: INTERNATIONAL CONFERENCE ON IN-
FORMATION INTEGRATION AND WEB-BASED APPLICATIONS & SER-
VICES, IIWAS, 2001, Linz, Austria. Technical Sessions. . . Wien: Österreichische
Computer Gesellschaft, 2001. p.85–94.

BRAY, T.; HOLLANDER, D.; LAYMAN, A. Namespaces in XML. 1999. Avail-
able at: <http://www.w3.org/TR/REC-xml-names/>. Visited on Aug. 10, 2004. W3C
Recommendation.

BRAY, T.; PAOLI, J.; SPERBERG-MCQUEEN, C. M.; MALER, E.; YERGEAU,
F. Extensible Markup Language (XML) 1.0 (Third Edition). 2004. Available
at: <http://www.w3.org/TR/2004/REC-xml-20040204/>. Visited on Aug. 10, 2004.
W3C Recommendation.

BUSSE, R.; CAREY, M.; FLORESCU, D.; KERSTEN, M.; MANOLESCU, I.;
SCHMIDT, A.; WAAS, F. XMARK - An XML Benchmark Project. Available
at: <http://monetdb.cwi.nl/xml/downloads.html>. Visited on Oct. 10, 2003.

CAREY, M. J.; FLORESCU, D.; IVES, Z. G.; LU, Y.; SHANMUGASUNDARAM,
J.; SHEKITA, E. J.; SUBRAMANIAN, S. N. XPERANTO: publishing object-
relational data as xml. In: INTERNATIONAL WORKSHOP ON THE WEB AND
DATABASES, WEBDB, 2000, Dallas, Texas. Proceedings. . . [S.l.: s.n.], 2000.
p.105–110.

CAREY, M. J.; KIERNAN, J.; SHANMUGASUNDARAM, J.; SHEKITA, E. J.;
SUBRAMANIAN, S. N. XPERANTO: middleware for publishing object-relational
data as XML documents. In: INTERNATIONAL CONFERENCE ON VERY
LARGE DATA BASES, VLDB, 2000, Cairo, Egypt. Proceedings. . . San Fran-
cisco: Morgan Kaufmann, 2000. p.646–648.

CHAMBERLIN, D.; FANKHAUSER, P.; FLORESCU, D.; MARCHIORI, M.; RO-
BIE, J. XML Query Use Cases. 2003. Available at: <http://www.w3.org/TR/

2003/WD-xquery-use-cases-20031112/>. Visited on Oct. 10, 2003. W3C Working
Draft.

CHAUDHURI, S.; KAUSHIK, R.; NAUGHTON, J. On Relational Support for XML
Publishing: beyond sorting and tagging. In: INTERNATIONAL CONFERENCE
ON MANAGEMENT OF DATA, SIGMOD, 2003, San Diego, CA. Proceedings. . .
[S.l.: s.n.], 2003.

CHEN, Y.; DAVIDSON, S. B.; ZHENG, Y. Constrain Preserving XML stor-
age in Relations. In: INTERNATIONAL WORKSHOP ON THE WEB AND
DATABASES, WEBDB, 2002, Madison, Wisconsin. Proceedings. . . [S.l.: s.n.],
2002. p.7–12.

142

CHEN, Y.; DAVIDSON, S. B.; ZHENG, Y. RRXS: redundancy reducing XML
storage in relations. In: INTERNATIONAL CONFERENCE ON VERY LARGE
DATA BASES, VLDB, 2003, Berlin, Germany. Proceedings. . . San Francisco:
Morgan Kaufmann, 2003.

CHENG, J.; XU, J. XML and DB2. In: INTERNATIONAL CONFERENCE ON
DATA ENGINEERING, ICDE, 2000, San Diego, CA. Proceedings. . . [S.l.: s.n.],
2000.

CLARK, J.; DEROSE, S. XML Path Language (XPath) Version 1.0. Avail-
able at: <http://www.w3.org/TR/xpath>. Visited on Oct. 10, 2003. W3C Recomen-
dation.

CONRAD, A. A Survey of Microsoft SQL Server 2000 XML Features.
MSDN Library. July 2001. Available at: <http://msdn.microsoft.com/library/

en-us/dnexxml/html/xml07162001.asp>. Visited on Mar. 20, 2004.

CONRAD, A. Interactive Microsoft SQL Server & XML Online Tutorial.
2001. Available at: <http://www.topxml.com/tutorials/main.asp?id=sqlxml>. Vis-
ited on Dec. 10, 2002.

COSMADAKIS, S. S.; PAPADIMITRIOU, C. H. Updates of Relational Views.
Journal of the Association for Computing Machinery, [S.l.], v.31, n.4, p.742–
760, Oct. 1984.

DATE, C. J. An Introduction to Database Systems. 7th ed. [S.l.]: Addison
Wesley, 2000.

DAYAL, U.; BERNSTEIN, P. A. On the updatability of Relational Views. In:
INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES, VLDB,
1978, West Berlin, Germany. Proceedings. . . [S.l.]: IEEE Computer Society, 1978.
p.368–377.

DAYAL, U.; BERNSTEIN, P. A. On the correct translation of update operations
on relational views. ACM Transactions on Database Systems, TODS, [S.l.],
v.8, n.2, p.381–416, Sept. 1982.

DAYAL, U.; BERNSTEIN, P. A. On the updatability of network views - extending
relational view theory to the network model. Information Systems, [S.l.], v.7, n.2,
p.29–46, 1982.

DEHAAN, D.; TOMAN, D.; CONSENS, M.; OZSU, M. T. A Comprehensive
XQuery to SQL Translation using Dynamic Interval Encoding. In: INTERNA-
TIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD, 2003, San
Diego, CA. Proceedings. . . [S.l.: s.n.], 2003.

DESCHLER, K.; RUNDENSTEINER, E. MASS: a multi-axis storage structure for
large XML documents. In: CONFERENCE ON INFORMATION AND KNOWL-
EDGE MANAGEMENT, CIKM, 2003, New Orleans, Louisiana. Proceedings. . .
[S.l.: s.n.], 2003.

143

DEUTSCH, A.; FERNÁNDEZ, M.; DANIELA FLORESCU, A. L.; SUCIU, D. A
Query Language for XML. In: INTERNATIONAL WORLD WIDE WEB CON-
FERENCE, WWW, 1999, Toronto. Proceedings. . . [S.l.: s.n.], 1999.

DEUTSCH, A.; FERNANDEZ, M.; SUCIU, D. Storing semistructured data with
STORED. In: INTERNATIONAL CONFERENCE ON MANAGEMENT OF
DATA, SIGMOD, 1999, Philadelphia, Pennsylvania. Proceedings. . . [S.l.: s.n.],
1999. p.431–442.

DEUTSCH, A.; PAPAKONSTANTINOU, Y.; XU, Y. Minimization and Group-
By Detection for Nested XQueries. In: INTERNATIONAL CONFERENCE ON
DATA ENGINEERING, ICDE, 2004, Boston, USA. Proceedings. . . [S.l.: s.n.],
2004. p.839.

DEUTSCH, A.; PAPAKONSTANTINOU, Y.; XU, Y. The NEXT Framework for
Logical XQuery Optimization. In: INTERNATIONAL CONFERENCE ON VERY
LARGE DATA BASES, VLDB, 2004, Toronto, Canada. Proceedings. . . San Fran-
cisco: Morgan Kaufmann, 2004. p.168–179.

DRAPER, D.; FANKHAUSER, P.; FERNáNDEZ, M.; MALHOTRA, A.;
ROSE, K.; RYS, M.; SIMÉON, J.; WADLER, P. XQuery 1.0 and
XPath 2.0 Formal Semantics. 2004. Available at <http://www.w3.org/TR/2003/

WD-xquery-semantics-20040220/>. Visited on Aug. 23, 2004. W3C Working Draft.

EISENBERG, A.; MELTON, J. SQL/XML is Making Good Progress. SIGMOD
Record, [S.l.], v.31, n.2, 2002.

EMBLEY, D. W.; MOK, W. Y. Developing XML Documents with Guaranteed
“Good” Properties. In: INTERNATIONAL CONFERENCE ON CONCEPTUAL
MODELING, ER, 2001, Yokohama, Japan. Proceedings. . . Berlin: Springer,
2001. p.426–441. (Lecture Notes in Computer Science, v.2224).

FEIJÓ, D. V. Extrator de Esquema de um Banco de Dados. Instituto de
Informática. 2002. Projeto de Diplomação — Instituto de Informática, UFRGS,
Porto Alegre, RS, Brasil.

FERNÁNDEZ, M.; KADIYSKA, Y.; SUCIU, D.; MORISHIMA, A.; TAN, W.-C.
SilkRoute: a framework for publishing relational data in XML. ACM Transactions
on Database Systems, TODS, [S.l.], v.27, n.4, p.438–493, Dec. 2002.

FERNÁNDEZ, M.; MORISHIMA, A.; SUCIU, D. Efficient Evaluation of XML
Middle-ware Queries. In: INTERNATIONAL CONFERENCE ON MANAGE-
MENT OF DATA, SIGMOD, 2001, Santa Barbara, California. Proceedings. . .
[S.l.: s.n.], 2001. p.103–114.

FERNÁNDEZ, M.; MORISHIMA, A.; SUCIU, D.; TAN, W. Publishing Relational
Data in XML: the SilkRoute approach. IEEE Data Engineering Bulletin, [S.l.],
v.24, n.2, p.12–19, 2001.

FERNÁNDEZ, M.; TAN, W.-C.; SUCIU, D. SilkRoute: Trading between Relations
and XML. In: INTERNATIONAL WORLD WIDE WEB CONFERENCE, WWW,
2000, Amsterdam. Proceedings. . . [S.l.: s.n.], 2000.

144

FLORESCU, D.; KOSSMANN, D. A performance evaluation of alternative
mapping schemes for storing XML data in a relational database. France:
INRIA, 1999. (Technical Report 3684).

FURTADO, A. L.; CASANOVA, M. A. Updating Relational Views. In: KIM, W.;
REINER, D. S.; BATORY, D. S. (Ed.). Query Processing in Database Sys-
tems. Berlin, Heidelberg: Springer, 1985. p.127–142.

FURTADO, A. L.; SEVCIK, K. C.; SANTOS, C. S. d. Permitting updates through
views of data bases. Information Systems, [S.l.], v.4, n.4, p.269–283, Oct. 1979.

HAAS, L.; FREYTAG, J.; LOHMAN, G.; PIRAHESH, H. Extensible Query Pro-
cessing in Starburst. In: INTERNATIONAL CONFERENCE ON MANAGEMENT
OF DATA, SIGMOD, 1989, Portland. Proceedings. . . [S.l.: s.n.], 1989. p.377–388.

IEEE. IEEE Std 1042: IEEE Guide to Software Configuration Management. [S.l.],
1987.

IEEE. IEEE Std 828: IEEE Standard for Software Configuration Management
Plans. [S.l.], 1998.

INTELLIGENT SYSTEM RESEARCH. ODBC2XML: merging ODBC data into
xml documents. 2001. Available at: <http://www.intsysr.com/odbc2xml.htm>.
Visited on Dec. 15, 2002.

ISO. ISO 10007: Quality Management - Guidelines for Configuration Management.
[S.l.], 1995.

ISO. ISO/IEC 9075-1: SQL – Part 1: framework (SQL/Framework). [S.l.], 2003.

ISO. ISO/IEC 9075-2: SQL – Part 2: foundation (SQL/Foundation). [S.l.], 2003.

ISO. ISO/IEC 9075-11: SQL – Part 11: information and definition schemas
(SQL/Schemata). [S.l.], 2003.

ISO. ISO/IEC 9075-14: SQL – Part 14: XML-related specifications (SQL/XML).
[S.l.], 2003.

ISO. International Organization for Standardization. Available at: <http:

//www.iso.ch/>. Visited on Aug. 17, 2004.

JAESCHKE, G.; SCHEK, H.-J. Remarks on the algebra of non first nor-
mal form relations. In: INTERNATIONAL CONFERENCE ON PRINCIPLES
OF DATABASE SYSTEMS, PODS, 1982, Los Angeles, CA. Proceedings. . .
[S.l.: s.n.], 1982. p.124–138.

JAGADISH, H. V.; AL-KHALIFA, S.; CHAPMAN, A.; LAKSHMANAN, L. V.;
NIERMAN, A.; PAPARIZOS, S.; PATEL, J. M.; SRIVASTAVA, D.; WIWATWAT-
TANA, N.; WU, Y.; YU, C. TIMBER: a native XML database. The VLDB Jour-
nal, [S.l.], v.11, n.4, p.274–291, 2002.

JIANG, H.; LU, H.; WANG, W.; OOI, B. C. XR-Tree: indexing XML data for
efficient structural joins. In: INTERNATIONAL CONFERENCE ON DATA EN-
GINEERING, ICDE, 2003, Bangalore, India. Proceedings. . . [S.l.: s.n.], 2003.

145

KAY, M. Saxon XSLT and XQuery Processor. 2001. Available at: <http:

//sourceforge.net/projects/saxon>. Visited on July 13, 2003.

KELLER, A. M. Algorithms for Translating View Updates to Database Updates for
Views Involving Selections, Projections, and Joins. In: INTERNATIONAL CON-
FERENCE ON PRINCIPLES OF DATABASE SYSTEMS, PODS, 1985, Portland,
Oregon. Proceedings. . . New York: ACM, 1985. p.154–163.

KELLER, A. M. Comments on Bancilhon and Spyratos’ "Update Semantics and
Relational Views". ACM Transactions on Database Systems, TODS, [S.l.],
v.12, n.3, p.521–523, Sept. 1987.

KELLER, A. M.; WIEDERHOLD, G. Penguin: objects for programs, relations for
persistence. In: CHAUDHRI, A. B.; ZICARI, R. (Ed.). Succeeding with Object
Databases. [S.l.]: John Wiley & Sons, 2001.

KELLER, M. The role of semantics in translating view updates. IEEE Computer,
[S.l.], v.19, n.1, p.63–73, 1986.

KROTH, E. Tobacco Company. Personal communication, June 2003.

LANGERAK, R. View updates in relational databases with an independent scheme.
ACM Transactions on Database Systems, TODS, [S.l.], v.15, n.1, p.40–66,
1990.

LAUX, A.; MARTIN, L. XUpdate WD. Sept. 2000. Available at: <http://

xmldb-org.sourceforge.net/xupdate/xupdate-wd.html>. Visited on Aug. 18, 2004.
XML:DB Working Draft.

LECHTENBÖRGER, J. The Impact of the Constant Complement Approach To-
wards View Updating. In: INTERNATIONAL CONFERENCE ON PRINCI-
PLES OF DATABASE SYSTEMS, PODS, 2003, San Diego, CA. Proceedings. . .
[S.l.: s.n.], 2003. p.49–55.

LEE, D.; CHU, W. W. Constraints-Preserving Transformation from XML Document
Type Definition to Relational Schema. In: INTERNATIONAL CONFERENCE ON
ENTITY RELATIONSHIP, ER, 2000, Salt Lake City, Utah, USA. Proceedings. . .
[S.l.: s.n.], 2000. p.323–338.

LEY, M. DBLP in XML. 2003. Available at: <http://dblp.uni-trier.de/xml/>.
Visited on Oct. 10, 2003.

MALHOTRA, A.; MELTON, J.; ROBIE, J.; RYS, M. XML Syntax for
XQuery 1.0 (XQueryX). 2003. Available at: <http://www.w3.org/TR/2003/

WD-xqueryx-20031219>. Visited on June 15, 2004. W3C Working Draft.

MALHOTRA, A.; MELTON, J.; WALSH, N. XQuery 1.0 and XPath 2.0 Func-
tions and Operators. July, 2004. Available at: <http://www.w3.org/TR/2004/

WD-xpath-functions-20040723/>. Visited on Aug. 10, 2004. W3C Working Draft.

MANOLESCU, I.; FLORESCU, D.; KOSSMANN, D. Pushing XML Queries
inside Relational Databases. France: INRIA, 2001. (Technical Report 4112).

146

MAY, W. Information Extraction and Integration with Florid: the Mon-
dial case study. [S.l.]: Universität Freiburg, Institut für Informatik, 1999. Available
at: <http://dbis.informatik.uni-goettingen.de/Mondial/>. Visited on Sept. 15,
2003. (Technical Report 131).

MEDEIROS, C.; TOMPA, F. Undestanding the Implications of View Update Poli-
cies. In: INTERNATIONAL CONFERENCE ON VERY LARGE DATA BASES,
VLDB, 1985, Stockholm, Sweden. Proceedings. . . San Francisco: Morgan Kauf-
mann, 1985. p.316–323.

MELLO, R.; DORNELES, C.; KADE, A.; BRAGANHOLO, V.; HEUSER, C. A.
Dados Semi-Estruturados. In: SIMPÓSIO BRASILEIRO DE BANCO DE DADOS,
SBBD, 2000, João Pessoa, PB, Brasil. Anais. . . [S.l.: s.n.], 2000.

MERGEN, S.; KELLER, M. F.; KROTH, E. AXIS: a data exchange architecture
among heterogeneous data sources using XML documents. In: SIMPÓSIO AR-
GENTINO DE INGENIERÍA DE SOFTWARE, ASSE, 2002, Santa Fé, Argentina.
Anales. . . [S.l.: s.n.], 2002.

MYSQL AB. MySQL – The World’s Most Popular Open Source Database.
1995. Available at: <http://www.mysql.com/>. Visited on Jun. 10, 2004.

NONNENMACHER, M. J. Uma Extensão para a API DOM para suportar
atualização de bancos de dados relacionais através de visões XML. 2003.
Projeto de Diplomação — Instituto de Informática, UFRGS, Porto Alegre, RS,
Brasil.

OCLC Online Computer Library Center. Dewey Decimal Classification. Avail-
able at: <http://www.oclc.org/dewey/>. Visited on Aug. 17, 2004.

ORACLE CORPORATION. Oracle 9i. 2002. Available at: <http://www.oracle.

com/database/>. Visited on Sept. 18, 2003.

PAPAKONSTANTINOU, Y.; VIANU, V. Incremental Validation of XML Docu-
ments. In: INTERNATIONAL CONFERENCE ON DATABASE THEORY, ICDT,
2003, Siena, Italy. Proceedings. . . [S.l.: s.n.], 2003.

POSTGRESQL. 1995. Available at: <http://www.postgresql.org/>. Visited on
Aug. 14, 2004.

ROWE, L. A.; SHOENS, K. A. Data abstraction, views and updates in RIGEL. In:
INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD,
1979, Boston, Massachusetts. Proceedings. . . [S.l.: s.n.], 1979. p.71–81.

SALEM, K.; BEYER, K. S.; COCHRANE, R.; LINDSAY, B. G. How To Roll a
Join: asynchronous incremental view maintenance. In: INTERNATIONAL CON-
FERENCE ON MANAGEMENT OF DATA, SIGMOD, 2000, Dallas, Texas. Pro-
ceedings. . . [S.l.: s.n.], 2000. p.129–140.

SCHÖNING, H. Tamino a DBMS designed for XML. In: INTERNATIONAL CON-
FERENCE ON DATA ENGINEERING, ICDE, 2001, Heidelberg, Germany. Pro-
ceedings. . . [S.l.: s.n.], 2001. p.149–154.

147

SHANMUGASUNDARAM, J.; KIERNAN, J.; SHEKITA, E.; FAN, C.; FUNDER-
BURK, J. Querying XML views of relational data. In: INTERNATIONAL CON-
FERENCE ON VERY LARGE DATA BASES, VLDB, 2001, Roma, Italy. Pro-
ceedings. . . San Francisco: Morgan Kaufmann, 2001.

SHANMUGASUNDARAM, J.; SHEKITA, E. J.; BARR, R.; CAREY, M. J.; LIND-
SAY, B. G.; PIRAHESH, H.; REINWALD, B. Efficiently Publishing Relational Data
as XML Documents. The VLDB Journal, [S.l.], p.65–76, 2000.

SHANMUGASUNDARAM, J.; SHEKITA, E.; KIERNAN, J.; KRISHNA-
MURTHY, R.; VIGLAS, E.; NAUGHTON, J.; TATARINOV, I. A general technique
for querying XML documents using a relational database system. Sigmod Record,
[S.l.], v.30, n.3, p.20–26, Sept. 2001.

SHANMUGASUNDARAM, J.; TUFTE, K.; ZHANG, C.; HE, G.; DEWITT, D. J.;
NAUGHTON, J. F. Relational Databases for Querying XML Documents: lim-
itations and opportunities. In: INTERNATIONAL CONFERENCE ON VERY
LARGE DATA BASES, VLDB, 1999, Edinburgh, Scotland, UK. Proceedings. . .
San Francisco: Morgan Kaufmann, 1999. p.302–314.

SHU, H. Using Constraint Satisfaction for View Update Translation. In: EURO-
PEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE, ECAI, 1998, Brighton,
UK. Proceedings. . . [S.l.: s.n.], 1998.

SIGMOD Record. Nov., 2002. Available at: <http://www.acm.org/sigs/sigmod/

record/xml/>. Visited on Setp. 15, 2003.

SOFTWARE AG. Tamino XML Server. 2002. Available at: <http://www.

softwareag.com/tamino/details.htm>. Visited on Sept. 10, 2003.

SUN MICROSYSTEMS. Java Technology. 1994. Available at: <http://java.

sun.com/>. Visited on June 15, 2003.

SUN MICROSYSTEMS. Java Compiler Compiler: The Java Parser Generator.
2001. Available at: <http://javacc.dev.java.net/>. Visited on Apr. 25, 2003.

TAKAHASHI, T.; KELLER, A. M. Implementation of Object View Query on a
Relational Database. In: DATA AND KNOWLEDGE SYSTEMS FOR MANU-
FACTURING AND ENGINEERING, DKSME, 1994, Hong Kong. Proceedings. . .
[S.l.: s.n.], 1994.

TATARINOV, I.; IVES, Z.; HALEVY, A.; WELD, D. Updating XML. In: INTER-
NATIONAL CONFERENCE ON MANAGEMENT OF DATA, SIGMOD, 2001,
Santa Barbara, CA. Proceedings. . . [S.l.: s.n.], 2001.

TATARINOV, I.; VIGLAS, E.; BEYER, K.; SHANMUGASUNDARAM, J.;
SHEKITA, E. Storing and Querying Ordered XML Using a Relational Database
System. In: INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA,
SIGMOD, 2002, Madison, Wisconsin. Proceedings. . . [S.l.: s.n.], 2002.

THOMAS, S. J.; FISCHER, P. C. Nested Relational Structures. Advances in
Computing Research, [S.l.], v.3, p.269–307, 1986.

148

TUCHERMAN, L.; FURTADO, A. L.; CASANOVA, M. A. A Pragmatic Approach
to Structured Database Design. In: INTERNATIONAL CONFERENCE ON VERY
LARGE DATA BASES, VLDB, 1983, Florence, Italy. Proceedings. . . San Fran-
cisco: Morgan Kaufmann, 1983. p.219–231.

TURAU, V. DB2XML 1.4: Transforming relational databases into XML doc-
uments. Oct., 2001. Available at: <http://www.informatik.fh-wiesbaden.de/

~turau/DB2XML/index.html>. Visited on Apr. 9, 2004.

ULLMAN, J. D.; WIDOM, J. A First Course in Database Systems. [S.l.]:
Prentice Hall, 1997.

VICTOLLA, F. Ferramenta para Automatização do Projeto Lógico de um
Banco de Dados e da Implementação do SGBD usando Transformações
XSLT. 2002. Projeto de Diplomação — Instituto de Informática, UFRGS, Porto
Alegre, RS, Brasil.

W3C. World Wide Web Consortium. Available at: <http://www.w3.org/>.
Visited on Aug. 25, 2004.

WANG, L.; MULCHANDANI, M.; RUNDENSTEINER, E. A. Updating XQuery
Views Published over Relational Data: a round-trip case study. In: XML
DATABASE SYMPOSIUM, 2003, Berlin, Germany. Proceedings. . . [S.l.: s.n.],
2003.

WANG, L.; RUNDENSTEINER, E. A. On the updatability of XML Views Pub-
lished over Relational Data. In: INTERNATIONAL CONFERENCE ON CON-
CEPTUAL MODELING, ER, 2004, Shanghai, China. Proceedings. . . [S.l.: s.n.],
2004.

WEIS, M. Development of an Algorithm for Generating an Optimal XML
Schema from a given Relational Schema. 2003. Bachelor Thesis — University
of Berufsakademie Stuttgart, Germany.

XBRAIN Project. Available at: <http://quad.biostr.washington.edu:8080/

xbrain/index.jsp>. Visited on July 13, 2003.

ZHUGE, Y.; GARCÍA-MOLINA, H.; HAMMER, J.; WIDOM, J. View Maintenance
in a Warehousing Environment. In: INTERNATIONAL CONFERENCE ON MAN-
AGEMENT OF DATA, SIGMOD, 1995, San Jose, California. Proceedings. . .
[S.l.: s.n.], 1995. p.316–327.

149

APPENDIX A EXTENDING QUERY TREES TO
SUPPORT GROUPING

A.1 Query Trees Redefined to Support Grouping

Figure A.1 shows an example of XML view with group nodes. It is analogous
of that of Figure 1.1, with the exception that now books and dvds are clustered by
price under products.

To support grouping, we make the following changes to the definition of query
trees:

Definition A.1 (Query Tree Nodes) Nodes of query trees can be of three types:
Leaf nodes have a value (to be defined), which is either projected or grouped.
Names of leaf nodes that start with “@” are considered to be XML attributes.

Starred nodes (nodes whose incoming edge is starred) may have one or more source
annotations and zero or more where annotations (to be defined). An exception is
made for starred nodes with group children, which must have no source annotation.

A Group node (one that has a grouped value) must have siblings that are starred
nodes or group nodes of a restricted form (see definition A.2).

Definition A.2 (Node Value) The value of a node n can be projected or grouped.
A projected value is of form $x/A, where A ∈ AT and $x is bound to table T by
a source annotation on n or some ancestor of n.

A grouped value is of form GROUP($x1/A1 | ... | $xm/Am), where m > 1 and
Ai ∈ ATi

and $xi is bound to Ti by a source annotation on a sibling node of n. The
domains of A1, ...Am in D must be the same. Group nodes with the same parent
must be defined over the same set of variables x1, ..., xm, and must have m siblings
b1, ...bm whose incoming edges are starred1. Furthermore, the parent of node n must
be starred, and it must have no source annotations.

The intuition behind multiple group nodes with the same parent is to allow
tuples to be clustered based on a set of attributes rather than a single attribute.

Additionally, it is necessary to add another starred abstract type to our set of
abstract types, so we can distinguish grouped nodes. We call this type τG. Nodes of
type τG are identified as follows: each starred node which has one or more GROUP
children has abstract type τG.

1Notice that we do not require that ($x1/A1 | ... | $xm/Am) in the group operation be in the
same order as b1, ...bm.

150

Figure A.1: XML View with books and dvds clustered by price

As an example of query tree which uses group nodes, consider the query tree
shown in Figure A.2. It is the query tree that generates the XML view of Figure
A.1. Notice that there is a node price whose value is grouped: GROUP($sb/price |
$sd/price). For this reason, its parent (products) is of abstract type τG.

A.2 Modifications to the map and split Algorithms

Given these definitions, we now show how the eval and split algorithms are mod-
ified to support grouping. The new eval algorithm (Algorithm A.1) has to have an
additional function called group, which deals with the generation of grouped nodes.
Notice that this is the only difference between the modified algorithm (Algorithm
A.1) and the original eval algorithm (Algorithm 4.1).

The new split algorithm (Algorithm A.2) needs to take care of group values.
It needs to remove parts of the value of group nodes, so that variable references
are correct in each split tree. As an example, the query tree of Figure A.1 has a
group node price whose value is GROUP($sb/price | $sd/price). The two split trees
generated by the split algorithm will have a node price referencing just one of the
variables each ($sb or $sd), as shown in Figures A.3 and A.4.

As for the map algorithm, the only change that needs to be made is to add lines
64, 65 and 66, since nodes of type τG are starred nodes, but they do not carry any
source or where annotation.

A.3 Updatability

Extending query trees with group values reflects in our updatability study.
Specifically, we present a rewritten version of theorem 6.1 when group nodes are
considered.

Theorem A.1 (Side-effect free XML update redefined) A correct update
u to an XML view defined by a query tree qt is side-effect free if:

1. u does not modify the leaf child of a τG node, or in other words, ref does not point
to a group node;

2. u does not delete a starred child of a τG node; and

151

eval(qt, d)

evaluate(root(qt, d))

evaluate(n ,d)

Let bindings{} be a hash array of bindings of variable attributes to values, initially empty.
case abstract_type(n)

τ |τC : buildElement(n)
τT |τN : table(n)
τG: group(n)
τS : print "<name(n)>value(n)</name(n)>"

end case

buildElement(n)

let tag = "name(n)"
for each attribute c in children(n) do

add "name(c) = value(c)"to tag
end for

print "< tag >"
for each non-attribute c in children(n) do

eval(c)
end for

print "</name(n)>"

table(n)

let w be a list of conditions in sources(n)
for each w[i] do

if w[i] involves a variable v in bindings{} then

substitute the value binding{v} for v
end if

end for

calculate the set B of all bindings for variables in sources(n) that makes the conjunction of the modified w[i]’s
true
for each b in B do

add b to bindings{}
buildElement(n)
remove b from bindings{}

end for

group(n)
let g1, ... gs be the GROUP children of n
let w be a list of conditions in sources(m), for all starred nodes m that are children of n
for each w[i] do

if w[i] involves a variable v in bindings{} then

substitute the value binding{v} for v
end if

end for

calculate the set B of all bindings for variables in sources(m) (for all starred nodes m that are children of n) that
makes the conjunction of the modified w[i]’s true
let V1=

⋃
i values of i’th group term in g1, taken from B

let ...
let Vs=

⋃
i values of i’th group term in gs, taken from B

for each v1 in V1 do

add variable bindings xi/p= value(g1) for each group variable xi to bindings{}
for each vs in Vs do

add variable bindings xi/p= value(gs) for each group variable xi to bindings{}
buildElement(n)
remove variable bindings xi/p= value(gs) for each group variable xi in bindings{}

end for

remove variable bindings xi/p= value(g1) for each group variable xi in bindings{}
end for

Algorithm A.1: Algorithm eval modified to support group nodes

152

name = ‘@id’
value = $v/vendorId

name = ‘@price’
value = GROUP ($sb/price | $sd/price)

name = ‘products’

name = btitle
value = $b/title

name = isbn
value = $b/isbn

name = ‘book’
[$sb := table(“SellBook”)]

[$b := table(“Book”)]
[where $sb/vendorId=$v/vendorId

and $b/isbn=$sb/isbn]

name = dtitle
value = $d/title

name = asin
value = $d/asin

name = ‘dvd’
[$sd := table(“SellDVD”)]

[$d := table(“DVD”)]
[where $sd/vendorId=$v/vendorId

and $d/asin=$sd/asin]

name = vendorName
value = $v/vendorName

name = countr
value = $v/countr

name = state
value = $v/state

name = ‘address’

τ

τS

*

* *

τS τC

τS τS

τG

τS

τS τS τS τS

τN τN

name = ‘vendors’

name = ‘vendor’
[$v := table(“Vendor”)]

τT

*

Figure A.2: Query tree with grouped values

3. For all (Ui, Vi), where Vi is the corresponding relational view of qti and Ui is the
translation of u over Vi, Ui is side-effect free in Vi.

Proof: We divide the proof in three steps, one for each condition in the theorem.
Condition 1: To prove this condition, all we need to do is to show an exam-
ple of a modification of a group node that causes side-effects. Suppose we spec-
ify a modification over the view in Figure A.1 by ref = /vendor/vendor[@id="1"]

/products[@price="38"]/@price and ∆ = {29}. The evaluation of ref yields node
8. Although it seems fine to modify the value of this node, the reconstructed XML
view would collapse the subtree rooted at node 13 with the subtree rooted at node
8. This happens because we are changing the value of node 8 to a value that was

split(qt)

Let t[] be an array of query trees, initially empty
Let i = 0
Let N be the set of nodes of type τN in qt
for each node n in N do

inc i
{initialize t[i] with qt}
t[i] = qt
repeat

delete from t[i] all subtrees rooted at a node z of type τN , where z 6= n
retype the ancestors of the deleted nodes

until n is the only node of type τN in t[i]
for each group node g in t[i] do

delete from g all the variable references not declared as source annotations in its starred sibling
end for

end for

Algorithm A.2: Algorithm split modified to support group nodes

153

1: map(qt[])

2: Let sql[] be an array of strings, initially empty; Let numberqt be the number of split trees in qt[]
3: for k from 1 to numberqt do

4: Let n be the node of type τN in qt[k]
5: sql[k] = "CREATE VIEW "+ name(n) + "AS "
6: sql[k] = sql[k] + "SELECT "
7: Let N be the list of leaf nodes in qt[k]
8: for i from 1 to size(N) do

9: get next n in N
10: if i > 1 then

11: sql[k] = sql[k] + ","+ variable(n) + "."+ attribute(n) + "AS "+ name(n)
12: else

13: sql[k] = sql[k] + variable(n) + "."+ attribute(n) + "AS "+ name(n)
14: end if

15: i = i + 1
16: end for

17: sql[k] = sql[k] + "FROM "; Let from = ""; Let N be the set of starred nodes in qt[k]
18: for each n in N do

19: Let join = ""; Let S be the list of source annotations in n; Let W be the list of where annotations in n
20: for i = 1 to size(S) do

21: get next s in S
22: join = join + table(s) + "AS "+ variable(s)
23: if i < size(S) then

24: join = join + "INNER JOIN "
25: end if

26: i = i + 1
27: end for

28: Let count = 0
29: for i = 1 to size(W) do

30: get next w in W
31: if w is of the form $x/A op $y/B AND $x is bound to table X by a source annotation s ∈ S AND $y is bound to table

Y by a source annotation s′ ∈ S then

32: if count = 0 then

33: join = join + "ON "+ x.A op y.B
34: else

35: join = join + "AND "+ x.A op y.B
36: end if

37: i = i + 1; count = count + 1
38: end if

39: end for

40: if count = 0 then

41: join = join + "ON (1=1) "
42: end if

43: if size(S) > 1 then

44: join = "("+ join + ")"
45: end if

46: Let A be the set of starred ancestors of n; Let count = 0
47: if n has a starred ancestor then

48: join = "LEFT JOIN "+ join
49: for i = 1 to size(W) do

50: get next w in W
51: if w is of the form $x/A op $y/B AND (($x is bound to table X on node n AND $y is bound to table Y on a node a

in A) OR ($x is bound to table X on a node a in A AND $y is bound to table Y on node n)) then

52: if count = 0 then

53: join = join + "ON "+ x.A op y.B
54: else

55: join = join + "AND "+ x.A op y.B
56: end if

57: end if

58: i = i + 1; count = count + 1
59: end for

60: if count = 0 then

61: join = join + "ON (1=1) "
62: end if

63: from = "("+ from + join + ")"
64: else

65: if abstract_type(n) != τG then

66: from = from + join
67: end if

68: end if

69: end for

70: sql[k] = sql[k] + from; Let W ′ be the set of all where annotations on nodes of qt[k]. Let count = 0
71: for each w′ in W ′

do

72: if w′ is of the form $x/A op Z AND Z is an atomic value then

73: if count = 0 then

74: sql[k] = sql[k] + "WHERE "+ x.A op Z
75: else

76: sql[k] = sql[k] + "AND "+ x.A op Z
77: end if

78: end if

79: end for

80: end for

81: return sql[]

Algorithm A.3: Algorithm map modified to support group nodes

154

name = ‘vendors’

name = ‘vendor’
[$v := table(“Vendor”)]

name = ‘@id’
value = $v/vendorId

name = ‘products’

name = ‘btitle’
value = $b/title

name = ‘isbn’
value = $b/isbn

name = ‘book’
[$sb := table(“SellBook ”)]

[$b := table(“Book”)]
[where $sb/vendorId=$v/vendorId

and $b/isbn=$sb/isbn]

name = ‘vendorName’
value = $v/vendorName

name = ‘country’
value = $v/countr

name = ‘state’
value = $v/state

name = ‘address’

τ

τT

τS

*

*

τS τC

τS τS

τG

τS τS

τN

name = ‘@price’
value = GROUP ($sb/price)

*

τS

Figure A.3: Partitioned query tree for τN (book)

already in the view, and the semantics of GROUP requires that nodes that agree
in the value of price should be collected together. As a consequence, the XML view
modified by the user will be different from the reconstructed view – a side-effect.
Condition 2: This condition can also be proved by a contra example. Consider a
deletion over the view in Figure A.1 with update path ref = /vendor/vendor[@id=

"1"]/products[@price="38"]/book, which evaluates to node 10. The deletion of this
book will also make the subtree rooted at node 8 (products) disappear. This is
because node 10 was the only book being sold by this price under this vendor.
Consequently, the update is not side-effect free.
Condition 3: This condition is the statement of theorem 6.1 itself. Please refer to
that theorem for proof.

Condition 3 states that if an update passes the “grouping conditions” (conditions
1 and 2), then the update is side-effect free if all updates in its translation onto the
underlying relational views are side-effect free. Hence, any side-effect free relational
view update technique could be used.

Recall that reasoning about whether or not an update is side-effect free involves
the query tree rather than the resulting XML instance. There may therefore be
instances for which updates to grouped nodes do not cause other updates to be
introduced in the recomputed view. Examples include changing the value of node 9
to $20 in Figure A.1 and deleting the subtree rooted at node 18. These (desirable)
updates are outlawed in our approach.

There are two ways in which we could allow the desired updates on group nodes
above: (1) perform instance analysis to catch exactly the cases that produce side-
effects; or (2) allow side-effects in these special cases, or re-define side-effects to
exclude empty groups or groups which collapse. We leave this for future work.

155

name = ‘vendors’

name = ‘vendor’
[$v := table(“Vendor”)]

name = ‘@id’
value = $v/vendorId

name = ‘products’

name =‘btitle’
value = $b/title

name = ‘isbn’
value = $b/isbn

name = ‘dvd’
[$sd := table(“SellDVD ”)]

[$d := table(“DVD”)]
[where $sd/vendorId=$v/vendorId

and $d/asin=$sd/asin]

name = ‘vendorName’
value = $v/vendorName

name = ‘country’
value = $v/countr

name = ‘state’
value = $v/state

name = ‘address’

τT

τS

*

*τS τC

τS τS

τG

τS τS

τN

τ

name = ‘@price’
value = GROUP ($sb/price)

*τS

Figure A.4: Partitioned query tree for τN (dvd)

156

157

APPENDIX B DEALING WITH QUERY TREES
WITH REPEATED NODE NAMES

For query trees with repeated node names, the mapping to the relational views
may present problems. This is because node names are mapped to attributes of
the relational views. Since attributes in a relation schema are a set (ULLMAN;
WIDOM, 1997), this implies that two attributes can not have the same name in a
relation. To solve this problem, we can use one of the many numbering schemas
proposed in literature (TATARINOV et al., 2002; OCLC Online Computer Library
Center, 2004; JIANG et al., 2003) to associate unique numbers to nodes. We then
concatenate the number with the node name to achieve unique node names for all
nodes in the query tree.

In this chapter, we first discuss the numbering schemas we found in the literature,
and then illustrate how the Global Order Encoding (TATARINOV et al., 2002) could
be used in our approach.

B.1 Numbering Schemas

Given the problem we are trying to solve, there are several numbering schemes
that can be used. The only requirement is that a unique number be associated to
each node (that’s why they are commonly treated as a key that identifies a given
node). As examples, we can cite:

• The Dewey Encoding (OCLC Online Computer Library Center, 2004) was first
applied to XML in (TATARINOV et al., 2002). It associates the number 1
to the root of the tree, and then 1.1, 1.2, ..., 1.n to the direct children of the
root. The children of node 1.1 are numbered 1.1.1, ..., 1.1.m, and so on. This
numbering schema makes it easier to find hierarchical relationships between
nodes (parent/child, ancestor/descendant, siblings).

• The Global Order Encoding (TATARINOV et al., 2002) associates a unique
number to each node of the tree. These numbers can be generated in a variety
of ways. For example, we can start by associating 1 to the root and then
increasing the numbers by one as we walk in the tree in a deep-first search
order.

• The Interval Encoding (JIANG et al., 2003) assigns an interval (start, end) to
each node in the tree. The numbers are assigned in a deep-first search order.

158

• The FlexKey encoding (DESCHLER; RUNDENSTEINER, 2003) is similar
to the Dewey Encoding, but it uses letters instead of numbers and it leaves
gaps in the keys of two consecutive nodes. This encoding is useful when the
source document needs to be maintained after several updates, since it avoids
renumbering existing nodes on the tree. This is achieved by using strings of
variable lengths to identify nodes. As an example, if we need to insert a node
between nodes b.b and b.c, we can refer to the new node as b.bc.

Notice that these proposals apply a numbering schema to the XML instance,
while here we are proposing to apply such schemes to the query tree. Since the
query tree is also a tree, nothing needs to be changed. However, a very simple
adaptation needs to be made if the interval encoding, the Dewey encoding or the
FlexKey encoding are used. Since these schemes use comma or dot to separate the
numbers, this may cause problems in the translation to SQL. We can replace the
comma or dot by a letter such as x. In the FlexKey encoding, an additional care
must be taken regarding the separator. Since we are replacing dot by the letter x,
then the letter x can not be assigned to any part of any key, to avoid confusion.

Figure B.1 shows a query tree with its nodes numbered according to each of
the above numbering schemes. Notice that in this example, both nodes book and
dvd have a child named title. Note also that the FlexKey encoding does not use
sequential letters. It leaves gaps to facilitate the inclusion of nodes in the tree. In
our case, this feature is not necessary, since we are numbering the query tree instead
of the XML instance.

B.2 Applying the Global Order Encoding in Query Trees

Given the numbering schemes shown in the previous section, we can now use one
of them to solve the ambiguity of names in the query trees. The mapping works
as follows. First, the Global Order Encoding is used to associate numbers to each
node in the query tree. In order to do so, we introduce an additional annotation in
each node, which we call order annotation. Second, the extended query tree qt is
mapped to an intermediate query tree iqt. The intermediate query tree iqt is exactly
the same as qt, with the difference that the node names are a concatenation of the
corresponding node name in qt with the unique number generated by the Global
Order Encoding. Formally, we have:

Definition B.1 (Numbered Query Tree) Let a query tree qt be a query tree
defined as in Section 4.1.1. Extend qt so that each of its nodes has an additional
order annotation. A query tree extended in this way is called numbered query tree
nqt.

Definition B.2 (Order Annotation) An order annotation of a node n in a
query tree qt is of the form [order=k], where k is a natural number obtained by
traversing the query tree qt in the depth/first order and counting each step until
node n is reached.

We can now define the intermediate query tree:

Definition B.3 (Intermediate Query Tree) An intermediate query tree iqt
is a new query tree obtained from a numbered query tree nqt as follows. Copy nqt

159

Figure B.1: (a) Dewey encoding (b) Global Order Encoding (c) Interval Encoding
(d) KlexKey encoding

to iqt. Let ni be a node in iqt, and n be the corresponding node in nqt. For all nis
in iqt, modify the name of ni, so that ni.name = n.name + n.order.

An example of iqt is shown in Figure B.2. The figure shows the numbered query
tree (a) and the corresponding intermediate query tree (b). Notice that the query
tree of Figure B.2(a) has two nodes named id. In the intermediate query tree of
Figure B.2(b), these nodes were mapped to id3 and id7, which solves the problem
of unique names.

The intermediate query tree is then used in the mapping to the relational views.
Algorithm map (Algorithm 5.1) (and also Algorithm split, if necessary) can be ap-
plied without any modification. According to that algorithm, the relational view for
this query tree is:

CREATE VIEW VIEWBOOK AS

SELECT v.vendorId AS id3, v.vendorName AS vendorName4,

160

b.isbn AS id7, b.title AS title8

FROM (Vendor AS v LEFT JOIN (SellBook AS sb INNER JOIN

Book AS B ON b.isbn=sb.isbn) ON v.vendorId=sb.vendorId);

The DTD of the resulting XML view has also to be numbered. This is because
an element in a DTD can not be defined more than once (BRAY et al., 2004),
and consequently can not have different definitions. When this happens, the parser
usually takes the first definition and disregards the remaining ones. However, since
this modified DTD is used internally, the user is not aware of the intermediate
numbering schema:

<!ELEMENT vendors1 (vendor2*)>

<!ELEMENT vendor2 (id3, vendorName4)>

<!ELEMENT id3 (#PCDATA)>

<!ELEMENT vendorName4 (#PCDATA)>

<!ELEMENT products5 (book6*)>

<!ELEMENT book6 (id7, title8)>

<!ELEMENT id7 (#PCDATA)>

<!ELEMENT title8 (#PCDATA)>

Notice that without the numbering schema, the DTD would be incorrect, since
element id would be declared twice. This case is not so problematic, since both
declarations would be equal (<!ELEMENT id (#PCDATA)>). However, this is
not always the case.

To check for schema conformance, the unqualified portion of the update path is
checked against the query tree. The target nodes are identified and the update path
is corrected with the order annotation found in the numbered query tree. In case of
insertions, both the target nodes and the subtree being inserted are corrected, and
the schema checking is done considering the modified element names.

Now, it is necessary to define how the updates on the (unnumbered) XML view
are mapped to its corresponding (numbered) relational views. For this, the num-
bered query tree (Figure B.2(a)) is used. To a better understanding, consider the
following example.

Suppose the user wants to modify the book id by supplying the update path
/vendors/vendor[id="01"]/products/book[id="1111"]/id and ∆ = {"1245"}. To
translate this to the relational view, we find the nodes in the numbered query tree,
and concatenate each node name with its order annotation. The resulting update
expression is as follows:

UPDATE VIEWBOOK

SET id7 = "1245"

WHERE id3 = "01" AND id7 = "1111"

161

name = ‘id’
value = $v/vendorId

[order=3]

name = ‘products’
[order=5]

name = ‘title’
value = $b/title

[order=8]

name = ‘id’
value = $b/isbn

[order=7]

name = ‘book’
[$sb := table(“SellBook ”)]

[$b := table(“Book”)]
[where $sb/vendorId=$v/vendorId

and $b/isbn=$sb/isbn]
[order=6]

name = ‘vendorName’
value = $v/vendorName

[order=4]

*

name = ‘vendors’
[order=1]

name = ‘vendor’
[$v := table(“Vendor ”)]

[order=2]

*

(a)

name = ‘id3’
value = $v/vendorId

[order=3]

name = ‘products5’
[order=5]

name = ‘title8’
value = $b/title

[order=8]

name = ‘id7’
value = $b/isbn

[order=7]

name = ‘book6’
[$sb := table(“SellBook ”)]

[$b := table(“Book”)]
[where $sb/vendorId=$v/vendorId

and $b/isbn=$sb/isbn]
[order=6]

name = ‘vendorName4’
value = $v/vendorName

[order=4]

*

name = ‘vendors1’
[order=1]

name = ‘vendor2’
[$v := table(“Vendor ”)]

[order=2]

*

(b)

Figure B.2: (a) Numbered query tree (b) Intermediate query tree corresponding to
the query tree in (a)

162

163

APPENDIX C REAL XML VIEWS

C.1 The Tobacco Company

The scenario of this application is as follows. The company needs to send monthly
reports to a Tobacco Producer’s Association. The report shows data about the
producers from whom the company bought tobacco, as well as prices, quantities,
etc. The company stores all the transactions in a relational database, and at the
end of the month it generates an XML report containing all the information solicited
by the Producer’s Association.

For copy right reasons, we omit the company name and the Producers Association
Name. We also omit the producer name and SSN.

The XML view generated by this process is as follows:

<tobacco>

<header>

<companyCode>51</companyCode>

<companyName>xxxxxx</companyName>

<reportDate>20030507</reportDate>

<operationType>15</operationType>

<crop>02</crop>

<lotNumber>300</lotNumber>

</header>

<summary>

<total>19</total>

<totalKgBO1>2448.4562</totalKgBO1>

<totalValue>7957.49</totalValue>

</summary>

<details>

<producer>

<producerID>25989</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>18/08/1978</birthDate>

<transaction>

<date>20020812</date>

<quantityBO1>3.2923</quantityBO1>

<value>10.7</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>50000</subscribed>

<tobaccoPlants>48000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>30449</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>31/12/1951</birthDate>

<transaction>

<date>20020905</date>

<quantityBO1>21.5138</quantityBO1>

<value>69.92</value>

164

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>66000</subscribed>

<tobaccoPlants>60000</tobaccoPlants>

</transaction>

<transaction>

<date>20020327</date>

<quantityBO1>54.6862</quantityBO1>

<value>177.73</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>66000</subscribed>

<tobaccoPlants>60000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>30488</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>23/08/1954</birthDate>

<transaction>

<date>20020830</date>

<quantityBO1>13.2111</quantityBO1>

<value>42.94</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>15000</subscribed>

<tobaccoPlants>13000</tobaccoPlants>

</transaction>

<transaction>

<date>20020328</date>

<quantityBO1>98.5569</quantityBO1>

<value>320.31</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>15000</subscribed>

<tobaccoPlants>13000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>47816</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>26/05/1974</birthDate>

<transaction>

<date>20020812</date>

<quantityBO1>115.8</quantityBO1>

<value>376.35</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>18000</subscribed>

<tobaccoPlants>15000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>48745</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>06/12/1966</birthDate>

<transaction>

<date>20020802</date>

<quantityBO1>189</quantityBO1>

<value>614.25</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>47000</subscribed>

<tobaccoPlants>48000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>48800</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

165

<birthDate>08/09/1960</birthDate>

<transaction>

<date>20020903</date>

<quantityBO1>149.4</quantityBO1>

<value>485.55</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>15000</subscribed>

<tobaccoPlants>13000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>201901</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>14/12/1976</birthDate>

<transaction>

<date>20020815</date>

<quantityBO1>99</quantityBO1>

<value>321.75</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>18000</subscribed>

<tobaccoPlants>20000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>206130</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>21/02/1982</birthDate>

<transaction>

<date>20020815</date>

<quantityBO1>39.6</quantityBO1>

<value>128.7</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>66000</subscribed>

<tobaccoPlants>60000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>206800</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>20/08/1965</birthDate>

<transaction>

<date>20021010</date>

<quantityBO1>157.2</quantityBO1>

<value>510.9</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>38000</subscribed>

<tobaccoPlants>35000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>230987</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>03/04/1978</birthDate>

<transaction>

<date>20021004</date>

<quantityBO1>225.6</quantityBO1>

<value>733.2</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>38000</subscribed>

<tobaccoPlants>35000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>232872</producerID>

166

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>06/03/1953</birthDate>

<transaction>

<date>20020807</date>

<quantityBO1>193.32</quantityBO1>

<value>628.29</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>66000</subscribed>

<tobaccoPlants>60000</tobaccoPlants>

</transaction>

<transaction>

<date>20020606</date>

<quantityBO1>175.4</quantityBO1>

<value>570.05</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>66000</subscribed>

<tobaccoPlants>60000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>236385</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>03/09/1957</birthDate>

<transaction>

<date>20020827</date>

<quantityBO1>129.6</quantityBO1>

<value>421.2</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>18000</subscribed>

<tobaccoPlants>20000</tobaccoPlants>

</transaction>

<transaction>

<date>20020610</date>

<quantityBO1>86.0759</quantityBO1>

<value>279.75</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>18000</subscribed>

<tobaccoPlants>20000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>236959</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>13/06/1948</birthDate>

<transaction>

<date>20020827</date>

<quantityBO1>189</quantityBO1>

<value>614.25</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>66000</subscribed>

<tobaccoPlants>60000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>37491</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>29/11/1955</birthDate>

<transaction>

<date>20020822</date>

<quantityBO1>405.6</quantityBO1>

<value>1318.2</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>66000</subscribed>

167

<tobaccoPlants>60000</tobaccoPlants>

</transaction>

</producer>

<producer>

<producerID>37541</producerID>

<SSN>xxxxx</SSN>

<name>xxxxx</name>

<birthDate>05/03/1945</birthDate>

<transaction>

<date>20020814</date>

<quantityBO1>102.6</quantityBO1>

<value>333.45</value>

<lotNumber>300</lotNumber>

<paymentOption>2</paymentOption>

<subscribed>18000</subscribed>

<tobaccoPlants>20000</tobaccoPlants>

</transaction>

</producer>

</details>

</tobacco>

Currently, the XML document is generated by a program that queries the database
in SQL and tags the result outside the relational engine. Since the database is very
big, we chose to show here just a relevant portion of it:

table CONTRACT has 52 attributes

CONTRACT (CONTRACT_ID NUMBER(10) NOT NULL,

CONTRACT_DATE DATE ,

CONTRACT_NUMBER NUMBER(10) ,

TOTAL_AMOUNT NUMBER(15),

PRODUCER_ID NUMBER(10),

COMPANY_ID NUMBER(10))

#table ACCOUNT_TRANSACTION has 46 attributes

TABLE ACCOUNT_TRANSACTION (

ACCOUNT_TRANS_ID NUMBER(10) NOT NULL,

TYPE VARCHAR2(1),

DESCRIPTION VARCHAR2(120),

TRANS_ID NUMBER(10),

DATE CHAR(8))

#table TRANSACTION has 41 attributes

TABLE TRANSACTION (

TRANS_ID NUMBER(10) NOT NULL,

TRANS_TYPE_ID NUMBER(10),

NAME VARCHAR2(60),

NOTE VARCHAR2(200),

DATE DATE,

VALUE NUMBER(15),

CONTRACT_DETAIL_ID NUMBER(10),

SITUATION NUMBER(1),

QUANTITY_KG NUMBER(10))

#table CONTRACT_DETAIL has 46 attributes

TABLE CONTRACT_DETAIL (

CONTRACT_DETAIL_ID NUMBER(10) NOT NULL,

CONTRACT_ID NUMBER(10))

#table PERSON has 39 attributes

TABLE PERSON(

PERSON_ID NUMBER(10) NOT NULL,

NAME VARCHAR2(66),

SEX VARCHAR2(1),

SSN NUMBER(11),

BIRTH_DATE CHAR(10))

#table TOBACCO_COMPANY has 68 attributes

TABLE TOBACCO_COMPANY (

COMPANY_ID NUMBER(10) NOT NULL,

COMPANY_NAME VARCHAR2(30))

168

#table PRODUCER has 46 attributes

TABLE PRODUTOR_FUMO (

PRODUCER_ID NUMBER(10) NOT NULL,

PRODUCER_TYPE NUMBER(1),

PERSON_ID NUMBER(10))

#table CROP_PRODUCER has 4 attributes

TABLE CROP_PRODUCER(

YEAR NUMBER(4) NOT NULL,

PRODUCER_ID NUMBER(10) NOT NULL,

QUANTITY_TOBACCO_PLANTS NUMBER(10),

QUANTITY_TOBACCO_PLANTS_SUBSCRIBED NUMBER(10))

#table OPERATION_TYPE has 9 attributes

TABLE OPERATION_TYPE (

OPT_ID NUMBER(10) NOT NULL,

OPERATION_TYPE VARCHAR2(30))

TABLE CROP(

YEAR NUMBER(4),

LOT NUMBER(4))

We now use UXQuery to show how the Tobacco view can be constructed.
Report_Date and Totals are two relational views that summarizes information

that will appear in the XML view. When you see an attribute with "BO1" in it’s
name, it means the most noble type of tobacco.

<tobacco>

{for $company in table("tobacco_company"),

$d in table("report_date"),

$op_type in table("operation_type"),

$crop in table("crop")

where $crop/year=2002 and $crop/lot=300

return

<header>

<companyCode>{$company/company_id/text()}</companyCode>

<companyName>{$company/name/text()}</companyName>

<reportDate>{$d/date/text()}</reportDate>

<operationType>{$op_type/opt_id/text()}</operationType>

<crop>{$crop/year/text()}</crop>

<lotNumber>{$crop/lot/text()}</lotNumber>

</header>

{

for $totals in table("totals")

where $totals/crop=2002

return

<summary>

<total>{$top/total_quant/text()}</total>

<totalKgBO1>{$top/total_kg_bo1/text()}</totalKgBO1>

<totalValue>{$top/total_value/text()}</totalValue>

</summary>

}

<details>

{

for $person in table("person"),

$producer in table("producer"),

where $person/person_id=$producer/person_id

return

<producer>

<producerId>{$person/person_id/text()}</producerId>

<SSN>{$person/ssn/text()}</SSN>

<name>{$person/name/text()}</name>

<birthDate>{$person/birth_date/text()}</birthDate>

{

for $contract in table("contract"),

$cdetail in table("contract_detail"),

$account in table("account_transaction"),

$transaction in table("transaction"),

$cropp in table("crop_producer")

where $account/trans_id=$transaction/trans_id and

$account/type="C" and

169

$cropp/producer_id=$producer/producer_id and

$cropp/year=2002 and

$transaction/note=300 and

$op_type/opt_id=$transaction/trans_type_id and

$producer/producer_id=contract/producer_id and

$contract/contract_id=cdetail/contract_id and

$cdetail/contract_detail_id=$transaction/contract_detail_id and

$contract/company_id=$company/company_id

return

<transaction>

<date>{$account/date/text()}</date>

<quantityBO1>{$transaction/quantity_kg/text()}</quantityBO1>

<value>{$transaction/value/text()}</value>

<lotNumber>{$transaction/note/text()}</lotNumber>

<paymentOption>{$transaction/situation/text()}</paymentOption>

<subscribed>{$cropp/quantity_tobacco_plants_subscribed/text()}</subscribed>

<tobaccoPlants>{$cropp/quantity_tobacco_plants/text()}</tobaccoPlants>

</transaction>

}

</producer>

}

</details>

}

</tobacco>

C.2 The XBrain Project

The XBrain project is an application of SilkRoute (FERNÁNDEZ et al., 2002).
The application queries a brain mapping database, over which an XML public view
is defined. The public view is generated by this public query. The public query
exports relational data as XML. Its format uses only for, and the arrangement of
the returned elements can be expressed in UXQuery.

The database schema is as follows:

Patient(*oid,initials,first_name,last_name,location,registered,age,sex,viq,pnum,

is_public,handedness,wada,size,copy,pre,description,gao_research_num);

Surgery(*oid,patient,surgery_date,surgeon,diagnosis,side,lobe,grid);

CSMStudy(*oid,surgery,function,trial_data,site_data);

File(*oid,label,domain,locator,source,mime_type,submit_date,submitted_by,

version,context,description);

Photo(*oid,preference,image,csmstudy,image_pathname,image_filename);

StimSite(*oid,site_label,zone,lobe,csmstudy,anatomical_name);

Trial(*oid,trial_num,site_label,trial_time,current,slide,eeg_score,miriam_code,

confidence,comments,km_score,site_suffix,csmstudy,stimulation_site);

UserPerson(*oid,login,first_name,last_name,email,password,user_group);

SiteToAnatomyMap(*oid,csmstudy,photo,scene,author,map_date,

sitetoanatomyfile,rendered_map,sitetoanatomy_pathname,

sitetoanatomy_filename,preference,modtime);

SiteToAnatomyMapElement(*oid,sitetoanatomymap,stimsite,site_label,

ant_coord,sup_coord,right_coord,x,y,confidence);

Scene(*oid,imaging_study,description,description_file,preference, ismapscene);

ImagingStudy(*oid,patient,image_date,billed,prefix,subject,suffix,

computed_image_pathname,computed_image_filename,

computed_coords_pathname,computed_coords_filename,

lowres_surface_pathname,lowres_surface_filename,aligned_pathname);

MRExam(*oid,imaging_study,exam_num,description,import_date, import_info,location);

170

Rendering(*oid,rendering_type,preference,image,scene,image_pathname, image_filename);

SceneComponent(*oid,scene,description,surface_model,volume);

SurfaceModel(*oid,volume,model_instance,format,model_file,model_pathname,model_filename,

preference);

RadialSliceModelInstance(*oid,volume,model,landmarks_file,instance_file,

expansion_factor,instance_pathname,instance_filename,

preference,landmarks_pathname,landmarks_filename,

derived_from);

RadialSliceModel(*oid,pathname,filename,comment,theta_radials,slices,

training_set,model_file,preference);

MRSeries(*oid,mrexam,location,showing,total_images,plane,scan_start,

scan_end,psd,type,description,fov_x,fov_y,height,width,

bytes_per_pixel,bits_per_pixel,optical_disk,start_img,stop_img,

threshold,tissue,first,last,label,thickness,spacing);

MRSlice(*oid,sequence_num,image_file,mrseries);

AlignedVolume(*oid,series,format,volume_file,filename,tissue,patient);

The view definition query is fully supported by query trees, and its representation
in UXQuery is shown below.

<root>

{

for $patient in table("Patient")

where $patient/is_public/text() = "1"

return

<patient oid="{$patient/oid/text()}">

<initials>{$patient/initials/text()}</initials>

<first_name>{$patient/first_name/text()}</first_name>

<last_name>{$patient/last_name/text()} </last_name>

<location>{$patient/location/text()}</location>

<registered>{$patient/registered/text()}</registered>

<age>{$patient/age/text()}</age>

<sex>{$patient/sex/text()}</sex>

<viq>{$patient/viq/text()}</viq>

<pnum>{$patient/pnum/text()}</pnum>

<is_public>{$patient/is_public/text()}</is_public>

<handedness>{$patient/handedness/text()}</handedness>

<wada>{$patient/wada/text()}</wada>

<size>{$patient/size/text()}</size>

<copy>{$patient/copy/text()}</copy>

<pre>{$patient/pre/text()}</pre>

<description>{$patient/description/text()}</description>

<gao_research_num>{$patient/gao_research_num/text()}</gao_research_num>

{

for $surgery in table("Surgery")

where data($surgery/patient) = data($patient/oid)

return

<surgery oid="{$surgery/oid/text()}">

<surgery_date>{$surgery/surgery_date/text()}</surgery_date>

<surgeon>{$surgery/surgeon/text()}</surgeon>

<diagnosis>{$surgery/diagnosis/text()}</diagnosis>

<side>{$surgery/side/text()}</side>

<lobe>{$surgery/lobe/text()}</lobe>

<grid>{$surgery/grid/text()}</grid>

{

for $csmstudy in table("CSMStudy")

where data($csmstudy/surgery) = data($surgery/oid)

return

<csmstudy oid="{$csmstudy/oid/text()}">

<function>{$csmstudy/function/text()}</function>

<trial_data oid="{$csmstudy/trial_data/text()}">

{

for $trialfile in table("File")

where data($trialfile/oid) = data($csmstudy/trial_data)

return

171

<file oid="{$trialfile/oid/text()}">

<label>{$trialfile/label/text()}</label>

<domain>{$trialfile/domain/text()}</domain>

<locator>{$trialfile/locator/text()}</locator>

<source>{$trialfile/source/text()}</source>

<mime_type>{$trialfile/mime_type/text()}</mime_type>

<submit_date>{$trialfile/submit_date/text()}</submit_date>

<submitted_by>

{

for $trialfilesubmitter in table("UserPerson")

where data($trialfilesubmitter/oid) = data($trialfile/submitted_by)

return

<userperson oid="{$trialfilesubmitter/oid/text()}">

<login>{$trialfilesubmitter/login/text()}</login>

<first_name>{$trialfilesubmitter/first_name/text()}</first_name>

<last_name>{$trialfilesubmitter/last_name/text()}</last_name>

<email>{$trialfilesubmitter/email/text()}</email>

<user_group>{$trialfilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$trialfile/version/text()}</version>

<context>{$trialfile/context/text()}</context>

<description>{$trialfile/description/text()}</description>

</file>

}

</trial_data>

<site_data oid="{$csmstudy/site_data/text()}">

{

for $sitefile in table("File")

where data($sitefile/oid) = data($csmstudy/site_data)

return

<file oid="{$sitefile/oid/text()}">

<label>{$sitefile/label/text()}</label>

<domain>{$sitefile/domain/text()}</domain>

<locator>{$sitefile/locator/text()}</locator>

<source>{$sitefile/source/text()}</source>

<mime_type>{$sitefile/mime_type/text()}</mime_type>

<submit_date>{$sitefile/submit_date/text()}</submit_date>

<submitted_by>

{

for $sitefilesubmitter in table("UserPerson")

where data($sitefilesubmitter/oid) = data($sitefile/submitted_by)

return

<userperson oid="{$sitefilesubmitter/oid/text()}">

<login>{$sitefilesubmitter/login/text()}</login>

<first_name>{$sitefilesubmitter/first_name/text()}</first_name>

<last_name>{$sitefilesubmitter/last_name/text()}</last_name>

<email>{$sitefilesubmitter/email/text()}</email>

<user_group>{$sitefilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$sitefile/version/text()}</version>

<context>{$sitefile/context/text()}</context>

<description>{$sitefile/description/text()}</description>

</file>

}

</site_data>

{

for $photo in table("Photo")

where data($photo/csmstudy) = data($csmstudy/oid)

return

<photo oid="{$photo/oid/text()}">

<preference>{$photo/preference/text()}</preference>

<image oid="{$photo/image/text()}">

{

for $imagefile in table("File")

where data($imagefile/oid) = data($photo/image)

return

<file oid="{$imagefile/oid/text()}">

<label>{$imagefile/label/text()}</label>

<domain>{$imagefile/domain/text()}</domain>

172

<locator>{$imagefile/locator/text()}</locator>

<source>{$imagefile/source/text()}</source>

<mime_type>{$imagefile/mime_type/text()}</mime_type>

<submit_date>{$imagefile/submit_date/text()}</submit_date>

<submitted_by>

{

for $imagefilesubmitter in table("UserPerson")

where data($imagefilesubmitter/oid) = data($imagefile/submitted_by)

return

<userperson oid="{$imagefilesubmitter/oid/text()}">

<login>{$imagefilesubmitter/login/text()}</login>

<first_name>{$imagefilesubmitter/first_name/text()}</first_name>

<last_name>{$imagefilesubmitter/last_name/text()}</last_name>

<email>{$imagefilesubmitter/email/text()}</email>

<user_group>{$imagefilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$imagefile/version/text()}</version>

<context>{$imagefile/context/text()}</context>

<description>{$imagefile/description/text()}</description>

</file>

}

</image>

<image_pathname>{$photo/image_pathname/text()}</image_pathname>

<image_filename>{$photo/image_filename/text()}</image_filename>

</photo>

}

{

for $trial in table("Trial")

where data($trial/csmstudy) = data($csmstudy/oid)

return

<trial oid="{$trial/oid/text()}">

<trial_num>{$trial/trial_num/text()}</trial_num>

<site_label>{$trial/site_label/text()}</site_label>

<trial_time>{$trial/trial_time/text()}</trial_time>

<current>{$trial/current/text()}</current>

<slide>{$trial/slide/text()}</slide>

<eeg_score>{$trial/eeg_score/text()}</eeg_score>

<miriam_code>{$trial/miriam_code/text()}</miriam_code>

<confidence>{$trial/confidence/text()}</confidence>

<comments>{$trial/comments/text()}</comments>

<km_score>{$trial/km_score/text()}</km_score>

<site_suffix>{$trial/site_suffix/text()}</site_suffix>

{

for $trialstim in table("StimSite")

where data($trialstim/oid) = data($trial/stimulation_site)

return

<t_stimsite oid="{$trialstim/oid/text()}">

<t_site_label>{$trialstim/site_label/text()}</t_site_label>

<t_zone>{$trialstim/zone/text()}</t_zone>

<t_lobe>{$trialstim/lobe/text()}</t_lobe>

<t_anatomical_name>{$trialstim/anatomical_name/text()}</t_anatomical_name>

</t_stimsite>

}

</trial>

}

{

for $stimsite in table("StimSite")

where data($stimsite/csmstudy) = data($csmstudy/oid)

return

<stimsite oid="{$stimsite/oid/text()}">

<site_label>{$stimsite/site_label/text()}</site_label>

<zone>{$stimsite/zone/text()}</zone>

<lobe>{$stimsite/lobe/text()}</lobe>

<anatomical_name>{$stimsite/anatomical_name/text()}</anatomical_name>

{

for $stimtrial in table("Trial")

where data($stimtrial/stimulation_site) = data($stimsite/oid)

return

<s_trial oid="{$stimtrial/oid/text()}">

<s_trial_num>{$stimtrial/trial_num/text()}</s_trial_num>

<s_site_label>{$stimtrial/site_label/text()}</s_site_label>

173

<s_trial_time>{$stimtrial/trial_time/text()}</s_trial_time>

<s_current>{$stimtrial/current/text()}</s_current>

<s_slide>{$stimtrial/slide/text()}</s_slide>

<s_eeg_score>{$stimtrial/eeg_score/text()}</s_eeg_score>

<s_miriam_code>{$stimtrial/miriam_code/text()}</s_miriam_code>

<s_confidence>{$stimtrial/confidence/text()}</s_confidence>

<s_comments>{$stimtrial/comments/text()}</s_comments>

<s_km_score>{$stimtrial/km_score/text()}</s_km_score>

<s_site_suffix>{$stimtrial/site_suffix/text()}</s_site_suffix>

</s_trial>

}

</stimsite>

}

{

for $sitetoanatomymap in table("SiteToAnatomyMap")

where data($sitetoanatomymap/csmstudy) = data($csmstudy/oid)

return

<sitetoanatomymap oid="{$sitetoanatomymap/oid/text()}">

{

for $sitephoto in table("Photo")

where data($sitetoanatomymap/photo) = data($sitephoto/oid)

return

<photo oid="{$sitephoto/oid/text()}">

<preference>{$sitephoto/preference/text()}</preference>

<image oid="{$sitephoto/image/text()}">

{

for $sitephotoimagefile in $table("File")

where data($sitephotoimagefile/oid) = data($sitephoto/image)

return

<file oid="{$sitephotoimagefile/oid/text()}">

<label>{$sitephotoimagefile/label/text()}</label>

<domain>{$sitephotoimagefile/domain/text()}</domain>

<locator>{$sitephotoimagefile/locator/text()}</locator>

<source>{$sitephotoimagefile/source/text()}</source>

<mime_type>{$sitephotoimagefile/mime_type/text()}</mime_type>

<submit_date>{$sitephotoimagefile/submit_date/text()}</submit_date>

<submitted_by>

{

for $sitephotoimagefilesubmitter in table("UserPerson")

where data($sitephotoimagefilesubmitter/oid) = data($sitephotoimagefile/submitted_by)

return

<userperson oid="{$sitephotoimagefilesubmitter/oid/text()}">

<login>{$sitephotoimagefilesubmitter/login/text()}</login>

<first_name>{$sitephotoimagefilesubmitter/first_name/text()}</first_name>

<last_name>{$sitephotoimagefilesubmitter/last_name/text()}</last_name>

<email>{$sitephotoimagefilesubmitter/email/text()}</email>

<user_group>{$sitephotoimagefilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$sitephotoimagefile/version/text()}</version>

<context>{$sitephotoimagefile/context/text()}</context>

<description>{$sitephotoimagefile/description/text()}</description>

</file>

}

</image>

<image_pathname>{$sitephoto/image_pathname/text()}</image_pathname>

<image_filename>{$sitephoto/image_filename/text()}</image_filename>

</photo>

}

{

for $sitescene in table("Scene")

where data($sitetoanatomymap/scene) = data($sitescene/oid)

return

<scene oid="{$sitescene/oid/text()}">

<imaging_study>{$sitescene/imaging_study/text()}</imaging_study>

<description>{$sitescene/description/text()}</description>

<description_file oid="{$sitescene/description_file/text()}">

{

for $sitescenefile in table("File")

where data($sitescenefile/oid) = data($sitescene/description_file)

return

<file oid="{$sitescenefile/oid/text()}">

174

<label>{$sitescenefile/label/text()}</label>

<domain>{$sitescenefile/domain/text()}</domain>

<locator>{$sitescenefile/locator/text()}</locator>

<source>{$sitescenefile/source/text()}</source>

<mime_type>{$sitescenefile/mime_type/text()}</mime_type>

<submit_date>{$sitescenefile/submit_date/text()}</submit_date>

<submitted_by>

{

for $sitescenefilesubmitter in table("UserPerson")

where data($sitescenefilesubmitter/oid) = data($sitescenefile/submitted_by)

return

<userperson oid="{$sitescenefilesubmitter/oid/text()}">

<login>{$sitescenefilesubmitter/login/text()}</login>

<first_name>{$sitescenefilesubmitter/first_name/text()}</first_name>

<last_name>{$sitescenefilesubmitter/last_name/text()}</last_name>

<email>{$sitescenefilesubmitter/email/text()}</email>

<user_group>{$sitescenefilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$sitescenefile/version/text()}</version>

<context>{$sitescenefile/context/text()}</context>

<description>{$sitescenefile/description/text()}</description>

</file>

}

</description_file>

<preference>{$sitescene/preference/text()}</preference>

<ismapscene>{$sitescene/ismapscene/text()}</ismapscene>

{

for $rendering in table("Rendering")

where data($rendering/scene) = data($sitescene/oid)

return

<rendering oid="{$rendering/oid/text()}">

<rendering_type>{$rendering/rendering_type/text()}</rendering_type>

<preference>{$rendering/preference/text()}</preference>



<image_pathname>{$rendering/image_pathname/text()}</image_pathname>

<image_filename>{$rendering/image_filename/text()}</image_filename>

</rendering>

}

{

for $scenecomponent in table("SceneComponent")

175

where data($scenecomponent/scene) = data($sitescene/oid)

return

<scenecomponent oid="{$scenecomponent/oid/text()}">

<description>{$scenecomponent/description/text()}</description>

{

for $surfacemodel in table("SurfaceModel")

where data($surfacemodel/oid) = data($scenecomponent/surface_model)

return

<surfacemodel oid="{$surfacemodel/oid/text()}">

<format>{$surfacemodel/format/text()}</format>

<model_file>

{

for $modelfile in table("File")

where data($modelfile/oid) = data($surfacemodel/model_file)

return

<file oid="{$modelfile/oid/text()}">

<label>{$modelfile/label/text()}</label>

<domain>{$modelfile/domain/text()}</domain>

<locator>{$modelfile/locator/text()}</locator>

<source>{$modelfile/source/text()}</source>

<mime_type>{$modelfile/mime_type/text()}</mime_type>

<submit_date>{$modelfile/submit_date/text()}</submit_date>

<submitted_by>

{

for $modelfilesubmitter in table("UserPerson")

where data($modelfilesubmitter/oid) = data($modelfile/submitted_by)

return

<userperson oid="{$modelfilesubmitter/oid/text()}">

<login>{$modelfilesubmitter/login/text()}</login>

<first_name>{$modelfilesubmitter/first_name/text()}</first_name>

<last_name>{$modelfilesubmitter/last_name/text()}</last_name>

<email>{$modelfilesubmitter/email/text()}</email>

<user_group>{$modelfilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$modelfile/version/text()}</version>

<context>{$modelfile/context/text()}</context>

<description>{$modelfile/description/text()}</description>

</file>

}

</model_file>

<model_pathname>{$surfacemodel/model_pathname/text()}</model_pathname>

<model_filename>{$surfacemodel/model_filename/text()}</model_filename>

<preference>{$surfacemodel/preference/text()}</preference>

{

for $radialslicemodelinstance in table("RadialSliceModelInstance")

where data($radialslicemodelinstance/oid) = data($surfacemodel/model_instance)

return

<radialslicemodelinstance oid="{$radialslicemodelinstance/oid/text()}">

<landmarks_file>

{

for $landmarksfile in table("File")

where data($landmarksfile/oid) = data($radialslicemodelinstance/landmarks_file)

return

<file oid="{$landmarksfile/oid/text()}">

<label>{$landmarksfile/label/text()}</label>

<domain>{$landmarksfile/domain/text()}</domain>

<locator>{$landmarksfile/locator/text()}</locator>

<source>{$landmarksfile/source/text()}</source>

<mime_type>{$landmarksfile/mime_type/text()}</mime_type>

<submit_date>{$landmarksfile/submit_date/text()}</submit_date>

<submitted_by>

{

for $landmarksfilesubmitter in table("UserPerson")

where data($landmarksfilesubmitter/oid) = data($landmarksfile/submitted_by)

return

<userperson oid="{$landmarksfilesubmitter/oid/text()}">

<login>{$landmarksfilesubmitter/login/text()}</login>

<first_name>{$landmarksfilesubmitter/first_name/text()}</first_name>

<last_name>{$landmarksfilesubmitter/last_name/text()}</last_name>

<email>{$landmarksfilesubmitter/email/text()}</email>

<user_group>{$landmarksfilesubmitter/user_group/text()}</user_group>

176

</userperson>

}

</submitted_by>

<version>{$landmarksfile/version/text()}</version>

<context>{$landmarksfile/context/text()}</context>

<description>{$landmarksfile/description/text()}</description>

</file>

}

</landmarks_file>

<instance_file>

{

for $instancefile in table("File")

where data($instancefile/oid) = data($radialslicemodelinstance/instance_file)

return

<file oid="{$instancefile/oid/text()}">

<label>{$instancefile/label/text()}</label>

<domain>{$instancefile/domain/text()}</domain>

<locator>{$instancefile/locator/text()}</locator>

<source>{$instancefile/source/text()}</source>

<mime_type>{$instancefile/mime_type/text()}</mime_type>

<submit_date>{$instancefile/submit_date/text()}</submit_date>

<submitted_by>

{

for $instancefilesubmitter in table("UserPerson")

where data($instancefilesubmitter/oid) = data($instancefile/submitted_by)

return

<userperson oid="{$instancefilesubmitter/oid/text()}">

<login>{$instancefilesubmitter/login/text()}</login>

<first_name>{$instancefilesubmitter/first_name/text()}</first_name>

<last_name>{$instancefilesubmitter/last_name/text()}</last_name>

<email>{$instancefilesubmitter/email/text()}</email>

<user_group>{$instancefilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$instancefile/version/text()}</version>

<context>{$instancefile/context/text()}</context>

<description>{$instancefile/description/text()}</description>

</file>

}

</instance_file>

<expansion_factor>{$radialslicemodelinstance/expansion_factor/text()}</expansion_factor>

<instance_pathname>{$radialslicemodelinstance/instance_pathname/text()}

</instance_pathname>

<instance_filename>{$radialslicemodelinstance/instance_filename/text()}

</instance_filename>

<preference>{$radialslicemodelinstance/preference/text()}</preference>

<landmarks_pathname>{$radialslicemodelinstance/landmarks_pathname/text()}

</landmarks_pathname>

<landmarks_filename>{$radialslicemodelinstance/landmarks_filename/text()}

</landmarks_filename>

{

for $radialslicemodel in table("RadialSliceModel")

where data($radialslicemodelinstance/model) = data($radialslicemodel/oid)

return

<radialslicemodel oid="{$radialslicemodel/oid/text()}">

<pathname>{$radialslicemodel/pathname/text()}</pathname>

<filename>{$radialslicemodel/filename/text()}</filename>

<comment>{$radialslicemodel/comment/text()}</comment>

<theta_radials>{$radialslicemodel/theta_radials/text()}</theta_radials>

<slices>{$radialslicemodel/slices/text()}</slices>

<training_set>{$radialslicemodel/training_set/text()}</training_set>

<model_file>

{

for $modelfile in table("File")

where data($modelfile/oid) = data($radialslicemodel/model_file)

return

<file oid="{$modelfile/oid/text()}">

<label>{$modelfile/label/text()}</label>

<domain>{$modelfile/domain/text()}</domain>

<locator>{$modelfile/locator/text()}</locator>

<source>{$modelfile/source/text()}</source>

<mime_type>{$modelfile/mime_type/text()}</mime_type>

177

<submit_date>{$modelfile/submit_date/text()}</submit_date>

<submitted_by>

{

for $modelfilesubmitter in table("UserPerson")

where data($modelfilesubmitter/oid) = data($modelfile/submitted_by)

return

<userperson oid="{$modelfilesubmitter/oid/text()}">

<login>{$modelfilesubmitter/login/text()}</login>

<first_name>{$modelfilesubmitter/first_name/text()}</first_name>

<last_name>{$modelfilesubmitter/last_name/text()}</last_name>

<email>{$modelfilesubmitter/email/text()}</email>

<user_group>{$modelfilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$modelfile/version/text()}</version>

<context>{$modelfile/context/text()}</context>

<description>{$modelfile/description/text()}</description>

</file>

}

</model_file>

<preference>{$radialslicemodel/preference/text()}</preference>

</radialslicemodel>

}

</radialslicemodelinstance>

}

</surfacemodel>

}

</scenecomponent>

}

</scene>

}

<author>{$sitetoanatomymap/author/text()}</author>

<map_date>{$sitetoanatomymap/map_date/text()}</map_date>

<sitetoanatomyfile oid="{$sitetoanatomymap/sitetoanatomyfile/text()}">

{

for $sitetofile in table("File")

where data($sitetofile/oid) = data($sitetoanatomymap/sitetoanatomyfile)

return

<file oid="{$sitetofile/oid/text()}">

<label>{$sitetofile/label/text()}</label>

<domain>{$sitetofile/domain/text()}</domain>

<locator>{$sitetofile/locator/text()}</locator>

<source>{$sitetofile/source/text()}</source>

<mime_type>{$sitetofile/mime_type/text()}</mime_type>

<submit_date>{$sitetofile/submit_date/text()}</submit_date>

<submitted_by>

{

for $sitetofilesubmitter in table("UserPerson")

where data($sitetofilesubmitter/oid) = data($sitetofile/submitted_by)

return

<userperson oid="{$sitetofilesubmitter/oid/text()}">

<login>{$sitetofilesubmitter/login/text()}</login>

<first_name>{$sitetofilesubmitter/first_name/text()}</first_name>

<last_name>{$sitetofilesubmitter/last_name/text()}</last_name>

<email>{$sitetofilesubmitter/email/text()}</email>

<user_group>{$sitetofilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$sitetofile/version/text()}</version>

<context>{$sitetofile/context/text()}</context>

<description>{$sitetofile/description/text()}</description>

</file>

}

</sitetoanatomyfile>

<rendered_map oid="{$sitetoanatomymap/rendered_map/text()}">

{

for $mapfile in table("File")

where data($mapfile/oid) = data($sitetoanatomymap/rendered_map)

return

<file oid="{$mapfile/oid/text()}">

<label>{$mapfile/label/text()}</label>

178

<domain>{$mapfile/domain/text()}</domain>

<locator>{$mapfile/locator/text()}</locator>

<source>{$mapfile/source/text()}</source>

<mime_type>{$mapfile/mime_type/text()}</mime_type>

<submit_date>{$mapfile/submit_date/text()}</submit_date>

<submitted_by>

{

for $mapfilesubmitter in table("UserPerson")

where data($mapfilesubmitter/oid) = data($mapfile/submitted_by)

return

<userperson oid="{$mapfilesubmitter/oid/text()}">

<login>{$mapfilesubmitter/login/text()}</login>

<first_name>{$mapfilesubmitter/first_name/text()}</first_name>

<last_name>{$mapfilesubmitter/last_name/text()}</last_name>

<email>{$mapfilesubmitter/email/text()}</email>

<user_group>{$mapfilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$mapfile/version/text()}</version>

<context>{$mapfile/context/text()}</context>

<description>{$mapfile/description/text()}</description>

</file>

}

</rendered_map>

<sitetoanatomy_pathname>{$sitetoanatomymap/sitetoanatomy_pathname/text()}

</sitetoanatomy_pathname>

<sitetoanatomy_filename>{$sitetoanatomymap/sitetoanatomy_filename/text()}

</sitetoanatomy_filename>

<preference>{$sitetoanatomymap/preference/text()}</preference>

<modtime>{$sitetoanatomymap/modtime/text()}</modtime>

{

for $sitetoanatomymapelement in table("SiteToAnatomyMapElement")

where data($sitetoanatomymapelement/sitetoanatomymap) = data($sitetoanatomymap/oid)

return

<sitetoanatomymapelement>

{

for $sitestimsite in table("StimSite")

where data($sitestimsite/oid) = data($sitetoanatomymapelement/stimsite)

return

<stimsite oid="{$sitestimsite/oid/text()}">

<site_label>{$sitestimsite/site_label/text()}</site_label>

<zone>{$sitestimsite/zone/text()}</zone>

<lobe>{$sitestimsite/lobe/text()}</lobe>

<anatomical_name>{$sitestimsite/anatomical_name/text()}</anatomical_name>

{

for $sitestimtrial in table("Trial")

where data($sitestimtrial/stimulation_site) = data($sitestimsite/oid)

return

<trial oid="{$sitestimtrial/oid/text()}">

<trial_num>{$sitestimtrial/trial_num/text()}</trial_num>

<site_label>{$sitestimtrial/site_label/text()}</site_label>

<trial_time>{$sitestimtrial/trial_time/text()}</trial_time>

<current>{$sitestimtrial/current/text()}</current>

<slide>{$sitestimtrial/slide/text()}</slide>

<eeg_score>{$sitestimtrial/eeg_score/text()}</eeg_score>

<miriam_code>{$sitestimtrial/miriam_code/text()}</miriam_code>

<confidence>{$sitestimtrial/confidence/text()}</confidence>

<comments>{$sitestimtrial/comments/text()}</comments>

<km_score>{$sitestimtrial/km_score/text()}</km_score>

<site_suffix>{$sitestimtrial/site_suffix/text()}</site_suffix>

</trial>

}

</stimsite>

}

<site_label>{$sitetoanatomymapelement/site_label/text()}</site_label>

<ant_coord>{$sitetoanatomymapelement/ant_coord/text()}</ant_coord>

<sup_coord>{$sitetoanatomymapelement/sup_coord/text()}</sup_coord>

<right_coord>{$sitetoanatomymapelement/right_coord/text()}</right_coord>

<x>{$sitetoanatomymapelement/x/text()}</x>

<y>{$sitetoanatomymapelement/y/text()}</y>

<confidence>{$sitetoanatomymapelement/confidence/text()}</confidence>

</sitetoanatomymapelement>

179

}

</sitetoanatomymap>

}

</csmstudy>

}

</surgery>

}

{

for $imagingstudy in table("ImagingStudy")

where data($imagingstudy/patient) = data($patient/oid)

return

<imagingstudy oid="{$imagingstudy/oid/text()}">

<image_date>{$imagingstudy/image_date/text()}</image_date>

<billed>{$imagingstudy/billed/text()}</billed>

<prefix>{$imagingstudy/prefix/text()}</prefix>

<subject>{$imagingstudy/subject/text()}</subject>

<suffix>{$imagingstudy/suffix/text()}</suffix>

<computed_image_pathname>{$imagingstudy/computed_image_pathname/text()}</computed_image_pathname>

<computed_image_filename>{$imagingstudy/computed_image_filename/text()}</computed_image_filename>

<computed_coords_pathname>{$imagingstudy/computed_coords_pathname/text()}</computed_coords_pathname>

<computed_coords_filename>{$imagingstudy/computed_coords_filename/text()}</computed_coords_filename>

<lowres_surface_pathname>{$imagingstudy/lowres_surface_pathname/text()}</lowres_surface_pathname>

<lowres_surface_filename>{$imagingstudy/lowres_surface_filename/text()}</lowres_surface_filename>

<aligned_pathname>{$imagingstudy/aligned_pathname/text()}</aligned_pathname>

{

for $scene in table("Scene")

where data($scene/imaging_study) = data($imagingstudy/oid)

return

<scene oid="{$scene/oid/text()}">

<imaging_study>{$scene/imaging_study/text()}</imaging_study>

<description>{$scene/description/text()}</description>

<description_file>

{

for $scenefile in table("File")

where data($scenefile/oid) = data($scene/description_file)

return

<file oid="{$scenefile/oid/text()}">

<label>{$scenefile/label/text()}</label>

<domain>{$scenefile/domain/text()}</domain>

<locator>{$scenefile/locator/text()}</locator>

<source>{$scenefile/source/text()}</source>

<mime_type>{$scenefile/mime_type/text()}</mime_type>

<submit_date>{$scenefile/submit_date/text()}</submit_date>

<submitted_by>

{

for $scenefilesubmitter in table("UserPerson")

where data($scenefilesubmitter/oid) = data($scenefile/submitted_by)

return

<userperson oid="{$scenefilesubmitter/oid/text()}">

<login>{$scenefilesubmitter/login/text()}</login>

<first_name>{$scenefilesubmitter/first_name/text()}</first_name>

<last_name>{$scenefilesubmitter/last_name/text()}</last_name>

<email>{$scenefilesubmitter/email/text()}</email>

<user_group>{$scenefilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$scenefile/version/text()}</version>

<context>{$scenefile/context/text()}</context>

<description>{$scenefile/description/text()}</description>

</file>

}

</description_file>

<preference>{$scene/preference/text()}</preference>

<ismapscene>{$scene/ismapscene/text()}</ismapscene>

{

for $rendering in table("Rendering")

where data($rendering/scene) = data($scene/oid)

return

<rendering oid="{$rendering/oid/text()}">

<rendering_type>{$rendering/rendering_type/text()}</rendering_type>

<preference>{$rendering/preference/text()}</preference>



<image_pathname>{$rendering/image_pathname/text()}</image_pathname>

<image_filename>{$rendering/image_filename/text()}</image_filename>

</rendering>

}

{

for $scenecomponent in table("SceneComponent")

where data($scenecomponent/scene) = data($scene/oid)

return

<scenecomponent oid="{$scenecomponent/oid/text()}">

<description>{$scenecomponent/description/text()}</description>

{

for $surfacemodel in table("SurfaceModel")

where data($surfacemodel/oid) = data($scenecomponent/surface_model)

return

<surfacemodel oid="{$surfacemodel/oid/text()}">

<format>{$surfacemodel/format/text()}</format>

<model_file>

{

for $modelfile in table("File")

where data($modelfile/oid) = data($surfacemodel/model_file)

return

<file oid="{$modelfile/oid/text()}">

<label>{$modelfile/label/text()}</label>

<domain>{$modelfile/domain/text()}</domain>

<locator>{$modelfile/locator/text()}</locator>

<source>{$modelfile/source/text()}</source>

<mime_type>{$modelfile/mime_type/text()}</mime_type>

<submit_date>{$modelfile/submit_date/text()}</submit_date>

<submitted_by>

{

for $modelfilesubmitter in table("UserPerson")

where data($modelfilesubmitter/oid) = data($modelfile/submitted_by)

return

<userperson oid="{$modelfilesubmitter/oid/text()}">

<login>{$modelfilesubmitter/login/text()}</login>

<first_name>{$modelfilesubmitter/first_name/text()}</first_name>

<last_name>{$modelfilesubmitter/last_name/text()}</last_name>

<email>{$modelfilesubmitter/email/text()}</email>

<user_group>{$modelfilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

181

<version>{$modelfile/version/text()}</version>

<context>{$modelfile/context/text()}</context>

<description>{$modelfile/description/text()}</description>

</file>

}

</model_file>

<model_pathname>{$surfacemodel/model_pathname/text()}</model_pathname>

<model_filename>{$surfacemodel/model_filename/text()}</model_filename>

<preference>{$surfacemodel/preference/text()}</preference>

{

for $radialslicemodelinstance in table("RadialSliceModelInstance")

where data($radialslicemodelinstance/oid) = data($surfacemodel/model_instance)

return

<radialslicemodelinstance oid="{$radialslicemodelinstance/oid/text()}">

<landmarks_file>

{

for $landmarksfile in table("File")

where data($landmarksfile/oid) = data($radialslicemodelinstance/landmarks_file)

return

<file oid="{$landmarksfile/oid/text()}">

<label>{$landmarksfile/label/text()}</label>

<domain>{$landmarksfile/domain/text()}</domain>

<locator>{$landmarksfile/locator/text()}</locator>

<source>{$landmarksfile/source/text()}</source>

<mime_type>{$landmarksfile/mime_type/text()}</mime_type>

<submit_date>{$landmarksfile/submit_date/text()}</submit_date>

<submitted_by>

{

for $landmarksfilesubmitter in table("UserPerson")

where data($landmarksfilesubmitter/oid) = data($landmarksfile/submitted_by)

return

<userperson oid="{$landmarksfilesubmitter/oid/text()}">

<login>{$landmarksfilesubmitter/login/text()}</login>

<first_name>{$landmarksfilesubmitter/first_name/text()}</first_name>

<last_name>{$landmarksfilesubmitter/last_name/text()}</last_name>

<email>{$landmarksfilesubmitter/email/text()}</email>

<user_group>{$landmarksfilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$landmarksfile/version/text()}</version>

<context>{$landmarksfile/context/text()}</context>

<description>{$landmarksfile/description/text()}</description>

</file>

}

</landmarks_file>

<instance_file>

{

for $instancefile in table("File")

where data($instancefile/oid) = data($radialslicemodelinstance/instance_file)

return

<file oid="{$instancefile/oid/text()}">

<label>{$instancefile/label/text()}</label>

<domain>{$instancefile/domain/text()}</domain>

<locator>{$instancefile/locator/text()}</locator>

<source>{$instancefile/source/text()}</source>

<mime_type>{$instancefile/mime_type/text()}</mime_type>

<submit_date>{$instancefile/submit_date/text()}</submit_date>

<submitted_by>

{

for $instancefilesubmitter in table("UserPerson")

where data($instancefilesubmitter/oid) = data($instancefile/submitted_by)

return

<userperson oid="{$instancefilesubmitter/oid/text()}">

<login>{$instancefilesubmitter/login/text()}</login>

<first_name>{$instancefilesubmitter/first_name/text()}</first_name>

<last_name>{$instancefilesubmitter/last_name/text()}</last_name>

<email>{$instancefilesubmitter/email/text()}</email>

<user_group>{$instancefilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$instancefile/version/text()}</version>

182

<context>{$instancefile/context/text()}</context>

<description>{$instancefile/description/text()}</description>

</file>

}

</instance_file>

<expansion_factor>{$radialslicemodelinstance/expansion_factor/text()}</expansion_factor>

<instance_pathname>{$radialslicemodelinstance/instance_pathname/text()}</instance_pathname>

<instance_filename>{$radialslicemodelinstance/instance_filename/text()}</instance_filename>

<preference>{$radialslicemodelinstance/preference/text()}</preference>

<landmarks_pathname>{$radialslicemodelinstance/landmarks_pathname/text()}

</landmarks_pathname>

<landmarks_filename>{$radialslicemodelinstance/landmarks_filename/text()}

</landmarks_filename>

{

for $radialslicemodel in table("RadialSliceModel")

where data($radialslicemodelinstance/model) = data($radialslicemodel/oid)

return

<radialslicemodel oid="{$radialslicemodel/oid/text()}">

<pathname>{$radialslicemodel/pathname/text()}</pathname>

<filename>{$radialslicemodel/filename/text()}</filename>

<comment>{$radialslicemodel/comment/text()}</comment>

<theta_radials>{$radialslicemodel/theta_radials/text()}</theta_radials>

<slices>{$radialslicemodel/slices/text()}</slices>

<training_set>{$radialslicemodel/training_set/text()}</training_set>

<model_file>

{

for $modelfile in table("File")

where data($modelfile/oid) = data($radialslicemodel/model_file)

return

<file oid="{$modelfile/oid/text()}">

<label>{$modelfile/label/text()}</label>

<domain>{$modelfile/domain/text()}</domain>

<locator>{$modelfile/locator/text()}</locator>

<source>{$modelfile/source/text()}</source>

<mime_type>{$modelfile/mime_type/text()}</mime_type>

<submit_date>{$modelfile/submit_date/text()}</submit_date>

<submitted_by>

{

for $modelfilesubmitter in table("UserPerson")

where data($modelfilesubmitter/oid) = data($modelfile/submitted_by)

return

<userperson oid="{$modelfilesubmitter/oid/text()}">

<login>{$modelfilesubmitter/login/text()}</login>

<first_name>{$modelfilesubmitter/first_name/text()}</first_name>

<last_name>{$modelfilesubmitter/last_name/text()}</last_name>

<email>{$modelfilesubmitter/email/text()}</email>

<user_group>{$modelfilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$modelfile/version/text()}</version>

<context>{$modelfile/context/text()}</context>

<description>{$modelfile/description/text()}</description>

</file>

}

</model_file>

<preference>{$radialslicemodel/preference/text()}</preference>

</radialslicemodel>

}

</radialslicemodelinstance>

}

</surfacemodel>

}

</scenecomponent>

}

</scene>

}

{

for $mrexam in table("MRExam")

where data($mrexam/imaging_study) = data($imagingstudy/oid)

return

<mrexam oid="{$mrexam/oid/text()}">

<exam_num>{$mrexam/exam_num/text()}</exam_num>

183

<description>{$mrexam/description/text()}</description>

<import_date>{$mrexam/import_date/text()}</import_date>

<location>{$mrexam/location/text()}</location>

<import_info>{$mrexam/import_info/text()}</import_info>

{

for $mrseries in table("MRSeries")

where data($mrseries/mrexam) = data($mrexam/oid)

return

<mrseries oid="{$mrseries/oid/text()}">

<location>{$mrseries/location/text()}</location>

<showing>{$mrseries/showing/text()}</showing>

<total_images>{$mrseries/total_images/text()}</total_images>

<plane>{$mrseries/plane/text()}</plane>

<scan_start>{$mrseries/scan_start/text()}</scan_start>

<scan_end>{$mrseries/scan_end/text()}</scan_end>

<psd>{$mrseries/psd/text()}</psd>

<type>{$mrseries/:type/text()}</type>

<description>{$mrseries/description/text()}</description>

<fov_x>{$mrseries/fov_x/text()}</fov_x>

<fov_y>{$mrseries/fov_y/text()}</fov_y>

<height>{$mrseries/height/text()}</height>

<width>{$mrseries/width/text()}</width>

<bytes_per_pixel>{$mrseries/bytes_per_pixel/text()}</bytes_per_pixel>

<bits_per_pixel>{$mrseries/bits_per_pixel/text()}</bits_per_pixel>

<optical_disk>{$mrseries/optical_disk/text()}</optical_disk>

<start_img>{$mrseries/start_img/text()}</start_img>

<stop_img>{$mrseries/stop_img/text()}</stop_img>

<threshold>{$mrseries/threshold/text()}</threshold>

<tissue>{$mrseries/tissue/text()}</tissue>

<first>{$mrseries/first/text()}</first>

<last>{$mrseries/last/text()}</last>

<label>{$mrseries/label/text()}</label>

<thickness>{$mrseries/thickness/text()}</thickness>

<spacing>{$mrseries/spacing/text()}</spacing>

{

for $mrslice in table("MRSlice")

where data($mrslice/mrseries) = data($mrseries/oid)

return

<mrslice oid="{$mrslice/oid/text()}">

<sequence_num>{$mrslice/sequence_num/text()}</sequence_num>

<image_file>

{

for $imagefile in table("File")

where data($imagefile/oid) = data($mrslice/image_file)

return

<file oid="{$imagefile/oid/text()}">

<label>{$imagefile/label/text()}</label>

<domain>{$imagefile/domain/text()}</domain>

<locator>{$imagefile/locator/text()}</locator>

<source>{$imagefile/source/text()}</source>

<mime_type>{$imagefile/mime_type/text()}</mime_type>

<submit_date>{$imagefile/submit_date/text()}</submit_date>

<submitted_by>

{

for $imagefilesubmitter in table("UserPerson")

where data($imagefilesubmitter/oid) = data($imagefile/submitted_by)

return

<userperson oid="{$imagefilesubmitter/oid/text()}">

<login>{$imagefilesubmitter/login/text()}</login>

<first_name>{$imagefilesubmitter/first_name/text()}</first_name>

<last_name>{$imagefilesubmitter/last_name/text()}</last_name>

<email>{$imagefilesubmitter/email/text()}</email>

<user_group>{$imagefilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$imagefile/version/text()}</version>

<context>{$imagefile/context/text()}</context>

<description>{$imagefile/description/text()}</description>

</file>

}

</image_file>

</mrslice>

184

}

{

for $alignedvolume in table("AlignedVolume")

where data($alignedvolume/series) = data($mrseries/oid)

return

<alignedvolume oid="{$alignedvolume/oid/text()}">

<format>{$alignedvolume/format/text()}</format>

<volume_file>

{

for $volumefile in table("File")

where data($volumefile/oid) = data($alignedvolume/volume_file)

return

<file oid="{$volumefile/oid/text()}">

<label>{$volumefile/label/text()}</label>

<domain>{$volumefile/domain/text()}</domain>

<locator>{$volumefile/locator/text()}</locator>

<source>{$volumefile/source/text()}</source>

<mime_type>{$volumefile/mime_type/text()}</mime_type>

<submit_date>{$volumefile/submit_date/text()}</submit_date>

<submitted_by>

{

for $volumefilesubmitter in table("UserPerson")

where data($volumefilesubmitter/oid) = data($volumefile/submitted_by)

return

<userperson oid="{$volumefilesubmitter/oid/text()}">

<login>{$volumefilesubmitter/login/text()}</login>

<first_name>{$volumefilesubmitter/first_name/text()}</first_name>

<last_name>{$volumefilesubmitter/last_name/text()}</last_name>

<email>{$volumefilesubmitter/email/text()}</email>

<user_group>{$volumefilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$volumefile/version/text()}</version>

<context>{$volumefile/context/text()}</context>

<description>{$volumefile/description/text()}</description>

</file>

}

</volume_file>

<filename>{$alignedvolume/filename/text()}</filename>

<tissue>{$alignedvolume/tissue/text()}</tissue>

<patient>{$alignedvolume/patient/text()}</patient>

{

for $surfacemodel in table("SurfaceModel")

where data($surfacemodel/volume) = data($alignedvolume/oid)

return

<surfacemodel oid="{$surfacemodel/oid/text()}">

<format>{$surfacemodel/format/text()}</format>

<model_file>

{

for $modelfile in table("File")

where data($modelfile/oid) = data($surfacemodel/model_file)

return

<file oid="{$modelfile/oid/text()}">

<label>{$modelfile/label/text()}</label>

<domain>{$modelfile/domain/text()}</domain>

<locator>{$modelfile/locator/text()}</locator>

<source>{$modelfile/source/text()}</source>

<mime_type>{$modelfile/mime_type/text()}</mime_type>

<submit_date>{$modelfile/submit_date/text()}</submit_date>

<submitted_by>

{

for $modelfilesubmitter in table("UserPerson")

where data($modelfilesubmitter/oid) = data($modelfile/submitted_by)

return

<userperson oid="{$modelfilesubmitter/oid/text()}">

<login>{$modelfilesubmitter/login/text()}</login>

<first_name>{$modelfilesubmitter/first_name/text()}</first_name>

<last_name>{$modelfilesubmitter/last_name/text()}</last_name>

<email>{$modelfilesubmitter/email/text()}</email>

<user_group>{$modelfilesubmitter/user_group/text()}</user_group>

</userperson>

}

185

</submitted_by>

<version>{$modelfile/version/text()}</version>

<context>{$modelfile/context/text()}</context>

<description>{$modelfile/description/text()}</description>

</file>

}

</model_file>

<model_pathname>{$surfacemodel/model_pathname/text()}</model_pathname>

<model_filename>{$surfacemodel/model_filename/text()}</model_filename>

<preference>{$surfacemodel/preference/text()}</preference>

{

for $radialslicemodelinstance in table("RadialSliceModelInstance")

where data($radialslicemodelinstance/oid) = data($surfacemodel/model_instance)

return

<radialslicemodelinstance oid="{$radialslicemodelinstance/oid/text()}">

<landmarks_file>

{

for $landmarksfile in table("File")

where data($landmarksfile/oid) = data($radialslicemodelinstance/landmarks_file)

return

<file oid="{$landmarksfile/oid/text()}">

<label>{$landmarksfile/label/text()}</label>

<domain>{$landmarksfile/domain/text()}</domain>

<locator>{$landmarksfile/locator/text()}</locator>

<source>{$landmarksfile/source/text()}</source>

<mime_type>{$landmarksfile/mime_type/text()}</mime_type>

<submit_date>{$landmarksfile/submit_date/text()}</submit_date>

<submitted_by>

{

for $landmarksfilesubmitter in table("UserPerson")

where data($landmarksfilesubmitter/oid) = data($landmarksfile/submitted_by)

return

<userperson oid="{$landmarksfilesubmitter/oid/text()}">

<login>{$landmarksfilesubmitter/login/text()}</login>

<first_name>{$landmarksfilesubmitter/first_name/text()}</first_name>

<last_name>{$landmarksfilesubmitter/last_name/text()}</last_name>

<email>{$landmarksfilesubmitter/email/text()}</email>

<user_group>{$landmarksfilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$landmarksfile/version/text()}</version>

<context>{$landmarksfile/context/text()}</context>

<description>{$landmarksfile/description/text()}</description>

</file>

}

</landmarks_file>

<instance_file>

{

for $instancefile in table("File")

where data($instancefile/oid) = data($radialslicemodelinstance/instance_file)

return

<file oid="{$instancefile/oid/text()}">

<label>{$instancefile/label/text()}</label>

<domain>{$instancefile/domain/text()}</domain>

<locator>{$instancefile/locator/text()}</locator>

<source>{$instancefile/source/text()}</source>

<mime_type>{$instancefile/mime_type/text()}</mime_type>

<submit_date>{$instancefile/submit_date/text()}</submit_date>

<submitted_by>

{

for $instancefilesubmitter in table("UserPerson")

where data($instancefilesubmitter/oid) = data($instancefile/submitted_by)

return

<userperson oid="{$instancefilesubmitter/oid/text()}">

<login>{$instancefilesubmitter/login/text()}</login>

<first_name>{$instancefilesubmitter/first_name/text()}</first_name>

<last_name>{$instancefilesubmitter/last_name/text()}</last_name>

<email>{$instancefilesubmitter/email/text()}</email>

<user_group>{$instancefilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

186

<version>{$instancefile/version/text()}</version>

<context>{$instancefile/context/text()}</context>

<description>{$instancefile/description/text()}</description>

</file>

}

</instance_file>

<expansion_factor>{$radialslicemodelinstance/expansion_factor/text()}</expansion_factor>

<instance_pathname>{$radialslicemodelinstance/instance_pathname/text()}

</instance_pathname>

<instance_filename>{$radialslicemodelinstance/instance_filename/text()}

</instance_filename>

<preference>{$radialslicemodelinstance/preference/text()}</preference>

<landmarks_pathname>{$radialslicemodelinstance/landmarks_pathname/text()}

</landmarks_pathname>

<landmarks_filename>{$radialslicemodelinstance/landmarks_filename/text()}

</landmarks_filename>

{

for $radialslicemodel in table("RadialSliceModel")

where data($radialslicemodelinstance/model) = data($radialslicemodel/oid)

return

<radialslicemodel oid="{$radialslicemodel/oid/text()}">

<pathname>{$radialslicemodel/pathname/text()}</pathname>

<filename>{$radialslicemodel/filename/text()}</filename>

<comment>{$radialslicemodel/comment/text()}</comment>

<theta_radials>{$radialslicemodel/theta_radials/text()}</theta_radials>

<slices>{$radialslicemodel/slices/text()}</slices>

<training_set>{$radialslicemodel/training_set/text()}</training_set>

<model_file>

{

for $modelfile in table("File")

where data($modelfile/oid) = data($radialslicemodel/model_file)

return

<file oid="{$modelfile/oid/text()}">

<label>{$modelfile/label/text()}</label>

<domain>{$modelfile/domain/text()}</domain>

<locator>{$modelfile/locator/text()}</locator>

<source>{$modelfile/source/text()}</source>

<mime_type>{$modelfile/mime_type/text()}</mime_type>

<submit_date>{$modelfile/submit_date/text()}</submit_date>

<submitted_by>

{

for $modelfilesubmitter in table("UserPerson")

where data($modelfilesubmitter/oid) = data($modelfile/submitted_by)

return

<userperson oid="{$modelfilesubmitter/oid/text()}">

<login>{$modelfilesubmitter/login/text()}</login>

<first_name>{$modelfilesubmitter/first_name/text()}</first_name>

<last_name>{$modelfilesubmitter/last_name/text()}</last_name>

<email>{$modelfilesubmitter/email/text()}</email>

<user_group>{$modelfilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$modelfile/version/text()}</version>

<context>{$modelfile/context/text()}</context>

<description>{$modelfile/description/text()}</description>

</file>

}

</model_file>

<preference>{$radialslicemodel/preference/text()}</preference>

</radialslicemodel>

}

</radialslicemodelinstance>

}

</surfacemodel>

}

{

for $radialslicemodelinstance in table("RadialSliceModelInstance")

where data($radialslicemodelinstance/volume) = data($alignedvolume/oid)

return

<radialslicemodelinstance oid="{$radialslicemodelinstance/oid/text()}">

<landmarks_file>

{

187

for $landmarksfile in table("File")

where data($landmarksfile/oid) = data($radialslicemodelinstance/landmarks_file)

return

<file oid="{$landmarksfile/oid/text()}">

<label>{$landmarksfile/label/text()}</label>

<domain>{$landmarksfile/domain/text()}</domain>

<locator>{$landmarksfile/locator/text()}</locator>

<source>{$landmarksfile/source/text()}</source>

<mime_type>{$landmarksfile/mime_type/text()}</mime_type>

<submit_date>{$landmarksfile/submit_date/text()}</submit_date>

<submitted_by>

{

for $landmarksfilesubmitter in table("UserPerson")

where data($landmarksfilesubmitter/oid) = data($landmarksfile/submitted_by)

return

<userperson oid="{$landmarksfilesubmitter/oid/text()}">

<login>{$landmarksfilesubmitter/login/text()}</login>

<first_name>{$landmarksfilesubmitter/first_name/text()}</first_name>

<last_name>{$landmarksfilesubmitter/last_name/text()}</last_name>

<email>{$landmarksfilesubmitter/email/text()}</email>

<user_group>{$landmarksfilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$landmarksfile/version/text()}</version>

<context>{$landmarksfile/context/text()}</context>

<description>{$landmarksfile/description/text()}</description>

</file>

}

</landmarks_file>

<instance_file>

{

for $instancefile in table("File")

where data($instancefile/oid) = data($radialslicemodelinstance/instance_file)

return

<file oid="{$instancefile/oid/text()}">

<label>{$instancefile/label/text()}</label>

<domain>{$instancefile/domain/text()}</domain>

<locator>{$instancefile/locator/text()}</locator>

<source>{$instancefile/source/text()}</source>

<mime_type>{$instancefile/mime_type/text()}</mime_type>

<submit_date>{$instancefile/submit_date/text()}</submit_date>

<submitted_by>

{

for $instancefilesubmitter in table("UserPerson")

where data($instancefilesubmitter/oid) = data($instancefile/submitted_by)

return

<userperson oid="{$instancefilesubmitter/oid/text()}">

<login>{$instancefilesubmitter/login/text()}</login>

<first_name>{$instancefilesubmitter/first_name/text()}</first_name>

<last_name>{$instancefilesubmitter/last_name/text()}</last_name>

<email>{$instancefilesubmitter/email/text()}</email>

<user_group>{$instancefilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$instancefile/version/text()}</version>

<context>{$instancefile/context/text()}</context>

<description>{$instancefile/description/text()}</description>

</file>

}

</instance_file>

<expansion_factor>{$radialslicemodelinstance/expansion_factor/text()}</expansion_factor>

<instance_pathname>{$radialslicemodelinstance/instance_pathname/text()}</instance_pathname>

<instance_filename>{$radialslicemodelinstance/instance_filename/text()}</instance_filename>

<preference>{$radialslicemodelinstance/preference/text()}</preference>

<landmarks_pathname>{$radialslicemodelinstance/landmarks_pathname/text()}</landmarks_pathname>

<landmarks_filename>{$radialslicemodelinstance/landmarks_filename/text()}</landmarks_filename>

{

for $radialslicemodel in table("RadialSliceModel")

where data($radialslicemodelinstance/model) = data($radialslicemodel/oid)

return

<radialslicemodel oid="{$radialslicemodel/oid/text()}">

188

<pathname>{$radialslicemodel/pathname/text()}</pathname>

<filename>{$radialslicemodel/filename/text()}</filename>

<comment>{$radialslicemodel/comment/text()}</comment>

<theta_radials>{$radialslicemodel/theta_radials/text()}</theta_radials>

<slices>{$radialslicemodel/slices/text()}</slices>

<training_set>{$radialslicemodel/training_set/text()}</training_set>

<model_file>

{

for $modelfile in table("File")

where data($modelfile/oid) = data($radialslicemodel/model_file)

return

<file oid="{$modelfile/oid/text()}">

<label>{$modelfile/label/text()}</label>

<domain>{$modelfile/domain/text()}</domain>

<locator>{$modelfile/locator/text()}</locator>

<source>{$modelfile/source/text()}</source>

<mime_type>{$modelfile/mime_type/text()}</mime_type>

<submit_date>{$modelfile/submit_date/text()}</submit_date>

<submitted_by>

{

for $modelfilesubmitter in table("UserPerson")

where data($modelfilesubmitter/oid) = data($modelfile/submitted_by)

return

<userperson oid="{$modelfilesubmitter/oid/text()}">

<login>{$modelfilesubmitter/login/text()}</login>

<first_name>{$modelfilesubmitter/first_name/text()}</first_name>

<last_name>{$modelfilesubmitter/last_name/text()}</last_name>

<email>{$modelfilesubmitter/email/text()}</email>

<user_group>{$modelfilesubmitter/user_group/text()}</user_group>

</userperson>

}

</submitted_by>

<version>{$modelfile/version/text()}</version>

<context>{$modelfile/context/text()}</context>

<description>{$modelfile/description/text()}</description>

</file>

}

</model_file>

<preference>{$radialslicemodel/preference/text()}</preference>

</radialslicemodel>

}

</radialslicemodelinstance>

}

</alignedvolume>

}

</mrseries>

}

</mrexam>

}

</imagingstudy>

}

</patient>

}

</root>

C.3 The Mondial Database

The Mondial database is a case study for information extraction and integration.
The database schema is as follows:

CREATE TABLE Country

(Name VARCHAR2(32) NOT NULL UNIQUE,

Code VARCHAR2(4) CONSTRAINT CountryKey PRIMARY KEY,

Capital VARCHAR2(35),

Province VARCHAR2(32)

Area NUMBER,

Population NUMBER);

CREATE TABLE City

(Name VARCHAR2(35),

189

Country VARCHAR2(4),

Province VARCHAR2(32),

Population NUMBER,

Longitude NUMBER,

Latitude NUMBER,

CONSTRAINT CityKey PRIMARY KEY (Name, Country, Province));

CREATE TABLE Province

(Name VARCHAR2(32) CONSTRAINT PrName NOT NULL ,

Country VARCHAR2(4) CONSTRAINT PrCountry NOT NULL ,

Population NUMBER,

Area NUMBER,

Capital VARCHAR2(35),

CapProv VARCHAR2(32),

CONSTRAINT PrKey PRIMARY KEY (Name, Country));

CREATE TABLE Economy

(Country VARCHAR2(4) CONSTRAINT EconomyKey PRIMARY KEY,

GDP NUMBER,

Agriculture NUMBER,

Service NUMBER,

Industry NUMBER,

Inflation NUMBER);

CREATE TABLE Population

(Country VARCHAR2(4) CONSTRAINT PopKey PRIMARY KEY,

Population_Growth NUMBER,

Infant_Mortality NUMBER);

CREATE TABLE Politics

(Country VARCHAR2(4) CONSTRAINT PoliticsKey PRIMARY KEY,

Independence DATE,

Government VARCHAR2(120));

CREATE TABLE Language

(Country VARCHAR2(4),

Name VARCHAR2(50),

Percentage NUMBER,

CONSTRAINT LanguageKey PRIMARY KEY (Name, Country));

CREATE TABLE Religion

(Country VARCHAR2(4),

Name VARCHAR2(50),

Percentage NUMBER,

CONSTRAINT ReligionKey PRIMARY KEY (Name, Country));

CREATE TABLE Ethnic_Group

(Country VARCHAR2(4),

Name VARCHAR2(50),

Percentage NUMBER,

CONSTRAINT EthnicKey PRIMARY KEY (Name, Country));

CREATE TABLE Continent

(Name VARCHAR2(20) CONSTRAINT ContinentKey PRIMARY KEY,

Area NUMBER(10));

CREATE TABLE borders

(Country1 VARCHAR2(4),

Country2 VARCHAR2(4),

Length NUMBER,

CONSTRAINT BorderKey PRIMARY KEY (Country1,Country2));

CREATE TABLE encompasses

(Country VARCHAR2(4) NOT NULL,

Continent VARCHAR2(20) NOT NULL,

Percentage NUMBER,

CONSTRAINT EncompassesKey PRIMARY KEY (Country,Continent));

CREATE TABLE Organization

(Abbreviation VARCHAR2(12) PRIMARY KEY,

Name VARCHAR2(80) NOT NULL,

City VARCHAR2(35) ,

Country VARCHAR2(4) ,

190

Province VARCHAR2(32) ,

Established DATE,

CONSTRAINT OrgNameUnique UNIQUE (Name));

CREATE TABLE is_member

(Country VARCHAR2(4),

Organization VARCHAR2(12),

Type VARCHAR2(30) DEFAULT ’member’,

CONSTRAINT MemberKey PRIMARY KEY (Country,Organization));

CREATE OR REPLACE TYPE GeoCoord AS OBJECT

(Longitude NUMBER,

Latitude NUMBER);

CREATE TABLE Mountain

(Name VARCHAR2(20) CONSTRAINT MountainKey PRIMARY KEY,

Height NUMBER,

Coordinates GeoCoord);

CREATE TABLE Desert

(Name VARCHAR2(25) CONSTRAINT DesertKey PRIMARY KEY,

Area NUMBER);

CREATE TABLE Island

(Name VARCHAR2(25) CONSTRAINT IslandKey PRIMARY KEY,

Islands VARCHAR2(25),

Area NUMBER,

Coordinates GeoCoord);

CREATE TABLE Lake

(Name VARCHAR2(25) CONSTRAINT LakeKey PRIMARY KEY,

Area NUMBER);

CREATE TABLE Sea

(Name VARCHAR2(25) CONSTRAINT SeaKey PRIMARY KEY,

Depth NUMBER);

CREATE TABLE River

(Name VARCHAR2(20) CONSTRAINT RiverKey PRIMARY KEY,

River VARCHAR2(20),

Lake VARCHAR2(20),

Sea VARCHAR2(25),

Length NUMBER);

CREATE TABLE geo_Mountain

(Mountain VARCHAR2(20),

Country VARCHAR2(4),

Province VARCHAR2(32),

CONSTRAINT GMountainKey PRIMARY KEY (Province,Country,Mountain));

CREATE TABLE geo_Desert

(Desert VARCHAR2(25),

Country VARCHAR2(4),

Province VARCHAR2(32),

CONSTRAINT GDesertKey PRIMARY KEY (Province, Country, Desert));

CREATE TABLE geo_Island

(Island VARCHAR2(25),

Country VARCHAR2(4),

Province VARCHAR2(32),

CONSTRAINT GIslandKey PRIMARY KEY (Province, Country, Island));

CREATE TABLE geo_River

(River VARCHAR2(20),

Country VARCHAR2(4),

Province VARCHAR2(32),

CONSTRAINT GRiverKey PRIMARY KEY (Province ,Country, River));

CREATE TABLE geo_Sea

(Sea VARCHAR2(25),

Country VARCHAR2(4),

Province VARCHAR2(32),

CONSTRAINT GSeaKey PRIMARY KEY (Province, Country, Sea));

191

CREATE TABLE geo_Lake

(Lake VARCHAR2(25),

Country VARCHAR2(4),

Province VARCHAR2(32),

CONSTRAINT GLakeKey PRIMARY KEY (Province, Country, Lake));

CREATE TABLE merges_with

(Sea1 VARCHAR2(25),

Sea2 VARCHAR2(25),

CONSTRAINT MergesWithKey PRIMARY KEY (Sea1,Sea2));

CREATE TABLE located

(City VARCHAR2(35) ,

Province VARCHAR2(32) ,

Country VARCHAR2(4) ,

River VARCHAR2(20),

Lake VARCHAR2(25),

Sea VARCHAR2(25));

We analyzed Mondial 2.0 XML. We present a fragment of this view below. The
entire view is available at http://www.informatik.uni-freiburg.de/~may/Mondial/

mondial-2.0.xml.

<mondial xmlns:redirect="org.apache.xalan.xslt.extensions.Redirect">

<country car_code="AL" area="28750" capital="cty-cid-cia-Albania-Tirane"

memberships="org-BSEC org-CE org-CCC org-ECE org-EBRD org-EU org-FAO org-IAEA

org-IBRD org-ICAO org-Interpol org-IDA org-IFRCS org-IFC org-IFAD org-ILO org-IMO

org-IMF org-IOC org-IOM org-ISO org-ICRM org-ITU org-Intelsat org-IDB org-ANC

org-OSCE org-OIC org-PFP org-UN org-UNESCO org-UNIDO org-UNOMIG org-UPU org-WFTU

org-WHO org-WIPO org-WMO org-WToO org-WTrO">

<name>Albania</name>

<population>3249136</population>

<population_growth>1.34</population_growth>

<infant_mortality>49.2</infant_mortality>

<gdp_total>4100</gdp_total>

<gdp_agri>55</gdp_agri>

<inflation>16</inflation>

<government>emerging democracy</government>

<encompassed continent="europe" percentage="100" />

<ethnicgroups percentage="3">Greeks</ethnicgroups>

<ethnicgroups percentage="95">Albanian</ethnicgroups>

<religions percentage="70">Muslim</religions>

<religions percentage="10">Roman Catholic</religions>

<religions percentage="20">Albanian Orthodox</religions>

<border country="GR" length="282" justice="org-UN" />

<border country="MK" length="151" justice="org-UN" />

<border country="YU" length="287" justice="org-UN" />

<city id="cty-cid-cia-Albania-Tirane" is_country_cap="yes" country="AL">

<name>Tirane</name>

<longitude>10.7</longitude>

<latitude>46.2</latitude>

<population year="87">192000</population>

</city>

<city id="stadt-Shkoder-AL-AL" country="AL">

<name>Shkoder</name>

<longitude>19.2</longitude>

<latitude>42.2</latitude>

<population year="87">62000</population>

<located_at watertype="lake" lake="lake-Skutarisee" />

</city>

<city>

...

</city>

</country>

<country>

...

</country>

...

</mondial>

The view definition query expressed in UXQuery is as follows:

192

<mondial>

{for $c in table("country"),

$pop in table("population"),

$eco in table("economy"),

$pol in table("politics")

where $c/code=$pop/country and

$c/code=$eco/country and

$c/code=$pol/country

return

<country car_code="{$c/code/text()}" area="{$c/area/text()}" capital="{$c/capital/text()}"

memberships="">

<name>{$c/name/text()}</name>

<population>{$c/population/text()}</population>

<population_growth>{$pop/population_growth/text()}</population_growth>

<infant_mortality>{$pop/infant_mortality/text()}</infant_mortality>

<gdp_total>{$eco/gdp/text()}</gdp_total>

<gdp_agri>{$eco/ariculture/text()}</gdp_agri>

<inflation>{$eco/inflation/text()}</inflation>

<government>{$pol/government/text()}</government>

{

for $enc in table("encompasses")

where $c/code=$emcompasses/country

return

<encompassed continent="{enc/continent/text()}" percentage="{enc/percentage/text()}"/>

}

(: subelements not expressible - ethnicgroups and religions :)

{

for $border in table("borders")

where $c/code=$border/country1

return

<border country="{border/country2/text()}" length="{border/length/text()}" justice=""/>

}

{

for $border in table("borders")

where $c/code=$border/country2

return

<border country="{border/country1/text()}" length="{border/length/text()}" justice=""/>

}

{

for $province in table("province")

where $c/code=$province/country

return

<province id="" capital="{$province/capital/text()}" country="$province/country/text()">

<name>{$province/name/text()}</name>

<population>{$province/population/text()}</population>

{

for $cityp in table("city")

where $c/code=$cityp/country and $province/name=$cityp/province

return

<city id="" is_country_capital="" country="{$cityp/country/text()}">

<name>{$cityp/name/text()}</name>

<longitude>{$cityp/longitude/text()}</longitude>

<latitude>{$cityp/latitude/text()}</latitude>

<population year="">{$cityp/population/text()}</population>

{

for $loc in table("located")

where $c/code=$loc/country and $province/name=$loc/province

and $cityp/name=$loc/city

return

<located_at watertype="" river="{$loc/river/text()}"

sea="{$loc/sea/text()}"

lake="$loc/lake/text()"/>

}

</city>

}

</province>

}

{

for $city in table("city")

where $c/code=$city/country and $city/province=""

return

<city id="" is_country_capital="" country="{$city/country/text()}">

<name>{$city/name/text()}</name>

193

<longitude>{$city/longitude/text()}</longitude>

<latitude>{$city/latitude/text()}</latitude>

<population year="">{$city/population/text()}</population>

{

for $loc in table("located")

where $c/code=$loc/country and $province/name=""

and $city/name=$loc/city

return

<located_at watertype="" river="{$loc/river/text()}"

sea="{$loc/sea/text()}"

lake="$loc/lake/text()"/>

}

</city>

}

</country>

{

for $continent in table("continent")

return

<continent id="{$continent/name/text()}">

<name>$continent/name/text()</name>

<area>$continent/area/text()</area>

</continent>

}

{

for $organization in table("organization")

return

<organization id="{}" headq="{$organization/city/text()}">

<name>{$organization/name/text()}</name>

<abbrev>{$organization/abbreviation/text()}</abbrev>

<established>{$organization/established/text()}</established>

{

for $ismember in table("is_member")

where $ismember/organization=$organization/abbreviation

return

(: this will produce one members element for each country that is member of the current organization :)

(: the actual view groups all countries in a single element :)

<members type="{$ismember/type/text()}" country="{$ismember/country}"/>

}

</organization>

}

{

for $mountain in table("mountain")

return

<mountain id="{$mountain/name/text()}" country="">

{

for $geomountain in table("geo_mountain")

where $geomountain/mountain=$mountain/name

return

(: this will produce one located element for each province :)

(: the actual view groups all provinces in a single element :)

<located country="{$geomountain/country/text()}" province="{$geomountain/province/text()}"/>

}

<name>{$mountain/name/text()}</name>

(: the source of these attributes is object-relational :)

<longitude></longitude>

<latitude></latitude>

(: -- :)

<height>{$mountain/height/text()}</height>

</mountain>

}

{

for $desert in table("desert")

where $desert/name=$geodesert/desert

return

<desert id="{$desert/name/text()}" country=""

climate="" temperature="" ground="">

{

for $geodesert in table("geo_desert")

where $geodesert/desert=$desert/name

return

(: this will produce one located element for each province :)

(: the actual view groups all provinces in a single element :)

<located country="{$geodesert/country/text()}" province="{$geodesert/province/text()}"/>

194

}

<name>{$desert/name/text()}</name>

<area>{$desert/area/text()}</area>

</desert>

}

{

for $island in table("island")

return

<island id="{$island/name/text()}" country="" province="">

<name>{$island/name/text()}</name>

<area>{$island/area/text()}</area>

(: the source of these attributes is object-relational :)

<longitude></longitude>

<latitude></latitude>

</island>

}

{

for $river in table("river")

return

<river id="{$river/name/text()}">

<to watertype="" water="" />

{

for $georiver in table("geo_river")

where $river/name=$georiver/river

return

(: this will produce one located element for each province :)

(: the actual view groups all provinces in a single element :)

<located country="{$georiver/country/text()}" province="{$georiver/province/text()}"/>

}

<length>{$river/length/text()}</length>

<name>{$river/name/text()}e</name>

</river>

}

{

for $sea in table("sea")

return

<sea id="{$sea/name/text()}" country="">

{

for $geosea in table("geo_sea")

where $sea/name=$geosea/sea

return

(: this will produce one located element for each province :)

(: the actual view groups all provinces in a single element :)

<located country="{$geosea/country/text()}" province="{$geosea/province/text()}"/>

}

<name>{$sea/name/text()}</name>

<depth>{$sea/depth/text()}</depth>

{

$for $mergew1 in table("merges_with")

where $mergew1/sea1=$sea/name

return

(: this will produce one bordering element for each border sea :)

(: the actual view groups all seas in a single element :)

<bordering>{$mergew1/sea2/text()}</bordering>

}

{

$for $mergew2 in table("merges_with")

where $mergew2/sea2=$sea/name

return

(: this will produce one bordering element for each border sea :)

(: the actual view groups all seas in a single element :)

<bordering>{$mergew2/sea1/text()}</bordering>

}

</sea>

}

{

for $lake in table("lake")

return

<lake id="{$lake/name/text()}" country="">

{

for $geolake in table("geo_lake")

where $lake/name=$geolake/lake

return

195

(: this will produce one located element for each province :)

(: the actual view groups all provinces in a single element :)

<located country="{$geolake/country/text()}" province="{$geolake/province/text()}"/>

}

<name>{$lake/name/text()}e</name>

<area>{$lake/area/text()}e</name>

</lake>

}

</mondial>

196

197

APPENDIX D CONTRIBUIÇÕES

Este trabalho apresenta uma proposta para atualização de bancos de dados rela-
cionais através de visões XML. A proposta utiliza um formalismo de definição de
visões que denominamos query trees. As query trees capturaram noções de seleção,
projeção, aninhamento, agrupamento e conjuntos heterogêneos, presentes na maio-
ria das linguagens de consulta XML. Para permitir a atualização das visões XML, o
trabalho demonstra como tais visões XML podem ser mapeadas para um conjunto
de visões relacionais correspondentes. Consequentemente, esta tese transforma o
problema de atualização de bancos de dados relacionais através de visões XML em
um problema clássico de atualização de bancos de dados através de visões relacionais.

A partir daí, este trabalho mostra como atualizações na visão XML são mapeadas
para atualizações sobre as visões relacionais correspondentes. Trabalhos existentes
em atualização de visões relacionais podem então ser aplicados para determinar se
as visões são atualizáveis com relação àquelas atualizações relacionais, e em caso
afirmativo, traduzir as atualizações para o banco de dados relacional.

Como query trees são uma caracterização formal de consultas de definição de
visões, elas não são adequadas para usuários finais. Diante disso, esta tese investiga
como um subconjunto de XQuery pode ser usado como uma linguagem de definição
das visões, e como as query trees podem ser usadas como uma representação inter-
mediária para consultas definidas nesse subconjunto.

As principais contribuições deste trabalho são:

Um formalismo para especificação de visões XML. As query trees podem ser
usadas como uma forma intermediária de representação de linguagens de defini-
ção de visões XML sobre bancos de dados relacionais (BRAGANHOLO; DAVID-
SON; HEUSER, 2004a), o que torna a abordagem apresentada neste trabalho
independente de sintaxe. Qualquer linguagem que possa ser mapeada para
query trees pode ser utilizada para especificar as visões.

O trabalho apresenta uma avaliação do poder de expressão das query tree,
onde se mostra que as query trees são suficientemente expressivas para ser
utilizadas na prática.

Mapeamento de visões XML para visões relacionais. Dada uma visão XML
especificada por uma query tree, este trabalho propõe algoritmos para mapeá-la
para um conjunto de visões relacionais correspondentes. Também são apresen-
tados algoritmos para mapear as atualizações sobre as visões XML para atual-
izações correspondentes sobre as visões relacionais (BRAGANHOLO; DAVID-
SON; HEUSER, 2004a). Portanto, este trabalho transforma um problema em

198

aberto – o da atualização através de visões XML – em um problema já bastante
estudado – o de atualizações através de visões relacionais.

Um estudo da atualizabilidade de visões XML. Foi feito um estudo da atua-
lizabilidade de visões XML construídas com as query trees, baseado em um
estudo preliminar (BRAGANHOLO; DAVIDSON; HEUSER, 2003a) que uti-
lizava a álgebra relacional aninhada para definir as visões. O estudo apre-
sentado neste trabalho se baseia na idéia de ausência de efeitos colaterais de
(DAYAL; BERNSTEIN, 1982a), e utiliza a teoria de tal trabalho para identi-
ficar classes de visões atualizáveis. Foram identificadas três classes de visões:
(i) uma que é atualizável para todas as possíveis inserções; (ii) uma que é
atualizável para todas as possíveis inserções, exclusões e modificações; e (iii)
uma cuja atualizabilidade pode ser estudada utilizando o Teorema 6.1.

Um subconjunto de XQuery para especificar visões XML. Este trabalho
propõe e implementa um subconjunto de XQuery que é capaz de construir
visões XML sobre bancos de dados relacionais (BRAGANHOLO; DAVIDSON;
HEUSER, 2003b). A UXQuery utiliza as query trees como uma representação
intermediária para mapear a visão XML resultante para visões relacionais.

PATAXÓ. As idéias deste trabalho foram implementadas em um sistema denom-
inado Pataxó. O Pataxó utiliza a UXQuery como a linguagem de definição
das visões, e a abordagem de (DAYAL; BERNSTEIN, 1982a) para traduzir as
atualizações das visões relacionais para o banco de dados.

