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We compare and discuss several approximations to the dispersion relation for electrostatic waves in inhomoge-
neous plasmas, either obtained directly from Poisson’s equation, or from the dielectric constant obtained using
a dielectric tensor derived using the plane wave approximation, or from the dielectric constant derived using the
effective dielectric tensor.

1 Introduction

Along the last few years we have conducted several investi-
gations on waves in inhomogeneous plasmas, using the con-
cept of effective dielectric tensor, which has been proposed
as the correct dielectric tensor for the description of dielec-
tric properties of inhomogeneous plasmas [1]. Among these
investigations, we have considered cases where the magne-
tic field is homogeneous and other plasma parameters are
inhomogeneous [2, 3, 4], cases where the magnetic field is
inhomogeneous and inhomogeneities in the plasma parame-
ters are neglected [5, 6], and cases where inhomogeneities
are taken into account both in the plasma parameters and in
the magnetic field [7]. For all these cases we case consi-
dered arbitrary direction of propagation relative to the am-
bient magnetic field, and we have taken into account rela-
tivistic effects. The expressions obtained for the dielectric
tensor for all these cases satisfy Onsager symmetry, and as a
consequence the anti-Hermitian part of the tensor only con-
tains resonant terms, as required for proper description of
the energy exchange between wave and particles.

We have also applied the concept of effective dielectric
tensor to the study of instabilities in the lower hybrid range,
in a plasma featuring density and magnetic field inhomoge-
neities [8]. In the case of this application we have verified
that the form of the dispersion relation conventionally used
for electromagnetic waves was able to describe the so-called
modified two stream instability (MTSI), an instability which
occurs due to the existence of a relative drift between ions
and electrons [9-13], as well as its purely growing limit for
parallel propagation, known as ion Weibel instability (IWI)
[14, 15]. However, the conventional form of the dispersion
relation, along with the effective dielectric tensor, was not
able to describe the lower hybrid drift instability (LHDI),
which is expected to occur when inhomogeneities are taken
into account in the description of the electron contribution
to the dispersion relation [16-23]. The LHDI is known by
its strong electrostatic character, and is frequently studied

using the electrostatic approximation. The difficulty of the
conventional form of the dispersion relation in describing
the LHDI had already been noticed in an earlier analysis, in
a formulation which did not use the effective dielectric ten-
sor, adopting instead anad hocprocedure to correct the lack
of symmetry of the dielectric tensor [23]. We have therefore
derived a new form of the dispersion relation, taking into ac-
count in the derivation the relationship between charge den-
sity and electric field expressed by Gauss law, which intro-
duces a term featuring gradients of the inhomogeneous para-
meters, which is of the same order as other terms due to the
inhomogeneity which were taken into account in the deriva-
tion of the dielectric tensor. This new form of the dispersion
relation was able to describe in a local approximation both
the LHDI and the MTSI(IWI), something which was not yet
available in the literature up to that moment [8].

The fact that the LHDI was not described with use of
the conventional form of the dispersion relation and requi-
red a new form of the dispersion relation to take into account
all relevant inhomogeneity effects, and the strong electros-
tatic character of the instability, point out to the relevance of
investigating the proper electrostatic limit of the dispersion
relation. As it is known, for electrostatic fluctuations in ho-
mogeneous plasmas the dispersion relation may be written
asεl = 0, whereεl is the dielectric constant, obtained as
follows,

εl =
kiεijkj

k2
, (1)

where theεij are the components of the dielectric tensor and
theki are the components of the wave vectork. As a very
usual alternative, the dispersion relation for electrostatic wa-
ves may also be obtained from Poisson’s equation.

When considering the inhomogeneous case, it is neces-
sary to carefully introduce all relevant inhomogeneity ef-
fects, and to properly describe the energy exchange between
waves and particles. In the present paper we address the sub-
ject by comparing and discussing several approximations to
the dispersion relation for electrostatic waves in weakly re-
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lativistic inhomogeneous plasmas, either obtained directly
from Poisson’s equation, or from the dielectric constant ob-
tained using a dielectric tensor derived with the plane wave
approximation, or from the dielectric constant derived using
the effective dielectric tensor.

2 The dispersion relation for the elec-
trostatic limit

In the absence of collisions the behavior of the system is
ruled by the Vlasov-Maxwell system of equations. Consi-
dering small amplitude fluctuations such as the system can
be linearized, using the method of characteristics to solve
the Vlasov equation, and assuming plane-wave approxima-
tion, the perturbed distribution function of a plasma species
α can be given by the well known result,

fαk,ω
= −qαAα ·Ek,ω (2)

where

Aα ≡
∫ 0

−∞
Θαei(k·R−ωτ)dτ,

Θα =
(

1− p′ · k
mαγ′αω

)
∇p′fα0 +

(
k · ∇p′fα0

mαγ′αω

)
p′,

and
R = r′ − r, τ = t′ − t,

and where Faraday’s law has been used to relate magnetic
and electric field fluctuations,

Bk,ω =
c

ω
(k×Ek,ω). (3)

The quantitymα is the mass of the particles of speciesα,
γα is the relativistic factor,p′ is the unperturbed momen-
tum, andk andω are the wave vector and wave angular fre-
quency, respectively.

The perturbed distribution function is then utilized to ob-
tain the perturbed current. After a considerable amount of
algebra, it is well known that a linear relationship, possibly
anisotropic, is obtained between the Fourier transforms of
current and electric field,

Jk,ω =
↔
σ

0
(k, ω; x) ·Ek,ω, (4)

where

↔
σ

0
(k, ω; x) = −

∑
α

q2
α

mα

∫
d3p

p
γα

Aα.

The componentsσ0
ij appearing in Eq. (4) can be used to

define the dielectric tensor,

↔
ε

0≡↔I +
4πi

ω

↔
σ

0
. (5)

If inhomogeneity effects are explicitly taken into ac-
count in the derivation of theσ0

ij components, there is an
inconsistency with the plane wave approximation which is

used to describe the fluctuating quantities in the local appro-
ximation. As a consequence, the dielectric tensor as given
by Eq. (5) features some undesirable properties, like non-
resonant terms in the anti-Hermitian part due to the lack of
Onsager symmetry of the componentsε0

ij , and therefore the
need to introduce the effective dielectric tensor, aimed to
correct the inconsistencies introduced by the local approxi-
mation [2].

The calculation of theε0
ij components for inhomogene-

ous medium, and the subsequent derivation of the compo-
nents of the effective dielectric tensor, which we will denote
simply asεij , can be a very cumbersome task, specially in
the case of inhomogeneous magnetic field. In order to pin-
point basic features of the approximation involved in the cor-
rect description of the electrostatic limit for inhomogeneous
plasmas, we restrict ourselves to the case of homogeneous
magnetic field, with inhomogeneities in the parameters ap-
pearing in the distribution function assumed to be along the
x direction. In what follows we reproduce the expression
obtained for the components of the effective dielectric ten-
sor. The details of the calculation can be found elsewhere,
although in different notation [2].

εij = ε0h
ij + ε0nh

ij +
i

2
∂2

∂kx∂x
ε0h
ij = δij

+ω
∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

π∗i

×
{

(1− δjz)ϕ0(fα)πj + δjz

[
k⊥

mαγαω

n

bα
L(fα) +

∂fα

∂p‖

]
p⊥
p‖

πz

}

+ ω
∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
{

δjy

[(
1− k‖p‖

mαγαω

)
− k⊥p⊥

mαγαω

n

bα

]
1
p‖

f ′απ∗i πz

+
k⊥ sin ψ

mαγαω
f ′απ∗i πj + (1− δjz)ϕ0(f ′α)(Φ∗i πj)H

+ δjz

[
k⊥

mαγαω

n

bα
L(f ′α) +

∂f ′α
∂p‖

]
p⊥
p‖

(Φ∗i πz)H

}
, (6)

where

L = p‖
∂

∂p⊥
− p⊥

∂

∂p‖
,

ϕ0 =
∂

∂p⊥
− k‖

mαγαω
L ,

Dαn = ω − nΩα

γα
− k‖p‖

mαγα
.

Theπi andΦi appearing in Eq. (6) are the components
of the following vectors,

~π =
(

nJn(bα)
bα

cos ψ − iJ ′n(bα) sin ψ

)
ex

+
(

nJn(bα)
bα

sin ψ + iJ ′n(bα) cos ψ

)
ey



1640 Brazilian Journal of Physics, vol. 34, no. 4B, December, 2004

+
p‖
p⊥

Jn(bα)ez, (7)

~Φ =
{[(

n2

b2
α

− 1
2

)
Jn(bα)− J ′n(bα)

bα

]
sin(2ψ)

−i

[
n

b2
α

Jn(bα)− nJ ′n(bα)
bα

]
cos(2ψ)

}
ex

+
{

Jn

2
−

[(
n2

b2
α

− 1
2

)
Jn(bα)− J ′n(bα)

bα

]
cos(2ψ)

−i

[
n

b2
α

Jn(bα)− nJ ′n(bα)
bα

]
sin(2ψ)

}
ey

+
p‖
p⊥

[
n

bα
Jn(bα) sin ψ + iJ ′n(bα) cos ψ

]
ez , (8)

wherebα = k⊥p⊥/(mαΩα), with Ωα being the cyclotron
angular frequency of particles of speciesα. The quantity
Xα appearing in Eq. (6) is defined asω2

α/ω2, whereωα is
the plasma angular frequency of particles of speciesα, and
nα is the density of these particles. The components of the
wave vector respectively perpendicular and parallel to the
direction of the ambient magnetic field arek⊥ andk‖, with
ψ being the angle betweenk⊥ and the direction of the inho-
mogeneity.

We notice in Eq. (6) the presence of the quotient
between the quantityk⊥, which appears due to the magnetic
fluctuations introduced by Faraday’s law, and the quantity
bα which appears in the denominator. Since the quantitybα

is proportional tok⊥, its definition can be used to cancel
out thek⊥ appearing in the numerator. The outcome is a
different form for the effective dielectric tensor.

εij = δij + ω
∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

ϕ0(fα)π∗i πj

− δizδjz

∑
α

Xα

nα

∫
d3p

1
γα

p‖
p⊥
L(fα)

+ δjy δiz

∑
α

Xα

nα

1
mαΩα

∫
d3p p⊥

1
γα

p‖
p⊥

f ′α

+ ω
∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
[
k⊥ sin ψ

mαγαω
f ′απ∗i πj + ϕ0(f ′α)(Φ∗i πj)H

]

− δjz

∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p⊥

1
γα

p⊥
p‖
L(f ′α) (Φ∗i πj)

H
.

(9)
We examine now the last term in this expression. Since

there is no resonant denominator, the following property can
be used,

+∞∑
n=−∞

(Φ∗i πz)H =
+∞∑

n=−∞

(
p‖
p⊥

)δiz+1

SH
iz =

1
2

p‖
p⊥

δiy,

(10)

where the definition ofSiz can be found in Ref. [2], and
therefore the term with theδjz in Eq. (9) can be written as

− δiyδjz
1
2

∑
α

Xα

nα

1
mαΩα

∫
d3p p⊥

1
γα
L(f ′α)

= δiyδjz

∑
α

Xα

nα

1
mαΩα

∫
d3p

1
γα

p‖ f ′α,

where the last step was obtained via integration by parts.
Using this result in Eq. (9),

εij = δij + ω
∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

ϕ0(fα)π∗i πj

− δizδjz

∑
α

Xα

nα

∫
d3p

1
γα

p‖
p⊥
L(fα)

+ ω
∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
[
k⊥ sin ψ

mαγαω
f ′απ∗i πj + ϕ0(f ′α)(Φ∗i πj)H

]

+(δiyδjz + δjyδiz)
∑
α

Xα

nα

1
mαΩα

∫
d3p p⊥

1
γα

p‖
p⊥

f ′α

(11)
These expressions for the components of the effective

dielectric tensor are exactly equivalent to those obtained in
Ref. [2].

Once we have the proper dielectric tensor, let us examine
the dispersion relation. In the electrostatic approximation,
B1 ' 0, and Gauss’s law can be used to obtain the disper-
sion relation. Using it along with continuity’s equation, and
using plane wave approximation for the electric field, we
obtain the following

ik ·E = −4πi

ω

[(
∇· ↔σ

)
·E + ik· ↔σ ·E

]
,

where we have used the relationship between the effective
dielectric tensor and the effective conductivity,

εij = δij +
4πi

ω
σij .

UsingE = −∇φ = −ikφ, we obtain the following dis-
persion relation,

k2εl − ik ·
(
∇· ↔ε

)
= 0 . (12)

The general form of this dispersion relation can be found
in well known textbooks [24]. However, we point out that
the dielectric tensor to be used in Eq. (12) is the effective di-
electric tensor, which is free from the inconsistencies arising
from the use of the local approximation for inhomogeneous
plasmas. Using the effective dielectric tensor as given by
Eq. (6), we obtain

εl = 1 +
ω2

k2

∑
α

Xα

nα
mα

+∞∑
n=−∞

∫
d3p

1
Dαn

J2
n
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×
[
k⊥

n

bα

∂fα

∂p⊥
+ k‖

∂fα

∂p‖

]

+
ω2

k2

∑
α

Xα

nα

k⊥ sin ψ

Ωα

+∞∑
n=−∞

∫
d3p

1
Dαn

J2
nf ′α

+
ω2

k2

∑
α

Xα

nα

sin ψ

Ωα

+∞∑
n=−∞

∫
d3p p⊥

1
Dαn

×
[
nJ2

n

bα
− Ωα

γαω
JnJ ′n

] [
k⊥

n

bα

∂f ′α
∂p⊥

+ k‖
∂f ′α
∂p‖

]
. (13)

Details about this calculation can be found in Appendix
A. It is important to notice that all theki components ori-
ginated from the magnetic fluctuations have been cancelled
out in the derivation of Eq. (13), so that the dielectric cons-
tant is the same as it would be obtained if we had started
assuming electrostatic fluctuations when deriving the com-
ponents of the dielectric tensor.

By taking into account that the inhomogeneities are
along thex direction, evaluating the derivatives of the com-
ponents of the dielectric tensor as given by Eq. (6), and
using Eq. (13), the dispersion relation (12) can be written as
follows,

−i
ω

k2

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

[
k⊥

n

bα

∂f ′α
∂p⊥

+ k‖
∂f ′α
∂p‖

]

×
(

nJ2
n

bα
cosψ + iJnJ ′n sin ψ

)
+ εl = 0 . (14)

3 Other approximations to the dis-
persion relation

As we have pointed out, the so-called BGI procedure has
played an essential role in correcting inconsistencies arising
from the use of a plane wave approximation in an inhomoge-
neous plasma. However, it may be illuminating to compare
the dispersion relation obtained using the effective dielectric
tensor, Eq. (14), with the corresponding dispersion relation
obtained using the dielectric tensor derived with use of the
plane wave approximation, with componentsε0

ij . The com-
ponents of this tensor can be given as follows,

ε0
ij = δij + ω

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

×
{

(1− δjz)
[

∂fα

∂p⊥
− k‖

mαγαω
L(fα)

]
π∗i πj

+ δjz

[
k⊥

mαγαω

n

bα
L(fα) +

∂fα

∂p‖

]
p⊥
p‖

π∗i πz

}

+ω
∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
{

δjy

[
1− k‖p‖

mαγαω
− k⊥p⊥

mαγαω

n

bα

]
1
p‖

f ′απ∗i πz

+
k⊥ sin ψ

mαγαω
f ′απ∗i πj+(1−δjz)

[
∂f ′α
∂p⊥

− k‖
mαγαω

L(f ′α)
]

Φ∗i πj

+ δjz

[
k⊥

mαγαω

n

bα
L(f ′α) +

∂f ′α
∂p‖

]
p⊥
p‖

Φ∗i πz

}
. (15)

This expression is the counterpart of Eq. (6), prior the
BGI procedure. Using theε0

ij components with Eq. (1), and
following procedures similar to those utilized in Appendix
A to derive the effective dielectric constant, we obtain a die-
lectric constant which do not describe adequately the energy
exchange between waves and particles, and which will be
denoted asε0

l ,

ε0
l = 1 +

ω

k2

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

J2
n

×
(

k⊥
n

bα
+ k‖

p‖
p⊥

)(
k⊥

n

bα

∂fα

∂p⊥
+ k‖

∂fα

∂p‖

)

+
ω

k2

∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
{

1
p⊥

f ′αJ2
nk⊥ sinψ

(
k⊥

n

bα
+ k‖

p‖
p⊥

)

+
[
k⊥ sin ψ

(
n2J2

n

b2
α

− JnJ ′n
bα

)
+ ik⊥ cosψ

(
nJ2

n

b2
α

− nJnJ ′n
bα

)

+k‖
p‖
p⊥

(
nJ2

n

bα
sin ψ − iJnJ ′n cos ψ

)]

×
(

k⊥
n

bα

∂f ′α
∂p⊥

+ k‖
∂f ′α
∂p‖

)}
. (16)

By comparing Eqs. (13) and (16) it is easy to show the
following result

εl − ε0
l = −i

ω2

k2
cos ψ

∑
α

Xα

nα

1
Ωα

+∞∑
n=−∞

∫
d3p p⊥

1
Dαn

×
[

Ωα

γαω

nJ2
n

bα
− JnJ ′n

](
k⊥

n

bα

∂f ′α
∂p⊥

+ k‖
∂f ′α
∂p‖

)
. (17)

Eq. (17) shows that the dielectric constants originated
from the effective and from the plane wave tensors are in ge-
neral different, even in the simple case considered here, of
homogeneous magnetic field and gradients of plasma para-
meters pointing along a direction perpendicular to the mag-
netic field. These two forms of the dielectric constant are
clearly equal only in the case of waves propagating perpen-
dicularly to the direction of the inhomogeneity. This con-
clusion can also be extended to the dispersion relation itself,
since it is trivial to show that the dispersion relation using
plane wave approximation would be the same as Eq. (14)
with ε0

l replacingεl. Of course, this dispersion relation fe-
aturing the plane wave tensor instead of the effective die-
lectric tensor is not appropriate to describe the electrostatic
oscillations, since it would not describe properly the energy
exchange between waves and particles.
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Another approach to the dispersion relation is largely
used in the treatment of electrostatic waves in inhomoge-
neous media, and can be summarized as follows. Star-
ting from Gauss’s law, using the electrostatic approximation
E1 = −∇φ1, and assuming plane wave approximation, we
obtain

k2φ = 4π
∑
α

qα

∫
d3p fα ,

where the (Fourier-transformed) distribution function can
be obtained from Vlasov equation according to Eq. (2).
Following procedures similar to those employed to derive
the ε0

ij components, after some reasonable amount of al-
gebraic manipulation we obtain the relationship between
charge density and fluctuating electric field, and therefore
obtain the dispersion relation as follows,

εP
l = 1 +

ω2

k2

∑
α

Xαmα

nα

+∞∑
n=−∞

∫
d3p

1
Dαn

J2
n

×
(

k⊥
n

bα

∂fα

∂p⊥
+ k‖

∂fα

∂p‖

)

+
ω2

k2
sin ψ

∑
α

Xα

nαΩα

+∞∑
n=−∞

∫
d3p p⊥

1
Dαn

J2
n

×
[

n

bα

(
k⊥

n

bα

∂f ′α
∂p⊥

+ k‖
∂f ′α
∂p‖

)
+ k⊥

1
p⊥

f ′α

]

−i cos ψ
ω2

k2

∑
α

Xα

nαΩα

+∞∑
n=−∞

∫
d3p p⊥

1
Dαn

JnJ ′n

×
(

k⊥
n

bα

∂f ′α
∂p⊥

+ k‖
∂f ′α
∂p‖

)
= 0 . (18)

It is important to remark that in this approach inhomo-
geneity effects have been included in the dispersion relation
along with a plane wave approximation to describe the fluc-
tuating quantities. As we know, this approximation genera-
tes inconsistencies. However, in the derivation of Eq. (18)
no correction along the lines of the BGI procedure employed
to derive the effective dielectric tensor has been applied, and
therefore the dispersion relation as given by Eq. (18) may
not describe adequately the energy exchange between waves
and particles, as it is also the case of the dispersion relation
obtained using theε0

ij components.
By comparing the dielectric constant Eq. (18) obtained

with use of Poisson’s equation with the effective dielectric
constant given by Eq. (13), we obtain the following

εl = εP
l −

ω

k2
sin ψ

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

JnJ ′n

×
[
k⊥

n

bα

∂f ′α
∂p⊥

+ k‖
∂f ′α
∂p‖

]

+i cos ψ
ω2

k2

∑
α

Xα

nαΩα

+∞∑
n=−∞

∫
d3p p⊥

1
Dαn

JnJ ′n

×
[
k⊥

n

bα

∂f ′α
∂p⊥

+ k‖
∂f ′α
∂p‖

]
. (19)

Using this expression along with the dispersion relation
given by Eq. (14), it is seen that the dispersion relation may
be written as follows,

εP
l − i

ω

k2
cos ψ

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

×
[
k⊥

n

bα

∂f ′α
∂p⊥

+ k‖
∂f ′α
∂p‖

](
nJ2

n

bα
− JnJ ′n

)
= 0 . (20)

From this expression, we conclude that for propagation
perpendicular to the inhomogeneity (ψ = π/2), the disper-
sion relation obtained from Poisson’s equation, without BGI
correction, is exactly the same as the correct dispersion rela-
tion which has incorporated all the relevant inhomogeneity
effects and which has been corrected using the BGI proce-
dure, namely Eq. (14). For general directions of propaga-
tion, however, these two forms of the dispersion relation do
not in general coincide.

4 Conclusions

We have investigated the electrostatic limit of the disper-
sion relation for weakly inhomogeneous media, by compa-
ring and discussing several approximations to the disper-
sion relation. We have started by deriving the dispersion
relation using Gauss’s law, taking into account the equation
of charge continuity to relate charge and current densities,
and expressing the relationship between current density and
electric field by means of the effective conductivity, which
is derived using the so called BGI procedure in order to gua-
rantee proper description of the energy exchange between
waves and particles. We have seen that another form of the
dispersion relation derived with a conductivity tensor which
has not been corrected using the BGI procedure in general
does not correspond to the correct form of the dispersion
relation, except for propagation perpendicular to the direc-
tion of inhomogeneity. This result is not surprising, since
it is known that for this particular direction the uncorrected
tensor corresponds to the effective conductivity tensor.

We have also derived the dispersion relation using Pois-
son’s equation and direct evaluation of charge density, ta-
king into account inhomogeneity effects. For propagation
perpendicular to the direction of inhomogeneity, the equa-
tion obtained following this procedure is the same as the
correct equation derived using the effective dielectric tensor.
For general directions of propagation, however, the equa-
tion obtained differs from the correct dispersion relation,
which is not surprising, since in the derivation starting from
Poisson’s equation no BGI correction has been applied, and
therefore there is no guarantee of correct description of the
wave-particle interaction.
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A The derivation of the effective die-
lectric constant

Using Eq. (1) with the components of the effective dielectric
tensor as given by Eq. (6), we use the following results,

∑

ij

kiδijkj =
∑

i

kiki = k2, (21)

∑

ij

kiδizδjzkj = kzkz = k2
‖, (22)

∑

ij

ki(δiyδjz + δjyδiz)kj = 2kykz

= 2k‖k⊥ sinψ , (23)

and obtain after some algebraic manipulations,

εl = 1 +
ω

k2

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

×




(
∂fα

∂p⊥
− k‖

mαγαω
L(fα)

) ∑

ij

kiπ
∗
i πjkj

+
1
p‖
L(fα)

∑

i

kiπ
∗
i πzk‖

[
−1 +

k‖p‖
mαγαω

+
k⊥p⊥

mαγαω

n

bα

]}

+
ω

k2

∑
α

Xα

nα

1
mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
{[

1− k‖p‖
mαγαω

− k⊥p⊥
mαγαω

n

bα

]
1
p‖

k⊥ sin ψf ′α
∑

i

kiπ
∗
i πz

+
k⊥ sin ψ

mαγαω
f ′α

∑

ij

kiπ
∗
i πjkj

+
(

∂f ′α
∂p⊥

− k‖
mαγαω

L(f ′α)
) ∑

ij

ki(Φ∗i πj)Hkj

+
1
p‖
L(f ′α)

∑

i

ki(Φ∗i πz)Hk‖

[
−1 +

k‖p‖
mαγαω

+
k⊥p⊥

mαγαω

n

bα

]}
.

(24)
Using the definition of theπi, we obtain

∑

i

kiπi = Jn

(
n

bα
k⊥ + k‖

p‖
p⊥

)
(25)

∑

ij

kiπ
∗
i πjkj = J2

n

(
n

bα
k⊥ + k‖

p‖
p⊥

)2

(26)

We also need the following quantity,

∑

ij

ki(Φ∗i πj)Hkj =
1
2

[(
k · ~Φ∗

)
(k · ~π) + c.c.

]
.

Since the quantitykiπi is real,

1
2

[(
k · ~Φ∗

)
(k · ~π) + c.c.

]
= (k · ~π)

(
k · Re~Φ

)
.

Using the definition of theΦi,

∑

i

kiReΦi = k⊥

[
n2Jn

b2
α

− Jn

2
− J ′n

bα

]
sin(2ψ) cos ψ

+k⊥

{
Jn

2
−

[
n2Jn

b2
α

− Jn

2
− J ′n

bα

]
cos(2ψ)

}
sin ψ

+k‖
p‖
p⊥

n

bα
Jn sin ψ

= ReΦ∗z

(
k⊥

p⊥
p‖

n

bα
+ k‖

)
− k⊥

J ′n
bα

sin ψ

Therefore,

∑

ij

ki(Φ∗i πj)Hkj =

(∑

i

kiπi

) (∑

i

kiReΦi

)

=
(

k⊥
p⊥
p‖

n

bα
+ k‖

)
πz sin ψ

×
[

n

bα
πz

(
k⊥

p⊥
p‖

n

bα
+ k‖

)
− k⊥

J ′n
bα

]
. (27)

Using Eqs. (26) and (27) in Eq. (24),

εl = 1+
ω

k2

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

J2
n

(
n

bα
k⊥ + k‖

p‖
p⊥

)

×
{(

∂fα

∂p⊥
− k‖

mαγαω
L(fα)

)(
n

bα
k⊥ + k‖

p‖
p⊥

)

+L(fα)
k‖

mαγαω

[
−mαγαω

p⊥
+ k‖

p‖
p⊥

+ k⊥
n

bα

]}

+
ω

k2

∑
α

Xα

nα

k⊥ sinψ

mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

Jn

×
(

n

bα
k⊥ + k‖

p‖
p⊥

)

×
{[

mαγαω

p⊥
− k‖

p‖
p⊥

− k⊥
n

bα

]
1

mαγαω
f ′αJn

+
1

mαγαω
f ′α

k⊥
k⊥

Jn

(
n

bα
k⊥ + k‖

p‖
p⊥

)}

+
ω

k2

∑
α

Xα

nα

sin ψ

mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
{(

∂f ′α
∂p⊥

− k‖
mαγαω

L(f ′α)
)(

k⊥
n

bα
+ k‖

p‖
p⊥

)

×
[

n

bα
J2

n

(
k⊥

n

bα
+ k‖

p‖
p⊥

)
− k⊥

JnJ ′n
bα

]

+L(f ′α)
k‖ sinψ

mαγαω

[
n

bα
J2

n

(
k⊥

n

bα
+ k‖

p‖
p⊥

)
− k⊥

JnJ ′n
bα

]
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×
[
−mαγαω

p⊥
+ k‖

p‖
p⊥

+ k⊥
n

bα

]}
.

After some simple algebraic manipulation, we obtain the
following,

εl = 1 +
ω

k2

∑
α

Xα

nα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

J2
n

×
(

n

bα
k⊥ + k‖

p‖
p⊥

)[
k⊥

n

bα

∂fα

∂p⊥
+ k‖

∂fα

∂p‖

]

+
ω

k2

∑
α

Xα

nα

k⊥ sin ψ

mαΩα

+∞∑
n=−∞

∫
d3p p⊥

1
γαDαn

×J2
n

(
n

bα
k⊥ + k‖

p‖
p⊥

)
f ′α

+
ω

k2

∑
α

Xα

nα

sin ψ

mαΩα

+∞∑
n=−∞

∫
d3p p2

⊥
1

γαDαn

×
[
nJ2

n

bα

(
k⊥

n

bα
+ k‖

p‖
p⊥

)
− k⊥

JnJ ′n
bα

]

×
[
k⊥

n

bα

∂f ′α
∂p⊥

+ k‖
∂f ′α
∂p‖

]
. (28)

It is important to notice that none of the componentski

labeled as coming from the magnetic fluctuations have sur-
vived up to this point.

We now write

(
n

bα
k⊥ + k‖

p‖
p⊥

)
f ′α =

mαγα

p⊥

(
nΩα

γα
+

k‖p‖
mαγα

)

=
mαγα

p⊥
(ω −Dαn) .

Inserting this expression into Eq. (28), and using∑
n nJ2

n = 0,
∑

n J2
n = 1 and

∑
n n2J2

n(x) = x2/2, and
also taking into account that

∫
d3p

∂fα

∂p‖
= 0 ,

∫
d3p p⊥

∂f ′α
∂p⊥

= −2
∫

d3p f ′α ,

we obtain Eq. (13).
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