

RGS WOLLASTONITA COMO FUNDENTE PARA MASSAS PADE FEDERAL RANDE DO SUL

e-mail:Guilherme Adams

Guilherme Adams, Saulo R. Bragança LACER – LABORATÓRIO DE MATERIAIS CERÂMICOS DEPARTAMENTO DE MATERIAIS / ESCOLA DE ENGENHARIA / UFRGS

1. INTRODUÇÃO

A wollastonita é um silicato de cálcio sendo um mineral natural ou sintético. A wollastonita comercial apresenta fusão em aproximadamente 1450°C, não podendo ser considerada um "fundente" como os feldspatos alcalinos. Para essa função, ela depende da reação com outras matérias-primas. Face a isso, surgiu o objetivo deste trabalho que foi investigar o mecanismo de atuação da wollastonita como fundente cerâmico. Analisaram-se as propriedades tecnológicas finais das peças, principalmente, em relação à temperatura de queima, fases formadas, e propriedades tecnológicas (resistência mecânica, porosidade, etc). Os resultados desta caracterização mostraram que as propriedades técnicas das peças desenvolvidas estão próximas às dos produtos porcelânicos comerciais.

2. MATERIAIS E MÉTODOS

A composição das matérias-primas por fluorescência de raios X (Shimadzu modelo XRF-1800) é mostrada na Tabela 1.

Tabela 1 - Composição química do quartzo, caulim, e os fundentes investigados neste trabalho.

Óxidos (%)	Quartzo	Caulim	Caulim Feldspato	
SiO ₂	99,81	46,89	67,02	51,4
Al_2O_3	0,12	38,05	19,22	0,66
Fe ₂ O ₃	0,08	0,46	0,19	0,22
CaO	-	0,02	0,06	46,1
Na ₂ O	0,03	0,03	3,75	_
K ₂ O	0,06	1,14	9,42	0,32
TiO ₂	0,07	0,03	-	0,02
MgO	-	-	-	0,5
MnO	-	0,01	0,01	0,05
P_2O_5	0,02	0,11	-	-
PF	0,1	13,2	0,6	0,65
Total	100,3	99,94	100,2	99,92

As fases cristalinas determinadas por difratometria de raios X (Phillips modelo X'pert MPD) são apresentadas na Tabela 2. A wollastonita foi fornecida pela empresa Nyco minerals.

Tabela 2 – Fases identificadas por difração de raios X em cada matéria-prima, após moagem. Listadas as fases de maior importância.

Constituintes	Fases Presentes	Formula Química	
Feldspato	Quartzo	SiO ₂	
	Microclínio	KAISi ₃ O ₈ NaAISi ₃ O ₈	
	Albita		
Caulim	Caolinita	Al ₂ Si ₂ O ₅ (OH) ₄	
	Quartzo	SiO ₂	
	Muscovita	KAl ₂ Si ₃ AlO ₁₀ (OH) ₂	
Quartzo	Quartzo	SiO ₂	
Wollastonita	Wollastonita	CaSiO ₃	

As formulações investigadas no estudo de reatividade entre matérias-primas são apresentadas na Tabela 3. Neste estudo, é investigado de forma comparativa a reatividade dos fundentes wollastonita e feldspato com o quartzo (SiO₂) e o caulim (SiO₂ + Al₂O₃). Objetivou-se comparar o comportamento de gresificação da wollastonita em relação ao na conformação de produtos porcelânicos.

Tabela 3 - Formulação propostas no estudo de reatividade entre matérias-primas.

Formulação(%)	1	2
Wollastonita	_	10
Feldspato	25	15
Quartzo	25	25
Caulim	50	50
Total	100	100

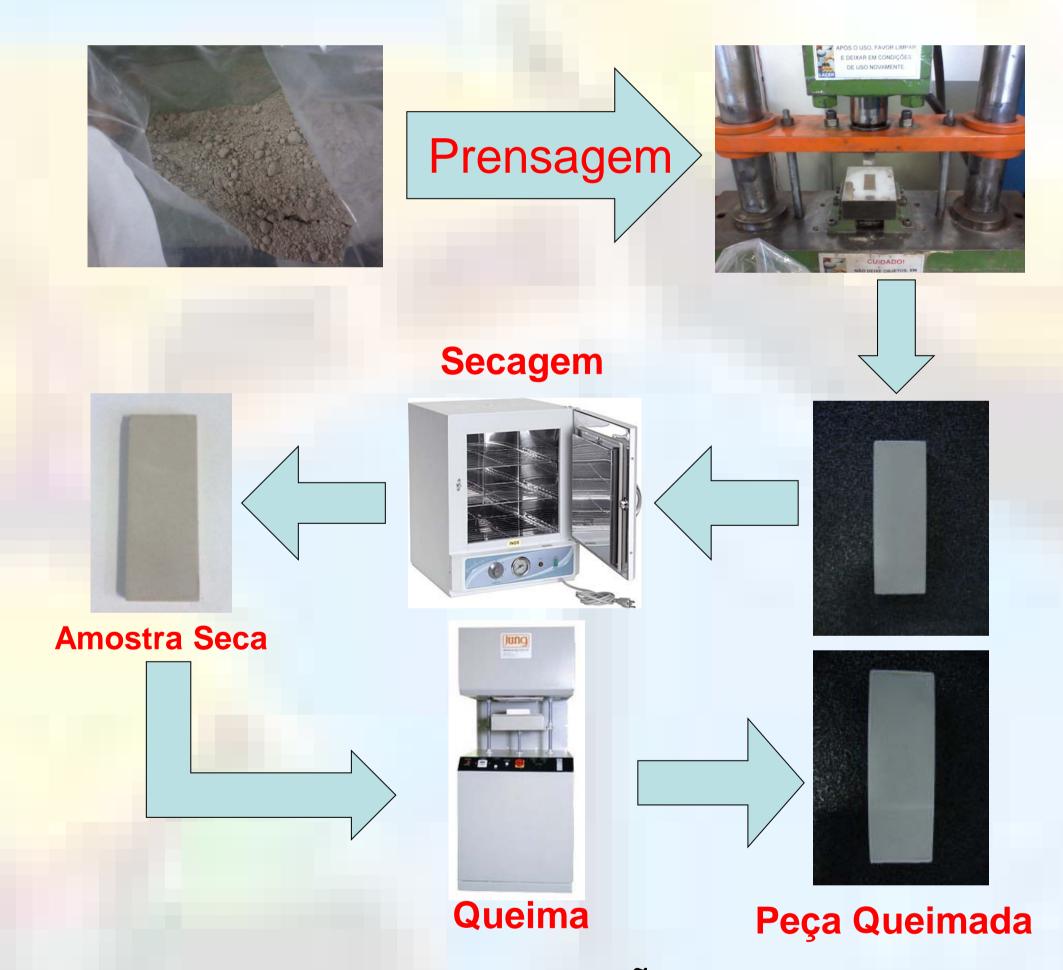

As matérias-primas foram moídas a seco, empregando-se um moinho de bolas com corpos moedores de alta alumina (>92% de Al_2O_3). Para as formulações, utilizou-se posterior moagem de 15 mim, mostrando boa mistura das matérias-primas em análise em lupa.

Figura 1 – Moinho de bolas.

As massas granuladas foram compactadas, utilizando-se uma prensa hidráulica de simples efeito com estampo metálico, com as dimensões 20x60 mm², com altura de aproximadamente 4 mm. O valor da densidade a verde foi mantido em torno de 1,8 g/cm³.

Os corpos cerâmicos foram secos em temperatura ambiente por 24 horas e após este período em estufa a 110°C por mais 24 horas. A queima no estudo de gresificação foi realizada em forno elétrico tipo mufla foi realizada de 1250°C a 1300°C com 150°C/h e patamar de 30 minutos.

3. RESULTADOS E DISCUSSÃO

Os resultados observados na Tabela 4 mostram que a formulação 2, que contem Wollastonita, foi mais fundente que a formulação 1, somente com feldspato, possibilitando a redução da absorção. de água.

Tabela 4 - Caracterização tecnológica para as formulações estudadas.

Tabola i Caractorização tocifológica para ao formalações estadadas.								
	Dens.	Retração	Dordo	Abs.	Poros.	Dens.		
	Formulação	Seco	(%)	Perda Massa (%)	água	Aparente	arquim.	
	(g/cm ³)	(70)		(%)	(%)	(g/cm ³)		
	1 (1250°)	1,700	6,68	6,71	<mark>6,</mark> 70	11,85	2,45	
	2 (1250°)	1,822	7,45	7,06	1,27	2,88	2,27	
	1 (1300°)	1,853	8,15	7,20	2,48	5,64	2,27	
	2 (1300°)	1,806	6,29	6,70	1,20	2,20	1,83	

4. CONCLUSÃO

A Wollastonita como "fundente" atinge o seu objetivo, que é reduzir a temperatura de queima. Entretanto isso só é possível com a reação com outras matérias-primas devido a sua reatividade com as mesmas, formando eutéticos. Os resultados apresentam propriedades próximas a de produtos típicos porcelânicos, sendo necessários ainda alguns ajustes nas formulações.