
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ÉRIKA FERNANDES COTA

Reuse-based Test Planning for Core-based
Systems-on-chip

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr. Marcelo Lubaszewski
Advisor

Porto Alegre, September 2003

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Cota, Érika Fernandes

Reuse-based Test Planning for Core-based Systems-on-chip
/ Érika Fernandes Cota. – Porto Alegre: Programa de Pós-
Graduação em Computação, 2003.

166 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2003. Advisor: Marcelo Lubaszewski.

1. SoC testing. 2. Testing of embedded cores. 3. Design
for test. 4. Design space exploration. 5. Network-on-chip.
I. Lubaszewski, Marcelo. II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitora: Profa. Wrana Maria Panizzi
Pró-Reitor de Ensino: Prof. José Carlos Ferraz Hennemann
Pró-Reitora Adjunta de Pós-Graduação: Profa. Jocélia Grazia
Diretor do Instituto de Informática: Prof. Philippe Olivier Alexandre Navaux
Coordenador do PPGC: Prof. Carlos Alberto Heuser
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“yada yada,
yada....”

ACKNOWLEDGMENTS

I am beholden to my advisor, Dr. Marcelo Lubaszewski, for his encouraging dis-
cussions, unconditional support, and trust during all these years. I also want to express
my gratitude to Dr. Luigi Carro for his questioning and passionate attitude and inspiring
suggestions, remembering me what research is all about. It has been a pleasure to collab-
orate with Dr. Altamiro Susin, who reminds me how important it is to let the apparently
improbable ideas grow.

From the test research community, I am indebted to the numerous researches whom I
had the opportunity to work with: Dr. Alex Orailoglu from the Reliable Systems Synthesis
Laboratory of UCSD, for the technical discussions and for showing me other aspects of
the research; Erik Jan Marinissen, from Philips, for his friendship and encouragement.
It has been a pleasure to collaborate with Dr. Michel Renovell, Dr. Florence Azaïs, Dr.
Bruno Rouzeyre, Dr. Yves Bertrand, among others from the LIRMM Laboratory. I have
enjoyed to collaborate in different projects with Dr. Raoul Velazco and Dr. Salvador Mir,
from TIMA Laboratory.

From home, I am immensely grateful to my “Little Trem”, Luigi, for his infinite pa-
tience (considering his explosive mood...) and unrestricted support; I cannot say enough
thanks to my parents, José Cota and Maristella, for all their history and effort that brought
me up to this point; thanks to my parents-in-law, Cesare and Esther, for their affection
and help during this time.

It has been a pleasure to share the office with my colleagues of Ph.D. and M.Sc.:
Márcio Kreutz, César Zeferino, Margrit Krug, Júlio Mattos, Lisane de Brisolara, Marcelo
Negreiros, Adão Júnior, José Güntzel, and Marcelo Johann. I am grateful for their support
and friendship. I am also grateful to Fernanda Lima and Zingara, who became dear friends
in the last (tough) years.

Thanks are due to the Informatics Institute staff: Luis Otávio and his team: Margareth,
Jorge, Júnior, Leandro, and Elgio, for the infra-structure; Bia and the library team: Ida,
Henrique, and Adriana; Eliane, Sr. Astro, and the security people; Silvana and the admin-
istrative team: Lourdes, Jorge, Schneider, Elisiane, Angela, Claudia, and Alex, also for
the infra-structure;

I also want to thank some students that have worked with me in the last few years, and
that helped generating some of the results presented in this thesis: Lisane de Brisolara,
Cristiano Lazzari, Leandro Cassol, Eduardo Back, Rodrigo Boccasius, Renato Hentschk,
and Guilherme Schneider.

I want to express my gratitude to the members of the jury of my thesis proposal, Erik
Jan Marinissen, Dr. Raoul Velazco, Dr. Altamiro Susin, and Dr. Ingrid Jansch Porto, for
their comments during the definition of this thesis. Finally, I want to thank the members
of the final jury, Dr. Antônio Otávio Fernandes, Dr. Marius Strum, and Dr. Altamiro

Susin, for their participation and evaluation.
I acknowledge the work of CNPq and CAPES for the scholarships during this Ph.D

and the “sandwich” internship at San Diego, respectively. Finally, I am once again grateful
to the brazilian taxpayers (more than never, the real ones) that financed this work.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 9

LIST OF FIGURES . 11

LIST OF TABLES . 13

ABSTRACT . 15

RESUMO . 17

1 INTRODUCTION . 19

2 SOC DESIGN TRENDS AND TEST CHALLENGES 23
2.1 Reuse-based SoC Design. 23
2.2 NoC-based SoC Design. 25
2.3 Test Challenges in SoC Design. 28
2.3.1 Core Test Requirements . 28
2.3.2 Interconnection Requirements . 30
2.3.3 System Requirements . 30

3 RELATED WORKS AND MOTIVATIONS 33
3.1 Test Access Mechanism Definition . 33
3.2 Test Scheduling Definition . 40
3.3 Test Planning . 42
3.4 Test Standard Initiatives . 43
3.4.1 IEEE P1500 Standard . 43
3.4.2 VSI Alliance . 45
3.4.3 ITC’02 SoC Test Benchmarks . 45
3.5 Contributions of this Work . 46

4 TEST PLANNING AND DESIGN SPACE EXPLORATION IN CORE-
BASED SYSTEMS . 49

4.1 TAM Definition and System Cost Factors 50
4.1.1 Direct External Access . 51
4.1.2 Reuse of Functional Connections . 52
4.1.3 Use of Serial Bypass . 53
4.1.4 Use of Transparency Functions . 53
4.1.5 Parallel Bypass . 54
4.2 Problem Statement. 55

4.3 Solution Modeling . 56
4.3.1 Initial Approach . 56
4.3.2 Final Approach . 57
4.4 The Proposed Heuristic . 61
4.5 Heuristic Complexity . 63
4.6 Experimental Setup . 64
4.6.1 ITC’02 SoC Test Benchmarks . 64
4.7 Experimental Results. 66
4.7.1 Benchmarks d695, g1023, f2126, q12710, and t512505 66
4.7.2 Benchmark h953 . 73
4.7.3 Benchmarks u226 and d281 . 75
4.7.4 Benchmarks p22810, p34392, p93791, and a586710 80
4.8 System Characteristics and Benchmark format. 88

5 NOC-BASED TESTING OF CORE-BASED SYSTEMS-ON-CHIP . . . 93
5.1 Using the NoC During Test . 96
5.1.1 Exploiting pipeline within the NoC . 99
5.1.2 Power Consumption Calculation . 100
5.1.3 Power-Aware Test Scheduling . 101
5.1.4 Example . 104
5.2 Complexity Analysis . 106
5.3 Experimental Results. 107
5.3.1 Benchmarks d695, g1023, f2126, q12710, and t512505 108
5.3.2 Benchmark h953 . 116
5.3.3 Benchmarks u226 and d281 . 116
5.3.4 Benchmarks p22810, p34392, p93791, and a586710 121
5.4 System Configurations and Resulting Test Time. 127
5.4.1 Placement of the Cores in the Network 127
5.4.2 Number of Interfaces with the Tester . 127
5.4.3 Network Power Profile . 129

6 DISCUSSION . 135
6.1 Reuse-based versus NoC-based Test Planning. 135
6.2 Reuse-based versus Bus-based Test Planning. 137
6.3 Limitations of the Proposed Methods. 141

7 FINAL REMARKS . 143

REFERENCES . 147

APPENDIX A PLANEJAMENTO DE TESTE BASEADO EM REUSO PARA
SISTEMAS EM SIL{I . 159

APPENDIX B CD-ROM DESCRIPTION 165

LIST OF ABBREVIATIONS AND ACRONYMS

API Application Programming Interface

ATE Automatic Test Equipment

BIST Built-In Self Test

CAD Computer-Aided Design

CTL Core Test Language

CUT Circuit under test

DFT Design for test

HDL Hardware Description Language

IP Intellectual Property

ITRS International Technology Roadmap for Semiconductors

NoC Network-on-chip

P1500 SECT P1500 Standard for Embedded Core Test

RTL Register Transfer Level

RTOS Real Time Operating System

SIA Semiconductor Industry Association

SoB System-on-board

SoC System-on-chip

TAM Test Access Mechanism

TAP Test Access Port

STIL Standard Test Interface Language

UDL User defined logic

VSIA Virtual Socket Interface Alliance

LIST OF FIGURES

Figure 2.1: Core types (KUCUKCAKAR, 1998) 24
Figure 2.2: Example of SoC with super-cores and UDL (ZORIAN, 1997) 25
Figure 2.3: Some NoC topologies . 27
Figure 2.4: Differences between SoB and SoC testing (MARINISSEN; ZORIAN,

1999) . 29

Figure 3.1: Conceptual architecture for the SoC testing (ZORIAN; MARINIS-
SEN; DEY, 1998) . 34

Figure 3.2: Relationship between TAM width and test costs 35
Figure 3.3: Test Bus Architectures (AERTS; MARINISSEN, 1998) 37
Figure 3.4: Test Rail Achitecture (MARINISSEN et al., 1998) 38
Figure 3.5: Flexible-width test bus architecture (IYENGAR; CHAKRABARTY;

MARINISSEN, 2002a) . 38
Figure 3.6: P1500 wrapper structure (MARINISSEN et al., 2002) 44

Figure 4.1: Core interface . 50
Figure 4.2: Global TAM for a CUT . 51
Figure 4.3: Direct external access TAM . 52
Figure 4.4: Access via functional connections 52
Figure 4.5: Access via serial bypass . 53
Figure 4.6: Access via transparent core . 54
Figure 4.7: Access via Parallel Bypass . 54
Figure 4.8: Test schedule for minimum test time 58
Figure 4.9: Schedule Construction . 59
Figure 4.10: Tree Construction . 60
Figure 4.11: Pseudo-code of proposed model . 62
Figure 4.12: Floorplanning of benchmark d695 67
Figure 4.13: Floorplanning of benchmark g1023 69
Figure 4.14: Floorplanning of benchmark f2126 71
Figure 4.15: Floorplanning of benchmark q12710 72
Figure 4.16: Floorplanning of benchmark t512505 73
Figure 4.17: Floorplanning of benchmark h953 75
Figure 4.18: Floorplanning of benchmark u226 77
Figure 4.19: Floorplanning of benchmark d281 79
Figure 4.20: Floorplanning of benchmark p22810 82
Figure 4.21: Floorplanning of benchmark p34392 83
Figure 4.22: Floorplanning of benchmark p93791 85
Figure 4.23: Floorplanning of benchmark a586710 85

Figure 4.24: Two configurations for system d695 88

Figure 5.1: Basic structure of the SOCIN router (ZEFERINO; SUSIN, 2003) . . 94
Figure 5.2: SOCIN topologies . 94
Figure 5.3: System d695 implemented in a 4x3 grid SOCIN NoC 95
Figure 5.4: Wrapper configurations . 97
Figure 5.5: Pseudo-code of the adapted list-scheduling algorithm 103
Figure 5.6: Scheduling process considering power constraints 105
Figure 5.7: System g1023 implemented in a 4x4 NoC 109
Figure 5.8: System f2126 implemented in a 2x2 NoC 111
Figure 5.9: System q12710 implemented in a 2x2 NoC 111
Figure 5.10: System t512505 implemented in a 5x7 NoC 115
Figure 5.11: System h953 implemented in a 2x4 NoC 116
Figure 5.12: System u226 implemented in a 3x3 NoC 117
Figure 5.13: System d281 implemented in a 2x4 NoC 118
Figure 5.14: System p22810 implemented in a 4x6 NoC 121
Figure 5.15: System p34392 implemented in a 2x3 NoC 121
Figure 5.16: System p93791 implemented in a 3x5 NoC 122
Figure 5.17: System a586710 implemented in a 2x2 NoC 124
Figure 5.18: Different placements for system d695 in a 3x4 network 128
Figure 5.19: d695 test time variation with the number of interfaces with the tester . 128

LIST OF TABLES

Table 4.1: Some Characteristics of the ITC’02 Benchmarks (MARINISSEN;
IYENGAR; CHAKRABARTY, 2002) 65

Table 4.2: Test requirements of benchmark d695 68
Table 4.3: Test results for benchmark d695 . 68
Table 4.4: Test requirements of benchmark g1023 70
Table 4.5: Test results for benchmark g1023 70
Table 4.6: Test requirements of benchmark f2126 71
Table 4.7: Test results for benchmark f2126 . 71
Table 4.8: Test requirements of benchmark q12710 72
Table 4.9: Test results for benchmark q12710 73
Table 4.10: Test requirements of benchmark t512505 74
Table 4.11: Test results for benchmark t512505 75
Table 4.12: Test requirements of benchmark h953 76
Table 4.13: Test results for benchmark h953 . 76
Table 4.14: Test requirements of benchmark u226 78
Table 4.15: Test results for benchmark u226 . 78
Table 4.16: Test requirements of benchmark d281 79
Table 4.17: Test results for benchmark d281 . 80
Table 4.18: Test requirements of benchmark p22810 81
Table 4.19: Test results for benchmark p22810 82
Table 4.20: Test requirements of benchmark p34392 83
Table 4.21: Test results for benchmark p34392 84
Table 4.22: Test requirements of benchmark p93791 86
Table 4.23: Test results for benchmark p93791 87
Table 4.24: Test requirements of benchmark a586710 87
Table 4.25: Test results for benchmark a586710 87
Table 4.26: New test planning results for d695 89
Table 4.27: New test planning results for p22810 89
Table 4.28: New test planning results for p93791 90
Table 4.29: New test planning results for u226 90

Table 5.1: Test packets for system d695 . 98
Table 5.2: Test results for benchmark d695 . 108
Table 5.3: Test packets for system g1023 . 109
Table 5.4: Test results for benchmark g1023 110
Table 5.5: Test packets for system f2126 . 111
Table 5.6: Test results for benchmark f2126 . 112

Table 5.7: Test packets for system q12710 . 112
Table 5.8: Test results for benchmark q12710 113
Table 5.9: Test packets for system t512505 . 114
Table 5.10: Test results for benchmark t512505 115
Table 5.11: Test packets for system h953 . 116
Table 5.12: Test results for benchmark h953 . 117
Table 5.13: Test packets for system u226 . 118
Table 5.14: Test results for benchmark u226 . 119
Table 5.15: Test packets for system d281 . 119
Table 5.16: Test results for benchmark d281 . 120
Table 5.17: Test packets for system p22810 . 122
Table 5.18: Test results for benchmark p22810 123
Table 5.19: Test packets for system p34392 . 123
Table 5.20: Test results for benchmark p34392 124
Table 5.21: Test packets for system p93791 . 125
Table 5.22: Test results for benchmark p93791 126
Table 5.23: Test packets for system a586710 . 126
Table 5.24: d695 test time for different placements in the network 127
Table 5.25: Test time of t512505 for different interface configurations 129
Table 5.26: Test times for d695: cores consumption>> routers consumption . . 130
Table 5.27: Test times for g1023: cores consumption>> routers consumption . . 130
Table 5.28: Test times for p22810: cores consumption>> routers consumption . 131
Table 5.29: Test times for d695: cores consumption≈routers consumption 132
Table 5.30: Test times for g1023: cores consumption≈routers consumption . . . 132
Table 5.31: Test times for p22810: cores consumption≈routers consumption . . . 132
Table 5.32: Test times for p93791: 5 inputs and 4 outputs 133

Table 6.1: Comparative results between proposed approaches 136
Table 6.2: Comparative results with bus-based methods for W = 32 139

ABSTRACT

Electronic applications are currently developed under the reuse-based paradigm. This
design methodology presents several advantages for the reduction of the design complex-
ity, but brings new challenges for the test of the final circuit. The access to embedded
cores, the integration of several test methods, and the optimization of the several cost fac-
tors are just a few of the several problems that need to be tackled during test planning.
Within this context, this thesis proposes two test planning approaches that aim at reducing
the test costs of a core-based system by means of hardware reuse and integration of the
test planning into the design flow.

The first approach considers systems whose cores are connected directly or through a
functional bus. The test planning method consists of a comprehensive model that includes
the definition of a multi-mode access mechanism inside the chip and a search algorithm
for the exploration of the design space. The access mechanism model considers the reuse
of functional connections as well as partial test buses, cores transparency, and other by-
pass modes. The test schedule is defined in conjunction with the access mechanism so
that good trade-offs among the costs of pins, area, and test time can be sought. Further-
more, system power constraints are also considered. This expansion of concerns makes
it possible an efficient, yet fine-grained search, in the huge design space of a reuse-based
environment. Experimental results clearly show the variety of trade-offs that can be ex-
plored using the proposed model, and its effectiveness on optimizing the system test plan.

Networks-on-chip are likely to become the main communication platform of systems-
on-chip. Thus, the second approach presented in this work proposes the reuse of the
on-chip network for the test of the cores embedded into the systems that use this com-
munication platform. A power-aware test scheduling algorithm aiming at exploiting the
network characteristics to minimize the system test time is presented. The reuse strategy
is evaluated considering a number of system configurations, such as different positions of
the cores in the network, power consumption constraints and number of interfaces with
the tester. Experimental results show that the parallelization capability of the network can
be exploited to reduce the system test time, whereas area and pin overhead are strongly
minimized.

In this manuscript, the main problems of the test of core-based systems are firstly
identified and the current solutions are discussed. The problems being tackled by this
thesis are then listed and the test planning approaches are detailed. Both test planning
techniques are validated for the recently released ITC’02 SoC Test Benchmarks, and fur-
ther compared to other test planning methods of the literature. This comparison confirms
the efficiency of the proposed methods.

Keywords: SoC testing, testing of embedded cores, design for test, design space explo-
ration, network-on-chip.

RESUMO

Planejamento de Teste para Sistemas de Hardware Integrados Baseados em
Componentes Virtuais

O projeto de sistemas eletrônicos atuais segue o paradigma do reuso de componentes
de hardware. Este paradigma reduz a complexidade do projeto de umchip, mas cria
novos desafios para o projetista do sistema em relação ao teste do produto final. O acesso
aos núcleos profundamente embutidos no sistema, a integração dos diversos métodos de
teste e a otimização dos diversos fatores de custo do sistema são alguns dos problemas
que precisam ser resolvidos durante o planejamento do teste de produção do novo circuito.
Neste contexto, esta tese propõe duas abordagens para o planejamento de teste de sistemas
integrados. As abordagens propostas têm como principal objetivo a redução dos custos
de teste através do reuso dos recursos de hardware disponíveis no sistema e da integração
do planejamento de teste no fluxo de projeto do circuito.

A primeira abordagem considera os sistemas cujos componentes se comunicam através
de conexões dedicadas ou barramentos funcionais. O método proposto consiste na definição
de um mecanismo de acesso aos componentes do circuito e de um algoritmo para explo-
ração do espaço de projeto. O mecanismo de acesso prevê o reuso das conexões fun-
cionais, o uso de barramentos de teste locais, núcleos transparentes e outros modos de
passagem do sinal de teste. O algoritmo de escalonamento de teste é definido juntamente
com o mecanismo de acesso, de forma que diferentes combinações de custos sejam explo-
radas. Além disso, restrições de consumo de potência do sistema podem ser consideradas
durante o escalonamento dos testes. Os resultados experimentais apresentados para este
método mostram claramente a variedade de soluções que podem ser exploradas e a efi-
ciência desta abordagem na otimização do teste de um sistema complexo.

A segunda abordagem de planejamento de teste propõe o reuso de redes em-chip como
mecanismo de acesso aos componentes dos sistemas construídos sobre esta plataforma
de comunicação. Um algoritmo de escalonamento de teste que considera as restrições
de potência da aplicação é apresentado e a estratégia de teste é avaliada para diferentes
configurações do sistema. Os resultados experimentais mostram que a capacidade de
paralelização da rede em-chip pode ser explorada para reduzir o tempo de teste do sistema,
enquanto os custos de área e pinos de teste são drasticamente minimizados.

Neste manuscrito, os principais problemas relacionados ao teste dos sistemas integra-
dos baseados em componentes virtuais são identificados e as soluções já apresentadas na
literatura são discutidas. Em seguida, os problemas tratados por este traballho são listados
e as abordagens propostas são detalhadas. Ambas as técnicas são validadas através dos
sistemas disponíveis noITC’02 SoC Test Benchmarks. As técnicas propostas são ainda
comparadas com outras abordagens de teste apresentadas recentemente. Esta comparação
confirma a eficácia dos métodos desenvolvidos nesta tese.

Palavras-chave:teste de sistemas integrados, teste de núcleos de hardware embarcados,
projeto visando o teste, exploração do espaço de projeto, redes de interconexão em-chip.

19

1 INTRODUCTION

With the increasing complexity of current integrated circuits, testing has become one
of the most expensive and time-consuming tasks of the circuit design. The density of cur-
rent systems-on-chip (SoCs) and the paradigm of core-based design have posed important
difficulties for the test of the resulting chip, which are mainly related to the information
requirements for the definition of the system test plan. For the new systems, important
information must flow from the core providers to the system integrators and finally to the
test engineers, who are not necessarily part of the same department or company. Today,
the cost of testing a SoC is estimated to be as high as 50% of the total cost of the chip (ZO-
RIAN; DEY; RODGERS, 2000) and the reduction of this cost is crucial for the electronic
market.

One of the most important problems for the test of a SoC is the access to the embedded
cores during test. The increase in the number of metal layers and number of transistors in
the same silicon area lead to an increase in the complexity of the electronic systems, which
present now a large number of logic blocks deeply embedded into the chip. Such blocks
require some type of electronic access during test, since they can not be directly accessed
from the system interface. Moreover, such access mechanism is intimately related to
the resulting testing costs of the system. For example, a single access mechanism that
is shared among all embedded cores reduces the costs in terms of area overhead for the
system, but leads to a large test time, since all cores must be tested serially. On the other
hand, an exclusive access mechanism for each core results in a very reduced test time, but
at a possibly unacceptable cost in terms of area overhead and pin count or, even, power
consumption. Therefore, a great deal of effort has been spent in the last few years for the
development of cost-effective test techniques for core-based SoCs, all of them aiming at
the reduction of the test cost and complexity.

Despite the large number of SoC test approaches proposed in the last few years, one
can observe two interesting aspects of such solutions: very few of them reuse the system
resources during test, and very few of them consider the integration of the test planning
task in the early steps of the SoC design flow. Considering the first aspect, only the
first works in SoC testing considered the reuse of system connections and logic for the
transmission of test data between an external tester and the embedded cores. The majority
of the SoC test solutions nowadays is based on the efficient insertion of test buses. The
main reason for this change seems to be thead hoccharacteristic of the initial works. In
many cases, they assume the modification of the core logic to transmit the test data, which
is usually not possible because of the intellectual property (IP) protection of the third part
blocks. When the cores are not modified, specific bypass structures around the cores are
required. Such structures were not standardized and required an extra effort from the
system designer to be implemented. As for the second aspect, because of the complexity

20

of current systems, the test planning task can no longer be left for the latest stages of the
design or the turnaround time of the product can be too high. Usually, the system synthesis
already presents a number of problems for the system integrator (BERGAMASCHI et al.,
2001): the lack of design tools capable of dealing with the variety of core formats, the lack
of a single interface standard to communicate all cores in the system, IP protection issues,
the size and complexity of the system, and so on. For most of the test solutions proposed in
the literature, the test planning can be defined in parallel with the system design. However,
they usually do not consider the system characteristics for the test definition. Only the
cores requirements in terms of pins and number of test vectors are considered. Thus,
each solution devised by the test plan must be verified by the system integrator separately.
On the other hand, the system integrator is not always a test specialist nor is the test
engineer a design expert. Moreover, there is a number of other requirements for the
system synthesis that must be taken care of. Therefore, test planning tools capable of
helping both, test engineers and system integrators to make design decisions at the early
stages of the system design are of extreme importance to assure an effective test plan for
a SoC. Such tools must take into consideration the system characteristics, such as cores
floorplanning, functional connections, an so on, in addition to the cores test requirements.
This way, the best trade-off among all costs involved in the system synthesis (chip area,
power consumption, pin count, test time, design time, among others) can be found.

In this thesis, two test planning approaches focused on the reuse of the system re-
sources during test and on the design space exploration are proposed. The test planning
methods are defined according to the connection model of the SoC and aim at helping the
system integrator and the test engineer to evaluate the impact of the test solution on the
global system cost, for a number of possible configurations of a SoC.

In the first approach, a SoC with a core-to-core connection model is assumed and the
test planning tool is based on two main aspects: 1) it considers a mixed set of access
mechanisms that includes the insertion of partial test buses, the reuse of functional con-
nections, the use of available transparency modes of the cores, and other bypass modes
available through the wrapper or the core configuration; 2) both the test schedule and the
global test access mechanisms are defined together, and not as independent tasks as in
other approaches. This aspect allows the exploration of the design space, so that good
compromises among the various trade-offs being sought in the system synthesis can be
found. The main contribution of this method is the use of several types of access mech-
anisms and the consideration of different optimization factors (area, pins, test time, and
power consumption) during the global test access and test schedule definition. This ex-
pansion of concerns is combined with an efficient, yet fine-grained search, in the huge
design space of the reuse-based environment.

In the second approach, a system implemented over a communication platform called
network-on-chip (NoC) is assumed. For those systems, the communication among the
cores is implemented through a switching network that is integrated into the chip. This
network already provides a real and efficient access to each block embedded into the
circuit. Thus, instead of inserting new buses into the system with the sole purpose of test
access, the reuse of the available communication platform during test is proposed and a
test scheduling algorithm is developed. This is the first work that systematize the test of
cores embedded into a NoC-based system.

The two test planning approaches are explained and formalized, and the prototype
tools that implement the proposed methods are presented. Furthermore, the methods are
validated using the ITC’02 SoC Test Benchmarks (MARINISSEN; IYENGAR; CHAKRABARTY,

21

2002), a set of SoC examples provided by both, industry and academia, to ease the com-
parison among the several SoC test solutions available in the literature. One will observe
in the experimental results presented in this dissertation that the proposed reuse-based
SoC test techniques are indeed capable of devising a good test plan for the system not
only in terms of test cost reduction, but also for the integration of the test planning into
the initial steps of the system design.

The sequel of this dissertation is divided as follows: Chapter 2 presents a brief intro-
duction to the terms and current trends of SoC design, such as the core-based paradigm
and the new communication model based on networks-on-chip. That chapter also de-
tails the main challenges for the test of core-based systems-on-chip. Chapter 3 gives an
overview of the several SoC test solutions presented in the last few years, and explains
the main motivations for this work. Chapters 4 and 5 explain, respectively, the two reuse-
based test planning approaches proposed in this thesis, including the experimental results
for the ITC’02 benchmarks. Chapter 6 compares the two approaches to each other, dis-
cusses their integration at the system design flow, and compares the proposed methods to
other techniques. Chapter 7 concludes this manuscript with some final remarks and future
work.

22

23

2 SOC DESIGN TRENDS AND TEST CHALLENGES

This work tackles some problems related to the test of complex circuits, usually called
core-based systems. Such systems present a design cycle that is quite different from the
traditional ASICs. As a consequence, the testing requirements of the core-based systems
are also very distinct.

In this chapter, some concepts of the core-based designed are reviewed in Section 2.1
while Section 2.2 discusses the design of core-based systems using interconnection net-
works. Then, the main problems related to the test of core-based systems are listed in
Section 2.3.

2.1 Reuse-based SoC Design

The design and manufacturing of integrated circuits is currently based on the integra-
tion of a number of pre-designed intellectual property (IP) blocks, or cores, in a single
chip. Although the reuse has always been present in the design of electronic circuits, this
practice has been extended and formalized in the last decade, becoming the new design
paradigm of the electronic industry. The reuse of previously designed functional blocks
is now the key for the design of high performance circuits with large gate counts in a
short time (KUCUKCAKAR, 1998). Such a design practice is known as core-based or
IP-based design, or simply as System-on-Chip (SoC) design. The main difference be-
tween a SoC and a traditional System-on-Board (SoB), which is also based on previously
designed parts, is that in the former, all cores are synthesized together in a single chip,
whereas in the latter each functional block is synthesized and manufactured separately,
and then mounted in a discrete board. Furthermore, the reusable blocks of the SoC are
also known asvirtual components, since they are delivered as a description of a logic
rather than a manufactured IC, and this constitutes another important difference between
traditional design methods and core-based systems.

In the early days of SoCs, components were not really designed for reuse. How-
ever, gradually, component design evolved to include more parameterization and standard
interfaces (BERGAMASCHI; COHN, 2002). Current available cores include micropro-
cessors, memories, network interfaces, cryptography circuits, analog interfaces, among
others (CMP, 2003). The more IP providers are present in the market, the more func-
tionalities become available, and the more are the advantages of the core reuse. As a
consequence, new technologies are incorporated in the products while the design time is
reduced.

Embedded systems are a typical application where the core-based design is exten-
sively applied. Cell phones, portable medical equipments, robots, and automotive con-
trollers, are some examples of such systems. The successful design of such complex

24

single-chip applications requires expertise in a number of technology areas such as signal
processing, encryption, and analog and RF designs. These technologies are increasingly
hard to find in a single design house (GUPTA; ZORIAN, 1997). Moreover, high perfor-
mance, reduced power consumption and short time-to-market are common requirements
for those applications. Therefore, it is interesting to have all (or most) functional blocks
(A/D converters, microprocessors, memories, mixed-signal blocks, and so on) already
available. In this business model, the specialists in a specific design model (analog or RF,
for example) are the core providers, and the application designer can focus on the system
aspects only.

IP components are usually available in three forms (GUPTA; ZORIAN, 1997; KU-
CUKCAKAR, 1998): hard, firm, and soft cores.

• Hard coresare provided as black boxes, usually in layout form and with encrypted
simulation model. Due to their high performance and/or design complexity, these
cores need to be provided as an optimized layout in a given technology. Examples
of hard cores are microprocessors, memories, PLLs, and UARTs (CMP, 2003)

• Firm cores are provided as a synthesized netlist, that is, after logic synthesis and
technology mapping, but without layout information. Those cores are described in
a hardware description language (HDL), which can be simulated and changed if
necessary. However, the user does not need to re-synthesize the block. ASICs and
FPGAs are some examples of firm cores available in the market.

• Soft coresare given as register-transfer level (RTL) HDLs, and the user is respon-
sible for its synthesis and layout. However, the soft cores providers usually supply
synthesis and layout scripts, as well as timing assertions to make it easier the inte-
gration of those parts into the rest of the system. Some examples of soft cores are
DSP blocks, Ethernet controllers, micro-controllers, and DMA controllers (CMP,
2003).

Figure 2.1: Core types (KUCUKCAKAR, 1998)

Figure 2.1 shows the relationship between the core model and its description language.
The figure also shows the trade-offs in terms of flexibility and predictability of each type
of core (KUCUKCAKAR, 1998). Having a completely rigid and validated layout with
definite timing, the hard cores have rapid integration at the expense of flexibility. They

25

can further create place and route problems due to their rigidity. Technology-mapped
gate-level netlists constitute a core style with less predictability than layouts, but allow
significant flexibility during place and route. When technology-mapped gates (or logic)
and predetermined floorplanning are used, the resulting firm cores are both flexible and
more predictable. Properly written RTL sources can be synthesized into most technolo-
gies, but the freedom to change timing, area or power is not as great as in the case of
behavioral models that can be synthesized via behavioral synthesis (KUCUKCAKAR,
1998).

Figure 2.2 shows an example of a core-based system, where one of the cores is a super-
core, that is, it embeds other cores. Notice the presence of a User Defined Logic (UDL)
that adds some functionality to the system and is designed by the system integrator.

Figure 2.2: Example of SoC with super-cores and UDL (ZORIAN, 1997)

Although the design cycle of a complex system has improved with the advent of
the core-based design paradigm, this is still an error-prone, labor-intensive and time-
consuming task (BERGAMASCHI et al., 2001). Hence, design methods for SoCs are
still an important research subject and a number of design aspects are being considered,
such as the expansion of the reuse to a set of blocks and the communication issues. More-
over, the test of such systems became an important problem.

According to Zorianet.al.(ZORIAN; DEY; RODGERS, 2000), the effort to generate
tests has been growing geometrically along with the product complexity. In the year 2000,
the capital costs for testing, based on the 1997 SIA technology roadmap for semiconduc-
tors (SIA, 1997), was about 50% of the overall IC cost (ZORIAN; DEY; RODGERS,
2000). This cost showed signs of reduction according to the 1999 ITRS roadmap (SIA,
1999), due to the research and industrial efforts towards the development of cost-effective
test solutions for SoCs. However, the costs related to the test of current SoCs are still an
important part of the total manufacturing cost of the system-chips, and one can still see a
considerable effort for its reduction. The main challenges of the SoC testing are described
in Section 2.3, and solutions tackling some of these challenges are described in Chapter 3.

2.2 NoC-based SoC Design

Advances in the SoC design methods and tools aim at reducing the design complexity
by automating some integration and synthesis steps, such as the co-simulation and co-
synthesis of distinct cores descriptions. Recently, the concept ofdesign platforms has
been introduced to define a common set of architectural blocks over which the system is

26

built. The platform makes the reuse easier, since the main part of a family of applications
is implemented once, but used several times. Thus, for each new application, only a small
variation on the design is actually implemented.

A platform is a common base of hardware and software components that can be
reused for the design of a number of distinct systems (SANGIOVANNI-VINCENTELLI;
MARTIN, 2001; KEUTZER et al., 2000). The hardware base can be composed by a
micro-architecture almost fixed with one or more microprocessors and other peripheral
components connected through a communication structure. For example, the common
architectures typically include a CPU and memories communicating over a fast bus and
peripherals communicating through a slow bus (BERGAMASCHI; COHN, 2002). As
for the software, the base components can be, for example, a real-time operating system
(RTOS) accessible through Application Programming Interface (API) routines. These
common components are standardized in such a way that they do not need to be validated
for each new project, to accelerate the design time. On the other hand, the platform must
offer parameterization and configuration capabilities to be easily reusable.

In terms of communication capabilities of a SoC, future systems will probably re-
quire communication templates with several dozens of Gbits/s of bandwidth (cell phones,
network applications, etc). Buses can not always fulfill the performance requirements
of such systems without posing new problems to power consumption and design reuse.
Thus, recent works (GUERRIER; GREINER, 2000; BENINI; MICHELI, 2002; DALLY;
TOWLES, 2001) have proposed the use of a pre-defined platform to implement the com-
munication among the several cores in a chip. Such a platform is implemented as an
integrated switching network, called Network-on-Chip (NoC), and meets some of the key
requirements of future systems: reusability, scalable bandwidth, and low power consump-
tion.

A study presented in (ZEFERINO et al., 2002) shows that NoCs have better commu-
nication performance than buses for a number as low as eight cores, if intensive commu-
nication, e.g. each core exchanging messages with another one, is required. For lighter
workloads (fewer messages with reduced size), the performance of a central bus will be
better than the NoC in systems with up to sixteen cores. Therefore, it is clear that NoCs
can potentially become the preferred SoC interconnection approach in the near future.

Networks-on-Chip are based on the interconnection networks largely used in parallel
computers. NoCs can be defined as a structured set of routers and point-to-point channels
interconnecting the processing cores of a SoC in order to support communication among
them. Such a structure can be described as a graph with routers on the nodes and channels
on the arcs, and it is named topology. Some examples of topologies include grid, torus,
hypercube, ring, multi-stage and fat-tree (DUATO; YALAMANCHILI; NI, 1997). In
current NoCs, the preferred topologies are the ones with planar structures, because they
are easier to be implemented with current technologies (BABB et al., 1999). Figure 2.3
shows three examples of NoC topologies: grid (Figure 2.3(a)), torus (Figure 2.3(b)), and
fat-tree (Figure 2.3(c)).

NoCs typically use the message-passing communication model, and the processing
cores attached to the network communicate by sending and receiving request and re-
sponse messages. A message forwards from a sender to a receiver by requesting and
reserving resources of the network in order to establish a route between the sender and
the receiver. To be routed by the network, a message is composed by a header, a payload
and a trailer. The header and the trailer frame the packet and the payload carries the data
being transferred. The header also carries the information needed to establish the path

27

(a) grid

(b) torus

(c) fat-tree

Figure 2.3: Some NoC topologies

28

between the sender and the receiver, and the trailer can be either an additional word in the
message or a bit in the last word of the payload. Depending on the network implemen-
tation, messages can be split into smaller structures named packets, which have the same
format of a message and are individually routed. Packet-based networks present a better
resource utilization, because packets are shorter and reserve a smaller number of chan-
nels during their transfer. Besides its topology, a NoC can be described by the approaches
used to implement the mechanisms for flow-control, routing, arbitration, switching and
buffering, as follows. The flow control deals with data traffic on the channels and inside
the routers. Routing is the mechanism that defines the path a message takes from a sender
to a receiver. The arbitration establishes priority rules when two or more messages re-
quest the same resource. Switching is the mechanism that takes an incoming message of
a router and puts it in an output port of the router. Finally, buffering is the strategy used
to store messages when a requested output channel is busy. Current cores usually need to
use wrappers to adapt their interfaces and protocols to the ones of the target NoC. Such
wrappers pack and unpack data exchanged by the processing cores which.

Some implementations of such integrated networks can be found in (KARIM; NGUYEN;
DEY, 2002), (FORSELL, 2002), and (ZEFERINO, 2003), for example.

2.3 Test Challenges in SoC Design

Figure 2.4, extracted from (MARINISSEN; ZORIAN, 1999), shows the main dif-
ferences between the test of a system-on-board and a system-on-chip. In the SoB test,
each integrated circuit (IC) mounted in the board is totally designed, manufactured and
tested before becoming part of a more complex system. In a core-based SoC, on the
other hand, all cores are tested together, after the whole system is synthesized and man-
ufactured(ZORIAN, 1997). Although each core is assumed to be functionally correct,
its behavior after manufacturing and in conjunction with other cores is not known a pri-
ori (GUPTA; ZORIAN, 1997).

Another key difference between the SoB and the SoC testing is the access to the
cores periphery during test (ZORIAN; MARINISSEN; DEY, 1998). In a SoB, probes
can normally be used to access each IC. Alternatively, boundary-scan chains are used to
serially control and observe each block. As the number of ICs in the board is relatively
small, the time required to scan-in and scan-out the test data is usually acceptable. In a
SoC, probes can not be used to access the cores that are deeply embedded into the chip.
Moreover, the use of boundary-scan to access internal blocks may be too costly in terms
of time, as the number of cores in the system increases every day.

Furthermore, one of the main challenges of the SoC testing is the integration and co-
ordination of the test and diagnose techniques of all cores that compose the circuit (ZO-
RIAN, 1997). Whereas the test of a SoB consists basically on the test of the interconnec-
tions among ICs, in the SoC the system testing comprises not only the interconnection
test, but also the verification of each core and the user defined logic as well.

One can divide the test requirements of the SoC in three levels (ZORIAN, 1998): core
requirements, interconnection requirements, and system requirements.

2.3.1 Core Test Requirements

• Definition of the core test approach

The definition of a test strategy for a core depends on the knowledge of the logic
implemented by that block. Therefore, this task is usually performed by the core

29

Figure 2.4: Differences between SoB and SoC testing (MARINISSEN; ZORIAN, 1999)

provider, which also assures the protection of the intellectual property associated
to the reusable block. However, the core test strategy also depends on the target
technology of the final system, the system test resources and the required fault
coverage, but these parameters are not known by the core provider a priori. Thus,
in general, the core provider supplies a basic set of test vectors and DFT strategies
(scan chains, BIST controllers) for the core, to test for the most common technology
faults. For open source soft cores, the system integrator has access to the core
description. In this case, the integrator can make some modifications in the core
logic, although this may require additional design time. When the core can not be
modified by the integrator and more DFT structures or test patterns are required, an
additional agreement between the core designer and the core user is necessary. In
both cases, the communication between the two parts (core provider and core user)
is the key for the successful testing of the block. The transmission of the core test
strategy (test patterns, expected responses, control signals, etc) must be clear and
unambiguous. On the other hand, if the system integrator needs other test schemes
implemented in the core, he/she must specify very clearly which modifications must
be implemented. Thus, although there are numerous test techniques for all types of
logics (microprocessors, analog filters, DSP-based logics, among others) that can

30

be reused for the test of a core, the problem at this level is the information flow
from the core provider to the core user and vice-versa.

• Access to the core periphery during test

During test, other pins, in addition to the functional interfaces of the core must be
accessed (scan-in and scan-out interfaces, control pins, testing clock, etc). As many
cores are deeply embedded into the chip and the number of pins at system level
is usually much smaller than the number of pins of a core, the transmission of the
test data between an external tester and the embedded module is an important issue.
Moreover, the definition of the access mechanism for each core impacts all other
system test costs, such as test time, and area overhead. Therefore, the definition of
such mechanism must be carefully considered.

• Core isolation

During the test of a core, it is usually necessary to put this block in a test mode, so
that the test pins become ready to receive and send data. Additionally, it may be
necessary to isolate this block from the rest of the system so that other blocks are
not damaged or can be tested in parallel. Therefore, the inclusion of an extra logic
around the core to provide the several operation modes of this module is usually
required. This logic can be either part of the core and be delivered along with the
block itself, or be implemented by the system integrator, according to the core and
system requirements (ZORIAN, 1997, 1998).

2.3.2 Interconnection Requirements

The test of the interconnections, in the second level, presents a single requirement:
the possibility of precisely controlling and observing each connection. This test is, never-
theless, of extreme importance for the system characterization, since it can determine the
actual performance achieved by the system. Furthermore, as the number of connections
may be high, it has an important impact on the system test time. This test must be defined
by the system integrator. In general, the interconnection test relies on the existence of
some mechanism around the core (a boundary register, for example) that allows the load
and capture of the interconnection signals.

2.3.3 System Requirements

• Test of the UDL

Some authors consider the interconnections as part of the user defined logic. How-
ever, this logic can also implement some other functions, such as the data conver-
sion between two cores. In the first case, the UDL testing is treated as the inter-
connection testing. In the second case, the UDL can be viewed as another core in
the system, but that can be modified by the system integrator. Thus, the test of this
logic can be defined as the test of an additional soft core.

• Test scheduling definition

The test scheduling defines the order of testing of each part of the system: cores,
interconnections and UDL. The scheduling depends basically on the set of test re-
sources available and shared among cores, and on the system power constraints.

31

• Test controller

The test controller is the module that runs the test program, sending the correct
control and test signals to each part under test in the system. This controller can
be an automatic test equipment, outside the chip, or can be implemented inside the
chip.

• Test integration

The combination of the access mechanism of each core in such a way that all cores
are properly tested without deeply affecting the system performance, cost and de-
sign time is the most important system test requirement. Actually, this system-level
requirement is the combination of all requirements previously defined, and repre-
sents the complexity of the SoC testing faced by the system integrator. For example,
the system integrator has to verify that the access mechanisms defined for the cores
can be implemented and synthesized with the system logic, without compromising
the application performance and the chip cost. Moreover, the integrator has to de-
fine a test scheduling of minimum time while still meeting the application power
constraints. In fact, the test integration is very similar to the system integration,
and one can certainly agree that there are several possible test solutions, consider-
ing different access mechanisms, different cores versions (BISTed and non-BISTed,
for instance), and different synthesis possibilities, that meet all test requirements.
Therefore, the design space considering the test is quite large. Moreover, because
of this complexity, the system integrator must consider the possible test solutions
as early as possible in the design flow.

According to the system design model, the test requirements can be more or less mod-
ified. For example, the flexibility of the soft cores can be used to facilitate the combination
of the cores test requirements and the system constraints. Bus-based functional connec-
tions are probably faster to test, if the connections are centralized. NoC-based designs,
on the other hand, may have more connections to be tested, but the communication pro-
tocol and the possibility of reuse of the communication platform may accelerate the test
definition.

In Chapter 3, a summary of the solutions that have been presented in the last few
years, in response to some of the defined test requirements, is presented. Then, these
solutions will be discussed and the motivation and intended contributions of this work
will be further detailed.

32

33

3 RELATED WORKS AND MOTIVATIONS

A great deal of effort has been expended in the last few years, towards the develop-
ment of suitable solutions for the test of core-based systems. Responding to the several
test requirements listed in Chapter 2, one can group the techniques presented so far in
four categories: test access mechanism definition, test scheduling methods, test planing
approaches, and standardization initiatives. The techniques in the first group tackle the
problem of defining an access mechanism to the cores periphery during test. Such solu-
tions can either be based on the reuse of system functional connections, cores logic or on
the insertion of a test bus. In the second group, the minimization of the test time is ad-
dressed, usually based on an access mechanism previously defined. In the third group one
will find the techniques that take into account a number of system or test aspects. Finally,
the fourth group comprises the initiatives for the standardization of the interface between
the cores and the system during test, and the definition of a set of SoC test benchmarks.
In the sequel, some representative works of these four groups will be discussed and the
remaining test requirements, still not tackled by the available solutions, will be listed.

3.1 Test Access Mechanism Definition

Zorianet al. (ZORIAN; MARINISSEN; DEY, 1998) introduced the generic concep-
tual test access architecture for embedded cores as well as a nomenclature for its elements
that has been used in the literature. The conceptual architecture, shown in Figure 3.1, is
composed of four basic elements:

• a teststimuli source for the real-time test pattern generation;

• a test sink for the reception and evaluation of the test responses;

• a Test Access Mechanism (TAM) for the transportation of the test data from the test
source to the core and from the core to the test sink;

• a core wrapper, for the connection of the core terminals to the TAM terminals,
providing the mechanisms for isolation and integration of the core to the system
during test.

These four elements can be implemented in several ways, according to the core re-
quirements and system constraints. However, the wrapper structure must allow the core
to operate in at least three modes: normal, internal test, and external or interconnection
test. Additionally, the wrapper must also implement some type of bypass mode to isolate
the core from the system when other cores are being tested.

The test sources and sinks can be implemented in a number of ways:

34

Figure 3.1: Conceptual architecture for the SoC testing (ZORIAN; MARINISSEN; DEY,
1998)

• off-chip, using an external test equipment;

• on-chip, through BIST structures;

• as a combination of both (for example, when a core is tested by a combination of
deterministic and pseudo-random vectors).

In addition, the source and the sink do not need to be of the same type, that is, one can
have an on-chip test source and an off-chip test sink, or vice-versa. As one will see in the
several test approaches presented in the following, the choice for one implementation of
a test source, sink or access mechanism depends on the type of cores embedded into the
system, on the test requirements of such cores, and on a number of system constraints,
such as area, test time, time-to-market, and so on. For example, on-chip sources and sinks
usually present a better fault coverage than their off-chip version, but may increase the
system area, leading to yield reduction. On the other hand, off-chip sources and sinks
usually require more elaborated access mechanisms and may increase the system test
time.

The test wrapper is a thin shell around the core that connects the TAM(s) to the
core (MARINISSEN; KAPUR; ZORIAN, 2000). The wrapper provides the switching
between normal functional access and test access via the TAM. Well designed wrappers
provide test access for both core-internal testing as well as core-external testing. Further-
more, wrappers may provide width adaptation in case of a mismatch between core I/O
width and TAM width (MARINISSEN; KAPUR; ZORIAN, 2000).

The test access mechanism communicates the core under test to the pattern sources
and the test sinks. Although the same mechanism can be used for the transport of the
test data in both directions, this is not mandatory and a number of TAM combinations
can co-exist for the same core (ZORIAN; MARINISSEN; DEY, 1998). The design of a
TAM always searches the best trade-off between the transport capacity of the mechanism
and its application cost. The capacity o f data transportation is limited by the capacity
of the source and sink, and by the system area that can be used by the TAM, which is
usually measured as the TAM bitwidth. Figure 3.2 shows the relationship between the
TAM bitwidth and the test costs in terms of area and pin overhead, and the core test time.

Zorianet al.(ZORIAN; MARINISSEN; DEY, 1998) list the following options for the
TAM definition:

• the reuse of functional buses and interconnections of the system;

• the use of specific test access inserted into the system;

• the reuse of the cores or other logic blocks for the test access path, either using the
cores functionality (called transparent modes) or some type of bypass mechanism ;

35

Figure 3.2: Relationship between TAM width and test costs

• the use of an independent access for each core or the TAM sharing among cores;

• The transportation of only the test data by the TAM or the inclusion of some control
functions in the access mechanism itself.

In the following, the most important approaches for TAM definition presented so far
are described. These approaches range from adaptations of traditional test techniques,
such as the 1149.1 Standard (IEEE Standards Board, 1990), to the development of hier-
archical and scalable methods for test access. As for the performance of the test solution,
the proposed approaches create the TAM mainly considering testing time issues.

(WHETSEL, 1997), (BHATTACHARYA, 1998), (LEE; HUANG, 2000), (HU; YIBE,
2001), (LI et al., 2002a), (OAKLAND, 2000), and (LI et al., 2002b) propose test access
mechanisms based on the IEEE 1149.1 boundary-scan standard, also known as JTAG
standard (IEEE Standards Board, 1990). The assumption of these approaches is that many
cores being used today were ASICs in the past, and the boundary-scan is already imple-
mented for those modules. Moreover, as the JTAG mechanism requires only five extra
pins at system-level, the test cost is drastically reduced. However, the inclusion of a
TAP (Test Access Port) controller into a core makes the integration of such a core into a
SoC (LOUSBERG, 2002) more difficult, since an extra level of controlling is required for
each TAPed module. The main disadvantage of the JTAG-based methods is, nevertheless,
the possibly excessive testing time caused by the reduced TAM bandwidth provided by
the system-level TAP.

Other authors tackle the access problem by reusing available system resources, such
as cores and functional interconnections.

Ghoshet al. propose a method in which test access to embedded cores is based on
transparent paths through other cores and design modules (GHOSH; JHA; DEY, 1997).
In the proposed method, every core should not only come with a set of pre-computed tests,
but also with a set of transparent paths, capable of transporting test data through the core.
If these paths are originally not available, the core provider should add design-for-test
hardware to the core in order to create test access paths to other cores. Some methods for
the synthesis of transparent cores are proposed in (CHAKRABARTY; MUKHERJEE; A.,
2001), (MAKRIS; ORAILOGLU, 1998), and (YONEDA; FUJIWARA, 2002). However,
the transparent-based access method does not seem to address the issue of time-to-market

36

and in many cases yields an excessive number of access paths. In (GHOSH; DEY; JHA,
1998), this problem is considered and different transparent paths are available in different
versions of each core, each version with a distinct area overhead so that only one ver-
sion of the core is chosen as the system area is optimized. However, if the transparent
modes are defined previously to the system integration, one can not assure that all re-
quired paths will be available or a huge number of core versions is still required, and the
time-to-market issue can still be a problem. On the other hand, to define the transparent
modes during the system integration, soft cores are assumed, and the access to the core
description is required, which is not always the case in current SoCs. Chiusanoet al. pro-
pose in (CHIUSANO; PRINETTO; WUNDERLICH, 2000) the use of arithmetic cores
to generate test patterns for subsequent cores. In this case, the core does not implement a
transparent mode, but its original logic is used as a pseudo-random test pattern generator.

Nourani and Papachristou propose in (NOURANI; PAPACHRISTOU, 1998a,b) and
in (NOURANI; PAPACHRISTOU, 1999) the definition of the test access architecture
by taking advantage of the connections already present in the system. Abypassmode
is introduced for each core input port to its output port through which the test data can
be transferred. The system is modeled as a directed weighted graph in which the core
accessibility is solved as a shortest path problem. This model has been improved and
presented in (NOURANI; PAPACHRISTOU, 2000), where other structures in the system,
such as buses and tri-state ports, are also considered for the test path definition. The
problem of TAM definition and test time minimization is formulated and solved as an ILP
problem.

The reuse of the microprocessor that is usually present in the system is proposed in a
number of works (PAPACHRISTOU; MARTIN; NOURANI, 1999), (HWANG; ABRA-
HAM, 2001), (LAHIRI; RAGHUNATHAN; DEY, 2002), (CHEN; BAI; DEY, 2002).
The basic assumption of those methods is that the microprocessor is connected to a large
number (if not all) embedded cores through a functional bus or a hierarchy of buses. If
this is not the case, additional hardware is inserted to make it possible the access and
control of the core under test by the microprocessor. However, as there is a single or a
small number of test processors being used, only one or a few cores are tested at a time.
Therefore, this type of solution is usually effective for small systems where the micropro-
cessor of the application is connected to most embedded cores. For those systems, the test
time is affordable, as well as the area overhead caused by the access mechanism. On the
other hand, if deterministic patterns are used, an external memory may still be required
and the reduced pin count at the system interface may be a problem. If internal memories
are also reused, in addition to the microprocessor reuse, they may be not large enough for
the storage of all test patterns, and a mechanism for the memory reload is required.

Finally, a third line of solutions defends the insertion of additional buses in the system,
called test buses, as the access mechanism. Despite the fact that the dedicated wiring
increases the area costs of the SoC, the scalability and the possibility of modeling the
problem with a limited number of variables, makes this TAM a very interesting and the
most explored test architecture.

Varma and Bhatia describe a test access mechanism for embedded cores, named Vis-
ibleCores (VARMA; BHATIA, 1998). Their approach is based on two dedicated on-chip
variable-width buses, one for transporting test control signals, and one for transporting test
data signals. Embedded cores can be either connected or disconnected from the test buses.
Test access from chip pins to embedded cores and vice versa is achieved by connecting
the core-under-test to the test data bus, and disconnecting all other cores. A disadvantage

37

Figure 3.3: Test Bus Architectures (AERTS; MARINISSEN, 1998)

of this method is that only one core at a time can be connected to the test bus, while some
tests involve multiple cores.

Three basic types of scalable TAMs have been described in (AERTS; MARINISSEN,
1998) and are exemplified in Figure 3.3: (a) the Multiplexing architecture, (b) the Daisy-
chain architecture, and (c) the Distribution architecture.

In the Multiplexing and Daisychain architectures, all cores have access to the total
available TAM width, while in the Distribution architecture, the total available TAM width
is distributed over the cores. Note that the multiplexer in the Multiplexing Architecture
is conceptual, and hence could also be implemented by means of tri-state buffers with
appropriate control signals. In the Multiplexing architecture, only one core wrapper can
be accessed at a time. Consequently, in this architecture the cores must be serially tested.
An even more serious drawback of this architecture is that testing the circuitry and wiring
in between cores is difficult; interconnect test requires simultaneous access to multiple
wrappers. The other two basic architectures do not have these restrictions; they allow for
both serial as well as parallel test schedules, and also support interconnect testing.

The TestRail architecture proposed in (MARINISSEN et al., 1998) and shown in Fig-
ure 3.4 is a combination of the Daisychain and Distribution architectures. A single Tes-
tRail is basically the same as what is described by the Daisychain architecture: scan-
testable cores connected to the same TestRail can be tested simultaneously, as well as
sequentially. A TestRail architecture allows for multiple TestRails on one SoC, which op-
erate independently, as in the Distribution architecture. The TestRail architecture supports
serial and parallel test schedules, as well as hybrid combinations of those.

In most test access architectures, the cores assigned to a TAM are connected to all
wires of that TAM. Such architectures are referred to in (IYENGAR; CHAKRABARTY;
MARINISSEN, 2002a) as fixed-width TAMs. The flexible-width TAMs, on the other
hand, refer to the core-TAM assignments where the granularity of TAM wires are consid-
ered, instead of considering the entire TAM bundle as one inseparable entity. Figure 3.5
shows an example of a flexible-width Test Bus architecture.

In (CHAKRABARTY, 2000a), Chakrabarty proves that many problems related to the
definition of bus-based TAMs are NP-hard. Additionally, he uses the Integer Linear Pro-
gramming (ILP) heuristic to model and solve the test bus assignment problem. In this
problem, for a given number of test pins at the system interface divided into a given num-
ber of test buses, the best width for each test bus and the best assignment of test buses to

38

Figure 3.4: Test Rail Achitecture (MARINISSEN et al., 1998)

Figure 3.5: Flexible-width test bus architecture (IYENGAR; CHAKRABARTY;
MARINISSEN, 2002a)

39

cores is defined so that the system test time is minimized. In further works, Chakrabarty,
Iyengar, Marinissen, and others have improved this original ILP model to optimize the
test bus assignment under other system constraints: power and place&route constraints
are considered in (CHAKRABARTY, 2000b); wrapper and TAM co-optimization are ad-
dressed in (IYENGAR; CHAKRABARTY, 2001; IYENGAR; CHAKRABARTY; MARINIS-
SEN, 2001) and (IYENGAR; CHAKRABARTY; MARINISSEN, 2002b) using new math-
ematical models that improve both the final solution and the execution time of the original
ILP model. Test data compression for data volume and access requirements reduction is
discussed in (IYENGAR et al., 2003).

Fixed-width TestRail architecture optimization was investigated in (GOEL; MARINIS-
SEN, 2002a,b). These papers describe heuristic algorithms for co-optimization of wrap-
pers and TestRails. In (GOEL; MARINISSEN, 2002c), a novel architecture-independent
heuristic algorithm that optimizes the test architecture for cores with both fixed-length and
flexible-length scan chains is proposed. The algorithm efficiently determines the number
of TAMs and their widths, the assignment of modules to TAMs, and the wrapper design
per module.

Other authors propose alternative methods for the bus assignment problem, which
usually present better execution times if compared to the ILP model for similar system
testing times: Ivanovet al. (EBADI; IVANOV, 2001), for example, use a genetic algo-
rithm to solve the problem. In (HUANG et al., 2001), Test Bus architecture optimization
is mapped to the problem of two-dimensional bin packing and a Best Fit algorithm is used
to solve it.

The issue of designing balanced scan chains within the wrapper was addressed in
(CHAKRABORTY; BHAWMIK; CHIANG, 2000). The first techniques to optimize
wrappers for test time reduction were presented in (MARINISSEN; KAPUR; ZORIAN,
2000). To solve the problem, the authors proposed two polynomial-time algorithms
that yield near-optimal results. Further, to perform wrapper optimization, Iyengaret al.
proposed in (IYENGAR; CHAKRABARTY; MARINISSEN, 2001) and in (IYENGAR;
CHAKRABARTY; MARINISSEN, 2002c) an algorithm based on the Best Fit Decreasing
heuristic for the Bin Packing problem. The algorithm has two priorities: (i) minimizing
core testing time , and (ii) minimizing the TAM width required for the test wrapper. These
priorities are achieved by balancing the lengths of the wrapper scan chains originally de-
signed, and identifying the number of wrapper scan chains that actually need to be created
to minimize testing time.

The use of crossbar switches for the efficient communication at varying bitwidth be-
tween cores and the test bus is proposed in (BENABDENBI; MAROUFI; MARZOUKI,
2000, 2002) and (BASU et al., 2002,?).

Nahvi and Ivanov propose in (NAHVI; IVANOV, 2001) the use of a packet switching
communication-based TAM for a SoC. The TAM proposed model is called NIMA (Novel
Indirect and Modular Architecture), and it is defined to allow modularity, generality, and
configurability for the test architecture. Such a architecture is very similar to a func-
tional on-chip network , but it is specifically designed for the test task. Thus, routing and
addressing strategies are defined considering the test requirements of each system. For
example, the messages containing test responses do not present a target address, for they
are scheduled by the test sink. Moreover, routing is hardwired, assuming that a test sched-
ule is defined by the system designer before the system synthesis. The results presented
in that work show the good performance of this TAM model with respect to area overhead
and test time, when compared to bus-based TAMs. However, the extra area required for

40

the network implementation can be prohibitive.

3.2 Test Scheduling Definition

Sugiharaet al.(SUGIHARA; DATE; YASUURA, 1998, 2000) and Jervanet al. (JER-
VAN; PENG; UBAR, 2000; JERVAN et al., 2002) propose automatic methods to select
the best combination of pseudo-random and deterministic patterns for each core in an SoC
to minimize the system test time. In both works, each core is assumed to have a number
of test sets, each set using a different combination of pseudo-random and deterministic
patterns. The selection algorithms operate over the defined test sets, choosing one set for
each core so that the system test time is minimized. In (SUGIHARA; DATE; YASUURA,
2000) the usage of BIST controllers and TAM is also optimized. The quality of the final
solution for these approaches is related to the number of possible test sets, which defines
the search space for the selection algorithms. In addition, the test time minimization is
based on the test parallelization of the BISTed cores.

In (ZHAO; UPADHYAYA, 2002) Zhao and Upadhyaya consider a system where one
test set or a combination of test sets may be provided for testing each core in order to pro-
vide the required fault coverage. Given a set of test sets for the cores, a set of resources, the
test access architecture and the maximum power allowance, they propose a test scheduling
scheme to minimize the overall test time by efficiently overlapping blocks of compatible
tests of unequal length. The basic idea is to generate a group of power-constrained concur-
rent test sets (PCTS) and schedule the tests based on the compatibility relations among
them. The test scheduling dynamically partitions and allocates the tests, consequently
constructing and updating a set of dynamically partitioned power constrained concurrent
test sets, and ultimately reducing the test application time.

Integer Linear Programming was also used to solve the test scheduling problem.
In (CHAKRABARTY, 1999, 2000c), the problem is modeled as a m-processor open-shop
scheduling which is NP-hard. Then a mixed ILP (MILP) heuristic for optimal scheduling
and optimal test set selection is used. Additionally, another heuristic is proposed to handle
larger systems for which the MILP model may be unfeasible.

SoCs in test mode can dissipate up to twice the amount of power they do in normal
mode, since cores that do not normally operate in parallel may be tested concurrently (ZO-
RIAN, 1993). Power-constrained test scheduling is therefore essential in order to limit the
amount of concurrency during test application to ensure that the maximum power budget
of the SoC is not exceeded (IYENGAR; CHAKRABARTY; MARINISSEN, 2002a). In
(CHOU; SALUJA; AGRAWAL, 1997), a method based on approximate vertex cover of
a resource-constrained test compatibility graph was presented. In (MURESAN; WANG;
VLADUTIU, 2000), the use of list scheduling and tree-growing algorithms for power-
constrained scheduling is discussed. The authors presented a greedy algorithm to overlay
tests such that the power constraint is not violated.

Ravikumaret al.(RAVIKUMAR; VERMA; CHANDRA, 1999) present a polynomial-
time algorithm for finding an optimum power-constrained schedule which minimizes the
test time. They assume the built-in self-test (BIST) methodology for testing individ-
ual cores and allow sharing of test resources (pattern generators and signature registers)
among cores. The objective is to minimize the test application time and the test area
overhead, treating the total power dissipation as a constraint. Further, they expand their
work in (CHANDRA, 2000) and propose an algorithm for simultaneous module selection
and test scheduling under power constraints. The method relies on the existence of a li-

41

brary of possible mappings for each core in the system, each one with a different power
consumption and area. The algorithm thus selects which version of each core should be
synthesized so that a minimal test time for a given power constraint is found.

Larsson and Peng present an integrated technique for test scheduling and scan-chain
division under power constraints in (LARSSON; PENG, 2001a). The authors presented
an optimal algorithm to parallelize tests under power and resource constraints. The design
of test wrappers to allow for multiple scan chain configurations within a core was also
studied. Larsson and Fujiwara extended this model in (LARSSON; FUJIWARA, 2002)
by (1) allowing several different bandwidths at cores and (2) controlling the cores test
power consumption, which makes the increase of the test clock possible. The scheduling
is modeled as a Bin-packing problem and the transformations of TAM-time and power-
time, and the possibilities to achieve an optimal solution are discussed.

In (ROSINGER; AL-HASHIMI; NICOLICI, 2001, 2002), Rosingeret al propose a
power profile manipulation approach for the minimization of the power dissipation dur-
ing test. Such manipulation provides a more realistic power profile to be used by any
power constrained test scheduling algorithm, making it possible the test time reduction
by increasing the test concurrency.

In (IYENGAR, 2001; IYENGAR; CHAKRABARTY, 2002), an integrated approach
to test scheduling is presented. For precedence-based scheduling of large SoCs, a heuristic
algorithm was developed. The proposed approach also includes an algorithm to obtain
preemptive test schedules inO(n3) time, wheren is the number of tests (IYENGAR;
CHAKRABARTY, 2002). Parameters that allow only a certain number of preemptions
per test can be used to prevent excessive BIST and sequential circuit test preemptions.
Finally, a new power-constrained scheduling technique was presented.

Pougetet al. present in (FLOTTES; POUGET; ROUZEYRE, 2002) a sessionless
test scheme. Several constraints in terms of test resource sharing, power dissipation and
precedence are taken into account. The problem is solved using aO(n3) heuristic, forn
the number of cores in the system.

In (POMERANZ; REDDY, 2002) the core-clustering strategy is used to achieve op-
timal test completion time for the SoC. The method takes advantage of the existence of
more than one copy of a core in an SoC to reduce test application time. This is achieved
by the use of core clustering which is simultaneously considered with wrapper design, pin
association, and the system power constraints.

Both TAM optimization and test scheduling significantly influence the test time, test
data volume and test cost for SoCs. Furthermore, TAMs and test schedules are closely
related. For example, an effective schedule developed for a particular TAM architecture
may be inefficient or even unfeasible for a different TAM architecture. Integrated methods
that perform TAM design and test scheduling in conjunction are therefore required to
achieve low-cost, high-quality tests.

In (HUANG et al., 2002), Huanget al. present a method to solve the resource allo-
cation and test scheduling problems together in order to achieve concurrent test for core-
based SoC designs. The proposed methodology is not limited to any specific TAM and
the problem is formulated as a 2-dimensional bin-packing problem. A best-fit heuristic
algorithm is adopted to achieve optimal solution.

Koranne formulates the test scheduling as a network transportation problem in (KO-
RANNE; CHOUDHARY, 2002; KORANNE, 2002). Given a set of tests, with demands
for transportation of test bits (either for test stimuli or test response) and unrelated paral-
lel test resources (e.g., test access mechanisms or builtŮin self-test engines), the method

42

determines the start times and resource mappings of all the tests such that the finish time
for the complete SoC test is minimized. The problem is NP-hard and an approximation
algorithm using a result from the solution of the single source unsplittable flow problem
is presented. The proposed method uses the number of test bits that need to be transported
for a test as the invariant and is hence relatively independent of the test application and
execution model.

Koranne and Iyengar propose in (KORANNE; IYENGAR, 2002) the representation
of SoC test schedules and TAM width assignment based on the use of k-tuples, providing
a compact and standardized representation of the test schedules and facilitating a fast
and efficient evaluation of SoC test automation solutions. They further propose the use of
heuristic algorithms based on the use of k-tuples to solve scheduling problems considering
precedence relations among tests and power constraints.

Finally, genetic algorithms have also been used by Chattopadhyay and Reddy to solve
the problems of test scheduling and TAM partition for systems-on-chip (CHATTOPAD-
HYAY S.; REDDY, 2003).

3.3 Test Planning

Recently, a number of frameworks and increasingly more comprehensive models have
been proposed to cope with global optimizations for the final solution. These frameworks
differ by the type of core test methods addressed and the TAM definition, but they all
manage the distribution of test resources considering a variety of cost factors.

Bensoet alpresent in (BENSO et al., 2000) a tool for integration of cores with differ-
ent test requirements (full scan, partial scan and BIST ready cores). The TAM follows a
bus-based model that connects a group of cores to a BIST controller. Scheduling of BIST
resources and data pattern delivery are also considered in the test solution.

Larsson and Peng propose in (LARSSON; PENG, 2001b; LARSSON; PENG; CARLS-
SON, 2001; LARSSON et al., 2002; LARSSON; PENG, 2002) a framework for SoC test-
ing which considers test time minimization, TAM optimization, test set selection and test
resource placement, along with test resources and power consumption constraints. The
tool is based on the fact that different test sets can be used to test a core. This way, each
test set is evaluated under power, time, memory requirements, and so on, and the best test
set is chosen according to the system constraints. They further assume that scan chains
can be divided into smaller ones, to accelerate test time. BIST resources are then placed
in the system according to their usage by the cores. After the TAM definition, the test
schedule is generated so that the minimum test time for that specific TAM is achieved.

Iyengaret al. describes in (IYENGAR; CHAKRABARTY; MARINISSEN, 2002d)
an integrated framework for plug-and-play SoC test automation. The framework is based
on a new approach for wrapper/TAM co-optimization based on rectangle packing. Addi-
tionally, the rectangle packing approach is used to develop an integrated scheduling algo-
rithm that incorporates preemptive, precedence and power constraints in the test schedule.
Moreover, the relationship between the TAM width and the tester data volume is studied
to identify and effective TAM width for the SoC.

Data volume reduction has been addressed to reduce the memory requirements in the
external tester and further reduce the system test time (TOUBA, 2002; SINANOGLU;
ORAILOGLU, 2002; GONCIARI; AL-HASHIMI; NICOLICI, 2002; ROSINGER et al.,
2001; CHANDRA; CHAKRABARTY, 2002a,b).

In (KUMAR GOEL; MARINISSEN, 2003), Goel and Marinissen extend existing SoC

43

test architecture design approaches to minimize the required tester vector memory depth
and test application time, with the capability to minimize the wire length required by the
test architecture. The user specifies the relative weight of the costs of test time versus wire
length. In an integrated fashion, the algorithm partitions the total available TAM width
over individual TAMs, assigns the modules to these TAMs, and orders the modules within
one TAM such that the total cost is minimized.

3.4 Test Standard Initiatives

3.4.1 IEEE P1500 Standard

In September 1995, the IEEE Test Technology Technical Committee (TTTC) created
a Technical Activity Committee (TAC) for the study of the test and design-for-test of core-
based SoCs. This committee became the IEEE P1500 Standard for Embedded Core Test
(SECT) group in June 1997, with the main goal of developing a standard mechanism for
the test of core-based systems (MARINISSEN et al., 1999).

IEEE P1500 SECT is an IEEE standard under development that intends to facilitate
core-based testing, i.e., testing embedded cores for modular testing of large system chips
that consist entirely of modules of which not all implementation details are known. The
motivation behind this industry-wide standard is to enable the reuse of tests when a core
gets embedded in multiple different SoCs, as well as to enable inter-operable core-based
testing of SoCs that contain multiple cores from distinct core providers. IEEE P1500
SECT standardizes a test information transfer model as well as (part of) the on-chip test
access hardware that enables core-based testing (MARINISSEN et al., 2002).

IEEE P1500 does not cover the internal test methods of the cores or DfT, nor SoC test
integration and optimization. These are completely in the hands of core providers or core
users respectively, and are not suited for standardization because their requirements differ
for the different technologies and design styles of different cores and SoCs (MARINIS-
SEN et al., 2002).

The two main elements of the P1500 standard are a language, called Core Test Lan-
guage (CTL) and a scalable core test architecture (MARINISSEN et al., 1999; HALES;
MARINISSEN, 2003). The first one is developed by the P1500 CTL Task Force and
meant to standardize the core test knowledge transfer. CTL is based on another IEEE
standard language called Standard Test Interface Language or STIL, also known as IEEE
1450.0 (BOARD, 1999; ALLIANCE, 2003a). STIL is being extended to accommodate
specific core test constructs (KAPUR et al., 2001).

3.4.1.1 The Core Test Description Language

The Core Test Description Language (CTL) focuses on defining a standard language
in which all test-related information to be transferred from core providers to core users
can be expressed (KAPUR et al., 1999). CTL is designed to work with cores that come
with any type of DFT methodology. Furthermore, CTL also works with any type of test
methodology or fault model (structural or functional test, delay fault model, Iddq tests,
and so on) (KAPUR et al., 2001).

Information in CTL is organized around a mode (configuration) of the core being de-
scribed. Using some basic constructs derived from STIL, CTL has the ability to describe
the following (KAPUR et al., 2001):

• Controls to configure for testing the core and the surrounding SoC logic;

44

Figure 3.6: P1500 wrapper structure (MARINISSEN et al., 2002)

• Requirements and constraints on the implementation of SoC-level interfaces to the
core;

• Inclusion of test data specific for the core, but defined independently from any par-
ticular use of the core.

3.4.1.2 Scalable Core Test Architecture

From the basic elements of the conceptual test architecture shown in Figure 3.1, IEEE
P1500 SECT only standardizes the wrapper (KAPUR et al., 2001). The P1500 wrapper
is a shell around a core, that allows that core to be tested as a stand-alone entity by iso-
lating it from its environment. Likewise, the wrapper allows the environment to be tested
independent from the state of the core. The wrapper has three main types of modes: (1)
functional operation, in which the wrapper is transparent and operates as if not exist-
ing, (2) inward-facing test modes, in which test access is provided to the core itself, and
(3) outward-facing test modes, in which test access is provided to the circuitry outside
the core (MARINISSEN; GOEL; LOUSBERG, 2000). Figure 3.6 gives an overview of
the main elements of the P1500 wrapper architecture (MARINISSEN et al., 2002). The
P1500 wrapper is shown as a shell around the core. It has functional input and output
ports, matching those of the unwrapped core. Furthermore it has a mandatory one-bit
input/output port pair, WSI (Wrapper Serial Input) and WSO (Wrapper Serial Output),
and optionally one or more multi-bit input/output port pairs; in Figure 5.4, one is drawn,
named WPI (Wrapper Parallel Input) and WPO (Wrapper Parallel Output). The control
of the operation modes is done by the Wrapper Instruction Register, that can be loaded
either serially, through WSI, or in parallel.

IEEE P1500 SECT supports two compliance levels (MARINISSEN et al., 1999), com-
monly referred to as IEEE 1500 Unwrapped and IEEE 1500 Wrapped (KAPUR et al.,
2001). In both cases, the core comes with a CTL program that describes the core tests.
In the case of a 1500 Wrapped core, the core incorporates a complete P1500 wrapper
function, while for a 1500 Unwrapped core, the wrapper is not present yet, but the CTL
program contains the information on the basis of which a compliant wrapper can be

45

added (KAPUR et al., 2001). Although the benefits of modular testing, test interoper-
ability, and test reuse only become apparent when indeed the P1500 wrapper is used, the
two compliance levels provide flexibility in the usage of the standard. The first version of
IEEE P1500 SECT focuses on non-merged digital logic and memory cores. This standard
is currently in its development phase; the latest internal draft standard document (IEEE
P1500/D0.5) has been released in October 2001 (HALES; MARINISSEN, 2003). After
completion of this standard, P1500 also intends to cover analog and mixed-signal cores,
as well as DfT guidelines for mergeable cores (MARINISSEN et al., 2002).

3.4.2 VSI Alliance

The Virtual Socket Interface Alliance (VSIA) (ALLIANCE, 2003b) represents a set
of semiconductors companies and aims at identifying and defining a standard interface for
the reuse of virtual components or cores. More than two hundred companies are members
of the VSI Alliance, from all segments of the electronic industry (ZORIAN; MARINIS-
SEN; DEY, 1998). Seven Working Groups compose the VSI Alliance: Implementation
Verification, IP Protection, Manufacturing Test, Mixed Circuits, On-chip bus, SoC De-
sign and IP transfer. The Manufacturing Test and the Verification groups are related to the
standardization rules of the virtual components.

The VSIA is meant to promote core-based SoC design by specifying interface stan-
dards for design reuse of virtual components, the VSIA term for embedded cores (MARINIS-
SEN et al., 2002). Typically, VSIA endorses existing standards and evaluates emerg-
ing ones; if nothing else exists VSIA also develops its own standards or specifications
(MARINISSEN et al., 2002). VSIA covers various areas of core-based SoC design. Test-
ing is covered by the Manufacturing-Related Test Development Working Group. This
group has in the past specified common test data formats and design-for-testability guide-
lines for core providers (MARINISSEN et al., 2002).

The VSIA worked in parallel with the IEEE P1500 Working Group to create a gateway
for test interoperability meant to be compatible with IEEE 1500. In 2001, it published a
specification for a test access infrastructure, which is a prelude to the IEEE 1500 stan-
dard and is meant for temporary use until the complete IEEE 1500 standard is eventually
finalized and approved (MARINISSEN et al., 2002).

3.4.3 ITC’02 SoC Test Benchmarks

In (MARINISSEN; IYENGAR; CHAKRABARTY, 2002), Marinissenet al propose
a set of SoC test benchmarks whose main goal is “to stimulate research into new methods
and tools for modular testing of SoCs and to enable the objective comparison of such
methods and tools with respect to effectiveness and efficiency.” The benchmarks format
provides the cores test requirements in terms of number and type of tests, number of test
patterns, and cores test interface (number and size of internal scan chains, number of test
pins, hierarchy level of the core) (MARINISSEN; IYENGAR; CHAKRABARTY, 2003).

Until now, twelve systems compose the ITC’02 SoC Test Benchmarks, among aca-
demic and industrial contributions (MARINISSEN; IYENGAR; CHAKRABARTY, 2003):

• u226, from Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil;

• d281 and d695, from Duke University, Durham, USA;

• h953, from National Tsing Hua University, Hsinchu, Taiwan;

46

• g1023, from Jiri Gaisler and University of Stuttgart, Stuttgart, Germany;

• f2126, from Faraday Technologies, Hsinchu, Taiwan;

• q12710, from Hewlett-Packard, Shrewbury, USA;

• p22081, p34392, and p93791, from Philips Electronics, Eindhoven The Nether-
lands;

• t512505, from Texas Instruments, Bangalore, India;

• a586710, from Analog Devices, Austin, USA.

The names assigned to the benchmarks consist of one letter, followed by a number.
The letter represents the contributor of the benchmark and it is associated to the system
on a first-come-first-serve basis (MARINISSEN; IYENGAR; CHAKRABARTY, 2002).
The subsequent number is a positive integer, and indicates the test complexity of the SoC.
This number is evaluated using Equation 3.1, as explained in (MARINISSEN; IYEN-
GAR; CHAKRABARTY, 2002). In the equation, considerT the set of module tests. For
Testt ∈ T and corresponding Modulem(t), the formula uses the numbers of primary in-
putsim(t), primary outputsom(t), bidirectional terminalsbm(t), scan chainssm(t), internal
scan chain lengthsIm(t),1, Im(t),2, . . . , Im(t),sm(t)

, the test pattern countpt, and the binary
parameterssut andtut, indicating, respectively, whether the scan chains are used int and
whether an access mechanism is required fort (t is not a BIST test).⌊

T ·
∑

t∈T tut · pt · (im(t) + om(t) + bm(t) + sut ·
∑sm(t)

x=1 Im(t),x)

10, 000

⌋
(3.1)

The scaling factor 1/10,000 is used to shorten the SoC test complexity number given
by Equation 3.1, which is usually large (MARINISSEN; IYENGAR; CHAKRABARTY,
2002).

These benchmarks will be used in this work to validate the proposed test planning
techniques. Thus, more detailed information about the benchmarks description and char-
acteristics will be given in Chapter 4, when they are first used.

3.5 Contributions of this Work

The design of a system is a process that involves several constraints, features and
trade-offs of different cost factors, such as area, performance, power and test time. Nowa-
days, test planning has become one of the most expensive steps during the design flow of
an electronic circuit built in a core-based design paradigm. Access to embedded cores, the
integration of several test methods (not to mention the diversity among the cores them-
selves) and the optimization of cost factors such as area overhead, test time, and number
of test pins in the interface, are just a few of the several problems that need to be tackled
during test planning. If extra hardware is ultimately required it enormously complicates
the synthesis equations for balancing system constraints.

In general, the system integrator is not a test engineer and it is very difficult to preview
the impact of a design decision into the test complexity or, vice-versa, the impact of
a test-related decision on the synthesis of the system. Moreover, the system integrator
usually looks for the best compromise among the several cost variables involved in the

47

system synthesis, more than just the full optimization of a single parameter. Although the
test costs play an important role in the system cost, test optimization is only one of the
variables considered during the system synthesis, which includes area, power, and time-
to-market constraints, among others. Therefore, the inclusion of test planning in the very
beginning of the system integration is the key for the reduction of the complexity and cost
of this task in current and future SoCs.

Until the year 2000, when this thesis was defined, the main drawback of the available
solutions was that the test planning task was still conceived late in the design flow, when
it is more difficult to change the system structure and constraints. For the test planning
approaches that could be performed in the earlier design steps, either only a subset of
the cost variables was optimized, or the solution was very dependent on the designer’s
expertise. Furthermore, each method assumed restricted TAM models on top of which
the solution was searched (only test buses, only transparent paths, or only interconnec-
tions reuse). Even the methods that contemplate several cost factors at the same time still
defined only the TAM based on a previously defined set of test resources, and then opti-
mized the schedule to achieve reduced test times. It was subsequently up to the designer
to provide different amounts of test resources (as BIST controllers, TAM bitwidth, num-
ber of TAMs or test sets of the cores) and perform a number of searches under a variety
of constraints. The test decisions, thus, were mostly based on the designer experience,
rather than on the characteristics of the system being designed.

Within this context, this thesis was defined to study a more comprehensive test plan-
ning method that could be inserted in the design cycle of the SoC as a support tool for the
system integrator. One can observe that this test requirement was also studied by other
research groups, and their results (LARSSON; PENG, 2001b; HUANG et al., 2002; KU-
MAR GOEL; MARINISSEN, 2003) have been published in parallel with the first results
of this thesis (COTA et al., 2002, 2003).

This dissertation proposes two test planning approaches to be used by the system
integrator, the core provider, and the test engineer as an auxiliary tool in the decision
making process of the system development and test. They are meant for the production
or off-line testing of SoCs.

The first approach is detailed in Chapter 4, and deals with systems whose cores com-
municate through traditional connection mechanisms, such as buses and peer-to-peer con-
nections. For those systems, a comprehensive test planning method was developed. This
method is based on the definition of a heterogeneous access mechanisms in conjunction
with the system test scheduling, and aims at finding the test solution with the best trade-
off in terms of test time, pins, and area overheads, considering the system characteristics
and power constraints. The main contribution of the proposed methodology is the ex-
pansion of the TAM models, its integration with the test scheduling definition, and the
consequent possibility of exploration of the system design space during the definition of
a test solution.

The second test planning approach is presented in Chapter 5 and deals with systems
that use a network-on-chip as the main communication mechanism. For those systems,
the network already occupies a considerable area in the chip. Therefore, the inclusion of
extra hardware such as test buses for the test of the cores may present additional routing
and yield problems. On the other hand, the communication capabilities of the NoC can
be used to efficiently transmit test data during the test of the system. The reuse of the
NoC resulted in an inexpensive and efficient test solution for NoC-based systems, as the
experimental results shown in Chapter 5 will prove.

48

49

4 TEST PLANNING AND DESIGN SPACE EXPLORATION
IN CORE-BASED SYSTEMS

This chapter presents a comprehensive test planning model for core-based systems,
which privileges the reuse of system resources and aims at optimizing a number of cost
factors. The main contributions of the proposed model are fourfold:

1. it does not assume a single type of connection for the internal Test Access Mecha-
nisms (TAMs) in the system. Partial test buses are considered, along with functional
connections, transparency, and other bypass modes available through the wrapper
or the core configuration;

2. the solution does not fully optimize every single core in the system. Instead, the
diversity of test requirements among the cores is exploited, by privileging critical
cores with more test resources;

3. both the schedule and the global TAM are defined together, and not as independent
tasks as in other approaches. This aspect allows the exploration of the design space,
so that good compromises among the various trade-offs being sought in the system
synthesis can be found.

4. the model represents a step closer to the integration of DFT planning early in the
design process, and to a fruitful relationship between core designers and users.
The iterative search method provides the system designer with accurate informa-
tion about critical points in the system being developed. The designer can either
suggest specific modifications to the core provider or use this information to guide
the synthesis tools in order to find the best solution for the whole system, not only
in terms of testing, but with respect to all parameters of the design.

The multi-TAM model and the definition of the scheduling and the global TAM in
parallel are the key for the fine-grained exploration of the design space.

Section 4.1 briefly presents the trade-offs involved when using the multiple TAMs
model. Then, the problem is formalized and a solution is modeled in Sections 4.2 and
4.3, respectively. The algorithm for test planning is described in Section 4.4. The ex-
perimental setup and detailed information about the ITC’02 SoC Test Benchmarks are
explained in Section 4.6. At last, the experimental results presented in Section 4.7 show
the different trade-offs that can be explored for the same system if a number of cost fac-
tors is optimized. Finally, the impact of the system information into the test solution is
discussed in Section 4.8.

50

(a) normal mode (b) test mode

Figure 4.1: Core interface

4.1 TAM Definition and System Cost Factors

Looking to a core as an isolated entity, the test costs can be easily defined in terms of
the number of test patterns, test inputs and outputs, and scan chains. However, when this
block is part of a bigger entity, those costs are deeply related to the access mechanism
available to this core in the system. Aerts and Marinissen demonstrate this in (AERTS;
MARINISSEN, 1998), for the test time cost when a test bus is used as test access mecha-
nism. In this work, we want to expand this reasoning for other types of access mechanisms
that can be used within a system.

The TAM model used in this work is defined so that two access paths for each core are
defined: a test input and a test output path. Scan and functional pins of a scan-based core
are combined into a single set of scan chains in the wrapper, and the functional connec-
tions available in the system are reused for the defined set of test pins. This combination
consists in the transformation of the functional pins of a core into scan chains, whose
length is defined as the maximum length of the internal scan chains of that core. Let a
scan-based corei with sci internal scan chains,Ii inputs,Oi outputs andLi being the
length of the longest internal chain. Two test paths must be defined for this core: one for
the inputs, and another one for the outputs. The input bitwidth is defined assci + d Ii

Li
e.

Analogously, the output bitwidth is defined assci +dOi

Li
e. For example, let us consider the

core shown in Figure 4.1(a), with four scan chains of length 5 bits, 7 input, and 4 output
pins. The test interface of this core is shown in Figure 4.1(b). The number of input test
pins is defined as4 + d7

5
e = 6 and the number of output pins is4 + d4

5
e = 5. To simplify,

the same number of test pins is considered in both directions when defining a TAM. Thus,
for this example, one must find an input and an output access path for 6 test pins.

This pre-processing of scan-based cores is based on the wrapper co-optimization pro-
posed in (IYENGAR; CHAKRABARTY; MARINISSEN, 2001), but implemented in a
simpler way. In that work, this transformation takes into consideration the bitwidth of
each defined test bus, aiming at finding the best test time for corei. Here, this optimiza-
tion is performed only once, before defining the test path for corei. Our basic assumption
is that the available functional connections usually outnumber the test pins bitwidth, and
the full optimization of the wrapper scan chains is not required. The experimental re-
sults show that this is a valid assumption. For cores with external test methods (non
scan-based), this pre-processing is not applied, since the reuse of the available functional

51

Figure 4.2: Global TAM for a CUT

connections is straightforward. However, all functional pins are propagated as a single set,
and not according to the source or target module of each functional port in the interface
of the module under test.

We have defined a multiple yet not exhaustive model for connecting a core under test
(CUT) to another core in the system (called here aneighbor core), or to the system pe-
riphery. This definition is based on the assumption that functional connections already
available in the system can be reused during test to reduce test costs. Each type of con-
nection implies distinct costs for the area overhead of the connection, the number of pins
for the CUT in the interface, the CUT test time, and the power dissipation of the circuit
during test. The area overhead consists of extra wiring (new connections between cores)
and extra flip-flops and multiplexers for bypass modes in the wrapper. The number of ex-
tra pins for each core is the number of new pins created in the system interface when the
TAM for that core is completely defined. The power consumption per cycle is estimated
as a function of the extra hardware, in addition to the power dissipated by the core during
test.

The complete access mechanism for any core in the system is defined as a series of
connections between internal cores, so that two paths, one from the system interface to
the core under test (CUT), and another from the CUT to the system boundary are defined.
In the next sections, five types of connections are defined. Each pair of cores in the global
TAM will be connected by one of these methods, and the impact of each possible local
TAM on the core test time and on the area and pin overhead of the system is presented.
Notice that a same CUT can be connected to different neighbors by different local TAM
models as shown in Figure 4.2.

The the algorithm that selects the type of connection and combines the pairs in a global
solution is explained in Section 4.4.

4.1.1 Direct External Access

In this mode, shown in Figure 4.3, no previously existing connection is reused. A
direct connection between the CUT interface and the system interface is established. The
bitwidth of this connection is assumed to be as large as the number of bits that need to
be propagated to the interface. This implies an overhead ofn in the number of pins, forn
the number of test signals being propagated. The area overhead is proportional ton and
to the routing distance from CUT to the system interface. The impact on CUT test time,
on the other hand, is the smallest possible, since only one cycle delay is required for test
application or observation.

52

(a) test inputs (b) test outputs

Figure 4.3: Direct external access TAM

(a) test inputs (b) test outputs

Figure 4.4: Access via functional connections

4.1.2 Reuse of Functional Connections

In this TAM, functional connections already present between the CUT and another
core are reused, as shown in Figure 4.4. If the bitwidth of the connection is smaller than
the number of bits that must be propagated, extra wires are created between the CUT and
the neighbor core (Figures 4.4(a) and 4.4(b)). However, this is the only point in the system
where a full bitwidth connection is created. A parallel bypass is established between the
full bitwidth connection (neighbor-CUT) and one of the functional input (output) ports
of the neighbor core. Such a functional port is the one that requires the smallest number
of cycles for the serial/parallel conversion operation. The test time of CUT using this
connection isd n

m
eL + 1 cycles per test vector, wherem is the number of bits of the

selected input of the wrapper of the neighbor core andL denotes the maximum length
of the scan chains of CUT. Notice that an additional cycle is considered for the update
operation in te scan chains. If the CUT has a non scan-based test,L is 1, representing the
wrapper cell associated to the functional pin.

The area overhead of this TAM depends on the width of the existing connection be-
tween the CUT and the neighbor core and the distance between them inside the chip. A
core whose inputs come mostly from a single source will take advantage of the smaller
area overhead for the extra connections required. On the other hand, the bitwidth of the
selected neighbor input may be larger than the bitwidth of a pure test bus, reducing the

53

impact on the CUT test time. Note also that the path from the neighbor core to the sys-
tem boundaries will be done only form bits, wherem ≤ n. Moreover, the selected port
is connected to at least one other core in the system. Hence, the possibility of reuse of
existing functional connections from this point on is higher since the number of bits to
be propagated (m bits) corresponds to the bitwidth of an existent connection. As for the
number of pins in the interface, this connection implies no extra pins for the CUT, since
it reuses the pins of the neighbor core.

It is important to state that our model assumes internal scan chains of similar length.
This may preclude better test time optimizations for scan pins but it simplifies the al-
gorithm by avoiding the problem of finding the best association between available and
required pins, as shown in (IYENGAR; CHAKRABARTY; MARINISSEN, 2001). Thus,
for example, if 32 test pins are being propagated and the neighbor core has 27 pins that
can be used, only 16 out of 27 pins will be considered for the serial/parallel conversion
(chains are concatenated in groups of two sinced36

27
e = 2). If the internal scan chains

have similar lengths, test time is not deeply affected while total area overhead is reduced.

4.1.3 Use of Serial Bypass

The use of this TAM implies the transformation of all test inputs (outputs) of the CUT
in a single external scan-chain. A test vector is loaded serially, and an “update” cycle is
required for its application to the core. This TAM is very inexpensive in terms of area,
since a single wire traverses between the two cores being connected. On the other hand,
it requires the largest number of cycles for test application. This TAM requiresLn + 1
cycles to load one test pattern to the CUT. Once this TAM is chosen, only serial bypass is
considered from this point on, until the system interface is reached. The pin overhead for
this TAM is 1. Figures 4.5(a) and 4.5(b) show the wrapper configuration for test inputs
and outputs, respectively.

(a) test inputs (b) test outputs

Figure 4.5: Access via serial bypass

4.1.4 Use of Transparency Functions

This TAM, shown in Figure 4.6, is considered for test pattern justification in the sys-
tem when all test inputs of the core under test are connected to the transparent core. The
penalty on CUT test time is the number of cycles required for the propagation of the test
vectors from the inputs of the neighbor core to its outputs. Transparency is usually the
cheapest solution, since no extra hardware is required at the system level. The number of
bits to be justified from this core to the system interface is the number of bits that control
the transparency function.

54

Figure 4.6: Access via transparent core

(a) test inputs (b) test outputs

Figure 4.7: Access via Parallel Bypass

4.1.5 Parallel Bypass

This TAM represents a bus-based access mechanism, where functional connections
are reused only in the first level (from the CUT to the first chosen neighbor), as shown in
Figure 4.7(a) for the test inputs and in Figure 4.7(b) for the test outputs. From this point
on, extra connections of bitwidthn are created accordingly. This is a compromise between
the direct access TAM and the TAM presented in Figure 4.4. Although the area overhead
for the extra connections may be high for a single core, the possibility of reusing the bus
is also high, and the cost is amortized among all cores using the bus. The pin overhead is
n for the first core using this TAM, but it is zero for any other core reusing it. In terms of
test time, on the other hand, not only does the CUT manifest only a small increase on its
test time (1 cycle per neighbor), but also all other cores reusing the bus gain. This type of
connection is used when the test time available for the CUT is very restricted.

Using the defined TAM models, the costs of accessing the CUT during test are defined
as the path from the CUT to the system boundary is built. The CUT test time is updated for
each new connection between intermediate cores in the path, according to the number of
extra cycles required at each connection to transmit one test pattern or one test response.
The number of extra pins for the CUT is defined by the connection of the last core in the
path with the system interface. If this core is already connected to the system interface by
functional pins, and those pins are reused, the CUT has no cost in terms of pins. The total
area overhead for the test of the CUT is calculated by adding the area of all extra wiring
and bypass structures required in the path definition.

55

4.2 Problem Statement

Considering the different possibilities of test access presented in Section 4.1, the prob-
lem being tackled in this work can be stated as follows.

Let the input be:

1. a setC = {i, 1 ≤ i ≤ N} of cores within a system;

2. a set of 6-tuplesI = {(in, out, s, l, pf, ps)i, 1 ≤ i ≤ N}, representing the number
of external test inputs, external test outputs, scan chains, maximum length of scan
chain, number of external testing patterns, and number of scan testing patterns,
respectively, for each core in C;

3. a setT = {ti|1 ≤ i ≤ 5} of connection models for test pins between two cores as
defined in Section 4.1;

4. the functionsCA = Costarea(ti,j), CC = Costcycles(ti,j), CPo = Costpower(ti,j),
andCPi = Costpins(ti,j), with t ∈ T andi, j ∈ C, indicating the cost of a connec-
tion between the test pins of corei and the wrapper pins of corej in terms of area,
test cycles, power, and pin overhead respectively;

5. a directed weighted graphG = (V, E), with the verticesV representing the cores
and the arcsE connecting two vertices if there is a functional connection between
them. The weight of each arc is the number of bits connecting the two cores;

6. a triangular matrix containing the distance between any two cores (including the
system interface) in the system;

7. a numberPomax stating the limit of power consumption during test;

8. a numberPimax stating the limit of extra pins that can be added to the system
interface for testing purposes.

We want to find a solution comprised of:

1. A set ofki-tuplesGTin = {(ta,b, tb,c, ..., tk,interface)i, 1 ≤ i ≤ N}, for to,p ∈ T , and
o, p ∈ C, representing the access path to the test inputs.The numberki is the length
of the TAM;

2. A set ofki-tuplesGTout = {(ta,b, tb,c, ..., tk,interface)i, 1 ≤ i ≤ N}, for to,p ∈ T ,
ando, p ∈ C, representing the access path to the test outputs. The numberki is the
length of the TAM;

3. a setTimes = {(begin, end)i, 1 ≤ i ≤ N} representing the starting and ending
testing cycles for each corei in the system test schedule.

Thus, the problem is to define a path from the system interface to the input and output
of each embedded core and the system test schedule so that the following conditions are
respected:

• the total number of extra pins added to the circuit must be less or equal toPimax;

• the power limitPomax must be respected at all times during the system test;

56

• the total testing time and area overhead are to be optimized in this order.

In the next sections the solution for this problem is formalized and an appropriate
heuristic is presented.

4.3 Solution Modeling

The basic assumption used here is that the test access mechanism for a core under test
(CUT) is a series of connections between other cores in the system. From this assumption,
one can conclude that the global optimization of costs is neither a pure resource allocation
nor a pure scheduling problem. Indeed, the total testing time for each CUT can only be
defined after the system interface is reached, by adding the extra cycles required at each
neighbor core in the path. Also, the complete list of test resources allocated for the CUT
is available only after the complete path definition. Thus, one does not know a priori
the basic information (task cycles and conflicts over resources) for the application of a
traditional scheduling or allocation algorithm if this model is used.

4.3.1 Initial Approach

Since the TAM is defined as a path, the modeling as a shortest path problem is straight-
forward. If we define the distance in the path as a function of the area, pins, power, and
test time overhead for the core under test, traditional shortest path algorithms (SKIENA,
1998) can be used to find the best path from the core periphery to the system interface.

Following this model one can define, for each core in the system, two trees: one for
test inputs, and another one for test outputs. Each tree could be the list of all possible
paths from the core pins (root) to the system pins (leaves), passing through other cores of
the system (internal nodes in the tree), by means of connections modeled in Section 4.1.
Each arc connecting two nodes of the tree has a single value representing a function of
the costs for area, pins, power and time of that connection; the number of arcs connecting
two nodes in the tree is defined by the number of TAM models used. Using this structure,
one can find the best solution for each core under test by finding the shortest path from
the root to a leaf in each tree.

The modeling suggested in the last paragraph has two problems though:

the size of the tree is impractical: in the worst case, any other core in the system can be
used as part of the path for any core under test. This generates, for each core, a tree
with the number of nodes defined in Equation 4.1.

total_nodes=
∑

1≤j≤N−1

(N − 1)!

(N − j − 1)!
+

∑
1≤j≤N

(N − 1)!

(N − j)!
(4.1)

As we have two trees per block, the total storage requirement is 2N times the value
of Equation 4.1. Even if we can reduce the number of possible paths by defining
a sub-set of the cores to be used as part of the path for each CUT, still the size
of the tree may be a problem. Moreover, as the complexity of the shortest-path
algorithm is at leastO(V 2), for V the number of vertices, this solution is clearly
impracticable.

57

the optimization of the system cost is not achieved:the search in each tree aims at op-
timizing the test costs for each core independently. The global optimization can not
be done because each tree is traversed without considering the status of the others.
For example, if the best path for core 1 uses cores 2 and 3 before reaching the in-
terface, the cost function of this path is related to core 1 only. This means that the
test scheduling for the whole system must be defined after the definition of all test
paths, so that cores sharing test resources are not tested at the same time. This kind
of solution optimizes the resource allocation, but not the system testing time.

Thus, a modification of this model is required to tackle these two problems. We
show in the next subsection how the required search pruning can be done along with the
optimization of the system global costs.

4.3.2 Final Approach

Assuming that all test data is available in the core interface using a full bitwidth access
mechanism as the one shown in Section 4.1.1, the testing timeti for each core1 ≤ i ≤ N
is given by Equation 4.2, forLmax the length of the longest scan chain,pi, the number
of test patterns, andki the number of cycles required for the application of a single test
pattern of corei.

ti =

{
pi(Lmax + 1) + Lmax if core i has scan chains,

pi.ki if core i has no scan chains.
(4.2)

This is the minimum testing time for each core. If any other access mechanism is used,
as discussed in Section 4.1, core testing time may increase according to the available TAM
bitwidth.

Considering the aforementioned Equation 4.2, the best solution for the system in terms
of test time is shown in Figure 4.8 for a hypothetical example. In this case, the core with
the longest test time (maxtime = max(ti), 1 ≤ i ≤ N) defines the system test time
while the other cores are scheduled in parallel to this one. This solution is impractical
in most cases, since the number of extra pins in the system interface and internal wiring
overhead is very high as well as power dissipation. On the other hand, one can note in the
schedule of Figure 4.8 some unused time slots that could be used to reduce the area and
pin costs without affecting the system test time. In other words, let us consider a corej
with test timetj defined for a TAM with costCj. The maximum test time for the system
is maxtime. It is possible to define another TAM of costC ′

j < Cj with corresponding
test timet′j for corej so thattj ≤ t′j ≤ maxtime. That is, the new access mechanism
for corej has lower cost than the previous one without affecting the total test time for
the system. With the different models of TAMs proposed in Section 4.1, any model that
increases the test time of a core up tomaxtimecan be used, as long as the TAM cost in
terms of area and pins is reduced and the power constraint is ensured.

Applying this reasoning systematically over the optimum solution for testing time,
one can explore the design space within this test time while optimizing the test resources
allocation.

Two issues arise when applying the above reasoning:

1. the definition of which core will use the idle time slots in the schedule;

58

Figure 4.8: Test schedule for minimum test time

2. it is very likely that the initial system time limit,maxtime, is too restrictive to
accomplish the area, pins and power constraints of the design. Thus, a strategy for
the expansion of this limit must also be defined.

The first issue is solved by sorting the cores in decreasing order of test costs, so that
cores with a more expensive combination of test requirements (pins, test patterns, scan
chain length, etc) have higher priority for test cost reduction. With this criterion, more
expensive cores will have more time and resources available.

The second issue is solved if an iterative process of increasing the time limit and
evaluating the cost of the resulting schedule can be defined so that the complete conflict
list over test resources can be used to guess the new time limit for the system.

Finally, if we concurrently define test scheduling with the access mechanism for each
core, the global optimization sought for the system can be implemented. Figure 4.9(a)
shows a partial schedule for a hypothetical system, with four cores already scheduled.
The conflict list in the right of the Figure shows the conflicts among cores sharing test
resources. In this case, core 1 uses core 2 in its path to the system interface while core 2
uses core 1. Core 3 also uses core 2 and it is used by core 5. The unscheduled core 4 has
no conflicts yet. Moreover, Figure 4.9(a) shows possible time slots that can be used by
core 4 during test.

Figure 4.10(a) presents the first level of one of the two trees representing the possible
paths from the CUT 4 to the system interface. In this level, all cores in the system that
can be used by core 4 are listed, as well as the system interface itself. The connection to
each neighbor can be done in one of the five models defined in Section 4.1. Thus, there
are five arcs connecting core 4 to each of its neighbors in the tree. Let us also assume that
the costs of those connections are isolated so that any cost can be precisely checked. For
each neighbor of core 4, one can check the partial schedule of Figure 4.9(a) and extract
the available time slots for the CUT according to the considered neighbor. For example,
Figure 4.9(b) presents the result of this verification when core 2 is considered to be used
in the path from core 4 to the system interface. Since core 2 is being used by cores 1 and
3, CUT 4 can not be tested together with cores 1, 2 and 3. Thus, the available time slot
for the CUT 4, considering core 2 as a test resource, is 100 cycles. The same evaluation is
done for each neighbor of core 4, providing theavailable time for testinformation shown
in Figure 4.10(a). Comparing the available time against the CUT test time for each TAM
connecting the CUT 4 and its neighbors, one can eliminate the connections that exceed
the available time in the current schedule. This is the case, for example, of the connection
between core 4 and core 3 in Figure 4.10(b). In this case, all TAMs connecting cores 4 and

59

(a)

(b)

Figure 4.9: Schedule Construction

3 lead to a test time of core 4 larger than the available 100 cycles in the current schedule of
Figure 4.9(a). Therefore, core 3 can not be a test resource for core 4. From the remaining
possible connections between the CUT and its neighbors, one can choose the cheapest
one in terms of area and pins. After this selection, we have the tree configuration shown
in Figure 4.10(b). All existing connections in the tree of Figure 4.10(b) represent feasible
paths and the cheapest neighbor can be selected for expansion, as shown in Figure 4.10(c).
The recursive application of this method until the system interface (a leaf in the tree) is
reached gives us the complete test path to CUT 4. After the path for core 4 is completely
defined (the two trees associated to the CUT are traversed), the current schedule can be
updated.

Notice that the cost associated to each connection is still local. The global optimiza-
tion comes from the partial schedule information. As the path is built in the tree, the list
of conflicts over testing resources is updated, as well as the total test cost for the CUT.
Moreover, when the schedule is verified, the power consumption of each slot is evaluated
so that only slots where the power limit is respected are returned as available.

Summarizing, the following steps are required in the construction of the tree for the
shortest path search:

• the cost function of each arc between any two nodes in the tree is defined as a set
of four values: time cost, area cost, pins cost and power cost;

• the tree is built on the fly, as the shortest path algorithm is implemented. Only
promising nodes are expanded. The definition of a promising node is constructed
based on the available time slot extracted from the partial scheduling;

• the shortest-path algorithm is still used to traverse the tree as it is built, but testing

60

(a) TAMs for CUT neighbors

(b) Best TAM for each neighbor

(c) Best neighbor expansion

Figure 4.10: Tree Construction

61

time and power are not part of the path cost. Only pins and area are. Instead, time
and power overhead are just checked in the partial scheduling so that previously
established limits are respected;

• when a corea is used as part of the TAM for a CUT, a conflict is set between these
two cores so that they are not tested in parallel. A conflict is also set between any
other core usinga and the CUT, since they are sharing a test resource.

In the next section, the heuristic used to define the schedule and the resource allocation
for the system is presented, based on the modeling just proposed.

4.4 The Proposed Heuristic

For the general case, where several cost factors are being considered at once, the algo-
rithm consists of a search process that starts with the optimum solution for time (minimum
test time for the system), with an exclusive TAM provided to the core that sets the time
limit for the system. Then, every other core is placed in the schedule in such a way that
the best solution for the defined time limit is found. If, after all cores are scheduled,
the solution does not satisfy the system constraints, a small perturbation is done in the
solution, so that the time limit is slightly increased and a new solution is sought. This
process continues until the constraints are attained or until a preset number of iterations
is completed.

Figure 4.11 shows the pseudocode for the implemented algorithm. A main loop con-
trols the TAM definition and evaluates the cost of each global solution found, in steps 3
to 19.

The tree for each core is built on the fly (steps 7 to 17 in Figure 4.11), according to
the current test scheduling restrictions (step 10) and available TAMs in the system. The
cost of each arc in the tree is actually a set of costs, representing the optimization factors
being considered. Each core has two sub-trees representing the input and output paths,
respectively, and each one is traversed independently. Since the tree represents a core-to-
core connection, loops are prevented by the definition of the CUT neighborhood and by
the depth of the tree, so that a path to the system interface is always found.

One can observe that the kernel of the algorithm, presented at steps 9 to 14 in Figure
4.11, is the possibility of choosing the best connection (step 13) among the modeled
TAMs described in Section 4.1, and the best point to advance the search towards the
system interface (step 14). Placement information can accelerate the search by indicating
the most promising eligible neighbors for a core according to the location of the pins in
the core periphery.

For each eligible neighbor retrieved in step 8 of the algorithm, the schedule is checked
to define the amount of time available for the core under test, according to a list of conflicts
over test resources. Cores that share a test resource cannot be placed in the same time slot
in the schedule. Notice that, if an eligible core is not scheduled yet, a search in the
schedule must ensure that a time slot remains for this neighbor to be placed subsequently.
Since the cores are scheduled in a decreasing order of cost, less critical cores will have less
test resources available, since they have less impact on the solution cost. Thus, they can
keep a more expensive TAM (direct access, for example), while other cores are privileged
with more time and possibility of reuse of existing resources.

The selection of which core is scheduled first is defined according to the cost of the
current solution in terms of pins in the interface, and area and test time for each core.

62

Figure 4.11: Pseudo-code of proposed model

63

H(N) = C1 [O(N) [2C2 [O(N) [C2O(2N) + TO(1)] + O(N)] + C2O(2N) + O(N)]]

= 4C1C
2
2O(N3) + 2C1C2(T + 2)O(N2) + 6(C1C2 + 1)O(N)

K1 = 4C1C
2
2

K2 = 2C1C2(T + 2)

K3 = C1(6C2 + 1)

H(N) = K1O(N3) + K2O(N2) + K3O(N)

H(N) = O(N3)

(4.3)

For different combinations of optimization factors, different costs are considered in se-
lecting a core to be placed in the schedule. The most critical core (the most expensive
one according to the cost factors being optimized) is selected from the list of unscheduled
cores. Similarly, a TAM is defined first for the direction (input/output) that is using more
resources in the current solution.

The small perturbation in a current solution that allows a refined search for the global
minimum, is shown at steps 20 to 26 of Figure 4.11. It consists of selecting the most
critical core, that is, the core that requires more test resources in the current solution. For
this core, a new solution is searched as described at steps 7 to 17. However, at this point
no scheduling checking is done (step 10). Any possible solution that reduces the cost
of the available TAM for the critical core is considered. For test time minimization, the
selection of the best neighbor at any level of the tree (step 14) is performed so that the
neighbor that implies the smallest increment on the core test time is selected. Then, based
on the conflicts of the current global solution, a new test time limit is calculated (step 25)
such that current optimizations can be retained if necessary. The schedule is re-initialized
and the search starts from the beginning (step 3).

4.5 Heuristic Complexity

As it can be seen in Figure 4.11 five loops (lines 2, 3, 5, 7, 9, and 11) define the overall
complexity of the proposed heuristic. The complexity associated with each block of the
algorithm can be seen at the end of each line in Figure 4.11, forN the number of cores
in the system. The complexity of loops at lines 3 and 5 is straightforward. The block
within the loop of line 7 is executed while the system interface is not reached, that is,
it is dependent on the depth of the tree. The maximum depth of the tree is a parameter
of the algorithm, defined by the designer according to system characteristics. It can be
defined, for example, based on the maximum number of cores serially connected in the
application or based on the placement, to avoid the definition of very long paths. Thus,
this block is executed at mostC2 times. In line 9, any core in the system can be used in the
TAM for any CUT, in the worst case. Therefore, this loop isO(N). Line 10 represents
the search in the partial schedule for an available time slot. This function must ensure
that all unscheduled cores in conflict with the CUT can be placed in the currentmaxtime
limit. The CUT will be using at mostC2 other cores to form its TAM. Each core inserted
in the schedule adds one or two time slots, depending on the insertion point. In the worst
case, the final schedule has2N slots to be searched. Thus, the complexity of the search

64

in the schedule isC2O(2N). Line 11 is executed exactlyT times, forT the number of
TAM models being used (maximum five in our case). The selection of the best node to
be expanded in the tree isO(N), if all (N − 1) cores can be used as neighbors for CUT,
although this number diminishes as the tree is built. The insertion of the CUT in the
current schedule has the same complexity of the search for a time slot in the scheduling
performed in line 10, that is,C2O(2N). Finally, the algorithm is executed at mostC1

times (step 2), if no solution satisfying the system constraints is found. ConstantsC1 and
C2 are defined by the system integrator.

Then, combining the complexity of lines 3 to 19 of the algorithm as shown in Equation
4.3, one can conclude that the overall complexity of the heuristic isO(N3).

4.6 Experimental Setup

A prototype tool based on the described heuristic was implemented using Matlab
(MATHWORKS, 1997), and it is calledReuse-BasedTest Planning (ReBaTe). In Sec-
tion 4.7, the results provided by this tool for the ITC’02 SoC Test Benchmarks (MARINIS-
SEN; IYENGAR; CHAKRABARTY, 2002, 2003) are presented. The benchmark set is
detailed in the next section, as well as the methods used to estimate the system information
that are not available in the benchmarks description.

In the CD-ROM that accompanies this manuscript, one can find the current version of
the ReBaTe tool, as well as the description and complete set of solutions for the available
ITC’02 benchmarks.

4.6.1 ITC’02 SoC Test Benchmarks

Each benchmark in the ITC’02 set is described as follows (MARINISSEN; IYEN-
GAR; CHAKRABARTY, 2002):

1. The SOC name according to the ITC’02 benchmarks naming convention;

2. the total number of modules in the SOC;

3. global settings that specify whether or not the optional data for layout position and
power dissipation are provided;

4. for each module in the SOC (all cores are modules, and also the SOC is considered
to be a module):

(a) the level in the design hierarchy;

(b) the number of input, output, and bidirectional terminals;

(c) the number of scan chains and their lengths;

(d) the absolute layout location of the core (optional);

(e) the number of tests, and per test:

i. whether or not this test uses the module-internal scan chains and/or the
core-external Test Access Mechanism (TAM).

ii. the number of test patterns

iii. the power dissipation (optional).

65

Table 4.1: Some Characteristics of the ITC’02 Benchmarks (MARINISSEN; IYENGAR;
CHAKRABARTY, 2002)

SoC Number of
Modules Levels

∑
I/Os

∑
SFFs

∑
Test Patterns

u226 10 2 376 1,040 5,148,569
d281 9 2 2,931 882 8,818
d695 11 2 1,845 6,384 881
h953 9 2 929 4,657 1,100
g1023 15 2 3,707 1,546 2,349
f2126 5 2 1,597 13,996 962

q12710 6 2 13,167 12,991 4,612
p22810 29 3 4,283 24,723 24,890
p34392 20 3 2,057 20,948 66,349
p93791 33 3 6,943 89,973 22,987
t512505 31 2 8,663 68,051 10,479
a586710 8 3 3,755 37,656 10,850,894

Table 4.1 shows the main characteristics of the available SoC benchmarks.
Notice that in order to model such systems in the test planning tool, one needs some

important information regarding the system itself that is not available in the current bench-
mark format. Although the information per core is precise (number of vectors, inputs and
outputs, scan chains, etc) the system information is optional. As a matter of fact, none of
the current benchmarks provides the placement information, for example, and only one
system (h953) has the power consumption data for each embedded module. However, this
system-related information is important in the proposed method to evaluate the area over-
head and to allow the reuse of available resources. Therefore, for each system, hypothetic
data was generated based on the information currently available.

Firstly, the area and dimensions of each core were estimated as a function of the
number of inputs, outputs, and scan flip-flops, as shown in Equation 4.4. Termsα and
β are used to increase or reduce the size of the core if necessary. Variablesnbff is the
number of scan flip-flops informed in the benchmark description. The number of gates
of the core is estimated as a function of the number of inputs and outputs of the module
(variablesinputsnb andoutputsnb in Equation 4.4). The areas of one gate (gatearea) and
one flip-flop (ffarea) are defined as technology-dependent constants, and are also used to
evaluate the area overhead of the TAMs defined during the test planning.

corearea = α(nbff · ffarea) + β(inputsnb + outputsnb) · gatearea (4.4)

The power consumption of the cores during test is another information of the available
benchmarks that must be estimated. Equation 4.5 models the dynamic consumption per
cycle of a logic block.CL is the load capacitance (technology-dependent constant),T is
the test clock period. Variablenbgt is the estimated number of gates of the core, calculated
as part of Equation 4.4.swff andswgt are the switching factors for each type of gate,
respectively. These factors depend on the test vectors defined for each core, which is not
available for the ITC’02 benchmarks. Thus, a factor of 0.5 is used in the experiments.
Notice that for the flip-flops, there is a constant switching factor caused by the clock, in
addition to the eventual switching in the stored bit value.

66

corepower = CL ∗ V dd2 ∗ 1

T
∗ [(swff + 1) ∗ nbff + swgt ∗ nbgt] (4.5)

The power consumption of the wrapper of each core is also evaluated using Equa-
tion 4.5 by replacing the number of flip-flops and gates accordingly, and it is added to
the power consumption of the core. The consumption of the core and of the wrapper
given by Equation 4.5 is considered the peak consumption of the module to process all
test patterns.

The functional connections among the embedded cores are randomly assigned and,
based on these assignments, a floorplanning is devised. For some systems, different con-
figurations were defined: some considering pure peer-to-peer connections and others con-
sidering functional buses connecting bidirectional pins.

For the placement information, a simulated annealing placement tool is used to define
a hypothetic placement for the cores inside the chip. This placement tool aims at minimiz-
ing the total chip area and the routing area among cores. Thus, the functional connections
previously defined are used as input parameters to the placement algorithm. Clearly, this
might result in non optimized circuits, but the information obtained is still valid for the
validation of the tool.

As one will note next, the proposed tool is very sensitive to those estimated system
characteristics, and the results must be evaluated accordingly. For system u226, for exam-
ple, the actual functional connections are available, and a comparison between the result
for the estimated connections and for the real ones shows that the result for the real sys-
tems is probably better than the result presented here. In Section 4.8 the impact of the
system information on the test solution is discussed in more detail.

Furthermore, it is important to clarify that the area overhead calculated by the ReBaTe
tool is a function of the area of a transistor, which is ultimately defined for a specific
technology. In the experiments presented in this dissertation, the typical values associated
to a 0.8µ technology are used. Moreover, the area overhead is evaluated according to
the area defined for the system, which includes the estimated area of each core and of
the functional connections. Therefore, for the real systems, the area overheads can be
different from the ones presented here.

4.7 Experimental Results

In the sequel, some results for the currently available ITC’02 SoC Test Benchmarks
(MARINISSEN; IYENGAR; CHAKRABARTY, 2003) are presented, showing the vari-
ety of system configurations and test solutions that can be explored using the proposed
test planning tool.

4.7.1 Benchmarks d695, g1023, f2126, q12710, and t512505

This section groups the benchmarks d695, g1023, f2126, q12710, and t512505 of
the ITC’02 suite. These systems are the simplest to be modeled in the proposed test
planning tool: there is only one level of hierarchy, each core has only one test, all tests
require an access mechanism (no BIST testing), and there is no test defined at system level
(no specific UDL testing). Hence, each module described in the system can be directly
modeled as one CUT in the test planning tool, with its list of test requirements (test pins,
number of vectors, etc) and characteristics (power consumption during test, connections
to other modules, location in the chip, and so on).

67

Figure 4.12: Floorplanning of benchmark d695

Benchmark d695 is composed by a set of ISCAS’85 and ISCAS’89 circuits as cores.
It was originally proposed in (IYENGAR, 2001) and later modified to be inserted into the
ITC’02 set. The connections and placement of this system are shown in Figure 4.12.

Table 4.2 presents a summary of the test requirements of the embedded cores in d695.
The first column indicates the embedded cores, as described in the benchmark. Module
0 (zero) refers to the system level or UDL. The number of scan chains originally defined
for the module is shown in the second column, and the maximum length of the original
scan chains is shown in the third column. The number of functional inputs and outputs is
presented in the fourth column. The fifth column shows the number of test pins for which
an access mechanism is defined, as explained in Section 4.1. For example, for module
six, the functional inputs were concatenated into two scan chains of length 31 (d62

41
e = 2

andd62
2
e = 31), resulting in eighteen input test pins (16 pins for the original scan chains

and 2 pins for the new chains formed with the functional pins). Similarly, the functional
outputs were transformed into four chains of length 38, resulting in 20 output test pins. To
simplify further serializations during the TAM definition, the larger number of test pins
(20, in this case) is considered in both directions. Finally, the last column indicates the
number of test patterns of each module.

The description of this benchmark does not specify the number of inputs and outputs
of the system. The values presented in Table 4.2 were randomly defined, together with
the connections among the embedded cores.

Table 4.3 presents some resulting test costs for the benchmark d695 presented in Fig-
ure 4.12. The second column shows the list of costs optimized during the search for
the test solution: PT stands for pin count and test time optimization, PTA represents pin
count, test time and area overhead optimization, and PTAP represents pin count, test time,
and area overhead optimization, along with power dissipation controlling, with the power
limit indicated in parenthesis. The limit for the number of extra pins at the system inter-
face is set to zero. If a solution for this number of pins is not found, the best solution
among all partial solutions found by the tool is shown.

The power consumption limit is defined as a function of the power consumption of
the system cores during test. This function is defined as a percentage of the sum of the
power consumption of all cores. Thus, for example, a power limit of 50% indicates that
the power consumption limit corresponds to half of the sum of the power consumption of
all cores in test mode. Notice that in a real case, the designer can define any power limit.

68

Table 4.2: Test requirements of benchmark d695
Module Nb. of Scan chain Nb. of I/O Nb. of

Scan chains depth I/Os test pins test patterns
0 0 0 100/141 0/0 0
1 0 0 32/32 32/32 12
2 0 0 207/108 207/108 73
3 1 32 34/1 2/2 75
4 4 54 36/39 5/5 105
5 32 45 38/304 39/39 110
6 16 41 62/152 20/20 234
7 16 34 77/150 21/21 95
8 4 46 35/49 6/6 97
9 32 54 35/320 38/38 12
10 32 55 28/106 34/34 68

Table 4.3: Test results for benchmark d695
Experiment Optimized No. of Test Area

factors extra pins time overhead
1 PT 138 9,869 12%
2 PT 0 21,986 18.2%
3 PT 169 11,453 9%
4 PTA 182 9,869 7%
5 PTA 3 37,089 3.8%
6 PTA 38 24,323 2%
7 PTA 8 16,566 5.0%
8 PTAP (80%) 3 37,089 3.8%
9 PTAP (50%) 260 9,869 8%
10 PTAP (50%) 1 31,021 7.6%
11 PTAP (50%) 56 26,460 2%
12 PTAP (50%) 7 24,323 4.0%
13 PTAP (30%) 367 14,219 5%
14 PTAP (30%) 94 25,147 5.3%
15 PTAP (30%) 136 26,143 2%

Optimization factors: PT = pins&time,
PTA = pins&time&area, PTAP = pins&time&area&power

69

Figure 4.13: Floorplanning of benchmark g1023

Experiments 1 to 15 in Table 4.3 show the different trade-offs that can be considered
for the system d695 according to the cost factors being optimized and the system con-
straints. For each set of optimization factors, the solutions with smallest test time, pin
count, and area overhead are presented, respectively. For some cases, another intermedi-
ary solution is also presented.

The area overhead can be quite high if it is not considered during the test planning,
as shown by experiments 1 to 3. If area is also an issue, the system integrator has other
choices, exemplified in experiments 4 to 7. He/she can choose keeping the reduced test
time while increasing the system pin count and the area overhead (experiment 4), keeping
the reduced pin count and increasing the test time (experiment 5), or keeping the reduced
area overhead but increasing the test time (experiment 6). A compromise between the
three costs is presented in experiment 7.

Experiment 8 shows that the a power limit of 80% does not compromise the test
solutions previously found. Reduced limits, on the other hand, imply extra costs in one of
the test parameters. Experiments 9 to 12 represent some of the possible solutions for this
system when a power consumption limit of 50% of the sum of the power consumption
of all cores is considered. Experiment 12 is a solution that presents a trade-off among
the test costs while still respecting the system power constraints. One can notice that
the tool could find a solution for a power limit of 50% that is quite close to the solution
where no power constraints are considered. However, Experiments 13 to 15 show that
more restricted power limits have a great impact on the test solution. To reduce the power
consumption, less wrappers are used to form a TAM, and more pins need to be created in
the system interface, which reduces the system test time and keeps the area overhead at
lower levels.

Benchmark g1023 is composed of fourteen modules, and the number of pins at system-
level is defined in the benchmark description. The floorplanning and connections defined
for this system are shown in Figure 4.13 and the test requirements of the modules that
compose this system are summarized in Table 4.4. Notice the third value in the number of
interfaces of module 0 (system interface). This value indicates the number of bidirectional
pins present in the system interface.

One can observe in Table 4.5 that the optimization of area in this system implies an
increase in the number of pins with a subsequent reduction in the test time. Experiment
7 shows, on the other hand, that better trade-offs for the system can be found if more

70

Table 4.4: Test requirements of benchmark g1023
Module Nb. of Scan chain Nb. of I/O Nb. of

Scan chains depth I/Os test pins test patterns
0 0 0 4/63/53 0/0 0
1 14 43 139/273 21/21 134
2 2 84 221/215 5/5 74
3 1 53 192/171 5/5 57
4 4 54 145/155 7/7 268
5 4 32 32/27 5/5 51
6 2 47 20/18 3/3 36
7 2 47 20/18 3/3 34
8 2 52 63/80 4/4 31
9 1 64 56/34 2/2 68
10 1 13 301/377 30/30 29
11 1 9 145/191 23/23 15
12 1 13 157/161 14/14 16
13 0 0 58/64 58/64 512
14 0 0 140/114 140/114 1024

Table 4.5: Test results for benchmark g1023
Experiment Optimized No. of Test Area

factors extra pins time overhead
1 PT 197 14,794 25%
2 PT 0 86,973 18%
3 PT 25 143,796 15%
4 PTA 241 14,794 3%
5 PTA 3 157,120 3.2%
6 PTA 5 172,588 1%
7 PTA 21 38,773 2%
8 PTAP (80%) 3 157,120 3.2%
9 PTAP (50%) 241 14,794 3%
10 PTAP (50%) 2 51,383 2.6%
11 PTAP (50%) 30 149,895 1%
12 PTAP (50%) 4 39,844 3%
13 PTAP (30%) 279 20,642 3%
14 PTAP (30%) 17 48,501 2.3%
15 PTAP (30%) 108 55,803 1%

Optimization factors: PT = pins&time,
PTA = pins&time&area, PTAP = pins&time&area&power

71

Figure 4.14: Floorplanning of benchmark f2126

Table 4.6: Test requirements of benchmark f2126
Module Nb. of Scan chain Nb. of I/O Nb. of

Scan chains depth I/Os test pins test patterns
0 0 0 52/140/196 0/0 0
1 8 1,000 356/529 9/9 334
2 16 319 85/139 17/17 422
3 1 452 30/20 2/2 103
4 1 452 30/20 2/2 103

factors are optimized at the same time. The reason for this is that a new optimization
factor changes the space where the search takes place, avoiding the local minimum found
in the previous situation. Indeed, although the number of pins and test cycles is very
similar for experiments 5 and 10, the new pins are associated to distinct cores in each
solution, and the test schedule is such that the power limit is respected.

System f2126 has only four modules, as shown in Figure 4.14. However, the complex-
ity of the test of this system lies on the size of the embedded cores, as the test requirements
in Table 4.6 show.

Table 4.7: Test results for benchmark f2126
Experiment Optimized No. of Test Area

factors extra pins time overhead
1 PT 34 335,334 6%
2 PT 18 430,642 2.8%
3 PT 19 518,858 2%
4 PTA 37 335,334 4%
5 PTA 17 566,105 2.4%
6 PTA 20 471,363 2%
7 PTAP (80%) 18 518,858 2.5%
8 PTAP (60%) 56 470,693 6%
9 PTAP (60%) 19 518,858 2.3%
10 PTAP (60%) 36 470,693 5%

Optimization factors: PT = pins&time,
PTA = pins&time&area, PTAP = pins&time&area&power

The test results presented in Table 4.7 for this system show that, despite the reduced
number of resources, there is a considerable variability of the solutions sought by the
test planning tool. The area overhead does not change significantly from one solution to

72

Figure 4.15: Floorplanning of benchmark q12710

Table 4.8: Test requirements of benchmark q12710
Module Nb. of Scan chain Nb. of I/O Nb. of

Scan chains depth I/Os test pins test patterns
0 0 0 1594/1697 0/0 0
1 3 971 655/777 4/4 852
2 4 1,689 3784/3379 7/7 1,314
3 3 1,297 970/1316 5/5 1,223
4 3 1,297 970/1316 5/5 1,223

another, but the number of pins and the test time do. This is caused by the variability
of the test requirements among the embedded cores. Furthermore, the minimum power
limit for this system is 60%, since the power consumption of Module 1 during test has
this value.

System q12710 is another example of a small but complex SoC. It is also composed
of only four, but large, modules. Figure 4.15 shows the floorplanning for this benchmark
while Table 4.8 present the system test requirements. Again, as the number of interface
pins of the system is not provided in the benchmark description, the values shown in
Table 4.8 are synthetic and were defined based on the number of pins in the embedded
cores.

For benchmark q12710 the variability of the solutions is very reduced, as shown in
Table 4.9. The area overhead is very close to zero in all cases, and the solution found
when pins, time, and area are optimized is equal to the solution found for pins and time
optimization only. Although the power limit of 80% increases the system test time by
34% (Experiment 7) if compared to Experiment 5, better solutions are found for more
reduced power limits (experiment 8). One can observe that the test requirements of the
cores of this benchmark are very similar, which contributes, for the reduction in the search
space.

Similarly to system f2126, the minimum power limit for benchmark q12710 corre-
sponds to the power consumption of Module 2, which evaluates to 53% of the sum of the
consumption of all cores.

Benchmark t512505 is composed of 31 cores, as shown in Figure 4.16, with different
test complexities, as shown in Table 4.10. The test results for this system are presented in
Table 4.11.

For this benchmark, the variability of the test solutions is high, but none of them
presents a pin overhead close to zero. Indeed, the best solution for the number of pins
(Experiment 13) presents a very high test time. On the other hand, the best solution

73

Table 4.9: Test results for benchmark q12710
Experiment Optimized No. of Test Area

factors extra pins time overhead
1 PT 23 2,222,349 0%
2 PT 0 4,645,404 0%
3 PT 4 3,817,402 0%
4 PTA 23 2,222,349 0%
5 PTA 0 4,645,404 0%
6 PTA 4 3,813,548 0%
7 PTAP (80%) 0 6,236,421 0%
8 PTAP (53%) 1 3,313,904 0%

Optimization factors: PT = pins&time,
PTA = pins&time&area, PTAP = pins&time&area&power

Figure 4.16: Floorplanning of benchmark t512505

for time implies a considerably large number of test pins and area overhead. The best
compromise found for this system is, therefore, the one presented in Experiment 8, where
the number of extra pins is very close to the minimum found by the tool, the test time is
only 16% higher than the minimum, and the area overhead is only 1%. Thus, if the power
limit of 80% is acceptable to this application, this solution can be used.

4.7.2 Benchmark h953

System h953 is very similar to the benchmarks presented in Section 4.7.1 in terms of
test complexity. It contains only one level of hierarchy, each core has only one test, all
tests require an access mechanism (no BIST testing), and there is no test defined at sys-
tem level. The new aspect of system h953 is that the power consumption of the embedded
modules is available in the system description. This system is the only benchmark that
brings this information. Therefore, the power consumption of the cores does not need to
be estimated as explained in Section 4.6.1, as it happens for the other benchmarks. How-
ever, the power consumption is given as a pure number, with no other information, such as
whether the consumption is measured per cycle or if it is a peak or average consumption.
Hence, even for this benchmark some assumptions listed in Section 4.6.1 about the power

74

Table 4.10: Test requirements of benchmark t512505
Module Nb. of Scan chain Nb. of I/O Nb. of

Scan chains depth I/Os test pins test patterns
0 0 0 15/13/132 0/0 0
1 1 389 206/151 2/2 157
2 1 104 199/89 3/3 330
3 1 904 61/38 2/2 154
4 1 740 114/92 2/2 408
5 1 10 9/6 2/2 3
6 1 154 28/22 2/2 127
7 1 514 122/36 2/2 608
8 3 1,473 106/147 4/4 1,025
9 1 530 82/122 2/2 195
10 8 1,264 64/113 8/8 788
11 1 530 75/34 2/2 188
12 1 53 46/74 3/3 42
13 1 94 56/37 2/2 68
14 1 1,225 751/381 2/2 278
15 1 386 406/132 3/3 151
16 1 154 850/897 7/7 370
17 1 131 303/134 4/4 80
18 1 73 30/20 2/2 153
19 1 68 29/21 2/2 79
20 1 68 29/21 2/2 77
21 1 540 23/19 2/2 242
22 1 540 23/19 2/2 233
23 2 1,372 99/124 3/3 532
24 1 1,669 182/129 2/2 429
25 1 190 352/136 3/3 148
26 0 0 89/127 89/127 13
27 0 0 46/53 46/53 10
28 0 0 5/2 5/2 3
29 0 0 150/157 150/157 67
30 1 302 51/57 2/2 151
31 28 1,550 211/316 29/29 3,370

75

Table 4.11: Test results for benchmark t512505
Experiment Optimized No. of Test Area

factors extra pins time overhead
1 PT 71 5,228,420 7%
2 PT 28 5,751,444 8%
3 PT 30 5,745,321 5%
4 PTA 92 5,228,420 0%
5 PTA 13 7,485,064 1%
6 PTA 72 6,605,632 0%
7 PTA 17 6,490,281 1%
8 PTAP (80%) 14 6,092,953 1%
9 PTAP (50%) 91 5,569,563 0%
10 PTAP (50%) 19 6,267,593 1.6%
11 PTAP (50%) 26 5,959,937 0%
12 PTAP (30%) 106 6,740,743 0%
13 PTAP (30%) 8 14,278,685 1.6%
14 PTAP (30%) 31 8,213,834 2%

Optimization factors: PT = pins&time,
PTA = pins&time&area, PTAP = pins&time&area&power

Figure 4.17: Floorplanning of benchmark h953

profile of the cores were required.
Figure 4.17 shows the floorplanning of this system and Table 4.12 presents the test

requirements of the embedded modules. Table 4.13 shows some test solutions found for
this benchmark.

One can observe for system h953 the reduced impact of the power constraints in the
test solution, as very similar solutions are found for power limits of 80% and 50%. Despite
this similarity, the power limit of 80% (Experiment 7) resulted in a test time that is 46%
smaller than the solution for a 50% power limit (Experiment 9), for the same number of
pins and very similar area overheads. The limit of 50% is the minimum power limit for
this system, which corresponds to the power consumption of Module 2 during test.

4.7.3 Benchmarks u226 and d281

In this section, the systems u226 and d281 are considered. The particularity of these
two benchmarks is the presence of some modules that do not require a test access mech-

76

Table 4.12: Test requirements of benchmark h953
Module Nb. of Scan chain Nb. of I/O Nb. of

Scan chains depth I/Os test pins test patterns
0 0 0 12/41 0/0 0
1 4 348 112/152 5/5 341
2 2 327 68/89 3/3 9
3 2 32 9/17 3/3 39
4 4 21 88/67 9/9 49
5 4 121 19/13 5/5 110
6 4 185 15/11 5/5 182
7 0 0 80/32 80/32 65
8 8 189 35/69 9/9 305

Table 4.13: Test results for benchmark h953
Experiment Optimized No. of Test Area

factors extra pins time overhead
1 PT 10 119,357 2%
2 PT 2 214,062 2.3%
3 PT 50 214,062 1%
4 PTA 21 119,357 0%
5 PTA 2 223,139 0%
6 PTA 3 138,442 1%
7 PTAP (80%) 3 148,966 0.5%
8 PTAP (50%) 19 123,320 1%
9 PTAP (50%) 3 218,391 0.4%
10 PTAP (50%) 9 135,123 0%

Optimization factors: PT = pins&time,
PTA = pins&time&area, PTAP = pins&time&area&power

77

Figure 4.18: Floorplanning of benchmark u226

anism, that is, BISTed modules. The BIST testing can be either the single testing method
of the module, as in system u226, or one of the tests defined for a core in addition to an
external testing, for example, as in system d281. Both systems present only one level of
hierarchy and do not define any system level testing (UDL test).

To model a BIST testing in the proposed test planning approach, the BISTed core
is modeled as two CUTs: the first one represents the real core, with associated area,
connections, and location in the chip. If the BISTed core also requires a TAM for another
test, the test requirements of the external test are associated to this first CUT. The second
CUT is a virtual core with no area. This virtual block contains the BIST test requirements.
Usually, such a block requires one input pin (BIST enable) and one or more output pins
(BIST-ready signal or signature). In addition, the power consumption of the core when a
BIST test is being performed is assumed to be higher than the consumption of an external
test. This is modeled in the tool by increasing the switching rate of the gates and flip-flops
of the CUT modeling the BIST test. Although this CUT is not actually present in the
system, it has the same location and connections of the actual CUT, so that a TAM for the
BIST signals can be properly defined. With this model, the BIST test can be scheduled
using the same procedure of the external testing, following the same priority rules of the
other cores. The only difference is that the BIST testing time is fixed.

One can generalize the modeling of the BIST test to model a core with more than
one test. A core can have a number of tests that require a TAM but must be scheduled
independently. By defining a virtual CUT in the tool for each test, this situation can be
easily and correctly modeled.

Benchmark u226 was firstly used in (COTA et al., 2002). The system is a small but
complex system to be tested, because of the several types of tests related to the presence of
both, analog and digital cores, in the same description. This benchmark was the first con-
tribution to the ITC’02 set considering BISTed cores. Since this system is a contribution
of this University, the connections among the cores are known. For this first experiment,
the actual connections are used, and a functional bus is defined to connect some of the
cores. The floorplanning of this benchmark is shown in Figure 4.18.

Table 4.14 presents the test requirements of this system. In this example, the BISTed
cores do not require a TAM and to not use scan chains. Hence, the number of test patterns
associated to those cores actually informs their test time.

Table 4.15 presents the test results for system u226, where the impact of BISTed

78

Table 4.14: Test requirements of benchmark u226
Type of Nb. of Scan chain Nb. of I/O Nb. of

Module test Scan chains depth I/Os test pins test patterns
0 - 0 0 12/41 0/0 0
1 BIST 0 0 1/1 1/1 1,363,968
2 BIST 0 0 1/1 1/1 1,363,968
3 BIST 0 0 1/1 1/1 1,363,968
4 external 0 0 3/17 3/17 2,666
5 external 0 0 3/17 3/17 2,666
6 external 0 0 3/17 3/17 2,666
7 external 20 52 97/64 22/22 76
8 BIST 0 0 1/1 1/1 1,048,576
9 external 0 0 17/10 17/10 15

Table 4.15: Test results for benchmark u226
Experiment Optimized No. of Test Area

factors extra pins time overhead
1 PT 1 1,363,968 9e-7%
2 PTA 3 1,363,968 1e-7%
4 PTAP (80%) 3 1,363,968 1e-7%
5 PTAP (50%) 3 1,460,140 1e-7%
6 PTAP (35%) 3 1,363,968 1e-7%

Optimization factors: PT = pins&time,
PTA = pins&time&area, PTAP = pins&time&area&power

79

Figure 4.19: Floorplanning of benchmark d281

Table 4.16: Test requirements of benchmark d281
Module Nb. of

Nb. of Scan chain Nb. of I/O test patterns
Scan chains depth I/Os test pins External BIST

0 0 0 190/176 0/0 0 0
1 0 0 60/26 60/26 26 256
2 0 0 233/140 233/140 158 2,048
3 0 0 207/108 2/2 96 2,048
4 4 8 45/52 11/11 90 256
5 6 32 214/228 14/14 118 256
6 2 9 32/32 6/6 80 256
7 20 32 700/790 45/45 0 2,048
8 2 9 32/32 6/6 58 1,024

cores can be verified. One can observe that the test time for the system does not change,
for most system configurations. This test time is due to the BIST testing of one of the
embedded cores, and determines the system test time. However, when a power limit of
50% is considered, there is an increase of 7% in test time. The minimum power limit of
41%, set by Module 7 changes the search space and the test time is again defined by the
BISTed core. Additional results for this system will be presented in Section 4.8, when the
impact of the random functional association among cores is evaluated.

The connections and floorplanning of the benchmark d281 are shown in Figure 4.19.
Similarly to the benchmark d695, this system is also composed by a set of ISCAS’85 and
ISCAS’89 circuits as cores. However, seven out of the eight cores have two tests: one
that requires an access mechanism and another one that is autonomous (BIST test).

The number of test patterns per core for each test, as well as other test requirements of
this system are shown in Table 4.16. In the table, the number of test patterns for each test
(external and BIST) is presented in the last two columns but the test pins requirement (fifth
column in Table 4.16) is only related to the external testing, since the BIST is supposed
to be autonomous. For this example, the test time of the BIST test is defined during
the scheduling, considering the length of the original scan chains of each module (third
column in Table 4.16).

Table 4.17 presents the resulting test costs for the benchmark d281 presented in Fig-
ure 4.19. One can observe that the best solutions for time (Experiments 1 and 4) require

80

Table 4.17: Test results for benchmark d281
Experiment Optimized No. of Test Area

factors extra pins time overhead
1 PT 155 3,926 38%
2 PT 1 8,300 24%
3 PT 8 26,691 5%
4 PTA 209 3,926 2%
5 PTA 2 30,784 2.5%
6 PTA 8 11,961 0%
7 PTAP (80%) 2 30,874 2.5%
8 PTAP (50%) 6 12,320 1.4%
9 PTAP (30%) 26 8,132 2%
10 PTAP (30%) 16 10,396 16%

Optimization factors: PT = pins&time,
PTA = pins&time&area, PTAP = pins&time&area&power

an excessive number of pins. However, a good compromise is found in Experiments 6
and 8.

4.7.4 Benchmarks p22810, p34392, p93791, and a586710

In this section, the systems with more than one level of hierarchy are presented. These
systems present some super-cores, that is, cores that embed other cores. When a core is
described as part of another module, it is assumed that one can access the core interface
through the wrapper of the corresponding super-core. Therefore, the test of these two
modules is described separately.

To model a super-core, one can use the same procedure defined to model the BISTed
modules. Indeed, if one consider that the location of the super-core and its components
is approximately the same, and that the embedded core usually connects to the rest of the
system through the wrapper of the super-core, one can define the test of the embedded
cores as additional tests of the super-core. Thus, for each module embedded into another
core, a virtual CUT is created in the description of the system in the test planning tool.
The virtual CUT has the same location and connections of the super-core of highest level
(level 1) so that a TAM can be defined through the system connections. However, in this
case, the area of the virtual core is considered, as well as its specific test requirements and
characteristics, such as power consumption during test. With this model, the test of the
super-core can be scheduled independently of the test of its components.

System p22810 is shown in Figure 4.20. It contains a total of 28 modules, and two
of them (Modules 1 and 2 in the figure) are super cores. The connections among cores
were defined in such a way that bidirectional pins at the modules interfaces are connected
through two functional buses that are further connected to the bidirectional pins at the
system interface.

Table 4.18 presents the test requirements of the cores in this system. The second
column in this table indicates which level of the system hierarchy each core is located in.
All cores have only one test, but there are two tests defined for the system-level (Module
0) logic. These UDL tests are also modeled as virtual cores to be inserted into the test
scheduling.

81

Table 4.18: Test requirements of benchmark p22810

Module Nb. of Scan chain Nb. of I/O Nb. of
Level Scan chains depth I/Os test pins test patterns

0 0 0 0 10/67/96 10/67/96 99
1 1 10 130 28/56/32 12/12 785
2 2 0 0 47/33 47/33 12,324
3 2 0 0 38/26 38/26 3108
4 2 0 0 48/64 48/64 222
5 1 29 214 90/112/32 31/31 202
6 2 0 154 80/64 80/64 712
7 2 0 514 84/64 84/64 2,632
8 2 0 1,473 36/16 36/16 2,608
9 1 24 122 116/123/32 25/25 175
10 1 4 99 50/30 4/4 38
11 1 8 88 56/23/71 10/10 94
12 1 11 82 40/23/71 13/13 93
13 1 4 104 68/149 5/5 1
14 1 3 73 22/15 2/2 108
15 1 6 80 84/42/32 9/9 37
16 1 1 109 13/43/72 3/3 8
17 1 4 89 223/69/32 6/6 25
18 1 5 68 53/11/32 7/7 644
19 1 3 43 38/29 4/4 58
20 1 4 77 45/40/2 5/5 124
21 1 10 186 115/76/64 9/9 465
22 1 3 77 54/40 4/4 59
23 1 7 115 31/8/35 5/5 40
24 1 5 101 73/23/35 2/2 27
25 1 18 181 58/46/86 20/20 215
26 1 31 400 66/33/98 33/33 181
27 1 1 34 285/94 10/10 2
28 1 5 100 48/43 6/6 26

82

Figure 4.20: Floorplanning of benchmark p22810

Table 4.19: Test results for benchmark p22810
Experiment Optimized No. of Test Area

factors extra pins time overhead
1 PT 307 102,965 7%
2 PT 102 239,946 3.9%
3 PT 188 191,111 3%
4 PTA 282 102,965 2%
5 PTA 76 281,626 1%
6 PTA 130 279,551 0%
7 PTAP(80%) 76 281,626 1%
8 PTAP (50%) 67 385,389 1%
9 PTAP (30%) 78 290,398 2%

Optimization factors: PT = pins&time,
PTA = pins&time&area, PTAP = pins&time&area&power

Table 4.19 presents the test solutions found for this system considering the connec-
tions and floorplanning shown in Figure 4.20. Again, all solutions present a number of
extra pins quite high, compared to the number of functional pins of the system, and the
best solution for pins (Experiment 8) presents the highest test time among the selected
solutions. On the other hand, a compromise is found in Experiments 5 an 7. Moreover,
this compromise is kept for a power limit as low as 30%.

Figure 4.21 shows the connections and floorplanning defined for the benchmark p34392.
This benchmark contains 19 modules divided into four super-cores, and no functional bus
is assumed in the interconnections.

Table 4.20 presents the test requirements of the cores in this system. All cores have
only one test, and there are two tests defined for the system-level (module 0) logic. Ta-
ble 4.21 presents some test solutions found for this system.

For this benchmark, the best solution for time considering only pins and time opti-
mization, is also the best solution for area under those constraints (Experiment 1). One
can notice that the best solutions for pins (Experiments 2, 6, 8, and 10) present a test time
that is more than three times the minimum time for the system. The best trade-off for this

83

Figure 4.21: Floorplanning of benchmark p34392

Table 4.20: Test requirements of benchmark p34392

Module Nb. of Scan chain Nb. of I/O Nb. of
Level Scan chains depth I/Os test pins test patterns

0 0 0 0 32/27/114 32/27/114 27
1 1 1 806 15/94 2/2 210
2 1 29 570 165/263 17/17 514
3 2 0 0 37/25 37/25 3,108
4 2 0 0 38/25 38/25 6,180
5 2 0 0 62/25 62/25 12,336
6 2 0 0 11/8 11/8 1,965
7 2 0 0 9/8 9/8 512
8 2 0 0 46/17 46/17 9,930
9 2 0 0 41/33 41/33 228
10 1 19 519 129/207 12/12 454
11 2 0 0 23/8 23/8 9,285
12 2 0 0 7/4 7/4 173
13 2 0 0 12/16 12/16 2,560
14 2 0 0 11/8 11/8 432
15 2 0 0 22/8 22/8 4,440
16 2 0 0 7/7 7/7 128
17 2 0 0 15/4 15/4 786
18 1 14 729 175/212 11/11 745
19 2 0 0 62/25 4/4 12,336

84

Table 4.21: Test results for benchmark p34392
Experiment Optimized No. of Test Area

factors extra pins time overhead
1 PT 91 544,579 1%
2 PT 2 1,482,169 7.9%
4 PTA 79 544,579 1%
6 PTA 2 1,737,079 4%
7 PTA 19 814,378 1%
8 PTAP (80%) 2 1,737,079 4%
9 PTAP (50%) 56 764,771 1%
10 PTAP (50%) 2 1,802,461 2%
12 PTAP (50%) 26 897,662 4%
13 PTAP (30%) 386 1,075,242 1%
14 PTAP (30%) 49 1,368,792 0.76%

Optimization factors: PT = pins&time,
PTA = pins&time&area, PTAP = pins&time&area&power

system is found in Experiment 7, when only pins, time, and area are optimized. However,
when power is also considered, a similar test time can be found (Experiment 12) at the
expense of the pin and area overhead.

85

Figure 4.22: Floorplanning of benchmark p93791

Figure 4.23: Floorplanning of benchmark a586710

System p93791 is very similar to the two previous benchmarks in terms of test require-
ments. There are no BISTed cores, each core has a single test, and there is no system-level
test defined. For this benchmark, a functional bus is also assumed to connect the bidirec-
tional pins in the interface of embedded cores.

Figure 4.22 shows the floorplanning of system p93791, Table 4.22 summarizes the
test requirements of the embedded modules, and Table 4.23 presents the test solutions
found with the proposed test planning tool.

One can observe that the area overhead for this system is high in all solutions. It is
important to notice, at this point, that the area occupied by the inserted test resources is
evaluated as an absolute value. This means that the distance among cores, the area of
basic gates (flip-flops, multiplexers), and the width of the wires, for instance, are defined
considering an specific technology. The area of the cores is also estimated considering the
number of flip-flops and gates for the same technology. However, the relationship between
these two areas (the original area of the system and the additional area for testing) that
gives the area overhead estimation, may not represent the reality. However, in spite of
this factor, the variation in area overhead in Table 4.23 demonstrates the exploration of
the design space for that benchmark.

In addition, one can observe that the best solution for time (Experiments 1 and 4) is
actually unfeasible, because of the pin and area overhead. The best trade-offs are given
in Experiments 5 and 6, although the number of pins in both solutions can be considered
high.

System a586710 floorplanning is shown in Figure 4.23. This benchmark contains one
super-core (Core 1 in the figure) that embeds two BISTed modules. Table 4.24 summa-
rizes the test requirements of this system, and Table 4.25 presents some test solutions

86

Table 4.22: Test requirements of benchmark p93791

Module Nb. of Scan chain Nb. of I/O Nb. of
Level Scan chains depth I/Os test pins test patterns

0 0 0 0 103/79/66 103/79/66 0
1 1 46 168 109/32/72 48/48 409
2 2 0 0 40/34 40/34 192
3 2 0 0 40/29 40/29 648
4 1 23 5 15/30/72 47/47 11
5 1 0 0 102/80/66 102/80/66 6,127
6 1 46 521 417/324/72 49/49 218
7 2 0 0 9/32 9/32 177
8 2 0 0 9/32 9/32 177
9 2 0 0 43/34 43/34 192
10 1 0 0 267/128 267/128 1,164
11 1 11 82 146/68/72 11/11 187
12 1 46 93 289/8/72 52/52 391
13 1 46 219 111/31/72 49/49 194
14 1 46 219 111/31/72 49/49 194
15 2 0 0 44/34 44/34 288
16 2 0 0 137/64 137/64 396
17 1 43 150 144/67/72 46/46 216
18 2 0 0 79/34 79/34 42
19 1 44 100 466/365/72 54/54 210
20 1 44 181 136/12/72 47/47 416
21 2 0 0 79/34 79/34 42
22 2 0 0 42/34 42/34 42
23 1 46 175 105/28/72 48/48 234
24 2 0 0 17/4 17/4 3,072
25 2 0 0 29/16 29/16 2,688
26 2 0 0 42/34 42/34 96
27 1 46 68 30/7/72 50/50 916
28 2 0 0 109/50 109/50 396
29 1 35 189 117/42/72 38/38 172
30 2 0 0 43/334 43/334 192
31 2 0 0 148/70 148/70 204
32 2 0 0 268/128 268/128 3,084

87

Table 4.23: Test results for benchmark p93791
Experiment Optimized No. of Test Area

factors pins time overhead
1 PT 1,080 114,317 174%
2 PT 120 607,400 149%
3 PT 287 611,135 109%
4 PTA 1,291 114,317 28%
5 PTA 77 530,667 22%
6 PTA 153 541,723 12%
7 PTAP (80%) 130 523,045 31%
8 PTAP (50%) 100 586,738 27%
9 PTAP (30%) 11 1,615,500 23%

Optimization factors: PT = pins&time,
PTA = pins&time&area, PTAP = pins&time&area&power

Table 4.24: Test requirements of benchmark a586710

Module Nb. of Scan chain Nb. of I/O Nb. of
Level Scan chains depth I/Os test pins test patterns

0 0 0 0 31/59/111 31/59/111 0
1 1 8 2,155 437/370 10/10 2,945
2 2 0 0 275/222 1/1 2,679,692
3 2 0 0 407/244 1/1 6,029,308
4 2 0 0 206/324 206/324 181,140
5 1 8 2,548 343/218/111 10/10 2,945
6 1 0 0 34/35 34/35 40,431
7 1 0 0 226/100 9/32 1,914,433

Table 4.25: Test results for benchmark a586710
Experiment Optimized No. of Test Area

factors pins time overhead
1 PT 294 7,739,141 1%
2 PT 3 142,130,961 3.5%
3 PT 10 29,820,523 0%
4 PTA 297 7,739,141 1%
5 PTA 12 77,364,905 0.25%
6 PTA 17 15,726,859 0%
7 PTAP (80%) 11 29,811,685 0.05%
8 PTAP (50%) 30 22,069,597 0.4%
9 PTAP (30%) 40 25,414,419 0.5%

Optimization factors: PT = pins&time,
PTA = pins&time&area, PTAP = pins&time&area&power

88

(a) conex1 model (b) conex2 model

Figure 4.24: Two configurations for system d695

found with the proposed test planning tool. For this benchmark, the best solution is given
in Experiment 6, although the test time for this solution is 100% higher than the minimum
test time for the system. The number of test resources in this system is very limited, which
contrasts with the large number of pins and test patterns of the embedded cores.

4.8 System Characteristics and Benchmark format

In Section 4.7, the ITC’02 benchmarks were used to validate the proposed test plan-
ning approach. As explained earlier, all the system information necessary to model those
systems in the ReBaTe tool (connections among cores, floorplanning, power consump-
tion of the cores, etc) were estimated, since the benchmarks format describes only the
system test requirements. Therefore, the test solutions presented for those systems are
valid for the estimated system information. However, several other estimations of the
system information can be defined for the ITC’02 benchmarks. For example, one can
easily implement another algorithm to define the interconnections among cores, creating
a completely different system based on the same set of cores. For this new system, the test
solution devised by the ReBaTe tool would be very different from the results presented
until now. The impact of the extra system information on the test solution results is thus
discussed in this section using systems d695, p22810, p93791, and u226 as example.

For the system d695, a second functional association among cores and its correspond-
ing floorplanning was defined. Figure 4.24(a) represents the first connection model shown
in Figure 4.12 of Section 4.7.1, and Figure 4.24(b) shows the new floorplanning de-
fined for the second connection model. These two floorplannings are referred here as
d695_conex1andd695_conex2, respectively.

The test results for this system are presented in Table 4.26. For each functional con-
nection model, two test results are presented: the first one where pins, test time, and area
(PTA) are optimized, and a second one, where only pins and test time (PT) are optimized.

Table 4.26 confirms that the proposed method is very dependent on the system char-
acteristics. In the second connection model (d695_conex2) there are more unconnected
output pins and higher fan-in (reduced bitwidth of functional connections) for the cores,
although the same number of functional system pins is kept. One can see that the new
connections led to worse solutions if compared to the original ones, with larger bitwidth
between cores and more pins connected.

From the first two experiments of Table 4.26, one can remark how the location and
communication of the cores inside the system can interfere in the test solution. If only the

89

Table 4.26: New test planning results for d695
Experiment Test Time No. of Area

(cycles) extra Pins Overhead
d695_conex1 (PT) 21,986 0 18%
d695_conex2 (PT) 46.627 20 21.4%

d695_conex1 (PTA) 37,089 3 3.8%
d695_conex2 (PTA) 43,488 2 7.6%
Optimization factors: PT = pins&time, PTA = pins&time&area

Table 4.27: New test planning results for p22810
Experiment Test time No. of Area

(cycles) extra Pins Overhead
WB-conex1 347.919 84 0.93%
WB-conex2 785.423 46 0.31%
NB-conex3 1.592.739 51 0.29%
WB-conex4 2.059.441 8 0.15%
Optimization factors: PTA = pins&time&area

number of test pins in the interface is used to guide the definition of the global test solu-
tion, it is very likely that two systems with similar sets of cores but with distinct layouts
will present very similar test solutions. However, one can observe that very dissimilar
solutions can be found regarding both, the test time and the resulting area overhead, when
multi-variable optimization is sought and system information is used. Therefore, the ex-
ploration of the system design space before considering the inclusion of test pins and test
buses may be worth. Moreover, one can observe that the less optimization factors are
considered in the solution, the better the test time, at the cost of the area overhead.

For the benchmark p22810, the existence of bidirectional pins opens more possibilities
for the test solution. Four experiments were performed for this system and are presented
in Table 4.27: two assignments for functional connections and respective placement con-
sidering the existence of buses connecting the bidirectional pins (experimentsWB-conex1
andWB-conex2, respectively), another assignment when no buses were assumed in the
design (experimentNB-conex3), and a different functional assignment for the same place-
ment definition of experimentWB-conex1, also using a functional bus (experimentWB-
conex4). The first functional connection considered in Table 4.27 (WB-conex1) is the
model presented in Section 4.7.4. The last experiment (WB-conex4) shows whether the
placement information can be dissociated from the functional connection definition, that
is, if it can be neglected during test synthesis when functional connections are known.
In all cases, the optimization factors are the number of pins, the test time, and the area
overhead.

Comparing the experimentsWB-conex1andWB-conex2in Table 4.27, one can no-
tice again the impact of system level information in the test planning solution, since the
same variability of results from Table 4.26 is present. Furthermore, comparing the results
of experimentsWB-conex1and WB-conex2with the results of experimentNB-conex3,
it becomes clear that the assumption of the existence of an internal bus in the system
completely modifies the test result, when reuse of system hardware is assumed.

90

Table 4.28: New test planning results for p93791
Experiment Test time No. of Area

(cycles) extra Pins Overhead
WB-conex1 136.176 4 2.96e-3%
NB-conex2 104.168 0 1.63e-4%
Optimization factors: PTA = pins&time&area

Table 4.29: New test planning results for u226
Experiment Test time No. of Area

(cycles) extra Pins Overhead
NB-conex1 136,176 4 2.96e-3%
WB-conex2 104,168 3 1e-7%
NB-conex2 128,142 0 5.63e-3%
Optimization factors: PTA = pins&time&area

Finally, experimentsWB-conex1and WB-conex4show that no system information
can be neglected during test synthesis if multi-variable optimization is being performed.
Since we have the same floorplanning but different connections in these experiments, the
obtained solution can be very distant from the solution given for possibly more realistic
models, as the ones shown in experimentsWB-conex1andWB-conex2, for example. The
increase in the test time for the experimentWB-conex4occurs as a response to the high
area and pin overhead caused by the floorplaning that is not related to the functional
connections.

For system p93791, the original connection model that considers a functional bus is
compared to a new model where no functional bus is assumed. The test results for these
two configurations is shown in Table 4.28 for pins, test time, and area optimization.

Table 4.29 shows the results for the system u226. For this benchmark, one can com-
pare the test results for the random functional association to the results devised when
the actual connections among cores is used. Thus, one can measure how the lack of the
functional connection information can affect the test solution in a systemic approach.

It is important to notice that this system presents four cores with internal BIST struc-
tures that perform their test independently from the system resources. In fact, the BIST
facility defines the total test time for this system, which is 1.363.968 cycles in all experi-
ments of Table 4.29. Thus, the test time shown in Table 4.29 represents the test time only
for those cores in u226 that actually use the defined TAM. Moreover, from Table 4.29
one can observe how far a test solution can be from the real result when the system level
information is estimated. Again, pins, test time and area overhead are being optimized at
the same time.

The first experiment in Table 4.29 (NB-conex1) represents the random assignment
of the functional connections, with an associated floorplanning, for system u226. The
last two experiments show the test solution for the actual functional connections of this
system. InWB-conex2, an internal bus is assumed, while inNB-conex2core-to-core
connections are used. Notice that the result for the estimated system is worse not only
in terms of pin overhead, but also in test time, while the area overhead is one order of
magnitude greater than the real system using a functional bus. Comparing the results of

91

Table 4.29, one can clearly see that the solution considering an assumed, rather than the
real system information, is considerably different from the solution that can actually be
found in a real situation.

Based on the results shown in this section, it becomes clear that system information
does have an impact on test synthesis when such variables are taken into consideration. In
other words, if the test planning task is performed along with the system synthesis, rather
than being an isolated task, the space for global optimizations is largely expanded.

The current ITC’02 SOC Test benchmarks clearly represent the complexity of the test
of core-based systems. They also point out the difficulties for the system integrator to
implement a global test solution with restricted information about the embedded cores.
Besides, the benchmarks set can also be used to stress the difficulty to implement test
planning solutions in earlier design steps. However, the use of the current set for the com-
parison among test planning approaches must be carefully considered, whenever system
information is used by a test planning tool. As shown by the experimental results of this
section, this comparison can only be done if the same assumptions about the extra system
information are considered in all methods.

On the other hand, it is very difficult to have this extra information, such as placement
and functional connections data in a publicly accessible example of a system, since IP
protection also for the system must be considered. However, it would be interesting, for
example, to verify the possibility of including a common definition of all extra informa-
tion (even if not real) for the set of benchmarks. This way, although not strictly precise,
the comparison of different approaches could be more easily developed, enriching even
more the quality and usage of the benchmarks.

92

93

5 NOC-BASED TESTING OF CORE-BASED SYSTEMS-
ON-CHIP

If a network-on-chip (NoC) is the communication platform of the system, the elec-
tronic access to each embedded core is available, since there is a real connection among
all cores within the chip. The idea of reusing this resource during test is straightforward,
since the access to the embedded cores is one of the main problems of the SoC test. If
this reuse is possible, the pin and area overhead caused by the testing structures can be
strongly reduced. The main remaining problem is, thus, the test time.

In this chapter, the impact of the reuse of a NoC for the test of core-based systems is
discussed. A reuse strategy aiming at minimizing the system test costs is formalized in
Section 5.1. The experimental results presented in Section 5.3 show that very reduced test
times can be achieved, making the NoC reuse a very cost-effective test access mechanism.
The proposed strategy is further evaluated in Section 5.4, with respect to a number of sys-
tem configurations: different placements of the cores in the network, different number of
interfaces with the tester, different network topologies, and test under power consumption
constraints.

The main characteristics of a NoC-based design are described in Section 2.2. A
packet-switched network model named SOCIN (System-on-Chip Interconnection Net-
work), developed at UFRGS (ZEFERINO; SUSIN, 2003), is used in the experimental
results. Each router in the SOCIN network is composed of five input and five output
ports, as shown in Figure 5.1(a). One pair of ports is dedicated to the connection of the
router with the core, while the remaining four pairs connect four communication chan-
nels around the router, as depicted in Figure 5.1(b). A SOCIN router is implemented
using from 3,000 to 6,000 gates, depending on the bitwidth of the network channel and
depth of the input buffers (ZEFERINO; SUSIN, 2003).

Two bi-dimensional network topologies were used in the experiments presented in
this dissertation: torus and grid. Figure 5.2 shows these two topologies. The channels
were defined to be 16-bit or 32-bit wide, with packets having unlimited length.

SOCIN uses credit-based flow-control and XY routing - a deadlock-free, deterministic
and source-based approach, in which a packet is firstly routed on the X direction, and after
on the Y direction before reaching its destination. Switching is based on the wormhole
approach, where a packet is broken up into flits (flow control units), the smallest unit over
which the flow control is performed, and the flits follow the header in a pipeline way. The
flit size equals the channel width, and routers include a 4-flit queue at each input port.
Figure 5.3 shows the implementation of the benchmark d695 in the grid topology of the
SOCIN network.

94

(a) interface (b) architecture

Figure 5.1: Basic structure of the SOCIN router (ZEFERINO; SUSIN, 2003)

(a) grid

(b) torus

Figure 5.2: SOCIN topologies

95

Figure 5.3: System d695 implemented in a 4x3 grid SOCIN NoC

96

5.1 Using the NoC During Test

In order to reuse the network-on-chip as the test access mechanism for the system
cores, the test vectors and test responses of each core must be expressed as a set of packets
to be transmitted throughout the network. Then, the wrapper that connects the core to the
network must be modified to correctly send and receive the test data to/from the test
interface of the core (scan controls, scan pins, functional pins).

To keep the wrapper of each core as close to the original design (defined according to
the application implemented in the network) as possible, the test packets are defined so
that each flit arriving from the network is unpacked in one cycle. This means that each bit
of a packet flit fills exactly one bit of the defined scan chains of the core. Functional inputs
and outputs of the core, as well as the internal scan chains, are concatenated into external
scan chains of similar length, in such a way that the channel width is enough to transport
one bit of each scan chain. This process is very similar to the pre-processing of the cores
defined in Section 4.1. One can assume that the test pins defined as shown for the ReBaTe
tool are further concatenate until the total number of test pins in each direction fits the
channel width.

Figure 5.4(a) shows an example of a wrapper during normal operation, and Fig-
ure 5.4(b) shows this wrapper modified to be reused during test. The area overhead due
to the implementation of the test mode in the wrapper is comparable to the overhead of a
basic P1500 wrapper. Basic wrapper cells containing scan flip-flops as the ones proposed
in (MARINISSEN; KAPUR; ZORIAN, 2000) are required to implement the boundary
scan chains with the functional pins at the core interface and to concatenate the original
scan chains of the core when necessary. Then, the control signal to those cells are in-
cluded into the input and output control of the original wrapper. Finally, two registers and
a counter are required to store the address of the output interface for the test response and
the delivery time of the response packet, respectively.

Notice that other configurations for the test packet could be used, such as more than
one vector per packet, for instance. However, additional modifications in the wrapper to
implement the test mode would be required. Hence, for this initial approach, the simplest
packet configuration is being considered.

Control information, such as scan shift and capture signals, for example, are also
delivered in the form of packets, either in the test header (to be interpreted by the wrapper)
or as specific bits in the payload (for direct connection to the target pins). In Figure 5.4(b),
the latter is assumed. In both cases, a test enable signal in the packet header indicates to
the wrapper that a test configuration must take place. Furthermore, the original buffer
structure of the router, designed according to the functional requirements, is re-used as it
is, to reduce area overhead.

For the example d695, the data used to define the test packets is presented in Ta-
ble 5.1. For each core, the number of test packets and the number of test pins at the core
interface are shown in columns two and three, respectively. The number of packets to
be transmitted is twice the number of test vectors (one for the vector and another one for
the test response). Each packet comprises all bits of the test vector or the test response,
divided into a number of flits corresponding to the scan chain of maximum length defined
for the core, as explained above. The remaining three columns in Table 5.1 present the
number of bits per packet, and the resulting number of flits of each packet considering
communication channels of 32 and 16 bits, respectively. Usually, for scan-based cores,
the numbers of flits for the test vector and for the test response are the same. For non
scan-based cores, these numbers may be different, since they only depend on the number

97

(a) normal mode

(b) test mode

Figure 5.4: Wrapper configurations

of functional inputs and outputs of the core. Notice also that for some cores in Table 5.1
(3, 4, and 8), the same number of flits per packet is used for both channel widths. This
happens because the original number of scan chains combined with the functional inputs
and outputs of those cores is smaller than 16. For instance, let us define the number of
flits per packet of Core 5, considering the physical channel of 32 bits. As shown in Ta-
ble 4.2, this core has 32 scan chains of 45 bits each, 38 input pins, 304 output pins, and
110 test patterns. The number of test pins initially defined for this core is 39 (32+ d304

45
e).

However, the maximum number of test pins for the 32-bit communication channel is 32.
Hence, the defined scan chains must be concatenated until this limit is achieved. Apply-
ing the same reasoning, the number of test pins (39) is divided by the number of available
bits (32), giving the number of chains that must be concatenated (2). Then, concatenating
the chains in groups of two, the length of the new chain is 90 bits (45*2). Since each bit
of the chain must be loaded by one flit of the payload, the number of flits per packet for
this core is 90.

One can consider that an external tester is connected to the functional system interface.
Thus, the input and the output ports of the network can be re-used for the transmission of
all packets (vectors and responses) to/from all cores. Let us also consider that only the
cores and their corresponding wrappers are put into test mode, while the network routers
and channels are kept in normal mode. This way, the same protocol used for functional
communication is used during test. Notice that the test is still off-line, since the cores are
in test mode. Moreover, although the test of the network structures in conjunction with
the test of the embedded cores is being currently studied, this issue is not addressed in

98

Table 5.1: Test packets for system d695
Core # of # Test Pack. size Flits/Pack. Flits/Pack.

packets pins (bits) 32-bit 16-bit
1 24 64 32 1 2
2 146 315 108 5 7
3 150 36 33 32 32
4 210 79 250 54 54
5 220 374 1730 90 179
6 468 230 790 41 80
7 190 243 684 34 67
8 194 88 228 46 46
9 24 387 2048 108 216
10 136 166 1742 102 204

this work. It is assumed that the network is tested in a previous step and is fault-free.
The number of system interfaces used during test defines the initial number of paths

that can be used in parallel to transmit test data. However, if there is more than one in-
terface between the system and the external tester, the order on which the cores are tested
is important, since different paths (and, consequently, different conflicts over the network
resources) will be used for each core depending on the system input/output available at
that time.

In addition, the input where the test vectors are delivered from and the output where
the responses are sent to, determine the core test time. For example, if the input ports of
the system shown in Figure 5.3 are Cores 5 and 9, the input access paths for Core 6 are
5 → 10 → 6 and9 → 8 → 6, in the SOCIN network. If the output cores are located at
Cores 2 and 4, the possible output access paths for Core 6 are6 → 4 and6 → 4 → 2. The
number of routers is the same for both input paths. However, for the output, the second
path uses four routers, requiring more cycles to transmit each test packet than the first
path with three routers.

One possibility of reuse is to define the test of the system as another application to
be run in the network, that is, the tester could randomly choose the system interface to
send the test patterns and the network controls the traffic of all test packets, dynamically
solving the conflicts over the routers and channels. However, this approach can lead to a
sub-utilization of the network resources. Indeed, the tester can choose an interface that
leads to a blocked channel, delaying the message, whereas there are other paths within
the network that are free to be used.

On the other hand, the communication requirements of the whole test application are
known before its execution in the network, since the number and size of each package are
previously defined. Besides, the routing and arbitration algorithms of the network are also
known, that is, one can statically define the path that each packet can take in the network,
so that all free channels in the network are used in parallel.

We propose a scheduling approach to systematize and automate the definition of test
access paths through the network and a test sequence that optimizes the total test time.
Considering the reuse of the functional system interfaces, the test costs in terms of pins
can be drastically reduced. The area overhead caused by the modifications in the wrapper
are also minimal, in the order of a basic P1500 wrapper. It is interesting to notice that

99

the bypass mode of a core is already implemented by the network router, and not by the
wrapper that connects the core to the NoC. Therefore, there are only a few operation
modes that must be added to the wrapper function. Basically, it needs to provide a test
mode and a bypass mode in the case of the super-cores. Thus, if the test time is minimized
by scheduling the test packets a priori, the proposed approach can be very efficient.

The network has the same functionality during the normal and test modes of the sys-
tem, but it can operate, for example, at a lower frequency during test, according to the
cores and tester requirements. Moreover, the placement of the cores over the routers as
well as the number of interfaces with the tester are assumed to be previously defined by
the application.

5.1.1 Exploiting pipeline within the NoC

With the scheduling of the test messages, the network arbitration will no longer be re-
quired during test, since all conflicts are solved statically, during the scheduling planning.

Let us consider the packets that must be transmitted through the network as the tasks
to be scheduled, and the different access paths for each core as the resources that can
be used by those tasks. Each task (packet) can use any available resource (path) capable
of delivering the message to the correct destination. This means that different packets
delivered to/from the same core can take different paths within the network. For the
response packets (from the core to the tester), the test header of the packet contains its
origin. Moreover, the packet carrying a test vector also carries the address of the output
interface for the response packet of that vector. This information is defined during the
scheduling and actually inserted into the test packet by the tester during test.

Equation 5.1 defines the time required to transmit a packet through a path.Trouter

indicates the number of cycles spent by the packet header in each router to establish the
path;Nbrouters is the number of routers in the path;Theaders indicates the cycles required
to pack and unpack the headers;payload is the number of flits of the packet. For the
SOCIN network,Trouter = 3 and a test header is assumed, in addition to the packet
header originally present in each message.

Tpacket = Theaders + Trouter ∗Nbrouters + payload (5.1)

For each packet, two extra cycles are required by the core and its wrapper to process
the test and be ready to pack and deliver the response packet.

There are two precedence rules for this problem. The first one is related to the test
responses. A packet containing a test response can only be sent after the corresponding
vector is completely received by the core and processed. In traditional scan-based test
schemes, test time is minimized by performing parallel scan-in and scan-out operations.
That is, while a test response is extracted from the scan chain of the core, a new test vector
is being injected in the chain. In the network, this parallelization is only possible if an
input payload (test vector) is received by the core at the same time this core delivers an
output payload (test response). For this to happen, the new vector packet must be delivered
by the tester several cycles before the core finishes the processing of the previous vector.
Indeed, a new packet can be sent as early as an input path becomes available, as long as
the response of the previous vector is not blocked. Thus, the scheduling of each packet
must consider the possibility of conflicts and subsequent blocking of the output path, to
avoid loss of data.

In the proposed approach, each channel in the network is assigned a time information,
indicating when the channel is free to be used by a new packet. With this information, it

100

is possible to schedule the next vector packet of a core as soon as one path is available,
provided that the packet will not arrive at the core interface before the response payload
can proceed in the network. This strategy combines the network and the core parallelism
while ensuring that the internal scan chains are not overwritten.

The second precedence rule is more general, and deals with the priority of use of a
given path. One can define that cores with larger number of packets and larger size of
packets have priority to use shorter paths to reduce test time. The idea is to associate the
shortest path to the most expensive core, to minimize its test time. This rule is detailed in
Section 5.1.3, when the chosen scheduling algorithm is explained.

Each packet of each core must be transmitted from the tester to the core and vice-
versa. Furthermore, the original buffer structure of the router, designed according to the
functional requirements, is re-used as is. The scheduling algorithm ensures the defined
buffer is enough, since all conflicts are statically solved.

With these definitions, a variation of the list-scheduling algorithm can be imple-
mented, and the proposed algorithm is explained in Section 5.1.3. In the next section
we explain the modeling of the power consumption during test, which will also be used
in the scheduling definition.

5.1.2 Power Consumption Calculation

The main advantage of the network reuse during test is the possibility of paralleliza-
tion provided by this communication platform. However, as more cores are tested in
parallel, the system power consumption during test may become an issue. Therefore, the
scheduling algorithm must also consider power consumption.

In the proposed test technique, there are four sources of power consumption: the core,
the wrapper, the router, and the communication channel.

Similarly to the calculation of the power consumption of a core presented in Chapter 4,
Equation 5.2 gives the dynamic consumption per cycle of a network router for the trans-
mission of a single packet.CL is the load capacitance (technology-dependent constant),
T is the clock period, andσ is the switching factor. Variablesnbff andnbgt represent the
number of active flip-flops and gates in the router, respectively, when one packet is being
routed, whileσff andσgt are the switching factors for flip-flops and gates, respectively.
Notice that for the flip-flops there is a constant switching factor caused by the clock, in
addition to the eventual switching in the stored bit value.

Prouter = CL ∗ V dd2 ∗ 1

T
∗ [(σff + 1) ∗ nbff + σgt ∗ nbgt] (5.2)

Equation 5.3 evaluates the power consumption of a communication channel in the
NoC structure. The load capacitance of the channel is given by the product of the number
of wires in the channel (chw), the length of the channel (chl), and the width of the wire
(wirew). Variableσw is the switching factor for the wire. In this first approach, all chan-
nels are assumed to have the same length, although this may be not the case in the actual
implementation of the communication platform. As the power consumption is calculated
per cycle, the size of the packet being transmitted is not important at this point.

Pchannel = CL ∗ V dd2 ∗ 1

T
∗ σw ∗ (chl ∗ wirew ∗ chw) (5.3)

The total power consumption for a packet transmission is calculated according to the
path established in the network for that packet: for each router and each channel active in
the path, the router and channel consumptions are added.

101

For example, let us consider a packet containing the test vectorv for core 6 is delivered
by the tester through the system input at core 5, in the network shown in Figure 5.3. Con-
sider the power consumption of one router for the transmission of one packet asProuter,
and the power consumption of the channel asPchannel. When Core 5 is the chosen system
input, the path between Cores 5 and 6 includes the routers of Cores 5, 10, and 6, as well as
the communication channels 5-10 and 10-6 (see Figure 5.3), considering the XY routing
policy of the SOCIN network. Thus, the power consumption of this network transmission
for one packet is calculated by Equation 5.4.

Ppacket(v) = 3 ∗ Prouter + 2 ∗ Pchannel (5.4)

Equation 5.4 can be generalized to calculate the power consumption for the transmis-
sion of each packet, as shown in Equation 5.5, fornbrouters the number of routers and
nbchannels the number of channels in the path.

Ppacket = nbrouters ∗ Prouter + nbchannels ∗ Pchannel (5.5)

The power consumption of a core during test depends on the core logic, on the test
vectors, and on the order of application of the patterns. We assume the power consump-
tion of each core during test is known by the core provider. Moreover, as each wrapper
is usually developed for a specific core, we also assume the wrapper consumption is pro-
vided by the core designer. For the experimental results presented in Section 5.3, the
power consumption calculated in Chapter 4 for each module of the ITC’02 benchmarks
will be reused.

Since each test vector is packed, transmitted, and processed separately, the peak power
consumption for receiving (wrapper consumption) and processing (core consumption) a
single test vector is considered, that is, the power consumptionPcore assumed for each
core and its wrapper corresponds to the power consumption of the test pattern with high-
est consumption for that core. Moreover, a consumption per cycle is considered, so that
it becomes independent of the test frequency. In fact, any power profile for the cores can
be used. If there is enough information for each core, a more accurate power profile can
be defined and included in the proposed method. Also, it is important to notice that the
proposed technique does not assume any type of manipulation of the test set in order to
reduce the power consumption. The basic assumption is that the method of transmission
of the test vectors (one per packet) already contributes for the power consumption mini-
mization of the core, and the main goal is to define a power-constrained test scheduling
algorithm for the on-chip network TAM. However, if there is a specific order of test appli-
cation that further reduces the consumption of the core or of the network, it can be easily
implemented by changing the initial order of the test patterns and establishing additional
precedence rules in the test scheduling algorithm.

5.1.3 Power-Aware Test Scheduling

The scheduling can be modeled as a resource-constrained problem, since there is a
limited number of resources (paths within the network) that can be used by the packets.
Each packet of each core must be scheduled, to ensure that a response for each test vector
is delivered. The goal is to minimize the total execution time of the tasks, and maximize
the utilization of the available resources. For this model, a version of the list-scheduling
algorithm can be used (GEREZ, 1998). The main idea is to process the available time
instants in increasing order (starting at zero) and schedule as many operations as possible
at a certain instant before moving to the next. Let us assume that aready-listLt contains

102

the packets that can be scheduled from a given instant of time, and the algorithm will
associate each packet to an available path for a certain amount of time.

Initially, Lt contains all packets carrying the first test vector of each core. When a
packet carrying a test vector is scheduled, the corresponding response packet is set to
schedule at an specific time. When the response packet is scheduled, the next vector
packet is included into the ready-listLt, and this processes continues until all packets of
all cores are scheduled.

The first adaptation required to the list-scheduling algorithm is the heuristic used to
choose which packet will be scheduled at timet, and which packets will be deferred to
be scheduled later. The heuristic used in the proposed algorithm is based on the probable
test time of each core, as explained below.

Let C be the total number of cores to be tested. Each corei, 1 ≤ i ≤ C, is assigned
an integer valueCosti expressing its test cost, as defined in Equation 5.6, forPacketsi

the number of packets of corei andPacketSizei the number of flits of each packet of
corei.

Costi = Packetsi ∗ PacketSizei (5.6)

Based on the values defined in Equation 5.6, the cores can be sorted in decreasing
order of test cost, and the packet inLt belonging to the core with largest test time will
have priority to be scheduled. On the other hand, the access paths in each direction
for each core are sorted in increasing order of length (number of routers). Thus, the
scheduling algorithm will try to associate the shortest path to the most time-consuming
core, to minimize its test time.

The schedule is defined as a set of time slots of different sizes as shown in Figure 5.6.
The size of the time slot is measured in number of clock cycles. Each slot contains a
set of packets being transmitted or processed, and the end of a slot indicates either the
completion of a test or the beginning of the transmission of a new packet. One packet
transmission may be distributed among several slots, and slots can be modified as the
schedule is being defined. Thus, for example, one slot can be broken up into two others,
to include a new packet that starts in the middle of the original slot.

The structure of the schedule is initialized as a single time slot starting at cycle zero,
and with no ending time, and the initial instant of timet is set to zero. In the proposed
approach, the instant timet represents one time slot in the schedule rather than a single
cycle. Thus,t represents a range[ti..tf] of test cycles, andLt contains all packets that can
be delivered at an instant timet′ ≥ ti.

The power consumption per cycle is considered by assigning this information to each
time slot of the test schedule. For each slot, the total power consumption is calculated
by Equation 5.7, wheren is the number of packets being transmitted during this time slot
andc is the number of cores being tested in this slot.

Totalpower =
∑

1≤j≤n

Ppacket(j) +
∑

1≤i≤c

Pcore(i) (5.7)

Notice that a slot may have more than one packet being transmitted to/from the same
corei. In this case, the power consumption of the corei (test processing) is counted only
once to the slot power consumption. This is because corei can actually process only one
vector at a time and the power profile of the core is assumed to be the peak consumption
among all vectors. The scheduling of two or more packets related to the same core in the

103

same time slot means, therefore, that the packets are traversing the network, but only one
of them is actually being processed by the core.

The system power limit must be respected at each time slots, that is,Totalpower(s) ≤ Pmax,
wherePmax is the maximum power consumption allowed for the system. Thus, before
scheduling any packet, the total power required to transmit this packet is calculated. If the
addition of this value to the total power consumption of the slot does not exceed the power
consumption limitPmax defined for the system, that packet can be scheduled. Otherwise,
the packet is set to be scheduled later.

The pseudo-code for the scheduling algorithm used in this approach is shown in Fig-
ure 5.5. ConstantC is the number of cores being tested, and constantsI andO represent
the number of input and output ports of the system used during test. For each core, there
is a list of access paths for input (IP -Input Paths) and output (OP -Output Paths), sorted
as explained earlier. The list of unscheduled packets (UP -Unscheduled Packets) con-
tains the input and output packets of each core, sorted according to the test cost of each
module. The ready listLt contains the packets that are ready to be delivered. The time
information associated to each channel in the network is represented by the array FREE
which is accessed through a channel index. These last two variables are updated as the
scheduling is defined.

Figure 5.5: Pseudo-code of the adapted list-scheduling algorithm

The algorithm starts by selecting a packetpi in Lt belonging to corecj. This packet
has a delivery timetd ∈ t. The shortest available pathk that can be used by this packet is
selected, and the durationTpacket of this packet in the path is defined according to Equa-
tion 5.1. If there is no available path for packetpi, another packet belonging to another
core inLt is selected and packetpi is set to be ready as soon as its first possible path
becomes available. Otherwise, the network channels of pathk are set to be unavailable
during the time comprised between cyclestd + Theaders + payload andtd + Tpacket, ac-
cording to its position in the path. If packetpi carries a vector, the corresponding response

104

packet is set to be ready at timetd + Tpacket − 1, as the wrapper takes one cycle to define
the header of the packet. If packetpi is a response vector, on the other hand, the latency
l of the shortest input path is calculated asTheaders + Trouter ∗ Nbrouters. Then the next
input vector of corecj is set to be ready at timetd − l, ensuring that the new vector will
not arrive before the previous one has been processed. In both cases, the next packet of
corecj is inserted intoLt.

The algorithm keeps trying to schedule packets at time slott, until no more packets
can be scheduled, either because all system interfaces are busy, or because there are no
packets ready to be delivered at this time. When this happens, the variablet is updated to
the smallest delivery time of all packets inLt. This procedure is repeated until all packets
of all cores are scheduled.

5.1.4 Example

Figure 5.6 illustrates the scheduling of packetv of core 6 considering the system
power constraints. For this example, let us assume that the power consumption of one
SOCIN router corresponds to 10 power units, while the channel consumption corresponds
to 2 power units. Moreover, let us consider the power consumption of core 6 as 50 units
and the test power limit of the system as 170 units.

In Figure 5.6(a), a partial test schedule containing three time slots is shown. Three
packets are currently scheduled to cores 5 (packett), 6 (packetv − 1), and 3 (packetu),
respectively. The transmission of packetu in the network takes 50 cycles and defines
the first time slot in the schedule. Similarly, packetv − 1 lasts for 85 cycles and defines
the second slot, while packett defines the third slot with 160 cycles. Each slots has the
information about the total power consumed by the scheduled tasks (P (s)) calculated by
Equation 5.7. Let us assume that variablet corresponds now to slot 1 (range[0..50]) and
the algorithm tries to schedule as many tasks to this slot as possible. After selecting packet
v for Core 6, the algorithm checks whether the power consumption of the core alone is
too high for the current slot. If this is the case, the next packet of another core in the list
of unscheduled packets is selected. Otherwise, an available transmission path is selected.
For this example, Core 5 is the chosen system input, and the power consumption of the
path from Core 5 to Core 6 is calculated by Equation 5.4, as explained earlier, and this is
evaluated to 34 power units.

The transmission and processing of packetv is evaluated to last 85 cycles. Thus, if
this communication starts at slot 1 (cycle 0), it will last until the end of slot 2. Therefore,
the algorithm must check whether the power consumption limit is respected in all slots
within the duration of the packet transmission. Figure 5.6(b) shows the possible power
increase for each slot if packetv is scheduled to slots 1 and 2.

As Core 6 has another packet already scheduled in a slot, the contribution of the
new packet to the slot power consumption corresponds only to the network consumption
(routers and channels). If the core was not active in a slot, then the core consumption
Pcore would be added to Equation 5.4.

From Figure 5.6(b) one can observe that the packet can not be scheduled at slot 1,
because of the power limit of 170 units. Recalculating the duration of packetv starting
from slot 2, the algorithm checks slot 3 in addition to the first two slots, concluding that
slots 2 and 3 can accommodate the packet. Thus, the packet is scheduled to slots 2 and
3, and the schedule is updated accordingly, as shown in Figure 5.6(c). Since the packet
transmission lasts only 85 cycles, and slot 2 already offers 35 cycles, slot 3 is broken
down into two new slots 3 and 4, where slot 3 now offers the 50 cycles still necessary for

105

(a) current schedule

(b) schedule inspection

(c) updated schedule

Figure 5.6: Scheduling process considering power constraints

106

the packet.

Notice that the cores that are not being tested can be shut off in order to reduce the sys-
tem power consumption, since only the network structures (routers and communication
channels) are active during the transmission and unpacking of the test packets. Moreover,
the method does not depend on a specific test frequency. Then, the test frequency can be
defined according to the system and tester constraints.

Once the schedule is defined, it is used by the external tester to assemble the test
packets containing the test vectors. Each test vector carries the information required by
the wrappers to assemble the test response packets, such as the address of the output
interface and the delivery time information.

5.2 Complexity Analysis

Figure 5.5 also presents the complexity of each step of the algorithm for networks
with 2-D topologies (grid and torus). The complexity is defined based on the following
parameters: the number of scheduled packets (N), the number of tested cores (C), the
number of input and output ports (I and O, respectively), the dimensions of the network
(X and Y), and the total test timeT0 measured in clock cycles.

Steps 1, 2, and 3 of the algorithm require the sorting of the lists elements, which can
be performed by an algorithm of logarithmic complexity with the number of elements.
Steps 4, 5, and 6 define the data structure. The cost of the loop defined at step 7 is the
main cost of the algorithm and is dependent on the number of packets to be scheduled.
Step 8 is the heuristic that selects the next packet to be scheduled. It must check every
packet inLt and associate a path to the selected packet. The number of searches inLt

depends on the number of cores, and the search for a path depends on the number of
paths defined for each core, which is a function of the number of interfaces with the
tester. The definition of the next time range to be considered by the scheduling depends
of the delivery times of the packets inLt, that is, it is a function of the number of cores.
However, since one packet can be set to be scheduled before the current timet, a binary
search in the partial schedule is required. This search depends on the number of slots of
the partial schedule. In the worst case, there are at mostT0 slots in the schedule, if all
slots have a duration of one cycle. The cost of Step 15 depends on the size of the paths
defined within the network, which is a function of the network dimensions. Finally, if
power consumption is considered, it may be necessary to define another delivery time
for the packet, and this is done by sequentially searching the scheduling for a slot with
reduced power consumption. Thus, the complexity functionf of the proposed algorithm
can be expressed by Equation 5.8.

K1 = max((X + Y), T0)
K2 = max((C + T0 ∗ logT0), K1)
K3 = C ∗ I ∗ logI + C ∗O ∗ logO
K4 = max(I, O)
f = O [N ∗ logN + K3 + N(C ∗K4 + K2)]

(5.8)

Since variables I, O, X, and Y are much smaller than N, and are kept constant if
the number of test packets increases for the same system, the complexity reduces to
O[NlogN + N(C + T0 ∗ logT0)]

107

5.3 Experimental Results

The proposed scheduling algorithm was implemented in C++ and called NoCBaTe
(NoC-BasedTesting). The tool receives the system description (test requirements of the
cores, power limit), the NoC description (topology, latency of the router, number and lo-
cation of the interfaces with the tester), and the placement of the cores in the network.
With this information, the test packets as well as the access paths to/from each core are
defined, and the test schedule is generated. The current version of the NoCbaTe tool can
be found in the CD-ROM attached to this manuscript, and consider two network topolo-
gies for the SOCIN network: grid and torus. However, different versions of routers (with
distinct latencies or power consumption, for example) can be easily added to the algo-
rithm. Moreover, it is important to notice that the proposed method is neither restricted to
the SOCIN NoC, nor to the 2-D topologies used in this work. Any network using deter-
ministic routing can be reused for test using this method, since all paths can be statically
defined for those platforms. The inclusion of another topology in the tool is straightfor-
ward. One must only provide the routing algorithm and the arbitration policy, which will
be used to define the access paths and to manage the network conflicts, respectively.

The experimental results for the ITC’02 benchmarks are presented in this section.
Although the modeling of the benchmarks to the NoC-based test planning approach is
considerably simpler than to the ReBaTe tool, some assumptions about the systems are
still required. For example, the placement of the cores in the network is usually defined by
the communication requirements of the application, which is not known for the available
benchmarks. Similarly, the number of input and output ports is also unknown, since only
the number of pins is informed in the benchmark description.

The same system assumptions made in Chapter 4 are reused in the experiments with
the NoC. Thus, the random functional connections previously defined are interpreted as
communication requirements, and, based on such requirements, a placement algorithm
associates each core to a SOCIN router in the grid or torus topology. The placement
algorithm for the NoC is very similar to the placement algorithm for the core-to-core
connection model. It also uses a simulated annealing approach, but aims at finding the
solution that minimizes the total cost of communication in the system, rather than the
cost in terms of area and routing. In the experiments, the same placement used for the
torus topology is reused when the grid topology is considered, by simply disconnecting
the routers at the network boundaries.

The number of interfaces between the system and the tester is defined according to
the system information. For the benchmarks that have a defined interface, the number
of input, output, and bidirectional pins is divided into groups of 32 bits, which is the
maximum channel bitwidth considered for the network. For the benchmarks that do not
present this information, the interfaces defined in the random functional association de-
fined in Chapter 4 are used in such a way that only the interfaces with 32 bits or more are
considered. Again, this procedure is a simple approximation and may not represent all
real cases. Actually, this may preclude the full exploration of the network parallelization.
For example, if the real system has one port with less 32 bits, it will not be reused during
test. However, it could be used for the network with channels of 16 bits. Moreover, even
the ports with less than 16 bits can be reused if one can modify the wrapper of that port to
re-define the packet in such a way that the whole communication channel is used. Since
this feature is not implemented in the scheduling algorithm, the worst case is assumed for
all systems.

108

Table 5.2: Test results for benchmark d695
Topology Channel width Power Test Time

(bits) Limit (cycles)
- 17,334

80% 16,921
32 50% 17,037

30% 27,849
grid - 27,763

80% 27,400
16 50% 28,558

30% 47,555
- 16,944

80% 16,944
32 50% 16,944

30% 17,282
torus - 27,056

80% 27,056
16 50% 27,056

30% 27,215
1,762 packets scheduled
3 inputs, 3 outputs

5.3.1 Benchmarks d695, g1023, f2126, q12710, and t512505

For system d695, the placement shown in Figure 5.3 is used in the experiments. The
test requirements for the NoC-based testing of system d695 were presented in Table 5.1.
The number of pins considered in the system interface is given in Table 4.2 and resulted
in three input and three output ports, as shown in Figure 5.3.

Table 5.2 presents the resulting test costs for the benchmark d695 considering both
the grid and the torus topologies. The first column indicates the network topology, the
second column indicates the channel bitwidth, and the third column indicates the system
power limit. The resulting testing time is presented in the fourth column. The power
consumption limit is defined as explained in Chapter 4, that is, as a percentage of the sum
of the power consumption of all cores.

The results of Table 5.2 show that the test time depends on the network topology
and on the width of the communication channels. The network topology defines the
number and length of the paths from/to the tester to/from the cores. The single difference
between the grid and the torus topologies is the connection between the peripheral cores
that exists in the second one. This connection provides shorter paths within the network,
thus reducing the test time. The relation between the channel width and the test time is
sub-linear. This happens because, for some cores, as shown in Table 5.1, the number of
test pins is such that the number of flits is the same for both channel widths. Moreover,
the pipeline provided by the network structure reduces the impact of the increase of the
number of flits per packet.

Figure 5.7 shows the placement of benchmark g1023 in a 3x5 network, as well as
the input and output ports reused during test. The test requirements of the system are
summarized in Table 5.3 and the test solutions for this system are presented in Table 5.4.

109

Figure 5.7: System g1023 implemented in a 4x4 NoC

Table 5.3: Test packets for system g1023
Core # of Flits/Pack. Flits/Pack.

packets 32-bit 16-bit
1 268 43 86
2 148 84 84
3 114 53 53
4 536 54 54
5 102 32 32
6 72 47 47
7 68 47 47
8 62 52 52
9 136 64 64
10 58 13 26
11 30 9 18
12 32 13 13
13 1,024 2 4
14 2,048 5 9

110

Table 5.4: Test results for benchmark g1023
Topology Channel width Power Test Time

(bits) Limit (cycles)
- 41,764

80% 41,764
32 50% 41,764

30% 42,467
grid - 51,755

80% 51,755
16 50% 51,755

30% 52,966
- 27,607

80% 27,607
32 50% 27,607

30% 27,607
torus - 35,209

80% 35,209
16 50% 35,209

30% 35,209
4,698 packets scheduled
2 inputs, 2 outputs

In this example, one can observe that the torus topology is less susceptible to the
power limit reduction, as the test time is the same for all power configurations when this
topology is used. This is probably caused by the length of the paths in this topology.
As shortest routes are available, the power consumption of the network is reduced, thus
keeping the original test parallelization.

111

Figure 5.8: System f2126 implemented in a 2x2 NoC

Table 5.5: Test packets for system f2126
Core # of Flits/Pack. Flits/Pack.

packets 32-bit 16-bit
1 668 1,000 1,000
2 844 319 638
3 206 452 452
4 206 452 452

System f2126 has a trivial placement in the NoC, as shown in Figure 5.8. The test
requirements of the system are presented in Table 5.5, and the test results are presented in
Table 5.6.

For this system, a power constraint of 50% already poses some difficulties for the test
scheduling algorithm. The power consumption of module 1 is higher than the defined
power limit, and no packet of this module can be scheduled under this power constraint.
A power limit of 62% is the minimum limit for which all packets of this system can be
scheduled. The resulting test time for this power limit for a 32-bit grid topology is, for
example, 569,595 cycles.

System q12710 has also a trivial placement in a 2x2 network. Figure 5.9 shows the
placement for this benchmark while Tables 5.7 and 5.8 present the test requirements and
results, respectively, for this system.

Figure 5.9: System q12710 implemented in a 2x2 NoC

112

Table 5.6: Test results for benchmark f2126
Topology Channel width Power Test Time

(bits) Limit (cycles)
- 565,261

80% 565,261
32 50% –1

30% –1

grid - 699,560
80% 700,202

16 50% –1

30% –1

- 565,261
80% 565,261

32 50% –1

30% –1

torus - 699,560
80% 699,560

16 50% –1

30% –1

1,924 packets scheduled
1 input, 1 output
1 668 unscheduled packets

Table 5.7: Test packets for system q12710
Core # of Flits/Pack. Flits/Pack.

packets 32-bit 16-bit
1 1,704 971 971
2 2,628 1,689 1,689
3 2,446 1,297 1,297
4 2,446 1,297 1,297

113

Table 5.8: Test results for benchmark q12710
Topology Channel width Power Test Time

(bits) Limit (cycles)
- 6,230,935

80% 6,230,935
32 50% 6,231,347

30% –1

grid - 6,230,935
80% 6,230,935

16 50% 6,231,347
30% –1

- 6,230,935
80% 6,230,935

32 50% 6,230,935
30% –1

torus - 6,230,935
80% 6,230,935

16 50% 6,230,935
30% –1

9,224 packets scheduled
1 input, 1 output
1 2628 unscheduled packets

For benchmark q12710, the power limit of 30% is higher than the power consumption
of core 2 during test, preventing the scheduling of its packets. A minimum power limit of
45% is required to allow the scheduling of all packets of this benchmark. The test time
for a 32-bit grid topology for the power limit of 45% is 6,231,347 cycles.

Benchmark t512505 is implemented in a 5x7 network, as shown in Figure 5.10. As
the number of input and output pins is smaller than 16, only the bidirectional interface
pins are reused during test, which results in four bidirectional ports. Table 5.9 presents
the test requirements for the NoC-based testing, and Table 5.10 presents the resulting test
times for a number of system configurations.

114

Table 5.9: Test packets for system t512505
Core # of Flits/Pack. Flits/Pack.

packets 32-bit 16-bit
1 314 389 389
2 660 104 104
3 308 904 904
4 816 740 740
5 6 10 10
6 254 154 154
7 1,216 514 514
8 2,050 1,473 1,473
9 390 530 530
10 1,576 1,264 1,264
11 376 530 530
12 84 53 53
13 136 94 94
14 556 1,225 1,225
15 302 386 386
16 740 154 154
17 160 131 131
18 306 73 73
19 158 68 68
20 154 68 68
21 484 540 540
22 466 540 540
23 1,064 1,372 1,372
24 858 1,669 1,669
25 296 190 190
26 26 4 8
27 20 2 4
28 6 1 1
29 134 5 10
30 302 302 302
31 6,740 1,550 3,100

115

Figure 5.10: System t512505 implemented in a 5x7 NoC

Table 5.10: Test results for benchmark t512505
Topology Channel width Power Test Time

(bits) Limit (cycles)
- 5,649,467

80% 5,649,467
32 50% 5,675,460

30% 7,625,872
grid - 10,625,082

80% 10,625,082
16 50% 10,672,428

30% 12,852,061
- 5,537,675

80% 5,537,675
32 50% 5,537,675

30% 7,022,727
torus - 10,611,103

80% 10,611,103
16 50% 10,611,103

30% 11,675,997
20,958 packets scheduled
1 input, 1 output, 3 bidirectional ports

116

Figure 5.11: System h953 implemented in a 2x4 NoC

Table 5.11: Test packets for system h953
Core # of Flits/Pack. Flits/Pack.

packets 32-bit 16-bit
1 682 348 348
2 18 327 327
3 78 32 32
4 98 21 21
5 220 121 121
6 364 185 185
7 130 3 5
8 610 189 189

5.3.2 Benchmark h953

Figure 5.11 shows the placement of system h953 and Table 5.11 presents the test
requirements of this system. Table 5.12 shows the test solutions found for this benchmark,
considering one input and one output interfaces with the external tester.

Module 2 in system h953 has a power consumption that exceeds the power limit of
30%. The limit of 50% is the minimum power consumption limit that assures the schedul-
ing of all packets.

5.3.3 Benchmarks u226 and d281

Benchmarks u226 and d281 contain BISTed cores. For such modules, there are only
two messages that must transit between the external tester and the core: a test enable
indication and the resulting signature.

A BISTed core is modeled in the NoC-based test planning approach as any other core
in the system. The only difference is that such a module has a very reduced number of
packets, and the packets have a payload of only one flit. In addition, the test time of the
BISTed module replaces Equation 5.6, but the same priority rules of the other cores are
followed. At last, the single response packet of this block is ready to be sent only after
the BIST test is complete. All other steps of the algorithm are performed with no change.

Again, to model a core with more than one test (BISTed or external), the same pro-
cedure defined in Section 4.7.3 can be used. One can define a virtual core with the same
location of the actual module, but with different test packets.

The placement of benchmark u226 in a 3x3 network is shown in Figure 5.12. Ta-

117

Table 5.12: Test results for benchmark h953
Topology Channel width Power Test Time

(bits) Limit (cycles)
- 231,278

80% 231,278
32 50% 231,556

30% – 1

grid - 231,407
80% 231,407

16 50% 231,685
30% – 1

- 231,278
80% 231,278

32 50% 231,278
30% – 1

torus - 231,407
80% 231,407

16 50% 231,407
30% – 1

2,200 packets scheduled
1 input, 1 output
1 18 unscheduled packets

Figure 5.12: System u226 implemented in a 3x3 NoC

118

Table 5.13: Test packets for system u226
Core # of Flits/Pack. Flits/Pack.

packets 32-bit 16-bit
1 2 1 1
2 2 1 1
3 2 1 1
4 5,336 1 2
5 5,336 1 2
6 5,336 1 2
7 152 52 104
8 2 1 1
9 30 1 2

Figure 5.13: System d281 implemented in a 2x4 NoC

ble 5.13 presents the test requirements of this system, and Table 5.14 presents the test
solutions considering one input and one output ports.

System u226 also shows an incomplete test scheduling due to the power limit of 30%.
All unscheduled packets belong to Module 7. However, in this case, the power consump-
tion of the core is not higher than the system limit, but it is very close to it. Therefore,
the consumption of any path used to access this core added to the core consumption will
result in a power consumption higher than the established limit. A complete test schedule
can be defined for this system for a power limit as low as 35%.

The implementation of the benchmark d281 in a 2x4 network is shown in Figure 5.13.
The number of test packets per core for each test, as well as the other test requirements

of this system are shown in Table 5.15. In the table, the virtual cores that implement the
second test of some modules are indicated by thea suffix. For example, module 1a is
the BIST testing of module 1, that already contains some test packets implementing the
external testing.

Table 5.16 presents the resulting test costs for the benchmark d281.

119

Table 5.14: Test results for benchmark u226
Topology Channel width Power Test Time

(bits) Limit (cycles)
- 1,392,151

80% 1,419,467
32 50% 2,782,770

30% –1

grid - 1,404,116
80% 1,426,351

16 50% 2,786,724
30% –1

- 1,392,148
80% 1,394,079

32 50% 1,410,127
30% –1

torus - 1,404,112
80% 1,404,112

16 50% 1,414,873
30% –1

16,186 packets scheduled
1 input, 1 output
1 152 unscheduled packets

Table 5.15: Test packets for system d281
Core # of Flits/Pack. Flits/Pack.

packets 32-bit 16-bit
1 52 2 4
1a 2 1 1
2 316 8 15
2a 2 1 1
3 192 7 13
3a 2 1 1
4 180 8 8
4a 2 1 1
5 236 32 32
5a 2 1 1
6 160 9 9
6a 2 1 1
7 2 1 1
8 116 9 9
8a 2 1 1

120

Table 5.16: Test results for benchmark d281
Topology Channel width Power Test Time

(bits) Limit (cycles)
- 9,024

80% 9,024
32 50% 9,024

30% 9,028
grid - 10,769

80% 10,769
16 50% 10,769

30% 10,772
- 9,029

80% 9,029
32 50% 9,029

30% 9,029
torus - 10,764

80% 10,764
16 50% 10,764

30% 10,764
1,268 packets scheduled
1 input, 2 output ports

121

Figure 5.14: System p22810 implemented in a 4x6 NoC

Figure 5.15: System p34392 implemented in a 2x3 NoC

5.3.4 Benchmarks p22810, p34392, p93791, and a586710

Modules embedded into super-cores are also modeled as virtual cores located in the
same router of the corresponding super-core, assuming that one can access the lower-level
core interface through the wrapper of the higher-level block.

System p22810 implemented in a 4x6 NoC is shown in Figure 5.14, where only the
super cores are associated to the network routers. Table 5.17 presents the test requirements
of the cores in this system. The second column in this table indicates which level of the
system hierarchy each core is located in. System-level testing is modeled as another core,
indicated as Core 0 in Figure 5.14, and it contains two tests implemented by Module 0.

Table 5.18 presents the resulting test costs for the benchmark p22810. As the system
has only 10 input pins, only the bidirectional and output pins were reused during test,
resulting in 3 bidirectional and 2 output ports.

The placement defined for the benchmark p34392 in a 2x3 network is shown in Fig-
ure 5.15 while Tables 5.19 and 5.20 present the test requirements of the cores and the
resulting test solution found for this system, respectively.

Figure 5.16 shows the placement of system p93791 in a 3x5 NoC. Table 5.21 sum-
marizes the test requirements of the embedded modules, and Table 5.22 presents the test
solutions found with the proposed test planning tool.

122

Table 5.17: Test packets for system p22810
Core # of Flits/Pack. Flits/Pack.

Level packets 32-bit 16-bit
0 0 198 6 2
1 1 1,570 130 130
2 2 24,648 3 6
3 2 6,216 3 6
4 2 444 2 4
5 1 404 214 428
6 2 1,424 3 5
7 2 5,264 3 5
8 2 5,216 2 3
9 1 350 123 246
10 1 76 99 99
11 1 188 88 88
12 1 186 82 82
13 1 2 104 104
14 1 216 78 78
15 1 74 80 80
16 1 16 109 109
17 1 50 89 89
18 1 1,288 68 68
19 1 116 43 43
20 1 248 77 77
21 1 930 186 186
22 1 118 77 77
23 1 80 115 115
24 1 54 103 103
25 1 430 181 362
26 1 362 800 1,600
27 1 4 34 34
28 1 52 100 100

Figure 5.16: System p93791 implemented in a 3x5 NoC

123

Table 5.18: Test results for benchmark p22810
Topology Channel width Power Test Time

(bits) Limit (cycles)
- 371,814

80% 371,814
32 50% 371,814

30% 375,928
grid - 499,101

80% 499,101
16 50% 499,101

30% 509,908
- 364,507

80% 364,507
32 50% 364,507

30% 364,507
torus - 490,780

30% 490,780
16 50% 490,780

30% 490,780
50,026 packets scheduled
1 input, 2 outputs, and 2 bidirectional ports

Table 5.19: Test packets for system p34392
Core # of Flits/Pack. Flits/Pack.

Level packets 32-bit 16-bit
0 0 54 5 10
1 1 420 806 806
2 1 1,028 570 1,140
3 2 6,216 2 3
4 2 12,360 2 3
5 2 24,672 2 4
6 2 3,930 1 1
7 2 1,024 1 1
8 2 19,860 2 3
9 2 456 2 3
10 1 908 519 519
11 2 18,570 1 2
12 2 346 1 1
13 2 5,120 1 1
14 2 864 1 1
15 2 8,880 1 2
16 2 256 1 1
17 2 1,572 1 1
18 1 1,490 729 729
19 2 24,672 2 4

124

Table 5.20: Test results for benchmark p34392
Topology Channel width Power Test Time

(bits) Limit (cycles)
- 764,570

80% 764,570
32 50% 834,060

30% 1,117,038
grid - 977,845

80% 977,845
16 50% 1,083,348

30% 1,375,612
- 764,570

80% 764,570
32 50% 764,570

30% 755,872
torus - 977,845

80% 977,845
16 50% 977,845

30% 996,834
132,644 packets scheduled
2 inputs, 2 outputs

Figure 5.17: System a586710 implemented in a 2x2 NoC

System a586710 placement in a 2x2 network is shown in Figure 5.3.4. Table 5.23
summarizes the test requirements of this system.

Benchmark a586710 has 4,283,788 packets to be scheduled and the scheduling algo-
rithm could not complete in a 1.3 GHz AMD processor with 512Mbytes of RAM memory.

We can observe in the previous results that the higher the number of packets to be
scheduled, the better is the gain of the torus topology over the grid one. Indeed, as the
average length of the access paths within the torus network is smaller than for in the grid
topology, the average test time of each core is also smaller for the former. Furthermore,
the torus topology is less susceptible to the power constraints, also because of the average
length of the internal paths. On the other hand, the assumption that the network channels
have the same length (when calculating the power consumption of the network during
test) may be less accurate to the torus topology than to the grid one, because of the con-

125

Table 5.21: Test packets for system p93791
Core # of Flits/Pack. Flits/Pack.

Level packets 32-bit 16-bit
0 0 0 0 0
1 1 88 336 672
2 2 1,296 2 3
3 2 354 1 2
4 1 22 10 20
5 1 12,254 6 11
6 1 436 1,042 2,084
7 2 354 1 2
8 2 384 2 3
9 2 2,328 9 17
10 1 374 82 82
11 1 782 186 372
12 1 388 438 876
13 1 388 438 876
14 1 516 300 600
15 2 576 2 3
16 2 792 5 9
17 1 420 200 400
18 2 84 3 5
19 1 832 362 724
20 1 468 350 700
21 2 84 3 5
22 2 84 2 3
23 1 1,832 136 272
24 2 6,144 1 2
25 2 5,376 1 2
26 2 192 2 3
27 1 344 378 756
28 2 792 4 7
29 1 384 4 7
30 2 384 2 3
31 2 408 5 10
32 2 6,168 9 17

126

Table 5.22: Test results for benchmark p93791
Topology Channel width Power Test Time

(bits) Limit (cycles)
- 449,422

80% 449,422
32 50% 450,439

30% 493,818
grid - 830,107

80% 830,107
16 50% 832,949

30% 860,201
- 412,829

80% 412,829
32 50% 412,829

30% 412,829
torus - 778,113

80% 778,113
16 50% 778,113

30% 778,113
46,058 packets scheduled
3 inputs, 2 outputs, and 2 bidirectional ports

Table 5.23: Test packets for system a586710
Core # of Flits/Pack. Flits/Pack.

Level packets 32-bit 16-bit
0 0 0 0 0
1 1 5,890 2,155 2,155
2 2 2 11 21
3 2 2 1 1
4 2 362,280 1 1
5 1 5,890 2,626 2,626
6 1 80,862 2 3
7 1 3,828,866 8 15

127

Table 5.24: d695 test time for different placements in the network
Exp. Topology Channel width Test Time

(bits) (cycles)
32 29,945

d695_place1 grid 16 44,184
32 24,830

d695_place1 torus 16 40,947
32 24,031

d695_place2 grid 16 40,130
32 25,238

d695_place2 torus 16 39,959
1,762 packets scheduled

nections among the boundary routers present in the torus design. A more accurate model
is necessary to confirm that the torus topology actually consumes less power during test.

5.4 System Configurations and Resulting Test Time

Some additional experimental results are presented in this section. Such experiments
aim at evaluating the impact of a number of system configurations on the system test time.
The following situations will be considered: the placement of the cores in the network,
the number of interfaces with the tester, and the test under power constraints.

5.4.1 Placement of the Cores in the Network

Different placements mean different distances (number of routers) between each core
under test and the external tester. Table 5.24 presents the variation in the test time of
system d695 when different placements of the cores in the network are considered. Ex-
perimentd695_place1refers to the system shown in Figure 5.18(a), andd695_place2
refers to the configuration shown in Figure 5.18(b). The same interfaces (at cores 3, 6, 4,
and 7) with the tester are used in both cases. Again, no power constraint is assumed.

One can observe that in general, the placement has a small influence on the system test
time. In most cases, the difference in the test time is smaller than 10%. The only exception
is for the 32-bit grid topology, with a difference of 20% between the two placements.

5.4.2 Number of Interfaces with the Tester

Figure 5.19 shows the variation of the test time for the system of Figure 5.3, as the
number of interfaces with the tester increases. For this experiment, only uni-directional
ports were considered.

These results show that the test time is very dependent on the number of input and
output interfaces with the tester, since this number defines the amount of initial parallel
paths that can be used during test. As the number of interfaces increases, test time de-
creases. This information can be further explored by the system integrator to reduce the
system test time. For example, extra interfaces can be created, in addition to the reuse of
the functional ports.

Table 5.25 presents the system test time when the interfaces of system t512505 are
modified. This benchmark has 15 input, 13 output, and 132 bidirectional pins. In Ta-

128

(a) d695_place1

(b) d695_place2

Figure 5.18: Different placements for system d695 in a 3x4 network

(a) 32-bit NoC (b) 16-bit NoC

Figure 5.19: d695 test time variation with the number of interfaces with the tester

129

ble 5.25, the first column indicates the configuration of the test interfaces in terms of
number of input, output, and bidirectional ports of 32 bits distributed among the func-
tional pins defined in the SoC description.

Table 5.25: Test time of t512505 for different interface configurations
Configuration Topology Channel width Test Time
in/out/bidir. (bits) (cycles)

32 6,521,410
grid 16 11,185,613

3/2/0 32 5,569,788
torus 16 10,486,612

32 5,649,467
grid 16 10,625,082

1/1/3 32 5,537,675
torus 16 10,611,103

32 6,175,913
grid 16 11,085,464

0/0/4 32 6,198,855
torus 16 11,001,571

32 5,842,893
grid 16 11,405,558

2/2/0 32 6,582,433
torus 16 10,987,061

20,958 packets, 5x7 topology

Analyzing the first two configurations of Table 5.25, one can notice a reduction in the
test time when more ports are considered. Indeed, although the total number of ports is 5
for both cases, the actual number of physical connections with the tester in each direction
is increased in the second configuration, thus increasing the number of possible access
paths to each module. On the other hand, the use of four bidirectional ports is worse than
the use of one unidirectional and three bidirectional interfaces, since the input packets will
initially occupy all ports and generate a bottleneck in the output paths. However, these
results confirm that the number of interfaces actually defines the system test time. One
can observe, for instance, that it is usually better to have a higher number of interfaces in
total than to have less unidirectional ports, as the last configuration exemplifies.

5.4.3 Network Power Profile

Considering the high level of test parallelization achieved by the network reuse, the
system power constraint is another variable that may affect the system test time. The
following results show the variation of the system test time according to two parameters:
the maximum test power consumption allowed for the system, and the number of sys-
tem interfaces with the tester. The power limit varies from 10% to 50% of the sum of
the power consumption of all cores in the system during test. The number of interfaces
varies from two (one input and one output) to eight (four inputs and four outputs), and a
communication channel of 32 bits is used.

The core and wrapper consumption per vector per cycle are considered as the peak
consumption among all vectors.

In addition, two possibilities of power consumption for the network structures were

130

Table 5.26: Test times for d695: cores consumption>> routers consumption
Inputs/ No power 50% 30% 20% 10%
Outputs Limit

1/1 46,648 46,648 46,815 -1 -2

(0%) (0.36%)
2/2 26,012 27,087 28,569 -1 -2

(4.13%) (9.8%)
3/3 20,753 20,733 32,159 -1 -2

(-0.096%) (54.9%)
4/4 14,785 17,623 28,787 -1 -2

(19.2%) (94.7%)
1 24 unscheduled packets out of 1762
2 964 unscheduled packets out of 1762

Table 5.27: Test times for g1023: cores consumption>> routers consumption
Inputs/ No power 50% 30% 20% 10%
Outputs Limit

1/1 52,145 52,145 52,296 -1 -2

(0%) (0.29%)
2/2 31,898 31,547 33,032 -1 -2

(-1.1%) (3.56%)
3/3 22,648 24,869 25,873 -1 -2

(9.8%) (14.2%)
4/4 18,851 19,776 31,488 -1 -2

(4.9%) (67%)
1 58 unscheduled packets out of 4698
2 650 unscheduled packets out of 4698

considered in the experimental setup. In the first situation, the core consumption is as-
sumed to be one order of magnitude higher than the consumption of a SOCIN router, and
two orders higher than the channel consumption for the same network. This is the model
used in all experiments of Section 5.3.

Tables 5.26, 5.27, and 5.28 show the variation of the system test time for this first ex-
periment for benchmarks d695, g1023, and p22810, respectively. For the cases where all
packets were scheduled, the difference from the original test time is given as a percentage.

From those results, the following conclusions can be drawn:

- power constraints can change the original order of the scheduled cores, leading the
scheduling heuristic to a better solution in some particular cases. This is the case,
for example, of system g1023 when 4 interfaces are used (a reduction of 1.1% in
test time). As detailed in Section 5.1, the packets are firstly sorted and selected in
a certain order to be scheduled. If a packet is not scheduled because of the test
power limit, it is set to be scheduled later, thus changing the original order of the
unscheduled cores list. For some cases, the new scheduling intensifies the pipeline
in the core internal scan chains(more vectors are serially delivered), thus reducing

131

Table 5.28: Test times for p22810: cores consumption>> routers consumption
Inputs/ No power 50% 30% 20% 10%
Outputs Limit

1/1 549,350549,350 549,389 549,569 -1

(0%) (0.0071%) (0.04%)
2/2 315,708315,708 357,239 390,156 -1

(0%) (13.2%) (23.6%)
3/3 222,432224,411 222,338 349,374 -1

(0.9%) (-0.042%) (57%)
4/4 170,999177,330 243,031 331,777 -2

(3.7%) (42.1%) (94%)
1 An average of 89% of the packets not scheduled
2 1116 unscheduled packets out of 6814

the core test time. Indeed, as the network consumption is much smaller than the
core consumption, it is better to schedule another packet for the same core than
schedule a packet for another core that is not yet present in the time slot;

- very tight power constraints may either increase the test time or prevent the scheduling
of some test packets. In the first case, the core consumption is within the system lim-
its, but the core and network consumption together exceed the power limit. Thus,
the scheduling of some packets must be delayed to time slots with less packets.
One can observe this situation, for example, when the power limit is 30% for sys-
tems d695 and g1023, and 20% for system p22810. In the second case, the power
consumption of some cores is greater than the system power limit. Hence, the test
packets of those cores can not be scheduled, even if they are the single packet in the
time slot. It means that in this case, the consumption of the TAM is not a problem,
but the consumption of the core itself is. For systems d695 and g1023, a power limit
below or equal to 20% prevents the scheduling of all packets. For a larger system,
such as p22810, this happens only for a power limit of 10%.

- the more interfaces with the tester, the higher the impact of the power constraints on
the system test time. One can observe that the increase in the test time in the last
two lines of Tables 5.26 and 5.27 is higher than for the first two lines. For system
d695 and a power limit of 30%, for instance, one can notice an increase of 94.7%
in the test time for eight interfaces and only 9.8% for four interfaces. In fact, the
power limit may preclude the total usage of the network resources, thus increasing
test time. If less interfaces are available, the parallelism is already restricted and the
test time is not deeply affected;

- finally, although one can notice an increase in the test time caused by power constraints,
the network still presents a very effective trade-off in terms of pins and area over-
head and test time. One can observe that the increase in the system test time is very
small for a power limit as low as 50%. Of course, as the power limit reduces, the
system test time increases, but not in the same proportion.

The second power consumption model considered in the experiments, assumes the
consumption of the cores is in the same magnitude of the routers consumption. This

132

may be the case, for example, of systems with a large number of small embedded cores.
Tables 5.29, 5.30, and 5.31 present the test times for systems d695, g1023, and p22810,
respectively, for this second situation.

Table 5.29: Test times for d695: cores consumption≈routers consumption
Inputs/ No power 50% 30% 20% 10%
Outputs Limit

1/1 46,648 47,012 74,935 -1 -2

2/2 26,012 28,746 55,139 -1 -2

3/3 20,753 27,228 47,530 -3 -2

4/4 14,785 22,802 46,952 -3 -2
1 379 unscheduled packets out of 1762
2 An average of 25% of the packets not scheduled
3 160 unscheduled packets out of 1762

Table 5.30: Test times for g1023: cores consumption≈routers consumption
Inputs/ No power 50% 30% 20% 10%
Outputs Limit

1/1 52,145 -1 -2 -2 -2

2/2 31,898 -1 -1 -1 -2

3/3 22,648 -1 -1 -1 -2

4/4 18,851 -1 -1 -1 -2
1 An average of 90% of the packets are not scheduled
2 no packet scheduled

Table 5.31: Test times for p22810: cores consumption≈routers consumption
Inputs/ No power 50% 30% 20% 10%
Outputs Limit

1/1 549,350 -1 -1 -2 -3

2/2 315,708 -1 -1 -2 -3

3/3 222,432 -1 -1 -2 -3

4/4 170,999 -1 -1 -2 -3
1 An average of 5% of the packets are not scheduled
2 An average of 14% of the packets are not scheduled
3 An average of 56% of the packets are not scheduled

The conclusions drawn from the first experiment (Tables 5.26 to 5.28) are still valid.
However, one can observe that the test scheduling is totally compromised, as the ma-
jority of the test packets could not be scheduled for larger systems such as g1023 and
p22810. In this case, the power consumption of the network structure becomes clear. Al-
though the number of active cores per time slot in the schedule is limited by the system
interfaces, the number of active network routers and channels may be considerably large,

133

since several packets are being transmitted at different points in the communication plat-
form. For instance, the average number of cores per slot in the schedule with no power
constraint in system g1023 with 6 interfaces is 3.4, while the average number of pack-
ets per slot being transmitted through routers and channels is 35.9 (from the 48 possible
ones). When the power consumption is limited to 30%, for the same number of inputs
and outputs, the traffic in the network through routers and channels reduces to 1.5 for the
same example. Unlike the results of Tables 5.27 and 5.28, when the power limit is 50%
in Tables 5.30 and 5.31 (systems g1023 and p22810 for this second power consumption
model), the consumption of the cores is not greater than the system limit, but it is very
close to it. Therefore, any network resource used to transmit a packet will exceed the
system power limit. This means that only the packets of the cores that are at the system
interface are scheduled, since they are the ones that require less network resources to be
tested.

Table 5.32 presents the results for the system p93791 considering 3 input, 2 output,
and 2 bi-directional ports in a 32-bit SOCIN network. For this number of interfaces, three
possible power consumption models for the embedded cores are considered. In the first
case, the consumption of all cores is one order of magnitude higher than the consumption
of the network routers. In the second case, the consumption of all cores is similar to
the consumption of the routers. Then, a mixed situation is considered, that is, some
cores present higher power consumption, while smaller cores have a power consumption
similar to the routers. A hierarchical description of the system is assumed, that is, cores
embedded into other cores are not directly connected to a network router and have their
test vectors transmitted through the wrapper of their associated super core.

Table 5.32: Test times for p93791: 5 inputs and 4 outputs
Power No power 50% 30% 20%
model Limit

cores>>routers435,787434,820 445,845 -*
cores≈routers 435,787478.535 778,655 -*

mixed 435,787439,965 564,030 -*
* 436 packets unscheduled out of 46058 packets

One can observe from Table 5.32 that the increase in the system test time in the first
power model (cores>>routers) is of only 2.3% for a power limit as low as 30% of the
sum of the power consumption of all cores in the system. When the consumption of all
cores is reduced (cores≈routers), the increase in the test time is higher, 78.7%. However,
it is very likely that in a real system, the power consumption of the cores has a mixed
distribution, as presented in the third line of Table 5.32. For this case, the system test
time is practically the same for a system with no power limit and a system with a power
limit of 50%. For a power limit reduced to 30%, the increase in the system test time is of
29.4%.

134

135

6 DISCUSSION

In this chapter, the proposed approaches are compared to each other and to other test
approaches that have used the ITC’02 SoC Test benchmarks as well.

6.1 Reuse-based versus NoC-based Test Planning

Table 6.1 presents some comparative results between the two proposed test planning
methods. As the NoC-based technique only optimizes the system test time, this is the
main parameter used for comparison. It is assumed, however, that the area overhead of
the NoC-based test is of the same magnitude or smaller than the area overhead generated
by the ReBaTe tool. As for the number of extra pins in the system interface, the NoC-
based method presents no pin overhead, while the number of extra pins for the ReBaTe
can be quite variable. Therefore, it is possible to compare the test time of the NoC-based
test with the test time of the cheapest solution found by the ReBaTe tool. Hence, for
comparable costs (smallest pin overhead and almost the same area overhead), one can
evaluate which method presents the best test time.

For the ReBaTe tool (Chapter 4), the solutions with the smallest number of pins for
the combinations of pins, time, and area optimization are considered in all cases, with or
without power consumption control. For the NoCbaTe method (Chapter 5), the solutions
for the 32-bit and 16-bit grid topology are used. In Table 6.1, the smallest test times
among the three possibilities are presented in bold. The comparison is not presented for
benchmark a586710, since there is no available results for this system using the NoCbaTe
tool.

It is interesting to observe in Table 6.1 that each method generates the best test for
half of the cases. Thus, from the 29 system configurations compared, 15 have the best test
time generated by the NoCbaTe test planning, while the remaining 14 cases have the best
test time generated by the ReBaTe tool. Furthermore, it is interesting to notice that one
method can be better than the other depending on the configuration of the system, rather
than on the system itself. For example, for system p34392 the NoC-based test gives the
best test time for a power limit as low as 50%. For the power limit of 30%, the ReBaTe
method gives the best result. However, it is important to have in mind the pin overhead
generated by the ReBaTe approach. For system p34392, this overhead is of 49 pins, for
a gain of only 7% in the test time. Systems d695, f2126, and d281 present the same
situation.

One can argue that if the same number of extra pins generated by the ReBaTe approach
is added to the system interface to be used by the NoC-based test, better test times can
be achieved by the later method. This is true for some cases. For example, let us analyze
the benchmark p34392. With 49 extra pins, one can add one port of 32 bits to the 32-bit

136

Table 6.1: Comparative results between proposed approaches
Benchmark Power ReBaTe tool NoCbaTe tool

limit Test Pins Test time 32-bit 16-bit
- 3 37,089 17,334 27,763

80% 3 37,089 16,921 27,400
d695 50% 1 31,021 17,037 28,558

30% 94 25,147 27,849 47,555
- 3 157,120 41,764 51,755

80% 3 157,120 41,764 51,755
g1023 50% 4 39,844 41,764 51,755

30% 17 48,501 42,467 52,966
- 17 566,105 565,261 699,560

80% 18 518,858 565,261 700,202
f2126 62% 36 470,693 569,595 704,213

- 0 4,645,404 6,230,935 6,230,935
80% 0 6,236,421 6,230,935 6,230,935

q12710 50% 1 3,313,904 6,231,347 6,231,347
- 13 7,485,064 5,649,467 10,625,082

80% 14 6,092,953 5,649,467 10,625,082
t512505 50% 19 6,267,593 5,675,460 10,672,428

30% 8 14,278,685 7,625,872 12,852,061
- 2 223,139 231,278 231,407

h953 80% 3 148,966 231,278 231,407
50% 3 218,391 231,556 231,685

- 3 1,363,968 1,392,151 1,404,116
80% 3 1,363,968 1,419,467 1,426,351

u226 50% 3 1,460,140 2,782,770 2,786,724
41% 3 1,363,968 3,898,706 3,904,043

- 2 30,784 9,024 10,769
80% 2 30,784 9,024 10,769

d281 50% 6 12,320 9,024 10,769
30% 26 8,132 9,028 10,772

- 76 281,626 371,814 499,101
80% 76 281,626 371,814 499,101

p22810 50% 67 385,389 371,814 499,101
30% 78 290,398 375,928 509,908

- 2 1,737,079 764,570 977,845
80% 2 1,737,079 764,570 977,845

p34392 50% 2 1,802,461 834,060 1,083,348
30% 49 1,368,792 1,117,038 1,375,612

- 77 530,667 449,422 830,107
80% 130 523,045 449,422 830,107

p93791 50% 100 586,738 450,439 832,949
30% 11 1,615,500 493,818 860,201

1ReBaTe optimization factors: pins, test time, and area
2NoC topology: grid

137

NoC, or at most two ports of 16 bits to the 16-bit NoC. Let us assume an input port is
added to the system in the 32-bit NoC, and one input and one output port are added in
the 16-bit NoC. The resulting test time is, respectively, 1,117,038 and 1,375,937 cycles.
Hence, for this case, the pin overhead would generate a better solution only for the 32-bit
NoC. For system q12710, on the other hand, the NoC-based test time is 88% higher than
the ReBaTe solution. However, the pin overhead of the ReBaTe method is only 1, which
will not improve the results of the NoC-based approach.

Another conclusion from Table 6.1 is that the ReBaTe approach usually generates the
best test times for smaller power limits (systems q12710, u226, p34392, for instance)
whereas the NoCBaTe method is more efficient for configurations with higher power lim-
its. Moreover, the gain of the NoC-based approach, mainly for higher power limits, is
usually more significant than the gain of the ReBaTe tool, as it happens for systems d695
and d281, for example.

The execution time of the RebaTe tool depends on the number of cores of the system.
For the studied benchmarks, the average execution time is 9.3 minutes in a 1.3GHz AMD
processor with 512MBytes of RAM memory. Benchmarks q12710 and g1023 require,
respectively, the smallest and the largest execution time. As for the NoCBaTe tool, the
execution time depends on the number of test packets, but it is much smaller than the
other method. System p34392 is the most expensive one, requiring 1.81 seconds to find a
solution.

Finally, the results of Table 6.1 demonstrate how the proposed test planning methods
can be included in the beginning of the system design cycle. Indeed, both methods can be
applied to a project as soon as the system functionality and the initial set of cores is cho-
sen. With the basic information about the cores the system integrator can define a possible
floorplanning for the chip and use the ReBaTe tool to check the possible test costs for a
core-to-core connection model. Similarly, the NoCBaTe tool can be executed assuming a
communication platform is used. Thus, for example, if the designer is choosing between
a bus-based or a NoC-based system, the test costs can be used as another parameter in the
evaluation of both solutions, even before the system synthesis. Moreover, the designer
can also verify how different versions of the same functionality impact the system test
or inform a core provider how to improve the test of a block according to the system
constraints.

6.2 Reuse-based versus Bus-based Test Planning

Some recent works have been using the ITC’02 benchmarks to evaluate different test
planning methods. However, the solutions proposed by those works is usually based on
the insertion of test buses. In fact, there is no other recent work that defines a reuse-based
TAM and uses the mentioned benchmarks as case studies, to the best knowledge of this
author.

Despite the distinct nature of the bus-based test planning approaches compared to
the reuse-based ones, and considering the several assumptions made over the benchmark
descriptions for its use in the proposed test planning tools, one can still compare, at least
partially, the reuse-based techniques described in this work with the most recent literature.

The following methods will be used in this comparison:

- [1] refers to (IYENGAR; CHAKRABARTY; MARINISSEN, 2002b), where a method
for wrapper/TAM co-optimization considering variable-width test buses is presented.
The problem is modeled as a rectangle packing or two-dimensional packing. Firstly,

138

the wrapper of each core in the system is optimized to find the best configuration
between the core’s test data requirements and its TAM width. Then, a test schedule
is determined so that an effective amount of TAM width is assigned to each core.
At last, the wrapper corresponding to the TAM width assigned to the core is chosen.
The results for four benchmarks are presented in that work: d695, p22810, p34392,
and p93791.

- [2] refers to (HUANG et al., 2002). In that work, the wrapper and TAM co-optimization
under power constraints is modeled as a restricted 3-D bin packing problem. The
method allows, the selection of optimal wrapper width for each core, the allocation
of SOC pins to cores, and the scheduling of core tests to achieve minimal test times.

- [3] refers to the work of Goel and Marinissen (GOEL; MARINISSEN, 2002c), where
test architectures are defined for a SoC in such a way that the required ATE vector
memory depth and the system test time are minimized. The algorithm proposed
in that work efficiently determines the number of of TAMs and their widths, the
assignment of modules to TAMs, and the wrapper design per module. The results
for all twelve benchmarks are presented for a number of TAM architectures. That
work also defines an equation to evaluate the lower bound for the test time of an
SoC for bus-based TAMs with fixed-width (independent of the architecture).

- [4] refers to a test scheduling method based on the simulated annealing algorithm pro-
posed in (ZOU et al., 2003). The test scheduling problem is also formulated as
a two-dimensional bin packing problem (rectangle packing) and a data structure
called a sequence pair is used to represent the placement of the rectangles. Then,
simulated annealing is used to find the optimal test schedule by altering an initial se-
quence pair and changing the width of the core wrapper. The results for all ITC’02
benchmarks are provided in that work.

Table 6.2 presents the comparative results for the ITC’02 benchmarks. For the bus-
based methods, the solutions that use a total TAM bitwidth of 32 pins are presented. The
lower bound for the test time calculated in (GOEL; MARINISSEN, 2002c) is presented
in the first column. The next four columns present the test time for each of the bus-based
method considered. The results for the ReBaTe tool are shown in column six, with the
number of extra pins for the solution informed in parenthesis. Finally, the results for the
NoC-based method are shown in the last column, for a network of 32 bits.

For the ReBaTe tool, only the solutions for pins, time, and area optimization are con-
sidered, since power-aware results are not presented for the other methods. Among the
solutions found by the tool, the ones with smaller test times and a number of extra pins
less or equal 32 were selected. From [2], the results for power unrestricted systems are
selected and from [3], the results for the Test Rail architecture with serial scheduling are
used.

The area overhead of the ReBaTe solutions is 5% for the two synthetic benchmarks
from Duke University (d695 and d281). For the remaining benchmarks, the average area
overhead is 1.3%.

From Table 6.2 the following observations can be made:

• For some systems, the comparison among the bus-based and the reuse-based meth-
ods is not possible. In the bus-based methods, the BISTed modules are not con-
sidered in the evaluation of the test time, since they aim at the configuration of the

139

Table 6.2: Comparative results with bus-based methods for W = 32

Benchmark Lower NoCbaTe
bound [3] [1] [2] [3] [4] ReBaTe 32-bit NoC

d695 20,482 23,021 42,716 21,690 41,604 16,566 41,764
(8)

g1023 15,088 –1 31,444 16,855 31,139 38,773 27,878
(21)

f2126 335,334 –1 357,109 335,334 357,088 383,427 565,261
(21)

q12710 2,222,349 –1 2,222,349 2,222,349 2,222,349 2,222,349 6,230,935
(21)

t512505 5,228, 420 –1 10,531,003 5,268,868 10,530,995 5,857,190 5,649,467
(23)

h953 119,357 –1 122,636 119,357 119,357 119,357 231,278
(21)

u2262 6,992 –1 13,416 18,663 13,333 1,363,968 1,392,151
(3)

d2812 3,926 –1 7,948 4,163 7,432 8,648 9,024
(8)

p22810 209,734 246,150 446,684 226,640 438,619 281,626 371,814
(76)

p34392 544,579 544,579 1,016,640 552,746 944,768 791,185 1,468,113
(30)

p93791 873,334 975,016 1,791,860 940,745 1,757,452 530,667 449,422
(77)

a5687102 18,947,848 –1 42,198,943 22,475,033 32,626,782 15,726,859 –1

(12)
1 result not available
2 SoCs with BISTed modules

140

cores scan chains to minimize the core test time. This is the case, for example, of
systems d281, u226, and a586710. The papers describing the bus-based methods
do not specify whether the cores that do not use scan chains are optimized. It is
assumed the test time of those modules is indeed considered.

• The bus-based methods considered in Table 6.2 fully optimize the wrapper of each
core in the system, as well as the usage of the available TAM wires. The reuse-
based methods, on the other hand, optimize the wrappers according to the available
functional connections and the available time slot in the test schedule. Moreover,
the global optimization of the system costs is the goal of the proposed methods,
rather than the total minimization of the test time alone. Despite this important
difference in objectives, one can observe that the ReBaTe tool generates test so-
lutions with a test time that is in accordance (same or smaller magnitude) to the
test times of the other methods, for a very low cost in terms of pins and area. The
time overhead of the ReBaTe tool is very high for system g1023 (157%), but is at
most 45% for the remaining benchmarks, with respect to the lower bound of the
bus-based methods. However, in two cases this overhead is negative (systems d695
and a586710). Notice that system a586710 has some BISTed cores that are not
considered in the bus-based methods. Considering the best solution found by the
bus-based approaches, this overhead is practically the same.

• As for the NoCBaTe tool, the results in terms of test time are also in accordance with
the other methods, although the time overhead is usually higher than the bus-based
lower bound. This is mainly caused by the reuse of the available system interfaces
and the definition of the test packets. Indeed, one can observe that the systems
with worse test times in the NoCBaTe tool are the ones with a reduced number of
modules that are actually connected to the network. This is the case, for example, of
systems f2126, q12710, and p34392, that have only four modules connected at the
highest level of hierarchy. System h953 has nine cores connected to the network,
but a very reduced number of input and output pins (enough for only 1 input and
1 output ports), which does not allow the usage of the network parallelism. One
can consider this example as a system with a single test bus shared among all cores.
In addition, systems d695, g1023, and p22810 have a test time that is comparable
to the results of at least one bus-based method, whereas system p93701 presents a
gain in the test time of 48% over the bus-based lower bound.

• As mentioned in Chapter 4, the solutions provided by the ReBaTe method strongly
depend on the system characteristics, such as the size of the cores and the chip
placement. Therefore, the solution devised for the actual description of the ITC’02
benchmarks can be different (better or worse) from the ones presented in Table 6.2.
However, from the comparative results presented for system u226 in Chapter 4, one
can expect that better results can be achieved by this method.

• The test time given by the NoCbaTe approach is usually higher, but in the same
order of magnitude of the bus-based methods. However, one must consider that
the NoC-based method implies no pins and a minimal area overhead, and presents
no further synthesis efforts besides the wrappers modifications. Hence, for such a
low-cost technique, the test time can be considered very competitive. Again, for the
actual system, a different number of interfaces with the tester can be considered,
which can improve the presented results.

141

6.3 Limitations of the Proposed Methods

From the results presented in Sections 6.1 and 6.2, some limitations of the proposed
methods can be identified:

• for the ReBaTe tool, the search space is defined by a heuristic that establishes a new
test time limit for which a TAM is devised. The use of a partial solution to define
the next test time is used in the experiments presented in this text. However, for
some systems, another heuristic led to a different design space which resulted in
better results. Thus, the study of other heuristics for the definition of the test time
limit and to avoid the local minima is required. Moreover, the execution time of this
method is also defined by this heuristic, which may be a problem for larger systems.

• In general, the reuse of the system resources is the main advantage and the main
disadvantage of the proposed solutions. Although the RebaTe technique is capable
of inserting new resources in the system when necessary, this option is avoided as
much as possible to reduce area and pins costs, thus imposing a stronger penalty in
the system test time. Similarly, for the NoC-based method, the test time is defined
for a fixed number of interfaces, defined by the system application. Thus, the search
space is quite reduced and it is up to the designer to insert other interfaces and
generate new solutions.

• The optimization of the wrapper of each module is not applied in the proposed tech-
niques. However, this procedure is an important point for the test time minimization
of the bus-based methods, and does not imply any modification or overhead at sys-
tem level. Therefore, the application of such a mechanism for the minimization of
the core test time before optimizing the system aspects can improve the results in
both, the ReBaTe and the NoCBaTe tools.

• For the NoC-based test, the definition of the test packet in conjunction to the wrap-
per optimization can improve even further the system test time. For example, the
total capacity of the channel is not always used in the current test packet model,
since each bit of the core scan chains must be carried by subsequent flits in the
test packet. One can also consider the impact of carrying more than one vector per
packet, for instance.

• Additionally, it is important to consider system interfaces with more or less pins
than the communication channel of the network, so that all system pins can be
reused. Moreover, the possibility of inclusion of extra pins should also be consid-
ered by the NoCBaTe tool. In this case, the location and number of extra pins must
be also devised by the tool.

• At-speed test is not directly addressed in this work, and should be considered in
both techniques. Similarly, the test of the interconnections is not considered, under
the assumption that the reuse of the available connections can only simplify the test
of these structures. However, this issue must also be evaluated in more detail, as
well as the test of the on-chip network before its reuse.

Overall, the proposed methods can be used to estimate the system test costs in the
first steps of the system design. The choice for one or another method can thus be based
on the system constraints and characteristics, rather than only on the core requirements.

142

Although the main goal of this work was to find a test solution with a good trade-off
among the several test and synthesis costs, the test time of the solutions devised by both
methods is comparable to the results of the most recent bus-based techniques, whose main
goal is to minimize this variable only. Despite the positive results presented in this thesis,
some improvements in the proposed techniques should still be considered.

143

7 FINAL REMARKS

This thesis presented two innovative approaches for the test planning of core-based
systems. Considering the recent advances of the electronic design with respect to the use
of pre-designed blocks as cores or platforms, the main problems related to the test of the
new complex systems were described in three levels: the core test, the interconnect test,
and the system-level test. Then, a number of solutions for some of these problems were
discussed. From the studied solutions, it was possible to identify that most techniques
aim at efficiently define a test access mechanism to each embedded core, and, based on
this mechanism, define an efficient test schedule. However, the system-level aspects of
the test and its inclusion in the earlier design steps had not been considered yet. Hence,
the optimization of the test costs together with the system synthesis was defined as the
main goal of this work. Responding to this goal, two test planning methods were pro-
posed to help the designer to estimate the test costs of the system as early as possible. In
addition, both techniques rely on the reuse of the system resources during test as a means
of reducing the system test costs.

The first proposed method was presented in Chapter 4 and is based on the definition of
multiple TAMs inside the chip and on a fine-grained search algorithm for the exploration
of the design space. The multi-TAM model considers the reuse of functional connections
as well as other access mechanisms, such as partial test buses, core transparency modes,
and other bypass modes. The test schedule is defined in conjunction with the access
mechanism so that good trade-offs among the costs of pins, area, and test time can be
sought. Furthermore, system power constraints can also be considered for the definition
of the test solution. Experimental results have shown that different trade-offs can be
achieved for a variety of system constraints. They have also shown that the reuse can lead
to a very cost-effective test solution, even when several test cost factors are optimized.
On the other hand, the proposed method is very dependent not only on the available
functional connections, but also on the placement of the cores inside the chip and on the
number of available pins in the system interface. Current works include the definition
of the core neighborhood based on the placement, in order to reduce the search space
and speed up the method. Moreover, the use of the complete wrapper co-optimization
method proposed in (IYENGAR; CHAKRABARTY; MARINISSEN, 2001) can improve
the results for those systems whose functional connections make the reuse more difficult
(several feedbacks, functional connections with reduced bitwidth, etc).

In Chapter 5, the reuse of on-chip networks for the test of core-based systems was
discussed. A power-aware test scheduling technique based on the list-scheduling algo-
rithm was proposed to minimize the system test time when the network and the system
interfaces are reused. The required modifications in the wrappers that connect the cores
to the communication platform were also explained. Experimental results for the ITC’02

144

SoC Test benchmarks were presented and discussed, for a number of possible implemen-
tations of those systems in a NoC. Those results have shown that when the test tasks are
scheduled a priori over the available network resources, system test times are comparable
to other techniques where exclusive TAMs are used. The main advantage of the proposed
technique is the possibility of obtaining reduced test times with minimum pin and area
overhead. Moreover, the reuse provides cheaper test methods, since the interconnections
can be tested by the same technique. Current works include the definition of a more ac-
curate model for the power consumption evaluation. Other network topologies, such as
fat-tree, with non-deterministic routing algorithms, can also be studied.

In Chapter 6 the proposed techniques were compared to each other and to other recent
test planning approaches. Despite the limitations of the reuse-based methods listed in
that chapter, the new methods present a good performance in terms of test time even
considering the optimization of more than one cost variable.

Some technical contributions of this work can be mentioned:

1. the expansion of concerns during the test planning of core-based systems. Most
works in this area consider a single access mechanism and aim at minimizing the
system test time, without considering the system characteristics. In the first test
planning approach defined in this thesis, the whole system is considered and a so-
lution that represents a good compromise among a number of costs is sought. This
method was firstly published in theDesign, Automation, and Test in Europe (DATE)
conference, in 2002 (COTA et al., 2002). An improved version of the ReBaTe tool
was published in theLatin-American Test Workshop (LATW)of 2002 (COTA et al.,
2002) and was recently accepted to theJournal of Electronic Testing: Theory and
Applications (JETTA)(COTA et al., 2003);

2. the comparison of reuse-based and bus-based methods. With the currently SoC test
benchmarks, it was possible to establish some rules and metrics for comparison of
test planning methods. Experimental results presented in Chapters 4 and 6 show
that the use of the current benchmarks for comparison among test planning ap-
proaches should be carefully considered, since different assumptions can generate
very different solutions. This discussion was presented in theLatin-American Test
Workshop (LATW)of 2003 (COTA; CARRO; LUBASZEWSKI, 2003a);

3. the reuse of the on-chip networks as test access mechanism. This is the first work
that considers the test of heterogeneous NoC-based systems and reuses the avail-
able communication platform. The method was firstly published in theVLSI Test
Symposium (VTS)of 2003 (COTA et al., 2003). The power-aware test scheduling
was presented at theEuropean Test Workshop (ETW)of 2003 (COTA et al., 2003a)
and was accepted to theInternational Test Conference (ITC)of 2003 (COTA et al.,
2003b);

4. although not presented in this text, the definition of an embedded test controller
was also a result of this work. TheM icroprocessor forEmbeddedTest or MET
was primarily developed to be used by the cores that require at-speed testing. It
was firstly presented at the5th IEEE Workshop on Testing Embedded Core-based
Systems(COTA et al., 2001), and later improved in (CASSOL, 2002).

Despite the good performance of the proposed test planning techniques, there are
some open points that can be studied in the sequel of this work:

145

1. the study of other heuristics to establish the search space of the ReBaTe method;

2. the inclusion of the MET controller as a test resource in the ReBaTe approach;

3. the optimization of the wrappers before defining the access mechanism for each
core, as proposed in (IYENGAR; CHAKRABARTY; MARINISSEN, 2001) is an-
other modification that can improve the results of both methods proposed in this
work;

4. the implementation of one of the benchmarks for the validation of the equations
that define the area overhead and simulation of the devised test solution. Currently,
benchmark d695 is being implemented in VHDL along with a test solution devised
by the ReBaTe tool;

5. the study of the automatic generation of the P1500 wrapper modes required by
the TAM defined in the ReBaTe approach, to make the implementation of the test
solution easier. Moreover, this study must consider the requirements in terms of
control signals and configuration time of those wrappers;

6. the consideration of other network topologies in the NoCbaTe method;

7. the verification of the actual impact of system interfaces with smaller bitwidth than
the network channel on the test time;

8. the verification of the system test time and area overhead for other models of test
packets and other routing algorithms, such as dedicated routing. Moreover, the use
of compression techniques in conjuntion with the wrapper modification can be an
interesting alternative to further optimize the test time of a NoC-based system;

9. although the results of this work were generated for a realistic but estimated power
consumption model, the refinement of the power profile of the network, considering
communication channels of different lengths, for example, is an important issue.
In addition, more detailed power consumption models for the embedded cores, as
the one proposed in (ROSINGER; AL-HASHIMI; NICOLICI, 2002), can also be
considered in the test scheduling algorithm;

Finally, considering this research subject, more general issues can be considered as
future works:

• the inclusion of the test of analog blocks in the test planning methods. BISTed
analog blocks may present higher test times than their digital counterparts, and this
time can be used to reduce the extra digital test resources. Moreover, some test
approaches for analog blocks being studied in this research group (NEGREIROS;
CARRO; SUSIN, 2003) are based on the reuse of digital blocks of the SoC. There-
fore, the test scheduling of both, analog and digital blocks must be defined in con-
junction;

• BISTed cores are considered a powerful solution to reduce the system and ATE re-
quirements in terms of access mechanisms. However, the impact of such blocks
in the test planning has not been extensively studied. Preliminary results consid-
ering the definition of the best set of BISTed cores in the NoC-based method have
been presented in theTest Resource Partitioning (TRP)workshop of 2003 (COTA;

146

CARRO; LUBASZEWSKI, 2003b). However, a more detailed study on this subject
is necessary, as well as its inclusion in the ReBaTe approach.

147

REFERENCES

AERTS, J.; MARINISSEN, E. Scan Chain Design for Test Time Reduction in Core-based
ICs. In: INTERNATIONAL TEST CONFERENCE, 1998.Proceedings. . .Los Alamitos:
IEEE Computer Society, 1998. p.448–457.

ALLIANCE, V. IEEE P1450 Web Site. [S.l.: s.n.], 2003. Available at:
<http://grouper.ieee.org/groups/1450/>. Acessed in: August 2003.

ALLIANCE, V. VSI Alliance Web Site. [S.l.: s.n.], 2003. Available at:
<http://www.vsi.org/>. Acessed in: August 2003.

BABB, J.; RINARD, M.; MORITZ, C.; LEE, W.; FRANK, M.; BARUA, R.; AMARAS-
INGHE, S. Parallelizing Applications Into Silicon. In: ANNUAL IEEE SYMPOSIUM
ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES, 7., 1999.Pro-
ceedings. . .[S.l.: s.n.], 1999. p.70–80.

BASU, S.; MUKHOPADHAY, D.; ROYCHOUDHURY, D.; SENGUPTA, I.;
BHAWMIK, S. Reformatting Test Patterns for Testing Embedded Core Based System Us-
ing Test Access Mechanism (TAM) Switch. In: ASIA AND SOUTH PACIFIC DESIGN
AUTOMATION CONFERENCE, 7., 2002.Proceedings. . .[S.l.: s.n.], 2002. p.598–603.

BASU, S.; SENGUPTA, I.; CHOWDHURY, D. R.; BHAWMIK, S. An Integrated Ap-
proach to Testing Embedded Cores and Interconnects Using Test Access Mechanism
(TAM) Switch. Journal of Electronic Testing: Theory and Applications, The Nether-
lands, v.18, n.4, p.475–485, Aug. 2002.

BENABDENBI, M.; MAROUFI, W.; MARZOUKI, M. Cas-Bus: A Scalable and Recon-
figurable Test Acces Mechanism for Systems on a Chip. In: DESIGN, AUTOMATION
AND TEST IN EUROPE CONFERENCE, 2000, Paris, FR.Proceedings. . .Los Alami-
tos: IEEE Computer Society, 2000. p.141–145.

BENABDENBI, M.; MAROUFI, W.; MARZOUKI, M. CAS-BUS: A Test Access Mech-
anism and a Toolbox Environment for Core-Based System Chip Testing.Journal of
Electronic Testing: Theory and Applications, The Netherlands, v.18, n.4, p.455–473,
Aug. 2002.

BENINI, L.; MICHELI, G. D. Networks on Chips: a New SOC Paradigm.IEEE Com-
puter, [S.l.], v.35, n.1, p.70–78, Jan. 2002.

148

BENSO, A.; CHIUSANO, S.; DI CARLO, S.; PRINETTO, P.; RICCIATO, F.; SPADARI,
M.; ZORIAN, Y. HD2BIST: a Hierarchical Framework for BIST Scheduling, Data Pat-
terns Delivering and Diagnosis in SoCs. In: INTERNATIONAL TEST CONFERENCE,
2000.Proceedings. . .Los Alamitos: IEEE Computer Society, 2000. p.892–901.

BERGAMASCHI, R.; BHATTACHARYA, S.; WAGNER, R.; FELLENZ, C.; MUH-
LADA, M.; WHITE, F.; DAVEAU, J.-M.; LEE, W. Automating the Design of SOCs Us-
ing Cores.IEEE Design & Test of Computers, [S.l.], v.18, n.5, p.32–45, Sep./Oct. 2001.

BERGAMASCHI, R.; COHN, J. The A to Z of SoCs. In: IEEE/ACM INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN, 2002.Proceedings. . .[S.l.: s.n.],
2002. p.791–798.

BHATTACHARYA, D. Hierarchical Test Access Architecture for Embedded Cores in an
Integrated Circuit. In: IEEE VLSI TEST SYMPOSIUM, 16., 1998.Proceedings. . .Los
Alamitos: IEEE Computer Society, 1998. p.8–14.

BOARD, I. S. IEEE 1450.0:Standard Test Interface Language (STIL) for Digital Test
Vector Data - Language Manual. New York: [s.n.], 1999.

CASSOL, L. J.Teste de Sistemas Integrados Utilizando Controladores Específicos.
2002. M.Sc. Thesis — (Programa de Pós-Graduação em Engenharia Elétrica) - Escola de
Engenharia, UFRGS, Porto Alegre.

CHAKRABARTY, K. Test Scheduling for Core-Based Systems. In: INTERNATIONAL
CONFERENCE ON COMPUTER-AIDED DESIGN, 1999.Proceedings. . .[S.l.: s.n.],
1999. p.391–394.

CHAKRABARTY, K. Design of System-on-a-chip Test Access Architectures Using In-
teger Linear Programming. In: IEEE VLSI TEST SYMPOSIUM, 18., 2000.Proceed-
ings. . . Los Alamitos: IEEE Computer Society, 2000. p.127–134.

CHAKRABARTY, K. Design of System-on-a-Chip Test Access Architectures Under
Place-and-Route and Power Constraints. In: ACM/IEEE DESIGN AUTOMATION CON-
FERENCE, 2000, Los Angeles, USA.Proceedings. . .New York: ACM, 2000. p.432–
437.

CHAKRABARTY, K. Test Scheduling for Core-based Systems Using Mixed-integer Lin-
ear Programming.IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, [S.l.], v.19, n.10, p.1163–74, Oct. 2000.

CHAKRABARTY, K.; MUKHERJEE, R.; A., E. Synthesis of Transparent Circuits for
Hierarchical and System-on-a-chip Test. In: INTERNATIONAL CONFERENCE ON
VLSI DESIGN, 14., 2001.Proceedings. . .[S.l.: s.n.], 2001. p.431–436.

CHAKRABORTY, T.; BHAWMIK, S.; CHIANG, C.-H. Test Access Methodology for
System-on-chip Testing. In: IEEE WORKSHOP ON TESTING EMBEDDED CORE-
BASED SYSTEMS, 4., 2000, Los Angeles, USA.Digest of Papers. . .[S.l.: s.n.], 2000.
p.1.1–1–1.1–7.

149

CHANDRA, A.; CHAKRABARTY, K. Reduction of SOC Test Data Volume, Scan Power
and Testing Time Using Alternating Run-length Codes. In: ACM/IEEE DESIGN AU-
TOMATION CONFERENCE, 2002, New Orleans, USA.Proceedings. . .New York:
ACM, 2002. p.673–678.

CHANDRA, A.; CHAKRABARTY, K. Test data compression and decompression based
on internal scan chains and Golomb coding.IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems, [S.l.], v.21, n.6, p.715 –722, June 2002.

CHANDRA. Simultaneous Module Selection and Scheduling for Power-constrained Test-
ing of Core Based Systems. In: INTERNATIONAL CONFERENCE ON VLSI DESIGN,
2000.Proceedings. . .[S.l.: s.n.], 2000. p.462–467.

CHATTOPADHYAY S.; REDDY, K. Genetic Algorithm Based Test Scheduling and Test
Access Mechanism Design for System-on-chips. In: INTERNATIONAL CONFERENCE
ON VLSI DESIGN, 16., 2003.Proceedings. . .[S.l.: s.n.], 2003. p.341–346.

CHEN, L.; BAI, X.; DEY, S. Testing for Interconnect Crosstalk Defects Using On-Chip
Embedded Processor Cores.Journal of Electronic Testing: Theory and Applications,
The Netherlands, v.18, n.4, p.529–538, Aug. 2002.

CHIUSANO, S.; PRINETTO, P.; WUNDERLICH, H.-J. Non-Intrusive BIST for
Systems-on-a-chip. In: INTERNATIONAL TEST CONFERENCE, 2000.Proceed-
ings. . . Los Alamitos: IEEE Computer Society, 2000. p.644–651.

CHOU, R.; SALUJA, K.; AGRAWAL, V. Scheduling Tests for VLSI Systems Under
Power Constraints.IEEE Transactions on VLSI, [S.l.], v.5, n.2, p.175–184, June 1997.

CMP. Design and Reuse: the Catalyst of Collaborative SoC Design Through SIP Ex-
change. [S.l.: s.n.], 2003. Available at: <http://www.eedesign.com/sip/>. Acessed in:
July 2003.

COTA, E.; BRISOLARA, L.; CARRO, L.; SUSIN, A.; LUBASZEWSKI, M. MET: A
Microprocessor for Embedded Test. In: IEEE WORKSHOP ON TESTING EMBEDDED
CORE-BASED SYSTEMS, 5., 2001, Los Angeles, USA.Digest of Papers. . .[S.l.: s.n.],
2001.

COTA, E.; CARRO, L.; LUBASZEWSKI, M. SOC Benchmarks and System Test Plan-
ning: How Much Information is Enough? In: LATIN AMERICAN TEST WORKSHOP,
2003, Natal, Brazil.Digest of Papers. . .[S.l.: s.n.], 2003.

COTA, E.; CARRO, L.; LUBASZEWSKI, M. BISTed Cores and Test Time Minimiza-
tion in NOC-based Systems. In: IEEE INTERNATIONAL WORKSHOP ON TEST RE-
SOURCE PARTITIONING, 2003, Napa Valley, USA.Digest of Papers. . .[S.l.: s.n.],
2003. p.14–19.

COTA, E.; CARRO, L.; LUBASZEWSKI, M.; ORAILOGLU, A. Generic and Detailed
Search for TAM Definition in Core-based Systems. In: LATIN AMERICAN TEST
WORKSHOP, 2002.Digest of Papers. . .[S.l.: s.n.], 2002. p.160–164.

COTA, E.; CARRO, L.; LUBASZEWSKI, M.; ORAILOGLU, A. Achieving Global Test
Costs Optimization in Core-based Systems.Accepted to the Journal of Electronic Test-
ing: Theory and Applications, [S.l.], 2003.

150

COTA, E.; CARRO, L.; ORAILOGLU, A.; LUBASZEWSKI, M. Test Planning and De-
sign Space Exploration in Core-based Environment. In: DESIGN, AUTOMATION AND
TEST IN EUROPE, 2002, Paris, FR.Proceedings. . .Los Alamitos: IEEE Computer
Society, 2002. p.483–490.

COTA, E.; CARRO, L.; WAGNER, F.; LUBASZEWSKI, M. Power-aware NoC Reuse on
the Testing of Core-based Systems. In: EUROPEAN TEST WORKSHOP, 2003, Maas-
tricht, NL. Digest of Papers. . .[S.l.: s.n.], 2003. p.123–128.

COTA, E.; CARRO, L.; WAGNER, F.; LUBASZEWSKI, M. Power-aware NoC Reuse
on the Testing of Core-based Systems. In: INTERNATIONAL TEST CONFERENCE,
2003, Charlotte, USA.Proceedings. . .Los Alamitos: IEEE Computer Society, 2003.
p.612–621.

COTA, E.; ZEFERINO, C.; KREUTZ, M.; CARRO, L.; LUBASZEWSKI, M.; SUSIN,
A. The Impact of NoC Reuse on the Testing of Core-based Systems. In: IEEE VLSI TEST
SYMPOSIUM, 2003, Napa Valley, USA.Proceedings. . .Los Alamitos: IEEE Computer
Society, 2003. p.128–133.

DALLY, W. J.; TOWLES, B. Route Packets, Not Wires: On-Chip Interconnection Net-
works. In: DESIGN AUTOMATION CONFERENCE, 2001.Proceedings. . .New York:
ACM, 2001. p.684–689.

DUATO, J.; YALAMANCHILI, S.; NI, L. Interconnection Networks: an Engineering
Approach. Los Alamitos: IEEE Computer Society, 1997.

EBADI, Z.; IVANOV, A. Design of an Optimal Test Access Architecture Using a Genetic
Algorithm. In: ASIAN TEST SYMPOSIUM, 2001.Proceedings. . .[S.l.: s.n.], 2001.
p.205–210.

FLOTTES, M.-L.; POUGET, J.; ROUZEYRE, B. A Heuristic for Test Scheduling at
System Level. In: DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE,
2002, Paris, FR.Proceedings. . .Los Alamitos: IEEE Computer Society, 2002. p.1124.

FORSELL, M. A Scalable High-performance Computing Solution for Networks on
Chips.IEEE Micro , [S.l.], v.22, n.5, p.46–55, Sep./Oct. 2002.

GEREZ, S. H.Algorithms for VLSI Design Automation . [S.l.]: Baffins Lane, Chich-
ester, England, John Wiley & Sons, 1998.

GHOSH, I.; DEY, S.; JHA, N. A Fast and Low Cost Testing Technique for Core-based
System-on-chip. In: ACM/IEEE DESIGN AUTOMATION CONFERENCE, 1998.Pro-
ceedings. . .New York: ACM, 1998. p.542–547.

GHOSH, I.; JHA, N.; DEY, S. A Low Overhead Design for Testability and Test Genera-
tion Technique for Core-based Systems. In: INTERNATIONAL TEST CONFERENCE,
1997, Washington, USA.Proceedings. . .Los Alamitos: IEEE Computer Society, 1997.
p.50–59.

GOEL, S.; MARINISSEN, E. Cluster-based Test Architecture Design for System-on-
chip. In: IEEE VLSI TEST SYMPOSIUM, 2002.Proceedings. . .Los Alamitos: IEEE
Computer Society, 2002. p.259–264.

151

GOEL, S.; MARINISSEN, E. A Novel Test Time Reduction Algorithm for Test Architec-
ture Design for Core-based System Chips. In: IEEE EUROPEAN TEST WORKSHOP,
7., 2002.Proceedings. . .Los Alamitos: IEEE Computer Society, 2002. p.7–12.

GOEL, S.; MARINISSEN, E. Effective and Efficient Test Architecture Design for SOCs.
In: INTERNATIONAL TEST CONFERENCE, 2002.Proceedings. . .Los Alamitos:
IEEE Computer Society, 2002. p.529–538.

GONCIARI, P.; AL-HASHIMI, B.; NICOLICI, N. Integrated Test Data Decompres-
sion and Core Wrapper Design for Low-cost System-on-a-chip Testing. In: INTERNA-
TIONAL TEST CONFERENCE, 2002.Proceedings. . .Los Alamitos: IEEE Computer
Society, 2002. p.64–73.

GUERRIER, P.; GREINER, A. A Generic Architecture for On-Chip Packet-Switched
Interconnections. In: DESIGN, AUTOMATION AND TEST IN EUROPE, 2000, Paris,
FR.Proceedings. . .Los Alamitos: IEEE Computer Society, 2000. p.250–256.

GUPTA, R. K.; ZORIAN, Y. Introducing Core-Based System Design.IEEE Design &
Test of Computers, [S.l.], v.13, n.4, p.15–25, Oct./Dec. 1997.

HALES, A.; MARINISSEN, E. J.IEEE P1500 Web Site. [S.l.: s.n.], 2003. Available at:
<http://grouper.ieee.org/groups/1500/>. Acessed in: August 2003.

HU, H.; YIBE, S. A Scalable Test Mechanism and its Optimization for Test Access to
Embedded Cores. In: INTERNATIONAL CONFERENCE ON ASIC, 4., 2001.Proceed-
ings. . . [S.l.: s.n.], 2001. p.773–776.

HUANG, Y.; CHENG, W.-T.; TSAI, C.-C.; MUKHERJEE, N.; SAMMAN, O.; ZAIDAN,
Y.; REDDY, S. M. Resource Allocation and Test Scheduling for Concurrent Test of Core-
based SoC Design. In: ASIAN TEST SYMPOSIUM, 2001.Proceedings. . .Los Alami-
tos: IEEE Computer Society, 2001. p.265–270.

HUANG, Y.; CHENG, W.-T.; TSAI, C.-C.; MUKHERJEE, N.; SAMMAN, O.; ZAIDAN,
Y.; REDDY, S. M. On Concurrent Test of Core-Based SOC Design.Journal of Electronic
Testing: Theory and Applications, The Netherlands, v.18, n.4, p.401–414, Aug. 2002.

HUANG, Y.; REDDY, S.; CHENG, W.-T.; REUTER, P.; MUKHERJEE, N.; TSAI, C.-
C.; SAMMAN, O.; ZAIDAN, Y. Optimal Core Wrapper Width Selection and SOC Test
Scheduling Based on 3-D Bin Packing Algorithm. In: INTERNATIONAL TEST CON-
FERENCE, 2002.Proceedings. . .Los Alamitos: IEEE Computer Society, 2002. p.74–
82.

HWANG, S.; ABRAHAM, J. Reuse of Addressable System Bus for SOC Testing. In:
ANNUAL IEEE INTERNATIONAL ASIC/SOC CONFERENCE, 14., 2001.Proceed-
ings. . . [S.l.: s.n.], 2001. p.215–219.

IEEE Standards Board.IEEE 1149.1:IEEE Standard Test Access Port and Boundary Scan
Architecture. New York, 1990.

IYENGAR, V. Precedence-based, Preemptive, and Power-constrained Test Scheduling
for System-on-a-chip. In: IEEE VLSI TEST SYMPOSIUM, 2001, Los Angeles, USA.
Proceedings. . .Los Alamitos: IEEE Computer Society, 2001. p.368–374.

152

IYENGAR, V.; CHAKRABARTY, K. Iterative Test Wrapper and Test Access Mechanism
Co-optimization. In: IEEE WORKSHOP ON TESTING EMBEDDED CORE-BASED
SYSTEMS, 5., 2001, Los Angeles, USA.Digest of Papers. . .[S.l.: s.n.], 2001.

IYENGAR, V.; CHAKRABARTY, K. System-on-a-chip Test Scheduling With Prece-
dence Relationships, Preemption, and Power Constraints.IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, [S.l.], v.21, n.9, p.1088–
1094, Sept. 2002.

IYENGAR, V.; CHAKRABARTY, K.; MARINISSEN, E. Recent Advances in Test Plan-
ning for Modular Testing of Core-based SOCs. In: ASIAN TEST SYMPOSIUM, 2002.
Proceedings. . .Los Alamitos: IEEE Computer Society, 2002. p.320–325.

IYENGAR, V.; CHAKRABARTY, K.; MARINISSEN, E. On Using Rectangle Packing
for SOC Wrapper/TAM Co-optimization. In: IEEE VLSI TEST SYMPOSIUM, 2002.
Proceedings. . .Los Alamitos: IEEE Computer Society, 2002. p.253–258.

IYENGAR, V.; CHAKRABARTY, K.; MARINISSEN, E. Wrapper/TAM Co-
optimization, Constraint-driven Test Scheduling, and Tester Data Volume Reduction for
SOCs. In: ACM/IEEE DESIGN AUTOMATION CONFERENCE, 2002, New Orleans,
USA. Proceedings. . .New York: ACM, 2002. p.685–690.

IYENGAR, V.; CHAKRABARTY, K.; MARINISSEN, E. J. Iterative Test Wrapper
and Test Access Mechanism Co-optimization. In: INTERNATIONAL TEST CONFER-
ENCE, 2001, Baltimore, USA.Proceedings. . .Los Alamitos: IEEE Computer Society,
2001. p.1023–1032.

IYENGAR, V.; CHAKRABARTY, K.; MARINISSEN, E. J. Test Wrapper and Test Ac-
cess Mechanism Co-Optimization for System-on-Chip.Journal of Electronic Testing:
Theory and Applications, The Netherlands, v.18, n.2, p.213–230, Apr. 2002.

IYENGAR, V.; CHANDRA, A.; SCHWEIZER, S.; CHAKRABARTY, K. A Unified Ap-
proach for SoC Testing Using Test Data Compression and TAM Optimization. In: DE-
SIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE, 2003.Proceedings. . .
Los Alamitos: IEEE Computer Society, 2003. p.1188–1189.

JERVAN, G.; PENG, Z.; UBAR, R. Test Cost Minimization for Hybrid BIST. In: IEEE
INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLERANCE IN VLSI
SYSTEMS, 2000.Proceedings. . .[S.l.: s.n.], 2000. p.283–291.

JERVAN, G.; PENG, Z.; UBAR, R.; KRUUS, H. A Hybrid BIST Architecture and its
Optimization for SoC Testing. In: INTERNATIONAL SYMPOSIUM ON QUALITY
ELECTRONIC DESIGN, 2002.Proceedings. . .[S.l.: s.n.], 2002. p.273 –279.

KAPUR, R.; KELLER, B.; KOENEMANN, B.; LOUSBERG, M.; REUTER, P.; TAY-
LOR, T.; VARMA, P. P1500-CTL: Towards a Standard Core Test Language. In: VLSI
TEST SYMPOSIUM, 1999.Proceedings. . .Los Alamitos: IEEE Computer Society
Press, 1999. p.489–490.

KAPUR, R.; LOUSBERG, M.; TAYLOR, T.; KELLER, B.; REUTER, P.; KAY, D. CTL
the Language for Describing Core-based Test. In: INTERNATIONAL TEST CONFER-
ENCE, 2001.Proceedings. . .Los Alamitos: IEEE Computer Society, 2001. p.131–139.

153

KAPUR, R.; MARINISSEN, E.; MUKHERJEE, N.; RICCHETI, M.; TAYLOR, T.;
UDELL, J. P1500/D0.3:Draft Standard for Embedded Core Test (SECT). [S.l.]: IEEE
P1500 Documentation Task Force, 2001. Preliminar draft standard.

KARIM, F.; NGUYEN, A.; DEY, S. An Interconnect Architecture for Networking Sys-
tems on Chips.IEEE Micro , [S.l.], v.22, n.5, p.36–45, Sep./Oct. 2002.

KEUTZER, K.; NEWTON, A.; RABAEY, J.; SANGIOVANNI-VINCENTELLI, A.
System-Level Design: Orthogonalization of Concerns and Platform-Based Design.IEEE
Transactions on Computer-Aided Design of Integrated Circuits, [S.l.], v.19, n.12,
p.1523–1543, Dec. 2000.

KORANNE. Formulating SoC Test Scheduling as a Network Transportation Problem.
IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,
[S.l.], v.21, n.12, p.1517–1525, Dec. 2002.

KORANNE, S.; CHOUDHARY, V. Formulation of SOC Test Scheduling as a Network
Transportation Problem. In: DESIGN, AUTOMATION AND TEST IN EUROPE CON-
FERENCE, 2002, Paris, FR.Proceedings. . .Los Alamitos: IEEE Computer Society,
2002. p.1125.

KORANNE, S.; IYENGAR, V. On the Use of k-tuples for SoC Test Schedule Represen-
tation. In: INTERNATIONAL TEST CONFERENCE, 2002.Proceedings. . .Los Alami-
tos: IEEE Computer Society, 2002. p.539–548.

KUCUKCAKAR, K. Analysis of Emerging Core-based Design Lifecycle. In: IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, 1998.Digest
of Technical Papers. . .[S.l.: s.n.], 1998. p.445–449.

KUMAR GOEL, S.; MARINISSEN, E. Layout-driven SOC Test Architecture Design for
Test Time and Wire Length Minimization. In: DESIGN, AUTOMATION AND TEST IN
EUROPE CONFERENCE, 2003.Proceedings. . .Los Alamitos: IEEE Computer Soci-
ety, 2003. p.738–743.

LAHIRI, K.; RAGHUNATHAN, A.; DEY, S. Communication Architecture Based Power
Management for Battery Efficient System Design. In: ACM/IEEE DESIGN AUTOMA-
TION CONFERENCE, 2002, New Orleans, USA.Proceedings. . .New York: ACM,
2002. p.691–696.

LARSSON, E.; ARVIDSSON, K.; FUJIWARA, H.; PENG, Z. Integrated Test Schedul-
ing, Test Parallelization and TAM Design. In: ASIAN TEST SYMPOSIUM, 11., 2002.
Proceedings. . .Los Alamitos: IEEE Computer Society, 2002. p.397–404.

LARSSON, E.; FUJIWARA, H. Power Constrained Preemptive TAM Scheduling. In:
IEEE EUROPEAN TEST WORKSHOP, 7., 2002.Proceedings. . .Los Alamitos: IEEE
Computer Society, 2002. p.119–126.

LARSSON, E.; PENG, Z. Test Scheduling and Scan-chain Division Under Power Con-
straint. In: ASIAN TEST SYMPOSIUM, 2001.Proceedings. . .Los Alamitos: IEEE
Computer Society, 2001. p.259–264.

154

LARSSON, E.; PENG, Z. An Integrated System-on-Chip Test Framework. In: DESIGN,
AUTOMATION AND TEST IN EUROPE CONFERENCE, 2001, Munich, GE.Proceed-
ings. . . Los Alamitos: IEEE Computer Society, 2001. p.138–144.

LARSSON, E.; PENG, Z. An Integrated Framework for the Design and Optimization
of SOC Test Solutions.Journal of Electronic Testing: Theory and Applications, The
Netherlands, v.18, n.4, p.385–400, Aug. 2002.

LARSSON, E.; PENG, Z.; CARLSSON, G. The Design and Optimization of SOC
Test Solutions. In: IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER
AIDED DESIGN, 2001.Proceedings. . .[S.l.: s.n.], 2001. p.523–530.

LEE, K.-J.; HUANG, C.-I. A Hierarchical Test Control Architecture for Core Based De-
sign. In: ASIAN TEST SYMPOSIUM, 2000.Proceedings. . .Los Alamitos: IEEE Com-
puter Society, 2000. p.248–253.

LI, J.-F.; HUANG, H.-J.; CHEN, J.-B.; SU, C.-P.; WU, C.-W.; CHENG, C.; CHEN, S.-
I.; HWANG, C.-Y.; LIN, H.-P. A Hierarchical Test Methodology for Systems on Chip.
IEEE Micro , [S.l.], v.22, n.5, p.69–81, Sep./Oct. 2002.

LI, J.-F.; HUANG, H.-J.; CHEN, J.-B.; SU, C.-P.; WU, C.-W.; CHENG, C.; CHEN, S.-I.;
HWANG, C.-Y.; LIN, H.-P. A Hierarchical Test Scheme for System-on-chip Designs. In:
DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE, 2002, Paris, FR.
Proceedings. . .Los Alamitos: IEEE Computer Society, 2002. p.486–490.

LOUSBERG, M. TAPs All Over my Chips. In: INTERNATIONAL TEST CONFER-
ENCE, 2002.Proceedings. . .Los Alamitos: IEEE Computer Society, 2002. p.1189.

MAKRIS, Y.; ORAILOGLU, A. RTL Test Justification and Propagation Analysis for
Modular Designs.Journal of Electronic Testing: Theory and Applications, The
Netherlands, v.13, n.2, p.105–120, Oct. 1998.

MARINISSEN, E.; ARENDSEN, R.; BOS, G.; DINGEMANSE, H.; LOUSBERG, M.;
WOUTERS, C. A Structured and Scalable Mechanism for Test Access to Embedded
Reusable Cores. In: INTERNATIONAL TEST CONFERENCE, 1998.Proceedings. . .
Los Alamitos: IEEE Computer Society, 1998. p.284–293.

MARINISSEN, E.; GOEL, S.; LOUSBERG, M. Wrapper Design for Embedded Core
Test. In: INTERNATIONAL TEST CONFERENCE, 2000.Proceedings. . .Los Alami-
tos: IEEE Computer Society, 2000. p.911–920.

MARINISSEN, E. J.; IYENGAR, V.; CHAKRABARTY, K. A Set of Benchmarks for
Modular Testing of SOCs. In: INTERNATIONAL TEST CONFERENCE, 2002.Pro-
ceedings. . .Los Alamitos: IEEE Computer Society, 2002. p.521–528.

MARINISSEN, E. J.; IYENGAR, V.; CHAKRABARTY, K.
ITC’02 Soc Test Benchmarks. [S.l.: s.n.], 2003. Available at:
<http://www.extra.research.philips.com/itc02socbenchm/>. Acessed in: August 2003.

MARINISSEN, E. J.; KAPUR, R.; LOUSBERG, M.; MCLAURIN, T.; RICCHETTI, M.;
ZORIAN, Y. On IEEE P1500’s Standard for Embedded Core Test.Journal of Electronic
Testing: Theory and Applications, The Netherlands, v.18, n.4, p.365–383, Aug. 2002.

155

MARINISSEN, E. J.; KAPUR, R.; ZORIAN, Y. On Using IEEE P1500 SECT for Test
Plug-n-Play. In: INTERNATIONAL TEST CONFERENCE, 2000.Proceedings. . .Los
Alamitos: IEEE Computer Society, 2000. p.770–777.

MARINISSEN, E.; ZORIAN, Y. Challenges in Testing Core-based System ICs.IEEE
Communications Magazine, [S.l.], v.37, n.6, p.104–109, June 1999.

MARINISSEN, E.; ZORIAN, Y.; KAPUR, R.; TAYLOR, T.; WHETSEL, L. Towards a
Standard for Embedded Core Test: an Example. In: INTERNATIONAL TEST CONFER-
ENCE, 1999.Proceedings. . .Los Alamitos: IEEE Computer Society, 1999. p.616–627.

MATHWORKS. MATLAB : the Language of Technical Computing. [S.l.]: Natick, USA,
MathWorks, 1997.

MURESAN, V.; WANG, X.; VLADUTIU, M. A Comparison of Classical Scheduling
Approaches in Power-constrained Block-test Scheduling. In: INTERNATIONAL TEST
CONFERENCE, 2000.Proceedings. . .Los Alamitos: IEEE Computer Society, 2000.
p.882–891.

NAHVI, M.; IVANOV, A. A Packet Switching Communication-based Test Access Mech-
anism for System Chips. In: IEEE EUROPEAN TEST WORKSHOP, 2001.Proceed-
ings. . . Los Alamitos: IEEE Computer Society, 2001. p.81–86.

NEGREIROS, M.; CARRO, L.; SUSIN, A. Ultra Low Cost Analog BIST Using Spectral
Analysis. In: IEEE VLSI TEST SYMPOSIUM, 2003, Napa Valley, USA.Proceedings. . .
Los Alamitos: IEEE Computer Society, 2003. p.77–82.

NOURANI, M.; PAPACHRISTOU, C. A Bypass Scheme for Core-based System Fault
Testing. In: DESIGN, AUTOMATION AND TEST IN EUROPE CONFERENCE, 1998,
Paris, FR.Proceedings. . .Los Alamitos: IEEE Computer Society, 1998. p.979–980.

NOURANI, M.; PAPACHRISTOU, C. Parallelism in Structural Fault Testing of Embed-
ded Cores. In: IEEE VLSI TEST SYMPOSIUM, 16., 1998.Proceedings. . .Los Alami-
tos: IEEE Computer Society, 1998. p.15–20.

NOURANI, M.; PAPACHRISTOU, C. Structural Fault Testing of Embedded Cores Using
Pipelining.Journal of Electronic Testing: Theory and Applications, The Netherlands,
v.15, n.1-2, p.129–144, Aug./Oct. 1999.

NOURANI, M.; PAPACHRISTOU, C. An ILP Formulation to Optimize Test Access
Mechanism in System-on-chip Testing. In: INTERNATIONAL TEST CONFERENCE,
2000.Proceedings. . .Los Alamitos: IEEE Computer Society, 2000. p.902–910.

OAKLAND, S. Considerations for Implementing IEEE 1149.1 on System-on-a-chip In-
tegrated Circuits. In: INTERNATIONAL TEST CONFERENCE, 2000.Proceedings. . .
Los Alamitos: IEEE Computer Society, 2000. p.628–637.

PAPACHRISTOU, C. A.; MARTIN, F.; NOURANI, M. Microprocessor Based Testing
for Core-Based System on Chip. In: ACM/IEEE DESIGN AUTOMATION CONFER-
ENCE, 1999, New Orleans, USA.Proceedings. . .New York: ACM, 1999. p.586–591.

156

POMERANZ, I.; REDDY, S. A Partitioning and Storage Based Built-in Test Pattern Gen-
eration Method for Delay Faults in Scan Circuits. In: ASIAN TEST SYMPOSIUM, 2002.
Proceedings. . .[S.l.: s.n.], 2002. p.110–115.

RAVIKUMAR, C.; VERMA, A.; CHANDRA, G. A Polynomial-time Algorithm for
Power Constrained Testing of Core-Based Systems. In: ASIAN TEST SYMPOSIUM,
1999.Proceedings. . .Los Alamitos: IEEE Computer Society Press, 1999. p.107–112.

ROSINGER, P.; AL-HASHIMI, B.; NICOLICI, N. Power Constrained Test Schedul-
ing Using Power Profile Manipulation. In: IEEE INTERNATIONAL SYMPOSIUM ON
CIRCUITS AND SYSTEMS, 2001.Proceedings. . .Los Alamitos: IEEE Computer So-
ciety, 2001. p.251–254. v. 5.

ROSINGER, P.; GONCIARI, P.; AL-HASHIMI, B.; NICOLICI, N. Simultaneous Re-
duction in Volume of Test Data and Power Dissipation for Systems-on-a-chip.Electronic
Letters, [S.l.], v.37, n.24, p.1434–1436, Nov. 2001.

ROSINGER, P. M.; AL-HASHIMI, B. M.; NICOLICI, N. Power Profile Manipulation:
A New Approach for Reducing Test Application Time Under Power Constraints.IEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems, [S.l.],
v.21, n.10, p.1217–1225, Oct. 2002.

SANGIOVANNI-VINCENTELLI, A.; MARTIN, G. Platform-Based Design and Soft-
ware Design Methodology for Embedded Systems.IEEE Design & Test of Computers,
[S.l.], v.18, n.6, p.23 –33, Nov./Dec. 2001.

SIA. The National Technology Roadmap for Semiconductors. [S.l.: s.n.], 1997. Semi-
conductor Industry Association.

SIA. The International Technology Roadmap for Semiconductors (ITRS). [S.l.: s.n.],
1999. Semiconductor Industry Association.

SINANOGLU, O.; ORAILOGLU, A. Efficient Construction of Aliasing-free Compaction
Circuitry. IEEE Micro , [S.l.], v.22, n.5, p.82–92, Sep./Oct. 2002.

SKIENA, S. S.The Algorithm Design Manual. [S.l.]: New York, Springer-Verlag, 1998.

SUGIHARA, M.; DATE, H.; YASUURA, H. A Novel Test Methodology for Core-based
System LSIs and a Testing Time Minimization Problem. In: INTERNATIONAL TEST
CONFERENCE, 1998.Proceedings. . .Los Alamitos: IEEE Computer Society, 1998.
p.465–472.

SUGIHARA, M.; DATE, H.; YASUURA, H. Analysis and Minimization of Test Time
in a Combined BIST and External Test Approach. In: DESIGN, AUTOMATION AND
TEST IN EUROPE CONFERENCE, 2000, Paris, FR.Proceedings. . .Los Alamitos:
IEEE Computer Society, 2000. p.134–140.

TOUBA. Deterministic Test Vector Compression/Decompression for Systems-on-a-Chip
Using an Embedded Processor.Journal of Electronic Testing: Theory and Applica-
tions, The Netherlands, v.18, n.4, p.503–514, Aug. 2002.

157

VARMA, P.; BHATIA, S. A Structured Test Re-use Methodology for Core-based Sys-
tem Chips. In: INTERNATIONAL TEST CONFERENCE, 1998.Proceedings. . .Los
Alamitos: IEEE Computer Society, 1998. p.294–302.

WHETSEL, L. An IEEE 1149.1 Based Test Access Architecture for ICs with Embedded
Cores. In: INTERNATIONAL TEST CONFERENCE, 1997, Washington, USA.Pro-
ceedings. . .Los Alamitos: IEEE Computer Society, 1997. p.69–78.

YONEDA, T.; FUJIWARA, H. Design for Consecutive Testability of System-on-a-Chip
with Built-In Self Testable Cores.Journal of Electronic Testing: Theory and Applica-
tions, The Netherlands, v.18, n.4, p.487–501, Aug. 2002.

ZEFERINO, C. A.SoCIN:A Parametric and Scalable Network-on-Chip. 2003. Ph.D.
Thesis — (Programa de Pós-Graduação em Computação) - Instituto de Informática,
UFRGS, Porto Alegre.

ZEFERINO, C.; KREUTZ, M.; CARRO, L.; SUSIN, A. A study on Communication
Issues For Systems-on-Chip. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND
SYSTEMS DESIGN, 2002, Porto Alegre, Brazil.Proceedings. . .Los Alamitos: IEEE
Computer Society, 2002. p.121–126.

ZEFERINO, C.; SUSIN, A. SoCIN:A Parametric and Scalable Network-on-Chip. In:
SYMPOSIUM ON INTEGRATED CIRCUITS AND SYSTEMS DESIGN, 2003, São
Paulo, Brazil.Proceedings. . .Los Alamitos: IEEE Computer Society, 2003. p.169–174.

ZHAO, D.; UPADHYAYA, S. Adaptive Test Scheduling in SoC’s by Dynamic Partition-
ing. In: IEEE INTERNATIONAL SYMPOSIUM ON DEFECT AND FAULT TOLER-
ANCE IN VLSI SYSTEMS, 17., 2002.Proceedings. . .[S.l.: s.n.], 2002. p.334–342.

ZORIAN, Y. A Distributed BIST Control Scheme for Complex VLSI Devices. In: VLSI
TEST SYMPOSIUM, 1993, Princeton, USA.Proceedings. . .Los Alamitos: IEEE Com-
puter Society, 1993. p.6–11.

ZORIAN, Y. Test Requirements for Embedded Core-based Systems and IEEE P1500.
In: INTERNATIONAL TEST CONFERENCE, 1997, Washington, USA.Proceedings. . .
Los Alamitos: IEEE Computer Society, 1997. p.191–199.

ZORIAN, Y. System-chip Test Strategies. In: ACM/IEEE DESIGN AUTOMATION
CONFERENCE, 1998.Proceedings. . .New York: ACM, 1998. p.752–757.

ZORIAN, Y.; DEY, S.; RODGERS, M. Test of Future System-on-chips. In: IEEE/ACM
INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN, 2000.Pro-
ceedings. . .[S.l.: s.n.], 2000. p.392–398.

ZORIAN, Y.; MARINISSEN, E. J.; DEY, S. Testing Embedded-Core Based System
Chips. In: INTERNATIONAL TEST CONFERENCE, 1998, Washington, USA.Pro-
ceedings. . .Los Alamitos: IEEE Computer Society, 1998. p.130–143.

ZOU, W.; REDDY, S.; POMERANZ, I.; HUANG, Y. SOC Test Scheduling Using Sim-
ulated Annealing. In: IEEE VLSI TEST SYMPOSIUM, 2003, Napa Valley, USA.Pro-
ceedings. . .Los Alamitos: IEEE Computer Society, 2003. p.325–330.

158

159

APPENDIX A PLANEJAMENTO DE TESTE BASEADO EM
REUSO PARA SISTEMAS EM SILÍCIO

O projeto de sistemas eletrônicos atuais segue o paradigma do reuso de componentes
de hardware. Neste paradigma, os blocos funcionais, chamados decomponentes virtuais
ounúcleos de hardware, são previamente projetados e disponibilizados em algum formato
lógico para que sejam acoplados a outros componentes e, posteriormente, sintetizados
em um único substrato. Circuitos construídos sob este paradigma são conhecidos como
sistemas integrados ou sistemas baseados em componentes virtuais.

Embora esta metodologia de projeto apresente diversas vantagens para a redução da
complexidade do projeto de umchip, ela criou uma série de novos desafios para o pro-
jetista do sistema, não somente em relação ao projeto, mas também em relação ao teste do
produto final. Na verdade, o teste dos sistemas integrados tem se tornado uma das tarefas
mais custosas no processo de fabricação do chip (ZORIAN; DEY; RODGERS, 2000). O
acesso aos núcleos profundamente embutidos no sistema, a integração dos diversos méto-
dos de teste e a otimização dos diversos fatores de custo do sistema, como área, tempo de
teste e número de pinos no encapsulamento, são apenas alguns dos problemas que pre-
cisam ser resolvidos durante o planejamento do teste de produção do novo circuito. Além
disso, a mudança no fluxo de informações sobre o sistema é outro fator complicante para a
definição de um mecanismo de teste eficaz, já que os projetistas dos núcleos de hardware
não são, necessariamente, os projetistas do sistema. Neste contexto, esta tese propõe duas
abordagens para o planejamento de teste de sistemas integrados. As abordagens propostas
têm como principal objetivo a redução dos custos de teste do sistema através do reuso dos
recursos de hardware disponíveis no sistema sob teste e da integração do planejamento de
teste no fluxo de projeto do circuito.

Neste texto, os principais problemas relacionados ao teste dos sistemas integrados
baseados em componentes virtuais são, inicialmente, identificados no Capítulo 2. Estes
problemas podem ser divididos em três grupos: requisitos de teste dos componentes vir-
tuais, requisitos de teste de interconexões e requisitos de teste do sistema.

Em relação aos componentes virtuais, os principais requisitos são:

• definição do teste de cada núcleo embutido no sistema;

• definição do mecanismo de acesso a cada núcleo durante o teste;

• definição de um mecanismo de isolamento do núcleo em relação ao sistema durante
o teste;

O teste de interconexões tem um único requisito: a possibilidade de controlar e obser-
var cada conexão. Contudo, esta parte do teste é de extrema importância para a caracteri-

160

zação do sistema, pois ela determina o real desempenho conseguido pelo sistema.
Os requisitos do sistema como um todo sao:

• teste da lógica definida pelo integrador do sistema;

• definição do escalonamento de teste;

• definição de um controlador de teste

• integração dos mecanismos de teste de cada núcleo

No Capítulo 3, são discutidas as principais soluções apresentadas na literatura para os
problemas listados acima.

Até o ano 2000, quando esta tese foi definida, a maior parte das soluções existentes
tratava da definição do mecanismo de acesso aos núcleos embutidos no sistema. Estes
mecanismos eram definidos considerando um sistema completamente definido, ou seja, o
planejamento de teste era feito em uma etapa final do projeto, quando se torna mais difícil
modificar decisões de projeto. As poucas abordagens que permitiam o planejamento de
teste no início do projeto do sistema, otimizavam apenas um sub-conjunto dos custos de
teste ou tornavam a solução muito dependente da experiência do projetista. Em geral, os
métodos de teste propostos assumiam modelos restritos de mecanismos de acesso (apenas
barramentos ou apenas conexões funcionais) e, a partir deste modelo restrito, otimizavam
os outros custos, como tempo de teste e área. Assim, cabia ao integrador do sistema fazer
a exploração do espaço de projeto considerando os custos de teste, fornecendo, a cada
passo, diferentes recursos de teste como pinos, controladores BIST, etc. As decisões de
teste eram, então, mais baseadas na experiência do projetista do que nas características de
cada projeto.

Porém, o projeto de um sistema lida com uma série de restrições e compromisos
entre os diferentes fatores de custo, como área, desempenho e potência, por exemplo.
A otimização dos fatores de custo do teste, como acréscimo de área, pinos e potência,
não pode ser feita de forma isolada. O projetista do sistema precisa combinar e equilibrar
os custos de teste com os custos de projeto em si. Assim, decisões de projeto podem
interferir nos custos de teste e, vice-versa, decisões sobre o teste podem influenciar os
custos de projeto. Por exemplo, o acréscimo de área acarretado pela inclusão de estruturas
de teste dentro do chip implica aumento de área e, como conseqüência, redução doyield.
Porém, o integrador do sistema não é, em geral, um especialista em teste e torna-se difícil
prever o impacto de uma decisão de projeto nos custos de teste finais. Da mesma forma,
o especialista em teste nem sempre está diretamente envolvido nas decisões de projeto
ou mesmo na integração e síntese do sistema. O projetista procura uma solução que
represente o melhor compromisso de custos que atenda às especificações da aplicação. O
engenheiro de teste, por outro lado, está mais preocupado com a otimização de um ou dois
fatores de custo principais, como o tempo de teste e o número de pinos extras na interface
do sistema. As decisões deste último, portanto, nem sempre são as mais adequadas do
ponto de vista do projeto. Assim, a inclusão do planejamento de teste no início do ciclo
de projeto do sistema é a chave para a redução da complexidade e do custo de teste de
sistemas complexos.

Neste contexto, definiu-se como principal objetivo desta tese trazer o planejamento do
teste de um sistema para o início do projeto, permitindo a exploração do espaço de projeto
levando-se em conta os custos de teste. Este objetivo foi atingido através da definição de
duas abordagens de teste, definidas de acordo com o modelo de conexão do sistema.

161

Foram definidas duas ferramentas de auxílio ao projetista que estimam os custos de teste
a partir das características de cada sistema. Assim, o projetista pode ter uma estimativa do
custo de uma decisão de projeto antes mesmo da síntese, podendo combinar os requisitos
do projeto com os requisitos de teste. Por outro lado, o projetista do núcleo também pode
fazer uso das ferramentas propostas para estimar o impacto do componente em um futuro
sistema e definir um núcleo que seja mais facilmente testável, por exemplo.

A primeira abordagem proposta neste trabalho é detalhada no Capítulo 4 e considera
os sistemas cujos componentes se comunicam através de conexões dedicadas ou barra-
mentos funcionais. Para estes sistemas, o planejamento do teste consiste na definição de
um mecanismo de acesso aos componentes internos do circuito e de um mecanismo para
exploração do espaço de projeto. O mecanismo de acesso prevê o reuso das conexões
funcionais assim como o uso de barramentos de teste locais, núcleos transparentes e out-
ros modos de passagem do sinal de teste implementado no núcleo ou no seuwrapper. O
algoritmo de escalonamento de teste é definido juntamente com o mecanismo de acesso
de forma que diferentes combinações de custos em pinos, área e tempo de teste sejam
explorados. Além disso, restrições de consumo de potência do sistema podem ser consid-
eradas durante o escalonamento dos testes. Esta expansão dos conceitos de mecanismo de
acesso e dos parâmetros de otimização possibilita uma pesquisa detalhada, mas eficiente,
no imenso espaço de projeto destes sistemas. Os resultados experimentais apresentados
para este método mostram claramente a variedade de soluções que podem ser exploradas
e a eficiência desta abordagem na otimização do teste de um sistema complexo.

As principais contribuições desta primeira abordagem, batizada de ReBaTe (Reuse-
BasedTestPlanning), em relação às soluções existentes na literatura são:

1. não se assume um único tipo de mecanismo de acesso para o sistema. Barramentos
de teste são considerados juntamente com o reuso de conexões funcionais, modos
de passagem (transparência) eventualmente implementados por núcleos, e modos
de passagem (bypass) implementados peloswrappers;

2. a solução não otimiza totalmente cada núcleo de forma a minimizar o custo de teste
do sistema. Ao contrário, a diversidade dos requisitos de teste dos núcleos é explo-
rada de forma que núcleos que possuam mais requisitos de teste sejam privilegia-
dos com mais recursos (pinos, tempo, etc), enquanto núcleos menos críticos usam
menos recursos ou recursos mais caros que não representam um grande impacto no
custo do sistema como um todo;

3. o escalonamento de teste e o mecanismo de acesso a cada núcleo são definidos em
paralelo e não como tarefas independentes, como ocorre em outras soluções onde
o escalonamento é definido a partir de um mecanismo de acesso fixo. Este é um
dos aspectos que permite a exploração do espaço de projeto de forma que o melhor
compromisso entre os custos de tempo de teste, área e pinos seja definido.

Diferentes aspectos desta técnica são apresentados em três artigos: (COTA et al.,
2002), (COTA et al., 2002) e (COTA et al., 2003).

Redes em-chip serão, provavelmente, a principal plataforma de comunicação dos sis-
temas integrados, substituindo os atuais barramentos. Assim, a segunda abordagem de
planejamento de teste apresentada nesta tese propõe o reuso da rede em-chip como mecan-
ismo de acesso aos componentes internos aos sistemas que usam esta plataforma de comu-
nicação. Um algoritmo de escalonamento de teste que considera as restrições de potência

162

da aplicação é apresentado e a estratégia de teste é avaliada para diferentes configurações
do sistema, como o número de interfaces com o testador, diferentes posicionamentos dos
núcleos nos roteadores da rede e diferentes restrições para o consumo de potência. Os re-
sultados experimentais mostram que a capacidade de paralelização da rede em-chip pode
ser explorada para reduzir o tempo de teste do sistema, enquanto os custos de área e
pinos de teste são drasticamente minimizados. Esta é a primeira abordagem a considerar
o reuso da rede em-chip como mecanismo de acesso durante o teste e está sendo chamada
de NoCBaTe (NoC-BasedTesting). Este método é apresentado noVLSI Test Symposium
(VTS)(COTA et al., 2003), noEuropean Test Workshop (ETW)(COTA et al., 2003a) e no
International Test Conference (ITC)(COTA et al., 2003b) de 2003.

Ambas as técnicas são validadas através dos sistemas disponíveis noITC’02 SoC Test
Benchmarks. Dentre estes sistemas, o benchmark u226 é uma contribuição desta Univer-
sidade, resultado de um exemplo utilizado no artigo (COTA et al., 2002) que primeiro
apresentou a técnica ReBaTe.

No Capítulo 6, as duas técnicas são comparadas entre si e com outras técnicas de
teste apresentadas recentemente. A partir das comparações das técnicas propostas, pode-
se concluir que o teste baseado em redes em-chip apresenta um bom compromisso entre
custo e tempo de teste principalmente para os sistemas com grande número de núcleos e
que tenham um maior número de interfaces que podem ser reusadas durante o teste. Para
sistemas com pequeno numero de núcleos de hardware, a rede em-chip apresenta um
pequeno número de roteadores, e, conseqüentemente, um pequeno número de caminhos
de acesso que podem ser usados ao mesmo tempo. Neste caso, o método baseado no
reuso das conexões funcionais apresenta melhores tempos de teste a um custo geralmente
baixo em termos de pinos extras na interface do sistema e acréscimo de área.

A comparação deste trabalho com outras técnicas de teste apresentadas recentemente,
por outro lado, confirma a eficácia dos métodos propostos e pode ser vista como mais
uma contribuição deste trabalho, uma vez que não foi encontrado, na literatura atual, nen-
hum trabalho comparativo entre métodos baseados em barramentos de teste e métodos
baseados no reuso de conexões funcionais. Por fim, o uso dos benchmarks de sistemas
integrados presentes no conjunto ITC’02, permitiu a definição de algumas métricas e re-
gras que devem ser observadas na avaliação de métodos que lidam com o sistema de
maneira geral e não apenas com as informações dos núcleos embutidos. Como os bench-
marks provêem informações apenas sobre os núcleos e seus requisitos de teste, diferentes
suposições sobre os dados do sistema como conexões entre núcleos, localização dos nú-
cleos nochip, etc. levam a diferentes resultados em termos de custos de teste. Esta
discussão foi apresentada noLatin-American Test Workshop (LATW)de 2003 (COTA;
CARRO; LUBASZEWSKI, 2003a);

De modo geral, a principal contribuição técnica deste trabalho é a expansão dos con-
ceitos de mecanismo de acesso de teste e planejamento de teste para sistemas integrados
de hardware. A maior parte dos trabalhos nesta área considera apenas o barramento de
teste como forma de acesso e procuram minimizar os custos de definição e implementação
deste mecanismo, bem como o tempo de teste resultante para o sistema, sem considerar
aspectos do sistema como um todo. Nesta tese, o espaço de projeto do sistema é explo-
rado levando-se em conta os custos de teste e, vice-versa, o teste é definido de acordo
com as características e restrições de cada projeto. Assim, por exemplo, o projetista pode
verificar, antes da síntese, o impacto do modelo de conexão do sistema, dos núcleos es-
colhidos e até mesmo da localização dos núcleos nos custos de teste dochip.

Embora não apresentado neste texto, a definição de um controlador de teste embutido

163

no sistema é um trabalho derivado deste estudo e foi desenvolvido como projeto de dis-
ciplina e, posteriormente, como uma dissertação de mestrado. O controlador MET, ou
M icroprocessor forEmbeddedTestfoi inicialmente pensado para o testeat-speedde nú-
cleos profundamente embutidos no sistema. Sua primeira versão foi apresentada no5th
IEEE Workshop on Testing Embedded Core-based Systems(COTA et al., 2001). Estudos
para avaliação do desempenho e requisitos de memória para uso do controlador foram
realizados e apresentados em (CASSOL, 2002).

Apesar dos resultados positivos apresentados para as técnicas desenvolvidas neste tra-
balho, há, ainda, alguns pontos que podem ser aprimorados:

1. o estudo de outras heurísticas para estabelecer o espaço de pesquisa da ferramenta
ReBaTe;

2. a inclusão do controlador MET como um recurso de teste na ferramenta ReBaTe,
de forma que testeat-speedpossa ser tratado;

3. a otimização doswrappersantes da definição do mecanismo de acesso (método Re-
BaTe) e dos pacotes de teste (método NoCBate). A otimização proposta em (IYEN-
GAR; CHAKRABARTY; MARINISSEN, 2001), por exemplo, define um conjunto
de cadeias de varredura no wrapper de forma a minimizar o tempo de teste do nú-
cleo antes de se otimizar os custos do sistema;

4. a implementação em VHDL de um dos benchmarks disponíveis, para validação das
estimativas de área, tempo de teste e configurações assumidas nas duas técnicas
apresentadas;

5. o estudo de um método para geração automática dewrappersque implementem
não só as regras estabelecidas pelo padrão P1500, mas também os modos de op-
eração necessários para as soluções definidas nos métodos propostos. Este estudo
deve verificar, ainda, os requisitos em termos de sinais de controle e configuração
necessários para oswrappers;

6. a consideração de outras topologias de rede e outros algoritmos de roteamento
(roteamento dedicado, por exemplo) na técnica NoCBate;

7. no método NoCBaTe, a verificação do real impacto das interfaces funcionais de
largura menor que a largura do canal no tempo de teste do sistema;

8. a definição de outros modelos de pacotes de teste para o método baseado na rede
em-chip e verificação do tempo de teste resultante e do acréscimo de área para
modificação doswrappers;

9. embora os resultados apresentados neste texto tenham sido gerados considerando
um modelo de consumo de potência realista, este modelo é estimado e teórico.
Assim, o refinamento deste modelo é um ponto importante. Por exemplo, pode-
se considerar canais de comunicação na rede em-chip de tamanhos diferentes ou
modelos de consumo mais detalhados para os núcleos, como o modelo proposto
em (ROSINGER; AL-HASHIMI; NICOLICI, 2002).

Finalmente, considerando o teste de sistemas integrados de forma mais abrangente, os
seguintes temas de pesquisa ainda apresentam pontos em aberto:

164

• a inclusão do teste de blocos analógicos no planejamento de teste do sistema, con-
tinuando a linha de exploração das cracterísticas gerais de cada projeto. Núcleos
analógicos auto-testáveis, por exemplo, podem apresentar tempos de teste maiores
que os blocos digitais e este tempo pode ser usado para reduzir os custos dos mecan-
ismos de acesso digitais. O benchmark u226 é um exemplo de um sistema que
apresenta esta característica. Além disso, técnicas de teste para núcleos analógicos
baseados no reuso de processadores digitais presentes no sistema integrado têm sido
estudadas neste grupo de pesquisa (NEGREIROS; CARRO; SUSIN, 2003). Assim,
o escalonamento de teste para o sistema como um todo deve levar em consideração
este fato de forma que o teste seja consistente;

• núcleos auto-testáveis são considerados uma poderosa solução para reduzir os req-
uisitos de acesso do sistema sobre o testador externo. Contudo, o impacto de tais
blocos no planejamento de teste ainda não foi extensivamente estudado. Resulta-
dos preliminares considerando a definição de um conjunto de núcleos auto-testáveis
necessário e suficiente para minimização do tempo de teste do sistema foi apre-
sentado noTest Resource Partitioning (TRP) Workshopde 2003 (COTA; CARRO;
LUBASZEWSKI, 2003b). Porém, um estudo mais detalhado do método proposto
é necessário, bem como sua inclusão nas ferramentas de planejamento de teste de-
senvolvidas nesta tese.

165

APPENDIX B CD-ROM DESCRIPTION

The programs that implement the two proposed test planning methods, and the respec-
tive results for the ITC’02 benchmarks are available in the CD-ROM that accompanies
this manuscript.

The CD-ROM contains the following directory structure:

• NoCBaTe: This directory contains the source, executable, and example files of the
NoCBaTe tool, version 3.1.

– NoCBaTe_benchs:Description of ITC’02 SoC Test Benchmarks in the for-
mat required by the NoCBaTe tool. For each benchmark, there is a Matlab file
describing the system. This Matlab file is called by the function "gera_inicio",
which generates the input files .soc and .noc for the tool. For the current set
of benchmarks, those files are already available.

– NoCBaTe_v3.1: Source and executable of the NoCBaTe tool. To run the
scheduling, execute the file "scheduling2.exe". Three files are required as
input: a _in.soc, describing the system, a _in.noc, describing the network-
on-chip, and a _topology.sav, describing the placement of the cores into the
network. All files must have the same name as prefix.

• Placement: This directory contains the placement tools locally developed for the
placement of cores considering both, the core-to-core connection model, and the
NoC-based connection. The tools are built using a Simulated Annealing heuristic.

– Core-to-core:Placement tool for cores directly connected in a SoC. An ASCII
file describing the functional connections among cores, and the dimensions of
each core is used as input. As output, a table of distances among cores is
generated and saved into a text file.

– NoC_based:Placement tool for cores connected using a NoC platform. An
ASCII file describing the communication requirements of the system is used
as input. this file also contains the network dimensions (number of rows and
columns). The output of the placement is a text file indicating the location of
each core.

• ReBaTe: This directory contains the ReBaTe tool, version 2.4.

– ReBaTe_benchs:Description of ITC’02 SoC Test Benchmarks in the for-
mat required by the ReBaTe tool. For each benchmark, there is a Matlab file

166

describing the system. This Matlab file is called by the function “schedul-
ing” present in the directoryReBaTe_v2.4. Additionally, the results presented
in this manuscript are also present in this directory, as well as the resulting
placement for estimated functional connections.

– ReBaTe_v2.4:Source and executable of the ReBaTe tool. To run the test
planning, execute the file “scheduling” in the Matlab command window. The
Matlab file describing the system (as exemplified for the current set of bench-
marks), is required as input and must be informed in the beginning of the file
scheduling.m.

• Thesis

– Presentation: contains the Powerpoint file with the final presentation of this
thesis.

– Text: LaTeX files and figures used to generate this manuscript

• Publications: PDF files of the author’s publications related to this thesis. The com-
plete reference of each paper is described in the fileErikaCota_publications.pdf.

