
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL 

Seminário do Programa de Pós-Graduação em Engenharia Química 

VIII-Oktoberforum − PPGEQ 

20, 21, 22 e 23 de outubro de 2009 

MODELING AND SOLUTION OF METHANE JET DIFFUSION FLAMES 

Greice S. Lorenzzetti1, Álvaro L. de Bortoli1, Lígia D. F. Marczak1 

1
 Graduate Program in Chemical Engineering (PPGEQ) 

Federal University of Rio Grande do Sul (UFRGS) 

R. Eng. Luis Englert, s/n. CEP: 90040-040 - Porto Alegre - RS - BRAZIL, 

E-MAIL: greice@enq.ufrgs.br, dbortoli@mat.ufrgs.br, ligia@enq.ufrgs.br 

 
 

Abstract: The aim of this work is to model a jet diffusion flame, to show the corresponding proof of existence of solutions, and 

to present numerical results. The model is based on the flamelet equations for the chemistry and on the mixture fraction for the 

flow. Numerical tests are carried out for Sandia Flame D and the results are found to compare well with available data found 

in the literature. 
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1 Introduction 

Combustion corresponds to a complex sequence of 

chemical reactions between a fuel and an oxidizer, 

producing heat and sometimes light too. It is well known 

that combustion not only generates heat, which can be 

converted into power, but also produces pollutants such as 

oxides of nitrogen ( xNO ), soot, and unburnt hydrocarbons 

( HC ) (PETERS, 2006). In addition, unavoidable 

emissions of 2CO  are believed to contribute to the global 

warming. These emissions will be reduced by improving 

the efficiency of the combustion process, thereby 

increasing fuel economy. 

The flames can be classified as premixed, 

nonpremixed and partially premixed, being laminar or 

turbulent. For example, the combustion in homogeneous 

charge spark-ignition engines or in lean-burnt gas turbines 

occurs under premixed conditions. In contrast, combustion 

in a diesel engine or in furnaces essentially takes place 

under nonpremixed or partially premixed conditions. 

In diffusion (nonpremixed) flames the fuel and the 

oxidizer enter the domain in separate streams. If the fuel 

and the oxidizer velocities are small (low Reynolds) the 

mixture among fuel, oxidizer and products of combustion 

will be basically by diffusion, establishing a laminar 

diffusion flame. However, if the velocity is high, for high 

Reynolds, the mixture occurs due to the transport of mass 

characterizing the turbulent flux. 

Most of the applications of technical interest in 

combustion involves nonpremixed turbulent flames, as in 

jet engines, diesel engines, steam boilers, furnaces, and 

hydrogen-oxygen rocket motors (WARNATZ et al., 2001). 

The jet diffusion flame is an important example of 

nonpremixed flames. 

When the burner dimensions are much larger than 

the fuel jet diameter, of a jet diffusion flame, the heat 

losses to the walls are usually small and the contribution 

due to radiation turns negligible; radiation turns more 

important in furnaces, spreading of buildings and forest 

fires (LAW, 2006). 

When a chemically reacting flow is considered, the 

system at each point in space and time is completely 

described by specification of its pressure, density, 

temperature, velocity, and concentration of each species. 

These properties can change in time and space. These 

changes are the result of fluid flow, chemical reaction and 

molecular transport. A mathematical description of 

flames, therefore, has to account for each of these 

processes (WARNATZ et al., 2001). 

In this work we develop the flamelet model, we 

present results about the existence of solutions for the 

Lagrangian and the Eulerian flamelet models and show 

some numerical results for the Sandia Flame D. 

 

2. Governing Equations and the Flamelet Model 

The governing equations for combustion processes, 

in the gas phase, include the balance equations for mass, 

momentum, energy and chemical species (WILLIAMS, 

1985). 

We introduce the Lewis number as 
ip

i Dc
Le

ρ
κ= , 

ni  ..., ,2 ,1= , where κ  is the thermal conductivity, pc  is 

the specific heat capacity at constant pressure of the 
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mixture, ρ  is the density of the fluid, and iD  is the 

diffusivity of each species i . For methane flames we 

consider that the diffusivity and the temperature of all 

species are the same, and therefore the Lewis number of all 

species is equal to one (PETERS, 1992).  

The Favre averaging governing equations for a jet 

diffusion flame are the following: 
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Species Mass Fraction 
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Mixture Fraction 
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Energy 
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where the ‘~’ denotes the Favre averaged variables. Here, 

ju  is the velocity vector, ijτ  viscous stress tensor, iY  

mass fraction of each species i , iw&  reaction rate of the 

species i , Z  mixture fraction, T  temperature and ih  

specific enthalpy. The ρ  and p  denote the mean values 

of the density and pressure, respectively. The eR  is the 

Reynolds, cS  the Schmidt and eP  the Peclet numbers; the 

t  is the time, Tµ  eddy viscosity and pc  heat capacity. 

The reaction rate of species i  may be modeled as 

(5) TR
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where iν  is the stoichiometric coefficient of the 

component i , iW  the molecular weight of species i , A  

the frequency factor, E  the total activation energy, and R  

the gas constant. 

The Eq. (3) does not contain source term, since Z  

represents the chemical elements originally contained in 

the fuel, and these are conserved during the combustion. 

We assume that the mixture fraction Z  is a space and time 

function. 

The combustion occurs in a fine layer of the 

stoichiometric surface if the Damköhler number is 

elevated. We introduce an orthogonal coordinate system 

txxx  , , , 321 , where 1x  is normal to the surface 

( ) stZtxZ =,α , according to Fig. 1. We change the 

coordinate 1x  by mixture fraction Z  and 2x , 3x , t  by 

2Z , 3Z , τ , respectively. So, the temperature T  and the 

mass fractions iY  can be expressed as functions of the 

mixture fraction Z . By definition, the new coordinate Z  

is locally normal to the surface of stoichiometric mixture 

(PETERS, 1992). 

 
 

Figure 1. Orthogonal coordinate system to a surface of the 

stoichiometric mixture. 
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After neglecting high order terms, results the 

equations for the mass fraction and the temperature in the 

mixture fraction space (in the flamelet form)  
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where 

2
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kx
ZDχ  is the instantaneous scalar 

dissipation rate. 

The equations for the mixture fraction and the 

temperature may be conveniently written in the 

nondimensional form as 
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where aD  is the Damköhler number,  eZ  the Zel’dovich 

number and eH  the heat release rate. 

In the following we discuss the existence of solutions 

for the mass fraction and the temperature equations in the 

flamelet form. The proof of the existence is given by 

Faedo-Galerkin method. 

 

3. Existence of Solutions 

Starting with the incompressible flamelet equations, 

an appropriate transformation (PITSCH, 2002) leads to the 

Lagrangian or to the Eulerian flamelet models for the mass 

fraction equation, as follows: 

 

Lagrangian Flamelet Model 
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Eulerian Flamelet Model 
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where the time τ  is defined in the coordinate system 

attached to the stoichiometric surface. 

In the Eulerian system both the velocity vector and 

the scalar dissipation rate are functions of time, space and 

mixture fraction. Moreover, the velocity and the scalar 

dissipation rate are fluctuating quantities in a turbulent 

flow field. 

The equations (13) and (14) may be rewritten in a 

general form, respectively as 
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To prove the existence of solutions for the Lagrangian 

and the Eulerian flamelet model equations, we consider a 

bounded open Lipschitz set Ω  in 
3
R  and fixed 0

* >t . 

We consider also that ( )ΩD  is a space of functions 
∞

C  

with compact support contained in Ω , H  the closure of 

D  in ( )Ω2
L  and V  the closure of D  in ( )Ω1

0H  

(TEMAM, 1977; ODEN, 1979; FOIAS et al., 2001; 

DOERING & GIBBON, 2004). H  and V  are the Hilbert 

spaces associated, respectively, with the scalar products 
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and 'H  is the dual space of H , 'V  is the dual space of 

V . As the scalar products of Hf ∈  and Vu ∈  in H  is 

the same as the scalar product of f  and u  in the duality 

between 'V  and V , ( )ufuf ,, =  for all Hf ∈  and 

Vu ∈ . Moreover, for each Vu ∈ , the form 

( )( ) RvuVv ∈→∈ ,  is linear and continuous on V  and 

there exists an element Au  of 'V  such that 

( )( )vuvAu ,, =  for all Vv ∈ . 

We intend to find a vectorial function 

[ ] 3*
,0: Rtu →×Ω  such that 
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for the Lagrangian case, and 
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(22) ( ) ( )ZuZu 00, = , in Ω  

for the Eulerian case, where the functions f  and h  are 

given and defined in [ ]*
,0 t×Ω , and 0u  is given and 

defined in Ω . 

Consider now the Lagrangian flamelet model 

equations. Assuming that u  is a classical solution, we 

have that ( )QCu
2∈ . If v  is an element of D , then 
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Due to continuity, this equation is valid for each 

Vv ∈ . Therefore, we obtain a weak formulation of this 

problem, that is, given f  and 0u  with ( )';,0
*2
VtLf ∈  

and Hu ∈0 , we will find u  satisfying 
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(24) ( )VtLu ;,0 *2∈ , 

(25) ( ) ( )( ) vfvuvu
dt

d
,,, =+ν , Vv∈∀ , 

(26) ( ) ( )ZuZu 00, = . 

After rewriting this problem in a convenient way, we 

obtain the following result: 

 

Theorem: Let ( )';,0
*2
VtLf ∈  and Hu ∈0 . Then, 

there exists at least one function u  that satisfies 

(27) ( )VtLu ;,0 *2∈ , ( )';,0' *2 VtLu ∈ , 

(28) fAuu =+ν'  in ] [*,0 t , 

(29) ( ) ( )ZuZu 00, = . 

 

The proof of the theorem follows the Faedo-Galerkin 

method (LORENZZETTI & DE BORTOLI, submitted to 

Combustion and Flame). The result of the existence of 

solutions for the Eulerian Flamelet model equations is 

found in a similar manner. 

 

4. Numerical Solution via Large Eddy Simulation 

The solution of the Navier-Stokes equations for 

turbulent flows demands a great amount of computational 

time, because the resolution of the small scales in turbulent 

flows needs far more grid points than does the analogous 

laminar flow. In practice, a full solution of the Navier-

Stokes equations for turbulent reacting flows is not yet 

possible (WARNATZ et al., 2001). 

The Navier-Stokes solution of turbulent flows is itself 

time-dependent and there is not a steady solution, different 

from laminar flow solutions. If one estimates that at least 

1000 time steps are needed to represent a turbulent 

combustion process, the number of computational 

operations needed in the calculation easily exceeds 
14

10 , 

assuming 100 operations per grid point. So, the overall 

time for the computation increases with the fourth power of 

the Reynolds number. 

The usual numerical tools used for the solution of 

combustion problems are Reynolds Averaged Navier-

Stokes (RANS), Direct Numerical Simulation (DNS) and 

Large Eddy Simulation (LES). Turbulence models based 

on RANS equations employ turbulent transport 

approximations with an effective turbulent viscosity that is 

by orders of magnitude larger than the molecular viscosity. 

If steady state versions of these equations are used, this 

tends to suppress large scale instabilities, which occur in 

flows with combustion even more frequently than in 

nonreacting flows. If those instabilities are to be resolved 

in numerical simulations, it is necessary to resort to more 

advanced, but computationally more expensive, methods 

such as DNS or LES (PETERS, 2006). 

The LES is a very attractive tool for numerical 

simulations of fluid flows. The idea is to explicitly 

compute the largest structures of the flow field, typically 

the structures larger than the computational mesh size, 

whereas only the effects of the small ones are modeled 

(VEYNANTE & VERVISCH, 2003). LES for reacting 

flows allows more precise computations of turbulent 

flames but also opens new perspectives to compute the 

interaction between combustion and acoustics, especially 

combustion instabilities, which are a serious problem in 

many combustion devices. LES is especially well adapted 

to the study of these phenomena, which are controlled by 

large scale vortices, explicitly captured in LES 

(WESTBROOK et al., 2005). 

LES modifies the Navier-Stokes equations to obtain 

a new system of equations which is more amenable to 

approximate, while retaining all the most energetic 

features of the unperturbed problem. The classical idea is 

to use a filter which allows for the separation of large and 

small length scales in the flow field. Applying the filtering 

operator to the Navier-Stokes equations provides a new 

equation governing the large scales, except for one term 

involving the small velocity scales. Modeling this term in 

an appropriate manner (procedure commonly referred to 

as closure problem) we can arrive at a set of equations 

with only the large velocity, and pressure, scales as the 

unknowns (GUERMOND et al., 2004). 

In the following we indicate some numerical results 

for jet diffusion flames obtained using LES and we 

compare them with available experimental data found in 

the literature. 

 

5. Numerical Results 

The jet flame is chosen because it represents the 

class of nonpremixed flames. To build a burner one can 

surround a high velocity jet of gas fuel with an annular 

pilot flame of lower velocity (LEWIS & VON ELBE, 

1961). 

Those experimental flames which are well-defined 

and well-documented are used for comparison of the 

numerical values. Among the piloted flames, it seems that 

flame D is preferred (BARLOW & FRANK, 2003), 

(SCHNEIDER et al., 2003), (PITSCH & STEINER, 

2000), (SHEIKHI et al., 2005), when doing the 

comparisons because high Reynolds number is desired for 

model validation. Sandia flame D consists of a main jet 

with a mixture of 25% of methane and 75% of air. This jet 

is placed in a coflow of air and the flame is stabilized by a 

pilot. 

Consider the burner as shown in Fig. 2. The duct has 

a cylindrical cross section with 1=eD  and a cylindrical 

tube that injects fuel with 025.0=d ; the tube of the 

coflow has a diameter 0267.0=D  and the burner length 

is 11=L . The number of grid points was taken as 

5151199 ××  for flame D in the ( )zyx ,,  directions, 

respectively; x  corresponds to the axial direction. 
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Fig. 3 top shows the comparison between the 

experimental and the numerical instantaneous mixture 

fraction profiles along the burner centerline. The mixture 

fraction measures the reactants mixing and is mainly 

related to the large scale motions of the flow. The solution 

shows the axial decreasing behavior of the mixture 

fraction. The numerical result for the velocity along the 

burner centerline (see Fig. 3 below) is also in reasonable 

agreement with the experimental data. In order to avoid 

spurious oscillations in the vicinity of strong gradients, 

mainly close to the jet exit, a TVD (Total Variation 

Diminishing) scheme is applied for the advection of Z . 

 

Figure 2. Burner sketch 

 

Fig. 4 presents the comparison for the temperature 

and the fuel 4CH  mass fractions along the burner 

centerline. The numerical result agrees with the 

experiment, but the temperature is overpredicted mainly at 

40/ =Dx . The fuel 4CH  mass fraction is in very good 

agreement with the experimental data. 

Finally, Fig. 5 shows the 2CO  and the OH 2  mass 

fractions along the burner centerline. The carbon dioxide 

mass fraction is reasonably well predicted, while the water 

vapor maximum value is underpredicted. Away from the 

centerline the flow field is smoother, with smaller gradients 

and, consequently, low fluctuations. 

 

 

Figure 3. Comparison with experimental data (BARLOW 

& FRANK, 2003) for the mixture fraction (top) and velocity 

(below) profiles along the burner centerline. 
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Figure 4. Comparison with experimental data (BARLOW & 

FRANK, 2003) for the temperature (top) and fuel 4CH  (below) 

mass fractions along the burner centerline. 

 

 

 

Figure 5. Comparison of the 2CO  (top) and OH 2  (below) 

mass fraction profiles along the burner centerline with 

experimental data (BARLOW & FRANK, 2003). 
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6. Conclusion and Perspectives 

6.1 Conclusions 

In this work we have obtained the model for the 

solution of jet diffusion flames and we have indicated the 

corresponding proof of existence of solutions for the 

Lagragian and Eulerian flamelet model equations, based on 

the Faedo-Galerkin method. In addition, we showed some 

numerical results for a turbulent piloted methane-air 

diffusion flame, the Sandia Flame D (LORENZZETTI et 

al., submitted to The 3
rd
 Southern Conference on 

Computational Modeling). 

The LES results for the nonpremixed reacting flow, 

for Sandia Flame D, compare well with the available data 

found in the literature. The method, based on the low Mach 

number with a density relaxation, helps to obtain good 

results. We spend about 240 minutes to obtain the results 

in an Acer Aspire 5570-2792 Intel Pentium dual-core 

notebook of 1.60 Ghz and 1MB L2 cache. 

The authors show that the appropriate choose of the 

mathematical model helps the development of proofs for 

the existence of solutions for diffusion flames. Such and 

the comparison of numerical and experimental values with 

experimental data correspond to the main contributions of 

the present paper. 

 

6.2 Perspectives 

Before obtaining the solutions for piloted methanol 

and ethanol diffusion flames, we intend to solve for a 

higher Reynolds jet. 

The incompressible two-dimensional Navier-Stokes 

equations in the Cartesian coordinate system ( )yx,  can be 

expressed in conservative form (GOKARN et al., 2006) as 
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Here, Q  is the vector of unknown variables. The 

velocity field corresponds to the stream-wise velocity u  

and cross-stream velocity v . The pressure field is modified 

to account for the density of a fluid with kinematic 

viscosity. To couple the equations, the vector Q  can be 

modified, allowing the use of preconditioning techniques 

which have shown to improve the convergence for time-

marching methods. In this way we write 

(31) ( )Tv ZvupQ ,,,= , 

which is incorporated in Eq. (30) using the chain rule. The 

new equations can be conveniently solved for steady-state 

solutions using preconditioning techniques. The system 

turns 
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p , β  is the artificial 

compressibility parameter, t  is the physical time and τ  is 

the pseudotime. 

The set of equations (32) is discretized using a 

second order finite difference scheme for the physical 

time, an integrated using a second order Runge-Kutta 

method for the pseudotime, and second order explicit 

finite difference scheme for all spatial terms. 

Based on this model we intend to find solutions like 

the one showed in Fig. 5, where iu  is the central stream 

velocity and 0u  is the outer stream velocity. After solving 

this flow we intend to introduce the chemical model in 

order to obtain the solution of diffusion flames of 

methane, methanol and ethanol (LORENZZETTI et al., 

work in progress), as a natural sequence to understend the 

ethanol nonpremixed combustion. 

 

Figure 5. Instantaneous spanwise vorticity contours of the 

shear layer evolution for 3
0
=u

i
u  at st 40=  (GOKARN et 

al.; 2006). 
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