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ABSTRACT

The improvement of reliability in electrical power distribution networks is an

important issue for electricity supply industries, due to strict regulations in many

countries.

After a failure in the network, some switches are used to isolate the failure,

while others restore the energy to some consumers. The optimal selection of

the switches to open or close to restore energy is called the service restoration

problem. The installation of switches in strategic places may reduce the outage

time in case of blackouts, and thus improve the reliability of the network. The

optimal selection of places to install switches is called the switch allocation

problem. These two problems are closely related.

This dissertation studies the switch allocation problem, considering the service

restoration problem as a sub-problem. Two methods are proposed to estimate the

reliability of a distribution network with a given set of installed switches. The

main focus is in heuristics to solve the joint problem. It proposes methods like

tabu search, greedy randomized adaptive search procedure, and iterated sample

construction with path relinking. It also studies the benefit of greedy, semi-

greedy, random, and sample construction methods, and studies the performance

of sample, first improvement and best improvement local search strategies. The

different methods are compared and analyzed. The results show that sample

approaches are inexpensive and lead to solutions of good quality. Iterated sample

construction with path relinking is the best method to solve the joint problem that

is proposed in this dissertation.

Keywords: Heuristics, switch allocation, electric power distribution networks.





RESUMO

A melhora da confiabilidade em redes de distribuição de energia elétrica é um

tema importante para as indústrias de fornecimento de eletricidade, devido aos

regulamentos estritos em muitos países.

Depois de uma falha na rede, algumas chaves são usadas para isolar a falha,

enquanto outras restauram a energia a alguns consumidores. A ótima seleção

das chaves que serão abertas ou fechadas para restaurar a energia é conhecido

como o problema de restauração de serviço. A instalação de chaves em posições

estratégicas pode reduzir o tempo de parada, e assim melhorar a confiabilidade

da rede. A seleção ótima de posições para instalar chaves é conhecido como

o problema de alocação de chaves. Estes dois problemas estão relacionados

estreitamente.

Esta dissertação estuda o problema de alocação de chaves, considerando

o problema de restauração de serviço como um subproblema. Dois métodos

são propostos para estimar a confiabilidade de uma rede de distribuição com

um conjunto dado de chaves instaladas. O foco principal está nas heurísticas

para resolver o problema composto. Propõe-se aqui métodos como busca tabu,

procedimento de busca gulosa adaptativa aleatória (sigla em inglês: GRASP), e

procedimento iterativo de construção por amostras com reconexão de caminhos.

Também estuda-se o benefício dos métodos de construção gulosa, semigulosa,

aleatória e por amostras, e estuda-se o desempenho das estratégias de busca local

por amostras, primeira melhoria e melhor melhoria. Os diferentes métodos são

comparados e analisados. Os resultados mostram que os métodos por amostras

são baratos e levam a soluções de boa qualidade. O procedimento iterativo de

construção por amostras com reconexão de caminhos é o melhor método proposto

para resolver o problema composto que é proposto nesta dissertação.

Palavras-chave: Heurísticas, alocação de chaves, redes de distribuição de energia

elétrica.
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1 INTRODUCTION

The purpose of electrical power distribution networks is to deliver the energy

to the consumers with an adequate quality. The capacity to deliver energy

adequately is called reliability of the network. Depending on the country, the

government regulations establish limits and goals to improve periodically the relia-

bility of the distribution networks. Besides, consumer demand increases, requiring

the expansion of networks without jeopardizing its reliability. The improvement

of the reliability is an important issue for electric distribution enterprises, because

they can be penalized if the reliability falls out of reference limits.

Many measures are used to estimate the reliability of a distribution network. In

this research, the focus of reliability measures is the impact of failures in elements

of the distribution system over the consumers. When a failure occurs, there is

a blackout in a part of the distribution network. Sectionalizing devices such as

switches and fuses are used to isolate failures and reconnect areas without energy.

In this way, the time and number of power blackouts is reduced and the reliability

is increased.

The consumers that are affected will depend on the number and location

of the sectionalizing devices in the network. During the planning process

for improving or expanding an actual distribution network, a combinatorial

optimization problem emerges. This problem is the selection of the optimal

locations for installing sectionalizing devices in the network.
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1.1 Research objective and contribution

1.1.1 Objective of this research

This research focuses on heuristic methods to approximate the optimal

locations for installing automatic switches in an electrical power distribution

network and thus improve its reliability.

1.1.2 Contribution of this research

This dissertation presents three major contributions. The first contribution is a

new method to estimate upper and lower bounds for the reliability of an electrical

power distribution network. The second contribution is a library of test instances

for the switch allocation problem. This library standardizes instances found in

literature and adapts new instances from telecommunication networks to be used

with different reliability measures. The third contribution is the proposal and

comparison of heuristics to solve the switch allocation problem. The proposed

algorithms are greedy randomized adaptive search procedure (GRASP), sample

construction, sample local search, and iterated sample construction with path

relinking.

1.2 Research context

This dissertation outlines research efforts concerning switch allocation in

distribution networks to improve their reliability. Partial results for this research

were published in two papers (BENAVIDES et al., 2009b, 2009a), but the results

presented in the papers and in the dissertation are different. This section explains

the timeline progress of the research, describing its contributions in more detail,

and pointing out the differences of results presented in this dissertation and in

previous publications.
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This study continues previous research of Costa et al. (2007, 2008). Costa

et al. (2007) proposed a method to approximate the network reliability, ignoring

the electrical constraints. They use this method with two algorithms, a greedy

construction algorithm and a tabu search. The algorithms are compared using

four instances (described in Section 5.1). They concluded that solutions generated

tabu search overcame greedily generated solutions. Costa et al. (2008) proposed

another method to approximate the network reliability, but now considering the

electrical constraints and the service restoration. They proposed the use of these

two methods to estimate upper and lower bounds for the reliability. They only

used the greedy algorithm over the reliability estimation with electrical constraints

and calculated the upper and lower bounds for the generated solutions, justifying

that the calculations of electrical constraints are too costly for the tabu search.

They tested the same four instances to validate the approach.

This is the starting point for the research presented in this dissertation. The

first contributions of our research were published by Benavides et al. (2009b).

They include the optimistic improvement over the service restoration algorithm

(Section 3.4), the adaptation of telecommunication networks to generate test

instances for the switch allocation problem (Section 5.3), two local search

strategies (first and best improvement in Section 4.2.2) that were tested within

two metaheuristics, GRASP (Section 4.2) and tabu search (Section 4.3). This

paper compared the performance of the two metaheuristics with the instances

used by Costa et al. (2007, 2008) and the new synthetic instances. It concludes

that a multi-start strategy gives better results than a strategy to escape local

minima.

The above research was mainly based on the four instances of Costa et al.

(2007) and a nonstandard reliability measure used by Costa et al. (2007, 2008)

and Benavides et al. (2009b). We searched for known instances and a standard

measure to compare our methods with other authors. The first attempt was to use

expected energy non supplied (EENS) with the RBTS bus 4 instance.
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Other contributions of our research were published by Benavides et al.

(2009a). They include the use of EENS as a standard reliability measure, the

adaptation of the RBTS bus 4 instance for service restoration problem to the

switch allocation problem (Section 5.2), sample construction and local search

algorithms (Section 4.4), and their comparison with other construction and local

search strategies. The paper used an outage time of rf = 3h to calculate EENS.

In this dissertation, the outage time is rf = 2h for all test cases. This created a

difference in the results that reduces the EENS values of the paper in a factor of

1/3. The paper concludes that a sample construction obtains better results than

semi-greedy and random constructions, and that a neighbourhood restricted by a

random sample speeds up the local search.

Novel unpublished contributions are the comparison of other reliability

measures (Section 3.1), the improvement of reliability estimation by sectors

(Section 3.2), the adaptation of other instances from a repository of distribution

systems (Section 5.4), and an iterated sample construction with path relinking.

The use of other reliability measures and the new reliability estimation by

sectors motivated the reproduction of the experiments from previous publications

for the writing of this dissertation. Concurrently, we extend the experiments to

the new set of test cases with large instances.

1.3 Scope of the dissertation

There are several issues that could be considered for the switch allocation

problem and/or the service restoration problem. We had to limit some of them for

different reasons. Here, we list some limitations and their implications.

Many works in literature use costs functions that minimize the investment

in devices and the detriment of power losses. But the costs they use in their

approaches is not always clear. The determination of power losses costs is affected
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by the type of consumer, e.g., residential, industrial, government, health care,

they have different costs for energy losses. Moreover, costs of sectionalizing

devices vary with time and depend on importation costs and taxes from different

countries. These reasons difficult the comparison and use of approaches based

in cost functions. Our approach supposes that an investor defines a budget and

a number of switches to be installed. For these reasons, our research focuses

in reliability optimization using estimation measures that are not based in costs,

and the proposed optimization methods receive the number of switches as a

configurable parameter.

There exist many different sectionalizing devices such as switches, fuses,

or reclosers. They differ in costs and time of response after a failure. The

model required to simulate the response of devices from different kinds is more

complicated and requires specific knowledge of the devices. Therefore, our

research focuses on one type of device, automatic switches, and the time of

response is considered immediate.

1.4 Overview of the dissertation

The remainder of this dissertation is organized as follows. Chapter 2

introduces the electric power distribution networks and presents a graph-based

model for the problem. Chapter 2 also describes the service restoration problem

and the switch allocation problem, and explains the motivation for considering

them together. Chapter 3 reviews the reliability measures and proposes reliability

algorithms to estimate upper and lower bounds. Chapter 4 depicts the proposed

heuristics and meta-heuristics for solving the switch allocation problem. In

Chapter 5, problem instances are described and adapted to create a set of test

cases for our algorithms. Chapter 6 provides the experimental tests and results

of this research. Finally, Chapter 7 presents the conclusions of this research and

ideas for future study.
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2 SWITCH RELATED RELIABILITY PROBLEMS OF

ELECTRIC POWER DISTRIBUTION NETWORKS

This chapter describes the two optimization problems related to switches and

to reliability maximization in distribution networks, and presents a literature

review. With this aim, the main characteristics of electric power distribution

networks are introduced and a graph model is presented in Section 2.1.

Section 2.2 explains the service restoration problem. Finally, Section 2.3 describes

the switch allocation problem, and the motivation for considering the service

restoration problem as a subproblem.

2.1 Electric power distribution networks

The purpose of an electric power system is to satisfy the system load

requirements, providing an adequate supply of electric energy. Electric energy

cannot be stored in large scale, but must be distributed to the consumers in real

time. Electric power systems are divided in three subsystems:

Generation System. The plants of this system generate the electric energy.

There are different generation methods: hydroelectric, eolic, solar thermal,

geothermal, nuclear, etc.

Transmission System. The transmission lines carry energy for long distances.

Energy flows from generation plants to distribution substations. They
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operate with power tensions above 60 kV . The lines that work on shorter

distances with less power tension are called subtransmission lines.

Distribution System. These systems link the substations and the final consumers.

They work with power tension between 2.4 kV and 34.5 kV .

These three subsystems are interconnected with substations. Substations are

facilities that change alternating current voltage between different voltage levels.

Step-up substations receive power from generation systems and increase the

voltage for transmission to distant locations. Step-down substations receive high

voltage and decrease it for local distribution. Distribution substations transform

the voltages to consumer voltages. They are usually located in the street posts or

underground, close to the consumers.

2.1.1 Distribution networks

Fig. 2.1 shows an example of an electric power distribution network taken

from Civanlar et al. (1988). The basic circuit of a distribution system (Fig. 2.1a)

is a set of non-cyclic circuits that supplies energy to the consumers. It contains

substations (square nodes) that serve as sources of energy for their local areas of

distribution, consumers (round nodes) that receive the energy, and feeder lines

(black lines) that carry the energy between the substation and consumers. In the

case of a failure, relays at the substation will open a circuit breaker de-energizing

the entire circuit. This leaves consumers without power until repairs are made.

To reduce the outage time (Fig. 2.1b), the circuit may have redundant loop

feeder lines (dotted lines), and a number of switches. The switches in loop lines

are called normally open because they are disconnected under normal operating

conditions to preserve the radiality of the network. The switches in feeder lines of

the basic circuit are called normally closed because they close the circuit and bring

energy in normal operating conditions. The function of the switches is to modify

the network topology in the case of a failure, isolating the failure and restoring
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Figure 2.1: Example of a distribution network.

the energy supply in parts of the network. This topology modification is called

network reconfiguration. An example of a reconfiguration is given in Section 2.2.

2.1.2 Graph-theoretic model

We model an electric distribution network as an undirected graph G = (N,A),

where the set of nodes N = NS ∪ NC represents the set of substations (NS) and

consumer load points (NC), and the edge set A = Anc ∪ Ano represents normally

closed (Anc) and normally open (Ano) feeder lines.

We write G′ ⊆ G to express that G′ is a subgraph of G. We also write

V (G′) = N and E(G′) = A for the vertex and edge set of a graph or subgraph

G′ ⊆ G. We define the union of two graphs as the union of their respective node

and edge sets, i.e., G1 ∪ G2 = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)).
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The presence of a switch on an edge a ∈ A is indicated by a boolean value

Ba ∈ {0, 1}. Observe that a loop line without a switch (a ∈ Ano, Ba = 0) indicates

that the loop line is not operative. Thus, two solution representations can be used

for the switch allocation problem. A sequence of boolean values B = {Ba}, a ∈ A

that indicates which lines do or do not have a switch installed, or the set of lines

themselves with switches AB = {a}, a ∈ A,Ba = 1.

The sector S(n) corresponding to a node n ∈ N is defined as the largest

connected subgraph of G which contains n and is connected only with basic

circuit feeder lines that have no switch installed (a ∈ Anc, Ba = 0). For any edge

a = {u, v} we define the corresponding sector S(a) = S(u) ∪ S(v) ∪ ({u, v}, {a})

as the union of the sectors of the nodes that it connects.

The frontier of a sector F(S(n)) is the set of edges a ∈ A which are incident

to exactly one node in the sector. Note that frontier edges a ∈ F(S(n)) for a node

n ∈ N are redundant lines (a ∈ Ano) or lines with switches (a ∈ A,Ba = 1).

For a fault in feeder line f ∈ A, we call the sector S(f) as black. Sectors

are called gray when they are not connected to any substation in the basic circuit

without the black sector. We abbreviate Nf for the set of affected nodes in black

and gray sectors where energy can not be restored.

Figure 2.2 shows the example network divided by switches into sectors. The

set of nodes N = {1, . . . , 16} has three substations NS = {1, 2, 3}. The set of

loop lines is Ano = {{5, 11}, {7, 16}, {10, 14}}. Assuming a fault in feeder line

f = {8, 10}, we have the black sector S(f) with node set V (S(f)) = {8, 10} and

edge set E(S(f)) = {{8, 10}}, limited by the frontier F(S(f)) = {{2, 8}, {8, 9},

{10, 14}}. Note that switches in the frontier must be opened to isolate the failure.

The fault also leads to a gray sector S(9) = ({9, 11, 12}, {{9, 11}, {9, 12}}). The

other sectors shown in white are still energized.
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Figure 2.2: Sectored distribution network with a failure.

2.1.3 Electrical characteristics and constraints

Distribution networks present electrical characteristics and constraints that

must be respected in normal operation conditions. Next, we list the electrical

characteristics of the network components.

• Each line a ∈ A has a maximum capacity ca (in Ampere), a resistance Ra and

a reactance Xa (in Ohms).

• Each substation n ∈ NS has a capacity cn (in MW).

• Each consumer load point n ∈ NC has a power demand Dn, a real load Pn

(in W), a reactive load Qn (in VAR), and a number of consumers Mn. The

real and reactive power loads can be calculated from the power demand with

a power factor pf and the equations Pn = pf ∗Dn and Qn
2 = Dn

2 − Pn
2.

• The whole network has a nominal voltage level V (in V) and a maximum

voltage drop (as a percentage).

A configuration of switch states is considered electrically feasible if it satisfies

electrical operating constraints. The constraints that we consider are:

Radiality of the network. The graph formed by the feeder lines without switches

and feeder lines with closed switches has to be a collection of trees, with

each tree having one substation as its root.
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Capacity constraints. The capacity of the substations and the feeder lines must

be respected.

Voltage constraints. The voltage drop at each load point must not exceed the

predefined limit.

The method used to test the electrical constraints is explained in Section 3.4.

2.2 The service restoration problem

The process of reconfiguration in electric power distribution systems with a

given set of installed switches, consists in opening and closing some switches to

obtain a new network topology. The network reconfiguration problem consists

finding a new feasible topology which optimizes some objective functions. Possible

objectives are to reduce the overall system power loss, to balance the load and

relieve network overloads or manage load variations of different consumer types,

to maximize reliability, to minimize the number of switching operations and thus

reduce the reconfiguration costs.

Network reconfiguration has been studied extensively in the literature, and

the most common objective function is power loss minimization. Among the

metaheuristics proposed to solve it are simulated annealing (JEON et al., 2002;

SANTANDER et al., 2005), tabu search (ZHANG et al., 2005; ZHANG; FU; ZHANG,

2007), genetic algorithms (DELBEM; CARVALHO; BRETAS, 2005; CARRENO;

ROMERO; PADILHA-FELTRIN, 2008), ant colony optimization (SU; CHANG;

CHIOU, 2005; KHOA; BINH, 2006), particle swarm optimization (ZHANG;

ZHANG; GU, 2007; WU; TSAI; HSU, 2007), and plant growth simulation

algorithm (WANG; CHENG, 2008; WANG; CHENG; YAO, 2008). Thakur

& Jaswanti (2006) present a detailed survey on power distribution network

reconfiguration.



35

The service restoration problem is a special case of the network reconfigura-

tion problem. Given a set of installed switches and a failure, the problem consists

in choosing which switches must be opened or closed to maximize the attended

area, and thus maximize the network reliability.

In the example of Figure 2.2, when a failure condition is detected, the switches

on the fault frontier (F(S(f)) = {{2, 8}, {8, 9}, {10, 14}}) must be opened to

isolate the fault, and other switches can be closed to restore the energy supply

in other sectors (loop line {5, 11}). The resulting topology is shown in Figure 2.3

where the sector S(9) = ({9, 11, 12}, {{9, 11}, {9, 12}}) is energized again.
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Figure 2.3: Reconfigured distribution network.

The service restoration problem is a subproblem of the switch allocation

problem, discussed next.

2.3 The switch allocation problem

Switches play a key role for the reliability of electric power distribution

networks (BILLINTON; JONNAVITHULA, 1996a). The number of unattended

consumers and the amount of non-supplied energy depend directly on the number

and position of the switches in the network (LEVITIN; MAZAL-TOV; ELMAKIS,

1995). Automatic sectionalizing switches are able to diagnose a fault and

eventually to automatically reschedule the respective configuration (CELLI; PILO,
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1999). The installation of automatic switches in distribution systems allows a

better and faster reconfiguration, and hence increases reliability. Electric power

distribution networks are large, and installing automatic switches at every line

feeder is not possible due to high costs. Therefore, the adequate selection of switch

installation locations is important in system planning.

The switch allocation problem consists in selecting a set of feeder lines to

install i new automatic switches in a distribution network. The objective is to

maximize the reliability, i.e., to maximize the attended area in the case of failures,

and it is subject to the number of available switches for allocation and to the

electrical constraints.

This problem has been studied by several authors with different approaches.

Next, we describe some of them.

Levitin, Mazal-Tov & Elmakis (1995) presented a genetic algorithm to

determine the location of a user-specified number of switches, and modified the

crossover operator to adapt it to the problem. They used a binary representation,

and as reliability measure they approximate SAIDI from the annual non-supplied

energy. They tested the proposed methods in a network with 96 lines and 52 load

points.

Billinton & Jonnavithula (1996a) proposed a simulated annealing approach.

They considered the investment, maintenance and outage costs in a single global

cost function to determine the best number and location of switches. They used

ECOST for the outage costs. For tests, they used two previously proposed test

systems known as RBTS bus 4 and RBTS bus 6 (ALLAN et al., 1991; BILLINTON;

JONNAVITHULA, 1996b).

Carvalho, Ferreira & Silva (2005) presented a decomposition approach based

on divide and conquer. They represented the solution as a binary array of the

possible location places for remote controlled switches. They reduced the problem

complexity by using a polynomial-time partitioning algorithm to decompose the
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problem into a set of convex independent subproblems to be solved independently.

The objective function was the sum of installation costs and the EENS multiplied

by a fixed cost. The algorithms were tested in a real distribution network with

eleven possible places for remote switches, showed that reduces the search space

from 211 evaluations to 60 evaluations, and found the best solution.

Chen et al. (2006) and Lin et al. (2006) proposed an immune algorithm and

compared the results with a genetic algorithm. The objective function was the sum

of the consumer interruption cost and the investment cost of installation switches.

A sample test system with 19 load points and a real distribution system with 90

load points from Taiwan Power Company were used for tests.

Silva, Pereira & Mantovani (2004a, 2004b) proposed genetic algorithms to

allocate switches, reclosers and fuses. The device allocation problem was modeled

with non-linear integer programming models. The objective function for the first

paper was SAIFI and for the second was a cost estimation for installation and non

supplied power. They tested their approach in real circuits of 134 and 20 lines

respectively.

Silva et al. (2008) proposed a reactive tabu search to the device allocation

problem. The objective function was a sum of estimated costs. Two sets of

neighbours had been defined for a given solution. The first set of neighbours

contains all the possible solutions where a single device is moved from its current

location to any other allowed empty location within the feeder. The second set of

neighbours is defined by increasing in one unit, any type of device independently.

The tabu list kept the evaluated solutions of a pre-established number of iterations,

considering also a maximum number of devices that can change their positions

simultaneously. The reactive mechanism increased the size of the tabu list when

solutions are repeating, and decreases it when there were no repeated solutions

for a number of iterations. Again, presented results were from tests with the 134

lines real circuit.
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Moradi & Fotuhi-Firuzabad (2008) treated the problem with a three state

Particle Swarm Optimization (PSO). Their ternary representation considered the

installation of sectionalizing and circuit breaker switches. The optimization

function is ECOST and the test instances were the RBTS bus 4 (ALLAN et al.,

1991) and the IEEE 123 node test feeder (KERSTING, 2001).

Villasanti, Baran & Gardel (2008) proposed an evolutionary multiobjective

algorithm. Three objective functions were selected, minimization of the number

of new installed switches, minimization of unavailability index, and maximization

of the number of successful restoration simulations. A restoration is successful if

it isolates every load point with failure and restores the energy supply to all other

load points. They used a test system from Paraguay called “tres bocas” with 80

load points and 117 lines.

Falaghi, Haghifam & Singh (2009) presented an ant colony optimization

algorithm. They used a multiobjective approach with fuzzy membership sets. The

objectives were defined as minimization of the cost of sectionalizing switches and

reliability improvement measured with EENS. They used two instances for tests,

they adapted part of the RBTS bus 6 (BILLINTON; JONNAVITHULA, 1996b) and

used a private network of Iran.

For a survey of other solution methods, we refer the reader to (ELMAKIAS,

2008). Many of the described approaches use a simplification to calculate the

unattended areas assuming that, for a given set of switches and a failure, the

affected nodes are known or easy to compute, estimating the reliability measures

with statistical data and assuming that gray sectors can be restored if there exists

a loop line. This disregards the underlying service restoration problem with

electrical constraints. For example, if there exist a loop line that can restore the

energy supply to a gray sector, there still exist the possibility that the substation

can not support it or that the voltage drops out of allowed limits.
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The described approaches use different objective functions, allocate different

types of switches and evaluate on different test instances. Frequently, the instances

are not completely specified and their optimum value is not known. This makes

impossible to compare directly their results.

Our approach takes into account the service restoration problem as a

subproblem. To evaluate a solution for the switch allocation problem, we must

solve the embedded service restoration problem for every possible fault, taking

into account electrical constraints. In this way, we obtain a better approximation

for the network reliability of the switch allocation solution, and we handle larger

and more complex network instances, that do not satisfy the assumptions of

simple restoration heuristics. The method we propose to estimate the reliability is

explained in Chapter 3.
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3 RELIABILITY ESTIMATION OF ELECTRIC POWER

DISTRIBUTION NETWORKS

Electric power distribution systems deliver energy with a reasonable assurance

of continuity and quality. The ability of the system to provide an adequate supply

of electric energy is usually designated by the term of reliability. There exist many

reliability measures, and the most common are described in Section 3.1. They are

used to assess the reliability of real networks and to estimate the reliability during

the network planning process.

In this chapter, two methods are proposed to estimate the upper and lower

bounds of reliability of an electric power distribution network. The common part

of the reliability estimation methods is explained in Section 3.2. The different

service restoration methods to calculate the reliability lower and upper bounds

are explained in Sections 3.3 and 3.4, respectively. We explain the upper and

lower bounds using EENS reliability measure as example. Costa et al. (2007,

2008) and Benavides et al. (2009b) used APSE reliability measure with inverted

bounds, because APSE and EENS are inversely correlated (see Section 6.1). Other

measures can be used, taking into account the bounds order.
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3.1 Distribution network reliability measures

Generally, a device or system is said to perform satisfactorily if it does not fail

during service time. Power distribution systems are expected to go under failures,

be repaired and then return to service. In this case, more appropriate measures of

reliability are indices of energy unavailability.

There are many measures to assess the reliability of a power distribution

network. The most common measures in the literature are expected outage

cost (ECOST), expected energy non supplied (EENS), system average interruption

frequency index (SAIFI) and system average interruption duration index (SAIDI).

Another measure used by Costa et al. (2007, 2008) and Benavides et al.

(2009b) is average percentage of supplied energy (APSE). This reliability measure

is nonstandard, but it was used in the early phases of our research.

The measures are defined as:

ECOST =
∑

f∈Anc

λf ·
∑
n∈Nf

PnCn(rf ) (US$),

EENS =
∑

f∈Anc

λfrf

∑
n∈Nf

Pn (MWh/period),

SAIFI =
1

M

∑
f∈Anc

λf ·
∑
n∈Nf

Mn (Interruptions/period),

SAIDI =
1

M

∑
f∈Anc

λf · rf ·
∑
n∈Nf

Mn (h/period),

APSE =
1

|Anc|
· 1

P

∑
f∈Anc

∑
n∈NC\Nf

Pn (Percentage)

where Anc is the set of feeder lines that can fail, Nf is the set of affected nodes by

a failure f and N \Nf is the set of unaffected nodes. rf is the average outage time

(in hours) and λf is the average failure rate. Pn is the energy normally consumed

by node n and P is the total demand of the network. Mn is the number of affected

consumers on node n and M is the total number of consumers. Cn(rf ) is an outage

cost function that depends on outage time and consumer type.
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Different measures depend on different parameters, and serve for different

purposes. For example, SAIFI and SAIDI depend on the number of consumers and

are used to measure the consumer satisfaction, ECOST and EENS depend on the

non-supplied energy and are used to estimate the lost energy and its respective

cost. All these measures consider the failure rate for every line (except APSE)

and the related outage time (except SAIFI and APSE). The most simple measure is

APSE because it only depends on the consumers demand.

We use four of these measures (EENS, SAIFI, SAIDI and APSE) and compare

them in Section 6.1. A detailed explanation of these and other common measures

can be found in IEEE Std 1366 (2003) and Goel & Billinton (1991).

3.2 Network reliability: assessment and bounds

This research proposes methods to solve the switch allocation problem taking

into account the service restoration problem. The reliability estimation for a given

solution to this joint problem is not easy. This means, for a given set of lines

with new automatic switches installed, we have to determine the reliability after

restoration for each possible failure in the network. Costa et al. (2007, 2008)

proposed two approaches to estimate this reliability. They differ in the service

restoration algorithm. The function of the restoration algorithm is to determine if

a load point n does or does not belong to the set of nodesNf affected by a failure f .

The first restoration algorithm considers only the network connectivity and ignores

the electrical constraints mentioned in Section 2.1.3, and therefore obtains a lower

bound for the EENS. The second algorithm includes these constraints, obtaining

an electrically feasible solution for the service restoration problem, and therefore

obtains an upper bound for the EENS. These two service restoration algorithms

are explained in the next sections.

The common part of these two approaches is described in Algorithm 3.1. For

every failure f it performs three steps. First, it expands and isolates the failure,
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obtaining the black area and its frontier. Second, it determines the served and

non-served load points with one of the service restoration algorithms. Third, it

calculates the partial EENSf of the consumers n ∈ Nf affected by the failure f .

Finally, it sums the total EENS.

An algorithmic improvement proposed in this work is an evaluation by sectors.

The sectors defined by a given set of switch positions and open lines do not

change during an evaluation. The most expensive process is the failure restoration

algorithm. So, we define a set of sectors SS = {S(n)|n ∈ N} that contains all the

disjoint sectors of nodes n ∈ N . Note that we define the set with sectors of nodes

and not of edges, because a sector S(a) = S(u) ∪ S(v) ∪ ({u, v}, a) can be formed

by two non-overlapping sectors of nodes if a = {u, v} is a frontier edge.

Algorithm 3.2 shows the improved estimation. This time we process sector by

sector (lines 2-9), saving computing time. Note that frontier feeder lines (normally

closed with switches) must still be processed separately (lines 10-17), because

they are not within any sector. First, it simulates a failure in each sector from the

sector set SS. The black area is the current sector, so the failure does not need to

be expanded and the frontier is known to be isolated. Second, it determines the

non-served load points with a service restoration algorithm. Third, it calculates

the partial EENSf of the consumers n ∈ Nf affected by the failure f , evaluating it

for every feeder line a ∈ E(S(f)) in the black sector at once (line 7).

We follow a similar process than the original method to evaluate the frontier

lines, but we determine and isolate the black sector S(f) easily with help of the

defined sectors (lines 12 and 13). Finally, the algorithm returns the total EENS.

We can also describe the estimation by sectors of the EENS as:

EENS =
∑
Sf∈SS

(( ∑
a∈E(Sf )

λara

)(∑
n∈Nf

Pn

))
+

∑
f∈Anc∩AB

λfrf

∑
n∈Nf

Pn

where the first term is the summation of the partial EENS of every sector and the
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Algorithm 3.1: Network reliability estimation
Input: Distribution network G = (N,A), installed switch positions S.
Output: Estimated reliability EENS.

1: EENS← 0
2: for ∀a ∈ Anc do
3: Simulate a failure f in the feeder a
4: Expand the failure to define the black area S(f)
5: Isolate the black area by opening the frontier switches F(S(f))
6: Determine affected nodes Nf with a service restoration algorithm
7: EENSf ← λfrf

∑
n∈Nf

Pn

8: EENS← EENS + EENSf

9: end for
10: return EENS

Algorithm 3.2: Network reliability estimation by sectors
Input: Distribution Network G = (N,A), installed switch positions S.
Output: Estimated reliability EENS.

1: EENS← 0
2: for ∀Si ∈ SS do
3: Simulate a failure f in Si

4: Assume the black area S(f) = Si

5: Isolate the black area by opening the frontier switches F(S(f)) = F(Si)
6: Determine affected nodes Nf with a service restoration algorithm
7: EENSf ←

∑
a∈E(S(f))

λara ·
∑
n∈Nf

Pn

8: EENS← EENS + EENSf

9: end for
10: for ∀a = {u, v} ∈ Anc, Ba = 1 do // Frontier feeder lines
11: Simulate a failure f in a
12: Assume the black area S(f) = S(a) = S(u) ∪ S(v) ∪ ({u, v}, a)
13: Isolate the black area by opening the frontier switches

F(S(f)) = (F(S(u)) ∪ F(S(v))) \ {a}
14: Determine affected nodes Nf with a service restoration algorithm
15: EENSf ← λfrf

∑
n∈Nf

Pn

16: EENS← EENS + EENSf

17: end for
18: return EENS
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second is the summation of the partial EENS of every frontier line. This calculates

the same EENS, but reduces the number of failure simulations.

3.3 Reliability lower bound

A lower bound for the EENS reliability measure can be obtained by dropping

the electrical constraints and evaluating the demand that can possibly be served

based only on the network connectivity. Algorithm 3.3 represents a breadth-first

implementation that determines the affected nodes. This method was originally

proposed by Costa et al. (2007). First, it assumes that no consumer has energy.

Then, it expands the energy across the network, starting from the substations,

to neighbour nodes without failure, through normally closed feeder lines or loop

lines with switches. Finally, it returns the set of remaining non-served load points.

Algorithm 3.3: Lower bound service restoration
Input: Distribution network G = (N,A), installed switch positions S,

black sector S(f).
Output: Set of affected nodes Nf .

1: Nf ← NC

2: Q← NS

3: while Q 6= ∅ do
4: pick a node u ∈ Q
5: Q← Q \ {u}
6: for ∀a = {u, v}, v ∈ N, {u, v} ∈ A do
7: if v ∈ Nf and v /∈ S(f) then // Has no failure and no energy
8: if a ∈ Anc or Ba = 1 then // Is normally closed or has a switch
9: Nf ← Nf \ {v}

10: Q← Q ∪ {v}
11: end if
12: end if
13: end for
14: end while
15: return Nf
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3.4 Reliability upper bound

We can find an upper bound for the EENS reliability measure by considering

the electrical feasibility test and calculating an overestimation of the restored area.

Algorithm 3.4 presents an improved version of the upper bound service restoration

algorithm proposed originally by Costa et al. (2008). The improvement consists

in evaluating first the basic circuit, reducing the number of electrical feasibility

evaluations in an optimistic fashion.

The algorithm starts assuming that no consumer has energy, and expands the

first test sector to its basic circuit avoiding the black sector (lines 4-12). To do

this, the algorithm considers normally closed lines as connected and normally

open lines as frontier. If the basic circuit is not electrically feasible, the algorithm

restarts from the substation sector, as proposed by Costa et al. (2008). Then, the

test sector is expanded sector by sector, closing one frontier switch at a time and

reevaluating the electrical feasibility. If the expansion is feasible, the new frontier

list is updated, otherwise, the expansion is reverted. When there are no more

frontiers, the set of affected nodes excludes the nodes attended in the last feasible

test sector (line 31). Finally, the algorithm returns the set of remaining non-served

load points.

The electrical feasibility evaluation applied in the lines 13, 17 and 23 verifies

the electrical constraints described in Section 2.1.3. To do this, the network power

flow is calculated by a backward-forward sweep proposed by Baran & Wu (1989a,

1989b) and implemented by Costa et al. (2008). It represents the most time

consuming part of the reliability upper bound estimation.

Observe that Algorithm 3.3 determines the connected components of the graph

and has a unique solution, i.e., its result does not depend on the order of switches

selection in line 4. In contrast, Algorithm 3.4 depends on the order of selections in

lines 6 and 20. Furthermore, there exists an order that corresponds to the optimal

solution. Algorithm 3.4 is a greedy approximation to the best value.
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Algorithm 3.4: Upper bound service restoration
Input: Distribution network G = (N,A), installed switch positions S,

black sector S(f).
Output: Set of affected nodes Nf .

1: Nf ← NC

2: for ∀s ∈ NS do
3: Stest ← S(s)
4: L← F(Stest) ∩ Anc

5: while L 6= ∅ do // Expand the basic circuit
6: pick a = {u, v} ∈ L , u ∈ Stest , v /∈ Stest

7: if S(v) 6= S(f) then
8: Stest ← Stest ∪ S(v) ∪ ({u, v}, {a})
9: L← L ∪ (F(S(v)) ∩ Anc)

10: end if
11: L← L \ {a}
12: end while
13: if Stest is not electrically feasible then
14: Stest ← S(s) // Restart from substation sector
15: end if
16: L← F(Stest)
17: if Stest is electrically feasible then
18: while L 6= ∅ do
19: Sbk ← Stest

20: pick a = {u, v} ∈ L , u ∈ Stest , v /∈ Stest

21: if S(v) 6= S(f) then
22: Stest ← Stest ∪ S(v) ∪ ({u, v}, {a})
23: if Stest is electrically feasible then
24: L← L ∪ (F(S(v)) ∩ F(Stest)) // Update frontier list
25: else
26: Stest ← Sbk // Restore last feasible Stest

27: end if
28: end if
29: L← L \ {a}
30: end while
31: Nf ← Nf \ V (Stest)
32: end if
33: end for
34: return Nf
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4 ALGORITHMS FOR SWITCH ALLOCATION

This chapter explains the heuristics and metaheuristics developed for solving

the switch allocation problem. The order they are presented is not chronological,

but was chosen facilitate their explanation and understanding.

The first approach is a greedy constructive algorithm and it is presented

in Section 4.1. Section 4.2 presents a greedy randomized adaptive search

procedure (GRASP) for the switch allocation problem. Section 4.2.2 explains

the neighbourhood that is explored by local search strategies. Section 4.3 shows

an implementation of tabu search for the switch allocation problem. A sample

construction algorithm and a sample local search algorithm are explained in

Section 4.4. And finally, Section 4.5 presents an iterated sample construction with

path relinking for the switch allocation problem.

4.1 Greedy algorithm

The most intuitive heuristic to solve the switch allocation problem is probably

a greedy algorithm. Algorithm 4.1 depicts a greedy algorithm. It builds a solution

by installing one switch at a time, selecting the switch location with the largest

reliability improvement in each step. This algorithm was originally proposed by

Costa et al. (2007, 2008).
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Algorithm 4.1: Greedy construction.
Input: Distribution network G = (N,A), number of switches k.
Output: Set of lines with installed switches AB.

1: AB ← ∅
2: while |AB| < k do
3: Candidate List← A \ AB

4: Estimate reliability gain of all elements in Candidate List
5: a← the best switch location from Candidate List
6: AB ← AB ∪ {a}
7: end while
8: return AB

4.2 Greedy randomized adaptive search procedure (GRASP)

Algorithm 4.2 illustrates a generic GRASP in pseudo-code. According to

Resende & Ribeiro (2003), GRASP is an iterative process, where each iteration

consists of a semi-greedy construction phase and a local search phase. The

construction phase builds a feasible solution, whose neighbourhood is explored

in the local search phase. The result of a GRASP is best solution found over all

the iterations. The stop criterion might be a fixed time or a maximum number of

iterations.

Algorithm 4.2: Generic GRASP.
1: while stop criterion is not satisfied do
2: Constructed Solution← Semi-greedy construction
3: Solution← Local Search (Constructed Solution)
4: if Solution is better than Best Solution then
5: Best Solution← Solution
6: end if
7: end while
8: return Best Solution

Next, we explain the semi-greedy construction phase, the neighbourhood for

local exploration and the local search phase.

4.2.1 Semi-greedy construction

The semi-greedy construction phase builds a feasible solution one element at a

time. As illustrated in Algorithm 4.3, a semi-greedy construction selects randomly
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Algorithm 4.3: Semi-greedy construction.
Input: Distribution network G = (N,A), number of switches k, α randomness.
Output: Set of lines with installed switches AB.

1: AB ← ∅
2: while |AB| < k do
3: Candidate List← A \ AB

4: Estimate reliability gain of all elements in Candidate List
5: Restricted Candidate List← α fraction of best elements in Candidate List
6: a← select randomly a switch location from Restricted Candidate List
7: AB ← AB ∪ {a}
8: end while
9: return AB

one element from a restricted candidate list with the best elements, instead of the

best element like greedy algorithm.

For the switch allocation problem, the candidate list is built by ordering

all possible switch install locations according to the reliability improvement of

installing each switch. Then, a fraction of α switches with the highest reliability

improvements is kept in the restricted candidate list. Specifically, it contains the

best max(α ∗ |A \ AB|, 1) fraction of the |A \ AB| lines without switches. Thus,

a value of α = 0 is equivalent to a greedy algorithm and selects always the best

element, and with α = 1 selects randomly one line after evaluating all of them.

Finally, the selected switch is added to the solution.

According to Feo, Resende & Smith (1994), the adaptive component of GRASP

emerges from the update of the benefits of previous selected elements when

GRASP evaluates the benefits associated with the addition of a new element in

each iteration. The greedy component of GRASP is the restriction of the best

elements in the candidate list (depending on the α parameter). The probabilistic

component of GRASP is reflected in the random selection of one element from the

restricted candidate list, but not always the best one. This method for selection of

elements allows the creation of a good set of different solutions at each GRASP

iteration without affecting the adaptive greedy component. It is necessary to

generate a good pool of initial solutions for the subsequent local search.
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4.2.2 Local search

The solutions generated by a GRASP construction phase are not guaranteed

to be locally optimal. Hence, GRASP improves each built solution with a local

search. A local search algorithm repetitively replaces the current solution with a

better neighbour.

Given a solution for the switch allocation problem represented by a set of lines

with switches AB, the neighbourhood N (AB) = {A′B} is defined by every solution

A′B = (AB \ {a}) ∪ {b} that results from removing a switch from a line a ∈ AB

and installing it at another line b ∈ A \ AB. This neighbourhood is used by every

local search in this dissertation.

The local search was implemented in two ways: best improvement and first

improvement. Best improvement searches through all the neighbourhood to select

the best neighbour for the next iteration, while first improvement accepts the

first better solution found and breaks the search out to the next iteration without

exploring all the neighbourhood.

Algorithm 4.4: First improvement local search.
Input: Distribution network G = (N,A), initial solution AB0.
Output: Best found solution ABbest.

1: Estimate reliability of AB0

2: ABbest ← AB0

3: while stop criterion is not satisfied do
4: AB ← ABbest

5: for ∀a ∈ AB do // With switches
6: for ∀b ∈ A \ AB do // Without switches
7: ABnew ← (AB \ {a}) ∪ {b} // Moves the switch
8: Estimate reliability of ABnew

9: if ABnew has better reliability than ABbest then
10: ABbest ← ABnew

11: exit for to line 3 // Missing line in best improvement
12: end if
13: end for
14: end for
15: end while
16: return ABbest
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Algorithm 4.4 depicts the first improvement local search from our implemen-

tation. It starts from the initial solution created by the semi-greedy constructive

algorithm, and explores the neighbourhood previously explained. If the algorithm

finds a better solution, it becomes the current solution. The search stops when

there are no better solutions in the neighbourhood. Finally, the last solution is

returned. We obtain a best improvement local search by removing the line 11

from Algorithm 4.4.

4.3 Tabu Search

Tabu search is a metaheuristic proposed by Glover (1989, 1990) as a method

that allows local search heuristics to overcome local minima. When a local

minimum is found, the local search continues its execution by allowing non-

improving movements. Cycling is avoided by forbidding the return to recent

elements in search trajectory. This is accomplished by maintaining a tabu list

with the recent visited solutions (or certain elements of recent solution) by a

determinated tabu tenure time (or number of iterations).

The implemented tabu search explores the same neighbourhood described

in Section 4.2.2. Algorithm 4.5 shows our implementation of a tabu search for

the switch allocation problem. It starts with a given initial solution that can

be generated by a random construction. It searches for a better solution in the

neighbourhood of the current solution. If the algorithm finds a better solution,

it updates the current solution and continues the search (line 13). If there is no

better solution in the neighbourhood, the search does not stop. It replaces the

current solution with the best solution in the neighbourhood, even if it is worse

than the current one (line 15). And, in order to avoid cycling, the method forbids

some old movements in a tabu list by a tenure time or number of iterations. In

this case, the tabu list contains the last lines that had a switch (line 19). The stop

criterion might be a fixed time, a maximum number of iterations or a number of

iterations without improvement. Finally, the best overall solution is returned.
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Algorithm 4.5: Tabu search.
Input: Distribution network G = (N,A), initial solution AB0.
Output: Best found solution ABbest.

1: Estimate reliability of AB0

2: ABnext ← ABbest ← AB0

3: Tabu List← ∅
4: while stop criterion is not satisfied do
5: AB ← ABnext

6: ABnext ← ∅
7: for ∀a ∈ AB do // With switches
8: for ∀b ∈ A \ AB do // Without switches
9: ABnew ← (AB \ {a}) ∪ {b} // Moves the switch

10: Estimate reliability of ABnew

11: if ABnew has better reliability than ABbest then
12: ABbest ← ABnext ← ABnew

13: exit for to line 19
14: else if ABnew has better reliability than ABnext and b /∈ Tabu List

then
15: ABnext ← ABnew

16: end if
17: end for
18: end for
19: Tabu List← Tabu List ∪ (AB \ ABnext) // Forbids old switch location {a}
20: Update tenures in Tabu List
21: end while
22: return ABbest

4.4 Sample construction and local search

This section describes a sample construction and a sample local search.

Our motivation for proposing these sample algorithms is to reduce the number

of reliability estimations within construction and local search algorithms. The

reliability estimation is the most expensive operation in the algorithms proposed

for solving the switch allocation problem, mainly when it verifies the electrical

constraints.

4.4.1 Sample construction

The sample construction algorithm builds a feasible solution element by

element. The basic idea is to take a sample of the possible elements a priori,

evaluate them, and choose the best among them to include it into the solution.
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Algorithm 4.6: Sample construction.
Input: Distribution network G = (N,A), number of switches k,

β sample percentage.
Output: Set of lines with installed switches AB.

1: AB ← ∅
2: while |AB| < k do
3: Candidate List← A \ AB

4: Sample Candidate List← sample randomly β percent from Candidate List
5: Estimate reliability gain of all elements in Sample Candidate List
6: a← select the best switch location from Sample Candidate List
7: AB ← AB ∪ {a}
8: end while
9: return AB

Algorithm 4.6 depicts the sample construction algorithm for the switch

allocation problem. First, it selects randomly a sample of β percent of the

candidate feeder lines. Then, it evaluates the installation of a switch in each line

of the sample candidate list. And finally, it includes the best switch candidate

line of the sample into the solution. Specifically, the size of the sample is

max(β ∗ |A \AB|/100, 1) of the |A \AB| lines without switches. Thus, a sample of

β = 100% is equivalent to a greedy algorithm, because it evaluates all the possible

feeder lines to install one switch. And a sample of β = 0% chooses randomly one

feeder line and installs the switch.

Comparing the sample and the semi-greedy construction algorithms, we note

that both create a small list of candidates and select one element to be added to

the current solution. The difference lies in the way they create that small list and

in the evaluation of the elements. The semi-greedy construction first evaluates

every possible element, and then restricts the candidate list to finally select one

element randomly. The sample construction first reduces the candidate list to a

sample, and then evaluates the reduced list to select the best one.

Sample construction can be an alternative construction for GRASP, because

the adaptive, greedy and probabilistic components are maintainded in a different

fashion. The random selection of the sample manifests the probabilistic

component. The adaptive component is reflected by the influence of the previously
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selected elements over the reliability gain of the elements in the sample candidate

list. And the greedy component defines the selection of the new element. Resende

& Werneck (2004) describe this and other alternatives to GRASP construction.

4.4.2 Sample local search

A similar idea is applied to create a sample local search, i.e., to take a sample

of the neighbours a priori, evaluate them, and select the best among them.

Algorithm 4.7 depicts a sample local search for the switch allocation problem.

The initial solution can be generated by any construction algorithm, e.g., random,

sample, or semi-greedy. It explores the same neighbourhood described in

Section 4.2.2, but not completely. It samples β percent of the lines with switches

(a ∈ AB) and β percent of lines without switches (b ∈ A \ AB) to relocate one

switch. Thus, it reduces the size of the explored neighbourhood and the number

of reliability estimations. If the algorithm finds a better solution in the sample, it

is taken for the next iteration. Finally, it returns the last solution.

Algorithm 4.7: Sample local search.
Input: Distribution network G = (N,A), initial solution AB0,

β sample percentage.
Output: Best found solution ABbest.

1: Estimate reliability of AB0

2: ABbest ← AB0

3: while stop criterion is not satisfied do
4: AB ← ABbest

5: ASample1 ← sample randomly β line feeders from AB

6: ASample2 ← sample randomly β line feeders from A \ AB

7: for ∀a ∈ ASample1 do // With switches
8: for ∀b ∈ ASample2 do // Without switches
9: ABnew ← (AB \ {a}) ∪ {b} // Moves the switch

10: Estimate reliability of ABnew

11: if ABnew has better reliability than ABbest then
12: ABbest ← ABnew

13: end if
14: end for
15: end for
16: end while
17: return ABbest



57

Obviously, this neighbourhood exploration is not exhaustive and does not

guarantee to find the local minimum. Thus, the stop criterion may be a

maximum number of iterations or a number of iterations without improvement.

To guarantee that the local minimum is reached, we can execute a first or

best improvement local search after the sample local search, or intersperse an

exhaustive neighbourhood search after a fixed number of iterations or after a

number of iterations without improvement.

4.5 Iterated sample construction with path relinking

Sample local search explores quickly the neighbourhood and improves quickly

the solution at the beginning of the search, as shown in the results of Chapter 6.

But, it looses effectiveness after a certain number of iterations because it is not

an exhaustive local search. This motivated us to search for a more directed local

search that can take advantage of the already available sample algorithms.

Iterated sample construction with path relinking is inspired by an iterated

greedy algorithm applied to the permutation flowshop scheduling problem

developed by Ruiz & Stützle (2007). This algorithm is closely related to iterated

local search (STÜTZLE, 1998). It can be considered as an iterated local search

with a greedy perturbation scheme.

A general iterated greedy algorithm is presented in Algorithm 4.8. It starts

generating a greedy solution and applying a local search to it. Later, it iterates

over three phases: destruction, construction and local improvement. During the

destruction phase some random elements are removed from the previous complete

candidate solution. During the construction phase, the solution is reconstructed

greedily. Once a new solution is complete, it is improved by a local search. Finally,

the best found solution is returned.
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Algorithm 4.8: Iterated greedy algorithm.
Input: number of elements d for destruction and reconstruction
Output: Best Solution

1: Constructed Solution← Greedy construction
2: Solution← Local Search (Constructed Solution)
3: Best Solution← Solution
4: while stop criterion is not satisfied do
5: Solution′ ← remove d elements randomly from Solution
6: Solution′′ ← reconstruct greedily d elements from Solution′

7: Solution← Local Search (Solution′′)
8: if Solution is better than Best Solution then
9: Best Solution← Solution

10: end if
11: end while
12: return Best Solution

Algorithm 4.9: Iterated sample construction with path relinking.
Input: number of elements d for destruction and reconstruction.
Output: Best Solution

1: Best Solution← Solution← Sample construction
2: while stop criterion is not satisfied do
3: Solution′ ← remove d elements randomly from Solution
4: Solution′′ ← Sample reconstruct d elements from Solution′

5: Solution← Path relinking from Solution′′ to Best Solution
6: if Solution is better than Best Solution then
7: Best Solution← Solution
8: end if
9: end while

10: return Best Solution

In this section, we propose an iterated sample construction with path relinking.

Its pseudocode is depicted in Algorithm 4.9. It initializes by generating a solution

with a sample construction algorithm. After initialization, it iterates over three

steps. First, some elements are removed from the previous solution. Then, the

solution is reconstructed by a sample construction algorithm. And later, a path

relinking uses the best solution to guide a directed local search starting from the

current solution. Finally, the best solution is returned.

Iterated sample construction with path relinking works similar to iterated

greedy algorithm, but uses sample construction instead of greedy construction,

and uses path relinking as a guided local search. In this way, it reduces the number

of reliability estimations during construction and local search phases.
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Next, we explain with more detail the sample reconstruction and the path

relinking for the switch allocation problem.

4.5.1 Destruction and sample construction

The destruction and sample reconstruction algorithm for the switch allocation

problem is presented in Algorithm 4.10. This algorithm takes a previous solution

AB0 and modifies it to generate a new solution AB. The destruction phase

randomly removes k elements from the previous solution. The construction phase

replaces the k elements, one by one, using the sample construction algorithm. To

replace one element, the algorithm first selects randomly a sample of β percent

of the feeder lines that are not part of neither the previous nor the new solutions.

And then, it evaluates the elements in the sample candidate list and includes the

best into the solution. Finally, the algorithm returns the new solution.

Algorithm 4.10: Destruction and sample reconstruction.
Input: Distribution network G = (N,A), number of switches k,

β sample percentage, previous set of lines with switches AB0.
Output: Set of lines with installed switches AB.

1: AB ← AB0

2: while |AB| > |AB0| − k do // Destruction phase
3: a← select randomly an element from AB

4: AB ← AB \ {a}
5: end while
6: while |AB| < |AB0| do // Construction phase
7: Candidate List← A \ (AB ∪ AB0)
8: Sample Candidate List← sample randomly β percent from Candidate List
9: Estimate reliability gain of all elements in Sample Candidate List

10: a← select the best switch location from Sample Candidate List
11: AB ← AB ∪ {a}
12: end while
13: return AB

4.5.2 Path relinking

Originally, path relinking was suggested as an improvement to scatter search

by Glover (1994). Algorithm 4.11 presents the proposed path relinking for the

switch allocation problem. It receives an initial solutionAB0 and a guiding solution
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ABg as parameters. Path relinking iteratively shortens the distance between the

two solutions by relocating one switch of the initial solution to a position defined

by the guiding solution. To determine the switch relocation, path relinking

explores the same neighbourhood described in Section 4.2.2, but limited to the

differences between the initial and the guiding solutions, i.e., the neighbourhood

of the initial solution N (AB0) is limited to remove a switch from a line in the

initial solution that is not part of the guiding solutions (a ∈ AB0 \ ABg) and to

install it at a line that is part of the guiding solution but not of the initial solution

(b ∈ ABg \ AB0). The best element in the restricted neighbourhood always

replaces the initial solution in the next iteration. Before finishing each iteration,

the best overall solution is updated. The process is repeated until the difference

between the initial and the guiding solutions is one line with switch. Finally, path

relinking returns the best overall solution.

Algorithm 4.11: Path relinking.
Input: Distribution network G = (N,A), initial set of switches AB0,

guiding set of switches ABg.
Output: Best found solution ABbest.

1: Estimate reliability of AB0 and ABg

2: ABnext ← ABbest ← AB0

3: while |AB0 \ ABg| > 1 do
4: AB0 ← ABnext

5: ABnext ← ∅
6: for ∀a ∈ AB0 \ ABg do // With switches
7: for ∀b ∈ ABg \ AB0 do // Without switches
8: ABnew ← (AB0 \ {a}) ∪ {b} // Moves the switch
9: Estimate reliability of ABnew

10: if ABnew has better reliability than ABnext then
11: ABnext ← ABnew

12: end if
13: end for
14: end for
15: if ABnext has better reliability than ABbest then
16: ABbest ← ABnext // Keeps track of the best overall solution
17: end if
18: end while
19: return ABbest
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5 INSTANCES OF POWER DISTRIBUTION NETWORKS

A problem for our research was the lack of available distribution network

instances to test our algorithms. Instances in the literature are often incomplete,

with missing network reliability or electrical constraints parameters. For example,

the instance of Levitin, Mazal-Tov & Elmakis (1995) does not specify the electrical

characteristics of the lines, the voltage level and the number of consumers.

Instances for the network reconfiguration problem with loss reduction such as

Civanlar et al. (1988) and Su, Chang & Chiou (2005) miss information to estimate

reliability, like failure rates and outage time. Other networks are simply without

complete information because they are private and cannot be disclosed. For

example, instances used by Carvalho, Ferreira & Silva (2005), Chen et al. (2006),

Lin et al. (2006), Villasanti, Baran & Gardel (2008) are real private networks.

In order to use the reliability measures described in Section 3.1, information

about failure rates, outage time, demand and number of consumers must

be completed. And, to take into account electrical constraints, information

about substation capacities, line capacities and resistance, and voltage drop

limits must be introduced. The instances presented in this chapter were

preparated in collaboration with Mariane Machado, during her work with a

DTI-CNPq grant. Next, we explain the modifications and data completion

applied to the networks used in our tests. Section 5.1 presents the first

instances used in our research, Section 5.2 presents an instance found with

almost complete information, Section 5.3 describes some instances generated from
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telecommunication networks, and Section 5.4 shows instances from a repository

for service restoration with loss reduction.

5.1 Instances of Baran and Augugliaro

The first two instances used in our research were originally adapted for the

service restoration problem by Garcia (2005) from Baran & Wu (1989a) and

Augugliaro, Dusonchet & Sanseverino (2000). Later they were used for the switch

allocation problem by Costa et al. (2007, 2008) and Benavides et al. (2009b), but

only with APSE reliability measure. In order to use other measures described in

Section 3.1, electrical data and failure statistics had to be completed.

Four instances were created, BR and BU from Baran instance and AR and

AU from Augugliaro instance. Figures 5.1 and 5.2 show the topology of Baran

and Augugliaro instances, respectively, and Table 5.1 shows details of these

instances. The first letter stands for the authors, and the second letter represents

the distribution used to assign the load for consumers: Consumer demand was

completed for BR and AR with random values, and for BU and AU with a uniform

distribution of a constant value. The latter value is the result of dividing the
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Figure 5.1: Baran-Wu instance.
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Figure 5.2: Augugliaro-Dusonchet-Sanseverino instance.
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Table 5.1: First group of problem instances.

Network instances Baran Augugliaro
BR BU AR AU

Substations 1 1 5 5
Consumers 32 32 80 80
feeder lines 32 32 80 80
loop lines 7 7 29 29
Operation voltage (kV ) 12.66 12.66 20.0 20.0
Total power demand (MW ) 3.7 3.7 28.6 28.6
Consumer power factor ∗ 0.8 0.8 [0.39, 0.99] [0.39, 0.99]
Consumer demand ∗ (kW ) [45, 420] 116 [0, 585] 357
Number of consumers ∗ [24, 168] 46 [0, 234] 142
Line resistance (Ω) [0.050, 1.093] [0.050, 1.093] 0.9341 0.9341
Line reactance (Ω) [0.026, 0.574] [0.026, 0.574] 0.4905 0.4905
Line capacity (A) 4000 4000 4000 4000
Line failure rates [0.003, 0.075] [0.003, 0.075] 0.065 0.065
∗ per load point.

nominal total demand by the number of load points. The number of consumers

was calculated assuming that each one consumes 2.5 kW . The capacity of every

feeder line was set to IMAX = 4000 A, assuming the same cable size for every

feeder line in the network instance. Resistance and reactance of Baran instances

were reduced by a factor of 0.55 from the original values to simulate a cable with

a larger diameter, resulting in a resistance r = 0.9341 Ω/km and a reactance

x = 0.4905 Ω/km. Resistance and reactance of Augugliaro instances were set to

constant values, assuming that every feeder line is 1 km long. The adapted failure

rate λ = 0.065 f/yr/km is a function of the distance, like the resistance. Thus,

we decided to multiply the resistance by a factor to create the final failure rate

λ = 0.0696(f/yr/Ω) ∗ r, given in f/yr.

5.2 Billinton instance

Another instance used in our tests is the RBTS bus 4 proposed by Roy Billinton

in (ALLAN et al., 1991). RBTS stands for Roy Billinton Test System. Table 5.2

shows details for RBTS bus 4 and Figure 5.3 shows its topology. This is the

most complete instance we found. It has 38 load points and 72 lines. 30 joint

points with no power demand were added. RBTS bus 4 only has lines of three
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different distances (0.6, 0.75 and 0.8 km). To complete the necessary information,

we followed the adaptation example of a part of the RBTS bus 6 by Falaghi,

Haghifam & Singh (2009). We assume a resistance r = 0.257 Ω/km, a reactance

x = 0.087 Ω/km, a failure rate λ = 0.065 f/yr/km, and a capacity IMAX = 500 A

for every line.

Table 5.2: RBTS bus 4 instance details.

Network instances B4
Substations 3
Consumers 38 + 30
feeder lines 67
loop lines 5
Operation voltage (kV ) 11.0
Total power demand (MW ) 24.58
Consumer power factor ∗ 0.9
Consumer demand ∗ (kW ) [415, 1500]
Number of consumers ∗ [1, 220]
Line resistance (Ω) [0.1542, 0.2056]
Line reactance (Ω) [0.0522, 0.0696]
Line capacity (A) 500
Line failure rates [0.039, 0.052]
∗ per load point.
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Figure 5.3: RBTS bus 4 instance.
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5.3 Synthetic instances

Due to the small number of available electric distribution network instances,

we designed a simple electrical distribution network generator. It receives a

network topology or graph as input, and generates an electrical distribution

network instance by adding values of electrical characteristics, based on

information found in Pabla (2004) and Pransini (2005).

The generated instance has one substation selected by the user. The basic

circuit of the network is defined by the forward arcs of a breadth-first search

algorithm. The rest of the links are defined to be loop lines. The operation voltage

is chosen randomly between 2400 and 34500 V . Power demand for load points are

generated randomly between 50 and 250 kW . The number of consumers for each

load point is the demand divided by 2.5 kW per consumer. Reactive power load is

calculated with a random power factor between 0.4 and 1.0. Substation capacity

is 30% higher than the nominal total power load demand. The generator uses the

same cable type with resistance r = 0.9341 Ω/km, reactance x = 0.4905 Ω/km,

failure rate λ = 0.065 f/yr/km, and capacity IMAX = 4000 A for every line.

Twelve instances were generated. Their topologies were originally proposed

for telecommunication problems by Fortz & Thorup (2004). They are divided

in three classes, each one with four instances. The first class of networks

named “hier” are 2-level hierarchical communication networks generated using

a generator proposed by Zegura (2005). The networks named “rand” are random

networks, which have a parameter that controls the density of the network and the

probability of creating arcs. Finally, the last four networks are Waxman graphs,

i.e., planar graphs where the probability of creating an arc between two nodes

is inversely proportional to their euclidean distance. Thus, closer nodes have a

higher probability of being connected by an arc than distant nodes (WAXMAN,

1988). We added a prefix “e_” to emphasize that these are electrical instances.

Tables 5.3, 5.4 and 5.5 show details for synthetic instances.
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Table 5.3: Hierarchical synthetic instances.

Network instances e_hier50a e_hier50b e_hier100a e_hier100b
Substations 1 1 1 1
Consumers 49 49 99 99
feeder lines 49 49 99 99
loop lines 25 57 41 81
Operation voltage (V ) 15062 27595 6964 22802
Total power demand (kW ) 6969 7931 14666 15260
Line distance (km) [0.002, 2.167] [0.001, 1.590] [0.001, 2.202] [0.001, 1.746]
Line resistance (Ω) [0.002, 2.024] [0.001, 1.485] [0.001, 2.058] [0.001, 1.631]
Line reactance (Ω) [0.001, 1.063] [0.001, 0.780] [0.001, 1.080] [0.001, 0.857]
Line failure rates [0.001, 0.141] [0.001, 0.104] [0.000, 0.143] [0.000, 0.113]

Table 5.4: Random synthetic instances.

Network instances e_rand50a e_rand50b e_rand100a e_rand100b
Substations 1 1 1 1
Consumers 49 49 99 99
feeder lines 49 49 99 99
loop lines 169 185 294 385
Operation voltage (V ) 6045 20133 31039 30335
Total power demand (kW ) 7258 7298 14890 15461
Line distance (km) [0.020, 1.179] [0.027, 1.153] [0.053, 1.137] [0.025, 1.051]
Line resistance (Ω) [0.018, 1.102] [0.025, 1.077] [0.050, 1.062] [0.023, 0.982]
Line reactance (Ω) [0.010, 0.579] [0.013, 0.565] [0.026, 0.558] [0.012, 0.516]
Line failure rates [0.001, 0.076] [0.002, 0.075] [0.004, 0.074] [0.002, 0.068]

Table 5.5: Waxman graph synthetic instances.

Network instances e_wax50a e_wax50b e_wax100a e_wax100b
Substations 1 1 1 1
Consumers 49 49 99 99
feeder lines 49 49 99 99
loop lines 113 171 281 363
Operation voltage (V ) 24805 21505 5966 3646
Total power demand (kW ) 7189 6751 14021 15379
Line distance (km) [0.029, 1.137] [0.028, 1.052] [0.010, 1.143] [0.010, 1.204]
Line resistance (Ω) [0.027, 1.062] [0.026, 0.983] [0.009, 1.069] [0.009, 1.125]
Line reactance (Ω) [0.014, 0.558] [0.014, 0.516] [0.005, 0.561] [0.005, 0.591]
Line failure rates [0.002, 0.074] [0.002, 0.068] [0.001, 0.074] [0.001, 0.078]
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5.4 REDS: REpository of Distribution Systems

The last group of instances is the REpository of Distribution Systems (REDS).

This is an effort of Kavasseri & Ababei (2009) for collecting and maintaining

instances for research on power flow, network reconfiguration, etc. They propose

a new format for easy parsing of the instances. This format inspired the actual

template for our test files.

REDS is formed by eight instances. Instance R1 is the tree feeder instance of

Civanlar et al. (1988) that was used in the examples of Chapter 2. Instance R2,

also known as IEEE 30 bus, is presented by Eminoglu & Hocaoglu (2005). Instance

R3 is the same instance of Baran & Wu (1989a), but it keeps the original resistance

and reactance. Instance R4 was originally proposed by Su, Chang & Chiou (2005).

Instances R5 and R6 were adapted and proposed by Guimarães & Castro (2005).

Instances R7 and R8 are hypothetical testcases that REDS research group created

using data from R5 and R6.

The instances had electrical information such as resistance, reactance, active

and reactive power load. The rest of the information had to be completed.

Demand and power factor are calculated with the equations Dn
2 = Pn

2 + Qn
2

and pf = Pn/Dn. Power factor pf was set to a constant value 0.8, 0.85, or

0.9 when there is no demand in the load point. The number of consumers is

the demand divided by 2.5 kW per consumer. No demand means no consumers,

but the number is rounded up to 1 consumer if the demand is between 0.01 and

2.50 kW . Substation capacities are set to the double of the total demand in the

underlying subtree, allowing substations to attend more load points in case of

failures. Line capacities are 1000 A for every line. The failure rate is calculated

as λ = 0.0696(f/yr/Ω) ∗ r and given in f/yr. R2 is given in the per-unit values

system, then the power load was multiplied by 1000. The operation voltage is set

to 12660 V . R6, R7 and R8 presented some electrical problems that were solved

with a higher operation voltage. R6 uses 33600 V , and R7 and R8 use 126600 V .
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Note that voltage operation for R7 and R8 is not common in distribution systems,

but the hypothetical networks cannot energize the whole network without this

high voltage. Table 5.6 presents the details of the instances.

Table 5.6: REDS instances.

Network instances R1 R2 R3 R4
Substations 3 1 1 11
Consumers 13 29 32 83
feeder lines 13 29 32 83
loop lines 3 1 5 13
Operation voltage (V ) 12660 12660 12660 12660
Total power demand (kW ) 33.8 102.3 4548.4 35200.0
Consumer power factor ∗ [0.74, 0.99] [0.84, 0.89] [0.32, 0.99] [0.71, 0.98]
Consumer demand ∗ (kW ) [0.61, 5.83] [0.0, 5.2] [54.1, 632.5] [0, 25000]
Number of consumers ∗ [1, 2] [0, 2] [22, 253] [0, 1000]
Line resistance (Ω) [0.04, 0.12] [0.043, 0.260] [0.092, 2.000] [0.024, 0.537]
Line reactance (Ω) [0.04, 0.18] [0.007, 0.045] [0.047, 2.000] [0.052, 1.104]
Line failure rates [0.003, 0.056] [0.003, 0.018] [0.006, 0.139] [0.002, 0.037]
Network instances R5 R6 R7 R8
Substations 8 3 7 84
Consumers 135 201 873 10476
feeder lines 135 201 873 10476
loop lines 21 15 27 260
Operation voltage (V ) 12660 33600 126600 126600
Total power demand (kW ) 19963 32437 148990 1778644
Consumer power factor ∗ [0.90, 0.93] 0.85 [0.27, 0.93] [0.27, 0.93]
Consumer demand ∗ (kW ) [0, 1636] [0, 1211] [1, 815] [1, 815]
Number of consumers ∗ [24, 655] [0, 485] [1, 326] [1, 326]
Line resistance (Ω) [0.002, 2.962] [0.000, 0.187] [0.011, 2.963] [0.011, 2.963]
Line reactance (Ω) [0.004, 2.684] [0.000, 0.254] [0.017, 1.685] [0.017, 1.685]
Line failure rates [0.001, 0.206] [0.003, 0.013] [0.001, 0.206] [0.001, 0.206]
∗ per load point.
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6 EXPERIMENTAL TESTS AND RESULTS

The first three sections present issues that emerged during the research

and that affect the final results. Section 6.1 compares the reliability measures.

Section 6.2 studies the influence of electrical constraints for different voltage drop

limits. And Section 6.3 discusses two improvements for the reliability estimation

algorithms described in Chapter 3.

The last four sections present the results of the algorithms proposed in

Chapter 4 to solve the switch allocation problem. Section 6.4 compares the results

obtained with a tabu search and a greedy construction algorithm. Section 6.5

shows the results of GRASP. Section 6.6 studies the performance of construction

and local search algorithms, including sample algorithms. Finally, Section 6.7

presents the results achieved for the iterated sample construction with path

relinking.

To compare the results of the algorithms, they were executed with the same

parameters. Tests include both reliability estimation improvements studied in

Section 6.3. We use EENS as standard measure, a constant outage time rf = 2h,

and a voltage drop limit for upper bound reliability estimation of five percent.

We must remark that the lower bounds presented in this chapter represent a

method to estimate the network reliability, and not a lower bound for the optimal

solution of the problem, because our algorithms approximate its best value. We

study it, because it reduces the reliability estimation time with a simplification of

the problem, and gives another approximation of the reliability to compare with.
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To standardize the presented results, time values are in seconds and EENS

values are in KWh/year. The scale in the graphs is Interruptions/year for SAIDI,

MWh/year for EENS, and a percentage for APSE. When an average is presented,

the corresponding standard deviation together (average ± standard deviation).

All the tests have been executed on an Intel Core 2 processor with a 2.33 GHz

clock and 4 GB of main memory, and have been compiled with GNU C++ with

the command “g++ *.cpp -Wall -O3 -static”.

6.1 Comparison of reliability measures

An important question that emerges with the reliability estimation of

distribution networks is which measure we should use in the tests. We found that

many measures were used in the literature to express the reliability. Section 3.1

described the most commonly used measures. Here, we compare three reliability

measures (APSE, EENS and SAIFI) to define one for the rest of our tests. Since we

defined the average outage time rf as a constant for our tests, we have an exact

relation SAIDI = rf ∗ SAIFI, and therefore implicitily also evaluate SAIDI. We do

not compare with ECOST since cost data is volatile and difficult to obtain.

We present scatter plots comparing thereliability estimation of different

measures on the same set of solutions. We estimate the upper bound reliability

of 2000 randomly generated solutions, i.e., 1000 for allocating 10 switches and

1000 for 20 switches. Figure 6.1 compares APSE and EENS, Figure 6.2 compares

SAIFI and EENS, and Figure 6.3 compares SAIFI and APSE. Figures 6.1a, 6.2a and

6.3a show values for the instance B4, while Figures 6.1b, 6.2b and 6.3b for the

instance R6. The correlation coefficient is given in the caption of each figure.

As we can see in the figures, a strong negative correlation is found between

APSE and EENS and between SAIFI and APSE, while SAIFI and EENS have a strong

positive correlation. APSE is based on served load points while SAIFI and EENS are
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based on the quantity of affected (non served) load points. Thus, APSE varies in

an approximately inverse proportion than SAIFI and EENS, while SAIFI and EENS

vary almost proportionally. Observe that an optimal solution for one measure is

not necessarily the optimal solution for others, and that the best of two different

solutions depends of the measure selected for the comparison.

Since all measures all strongly correlated, we can expect a similar solution

quality using any of them. We selected EENS for the rest of our tests because it

is the most common in literature, because it presents a good correlation with the

other measures, and because it depends only on the non-supplied load, failure rate

and outage time for its estimation.

6.2 Influence of electrical constraints

Another question is how the electrical constraints influence the reliability

estimation. Variations on capacities of lines or substations produce similar

results than variations on voltage drop limits, but they are usually constants in

real networks. Voltage drop limits vary for different countries depending on

regulations. Therefore, we study the influence of different voltage drop limit.

Figures 6.4a and 6.4b compare the influence of the voltage drop limit in EENS

estimations for instances R3 and AR. 1000 solutions were generated randomly and

evaluated with four different voltage drop limits (3%, 5%, 10% and unlimited).

The graphs present a box and whisker diagram, representing the minimum, the

lower quartile, the median, the upper quartile, and the maximum value of the

resulting EENS. We observe that EENS increases when the voltage drop limit

becomes tighter. For instance AR, the EENS of almost all random solutions is below

50 MWh/year when evaluated without voltage drop limit, but three quartiles

goes over 60 MWh/year with a voltage drop limit of five percent and over 120

MWh/year with three percent.
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Figure 6.5 presents 25 randomly generated solutions for instance AR. It shows

how EENS changes with different voltage drop limits. Note that an apparently

good solution when considering one voltage drop limit can be a bad solution

with a different voltage drop limit. Thus, the result of comparing the EENS

of two solutions depends on the used voltage drop limit. This shows that a

reliability estimation for the switch allocation problem without considering the

service restoration problem and electrical constraints can mislead us into solutions

theoretically good, but worse when considering electrical constraints in reality.

6.3 Performance improvements in reliability estimation

In this work, two improvements are proposed for the original reliability

estimation of Costa et al. (2007, 2008). The first one is the reliability estimation by

sectors described in Section 3.2, and the second is the optimistic service restoration

described in Section 3.4. The reliability upper and lower bounds can be estimated

by sectors, but the optimistic service restoration can only be used within the upper

bound estimation.

Table 6.1 shows the total execution time for the reliability estimation of 1000

solutions generated randomly for various instances with 10 and 20 switches. It

presents times for executions with and without the improvements. We observe that

the improvements significantly reduce the processing time. For the upper bound,

reliability estimation by sectors saves more time than the optimistic restoration

improvement, but they save even more time when used together. The last column

(Sp) shows the speedup of the combined two improvements. Depending of the

instance, they can reduce runtime up to a factor of 100.

In order to explain the speedups of Table 6.1, we study the number of failure

simulations and the number of electrical feasibility evaluations in Table 6.2. These

quantities are presented in thousands. We observe a reduction in the number

of failure simulations when we compare the reliability estimations by lines and
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Table 6.1: Running time in reliability estimation.

Inst. Sw.
Lower Bound Upper Bound

No Impr Impr 1 No Impr Impr 1 Impr 2 Impr 1&2 Sp%.
BU 10 0.04 0.03 0.64 0.36 0.16 0.08 8.0
BR 10 0.04 0.02 0.67 0.36 0.16 0.09 7.4
R3 10 0.04 0.02 0.54 0.28 0.37 0.2 2.7
B4 10 0.16 0.04 4.64 1.36 1.24 0.38 12.2
AU 10 0.33 0.08 5.06 1.22 2.23 0.54 9.4
AR 10 0.32 0.08 5.2 1.26 2.26 0.56 9.3
R4 10 0.34 0.09 8.18 2.51 2.79 0.87 9.4
R5 10 0.81 0.14 17.81 2.97 6.92 1.17 15.2
R6 10 1.78 0.17 35.54 3.53 10.94 1.1 32.3
R7 10 28.85 0.81 815.32 22.13 291.32 8.11 100.5
BU 20 0.05 0.04 1.76 1.39 0.42 0.31 5.7
BR 20 0.05 0.03 1.78 1.41 0.46 0.33 5.4
R3 20 0.04 0.03 1.34 1.1 0.92 0.76 1.8
B4 20 0.19 0.08 7.93 3.62 1.82 0.84 9.4
AU 20 0.34 0.13 8.93 3.35 3.47 1.31 6.8
AR 20 0.36 0.12 9.14 3.41 3.5 1.32 6.9
R4 20 0.32 0.14 12.47 5.52 3.73 1.66 7.5
R5 20 0.85 0.22 29.14 7.63 9.55 2.55 11.4
R6 20 1.77 0.32 74.17 13.04 23.57 4.16 17.8
R7 20 28.72 1.36 1283.74 58.8 343.58 15.9 80.7

Impr 1: Improvement of reliability estimation by sectors instead of lines.
Impr 2: Improvement of optimistic service restoration.

Table 6.2: Thousands of failure simulations and feasibility evaluations.

Inst. Sw.
Failure simulations Electrical feasibility evaluations
No Impr Impr 1 No Impr Impr 1 Impr 2 Impr 1&2 Sp%

BU 10 32.0 14.3 159.8 79.5 43.2 18.6 8.6
BR 10 32.0 14.3 162.2 80.5 44.4 19.2 8.5
R3 10 32.0 15.1 155.7 78.4 148.6 77.9 2.0
B4 10 67.0 19.4 798.9 223.3 264.7 75.6 10.6
AU 10 80.0 18.8 1107.8 255.6 920.7 216.8 5.1
AR 10 80.0 18.8 1104.8 255.7 924.4 217.6 5.1
R4 10 83.0 25.0 1770.0 522.6 1257.6 375.7 4.7
R5 10 135.0 22.3 2324.3 374.4 1578.2 258.7 9.0
R6 10 201.0 19.2 2256.6 212.0 872.3 83.0 27.2
R7 10 873.0 23.4 13906.4 365.4 6659.0 177.8 78.2
BU 20 32.0 24.2 433.3 336.5 103.1 74.5 5.8
BR 20 32.0 24.3 440.1 341.4 106.5 77.4 5.7
R3 20 32.0 25.4 394.9 319.1 362.4 295.4 1.3
B4 20 67.0 31.0 1484.6 674.2 409.8 185.9 8.0
AU 20 80.0 30.1 1979.2 737.0 1454.9 546.2 3.6
AR 20 80.0 29.9 1995.4 738.5 1465.1 546.7 3.6
R4 20 83.0 37.3 2767.2 1225.4 1669.3 742.9 3.7
R5 20 135.0 35.8 3859.8 1007.4 2219.4 584.1 6.6
R6 20 201.0 34.8 4692.9 816.7 1777.2 309.5 15.2
R7 20 873.0 39.6 22449.4 1012.8 7762.3 351.3 63.9

Impr 1: Improvement of reliability estimation by sectors instead of lines.
Impr 2: Improvement of optimistic service restoration.
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by sectors. This is because the number of sectors is associated to the number

of installed switches, which is always smaller than the number of lines. We

also compare the number of electrical feasibility tests. In average, the optimistic

service restoration halves the number of feasibility tests, and combined with the

estimation by sectors, it is able to reduce it up to 78 times in the largest instance.

6.4 Greedy construction and tabu search results

The first results of our research are a comparison of tabu search and a greedy

construction. For the tabu search, we use a tabu tenure of 10 iterations and the

stop criterion is 100 iterations. We run tests for installing 5, 10, 15 or 20 switches

in every instance. Each test case is executed ten times.

In order to study the performance of tabu search, we separately inform time

and EENS for the first local minimum found by the tabu search. Before this point,

the behavior of tabu search is the same of a first improvement local search.

Table 6.3 and Table 6.4 show results for lower and upper bound reliability. We

show the EENS and the execution time for the greedy construction. For the tabu

search, we report further average values for the initial random solution (column

1S), the first local minimum solution (column LS), and the final solution (column

TS). We also present the best solution found within the ten repetitions (column

Min.). Best values found are in boldface.

Upper and lower bound present similar results. The first seven instances

(except R5, R6 and R7) present a difference in EENS between LS and TS, i.e.,

tabu search escapes the first local minimum and finds better solutions. In average,

the time difference between LS and TS shows that first local minimum solution is

found early during the tabu search, within the first 15% of the running time. The

first local minimum improves a random generated solution by half. The difference

between GR and LS shows that local search finds better solutions than a greedy
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Table 6.3: Lower bounds by greedy construction and tabu search.

Inst. Sw.
Greedy Constr. Tabu Search

EENS Time EENS Time
GR GR 1S LS TS Min. LS TS

BU

5 2220 0.0 4305± 622 2167± 85 2022± 0 2022 0.0±0.0 0.2±0.0
10 1214 0.0 3182± 477 1141± 95 1082± 0 1082 0.0±0.0 0.5±0.0
15 903 0.0 2094± 467 827± 30 810± 0 810 0.0±0.0 0.9±0.1
20 793 0.0 1660± 446 719± 30 700± 0 700 0.1±0.0 1.1±0.1

BR

5 1998 0.0 4002± 664 1888± 74 1809± 0 1809 0.0±0.0 0.2±0.0
10 1207 0.0 3119± 736 1060± 75 1024± 0 1024 0.0±0.0 0.5±0.0
15 1023 0.0 2122± 588 806± 22 786± 8 784 0.0±0.0 0.9±0.1
20 780 0.0 1494± 391 682± 15 669± 1 667 0.1±0.0 1.1±0.1

R3

5 4405 0.0 7757± 800 4307± 158 4078± 0 4078 0.0±0.0 0.2±0.0
10 2390 0.0 6473± 1425 2180± 4 2176± 0 2176 0.0±0.0 0.4±0.0
15 1824 0.0 4155± 873 1776± 18 1759± 0 1759 0.1±0.0 0.8±0.1
20 1560 0.0 3522± 979 1527± 6 1522± 0 1522 0.1±0.0 1.0±0.1

B4

5 16720 0.0 21393± 561 16625± 0 16625± 0 16625 0.0±0.0 0.9±0.1
10 12384 0.0 20767± 903 12329± 0 12329± 0 12329 0.1±0.0 2.5±0.2
15 10776 0.1 20150± 1044 10687± 116 10664± 145 10496 0.2±0.1 4.2±0.4
20 9576 0.1 18817± 1793 8992± 403 8992± 403 8742 0.3±0.1 6.4±0.7

AU

5 34993 0.0 49065± 3112 33452± 654 32673± 0 32673 0.1±0.1 2.5±0.1
10 26547 0.1 43964± 2658 24746± 397 24040± 0 24040 0.5±0.1 5.4±0.5
15 21024 0.1 37393± 2972 19492± 436 18940± 67 18889 1.1±0.2 8.0±1.6
20 17497 0.2 33007± 5609 17014± 415 16160± 150 16058 1.9±0.5 10.9±4.0

AR

5 34502 0.0 46932± 2770 32774± 688 32253± 0 32253 0.2±0.0 2.3±0.2
10 26598 0.1 40725± 4340 24933± 686 24039± 153 23962 0.5±0.1 5.2±0.9
15 20590 0.1 36764± 6024 19653± 385 19118± 185 18740 1.3±0.3 8.1±2.2
20 17594 0.2 33681± 4580 16486± 462 15939± 115 15803 2.5±0.5 8.3±2.5

R4

5 3664 0.0 5042± 259 3601± 89 3573± 0 3573 0.1±0.0 2.0±0.1
10 2861 0.1 4751± 296 2902± 43 2866± 15 2861 0.4±0.2 4.2±0.5
15 2380 0.1 4284± 297 2306± 25 2306± 25 2234 0.9±0.3 4.6±1.1
20 2059 0.2 3902± 427 1959± 75 1959± 74 1853 1.3±0.3 6.3±2.8

R5

5 9333 0.1 14636± 632 9333± 0 9333± 0 9333 0.6±0.0 4.7±0.7
10 7356 0.2 13647± 795 7481± 139 7218± 105 7115 1.5±0.2 6.7±3.2
15 5722 0.3 13348± 702 8243± 2001 8243± 2001 5367 2.0±1.5 2.2±1.8
20 4879 0.4 11047± 820 6537± 1629 6537± 1630 4743 2.9±1.5 2.9±1.7

R6

5 5123 0.1 7370± 476 4546± 172 4430± 240 3747 1.4±0.4 6.7±1.4
10 2300 0.3 6850± 782 3280± 820 3268± 840 1926 3.3±1.2 3.7±1.8
15 1477 0.5 5998± 1229 3578± 1262 3578± 1262 1362 4.0±1.9 5.3±6.2
20 1109 0.8 4782± 1135 2523± 1256 2523± 1256 1134 3.9±1.7 3.9±1.7

R7

5 772798 1.9 1135195±61331 923310± 80379 923310± 80379 781443 35.3±9.4 35.3±9.4
10 571365 4.9 1109368±31758 932279± 68753 932279± 68753 801416 13.6±7.7 13.6±7.7
15 430193 9.1 1072579±83982 1004829±116733 1004829±116733 776778 7.7±4.4 7.7±4.4
20 337110 14.9 993414±95883 959461±110712 959461±110712 735060 7.9±3.2 7.9±3.2
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Table 6.4: Upper bounds by greedy construction and tabu search.

Inst. Sw.
Greedy Constr. Tabu Search

EENS Time EENS Time
GR GR 1S LS TS Min. LS TS

BU

5 2220 0.0 4305± 732 2225± 14 2220± 1 2220 0.0± 0.0 0.5± 0.0
10 1316 0.0 3080± 579 1351± 67 1292± 15 1285 0.1± 0.0 3.0± 0.3
15 1029 0.1 2436± 386 984± 47 926± 0 926 0.5± 0.1 7.3± 0.8
20 940 0.1 2003± 470 799± 28 782± 0 782 0.7± 0.2 12.3± 1.1

BR

5 1998 0.0 4033± 680 1960± 8 1957± 0 1957 0.0± 0.0 0.6± 0.0
10 1215 0.0 2963± 361 1184± 6 1175± 2 1174 0.1± 0.0 3.3± 0.3
15 985 0.0 2424± 640 883± 4 881± 0 881 0.5± 0.1 8.9± 0.8
20 795 0.1 1600± 316 765± 8 760± 1 759 0.7± 0.3 13.7± 1.1

R3

5 8918 0.0 10254± 1838 7056± 769 6469± 0 6469 0.0± 0.0 0.9± 0.1
10 8820 0.0 8687± 1233 4196± 357 4026± 0 4026 0.4± 0.1 4.6± 0.7
15 4738 0.0 6888± 889 3399± 0 3399± 0 3399 0.9± 0.1 13.6± 1.7
20 3761 0.1 5888± 681 3278± 0 3278± 0 3278 1.5± 0.3 21.5± 1.8

B4

5 17893 0.1 21349± 698 17546± 171 17058± 0 17058 0.2± 0.0 8.7± 0.5
10 14235 0.3 20513± 799 14319± 160 14235± 0 14235 1.6± 0.4 34.0± 2.7
15 12830 0.6 19527± 1192 12807± 113 12777± 111 12565 4.7± 1.0 83.1± 5.7
20 11707 1.2 19078± 1228 11515± 173 11469± 213 11262 8.2± 1.6 172.3±25.1

AU

5 39124 0.2 137791± 32555 39212± 381 38288± 0 38288 1.4± 0.2 9.9± 2.6
10 30863 0.6 123246± 31508 33369± 7377 33141± 7476 30074 6.7± 1.6 24.2±19.8
15 26639 1.3 90829± 16858 26709± 517 26430± 644 25897 17.0± 3.2 53.4±32.9
20 23948 2.4 83654± 32956 24235± 1850 23910± 1936 22834 38.4± 9.4 126.0±75.6

AR

5 38451 0.2 112802± 24044 37332± 201 37269± 0 37269 1.4± 0.3 12.3± 4.0
10 30999 0.6 118963± 31830 34264± 6846 34033± 6992 29811 6.9± 2.1 14.7±14.7
15 26471 1.4 91521± 23902 29091± 8084 28692± 8229 25266 18.2± 4.3 52.2±35.6
20 24063 2.4 78907± 21342 25619± 4483 25458± 4602 21833 35.4±10.8 54.5±59.0

R4

5 4354 0.2 9279± 1608 4354± 0 4354± 0 4354 0.4± 0.1 20.3± 1.0
10 3848 0.7 8654± 2396 3801± 25 3770± 0 3770 8.7± 1.1 62.6± 3.8
15 3483 1.4 7728± 2033 3450± 23 3436± 2 3435 14.1± 2.7 124.3±23.9
20 3307 2.4 6748± 2352 3216± 95 3099± 58 3063 21.5±10.7 176.1±37.3

R5

5 11389 0.5 26433± 4270 11389± 0 11389± 0 11389 2.7± 0.4 35.5± 9.1
10 9760 1.6 26247± 4534 10274± 1610 10274± 1610 9688 17.3± 6.8 33.9±22.7
15 8553 3.6 26396± 3136 11883± 5279 11883± 5279 8619 24.8±18.4 28.2±27.4
20 7885 6.9 21582± 5230 11310± 2489 11310± 2489 8394 28.1± 5.7 28.1± 5.7

R6

5 5123 0.4 7418± 404 5027± 5 4564± 0 4564 5.2± 1.5 34.6± 7.4
10 3540 1.7 6881± 568 3924± 466 3924± 466 3251 27.7± 7.8 27.7± 7.8
15 2508 4.5 6354± 426 4048± 526 4048± 526 3147 29.0±13.8 29.0±13.8
20 1925 9.4 6016± 590 3815± 669 3815± 669 2322 40.3±18.6 40.3±18.6

R7

5 803930 18.9 1154688± 40662 962477± 28307 962477± 28307 900464 286.5±70.6 286.5±70.6
10 583187 66.8 1103935± 44685 924418± 78245 924418± 78245 832114 115.4±57.8 115.4±57.8
15 478566 159.1 1039929±112788 953747±130213 953747±130213 673430 107.9±83.1 107.9±83.1
20 384885 316.0 966043± 68177 901696± 68442 901696± 68442 803063 122.3±59.1 122.3±59.1
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construction. The difference between LS and TS shows that tabu search finds

better solutions than greedy construction and local search. But the time increases

7 times between LS and TS. The small standard deviations in column TS indicate

that the best known solution is found almost always (except for AU and AR).

In the large instances (R5, R6 and R7), the results are not as good as in the

smaller ones. In average, there are no big differences in EENS between LS and

TS, mainly with more than 5 switches. This indicates that tabu search does not

overcome the first local minimum. The lack of time difference between LS and

TS indicates that a first local minimum is not found by the tabu search within the

100 iterations, i.e., 100 iterations are not enough for the large instances. A large

number of iterations would be too expensive for these large instances. The worst

results have been obtained for the largest instance R7, that did not find a local

minimum even for 5 switches.

In general, tabu search is effective with small instances, but not with large

instances. Tabu search finds better results than local search, but with a higher

cost. Averages of tabu search and local search overcome the greedy solution for

small instances. Tabu search, either does not reach, or does not overcome the first

local minimum in 100 iterations for the large instances.

The small difference in EENS and big difference in time between LS and TS for

the small instances indicated that a multi-start method like GRASP could obtain

better results than trying to escape local minima.

6.5 GRASP Results

This section presents the results obtained with GRASP for ten instances and

5, 10, 15 and 20 switches. Each experiment was executed ten times for every

test case, except R6 which was executed five times and R7 which was executed

just once. The tested GRASP is formed by a semi-greedy construction and a first
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improvement local search. The stop criterion is ten GRASP iterations and the

local search runs until there is no improvement in the neighbourhood. We tested

four α values (0.25, 0.5, 0.75 and 1.0) with four instances (BR, BU, AR and AU).

The different α values produced similar results with different execution times.

The best times were obtained with α = 0.25 and α = 0.5. This indicates that

the best α value is between 0.25 and 0.5. These two α values were used with

the rest of instances (R3, B4, R4, R5, R6 and R7). Tables 6.5 and 6.6 present

the average EENS, the average execution time and the best solution found with

GRASP (column Min.). The new bounds found by GRASP are marked with “X”

and the bounds of GRASP are marked with “×” when they did not reach the best

bound of tabu search.

The difference in average EENS of results with α = 0.25 and α = 0.5 is less

than four percent and the difference in execution time is less than ten percent.

Thus, the results of GRASP with different α values are statistically about the same.

The average results of GRASP and tabu search are the same for the instances

BR, BU, and B3. The results show some differences for the instances B4, AR,

AU, and R4, where GRASP finds two better, twelve equal and three worse results

than tabu search when using the lower bound, and five better, seven equal and

four worse when using the upper bound. The execution time of GRASP for the

small instances (BR, BU, R3, B4 and R4) is about twice than tabu search, except

instances AR and AU that show a big difference in running time, up to 20 times

slower than tabu search.

GRASP is able to find good results in the large instances (R5, R6, and R7),

where tabu search was not. The greedy construction time is the same than semi-

greedy construction time. For this reasons, GRASP execution time of the instances

R5, R6 and R7 can not be compared.
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Table 6.5: Lower bounds by GRASP.

Inst. Sw.
α = 0.25 α = 0.5

EENS Min. Time EENS Min. Time

BU

5 2161± 95 2022 0.1± 0.0 2154± 85 2056 0.1± 0.0
10 1082± 0 1082 0.4± 0.0 1082± 0 1082 0.4± 0.0
15 811± 1 810 0.7± 0.0 811± 1 810 0.8± 0.1
20 703± 7 700 1.0± 0.1 703± 7 700 0.9± 0.0

BR

5 1928± 63 1809 0.1± 0.0 1858± 69 1809 0.1± 0.0
10 1024± 0 1024 0.5± 0.0 1024± 0 1024 0.5± 0.0
15 785± 3 784 0.8± 0.0 784± 0 784 0.8± 0.1
20 668± 1 667 1.0± 0.0 668± 1 667 1.0± 0.0

R3

5 4209±169 4078 0.1± 0.0 4209±169 4078 0.1± 0.0
10 2177± 2 2176 0.4± 0.0 2176± 0 2176 0.4± 0.0
15 1760± 2 1759 0.8± 0.1 1759± 0 1759 0.8± 0.1
20 1522± 0 1522 0.9± 0.0 1522± 0 1522 0.8± 0.0

B4

5 16625± 0 16625 0.7± 0.0 16625± 0 16625 0.6± 0.1
10 12329± 0 12329 2.1± 0.1 12329± 0 12329 2.1± 0.1
15 10531± 0 10531× 3.9± 0.1 10539± 16 10531× 3.9± 0.2
20 8742± 0 8742 5.3± 0.4 8742± 0 8742 5.5± 0.4

AU

5 32700± 88 32673 2.0± 0.2 32673± 0 32673 2.0± 0.2
10 24305±288 24040 7.6± 0.6 24068± 73 24040 7.3± 0.4
15 18940± 60 18889 15.1± 1.1 18940± 91 18889 13.6± 0.9
20 16411±144 16244 25.2± 1.5 16216± 79 16058 22.5± 1.4

AR

5 32315± 45 32253 2.0± 0.1 32285± 44 32253 2.1± 0.2
10 24266±352 24057 7.2± 0.4 24096±147 23992× 6.9± 0.6
15 18843±105 18740 15.6± 0.9 18848±100 18740 14.6± 0.7
20 16151±134 15985 27.5± 1.8 15991± 95 15889× 25.3± 1.7

R4

5 3573± 0 3573 1.8± 0.1 3573± 0 3573 1.9± 0.1
10 2860± 2 2858X 7.2± 0.4 2859± 2 2858X 6.9± 0.4
15 2305± 25 2234 13.0± 0.7 2266± 40 2234 12.7± 0.6
20 1882± 61 1853 20.0± 1.0 1853± 0 1853 19.5± 0.9

R5

5 9333± 0 9333 8.0± 0.3 9333± 0 9333 7.7± 0.3
10 7178± 48 7115 22.7± 1.5 7178± 48 7115 22.3± 1.3
15 5396± 63 5367 52.4± 4.4 5387± 63 5367 50.7± 3.8
20 4368± 8 4364X 99.6± 5.3 4370± 10 4364X 96.2± 7.1

R6

5 3876±170 3747 18.5± 1.2 4133±278 3875 17.8± 1.5
10 1945± 42 1926 85.2± 5.9 1926± 0 1926 77.2± 7.1
15 1363± 20 1353X187.8± 2.5 1356± 4 1353X160.9± 6.6
20 1056± 1 1054X256.6±44.3 1057± 5 1054X225.0±17.4

R7

5 726830 1309.5 722688X 1276.2
10 529067X 2551.2 529067X 2297.0
15 382953X 4551.0 382959 4666.0
20 310626X 9648.0 310626X 10504.0

X: new best bound, ×: previous best bound not reached.
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Table 6.6: Upper bounds by GRASP.

Inst. Sw.
α = 0.25 α = 0.5

EENS Min. Time EENS Min. Time

BU

5 2220± 0 2220 0.6± 0.0 2220± 0 2220 0.5± 0.0
10 1287± 5 1285 3.8± 0.4 1285± 0 1285 4.0± 0.4
15 926± 0 926 12.7± 0.8 926± 0 926 11.0± 0.7
20 783± 3 782 22.4± 1.1 784± 3 782 21.1± 1.8

BR

5 1957± 0 1957 0.5± 0.0 1957± 0 1957 0.5± 0.0
10 1179± 2 1174 4.2± 0.4 1180± 2 1175 4.2± 0.3
15 881± 0 881 12.7± 0.8 881± 0 881 13.2± 1.3
20 759± 0 759 22.7± 1.4 759± 1 759 21.3± 0.9

R3

5 6481± 24 6469 0.8± 0.1 6487± 41 6469 0.8± 0.1
10 4026± 0 4026 10.3± 0.5 4026± 0 4026 9.9± 1.0
15 3399± 0 3399 24.7± 1.1 3399± 0 3399 24.4± 1.6
20 3278± 0 3278 43.3± 1.7 3278± 0 3278 41.4± 2.2

B4

5 17221±262 17058 8.0± 0.4 17058± 0 17058 8.0± 0.4
10 14244± 0 14244× 41.0± 2.0 14244± 0 14244× 41.1± 1.4
15 12685± 80 12599× 114.3± 4.4 12656± 97 12599× 124.5± 6.9
20 11283± 44 11262 219.1± 10.8 11262± 0 11262 222.4± 5.7

AU

5 38660± 0 38660× 35.0± 1.6 38660± 0 38660× 33.0± 1.7
10 30306±165 30074 177.5± 8.8 30296±159 30074 173.7± 6.8
15 25651±249 25108X 455.1± 24.0 25711±180 25572 421.6± 24.0
20 23005±260 22694X 909.5± 50.1 22945±203 22741 870.3± 45.2

AR

5 37269± 0 37269 41.6± 1.1 37269± 0 37269 39.4± 1.9
10 30208±298 29811 212.8± 12.7 30133±286 29811 204.6± 12.1
15 26008±171 25761 509.7± 23.9 25926±253 25554× 470.6± 32.8
20 22400±485 21317X1108.7± 57.3 22373±345 21506 1037.3± 79.4

R4

5 4354± 0 4354 20.7± 0.5 4354± 0 4354 21.4± 0.4
10 3763± 14 3736 166.7± 5.4 3752± 19 3726X 170.7± 7.3
15 3370± 70 3281X 315.2± 23.0 3343± 66 3281X 314.0± 21.2
20 3063± 1 3063 390.1± 18.6 3063± 0 3063 390.5± 22.5

R5

5 11389± 0 11389 85.5± 1.8 11389± 0 11389 81.4± 2.6
10 9673± 10 9667X 478.0± 21.8 9667± 0 9667X 460.1± 30.9
15 8467± 22 8406X1506.4± 61.4 8474± 0 8474 1547.1± 56.9
20 7706± 78 7575X2270.5±193.3 7612± 78 7575X2256.1±195.5

R6

5 4865±223 4564 93.3± 2.7 5025± 0 5025 94.9± 4.6
10 3147± 12 3139X 776.8± 26.4 3149± 15 3139X 756.1± 42.7
15 2277± 46 2245X1997.4± 58.7 2245± 0 2245X2041.9± 58.0
20 1794± 0 1794 6675.2±721.6 1794± 1 1793X7134.6±505.6

R7

5 769558X 15895.0 769558X 16326.0
10 572979 43459.0 569354X 44575.0
15 435809X 126237.0 435809X 119309.0
20 361420 291757.0 356233X 313825.0

X: new best bound, ×: previous best bound not reached.
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6.6 Sample algorithms vs. conventional algorithms

Various questions emerged with the previous tests. The first question is if

the greedy and semi-greedy constructions produce a worthy initial solution in

exchange of the processing time required to build it, or if random initial solutions

are better for the subsequent local search processes. Another doubt is which

strategy is the best for local search: first best improvement or best improvement.

Another question is if another strategy with a restricted neighbourhood can

improve the previous construction and local search algorithms.

We tried to answer these questions with the comparison of some construction

and local search algorithms, including the sample construction and the sample

local search described in Section 4.4.

We compare the sample construction algorithm with a random construction

and a semi-greedy construction, and compare the sample local search with the first

improvement and the best improvement strategies. We combined constructive and

local search methods in nine tests, as shown in Table 6.7.

Table 6.7: Combinations of sample and construction algorithms for tests.
Construction algorithm

Semi-greedy Random Sample

Lo
ca

l
se

ar
ch Sample SGr-Spl Rnd-Spl Spl-Spl

First improvement SGr-FI Rnd-FI Spl-FI
Best improvement SGr-BI Rnd-BI Spl-BI

Preliminary tests of sample algorithms with β = 5%, 10%, 20% on instance B4

presented slightly better results for β = 10%. In these tests, sample construction

and sample local search use β = 10% and semi-greedy construction uses α = 0.5.

As the sample local search is not an exhaustive search, its stop criterion is ten

iterations without improvement.

We selected two instances for this test, one small and one large. B4 was

selected because its greedy solutions are also local minimum (for 15 and 20

switches), and R6 because is large enough to confirm results without causing
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excessively long time process. We run tests allocating 15 and 20 switches. We

repeat each experiment 1000 times for instance B4, and 100 times for instance R6.

We present the results for instance B4 in Table 6.8 and Figure 6.6, and for the

instance R6 in Table 6.9 and Figure 6.7.

Tables 6.8 and 6.9 show the average EENS and the number of reliability

estimations used to generate the initial solutions with the construction algorithms.

We use the number of reliability estimations instead of the average time in the

comparisons, because it is a more precise measure than the uncomparable and

very small times in the construction of the initial solutions. For the final solutions

obtained with the local search methods, the tables present the average EENS, the

average number of reliability estimations, and the average running time. The

tables also present the best solution found by each combination within all the

repetitions (column Min.). The last columns compare the number of final solutions

that reach (column =GR) or overcome (column <GR) the corresponding greedy

solution.

Figures 6.6 and 6.7 compare the average EENS achieved with the required

number of reliability estimations. Four points show the average result of the

construction algorithms (random, semi-greedy, sample and greedy). Three lines

start from each point (except greedy), they outline the average performance of

first improvement, best improvement and sample local search strategies.

First, we analyze the initial solutions of the construction algorithms. Solutions

created by the semi-greedy algorithm are better than random solutions in average

by 2000 KWh/year and 1100 KWh/year for instances B4 and R6, but the execution

time and the number of reliability estimations to build the initial solution increases

significantly. A random solution requires only one reliability estimation, while the

semi-greedy and the greedy algorithms require more than 900 estimations for B4

and more than 3000 estimations for R6. Greedy construction generates always

the best initial solution at the same cost than semi-greedy, but this solution is
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Table 6.8: Comparison of construction and local search algorithms, instance B4.

Algorithm
Initial solution Final solution
EENS N.Est. EENS Min. N.Est. Time =GR<GR

15
sw

it
ch

es

SGr-Spl 18042±1058 975 13452±681 12599 1208± 77 0.6± 0.1 1 14
SGr-FI 18151±1027 975 12782±107 12565 14542±3638 18.9± 4.9 247 432
SGr-BI 18124±1032 975 12789± 91 12565 10523±1290 12.5± 1.7 631 269

Rnd-Spl 19867±1017 1 13482±689 12618 257± 75 0.3± 0.1 0 13
Rnd-FI 19899±1005 1 12770±117 12565 21053±4340 27.2± 5.1 123 518
Rnd-BI 19908± 981 1 12793± 97 12565 11331±1286 13.5± 1.5 466 305
Spl-Spl 15585±1176 91 13418±637 12624 262± 71 0.3± 0.1 1 11
Spl-FI 15537±1166 91 12840± 70 12565 9843±3167 13.4± 4.2 408 111
Spl-BI 15556±1164 91 12841± 50 12565 7360±1255 9.7± 1.7 638 43

20
sw

it
ch

es

SGr-Spl 16822±1226 1250 11923±446 11262 1710± 133 1.6± 0.4 7 268
SGr-FI 16835±1186 1250 11509±175 11262 19264±5073 42.5±11.4 401 599
SGr-BI 16872±1211 1250 11505±189 11262 14075±1726 28.5± 4.1 442 558

Rnd-Spl 19060±1108 1 11947±419 11262 526± 128 1.0± 0.3 9 228
Rnd-FI 19009±1126 1 11524±158 11262 28804±6030 63.3±13.2 373 627
Rnd-BI 19000±1176 1 11535±179 11262 16444±1948 33.1± 3.7 488 512
Spl-Spl 14056±1129 116 12031±441 11308 479± 133 0.8± 0.3 6 96
Spl-FI 14080±1180 116 11642±134 11262 12354±4064 28.4± 8.8 797 203
Spl-BI 14027±1137 116 11641±141 11262 9431±1617 20.9± 3.4 811 189

Greedy solution (GR) for instance B4 with 15 and 20 switches is 12830 and 11707 KWh/year respectively.

Table 6.9: Comparison of construction and local search algorithms, instance R6.

Algorithm
Initial solution Final solution
EENS N.Est. EENS Min. N.Est. Time <GR

15
sw

it
ch

es

SGr-Spl 5329±585 3135 2717±217 2354 4164± 338 6.5± 1.4 19
SGr-FI 5293±586 3135 2320± 86 2236 119571±30943 377.0± 97.5 96
SGr-BI 5380±621 3135 2315± 78 2236 51891± 6817 157.8± 25.6 97

Rnd-Spl 6394±568 1 2677±213 2327 1157± 343 3.8± 1.3 25
Rnd-FI 6367±550 1 2322± 84 2236 174435±46355 568.3±159.3 95
Rnd-BI 6466±538 1 2346± 94 2236 51319± 6150 157.9± 25.2 95
Spl-Spl 3177±289 307 2672±198 2306 981± 292 2.5± 1.0 21
Spl-FI 3157±281 307 2369±100 2236 44586±19044 137.0± 62.6 89
Spl-BI 3102±271 307 2345± 69 2236 34319± 6415 103.6± 24.4 99

20
sw

it
ch

es

SGr-Spl 4668±593 4130 2011±143 1822 6580± 671 20.6± 4.9 32
SGr-FI 4602±741 4130 1827± 55 1793 202289±50048 1159.1±313.8 90
SGr-BI 4735±635 4130 1853± 86 1793 81435±10229 431.8± 71.8 79

Rnd-Spl 5975±607 1 1997±143 1814 2704± 755 15.6± 4.9 38
Rnd-FI 5921±578 1 1848± 82 1793 306406±72093 1810.3±479.1 84
Rnd-BI 5814±585 1 1868± 88 1793 86244±11295 460.5± 75.6 73
Spl-Spl 2541±215 404 1998±150 1800 2173± 721 10.9± 4.2 38
Spl-FI 2550±214 404 1836± 69 1793 88137±33966 512.8±201.8 84
Spl-BI 2572±234 404 1843± 68 1793 56855±10334 320.8± 61.1 85

Greedy solution (GR) for instance R6 with 15 and 20 switches is 2508 and 1925 KWh/year respectively.
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Figure 6.6: Average performance for instance B4.
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Figure 6.7: Average performance for instance R6.
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usually close to (or is itself) a local minimum, that is undesirable for a multi-start

procedure. Solutions created by the sample algorithm are better than random

solutions in average by 4600 KWh/year and 3300 KWh/year for instances B4

and R6, and they require less than 120 estimations for B4 and less than 410

estimations for R6. Thus, sample algorithm creates better solutions than semi-

greedy algorithm, and in less than ten percent of the corresponding time. The good

cost/benefit of the sample construction algorithm can be seen in the graphs by its

proximity to the origin, i.e., low EENS and low number of reliability estimations.

Contrarily, semi-greedy construction generates the worst solutions considering the

high number of reliability estimations.

Now, we analyze the local search algorithms. The average final solutions

of first and best improvement are very close, and they yield the best result

for all construction algorithms. The biggest difference between first and best

improvement is 26 MWh/year. It is found with semi-greedy construction for

R6 with 20 switches, and it is half of the smallest standard deviation. The

difference between first and best improvement is in their execution time and

their performance over time. First improvement spends more time than best

improvement. The average final solutions of sample local search are worse than

first and best improvement. The difference of sample local search with other

search strategies is less than 700 KWh/year and 400 KWh/year for instance R4

and B6, respectively. Moreover, the sample local search was able to find the best

solution for instance B4 with 20 switches. The time that sample local search spent

is very small, about half the time of the greedy or semi-greedy construction alone.

In Figures 6.6 and 6.7, the graphs of the three local search strategies show the

same behavior for all the test cases, independently of the constructive algorithms.

Figure 6.8 shows isolatedly the performance of the three local search strategies

for the instance B4 with 15 switches and the sample constructive algorithm.

We observe that first improvement progresses quickly in the beginning, but best

improvement becomes better after some iterations. Best improvement has an
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stable number of reliability estimations in each iteration along the whole search.

First improvement takes any solution better than current and the number of

estimations varies with the iterations. This is an advantage in early iterations

because first improvement finds easily better solutions, but becomes a disvantage

in the late iterations because first improvement restarts the local search with any

small improvement when the number of reliability estimations is almost the same

than best improvement. Thus, first improvement finally spends more time than

best improvement in average.

Another observation is that sample local search has a very fast progress

compared with the other strategies. The number of reliability estimations of

sample local search is constant in each iteration like best improvement, but is 100

times smaller because the neighbourhood is restricted randomly to ten percent of

switches and ten percent of free lines. The sample local search is not an exhaustive

search in the neighbourhood, i.e., it does not guarantee to find the local minimum,

but it finds good results fast.

Another important observation emerges from the comparison with the greedy
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Figure 6.8: Comparison of local search methods on instance B4 with 15 switches.
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solution. For instance B4, almost half of the final solutions of first and best

improvement strategies are stuck in the greedy solution, in particular with best

improvement or when the initial solution is built by the sample algorithm.

Random construction with the first improvement local search is the combination

that finds the biggest number of solutions that overcome the greedy solution. For

instance R6, the local search algorithms do not get stuck in the greedy solution,

and the first and best improvement overcome the greedy solution in 89 percent of

the cases.

Finally, we analyze the combinations of construction and local search. If

we consider each row of Tables 6.8 and 6.9 as one iterative local search, with

1000 and 100 iterations for instance B4 and R6, and each row with semi-greedy

construction as one GRASP, we observe that iterative search processes with first

and best improvement are effective to reach the best known upper bound for the

test cases. But the number of iterations to obtain this results is very high, and the

accumulated running time is 1000 and 100 times the shown average for instance

B4 and R6, respectively.

A GRASP is as effective as an iterative local search with random initial

solutions, but needs less time.

The best method for an iterative local search would be the combination of

sample construction and best improvement local search, because it is the cheapest

combination in terms of execution time that is able to find the best solution.

The most expensive combination is random construction with first improve-

ment local search. This is the reason for tabu search to spend many early iterations

without finding the first local minimum in large instances.

The cheapest method for an iterative local search would be the combination

of sample construction and sample local search, its execution time is at least two

times faster than a greedy or semi-greedy construction algorithm alone. This

verifies that a restricted neighbourhood speeds the search up.
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6.7 Iterated sample construction with path relinking

A question that emerged from the good performance of sample local search is if

there exists a better method to restrict the neighbourhood than a random sample.

We also wanted to take advantage of the fast sample construction algorithm. This

lead us to study a process of path relinking between two solutions generated by

sample construction.

This section presents results for the iterated sample construction with path

relinking algorithm described in Section 4.5. The stop criterion is 50 iterations.

The reconstruction algorithm rebuilds a completely new solution, forbidding the

switch positions of the previous one, and using a sample of β = 10%. The path

relinking searches the whole path from the new solution to the best found solution.

Test cases are seven instances with the installation of 5, 10, 15 and 20 switches.

Each test case is executed ten times.

Table 6.10 shows lower and upper bound results. It presents the average EENS,

the average time, and the best solution found in all ten repetitions (column Min.).

Iterated sample construction with path relinking is able to find three new

lower bounds and nine new upper bounds (marked with “X”). Two lower bounds

and three upper bounds (marked with “×”) do not reach the best known bounds

given by GRASP. The difference in the solutions that do not overcome GRASP

is less than 0.8% of the best known bound. The average EENS of the iterated

algorithm overcome the corresponding greedy solution almost always, except for

the instance R5 with 5 switches, where the greedy solution seems to be the global

minimum.

The iterated algorithm is faster than GRASP for small instances (B4, AU, AR,

R4), except B4 and R4 with 20 switches. In the large instances (R5, R6, R7)

iterated sample construction with path relinking is many times faster than GRASP.

Taking into account that our tests run 10 iterations for GRASP and 50 iterations
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Table 6.10: Bounds by iterated sample construction with path relinking.

Lower bound Upper bound
Inst. Sw. EENS Min. Time EENS Min. Time

B4

5 16625± 0 16625 0.2±0.0 17058± 0 17058 1.9± 0.1
10 12329± 0 12329 1.2±0.0 14235± 0 14235 19.8± 0.5
15 10503± 18 10496 4.5±0.1 12600± 40 12565 98.9± 3.7
20 8742± 0 8742 13.6±0.3 11301± 51 11262 314.5± 12.0

AU

5 32673± 0 32673 0.3±0.0 38539± 294 38288 3.7± 0.1
10 24040± 0 24040 1.8±0.1 30083± 29 30074 38.7± 1.1
15 18907± 39 18889 6.8±0.2 25744± 339 24969X 201.0± 8.6
20 16118± 49 16058 20.7±0.7 22119± 365 21627X 760.8± 25.8

AR

5 32289± 48 32253 0.3±0.0 37769± 370 37269 3.8± 0.1
10 23962± 0 23962 1.9±0.1 29811± 0 29811 40.7± 2.0
15 18769± 21 18740 6.9±0.3 25661± 279 25101X 202.3± 10.5
20 15864± 41 15803 21.9±0.6 21923± 433 21317 764.7± 32.3

R4

5 3581± 24 3573 0.3±0.0 4354± 0 4354 4.2± 0.1
10 2860± 18 2830X 1.9±0.1 3766± 39 3697X 37.0± 0.5
15 2243± 14 2234 7.1±0.2 3306± 53 3281 176.6± 2.6
20 1853± 0 1853 20.9±0.3 3062± 3 3056X 586.1± 20.7

R5

5 9428± 223 9333 0.5±0.0 11439± 159 11389 9.1± 0.2
10 7147± 34 7115 3.0±0.1 9673± 19 9667 75.7± 2.4
15 5367± 0 5367 11.4±0.3 8518± 42 8474× 388.2± 7.7
20 4365± 1 4364 33.3±0.6 7695± 79 7553X 1395.2± 41.3

R6

5 3671± 29 3648X 0.7±0.0 4599± 71 4564 5.0± 0.1
10 1927± 1 1926 4.5±0.1 3189± 11 3159× 53.0± 0.8
15 1361± 9 1353 17.8±0.3 2249± 12 2236X 328.6± 9.4
20 1058± 2 1054 53.4±0.9 1797± 6 1793 1322.0± 30.4

R7

5 724898±2049 722688 10.1±0.1 770910±4256 769558 168.3± 1.7
10 510966±2615 507035X 37.0±0.2 570341±1707 568837X 877.1± 14.2
15 385240±1765 383654×104.5±1.0 445403±6553 436823× 3717.3± 73.6
20 311209± 572 310717×257.7±1.3 360487±2628 355951X11897.7±320.4

X: new best bound, ×: previous best bound not reached.
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for iterated sample construction with path relinking, we conclude that iterated

sample construction with path relinking is always faster than GRASP.

We observe that the running time of iterated sample construction with path

relinking strongly depends on the number of switches. Indeed, even while the

sample and the semi-greedy constructions have the same time complexity O(|A|2)

for |A| lines, sample construction executes in β percent of the time of semi-greedy

construction. Furthermore, for solutions with s switches, iterated path relinking

has time complexity O(s3), while GRASP has time complexity O(|A| · s2). On the

one hand, path relinking searches in a neighbourhood restricted by the lines with

switches in the other solution, on the other hand, GRASP searches in the whole

neighbourhood of free lines. This is the reason for the reduction of the running

time with the new iterated sample construction with path relinking.

With the small differences in the results with GRASP and the big reduction of

running time, we conclude that iterated sample construction with path relinking

is the best approach proposed in this dissertation for solving the switch allocation

problem.
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7 CONCLUDING REMARKS AND FUTURE RESEARCH

In this dissertation, we explained the switch allocation problem, the service

reconfiguration problem, and the reasons for considering the second as a

subproblem of the first one. We described the network reliability, its measures

and methods to estimate its boundaries. We adapted and proposed instances for

our tests. We proposed and implemented algorithms to estimate the reliability and

to solve the joint problem. We showed the results obtained by various experiments

executed during our research.

Our experiments studied different issues such as the comparison of different

reliability measures, the influence of voltage drop limit as electrical constraint, the

improvements proposed for reliability estimation, the comparison of greedy, semi-

greedy, sample and random contruction algorithms, the comparison of sample,

first and best improvement local search strategies, the comparison of tabu search,

GRASP and iterated greedy construction with path relinking.

The major concluding remarks of our research are presented next. The sample

construction generates the best solutions with a low cost for a future local search,

and the worst performance comes from the semi-greedy construction. A restriction

over the neighbourhood speeds up the local search, even when it is restricted by

random samples. The tabu search method is not effective on large instances, while

multi-start search like GRASP is effective in small and large instances. The best

strategy proposed to solve the switch allocation problem is an iterative sample
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construction with path relinking. It finds better solutions and in less time than

GRASP and tabu search, and it is able to solve large instances fast.

7.1 Ideas for future research

Next, we present some ideas of tests and improvements for future research.

The combination of sample construction and sample local search (Spl-Spl) has

a good performance, but it is not an exhaustive local search. An idea for future

work within an iterative search is to execute a best improvement local search

after the Spl-Spl combination to ensure that a local minimum is reached in each

iteration.

The results found with tabu search in previous works (COSTA et al., 2008;

BENAVIDES et al., 2009b) suggested that a greedy or a semi-greedy initial solution

helps the tabu search to find better solutions quickly, but other results show that

Spl-Spl combination is more efficient than greedy and semi-greedy construction

algorithms (BENAVIDES et al., 2009a). Another idea is the use of Spl-Spl

combination to seed the first initial solution for a tabu search, saving time to find

the first local minimum.

There are some variations for the proposed iterated sample construction with

path relinking that can be tested in the switch allocation problem and in other

combinatorial optimization problems. For example, to forbid elements used

in more than one previous solution, to create new solutions far from the last

solutions. Or, to intersperse a complete neighbourhood exploration at some

iterations, to ensure the local minimum.

We did many efforts to compare our approaches with other authors. We

tested many standard measures, and we adapted various instances to be used

with the measures. But unfortunately, we found no puublished works with a

similar reliability estimation and complete instance data to compare with. With
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the inclusion of costs based measures and different kinds of devices, or changing to

a multi-objective optimization function, the comparison with other authors might

be possible.

An unexplored research area is use of exact algorithms such as branch-and-

bound to find optimal solutions. This may be impossible for large instances with

the consideration of all electrical constraints. The consideration of some electrical

constraints such as capacities can result in a better aproximation of lower bound.
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APPENDIX A RESTAURAÇÃO DE SERVIÇO E ALOCAÇÃO

DE CHAVES EM REDES DE DISTRIBUIÇÃO: LIMITES E

ALGORITMOS

A melhora da confiabilidade em redes de distribuição de energia elétrica é um

tema importante para as indústrias de fornecimento de eletricidade, devido aos

regulamentos estritos em muitos países.

Depois de detectar a ocorrência de uma falha na rede, algumas chaves

são usadas para isolar a falha, enquanto outras restauram a energia a alguns

consumidores. A ótima seleção das chaves que serão abertas ou fechadas para

restaurar a energia é conhecido como o problema de restauração de serviço. A

instalação de chaves em posições estratégicas pode reduzir o tempo de parada, e

assim melhorar a confiabilidade da rede. A seleção ótima de posições para instalar

chaves é conhecido como o problema de alocação de chaves.

Os problemas de restauração de serviço e de alocação de chaves estão

relacionados estreitamente. O Capítulo 2 desta dissertação descreve com

mais detalhe estes dois problemas. Para isso, também apresenta as principais

características das redes de distribuição de energia elétrica e um modelo da rede

baseado em grafos.

Os sistemas de distribuição de energia elétrica devem entregar a energia,

garantindo um nível de continuidade e qualidade. A habilidade do sistema
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para cumprir com este objetivo é chamado de confiabilidade. Existem muitas

medidas para estimar a confiabilidade de uma rede. O Capítulo 3 descreve as

medidas mais comuns na literatura. Também descreve dois métodos para estimar

a confiabilidade de uma rede de distribuição, achando um limite superior e um

limite inferior. A estimação do limite superior considera as restrições elétricas,

enquanto a estimação do limite inferior as ignora. Os algoritmos descritos para a

estimação da confiabilidade propõem duas melhoras, uma estimação por setores

ao invés de linhas (Algoritmo 3.2) e uma heurística otimista para a estimação do

limite superior (Seção 3.4).

O foco principal da pesquisa é criar métodos para resolver o problema de

alocação de chaves, considerando o problema de restauração de serviço como um

subproblema. O Capítulo 4 descreve os métodos propostos que são: busca tabu,

procedimento de busca gulosa adaptativa aleatória (sigla em inglês: GRASP), e

procedimento iterativo de construção por amostras com reconexão de caminhos.

Também descreve diferentes métodos de construção (gulosa, semigulosa, aleatória

e por amostras), e de busca local (por amostras, primeira melhoria e melhor

melhoria).

Um problema para nossa pesquisa foi a falta de instâncias de redes elétricas

para experimentar nossos algoritmos. As instâncias encontradas na literatura não

estão descritas completamente, ou são redes privadas. O Capítulo 5 apresenta as

instâncias usadas, e descreve os dados que foram completados em cada uma delas.

Os resultados são apresentados no Capítulo 6. A três seções iniciais deste

capítulo apresentam estudos referentes à estimação de confiabilidade. Primeiro

comparamos as medidas de confiabilidade, depois estudamos a influência das

restrições elétricas com diferentes limites de queda de voltagem, e finalmente

estudamos as duas melhoras para a estimação de confiabilidade que são descritas

no Capítulo 3. Os resultados mostram que as medidas estão estreitamente

correlacionadas, que a consideração das restrições elétricas nos leva a uma melhor
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estimação da confiabilidade, e que as duas melhoras nos métodos de estimação de

confiabilidade podem acelerar a estimação em até 100 vezes.

As últimas quatro seções do Capítulo 6 apresentam os resultados dos

algoritmos propostos para resolver o problema de alocação de chaves. A primeira

comparação é feita entre a busca tabu e um algoritmo de construção gulosa, depois

apresenta os resultados do GRASP. A Seção 6.6 estuda o benefício dos métodos de

construção gulosa, semigulosa, aleatória e por amostras, e estuda o desempenho

das estratégias de busca local por amostras, primeira melhoria e melhor melhoria.

Finalmente os resultados que apresenta o procedimento iterativo de construção

por amostras com reconexão de caminhos são os melhores.

O Capítulo 7 apresenta as conclusões da pesquisa e algumas idéias para

trabalhos futuros. As principais conclusões da nossa pesquisa são apresentadas

a seguir. O algoritmo de construção por amostras gera as melhores soluções com

um custo baixo para uma futura busca local, enquanto a construção semigulosa

tem o pior rendimento. A restrição na vizinhança acelera a busca local, ainda se a

restrição é feita com amostras aleatórias. A busca tabu não é efetiva nas instâncias

maiores, enquanto uma busca multi- inicio como GRASP é efetiva nas instâncias

menores e maiores. A melhor estratégia proposta para resolver o problema de

alocação de chaves é o procedimento iterativo de construção por amostras com

reconexão de caminhos, pois consegue encontrar melhores soluções em menos

tempo do que GRASP ou busca tabu, e encontra rapidamente soluções para as

instâncias maiores.


