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Análise estática, genérica e modular de WCET utiliz ando a 
infra-estrutura de compilação do LLVM 

RESUMO 

 

 

O cálculo do tempo do pior-caso de execução, do inglês Worst Case Execution Time 
(WCET) é um desafio na área de verificação de software para sistemas de tempo real. 
Essa análise faz parte do trabalho de escalonamento de tarefas de processos em sistemas 
multi-cores. A complexidade de prever esse tempo aumenta de acordo com a 
complexidade do hardware do sistema a ser analisado e seus componentes, já que 
muitas partes de uma plataforma, como pipelines e memória cache inserem variantes no 
tempo de execução difíceis de prever e analisar. Existem vários métodos com diferentes 
abordagens para se calcular o tempo de execução de um programa. Eles são 
principalmente baseados em análises estáticas e dinâmicas, de forma que a estática 
utiliza um modelo de hardware e analisa o código, enquanto a dinâmica necessita de 
algum simulador ou de uma plataforma real para realizar as medidas de tempo. 

Esse trabalho apresenta um modelo de análise estática para prever o tempo do pior-
caso de execução de códigos para sistemas embarcados de tempo real. Além disso, 
executa, para fins de comparação, uma análise dinâmica baseado na execução dos 
códigos de teste em um simulador. O modelo de análise estática é desenvolvido baseado 
em um assembly gerado pela infra-estrutura de compilação do LLVM, que gera uma 
representação intermediária de código que é independente de arquitetura.  

O método tem o objetivo de ser escalonável e modular, isto é, quão mais precisa a 
análise deve ser, melhores modelos de análise devem ser implementados e usados no 
processo. O modelo de análise utilizado nesse trabalho possui uma abordagem clara e 
utiliza uma descrição de arquitetura simples exemplificando o processo. A análise 
dinâmica é baseada no método Monte Carlo de simulação e é executada em um 
simulador da arquitetura de um AVR, o Atmega128, chamado AVRORA. 
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ABSTRACT 

The worst-case execution time (WCET) prediction is a challenge in the software 
verification area for real-time embedded systems. This analysis is part of the scheduling 
of parallelizable processes job on multi-core systems. The complexity of predict this 
time increases accordingly to the complexity of the target system hardware and its 
components, since much of this components, as pipelines and cache memory, attach 
hard to predict and analyze temporal variants. There are many methods with different 
approaches to calculate the execution time of a program and they are based mainly on 
static and dynamics analysis. The first takes account a hardware model and the code 
analysis itself, while the second needs some accurate simulator or the target platform to 
perform its time measurements. 

This work presents a static method for predicting worst-case execution time 
(WCET) for embedded real-time systems. Furthermore, performs, as a comparison of 
accuracy, a dynamic analysis, running the test codes in a simulator. The static analysis 
is performed based on an assembly generated by the LLVM compiler. This compilation 
framework generates a code intermediate representation (IR) independent of 
architecture.  

The model aims to be a modular and scalable, that means, it was build to accept 
different accuracy levels, depending on the accuracy of the developed hardware model 
and the analysis used in the process. In this work, this work analysis follows a clear 
approach and uses a simple architecture description for its execution. The dynamic 
analysis is done based on the Monte Carlo simulation method, performed over the AVR 
ATmega128 simulator, AVRORA. 
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1 INTRODUCTION AND MOTIVATION 

In the past, processing speed of embedded platforms used to be increased by 
increasing their clock frequency, as multipurpose systems. Due to electromagnetic 
interferences, increase processing power by increasing the clock frequency is not 
possible anymore. To overcome this limitation, parallel processing units are replacing 
single processors running at high clock speed. However, to fully utilize the processing 
resources from parallel platforms, optimized algorithms and sophisticated 
parallelization process are required. 

The parallelization of an algorithm implies the distribution of code blocks among the 
processing units at the multi core platforms and the management of communication and 
synchronization. Parallelization is only feasible if time savings due to parallel execution 
offsets the effort for synchronization and communication. Therefore, successful 
automatic algorithm parallelization depends on the knowledge of execution times.  

For real time systems, Worst Case Execution Times need to be considered. Since 
execution times for code blocks are normally not known by developers, this information 
needs to be acquired during the deployment and parallelization process. This work was 
done during an internship at Fraunhofer Institute IESE where a project about scheduling 
process for multi cores architectures was being developed over Simulink. In this 
context, the WCET calculation was necessary for the scheduling algorithm. Here will be 
describe an approach and method to measure worst case execution time of code 
segments generated from Simulink models on different target platforms.  

The problem of calculating WCET is well described and several approaches and 
methods have been developed [1]. However it keeps challenging research because of the 
difficulty of having more accurate timing prediction models. The issue comes mainly 
due to the variation of the code runtime depend on hardly or not predictable factors, 
such as: 

- Input data: variables that affect the code flow. 

- Loop and recursion bounds 

- Initial state of the execution block: e.g. caches, pipelines, branch prediction. 

- System interference: interruptions, preemptions. 

Mainly there are two methods to predict the worst case execution time, namely static 
and dynamic: Static methods are based on the control-flow and call-graph analysis 
combined with some abstract hardware model, and does not depend on the execution of 
the code. Dynamic methods involve the execution of the code on some simulator or on 
the target hardware itself with some defined inputs and the WCET is calculated based 
on the observation of the execution times. 
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This work follows a static model approach based on a static analysis over the low 
level virtual machine (LLVM), which provides a layer between C and C++ code and 
concrete architecture machine code, in comparison with a dynamic analysis based on 
Monte Carlo simulation over AVRORA, an AVR architecture simulator. The dynamic 
analysis approach aims to validate the static one, which is based on code annotations 
and instructions mapping. Aiming an easy to understand and simple method, this work 
develops an architecture independent, modular and reusable static analysis model 
aiming an easy aggregation of new feature, analysis and more accurate hardware 
models. 

 

 

Figure 1.1 – Static Analysis Workflow 

 

Figure 1.1 gives an overview about the static analysis process made in this work. 
Each step is described in more details in Chapter 3. 

The work has the following structure: Chapter 2 describes related works and gives 
an overview about the tools used in this work. Chapter 3 explains the static analysis 
method and the mapping between real architecture and LLVM instructions, besides 
showing some results. Chapter 4 gives an overview about Monte Carlo analysis and the 
data generation for the simulation. The evaluation and comparison of results are 
presented in chapter 5, while a discussion about them is given in chapter 6. The last 
chapter presents the conclusion and describes future implementation and improvements 
for the static method. 
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2 RELATED WORKS AND TOOLS 

Related works involving approaches based on dynamic and static analysis are 
discussed, and some description about the used tools will be presented. 

2.1 Related Works 
[R. Wilhelm, et al.] in [1] gives an overview of the whole problem of calculating 

WCET describing its sub problems and the existing methods and tools to solve it. The 
approaches are divided in static and measurement-based and they are compared 
considering their aims, abilities, technical problems and research directions. One of the 
main problems of the static analysis is about having precise processors models such that 
results are not overestimated. Some of the static methods described in [1] are shown by 
Figure 2.1, where a is a CFG example with timing on the nodes, b is a path calculation 
method, c shows the Implicit Path Enumeration Technique and d shows how a 
structure-based method proceed according to the syntax tree. This is also discussed by 
[Y.-T.S. Li, S. Malik, A. Wolfe] in [12] where an integer linear programming 
formulation is used to solve the problem, targeting an Intel i960KB, their solution 
address pipeline instruction execution units and cached memory modeling. 

[S. Thesing] in [3] implements a technique to describe pipeline models. There they 
use the AbsInt’s WCET analysis tool [13] and a full analysis is made in eight phases: 
reconstruction of the control-flow graph from the binary executable, loop 
transformation, loop analysis, value analysis, pipeline analysis, path analysis (where the 
tools generates a integer linear program), ILP solver and the last phase computes as 
display results, this approach follows the scheme in Figure 2.1. Using the same analysis 
tool [13], [M. Schlickling, M. Pister] semi-automatically derives timing models from 
formal VHDL specifications to compute a cycle abstract semantic for further use as 
hardware model on AbsInt’s tool. Also working over pipeline modeling [M. 
Langenbach, S. Thesing, R. Heckmann] in [9] developed a tool called ColdFire WCET 
Tool. Their analysis is performed on the control flow graph representation and is 
divided in two phases: execution modeling and program path analysis. [F. Mueller] 
implements a technique called static cache simulation which statically simulates a large 
portion of cache behavior of programs. Based on the call graph of the program and the 
control-flow graph of each function the instructions references are statically determined 
as always cache hit or always cache miss. 

 



 10

 

Figure 2.1 – WCET calculations 

 

A measurement-based analysis is presented by [I. Wenzel, R. Kirner, B. Rieder, P. 
Puschner] in [6] where test data are generated automatically. Their approaches are based 
on decomposing program paths into sub paths of program segments and measure the 
runtime from each segment. After measuring instruction timing of sub paths, they use a 
static calculation method for calculate the final WCET. That work describes a hybrid 
approach using static and dynamic analysis to predict WCET. Following a 
measurement-based approach J. Hansen, S. Hissam, G. A. Moreno] estimates WCET 
values based on a statistical method, the extreme value theory. This method not only 
estimates the WCET, it also gives a probability that a possible execution time will 
exceed the estimations. 

2.2 Tools 
In this work two open source tools were used as base for WCET analysis. The main 

tool was the LLVM compiler infrastructure [14], version 2.7, which provides an 
architecture independent compiler (based on GCC 4.2), optimizer and an analyzable 
intermediate code representation. Besides the C and C++ front-end, the LLVM project 
provides several others tools for code analysis, optimization, code generation, etc. For 
this work the llvm-gcc front-end with debug information was the base for the static 
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analysis, while for the dynamic analysis is also used the native machine code generator 
(llc). 

Specifically for the dynamic analysis, a cycle accurate simulator was chosen, 
Avrora, an AVR framework for simulation and analysis [15]. 

 

2.2.1 LLVM 

The LLVM project aims for versatility, flexibility and reusability, these 
characteristics fit into our approach for a WCET analysis method, since LLVM provides 
also a well documented and architecture independent assembly. It specifies three 
different representations of assembly, an in-memory compiler, an on-disk bitcode and a 
human readable assembly, all generate from C/C++ codes. For this work, the static 
analysis was made over the human readable assembly aggregated with the debug 
information, Figure 2.1. 

 

 

Figure 2.2 - LLVM code Example 

 

The human readable assembly is a designed set of instructions with low-level 
representation but with support for high-level analyses. For this the instruction set does 
not define any machine specific constraints or features such pipelines, physical registers 
or call conventions. The registers are in Static Single Assignment (SSA) form used for 
compiler optimization and can only hold scalar values as Boolean, integer, floating 
point and pointer. All memory is explicitly allocated and it is partitioned into stack, 
heap and global memory, and its data are accessed only with load and store instructions. 
About the LLVM instruction set types, the system is very simple and can easily 
represent high-level classes combining the low-level types, it is also strongly-typed 
(every SSA value and memory locations has an type associated as seen in Figure 2.1) 
allowing easy mismatch type detection and optimizations. 
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For the WCET analysis one very important characteristic from the LLVM assembly 
code is the explicit Control Flow Graph (CFG) organization. The code is structured in 
many Basic Blocks (BB), which are defined as a linear sequence of code having one 
entry point (labeled normally with “bb” and explicitly listing the successors basic 
blocks) and one exit point (a Terminator Instruction) also described by [Frances E. 
Allen] in [20]. This construction allows the full flow mapping with a near to machine, 
but independent code. These mappings are widely use for loops identification, described 
in chapter 3.2, and the full path calculation for the static analysis. This feature is used by 
the LLVM infrastructure for analysis and optimizations of control flow, for example. 

All these characteristics makes the LLVM project a base for several other projects 
that have to deal with low level, platform independent code, which gives, since the 
beginning a very modular foundation. 

2.2.2 Avrora 

Avrora [15] is a research project of the UCLA Compilers Group and is a set of 
simulation and analysis tools implemented in Java [16] for AVR microcontrollers 
produced by Atmel. The framework provides also a Java API and infrastructure for 
experimentation, profiling and analysis. The core from the whole Avrora project is their 
cycle-accurate simulator for AVR microcontroller that allows a precise timing analysis 
for real programs. 

For the purpose of simulation and debugging breakpoints are inserted into the code 
to terminate or pause the simulation. After the complete simulation a report with the 
results is automatically generated, Figure 2.2 shows an Avrora report example. In 
addition to the timing analysis, this framework can also emulate the behavior of on-chip 
devices, like led blinking. 

 

Figure 2.3 – Avrora Report Example 

 

Avrora [Beta 1.6.0] - (c) 2003-2005 UCLA Compilers Group 

 

This simulator and analysis tool is provided with absolutely no warranty, 

either expressed or implied. It is provided to you with the hope that it be 

useful for evaluation of and experimentation with microcontroller and sensor 

network programs. For more information about the license that this software is 

provided to you under, specify the "license" option. 

 

Loading RLencode.od...[OK: 0.484 seconds] 

=={ Simulation events }==================================================== 

Node          Time   Event 

===================================================================== 

Simulated time: 2436497 cycles 

Time for simulation: 3.937 seconds 

Total throughput: 0.61887145 mhz 
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For this work the single simulation mode in the dynamic analysis is used. This mode 
offers several configuration options, like clock speed, interrupt schedule, 
microcontroller model, monitors, platform, etc.. The microcontroller model used here 
was the ATmega128, briefly explained in chapter 4.1. 

The Avrora framework proved to be easy to use and deploy. Their reports and 
analysis fits on what was necessary for this project and provided a feasible result on 
measurements. 
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3 PROPOSED STATIC BASED WCET ANALYSIS 

Static analysis is a well know technique for evaluation and verification of code. 
Specifically for WCET prediction, its allows a fast and modular analysis. For this work, 
a technique of basic blocks mapping and instructions counting is used. 

Based on the human readable LLVM assembly with debug information and the 
source code in C or C++, two mappings are performed, one is the loops mapping from 
de source code to the LLVM, and another is the target architecture instructions cycles to 
LLVM instructions mapping. These informations are the inputs for the whole execution 
time analysis and from them, is possible to predict the worst execution time from a 
program code. 

3.1 Source Code Programming 
As previously mentioned, there are some non-predictable factors in calculating de 

worst case execution time from a program. This implies some programming restrictions 
and code annotations in order to make any execution time prediction possible. 

Some programming problems mentioned by [P. Puschner, Ch. Koza] in [22] are that 
loops and recursions end‘s conditions, or maximum number of iterations or recursion 
depth, cannot be easily calculated or determined statically, because of the possibility of 
very complex conditions that cannot be automatic determined. Furthermore pointers to 
functions can reference functions that the timing is not known and implicitly implement 
recursion, besides the case of GOTO usage, which can disturb with the whole program 
structure. These conditions can be avoided by some programming restrictions and code 
descriptions. 

3.1.1 Code Restrictions 

In order to avoid the determination of a recursive and loops end’s condition and non 
structured control flow, some programming restrictions were defined: 

- Program cannot contain any kind of recursion (direct or indirect) [21] [22]. 

- GOTOs and unconditional changes of flow are not allowed, which do not really 
performs a restriction according to [22]. 

- Loops should have a specified iteration or time bound, and it cannot overcome 
this limit. 

- Functions should be called explicitly and each function must have a calculated 
WCET. 
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3.1.2 Annotations 

In this work, some additional information is defined to be inserted in the analyzed 
code. This information aims at specifying which functions should be analyzed and the 
loops iteration bounds. 

The annotations follow a very simple syntax and should be added as normal 
comments in the source C code, as shown in Figure 3.1. The beginning and the end of a 
function to be analyzed should follow the syntax “<F><Function_Name>” and 
“</F><Function_Name>” respectively. This syntax was defined to facilitate the 
identification of the functions to be analyzed. 

The loop bounds annotation defines how many times each loop would iterate. This 
should be provided by the programmer, so this must be known or pre defined during 
developing phase. Following the same idea at the function annotation, 
“<I><#Iterations>”, defines the loop opening, and “</I><#Iterations>”, the loop 
closure. Each loop statement (for, while, do) should have its own bound, allowing 
nesting. These bounds are used later on the loops identification and mapping (after 
optimization some loop can be unrolled) and for the WCET counting, to determine how 
many times a basic block, inside a loop, will be executed. 

 

Figure 3.1 – Function and Loop Bounds Syntax Example 

 

3.2 Loops Mapping 
As shown in Figure 1.1, two codes are used for the static time analysis, the source 

code in C and the human-readable LLVM assembly. The LLVM assembly is the 
analyzed base code, because it has been already processed in compilations. That means, 
it does not contain architecture dependent directives and already has been optimized and 
transformed, becoming quite near the actual target code. However many loops 

//<F><example> 

void example() 

{ 

 //<I><12> 

 while( i++ < T ) 

 { 

  //<I><127> 

  for(j=0; j<W; j++) 

  { 

  ... 

  }//</I><127> 

 }//</I><12> 

} 

//</F><example> 
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annotated on the C code can be optimized and unrolled during compilation. Those loops 
would not exist anymore in LLVM code, being necessary thus a mapping between these 
two codes for a correct loop counting. 

To determine which loops have not been optimized a control flow analysis was used 
to identify the loops and then, with the assistance of debug informations, map the loop 
bounds described on C code to the LLVM basic blocks. To find the loops, a well 
described algorithm to find Natural Loops as described by [A. V. Aho, R. Sethi, J. D. 
Ullman] in [23] was used. 

3.2.1 Natural Loops 

Before presenting the natural loop identification algorithm, the loop itself must be 
defined. The loop intuitive properties are that, they should have a single entry point and 
the edges must form at least a cycle. From this it is inferred that not every cycle is a 
natural loop. 

The algorithm presented in [23] uses a technique that consists of three components 
to find and identify natural loops. The first component is to build a dominator tree out of 
the Control Flow Graph (CFG). The formal definition of dominators is: 

• Node d dominates n (d dom n) in a graph if every path from the start node to 
n goes through d. 

A dominator can be found if all paths to a given node have to go though another 
node. Starting from the entry node in a CFG, the algorithm needs to check if there is a 
path to the slave node from the entry. This path must avoid the master node, so, if it is 
possible to reach the slave node without touching the master node, it can be determined 
that the master node does not dominate the slave node. 

The second component is identifying the back edges, this step use the dominator list 
done in the previous component. The algorithm performs a depth first search in the CFG 
and for each retreating edge tail->head, where head dominates tail (checking if head is 
tail’s dominator list), defines a back edge. 

Finally the natural loop of a back edge is the smallest set of nodes that includes the 
head and tail of the back edge, and has no predecessor outside the set, except for the 
predecessors of the header. The algorithm in short is, delete the header from the flow 
graph and find all nodes that can reach the tail (those nodes plus header form the 
natural loop of tail->header). 

3.3 Instructions Mapping 
Besides the two input files, C code and LLVM assembly, another file is used in the 

analysis as instructions cycles reference. The Instructions Weight Map describes the 
number of cycles from the target architecture for each LLVM assembly instruction. For 
the static analysis performed in this work it is the only information used from the target 
architecture. 

This mapping is extracted compiling each LLVM instruction to the ATmega128 and 
which is possible because the AVR Microcontroller has a very simple architecture. The 
processor achieves a throughput of 1 MIPS per MHz, meaning that almost all its 
instructions execute in a single clock cycle. However LLVM deals with high level 
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instructions that cannot be directly mapped as 1-to-1. For example, an 32 bits AND 
operation between two registers in LLVM is written as follows: 

 

   %0 = and i32 %i, %j 

 

While in AVR assembly it becomes, besides some context instructions: 

 

ldd r24, Y+1 

ldd r25, Y+2 

andi r24, 0x00 

andi r25, 0x28 

 

For the and instruction it is easy to detect the reason for the difference, which is 
the fact that the microcontroller ATmega128 works with 8 bits registers, while the 
LLVM instruction is explicitly dealing with 32 bits. However when dealing with more 
complex LLVM instructions, that do not have any near representation in AVR, the 
difference becomes really big. For instance, in the case of floating point instructions, an 
fadd instruction in LLVM is mapped to a 768 lines AVR assembly code. 
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load 20 
lshr 8 
mul 25 
or 9 
phi 0 
ptrtoint .. to 8 
ret 8 
sdiv 75 
select 8 
sext .. to 8 
shl 8 
shufflevector 0 
sitofp .. to 616 
srem 78 
store 18 
sub 14 
switch 75 
trunc .. to 8 
udiv 46 
uitofp .. to 652 
unreachable 0 
unwind 0 
urem 41 
va_arg 0 
xor 12 
zext .. to 8 

  

Table 1 – LLVM instructions cycles mapping 

The Table 1 shows the number of cycles mapped from ATmega128 [17] to each 
LLVM instruction. This table was generated with a reverse engineering process, since 
LLVM is not portable to AVR yet. Each LLVM instruction was compiled back to a low 
level C (by the LLVM tool chain) and the C code compiled to AVR assembly, from 
which the cycle counting was taken. 

3.4 WCET Mapping and Calculation 
The full static analysis is based on the basic blocks control flow and in the 

instructions counting from each BB. The process begins on the algorithm planning 
phase, where developers should define which functions or methods will be measured 
and the others functions related to the main one. During development programmers 
should define also the loops bounds for each loop defined in the algorithm, as explained 
in section 3.1.2. Another pre-analysis task is to map the target architecture instructions 
cycles to LLVM instructions, as shown in section 3.3.  

Having the code ready, it is necessary to compile it to the readable LLVM assembly 
version with the debug information and the intended optimization level. This is done by 
the following command line: 

LLVM Instruction AVR cycles  
add 14 
alloca 55 
and 10 
ashr 8 
bitcast .. to 8 
br 23 
call 6 
extractelement 47 
extractvalue 39 
fadd 1085 
fcmp 16 
fdiv 819 
fmul 917 
fpext .. to 18 
fptosi .. to 417 
fptoui .. to 1512 
fptrunc .. to 18 
frem 823 
fsub 1123 
getelementptr 8 
icmp 24 
indirectbr 0 
insertelement 118 
insertvalue 93 
inttoptr .. to 8 
invoke 0 
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llvm-gcc (LLVM optimizer and code generator) –emit-llvm (emit LLVM IR) –S 
(readable assembly) –g (debug information) –O0..4 (desired optimization level) *.c –o 
*.ll  

Generated the three inputs (Instruction Weight Mapping, Source Code and LLVM 
Code), the analysis begins with the Natural Loops detection on the LLVM code, as 
described in section 3.2. The detection generates a Natural Loop list that is mapped with 
the loops annotations included in the source code with the aim of extracting the bounds 
information. The mapping involves the use of the debug information as guide for the 
lines positions from the loops. The debug information in LLVM use a special type 
called metadata; this directive can be attached to instructions in the program to provide 
extra information about the code to the optimizer, code generator, debugging or any 
other analysis.  

All metadata has the metadata type and is identified syntactically by a preceding 
exclamation point ‘!’. There are also two primitives defining this type: strings and 
nodes, the debug information uses metadata nodes which are represented with notation 
similar to structure constants, for example: 

 

Here “!20” represent location information metadata. The four fields represent 
respectively: line number, column number, scope and original scope from the source 
code. This information was used to map the loop bound from the C code to LLVM IR. 

 

 

Figure 3.2 – C source Example 

1.//<F><main> 

2.int main(void) { 

3. int i, j, k,l; 

5. //<I><100> 

6. for (i = 0; i < 100; i++) { 

7.  //<I><100> 

8.  for (j = 0; j < 100; j++) { 

9.   //<I><100> 

10.   for (k = 0; k < 100; k++) { 

11.    l = i+j+k; 

12.   } //</I><100> 

13.  } //</I><100> 

14. } //</I><100> 

15. return l; 

16.} 

17.//</F><main> 

“!20 = metadata !{i32 51, i32 0, metadata !15, null}”  
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As observed in Figure 3.2, the first annotated loop begins at line 6. Searching for 
the metadata node that represents line 6 in the LLVM code, in Figure 3.3, we find the 
metadata “!11”. So on, all loops are mapped this way, and from this it is possible to 
decide which basic blocks are inside each loop, and how many times they will iterate 
and their nesting level. Of course when a loop is unrolled by the compiler, it will not 
have a related metadata with its line.  

 

 

Figure 3.3 – LLVM IR with metadata 

 

Continuing the analysis, each basic block is then mapped into a list with the 
following information: Name, Predecessor, Metadatas, Branches, Calls and Weight, 
where: 

• Name is the tag given by the compiler for the basic block, each BB has a 
unique name 

• Predecessor is a list with all BB that reaches the mapped BB in the CFG 

• Metadatas are the metadatas associated to this BB 

• Branches is the list of reachable BBs in the CFG 

define i32 @main() nounwind { 

entry: 

 %i = alloca i32 

… 

store i32 0, i32* %i, align 4, !dbg !11 

br label %bb7, !dbg !11 

... 

bb7: 

%16 = load i32* %i, align 4, !dbg !11 

%17 = icmp sle i32 %16, 99, !dbg !11 

br i1 %17, label %bb, label %bb8, !dbg !11 

… 

return: 

%retval9 = load i32* %retval, !dbg !15 

ret i32 %retval9, !dbg !15 

} 

... 

!11 = metadata !{i32 6, i32 0, metadata !1, null} 
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• Calls is a list with all other functions called in this particular BB, used for 
later link, when all functions are analyzed 

• Weight is the sum of the weight, mapped in Instruction Weight Mapping file,  
from all instructions in this BB 

After the loop and the weight mapping, these two information are merged into one, 
where the matches between them generates the full BB mapping, and then their weight 
are multiplied by the iteration number when applicable (if the BB received a loop 
bound). In the loop mapping description, the fields mean respectively: metadata, BB 
name, nesting level and iterations. 

 

Figure 3.4 shows the simple BB report on the left with only the BB informations and 
the weight from each BB, while on the right is the full analysis report, with the BB 
weights already multiplied by the iteration number resulting in the expected cycle’s 
number for each BB. As final result, the sum from all BB cycles is given. 

 

 

Figure 3.4 – Simple and Full WCET Repo 

(!13,bb3,3,1000000) 
(!11,bb6,1,100) 

Simple Report: 

Name: entry 

Preds:  

Metadatas: !7 !11  

Branchs: bb7  

Calls: llvm.dbg.declare 

Weight: 450 

------------------------ 

... 

------------------------ 

Name: return 

Preds: bb8  

Metadatas: !15  

Branches: END  

Calls:  

Weight: 28 

------------------------ 

Full Report: 

Function - main 

 

******BASIC BLOCKS EXECUTED****** 

Name: entry 

Calls: llvm.dbg.declare 

Loop Iteraction: 0 

BB cycles: 450 

------------------------------- 

... 

------------------------------- 

Name: return 

Loop Iteration: 0 

BB cycles: 28 

------------------------------- 

***************************** 

Total Executed Cycles: 290844777 

*****************************  
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3.5 Analysis 
In this work, two classical algorithms [24] were used to evaluate the accuracy of the 

researched static analysis. The chosen algorithms were a Dijkstra shortest path 
algorithm, and an encode algorithm that uses the Huffman Compress code. They were 
selected because of their structure. Dijkstra presents interesting nesting levels between 
loops, while the encoder works with a single loop in the main function but with large 
case structure. The C codes of each algorithm can be found in annexes. 

3.5.1 Dijkstra’s Algorithm 

The Dijkstra’s Algorithm [24] created by Edsger Dijkstra and published in 1959 is a 
search algorithm for graph that solves the single-source path problem producing the 
shortest path between the source and all other reachable nodes. In a graph, given a 
source vertex, the algorithm finds the shortest path leaving the source to all other vertex. 
This algorithm is widely used to find the shortest route between cities and in network 
routing protocols. 

The algorithm is implemented in this way: 

1. Beginning with the source node, current node: 

a. Set its value to 0. 

b. Set value of all other nodes to “infinity”. 

c. Mark all nodes as unvisited 

2. For each unvisited node, adjacent to the current node: 

a. If the value of the current node plus the value of the edge is less than the 
value of the adjacent node, change the value of the adjacent node to this 
sum value. 

b. Otherwise leave the value as it is. 

3. Set the current node to visited. 

4. Finish if every node have been visited. Otherwise, set the unvisited node with 
the smallest value as the new current node a go to step 2. 

The value recorded in each node is the final and minimal distance between this node 
and the source. 

 

3.5.2 Huffman Compression Algorithm 

Huffman compression [24] is an encoding algorithm used for lossless compression. 
It belongs to a family of algorithms called entropy encoding algorithms which refers to 
the use of a variable-length code table. That means the characters symbols are replaced 
by bit sequences with different lengths. Based on the estimated probability of 
occurrence of each symbol in the source, symbols that tend to occur more, are encoded 
into fewer bits, while rarely used symbols gets longer bit sequences. 

The code used in this work implements a simple Huffman compression that expects 
a binary file with a sparse distribution of bits with the value 1. The compression process 



 

 

 

23

is performed by counting the number of zeroes between each successive pair of ones 
and then, encoding these outcomes using a symbol code table. 

3.6 Results 
Following the approach described previously, Table 2 shows some results acquired 

from the algorithm with static analysis, with the instructions weights from Table 1, in 
two optimization level, O0 and O3, meaning no optimization at all and the common 
optimization level used in general, all performed by LLVM tool chain. These results 
will be compared with the Simulations results acquired by Monte Carlo Analysis on 
Avrora AVR simulator. 

 

 -O0 -O3 

Dijkstra 4.814.878.170 Cycles 2.181.701.037 Cycles 

Huffman Compress 66.603.932.946.841 Cycles 3.138.178.705 Cycles 
Table 2 – Static Analysis Results 
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4 SIMULATION AND EVALUATION 

This chapter discusses the results from the static and dynamic analysis. Both 
evaluations are compared in order to ensure some validity and quality of the static 
analysis. First of all, the simulations process is explained. 

4.1 Simulations 
The simulations were performed to be compared with the static analysis results and 

give an approximation of the real WCET. Following a Monte Carlo approach, the inputs 
were randomly generated and simulated on the cycle accurate simulator AVRORA. By 
the end of the execution the simulator provides a report informing the number of cycles 
for the program execution. 

4.1.1 Simulation Architecture 

Performing a simulation, AVRORA was used as the main engine for the dynamic 
analysis approach. 

4.1.1.1 AVRORA 

The AVRORA framework is implemented in Java and focus on a clean design and 
program representation. Each type of instruction has it own class and, instances of these 
classes represent the instructions from a program. The core of the framework is the Java 
package avrora.sim which contains a set of classes that implements the simulator.  

The simulator is the execution engine of a simulation. It contains an interpreter for 
all AVR instructions in the set and store states of the program including SRAM, IO 
registers and general purpose registers. Inserted in the layer of a microcontroller 
(devices built on a chip) it emulates the behavior of on-chip devices and provides an 
interface with off-chip devices (platform level). The simulations for this work were 
performed over the ATMega128 microcontroller class. 

4.1.1.2 ATmega128 

ATmega128 is a simple microcontroller with RISC architecture. With most of its 
133 instructions executing in one clock cycle, so it can reach up to 16 MIPS at 16 MHz. 
It has also 128 KB of program memory, 4 KB EEPROM and 4 KB SRAM. This 
architecture was chosen by its simplicity, since it doesn’t implements any kind of 
pipeline, cache protocol and branch prediction, features expected for future works 
improvements. 
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4.1.2 Monte Carlo Method 

Monte Carlo methods consist in repeatedly run some algorithm with random inputs 
and collect their results. These methods are frequently used for simulating physical and 
mathematical systems, when is not feasible or is impossible to generate and run a 
deterministic algorithm to calculate an exact result, like simulations of systems with a 
large degree of freedom, multiples variables and complicated boundary conditions. 

Algorithms itself are process that fits on “complicated to predict and simulate” 
concept, so, for this work the Monte Carlo method was used. As Monte Carlo doesn’t 
define a single method indeed, but a set of algorithms that follows the described 
concept, the approach used for generating the inputs and simulating the algorithms in 
this work was:  

- Define the inputs bounds, based on their respective types and memory size 

- Generate random inputs between the defined limits 

- Run the algorithm on simulator 

- Save execution time from simulation 

The inputs for the evaluation algorithms were generated by a script written in the 
language Perl [25]. The scripts generate random inputs values in the model expected by 
the evaluations algorithms. The model used for the inputs were C header codes included 
during compilation time, since the simulator do not accept dynamic inputs references.  
Huffman compress and Dijkstra’s inputs scripts are in the appendix. 

4.1.3 Analysis 

Using the same algorithms described in Chapter 3.5, the dynamic analysis was 
performed by a Shell Script following these steps executed inside a “while loop” 
(iterating as much as possible): 

- Generate random inputs; input scripts, in appendix. 

- Compile code using “avr-gcc” and generate a .elf binary file. 

- Dumb object from binary file using “avr-objdump” (the simulator expect this 
format). 

- Run simulator and keep the simulated time result. 

The results generated on the dynamic analysis are shown in Table 3 and also each 
algorithm was tested with two different optimization levels. The minimum and the 
maximum number of cycles reached during the simulations shows the difference 
between the best and the worst case of executed cycles during simulation. 

4.2  Results Evaluation 
The Table 3 shows the absolute values from the dynamic and static analysis. The 

difference between the maximum number of cycles simulated and the WCET prediction 
is also calculated. This first comparison shows only the big difference between both 
analyses, being necessary a more meaningful examination. 
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Simulation   Static max - static 

  

min max       

Huffman Compress 
 -O0 16670 10715636   6,66039E+13 6,66039E+13 

 -O3 950 5816066   3138178705 3132362639 
              

Dijkstra 
 -O0 209 190375882   4814878170 4624502288 

 -O3 145 31839495   2181701037 2149861542 
Table 3 – Absolute values from analysis 

 

Over the simulated data, displayed graphically in Figures 4-1 and 4-2, was taken 
more accurate information to be compared with the static analysis. The graphic in 
Figure 4.1 shows the distribution in the simulation results, where the X axis is 
represented by the number of vertex in the input graph and the Y axis the source node of 
the Dijkstra’s shortest path. Following the same idea of showing the number of 
simulated cycles by the algorithms inputs, the axes X and Y in Figure 4.2 represents N 
(number of 0’s) and M (number of 1’s) respectively. 

 

 

Figure 4.1 – Dijkstra’s Simulation 

 

 

Figure 4.2 – Huffman Compress Simulation 
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From the dynamic analysis results was calculated the standard deviation of each 
algorithm and their optimization level in order to measure how many deviations the 
static analysis is from the longest simulated time. This difference, shown in Table 4, is 
also compared with how many times the static analysis is bigger than the dynamic. 
These evaluations allow some conclusions to be taken. 

The measures shows that the static method clearly produced higher values than the 
dynamic, meaning that, it predicted a number of cycles for these algorithms bigger than 
the observed in simulations by Monte Carlo method. This observation shows that for a 
real execution of these algorithms over the Atmega128 microcontroller the execution 
time won’t almost certainly exceed the worst execution time statically predicted. 

 

  

Dynamic Static static/dynamic(max) Deviations 

  

max     from max 

Huffman Compress 
 -O0 10715636 6,66039E+13 6215583,746 36008296,31 

 -O3 5816066 3138178705 539,5706832 2229,93 

            

Dijkstra 
 -O0 190375882 4814878170 25,29142935 125,21 

 -O3 31839495 2181701037 68,52184801 272,15 

Table 4 – Relation between results 
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5 CONCLUSION AND FUTURE WORK 

This chapter explains the whole development of this work and the conclusions taken 
during the research. Also describes the challenges faced to active the goal and the next 
steps to improve it. 

5.1 Conclusion 
Timing verification in real-time systems algorithms is essential for a feasible 

parallelization between processes. This kind of verification aims calculation of the 
upper bound time from processes, called worst case execution time. This task can be 
performed mainly with two methods, dynamic and static. While the dynamic analysis 
involves timing accurate simulators or a platform, and a lot of effort running algorithms 
a bunch of times trying to get a good input and scenario to generate “worst cases”, a 
static analysis look for a accurate architecture/platform model to perform the measures 
over the code. 

Following the static approach, the main problem in build the hardware models for 
the code evaluation is their features, like pipelines and cache, used to improve the 
hardware performance. They difficult the timing prediction, once there is a lot of 
variation on their execution. This way, the goals of the WCET static predictions are 
perform a safe and precise analysis, generating a result that could not be exceeded by a 
real execution and won’t be so long that the effort of the parallelization process would 
not have benefits. 

This work follows a simple static approach applied over an architecture independent 
infrastructure, the LLVM project. Over this core, was possible build a modular WCET 
static analysis. The analysis performed showed that the results taken from the static 
analysis have a good margin of safety, however, based on the dynamic analysis results, 
not very precise. Once the LLVM compiler don’t create code directly to the used AVR 
architecture another compiler [26] was used, so the assembly executed in the simulation 
and the one analyzed are similar but different in structure and size. 

5.2 Future Work 
As a continuation of this work, solving the problem of the difference between the 

codes analyzed statically and the one executed in the simulation, would be develop a 
backend for the LLVM code generator. This way, the code generated for static analysis 
would be closer to the real executed code. However, if the target platform is one already 
supported by LLVM, this wouldn’t be a problem. 
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Another solution to reduce and to accurate the WCET prediction is applied more 
complex platform modeling to the analysis. Since the example platform was very 
simple, this wasn’t necessary, but for more complex and modern platforms, models with 
pipelines and cache simulation/analysis are also needed. According to the references 
works much of this kind of modern processors modeling is already being done. 
However, is missing integration between all the models and modeling process to 
develop more reliable and accurate WCET predictions. Also important to note that the 
improvements in this area should make WCET prediction each time more applicable 
and automatic in real-time systems projects context. 
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LIST OF ABBREVIATIONS AND ACRONYMS 

WCET – Worst Case Execution Time 

LLVM – Low Level Virtual Machine 

IR – Intermediate Representation 

CFG – Control Flow Graph 

BB – Basic Block 

 



 

 

 

31

FIGURE LIST 

Figure 1.1 – Static Analysis Workflow ......................................................................................................... 8 

Figure 2.1 – WCET calculations ................................................................................................................ 10 

Figure 2.2 - LLVM code Example .............................................................................................................. 11 

Figure 2.3 – Avrora Report Example ......................................................................................................... 12 

Figure 3.1 – Function and Loop Bounds Syntax Example ......................................................................... 15 
Figure 3.2 – C source Example .................................................................................................................. 19 

Figure 3.3 – LLVM IR with metadata ......................................................................................................... 20 

Figure 3.4 – Simple and Full WCET Repo ................................................................................................. 21 

Figure 4.1 – Dijkstra’s Simulation ............................................................................................................. 26 

Figure 4.2 – Huffman Compress Simulation .............................................................................................. 26 

 



 32

TABLE LIST 

Table 1 – LLVM instructions cycles mapping ............................................................................................ 18 

Table 2 – Static Analysis Results ................................................................................................................ 23 

Table 3 – Absolute values from analysis .................................................................................................... 26 

Table 4 – Relation between results ............................................................................................................. 27 

 



 

 

 

33

REFERENCES 

[1] R. Wilhelm, et al. The worst-case execution-time problem—overview of 
methods and survey of tools. ACM Trans. Embedd Comput. Syst. 7, 3, Article 36 April 
2008. 

[2] F. Mueller. Static Cache Simulation and its Applications. Doctor Dissertation, 
Florida State University of Tallassee, July 2004. 

[3] S. Thesing. Safe and Precise WCET Determination by Abstract Interpretation of 
Pipeline Models. Doctor Dissertation, Universität des Sarrlandes, July 2004. 

[4] M. Schlickling, M. Pister. Semi-Automatic Derivation of Timing Models for 
WCET Analysis, LCTES’10, April 2010. 

[5] G. Bernat, A. Colin, S. Petters. pWCET: a Tool for Probabilistic Worst-Case 
Execution Time Analysis of Real-Time Systems. Technical Report YCS-2003-353, 
University of York, January 2003. 

[6] I. Wenzel, R. Kirner, B. Rieder, P. Puschner, "Measurement-Based Worst-Case 
Execution Time Analysis," seus, pp.7-10, Third IEEE Workshop on Software 
Technologies for Future Embedded and Ubiquitous Systems (SEUS'05), 2005. 

[7] Y. Zhou, L. R. Welch, E. Huh, C. Alexander, D. Lawrence, S. Mehta, C. 
Cavanaugh. Important considerations for execution time analysis of dynamic, periodic 
processes. Parallel and Distributed Processing Symposium., Proceedings 15th 
International, vol., no., pp.1024-1031, April 2001. 

[8] J. Hansen, S. Hissam, G. A. Moreno. Statistical-Based WCET Estimation and 
Validation. 9th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis, 
November 2009. 

[9] M. Langenbach, S. Thesing, R. Heckmann. Pipeline Modeling for Timing 
Analysis. Lecture Notes In Computer Science; Vol. 2477, Proceedings of the 9th 
International Symposium on Static Analysis, pp. 294 – 309, 2002. 

[10] Mingsong Lv, Nan Guan, Qingxu Deng, Ge Yu. Performance Comparison of 
Techniques on Static Path Analysis of WCET. IEEE/IFIP International Conference on 
Embedded and Ubiquitous Computing. EUC '08, pp. 104 – 111, 2008. 

[11] P. Pushner, Ch. Koza. Calculating the Maximum Execution Time of Real-Time 
Programs. Journal of Real-Time Systems, Volume 1, Number 2, pp. 159-176, September 
1989. 

[12] Y.-T.S. Li, S. Malik, A. Wolfe. "Efficient microarchitecture modeling and path 
analysis for real-time software," Real-Time Systems Symposium, 1995. Proceedings., 
16th IEEE , vol., no., pp.298-307, 5-7 Dec 1995. 



 34

[13] http://www.absint.com/ait/, AbsInt Home Page. Last accessed 14.05.2011 

[14] http://llvm.org/, LLVM Project Home Page. Last accessed 14.05.2011 

[15] http://compilers.cs.ucla.edu/avrora/, Avrora Home Page. Last accessed 
17.05.2011 

[16] http://www.java.com, Java Home Page. Last accessed 14.05.2011 

[17] ATMEL, 8-bit AVR Microcontroller with 128K Bytes In-System Programmable 
Flash Datasheet  

[18] C. Lattner, V. Adve. The LLVM Instruction Set and Compilation Strategy. 
Technical Report #UIUCDCS-R-2002-2292, Computer Science Dept., Univ. of Illinois, 
Aug. 2002. 

[19] V. Adve, C. Lattner, M. Brukman, A. Shukla, B. Gaeke. "LLVA: A Low-level 
Virtual Instruction Set Architecture". Proceedings of the 36th annual ACM/IEEE 
international symposium on Microarchitecture (MICRO-36), San Diego, California, 
Dec. 2003. 

[20] Frances E. Allen. Control flow analysis. In Proceedings of a symposium on 
Compiler optimization. ACM, New York, NY, USA, 1-19. 
DOI=10.1145/800028.808479, 1970. 

[21] Mingsong Lv, Zonghua gu, Nan Guan, Qingxu Deng, Ge Yu. “Performance 
Comparison of Techniques on Static Path Analysis of WCET”, in Proc. of the 6th 
IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (EUC 
2008). 

[22] P. Puschner, Ch. Koza. Calculating the maximum, execution time of real-time 
programs. Real-Time Syst. 1, 2, 159-176. DOI=10.1007/BF00571421, September 1989. 

[23] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques, and 
Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986. 

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to 
Algorithms (Second ed.), MIT Press and McGraw-Hill.ISBN 0-262-03293-7, 2001. 

[25] http://www.perl.org/, Perl Programming Language Home Page. Last accessed 
14.05.2011 

[26] http://winavr.sourceforge.net/, Atmel AVR Compiler Home Page. Last accessed 
14.05.2011 



 

 

 

35

ANNEXE A - DIJKSTRA’S ALGORITHM IN C 

#include "input.h" 

void findTheRotines(int source) 

{ int i, j, k, my_vertex, ek; 

 SHORTEST_PATH[source ] = 0; 

 my_vertex = source; 

 i=0; 

 while( i++ < vertexNum ) 

 { //we will decide to which vertex is closer that is not in Y (not visited) 

 for(j=0; j<vertexNum; j++) 

{ //if we find a vertex that is not Y, lets work on it 

if( VISITED[j] == 0 ) 

 { //if there is a connection with the vertexes 

 if( PATHS[my_vertex][j] != -1 ) 

 { //decide the shortest paths 

if( SHORTEST_PATH[j] > PATHS[my_vertex][j] + 
SHORTEST_PATH[my_vertex] ) 

{ //we found more shortest way.. change the old one 

SHORTEST_PATH[j] = PATHS[my_vertex][j] + 
SHORTEST_PATH[my_vertex]; 

for(k=0; k<vertexNum; k++ ) 

 { ROUTE2[j][k] = ROUTE2[my_vertex][k]; } 

 k=0; 

 while(ROUTE2[j][k] != -1 ) 

 { k++;} 

 ROUTE2[j][k] = my_vertex; 

 }}}} 
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ek = MAX_INT; 

for( j=1; j<vertexNum; j++) 

{ 

if( VISITED[j] == 0 ) 

{ 

if( SHORTEST_PATH[j] < ek ) 

{ 

ek = SHORTEST_PATH[j]; 

my_vertex = j; 

}}} 

VISITED[ my_vertex ] = 1; 

} 

for( i=0; i<vertexNum; i++) 

{ 

if( ROUTE2[i][0] != -1 || source == i) 

{ 

k=0; 

while(ROUTE2[i][k] != -1 ) 

{k++;} 

ROUTE2[i][k] = i; 

}}} 
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ANNEXE B - HUFFMAN COMPRESS ALGORITHM IN C 

#include "input.h" 

// maximum permitted run of zeroes. 

#define RMAX 69 

//maximum loop interaction 

#define LOOPMAX 32766 

// compressor (run length) for a sparse file. 

// usage: RLencode <  filep.01.10000 > file.RLZ 

// Uses Huffman codewords that were generated using huffman.p 

//  http://www.inference.phy.cam.ac.uk/mackay/perl/huffman.p 

// (c) Davi d J.C. MacKay 

// License: GPL http://www.gnu.org/copyleft/gpl.html 

// Originates from:   

// http://www.inference.phy.cam.ac.uk/mackay/itprnn/code/c/compress/ 

void print_encoded(int); 

void printfa(char*); 

char* sconcat(char*,char*); 

char* out; 

int size = 0; 

int main() { 

 char *fp; 

 fp = STRING_FILE; 

 int r; 

 //  unsigned char c ; 

 int c, tot0 = 0, tot1 = 0; 

 r = 0; 

//Iteraction limit 

unsigned int iteraction = 0; 
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 int i; 

 for (i = 0; i < STRING_SIZE && iteraction < LOOPMAX; i++) 

   { 

  c = fp[i]; 

  if (c == '1') { 

   print_encoded(r); 

   r = 0; 

   tot1++; 

  } else if (c == '0') { 

   r++; 

   tot0++; 

   if (r == RMAX) { 

    print_encoded(r); 

    r = 0; 

   } 

  } else { // carriage returns} 

  iteraction++; 

 } //</I><32766> 

 // clear the buffer of remaining stuff. 

 if (r > 0) { 

  r = RMAX; 

  print_encoded(r); 

 } 

 return 1; 

} 
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APPENDIX - INPUT SCRIPTS 

Huffman Compress Input Script: 

#!/usr/bin/perl -w 

# 

# returns a subset of M 1s among N-M zeroes 

# usage: 

#   randNchooseM.p N=10000 M=100 

# MAX N = 32766 

 

$max = 32766; 

$N = int(rand($max)); 

$M= int(rand($N)); 

 

if($N<$M){ 

 $N = $N + $max/2; 

} 

$NTOTAL = $N; 

$seed="123"; # new feature 99 07 30 

 

print "N = $N, M = $M\n"; 

 

open TEMP,">>simulated_time.txt" or die("Cannot create file."); 

print TEMP "N = $N, M = $M\n"; 

close (TEMP); 

 

open FILE,">input.h" or die("Cannot create file."); 
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Dijkstra Input Script: 

 

eval "\$$1=\$2" while @ARGV && $ARGV[0]=~ /^(\w+)=(.*)/ && shift; 

srand($seed) ; 

 

print FILE "#define STRING_FILE \""; 

 

while($N ) { 

  

    if ( ($M *1.0/$N) > rand() ) { 

 print FILE "1" ; 

 $M -- ; 

    } else { print FILE "0" ; } 

    $N -- ; 

} 

 

print FILE "\"\n#define STRING_SIZE $NTOTAL\n"; 

 

close (FILE); 

#!/usr/bin/perl -w 

 

$max = 127; 

$vertnum = int(rand($max)); 

$source = int(rand($vertnum)); 

$seed="123"; # new feature 99 07 30 

 

print "Vertex number: $vertnum, source: $source\n"; 

open FILE,">input.h" or die("Cannot create file."); 

srand($seed) ; 

 

#Define "#defines" 

print FILE "#define MAX_INT 65535\n"; 

print FILE "#define MAX_ITERACTION $max\n"; 

print FILE "#define VERTNUM $vertnum\n"; 
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#vertexnum and Source Node 

print FILE "int vertexNum = VERTNUM;\n"; 

print FILE "int source = $source;\n"; 

print FILE "int SHORTEST_PATH[VERTNUM] = {"; 

for($i = 0; $i < $vertnum-1; ++$i) 

{ 

 print FILE "MAX_INT,"; 

} 

print FILE "MAX_INT};\n"; 

#PATH definition 

$upperLimit = 90; 

print FILE "int PATHS[VERTNUM][VERTNUM] = { "; 

for($i = 0; $i < $vertnum-1; ++$i) { 

 print FILE "{"; 

 for($j = 0; $j < $vertnum-1; ++$j) { 

  if($i == $j){ 

   print FILE "0" ; 

  } else { 

   $rand = int(rand($upperLimit)); 

   if ( $rand > 60 ) { 

    print FILE "-1" ; 

   } else {  

    print FILE "$rand";  

   } 

  } 

  print FILE ","; 

 } 

 $rand = int(rand($upperLimit)); 

 if ( $rand > 60 ) { 

  print FILE "-1" ; 

 } else {  

  print FILE "$rand";  

 } 

 print FILE "},"; 

} 
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print FILE "{"; 

for($j = 0; $j < $vertnum-1; ++$j) { 

 $rand = int(rand($upperLimit)); 

 if ( $rand > 60 ) { 

  print FILE "-1" ; 

 } else {  

  print FILE "$rand";  

 } 

 print FILE ","; 

} 

print FILE "0}};\n"; 

#ROUTE2 definition 

print FILE "int ROUTE2[VERTNUM][VERTNUM] = { "; 

for($i = 0; $i < $vertnum-1; ++$i) { 

  

 print FILE "{"; 

 for($j = 0; $j < $vertnum-1; ++$j) { 

  print FILE "-1,"; 

 } 

 print FILE "-1},"; 

} 

print FILE "{"; 

for($j = 0; $j < $vertnum-1; ++$j) { 

 print FILE "-1,"; 

} 

print FILE "-1}};\n"; 

#VISITED definition 

print FILE "int VISITED[VERTNUM] = {"; 

for($i = 0; $i < $vertnum-1; ++$i) 

{ 

 print FILE "0,"; 

} 

print FILE "0};\n"; 

close (FILE); 


