UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMATICA
CURSO DE CIENCIA DA COMPUTACAO

GUILHERME JAMES DE ANGELIS FACHINI

Modular and Generic WCET Static Analysis
with LLVM Framework

Trabalho de Graduacéao.

Dr. Thomas Kuhn
Orientador

Profa. Dr2. Erika Fernandes Cota
Co-orientadora

Porto Alegre, Junho, 2011

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Rui Vicente Oppermann

Pro-Reitora de Graduacéo: Valquiria Linck Bassani

Diretor do Instituto de Informatica: Flavio Rech yviar

Coordenador do CIC: Raul Fernando Weber

Bibliotecaria-Chefe do Instituto de Informatica:adB#z Regina Bastos Haro

ACKNOWLEDGES

First of all I would thanks God for his mercifulagre and infinite wisdom. To my
beloved parents, James Fachini and Ana Lucia Deelsgachini, for all their support,
care and, best of all, love, during the hard amallehging academic times. Thanks to
my little big heart sister “irm&”, Clarissa Raqu2¢ Angelis Fachini, for making my
days full of joy, by the way, sorry about the dzsliscares that | give you.

| would like to thanks my friends Daniel Petersémdré Damasceno, Bernardo
Zoppas, Tiago Kommers and Tiago Landenberger, fileads since the begging of
everything, for not being supportive about classgams and studies, making my days
better and full of strange, funny and remarkablemats. To all the folks that | met in
Kaiserslautern, in special, the Fraunhofer’s, fag good coffee breaks, talk moments
and knowledge exchange, in special Matheus VogelGarmela Noro Grando.

To Profd. Dr2. Erika Fernandes Cota a big thanks &b her support and
opportunities given during the time | was working andergraduate researcher at
Embedded Systems Laboratory. For introduce andueage me in the academic area
and help me reviewing this work.

| would like to thank my Fraunhofer advisor Dr. Thas Kuhn for the opportunity
for develop my bachelor thesis during my time wogkat Fraunhofer Institute — IESE
and all the research support and knowledge.

My thanks go also to the Informatics Institute aFR&GS, to Professors and
community, for the very good work being done to ioye each day our knowledge and
the development of our university and country, tiglo research and technological
development, despite all politics obstacles. Inceddor the Professors who provide
time and resources in exchange programs, partigutaiProfé. Dr2. Taisy Silva Weber
and the exchange program with Technische Univendsaiserslautern. To Prof. Dr. Dr.
h.c. H. Dieter Rombach, for invests in this progrand provide full support for the
students at TU-Kaiserslautern.

Finally, | thank those who were and are part of lifg, all my uncles, aunts,
grandfathers, grandmothers, brothers and sistdegives or not.

SUMMARY

ABSTRACT oottt —eeee aaaaaaaeas 6
1 INTRODUCTION AND MOTIVATION ...cooiiiiiiiiiiiiiiies e 7
2 RELATED WORKS AND TOOLS ..o e 9
P2 R (=1 = 1T o YAV Lo 4 9
2.2 TOOIS ... ————— 10
2.2. 1 LLVM e 11
A A Y (o] - PR 12
3 PROPOSED STATIC BASED WCET ANALYSIScoooviiiit v 14
3.1 Source Code Programmingcooooeeeeees o e eeeeeeeeeeeesennsnnnnaaaaeeeeaaeaees 14
3.1.1 Code RESIHCHONS. .. uuiiiiii e e e e eeiie et ettt e e e e e e e e e e e e e eeeeesaeenes 14
1 700 2 AN | 0T] = 11 0] o =SSP 15
G072 o To o 1Y/ =T o] o T 1SR 15
3.2.1 NALUIAl LOOPS ..ottt st st e e e e e e e eeeeaeeeenn s e 16
ICTRC TN 10 153 (W ox 1 0] g SN/ =T o] o Vo [16
3.4 WCET Mapping and CalCulationcccooerieeciiniiiiiineee e 18
3 D ANAIY SIS ittt ——————— e ——————_ 22
3.5.1 Dijkstra’s Algorithmooiiiie e 22
3.5.2 Huffman Compression Algorithmoimmmeeeeeeiiiiiiiiee e 22
3.6 RESUIS... .o e 23
4 SIMULATION AND EVALUATION ...ociiiiiiiiiiiiiiiiiies i 24
o R Y[U1 = 1o £ U 24
4.1.1 Simulation ArchiteCtUre............evvviiiiiieeeeeicerr e e e e e e 24
4.1.2 Monte Carlo Methodooooiiiiiiiiii et 25
TG T A = 1Y 25
4.2 ReSUltS EValUuationeuiiiiiiieie e 25
5 CONCLUSION AND FUTURE WORKcoooiiiiiiiis s 28
S0 R @] o [ox 11153 o ISR 28
5.2 FULUIE WOTK ...ttt e e e e e e e e e e e e e e aeeenes 28
LIST OF ABBREVIATIONS AND ACRONYMScccvvvvivt i 30
FIGURE LIST L. ettt ettt ettt e ettt e et e e e e e eeeeeeeeeeeeeees 31

TABLE LIST o e 32

REFERENCES ... 33
ANNEXE A - DIJKSTRA'S ALGORITHM IN C..oovviiiiiiies i 35
ANNEXE B - HUFFMAN COMPRESS ALGORITHM IN C........ cccccooeie. 37

APPENDIX - INPUT SCRIPTS ..ot e 39

Andlise estatica, genérica e modular de WCET utiliz ando a
infra-estrutura de compilacéo do LLVM

RESUMO

O célculo do tempo do pior-caso de execucédo, désngorst Case Execution Time
(WCET) € um desafio na area de verificacdo de soéfvpara sistemas de tempo real.
Essa analise faz parte do trabalho de escalonardentoefas de processos em sistemas
multi-cores. A complexidade de prever esse tempmeata de acordo com a
complexidade do hardware do sistema a ser analisadeus componentes, ja que
muitas partes de uma plataforma, como pipelinegmdna cache inserem variantes no
tempo de execucao dificeis de prever e analisastdfw varios métodos com diferentes
abordagens para se calcular o tempo de execucdondeprograma. Eles sao
principalmente baseados em analises estaticasaenidims, de forma que a estética
utiliza um modelo de hardware e analisa o codigguanto a dinamica necessita de
algum simulador ou de uma plataforma real parazaaahs medidas de tempo.

Esse trabalho apresenta um modelo de analisecespaia prever o tempo do pior-
caso de execucdo de codigos para sistemas embardad@mpo real. Além disso,
executa, para fins de comparacdo, uma analise wiadbaseado na execucao dos
codigos de teste em um simulador. O modelo desenéiitatica é desenvolvido baseado
em um assembly gerado pela infra-estrutura de dagdm do LLVM, que gera uma
representacdo intermediaria de codigo que € indiepé® de arquitetura.

O método tem o objetivo de ser escalonavel e modsta é, quao mais precisa a
analise deve ser, melhores modelos de analise dsgeimplementados e usados no
processo. O modelo de analise utilizado nesselli@lpassui uma abordagem clara e
utiliza uma descricdo de arquitetura simples ex#itgghdo o processo. A andlise
dindmica é baseada no método Monte Carlo de sidmla&g € executada em um
simulador da arquitetura de um AVR, o Atmegal28ntéiido AVRORA.

ABSTRACT

The worst-case execution time (WCET) predictioraishallenge in the software
verification area for real-time embedded systenmss @nalysis is part of the scheduling
of parallelizable processes job on multi-core systeThe complexity of predict this
time increases accordingly to the complexity of theget system hardware and its
components, since much of this components, asipgselnd cache memory, attach
hard to predict and analyze temporal variants. &fa@e many methods with different
approaches to calculate the execution time of graro and they are based mainly on
static and dynamics analysis. The first takes aacauhardware model and the code
analysis itself, while the second needs some atsmulator or the target platform to
perform its time measurements.

This work presents a static method for predictingrsitcase execution time
(WCET) for embedded real-time systems. Furthermpegforms, as a comparison of
accuracy, a dynamic analysis, running the testsada simulator. The static analysis
is performed based on an assembly generated dyLWil compiler. This compilation
framework generates a code intermediate repregamtaiR) independent of
architecture.

The model aims to be a modular and scalable, tle#ns) it was build to accept
different accuracy levels, depending on the acquodiche developed hardware model
and the analysis used in the process. In this wibik, work analysis follows a clear
approach and uses a simple architecture descrifdionits execution. The dynamic
analysis is done based on the Monte Carlo simulatiethod, performed over the AVR
ATmegal28 simulator, AVRORA.

1 INTRODUCTION AND MOTIVATION

In the past, processing speed of embedded platfarpesl to be increased by
increasing their clock frequency, as multipurpogsteams. Due to electromagnetic
interferences, increase processing power by inicrgathe clock frequency is not
possible anymore. To overcome this limitation, pergrocessing units are replacing
single processors running at high clock speed. Wewdo fully utilize the processing
resources from parallel platforms, optimized algons and sophisticated
parallelization process are required.

The parallelization of an algorithm implies thetdizution of code blocks among the
processing units at the multi core platforms arrttanagement of communication and
synchronization. Parallelization is only feasilfléme savings due to parallel execution
offsets the effort for synchronization and commati@an. Therefore, successful
automatic algorithm parallelization depends onkihewledge of execution times.

For real time systems, Worst Case Execution Tineirto be considered. Since
execution times for code blocks are normally naivkn by developers, this information
needs to be acquired during the deployment andlg@iaation process. This work was
done during an internship at Fraunhofer InstitE@88HE where a project about scheduling
process for multi cores architectures was beingeld@ed over Simulink. In this
context, the WCET calculation was necessary fostieeduling algorithm. Here will be
describe an approach and method to measure wosst €gecution time of code
segments generated from Simulink models on difteisnget platforms.

The problem of calculating WCET is well describew sseveral approaches and
methods have been developed [1]. However it kekallenging research because of the
difficulty of having more accurate timing prediatiaonodels. The issue comes mainly
due to the variation of the code runtime depenchardly or not predictable factors,
such as:

- Input data: variables that affect the code flow.

- Loop and recursion bounds

- Initial state of the execution block: e.g. cach@pelines, branch prediction.
- System interference: interruptions, preemptions.

Mainly there are two methods to predict the woestecexecution time, namely static
and dynamic: Static methods are based on the ddluvwo and call-graph analysis
combined with some abstract hardware model, and doedepend on the execution of
the code. Dynamic methods involve the executiothefcode on some simulator or on
the target hardware itself with some defined in@nd the WCET is calculated based
on the observation of the execution times.

This work follows a static model approach basedmtatic analysis over the low
level virtual machine (LLVM), which provides a laybetween C and C++ code and
concrete architecture machine code, in comparisitim & dynamic analysis based on
Monte Carlo simulation over AVRORA, an AVR architie@ simulator. The dynamic
analysis approach aims to validate the static winéch is based on code annotations
and instructions mapping. Aiming an easy to undestand simple method, this work
develops an architecture independent, modular @usable static analysis model
aiming an easy aggregation of new feature, analgsi$ more accurate hardware
models.

Instructions

Weight
Maping
Static Analysis
C/C++ source
+ ‘ Loop Detection and Mapping ‘

Code Annotations >

_{x ‘ Basic Blocks Weight Mapping ‘
| WCET calculation |

LLVM-GCC
With Debbug l
v | , |
LLVM-Code ! =
+ Basic Blocks Weights WCET
Debbug Analysis Prediction
_ /\

Figure 1.1 — Static Analysis Workflow

Figure 1.1 gives an overview about the static aslprocess made in this work.
Each step is described in more details in Chapter 3

The work has the following structure: Chapter 2cdégs related works and gives
an overview about the tools used in this work. Gda3 explains the static analysis
method and the mapping between real architectude l&tVM instructions, besides
showing some results. Chapter 4 gives an overvieuiaMonte Carlo analysis and the
data generation for the simulation. The evaluatsodd comparison of results are
presented in chapter 5, while a discussion abamtls given in chapter 6. The last
chapter presents the conclusion and describesfutylementation and improvements
for the static method.

2 RELATED WORKS AND TOOLS

Related works involving approaches based on dynanit static analysis are
discussed, and some description about the useslwolbbe presented.

2.1 Related Works

[R. Wilhelm, et al.] in [1] gives an overview ofd@hwvhole problem of calculating
WCET describing its sub problems and the existirgjhmds and tools to solve it. The
approaches are divided in static and measuremeedband they are compared
considering their aims, abilities, technical probéeand research directions. One of the
main problems of the static analysis is about hapirecise processors models such that
results are not overestimated. Some of the stagibhoals described in [1] are shown by
Figure 2.1, whera is a CFG example with timing on the nodess a path calculation
method, ¢ shows the Implicit Path Enumeration Technique ahdhows how a
structure-based method proceed according to thievsyree. This is also discussed by
[Y.-T.S. Li, S. Malik, A. Wolfe] in [12] where annteger linear programming
formulation is used to solve the problem, targetary Intel i960KB, their solution
address pipeline instruction execution units arahed memory modeling.

[S. Thesing] in [3] implements a technique to discpipeline models. There they
use the Absint's WCET analysis tool [13] and a fdlalysis is made in eight phases:
reconstruction of the control-flow graph from theindry executable, loop
transformation, loop analysis, value analysis, lmngeanalysis, path analysis (where the
tools generates a integer linear program), ILP esobnd the last phase computes as
display results, this approach follows the schemiigure 2.1. Using the same analysis
tool [13], [M. Schlickling, M. Pister] semi-automelly derives timing models from
formal VHDL specifications to compute a cycle abstrsemantic for further use as
hardware model on Absint's tool. Also working oveipeline modeling [M.
Langenbach, S. Thesing, R. Heckmann] in [9] dewedop tool callecColdFire WCET
Tool. Their analysis is performed on the control flomagh representation and is
divided in two phases: execution modeling and @moygmpath analysis. [F. Mueller]
implements a technique callsthtic cache simulatiowhich statically simulates a large
portion of cache behavior of programs. Based orcéegraph of the program and the
control-flow graph of each function the instrucsoreferences are statically determined
asalways cache hibr always cache miss

10

o e Xt ® W11 [: :
maxiter; Longast path _Run | 4 Start and exit constraints
= 3|£) A mrﬁd -) Xt =1, gy = 1

1 [Y
A | Mt Xas A Structural constraints
1 A Unnit timi Xatart ™= Xatarth
f B|5 tpmnz 31 ."/F B [%a XA = Xotarta + Xpua = Xagen + Xan
e | *ag an | | %¥8= Xap = Xpc *+ Xap
thll:llsl' - 3 x{:- ’-Bc = xc
cir 40 @ Xo ¥p saw =
o K WCET Cale L Xne Ry = Ky * Mgy = Xya
[els WCET = E % Kot = Xaoxit
| YeE"Xee | | 4/ Loophound constraint
Yiamder * Lomth * ocopbound constrain
@ 5E3:| 5[};] (maxiter-1) = [ﬂ:F e Xy =100
EI{ s [\ E eH | | ¥ WCET Expression
1 | . \”H | | WCET = max(x,*3 + xg*5 +
] " - — e T+ ...+ Xy*2) =
N Kby | =072
(a) Control-flow
graph with timing (b) Path-based calculation 5 (c) IPET calculation
Ioop * wart ®atart ® 3fari L Lt
1 ——,
BE FFEI'JEI
i sa0 H?EE;'"
—
(=] t:x‘ (=] ilf H H | .JII
] o _ |3072
ot AB.CD
Synlax-tree loop | EFGH
(Tiseq(S1,52)) = T(S1) +T(52)
T(if(Exp) 51 else 52) =
tﬂ(ﬁw;* max(T(51),T(S2))
T[{‘mp[Exp,Bndy‘]J =
+ |
(Exp) +T(Body)) * (maxiter-1) [
Transformation rules {d) Structure-based calculation

Figure 2.1 — WCET calculations

A measurement-based analysis is presented by [hzé/eR. Kirner, B. Rieder, P.
Puschner] in [6] where test data are generatedvaitcally. Their approaches are based
on decomposing program paths into sub paths oframpgegments and measure the
runtime from each segment. After measuring insioactiming of sub paths, they use a
static calculation method for calculate the finaC®T. That work describes a hybrid
approach using static and dynamic analysis to pre®WCET. Following a
measurement-based approach J. Hansen, S. Hissaf, Nkoreno] estimates WCET
values based on a statistical method, the extreshee\theory. This method not only
estimates the WCET, it also gives a probabilityt tagpossible execution time will
exceed the estimations.

2.2 Tools

In this work two open source tools were used as basWCET analysis. The main
tool was the LLVM compiler infrastructure [14], wdon 2.7, which provides an
architecture independent compiler (based on GCQ, 4@imizer and an analyzable
intermediate code representation. Besides the CCartdfront-end, the LLVM project
provides several others tools for code analysipopation, code generation, etc. For
this work the llvm-gcc front-end with debug infortimm was the base for the static

11

analysis, while for the dynamic analysis is alseduthe native machine code generator
(llc).

Specifically for the dynamic analysis, a cycle aetel simulator was chosen,
Avrora, an AVR framework for simulation and anaygL5].

221 LLVM

The LLVM project aims for versatility, flexibilityand reusability, these
characteristics fit into our approach for a WCEalgsis method, since LLVM provides
also a well documented and architecture independssembly. It specifies three
different representations of assembly, an in-meneompiler, an on-disk bitcode and a
human readable assembly, all generate from C/C-tesoFor this work, the static
analysis was made over the human readable assesgpiegated with the debug
information, Figure 2.1.

define i32 ([mwain() nounwind {

bk .nph:
br lakel 3kh

bb: ; preds = kb5, shbh.nph
$i.017 = phi i32 [O, %bb.nph 1, [%3, %bh5] ; <idzr [Huses=2]
$r.114 = phi i32 [O, %bb.nph 1, [%r.0, %bh5] ; <ifZ> [Huses=3]

X 18]% [@.stre9, i3Z , 132 %1i.017 ;
Tdbg ! ; «id@> [#uses=1]

Sscevgep <18%> [#uses=1]
%0 = load ig* 3scevgep, alicgn 1,
switch i8 %0, label 5bhS [

ig , lakel 3bhil

ig ;, lakbel 5hh3

1

= getelementptr [

bhi:
tail call woid @print_encoded{iSZ %r.114) nounwind,
br lakbel %bhE, 'dbg !

; preds = %bb
tdbg !

bhi:
%1 add nsw i3Z %r.114, . ldbg !
&2 icmp eq 132 %1, s ldbog !
hr il %2, lahel kb4, label $hhSs,

; preds = %hb
; <€132> [#uses=3]
; <ils> [Huses=1]

g !

Figure 2.2 - LLVM code Example

The human readable assembly is a designed setstiigtions with low-level
representation but with support for high-level gsak. For this the instruction set does
not define any machine specific constraints oruiest such pipelines, physical registers
or call conventions. The registers are in Statrgg& Assignment (SSA) form used for
compiler optimization and can only hold scalar eallas Boolean, integer, floating
point and pointer. All memory is explicitly alloeat and it is partitioned into stack,
heap and global memory, and its data are accesdgavith load andstoreinstructions.
About the LLVM instruction set types, the systemvisry simple and can easily
represent high-level classes combining the lowlleypes, it is also strongly-typed
(every SSA value and memory locations has an tgsedaated as seen in Figure 2.1)
allowing easy mismatch type detection and optinoret

12

For the WCET analysis one very important charastierirom the LLVM assembly
code is the explicit Control Flow Graph (CFG) orgation. The code is structured in
many Basic Blocks (BB), which are defined as admgequence of code having one
entry point (labeled normally with “bb” and expligi listing the successors basic
blocks) and one exit point (a Terminator Instrucfi@lso described by [Frances E.
Allen] in [20]. This construction allows the fulloiv mapping with a near to machine,
but independent code. These mappings are wideljouseops identification, described
in chapter 3.2, and the full path calculation fog static analysis. This feature is used by
the LLVM infrastructure for analysis and optimizats of control flow, for example.

All these characteristics makes the LLVM projediase for several other projects
that have to deal with low level, platform indepent code, which gives, since the
beginning a very modular foundation.

2.2.2 Avrora

Avrora [15] is a research project of the UCLA Colag Group and is a set of
simulation and analysis tools implemented in Jai@] [for AVR microcontrollers
produced by Atmel. The framework provides also waJAPI and infrastructure for
experimentation, profiling and analysis. The caarf the whole Avrora project is their
cycle-accurate simulator for AVR microcontrolleathallows a precise timing analysis
for real programs.

For the purpose of simulation and debugging breiakp@re inserted into the code
to terminate or pause the simulation. After the plate simulation a report with the
results is automatically generated, Figure 2.2 sh@aw Avrora report example. In
addition to the timing analysis, this framework @so emulate the behavior of on-chip
devices, like led blinking.

Avrora [Beta 1.6.0] - (¢) 2003-2005 UCLA Compilégssoup

This simulator and analysis tool is provided wiisalutely no warranty,
either expressed or implied. It is provided to ydth the hope that it be
useful for evaluation of and experimentation witkerocontroller and sensor
network programs. For more information about therse that this software is

provided to you under, specify the "license" option

Loading RLencode.od...[OK: 0.484 seconds]

::{ Simulation events }:::::::::::::::::::::::::

Node Time Event

Simulated time: 2436497 cycles
Time for simulation: 3.937 seconds
Total throughput: 0.61887145 mhz

Figure 2.3 — Avrora Report Example

13

For this work the single simulation mode in the a@yic analysis is used. This mode
offers several configuration options, like clock esed, interrupt schedule,
microcontroller model, monitors, platform, etc..el'microcontroller model used here
was the ATmegal28, briefly explained in chapter 4.1

The Avrora framework proved to be easy to use amplay. Their reports and
analysis fits on what was necessary for this ptogacl provided a feasible result on
measurements.

14

3 PROPOSED STATIC BASED WCET ANALYSIS

Static analysis is a well know technique for eva@raand verification of code.
Specifically for WCET prediction, its allows a famtd modular analysis. For this work,
a technique of basic blocks mapping and instrustmunting is used.

Based on the human readable LLVM assembly with geffiormation and the
source code in C or C++, two mappings are perforroed is the loops mapping from
de source code to the LLVM, and another is theetaagchitecture instructions cycles to
LLVM instructions mapping. These informations are tnputs for the whole execution
time analysis and from them, is possible to preitietworst execution time from a
program code.

3.1 Source Code Programming

As previously mentioned, there are some non-prablietfactors in calculating de
worst case execution time from a program. This iespsome programming restrictions
and code annotations in order to make any exectittenprediction possible.

Some programming problems mentioned by [P. PusckdierKoza] in [22] are that
loops and recursions end‘s conditions, or maximwmlver of iterations or recursion
depth, cannot be easily calculated or determinaiicatly, because of the possibility of
very complex conditions that cannot be automatierened. Furthermore pointers to
functions can reference functions that the timmgat known and implicitly implement
recursion, besides the case of GOTO usage, whithlisturb with the whole program
structure. These conditions can be avoided by smmogramming restrictions and code
descriptions.

3.11 Code Restrictions

In order to avoid the determination of a recursnd loops end’s condition and non
structured control flow, some programming restoic§ were defined:

- Program cannot contain any kind of recursion (diogendirect) [21] [22].

- GOTOs and unconditional changes of flow are naveid, which do not really
performs a restriction according to [22].

- Loops should have a specified iteration or timeruhuand it cannot overcome
this limit.

- Functions should be called explicitly and each fiomcmust have a calculated
WCET.

15

3.1.2 Annotations

In this work, some additional information is defin® be inserted in the analyzed
code. This information aims at specifying which dtions should be analyzed and the
loops iteration bounds.

The annotations follow a very simple syntax andusthdbe added as normal
comments in the source C code, as shown in FigarelBe beginning and the end of a
function to be analyzed should follow the syntaxF*<Function_Name>" and
“</F><Function_Name>" respectively. This syntax wadsfined to facilitate the
identification of the functions to be analyzed.

The loop bounds annotation defines how many tinaes doop would iterate. This
should be provided by the programmer, so this rbesknown or pre defined during
developing phase. Following the same idea at thection annotation,
“<|><#lterations>", defines the loop opening, ane&/I><#lterations>", the loop
closure. Each loop statement (for, while, do) stoshve its own bound, allowing
nesting. These bounds are used later on the latggification and mapping (after
optimization some loop can be unrolled) and forMWEET counting, to determine how
many times a basic block, inside a loop, will beaxed.

[[<F><example>
void example()
{
l[<1><12>
while(i++<T)
{
1[<1><127>
for(j=0; j<W; j++)
{
HI<N><127>
HI</I><12>
}
/I</F><example

Figure 3.1 — Function and Loop Bounds Syntax Exampl

3.2 Loops Mapping

As shown in Figure 1.1, two codes are used forsth@c time analysis, the source
code in C and the human-readable LLVM assembly. Th&M assembly is the
analyzed base code, because it has been alreathspeal in compilations. That means,
it does not contain architecture dependent direstand already has been optimized and
transformed, becoming quite near the actual taagete. However many loops

16

annotated on the C code can be optimized and edrdliring compilation. Those loops
would not exist anymore in LLVM code, being necegshus a mapping between these
two codes for a correct loop counting.

To determine which loops have not been optimizedrdrol flow analysis was used
to identify the loops and then, with the assistanicdebug informations, map the loop
bounds described on C code to the LLVM basic blodks find the loops, a well
described algorithm to find Natural Loops as démtiby [A. V. Aho, R. Sethi, J. D.
Uliman] in [23] was used.

3.2.1 Natural Loops

Before presenting the natural loop identificatidgoathm, the loop itself must be
defined. The loop intuitive properties are thagytlshould have a single entry point and
the edges must form at least a cycle. From this imferred that not every cycle is a
natural loop.

The algorithm presented in [23] uses a technigae ¢bnsists of three components
to find and identify natural loops. The first conmgat is to build a dominator tree out of
the Control Flow Graph (CFG). The formal definitiohdominators is:

* Noded dominates (d dom n) in a graph if every path from the start node to
n goes througlal.

A dominator can be found if all paths to a giverd@dave to go though another
node. Starting from the entry node in a CFG, tigordthm needs to check if there is a
path to the slave node from the entry. This patistravoid the master node, so, if it is
possible to reach the slave node without touchmegniaster node, it can be determined
that the master node does not dominate the slade no

The second component is identifying the back edips step use the dominator list
done in the previous component. The algorithm paréoa depth first search in the CFG
and for each retreating edtgl->head, whereheaddominatedail (checking itheadis
tail's dominator list), defines a back edge.

Finally the natural loop of a back edge is the $ssailset of nodes that includes the
head and tail of the back edge, and has no preslmcestside the set, except for the
predecessors of the header. The algorithm in shodelete théneaderfrom the flow
graph and find all nodes that can reach thié (those nodes plueeaderform the
natural loop ofail->header).

3.3 Instructions Mapping

Besides the two input files, C code and LLVM asskrmdnother file is used in the
analysis as instructions cycles reference. Thedosbns Weight Map describes the
number of cycles from the target architecture feheLLVM assembly instruction. For
the static analysis performed in this work it is timly information used from the target
architecture.

This mapping is extracted compiling each LLVM instiion to the ATmegal28 and
which is possible because the AVR Microcontrollas la very simple architecture. The
processor achieves a throughput of 1 MIPS per MiHeaning that almost all its
instructions execute in a single clock cycle. HoarelZLVM deals with high level

17

instructions that cannot be directly mapped as-1-téor example, an 32 bi&ND
operation between two registers in LLVM is writtas follows:

%0 = and i32 %i, %

While in AVR assembly it becomes, besides someentbiistructions:

ldd r24, Y+1
Idd r25, Y+2
andi r24, 0x00
andi r25, 0x28

For theand instruction it is easy to detect the reason fer difference, which is
the fact that the microcontroller ATmegal28 workghw8 bits registers, while the
LLVM instruction is explicitly dealing with 32 bitdHowever when dealing with more
complex LLVM instructions, that do not have any meapresentation in AVR, the
difference becomes really big. For instance, indase of floating point instructions, an
faddinstruction in LLVM is mapped to a 768 lines AVBsambly code.

18

LLVM Instruction AVR cycles
add 14| |load 20
alloca 551 [lIshr 8
and 10| | mul 25
ashr 8| |or 9
bitcast .. to 8| | phi 0
br 23| | ptrtoint .. to 8
call 6| |ret 8
extractelement 47| | sdiv 75
extractvalue 39| | select 8
fadd 1085 | [sext..to 8
fcmp 16| |shl 8
fdiv 819 | | shufflevector 0
fmul 917 |sitofp .. to 616
fpext .. to 18| | srem 78
fptosi .. to 417 | | store 18
fptoui .. to 1512 [sub 14
fptrunc .. to 18| | switch 75
frem 823 |trunc .. to 8
fsub 1123 |udiv 46
getelementptr 8| |uitofp .. to 652
icmp 24| |unreachable 0
indirectbr 0| | unwind 0
insertelement 118 [urem 41
insertvalue 93| |va_arg 0
inttoptr .. to 8| | xor 12
invoke 0| |zext..to 8

Table 1 — LLVM instructions cycles mapping

The Table 1 shows the number of cycles mapped #dmegal28 [17] to each
LLVM instruction. This table was generated withewe@rse engineering process, since
LLVM is not portable to AVR yet. Each LLVM instruon was compiled back to a low
level C (by the LLVM tool chain) and the C code qoled to AVR assembly, from
which the cycle counting was taken.

3.4 WCET Mapping and Calculation

The full static analysis is based on the basic Kdocontrol flow and in the
instructions counting from each BB. The processinseg@n the algorithm planning
phase, where developers should define which funstar methods will be measured
and the others functions related to the main onging development programmers
should define also the loops bounds for each le@med in the algorithm, as explained
in section 3.1.2. Another pre-analysis task is &prthe target architecture instructions
cycles to LLVM instructions, as shown in sectiof.3.

Having the code ready, it is necessary to compiie the readable LLVM assembly
version with the debug information and the intendptimization level. This is done by
the following command line:

19

llvm-gcc (LLVM optimizer and code generatopemit-lvm (emit LLVM IR) —-S
(readable assembly)g (debug information}-O0..4 (desired optimization levef.c —o
*

Generated the three inputs (Instruction Weight MagpSource Code and LLVM
Code), the analysis begins with the Natural Looptedion on the LLVM code, as
described in section 3.2. The detection generaMataral Loop list that is mapped with
the loops annotations included in the source caitle tve aim of extracting the bounds
information. The mapping involves the use of theuwdpinformation as guide for the
lines positions from the loops. The debug informatin LLVM use a special type
calledmetadatathis directive can be attached to instructionthim program to provide
extra information about the code to the optimizede generator, debugging or any
other analysis.

All metadatahas themetadatatype and is identified syntactically by a precedin
exclamation point ‘. There are also two primitsvelefining this type: strings and
nodes, the debug information uses metadata nodiet \&te represented with notation
similar to structure constants, for example:

“120 = metadata 4i32 51, i32 0, metadata !15, Hull

Here “120” represent location information metaddthe four fields represent
respectively: line number, column number, scopeaiginal scope from the source
code. This information was used to map the loombddwom the C code to LLVM IR.

1./I<F><main>
2.int main(void) {
3. inti, j, k[
/1/<1><100>
for (i=0;i<100; i++) {
1/<1><100>
for (j = 0;] <100; j++) {
//<1><100>
10. for (k = 0; k <100; k++) {
11. | = i+j+k;
12. } 11</1><100>
13. } 1/</1><100>
14. } /I</1><100>
15. return [;
16.}
17./[</F><main:

© 0 N o o

Figure 3.2 — C source Example

20

As observed in Figure 3.2, the first annotated lbegins at line 6. Searching for
the metadata node that represents line 6 in theMLic@de, in Figure 3.3, we find the
metadata “!11”. So on, all loops are mapped thig,\@ad from this it is possible to
decide which basic blocks are inside each loop jexdmany times they will iterate
and their nesting level. Of course when a loomiolled by the compiler, it will not
have a related metadata with its line.

define i32 @main() nounwind {
entry:
%i = alloca i32

store i32 0, i32* %i, align 4, !dbg 11
br label %bb7, 'dbg 111

bb7:

%16 = load i32* %i, align 4, !dbg 11

%17 = icmp sle i32 %16, 99, !dbg 11

bril %17, label %bb, label %bb8, !dbg 11

return:
%retval9 = load i32* %retval, !dbg !15
ret i32 %retval9, !dbg !15

}

111 = metadata i32 6, i32 0, metadata !1, n

Figure 3.3 — LLVM IR with metadata

Continuing the analysis, each basic block is theapmped into a list with the
following information: Name, Predecessor, Metadatas, Branches, Calls aehi
where:

* Nameis the tag given by the compiler for the basicckloeach BB has a
unique name

* Predecessoirs a list with all BB that reaches the mapped BBhe CFG
+ Metadatasare the metadatas associated to this BB
* Branchess the list of reachable BBs in the CFG

21

» Callsis a list with all other functions called in thpsrticular BB, used for
later link, when all functions are analyzed

* Weightis the sum of the weight, mapped in InstructiongheMapping file,
from all instructions in this BB

After the loop and the weight mapping, these twiormation are merged into one,
where the matches between them generates the Buth&ping, and then their weight
are multiplied by the iteration number when appilea(if the BB received a loop
bound). In the loop mapping description, the fieldesan respectivelymetadata BB
name nestinglevel anditerations

(113,bb3,3,1000000)
(111,bb6,1,100)

Figure 3.4 shows the simple BB report on the lethwnly the BB informations and
the weight from each BB, while on the right is tludl analysis report, with the BB
weights already multiplied by the iteration numlesulting in the expected cycle’s
number for each BB. As final result, the sum frdhB8 cycles is given.

Simple Report: Full Report:

Name: entry Function - main

Preds:

Metadatas: 17 111 *RRFBASIC BLOCKS EXECUTED******
Branchs: bb7 Name: entry

Calls: llvm.dbg.declare | Calls: llvm.dbg.declare
Weight: 450 Loop Iteraction: O
------------------------ BB cycles: 450

Name: return | ==emememmemmeememeee e

Preds: bb8 Name: return

Metadatas: 115 Loop Iteration: O
Branches: END BB cycles: 28

Calls: | e
Weight: 28 Kk kkkkk kA A Aok

------------------------ Total Executed Cycles: 290844777

kkkkkkkkkkkkkhkkkkkkhkhkkkkkkkkk

Figure 3.4 — Simple and Full WCET Repo

22

3.5 Analysis

In this work, two classical algorithms [24] wereedgo evaluate the accuracy of the
researched static analysis. The chosen algorithraee va Dijkstra shortest path
algorithm, and an encode algorithm that uses thi#&dun Compress code. They were
selected because of their structure. Dijkstra mrtssimteresting nesting levels between
loops, while the encoder works with a single loonghe main function but with large
case structure. The C codes of each algorithm edaund in annexes.

3.5.1 Dijkstra’s Algorithm

The Dijkstra’s Algorithm [24] created by Edsger IGifra and published in 1959 is a
search algorithm for graph that solves the singlase path problem producing the
shortest path between the source and all othehabée nodes. In a graph, given a
source vertex, the algorithm finds the shortesh pediving the source to all other vertex.
This algorithm is widely used to find the shortestite between cities and in network
routing protocols.

The algorithm is implemented in this way:
1. Beginning with the source node, current node:
a. Setits value to O.
b. Set value of all other nodes to “infinity”.
c. Mark all nodes as unvisited
2. For each unvisited node, adjacent to the curredéno

a. If the value of the current node plus the valu¢hefedge is less than the
value of the adjacent node, change the value oadjgcent node to this
sum value.

b. Otherwise leave the value as it is.
3. Set the current node to visited.

4. Finish if every node have been visited. Otherwssa, the unvisited node with
the smallest value as the new current node a gtefo2.

The value recorded in each node is the final amdmail distance between this node
and the source.

3.5.2 Huffman Compression Algorithm

Huffman compression [24] is an encoding algorithsedifor lossless compression.
It belongs to a family of algorithms called entrogrycoding algorithms which refers to
the use of a variable-length code table. That m#éamsharacters symbols are replaced
by bit sequences with different lengths. Based ba estimated probability of
occurrence of each symbol in the source, symbalisténd to occur more, are encoded
into fewer bits, while rarely used symbols getgjenbit sequences.

The code used in this work implements a simple iaff compression that expects
a binary file with a sparse distribution of bitsthvthe value 1. The compression process

23

is performed by counting the number of zeroes betweach successive pair of ones
and then, encoding these outcomes using a symdeltable.

3.6 Results

Following the approach described previously, Tablhows some results acquired
from the algorithm with static analysis, with thestructions weights from Table 1, in
two optimization level, O0 and O3, meaning no optation at all and the common
optimization level used in general, all performedllh VM tool chain. These results
will be compared with the Simulations results acegiiby Monte Carlo Analysis on
Avrora AVR simulator.

-00 -03
Dijkstra 4.814.878.170 Cycles 2.181.701.037 Cycles
Huffman Compress 66.603.932.946.841 Cycles | 3.138.178.705 Cycles

Table 2 — Static Analysis Results

24

4 SIMULATION AND EVALUATION

This chapter discusses the results from the statid dynamic analysis. Both
evaluations are compared in order to ensure sorhéityaand quality of the static
analysis. First of all, the simulations processxplained.

4.1 Simulations

The simulations were performed to be compared thighstatic analysis results and
give an approximation of the real WCET. Followiniylante Carlo approach, the inputs
were randomly generated and simulated on the @atarate simulator AVRORA. By
the end of the execution the simulator providesport informing the number of cycles
for the program execution.

41.1 Simulation Architecture

Performing a simulation, AVRORA was used as themmigine for the dynamic
analysis approach.

4.1.1.1 AVRORA

The AVRORA framework is implemented in Java andukon a clean design and
program representation. Each type of instructionihawn class and, instances of these
classes represent the instructions from a progfdma.core of the framework is the Java
packagevrora.simwhich contains a set of classes that implememtsithulator.

The simulator is the execution engine of a simafatit contains an interpreter for
all AVR instructions in the set and store stateshef program including SRAM, 10
registers and general purpose registers. Insertetha layer of a microcontroller
(devices built on a chip) it emulates the behawbon-chip devices and provides an
interface with off-chip devices (platform level)h& simulations for this work were
performed over the ATMegal28 microcontroller class.

4.1.1.2 ATmegal28

ATmegal28 is a simple microcontroller with RISC hatecture. With most of its
133 instructions executing in one clock cycle,tstan reach up to 16 MIPS at 16 MHz.
It has also 128 KB of program memory, 4 KB EEPROM a&& KB SRAM. This
architecture was chosen by its simplicity, sinceddesn’t implements any kind of
pipeline, cache protocol and branch predictiontuies expected for future works
improvements.

25

41.2 Monte Carlo Method

Monte Carlo methods consist in repeatedly run salgerithm with random inputs
and collect their results. These methods are freitpuased for simulating physical and
mathematical systems, when is not feasible or igossible to generate and run a
deterministic algorithm to calculate an exact redie simulations of systems with a
large degree of freedom, multiples variables anmdplwated boundary conditions.

Algorithms itself are process that fits on “comptied to predict and simulate”
concept, so, for this work the Monte Carlo methakwsed. As Monte Carlo doesn’t
define a single method indeed, but a set of algmst that follows the described
concept, the approach used for generating the sngidl simulating the algorithms in
this work was:

- Define the inputs bounds, based on their respettpes and memory size
- Generate random inputs between the defined limits

- Run the algorithm on simulator

- Save execution time from simulation

The inputs for the evaluation algorithms were gatet by a script written in the
language Perl [25]. The scripts generate randomtényalues in the model expected by
the evaluations algorithms. The model used foiripats were C header codes included
during compilation time, since the simulator do aotept dynamic inputs references.
Huffman compress and Dijkstra’s inputs scriptsiarde appendix.

4.1.3 Analysis

Using the same algorithms described in Chapter tBé&,dynamic analysis was
performed by a Shell Script following these stepecaited inside a “while loop”
(iterating as much as possible):

- Generate random inputs; input scripts, in appendix.
- Compile code usingdvr-gcc” and generate a .elf binary file.

- Dumb object from binary file usintavr-objdump” (the simulator expect this
format).

- Run simulator and keep the simulated time result.

The results generated on the dynamic analysisteersin Table 3 and also each
algorithm was tested with two different optimizatidevels. The minimum and the
maximum number of cycles reached during the sinarat shows the difference
between the best and the worst case of executéeisoyaring simulation.

4.2 Results Evaluation

The Table 3 shows the absolute values from therdimand static analysis. The
difference between the maximum number of cyclesikitad and the WCET prediction
is also calculated. This first comparison showsydhke big difference between both
analyses, being necessary a more meaningful exaarina

26

Simulation Static max - static
min max
-00 16670 10715636 6,66039E+13 6,66039E+13
Huffman Compress
-03 950 5816066 3138178705 3132362639
Dijkstra -00 209 190375882 4814878170 4624502288
-03 145 31839495 2181701037 2149861542

Table 3 — Absolute values from analysis

Over the simulated data, displayed graphically igufes 4-1 and 4-2, was taken
more accurate information to be compared with ttadics analysis. The graphic in
Figure 4.1 shows the distribution in the simulaticesults, where the X axis is
represented by the number of vertex in the inpaplgrand the Y axis the source node of
the Dijkstra’s shortest path. Following the sameaidof showing the number of
simulated cycles by the algorithms inputs, the aesd Y in Figure 4.2 represents N
(number of 0’s) and M (number of 1's) respectively.

Dijkstra -00 x 10
i R Dijkstra -03

Cycles

Source 0 g 20
Vertex Source Vertex

Figure 4.1 — Dijkstra’s Simulation

x10° Huffman encode -00 % 10° Huffman encode -03

Cycles

0 05 1 -
u x10°

Figure 4.2 — Huffman Compress Simulation

27

From the dynamic analysis results was calculatedstndard deviation of each
algorithm and their optimization level in order neeasure how many deviations the
static analysis is from the longest simulated tiifi@s difference, shown in Table 4, is
also compared with how many times the static arsligs bigger than the dynamic.
These evaluations allow some conclusions to bentake

The measures shows that the static method clesstjuped higher values than the
dynamic, meaning that, it predicted a number ofesy/éor these algorithms bigger than
the observed in simulations by Monte Carlo methidds observation shows that for a
real execution of these algorithms over the Atm@@gaticrocontroller the execution
time won’t almost certainly exceed the worst executime statically predicted.

Dynamic Static static/dynamic(max) Deviations
max from max
-00 10715636 6,66039E+13 6215583,746 36008296,31
Huffman Compress
-0O3 5816066 3138178705 539,5706832 2229,93
Dijkstra -00 190375882 4814878170 25,29142935 125,21
-03 31839495 2181701037 68,52184801 272,15

Table 4 — Relation between results

28

5 CONCLUSION AND FUTURE WORK

This chapter explains the whole development ofwosk and the conclusions taken
during the research. Also describes the challefeysed to active the goal and the next
steps to improve it.

5.1 Conclusion

Timing verification in real-time systems algorithms essential for a feasible
parallelization between processes. This kind ofifieation aims calculation of the
upper bound time from processes, called worst easeution time. This task can be
performed mainly with two methods, dynamic andistatvhile the dynamic analysis
involves timing accurate simulators or a platfoemd a lot of effort running algorithms
a bunch of times trying to get a good input anchade to generate “worst cases”, a
static analysis look for a accurate architectuedfptm model to perform the measures
over the code.

Following the static approach, the main problenbund the hardware models for
the code evaluation is their features, like pipsdirand cache, used to improve the
hardware performance. They difficult the timing gicdion, once there is a lot of
variation on their execution. This way, the goalslee WCET static predictions are
perform a safe and precise analysis, generatiegwtrthat could not be exceeded by a
real execution and won’t be so long that the eftdrthe parallelization process would
not have benefits.

This work follows a simple static approach appler an architecture independent
infrastructure, the LLVM project. Over this coreasvpossible build a modular WCET
static analysis. The analysis performed showed ttiatresults taken from the static
analysis have a good margin of safety, howeverdas the dynamic analysis results,
not very precise. Once the LLVM compiler don’t deeaode directly to the used AVR
architecture another compiler [26] was used, sa#isembly executed in the simulation
and the one analyzed are similar but differentrincsure and size.

5.2 Future Work

As a continuation of this work, solving the probleithe difference between the
codes analyzed statically and the one executetlarsimulation, would be develop a
backend for the LLVM code generator. This way, ¢tbee generated for static analysis
would be closer to the real executed code. Howeivtre target platform is one already
supported by LLVM, this wouldn’t be a problem.

29

Another solution to reduce and to accurate the W@Eediction is applied more
complex platform modeling to the analysis. Since #xample platform was very
simple, this wasn't necessary, but for more complest modern platforms, models with
pipelines and cache simulation/analysis are alswled According to the references
works much of this kind of modern processors madglis already being done.
However, is missing integration between all the eledand modeling process to
develop more reliable and accurate WCET predictiéso important to note that the
improvements in this area should make WCET praaticeach time more applicable
and automatic in real-time systems projects context

30

LIST OF ABBREVIATIONS AND ACRONYMS

WCET - Worst Case Execution Time
LLVM — Low Level Virtual Machine
IR — Intermediate Representation
CFG - Control Flow Graph

BB — Basic Block

31

FIGURE LIST

Figure 1.1 — Static AnalysisS WOIKFIOWcooeeeiiiieeecce e 8
Figure 2.1 — WCET CalCUIAtIONSuuiiiiceeeee e eee e ettt e e e e e e e e e e e s s s eeeeeeeeaeaaeeas 10
Figure 2.2 - LLVM COAE EXAMPIEccceeieiicc ettt e st r e e e e e e e e e e e e e s e s e e e annnnes 11
Figure 2.3 — Avrora RepOrt EXAmMPIEuuieiiiiiiiiieeeecc ettt e e e e e s 12
Figure 3.1 — Function and Loop Bounds Syntax EXampl..............eeiiiiiiiiiiiiiiccmeieeeeeeee 15

Figure 3.2 — C SOUICE EXAIMPIEuuuitii ottt ettt e e e e e e e e e e e e ettt e e e e e e eaaaaaaaaeesaaaaaaannnnnneene 19
Figure 3.3 — LLVM IR With Metadata..........cociieiiaaaeiaeieiiee e 20
Figure 3.4 — Simple and FUll WCET REPO ... ettt e e e e e e e e e e e as 21
Figure 4.1 — DijKStra’'s SIMUIALIONcom ittt e e e e e e eeeeeeees 26

Figure 4.2 — Huffman Compress SIMUIALIONcccueuiiiiiiiiiiiiiccec e e e e e 26

32

TABLE LIST
Table 1 — LLVM inStructions CYCIES MAPPING - coummmnesvveerrrrrrereeeeeeeaissiisisisssssssresnrereeeseeeeeeeesessnnannnnnn 18
Table 2 — Static ANAIYSIS RESUILSccieieieeei e e e e e e e e e e e e e e e 23
Table 3 — Absolute values from @NAIYSISccceeeeii i e e e e e e e e 26
27

Table 4 — Relation between results

33

REFERENCES

[1] R. Wilhelm, et al. The worst-case executiondiproblem—overview of
methods and survey of too SCM Trans. Embedd Comput. Syst3,7Article 36 April
2008.

[2] F. Mueller. Static Cache Simulation and its Aggtions. Doctor Dissertation,
Florida State University of Tallassee, July 2004.

[3] S. Thesing. Safe and Precise WCET DetermindiipAbstract Interpretation of
Pipeline Models. Doctor Dissertation, Universitas@&arrlandes, July 2004.

[4] M. Schlickling, M. Pister. Semi-Automatic Deation of Timing Models for
WCET Analysis, LCTES’10, April 2010.

[5] G. Bernat, A. Colin, S. Petters. pWCET: a Ttml Probabilistic Worst-Case
Execution Time Analysis of Real-Time Systems. Tec&irReport YCS-2003-353,
University of York, January 2003.

[6] I. Wenzel, R. Kirner, B. Rieder, P. Puschnéigasurement-Based Worst-Case
Execution Time Analysis," seus, pp.7-Ihird IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitouse8ysSEUS'05), 2005.

[7]1 Y. Zhou, L. R. Welch, E. Huh, C. Alexander, Dawrence, S. Mehta, C.
Cavanaugh. Important considerations for executiae analysis of dynamic, periodic
processesarallel and Distributed Processing Symposium.,deexlings 15th
International vol., no., pp.1024-1031, April 2001.

[8] J. Hansen, S. Hissam, G. A. Moreno. StatistRated WCET Estimation and
Validation.9th Intl. Workshop on Worst-Case Execution Time EW)Analysis
November 2009.

[9] M. Langenbach, S. Thesing, R. Heckmann. Pigelffodeling for Timing
Analysis.Lecture Notes In Computer Science; Vol. 2477, Rrdiceys of the 9th
International Symposium on Static Analygip. 294 — 309, 2002.

[10] Mingsong Lv, Nan Guan, Qingxu Deng, Ge Yu.fBenance Comparison of
Techniques on Static Path Analysis of WCHEE/IFIP International Conference on
Embedded and Ubiquitous Computigd)C '08, pp. 104 — 111, 2008.

[11] P. Pushner, Ch. Koza. Calculating the Maximtexecution Time of Real-Time
ProgramsJournal of Real-Time System#&lume 1, Number 2, pp. 159-176, September
1989.

[12] Y.-T.S. Li, S. Malik, A. Wolfe. "Efficient miooarchitecture modeling and path
analysis for real-time softwareReal-Time Systems Symposium, 1995. Proceedings.,
16th IEEE, vol., no., pp.298-307, 5-7 Dec 1995.

34

[13] http://www.absint.com/aif/Absint Home Pagd.ast accessed 14.05.2011
[14] http://llvm.org/ LLVM Project Home Pagéd.ast accessed 14.05.2011

[15] http://compilers.cs.ucla.edu/avrgrairora Home Pagelast accessed
17.05.2011

[16] http://www.]java.comJava Home Pagd.ast accessed 14.05.2011

[17] ATMEL, 8-bit AVR Microcontroller with 128K Bytes In-SystBnogrammable
Flash Datasheet

[18] C. Lattner, V. Adve. The LLVM Instruction Sahd Compilation Strategy.
Technical Report #UIUCDCS-R-2002-2292, Computeefoe Dept., Univ. of lllinois,
Aug. 2002.

[19] V. Adve, C. Lattner, M. Brukman, A. Shukla, Baeke. "LLVA: A Low-level
Virtual Instruction Set ArchitectureProceedings of the 36th annual ACM/IEEE
international symposium on Microarchitecture (MICR6), San Diego, California,
Dec. 2003.

[20] Frances E. Allen. Control flow analysis.Pnoceedings of a symposium on
Compiler optimizationACM, New York, NY, USA, 1-19.
DOI=10.1145/800028.808479, 1970.

[21] Mingsong Lv, Zonghua gu, Nan Guan, Qingxu Deng,Y@e“Performance
Comparison of Techniques on Static Path AnalysM/GET’, in Proc. of the 6th
IEEE/IFIP International Conference on Embedded &Huquitous ComputingeUC
2008).

[22] P. Puschner, Ch. Koza. Calculating the maximexecution time of real-time
programsReal-Time Syst, 2, 159-176. DOI=10.1007/BF00571421, Septemb8p1

[23] A. V. Aho, R. Sethi, J. D. Ullmarf€ompilers: Principles, Techniques, and
Tools Addison-Wesley Longman Publishing Co., Inc., BastMA, USA, 1986.

[24] T. H. Cormen, C. E. Leiserson, R. L. RivestStein.Introduction to
Algorithms (Second ed.), MIT Press and McGraw-IBN 0-262-03293-7, 2001.

[25] http://www.perl.org/ Perl Programming Language Home Pagast accessed
14.05.2011

[26] http://winavr.sourceforge.netmel AVR Compiler Home Padeast accessed
14.05.2011

ANNEXE A - DIJKSTRA'S ALGORITHM IN C

#include "input.h"
void findTheRotines(int source)
{ inti,], k, my_vertex, ek;
SHORTEST_PATH[source] = 0;
my_vertex = source;
i=0;
while(i++ < vertexNum)
{ /lwe will decide to which vertex is closer thah&t in Y (not visited)
for(j=0; j<vertexNum; j++)
{ /lif we find a vertex that is not Y, lets work on i
if(VISITED[j]==0)
{ /lif there is a connection with the vertexes
if(PATHS[my_vertex][j] '=-1)
{ /ldecide the shortest paths

if(SHORTEST_PATH][j] > PATHS[my_vertex][j]
SHORTEST_PATH[my_vertex])

{ /lwe found more shortest way.. change the old one

SHORTEST_PATH][j] = PATHS[my_vertex][j]
SHORTEST_PATH[my_vertex];

for(k=0; k<vertexNum; k++)

{ ROUTEZ2[j][K] = ROUTE2[my_vertex][K]; }
k=0;

while(ROUTE2[j][K] !=-1)

{k++;}

ROUTEZ[j][K] = my_vertex;

1

36

ek = MAX_INT;

for(j=1; j<vertexNum; j++)

{

if(VISITED[j]==0)

{

if(SHORTEST_PATH][j] < ek)
{

ek = SHORTEST_PATHIj];
my_vertex = j;

Y

VISITED[my_vertex | = 1,
}

for(i=0; i<vertexNum; i++)
{

if(ROUTEZ][i][0] != -1 || source ==)
{

k=0;

while(ROUTEZ2[i][K] '=-1)
{k++;}

ROUTEZ2[i][K] =1i;

1

ANNEXE B - HUFFMAN COMPRESS ALGORITHM IN C

#include "input.h"
/l maximum permitted run of zeroes.
#define RMAX 69
//maximum loop interaction
#define LOOPMAX 32766
/I compressor (run length) for a sparse file.
// usage: RLencode < filep.01.10000 > file.RLZ
I/l Uses Huffman codewords that were generated usiffghan.p
/I http://lwww.inference.phy.cam.ac.uk/mackay/gerfman.p
/I (c) Davi d J.C. MacKay
/I License: GPL http://www.gnu.org/copyleft/gpl.Htm
/l Originates from:
/I http://www.inference.phy.cam.ac.uk/mackay/itpoade/c/compress/
void print_encoded(int);
void printfa(char*);
char* sconcat(char*,char*);
char* out;
int size = 0;
int main() {
char *fp;
fp = STRING_FILE;
intr;
/I unsigned char c;
int c, tot0 = 0, totl = 0;
r=0;
/llteraction limit
unsigned int iteraction = 0O;

37

38

int i;
for (i=0; i < STRING_SIZE && iteraction < LOOPMX; i++)
{

¢ = fplil;
if (c=="1"){
print_encoded(r);
r=0;
totl++;
}else if (c =="0") {
r++;
totO++,
if (r == RMAX) {
print_encoded(r);
r=0;
}

} else { // carriage returns}
iteraction++;
}I</1><32766>
Il clear the buffer of remaining stuff.
if (r>0) {
r = RMAX;
print_encoded(r);
}

return 1;

APPENDIX - INPUT SCRIPTS

Huffman Compress Input Script:

#!/usr/bin/perl -w

#

returns a subset of M 1s among N-M zeroes
usage:

randNchooseM.p N=10000 M=100

MAX N = 32766

$max = 32766;
$N = int(rand($max));
$M= int(rand($N));

if(BN<$M){
$N = 3N + $max/2;
}
SNTOTAL = $N;
$seed="123"; # new feature 99 07 30

print "N = $N, M = $M\n";
open TEMP,">>simulated_time.txt" or die("Cannotateefile.");
print TEMP "N = $N, M = $M\n";

close (TEMP);

open FILE,">input.h" or die("Cannot create file.");

40

eval "\$$1=\$2" while @ARGV && $ARGV[0]=~ /(\W+)=¢)/ && shift;
srand($seed) ;

print FILE "#define STRING_FILE \"";
while($N) {
if (($M *1.0/$N) > rand()) {
print FILE "1" ;
$M --;
} else { print FILE "0" ; }
$N --;

print FILE "\"\n#define STRING_SIZE $NTOTAL\n";

close (FILE);

Dijkstra Input Script:

#!/usr/bin/perl -w

$max = 127;

$vertnum = int(rand($max));

$source = int(rand($vertnum));
$seed="123"; # new feature 99 07 30

print "Vertex number: $vertnum, source: $source\n”;
open FILE,">input.h" or die("Cannot create file.");
srand($seed) ;

#Define "#defines"

print FILE "#define MAX_INT 65535\n";

print FILE "#define MAX_ITERACTION $max\n";
print FILE "#define VERTNUM $vertnu\n";

41

#vertexnum and Source Node
print FILE "int vertexNum = VERTNUM;\n";
print FILE "int source = $source;\n";
print FILE "int SHORTEST_PATH[VERTNUM] = {";
for($i = 0; $i < $vertnum-1; ++3i)
{
print FILE "MAX_INT,";
}
print FILE "MAX_INT}:\n";
#PATH definition
$upperLimit = 90;
print FILE "int PATHS[VERTNUM][VERTNUM] = { ";
for($i = 0; $i < $vertnum-1; ++$i) {

print FILE "{";
for($j = 0; $j < $vertnum-1; ++$j) {
if($i == $j){
print FILE "0";
} else {
$rand = int(rand($upperLimit));
if ($rand > 60) {
print FILE "-1" ;
} else {
print FILE "$rand";
}
}
print FILE ",";
}

$rand = int(rand(SupperLimit));
if ($rand >60) {

print FILE "-1" ;
} else{

print FILE "$rand";

}
print FILE "},";

42

print FILE "{";
for($j = 0; $j < $vertnum-1; ++$j) {
$rand = int(rand($upperLimit));
if ($rand > 60) {
print FILE "-1" ;
} else {
print FILE "$rand";
}
print FILE ",";
}
print FILE "0}};\n";
#ROUTE2 definition

print FILE "int ROUTE2[VERTNUM][VERTNUM] = { ";

for($i = 0; $i < $vertnum-1; ++$i) {

print FILE "{";
for($j = 0; $j < $vertnum-1; ++$j) {
print FILE "-1,";
}
print FILE "-1},";
}
print FILE "{";
for($j = 0; $j < $vertnum-1; ++3$j) {
print FILE "-1,";
}
print FILE "-1}};\n";
#VISITED definition
print FILE "int VISITED[VERTNUM] = {";
for($i = 0; $i < $vertnum-1; ++3i)
{
print FILE "0,";
}
print FILE "0};\n";
close (FILE);

