
 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

GUILHERME JAMES DE ANGELIS FACHINI

Modular and Generic WCET Static Analysis
with LLVM Framework

Trabalho de Graduação.

Dr. Thomas Kuhn
Orientador

Profª. Drª. Erika Fernandes Cota
Co-orientadora

Porto Alegre, Junho, 2011

1

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Rui Vicente Oppermann
Pró-Reitora de Graduação: Valquíria Linck Bassani
Diretor do Instituto de Informática: Flávio Rech Wagner
Coordenador do CIC: Raul Fernando Weber
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

 2

ACKNOWLEDGES

First of all I would thanks God for his merciful grace and infinite wisdom. To my
beloved parents, James Fachini and Ana Lúcia De Angelis Fachini, for all their support,
care and, best of all, love, during the hard and challenging academic times. Thanks to
my little big heart sister “irmã”, Clarissa Raquel De Angelis Fachini, for making my
days full of joy, by the way, sorry about the dailies scares that I give you.

I would like to thanks my friends Daniel Petersen, André Damasceno, Bernardo
Zoppas, Tiago Kommers and Tiago Landenberger, the friends since the begging of
everything, for not being supportive about classes, exams and studies, making my days
better and full of strange, funny and remarkable moments. To all the folks that I met in
Kaiserslautern, in special, the Fraunhofer’s, for the good coffee breaks, talk moments
and knowledge exchange, in special Matheus Vogel and Carmela Noro Grando.

To Profª. Drª. Erika Fernandes Cota a big thanks for all her support and
opportunities given during the time I was working as undergraduate researcher at
Embedded Systems Laboratory. For introduce and encourage me in the academic area
and help me reviewing this work.

I would like to thank my Fraunhofer advisor Dr. Thomas Kuhn for the opportunity
for develop my bachelor thesis during my time working at Fraunhofer Institute – IESE
and all the research support and knowledge.

My thanks go also to the Informatics Institute at UFRGS, to Professors and
community, for the very good work being done to improve each day our knowledge and
the development of our university and country, through research and technological
development, despite all politics obstacles. In special for the Professors who provide
time and resources in exchange programs, particularly to Profª. Drª. Taisy Silva Weber
and the exchange program with Technische Universität Kaiserslautern. To Prof. Dr. Dr.
h.c. H. Dieter Rombach, for invests in this program and provide full support for the
students at TU-Kaiserslautern.

Finally, I thank those who were and are part of my life, all my uncles, aunts,
grandfathers, grandmothers, brothers and sisters, relatives or not.

3

SUMMARY

ABSTRACT 6

1 INTRODUCTION AND MOTIVATION 7

2 RELATED WORKS AND TOOLS 9

2.1 Related Works .. 9
2.2 Tools ... 10
2.2.1 LLVM ... 11
2.2.2 Avrora ... 12

3 PROPOSED STATIC BASED WCET ANALYSIS 14

3.1 Source Code Programming ... 14

3.1.1 Code Restrictions .. 14
3.1.2 Annotations ... 15
3.2 Loops Mapping ... 15
3.2.1 Natural Loops ... 16
3.3 Instructions Mapping ... 16

3.4 WCET Mapping and Calculation ... 18

3.5 Analysis .. 22
3.5.1 Dijkstra’s Algorithm ... 22

3.5.2 Huffman Compression Algorithm .. 22

3.6 Results .. 23

4 SIMULATION AND EVALUATION 24

4.1 Simulations .. 24
4.1.1 Simulation Architecture .. 24

4.1.2 Monte Carlo Method .. 25

4.1.3 Analysis .. 25
4.2 Results Evaluation .. 25

5 CONCLUSION AND FUTURE WORK 28

5.1 Conclusion ... 28
5.2 Future Work ... 28

LIST OF ABBREVIATIONS AND ACRONYMS 30

FIGURE LIST .. 31

TABLE LIST 32

 4

REFERENCES .. 33

ANNEXE A - DIJKSTRA’S ALGORITHM IN C............... 35

ANNEXE B - HUFFMAN COMPRESS ALGORITHM IN C 37

APPENDIX - INPUT SCRIPTS ... 39

5

Análise estática, genérica e modular de WCET utiliz ando a
infra-estrutura de compilação do LLVM

RESUMO

O cálculo do tempo do pior-caso de execução, do inglês Worst Case Execution Time
(WCET) é um desafio na área de verificação de software para sistemas de tempo real.
Essa análise faz parte do trabalho de escalonamento de tarefas de processos em sistemas
multi-cores. A complexidade de prever esse tempo aumenta de acordo com a
complexidade do hardware do sistema a ser analisado e seus componentes, já que
muitas partes de uma plataforma, como pipelines e memória cache inserem variantes no
tempo de execução difíceis de prever e analisar. Existem vários métodos com diferentes
abordagens para se calcular o tempo de execução de um programa. Eles são
principalmente baseados em análises estáticas e dinâmicas, de forma que a estática
utiliza um modelo de hardware e analisa o código, enquanto a dinâmica necessita de
algum simulador ou de uma plataforma real para realizar as medidas de tempo.

Esse trabalho apresenta um modelo de análise estática para prever o tempo do pior-
caso de execução de códigos para sistemas embarcados de tempo real. Além disso,
executa, para fins de comparação, uma análise dinâmica baseado na execução dos
códigos de teste em um simulador. O modelo de análise estática é desenvolvido baseado
em um assembly gerado pela infra-estrutura de compilação do LLVM, que gera uma
representação intermediária de código que é independente de arquitetura.

O método tem o objetivo de ser escalonável e modular, isto é, quão mais precisa a
análise deve ser, melhores modelos de análise devem ser implementados e usados no
processo. O modelo de análise utilizado nesse trabalho possui uma abordagem clara e
utiliza uma descrição de arquitetura simples exemplificando o processo. A análise
dinâmica é baseada no método Monte Carlo de simulação e é executada em um
simulador da arquitetura de um AVR, o Atmega128, chamado AVRORA.

 6

ABSTRACT

The worst-case execution time (WCET) prediction is a challenge in the software
verification area for real-time embedded systems. This analysis is part of the scheduling
of parallelizable processes job on multi-core systems. The complexity of predict this
time increases accordingly to the complexity of the target system hardware and its
components, since much of this components, as pipelines and cache memory, attach
hard to predict and analyze temporal variants. There are many methods with different
approaches to calculate the execution time of a program and they are based mainly on
static and dynamics analysis. The first takes account a hardware model and the code
analysis itself, while the second needs some accurate simulator or the target platform to
perform its time measurements.

This work presents a static method for predicting worst-case execution time
(WCET) for embedded real-time systems. Furthermore, performs, as a comparison of
accuracy, a dynamic analysis, running the test codes in a simulator. The static analysis
is performed based on an assembly generated by the LLVM compiler. This compilation
framework generates a code intermediate representation (IR) independent of
architecture.

The model aims to be a modular and scalable, that means, it was build to accept
different accuracy levels, depending on the accuracy of the developed hardware model
and the analysis used in the process. In this work, this work analysis follows a clear
approach and uses a simple architecture description for its execution. The dynamic
analysis is done based on the Monte Carlo simulation method, performed over the AVR
ATmega128 simulator, AVRORA.

7

1 INTRODUCTION AND MOTIVATION

In the past, processing speed of embedded platforms used to be increased by
increasing their clock frequency, as multipurpose systems. Due to electromagnetic
interferences, increase processing power by increasing the clock frequency is not
possible anymore. To overcome this limitation, parallel processing units are replacing
single processors running at high clock speed. However, to fully utilize the processing
resources from parallel platforms, optimized algorithms and sophisticated
parallelization process are required.

The parallelization of an algorithm implies the distribution of code blocks among the
processing units at the multi core platforms and the management of communication and
synchronization. Parallelization is only feasible if time savings due to parallel execution
offsets the effort for synchronization and communication. Therefore, successful
automatic algorithm parallelization depends on the knowledge of execution times.

For real time systems, Worst Case Execution Times need to be considered. Since
execution times for code blocks are normally not known by developers, this information
needs to be acquired during the deployment and parallelization process. This work was
done during an internship at Fraunhofer Institute IESE where a project about scheduling
process for multi cores architectures was being developed over Simulink. In this
context, the WCET calculation was necessary for the scheduling algorithm. Here will be
describe an approach and method to measure worst case execution time of code
segments generated from Simulink models on different target platforms.

The problem of calculating WCET is well described and several approaches and
methods have been developed [1]. However it keeps challenging research because of the
difficulty of having more accurate timing prediction models. The issue comes mainly
due to the variation of the code runtime depend on hardly or not predictable factors,
such as:

- Input data: variables that affect the code flow.

- Loop and recursion bounds

- Initial state of the execution block: e.g. caches, pipelines, branch prediction.

- System interference: interruptions, preemptions.

Mainly there are two methods to predict the worst case execution time, namely static
and dynamic: Static methods are based on the control-flow and call-graph analysis
combined with some abstract hardware model, and does not depend on the execution of
the code. Dynamic methods involve the execution of the code on some simulator or on
the target hardware itself with some defined inputs and the WCET is calculated based
on the observation of the execution times.

 8

This work follows a static model approach based on a static analysis over the low
level virtual machine (LLVM), which provides a layer between C and C++ code and
concrete architecture machine code, in comparison with a dynamic analysis based on
Monte Carlo simulation over AVRORA, an AVR architecture simulator. The dynamic
analysis approach aims to validate the static one, which is based on code annotations
and instructions mapping. Aiming an easy to understand and simple method, this work
develops an architecture independent, modular and reusable static analysis model
aiming an easy aggregation of new feature, analysis and more accurate hardware
models.

Figure 1.1 – Static Analysis Workflow

Figure 1.1 gives an overview about the static analysis process made in this work.
Each step is described in more details in Chapter 3.

The work has the following structure: Chapter 2 describes related works and gives
an overview about the tools used in this work. Chapter 3 explains the static analysis
method and the mapping between real architecture and LLVM instructions, besides
showing some results. Chapter 4 gives an overview about Monte Carlo analysis and the
data generation for the simulation. The evaluation and comparison of results are
presented in chapter 5, while a discussion about them is given in chapter 6. The last
chapter presents the conclusion and describes future implementation and improvements
for the static method.

9

2 RELATED WORKS AND TOOLS

Related works involving approaches based on dynamic and static analysis are
discussed, and some description about the used tools will be presented.

2.1 Related Works
[R. Wilhelm, et al.] in [1] gives an overview of the whole problem of calculating

WCET describing its sub problems and the existing methods and tools to solve it. The
approaches are divided in static and measurement-based and they are compared
considering their aims, abilities, technical problems and research directions. One of the
main problems of the static analysis is about having precise processors models such that
results are not overestimated. Some of the static methods described in [1] are shown by
Figure 2.1, where a is a CFG example with timing on the nodes, b is a path calculation
method, c shows the Implicit Path Enumeration Technique and d shows how a
structure-based method proceed according to the syntax tree. This is also discussed by
[Y.-T.S. Li, S. Malik, A. Wolfe] in [12] where an integer linear programming
formulation is used to solve the problem, targeting an Intel i960KB, their solution
address pipeline instruction execution units and cached memory modeling.

[S. Thesing] in [3] implements a technique to describe pipeline models. There they
use the AbsInt’s WCET analysis tool [13] and a full analysis is made in eight phases:
reconstruction of the control-flow graph from the binary executable, loop
transformation, loop analysis, value analysis, pipeline analysis, path analysis (where the
tools generates a integer linear program), ILP solver and the last phase computes as
display results, this approach follows the scheme in Figure 2.1. Using the same analysis
tool [13], [M. Schlickling, M. Pister] semi-automatically derives timing models from
formal VHDL specifications to compute a cycle abstract semantic for further use as
hardware model on AbsInt’s tool. Also working over pipeline modeling [M.
Langenbach, S. Thesing, R. Heckmann] in [9] developed a tool called ColdFire WCET
Tool. Their analysis is performed on the control flow graph representation and is
divided in two phases: execution modeling and program path analysis. [F. Mueller]
implements a technique called static cache simulation which statically simulates a large
portion of cache behavior of programs. Based on the call graph of the program and the
control-flow graph of each function the instructions references are statically determined
as always cache hit or always cache miss.

 10

Figure 2.1 – WCET calculations

A measurement-based analysis is presented by [I. Wenzel, R. Kirner, B. Rieder, P.
Puschner] in [6] where test data are generated automatically. Their approaches are based
on decomposing program paths into sub paths of program segments and measure the
runtime from each segment. After measuring instruction timing of sub paths, they use a
static calculation method for calculate the final WCET. That work describes a hybrid
approach using static and dynamic analysis to predict WCET. Following a
measurement-based approach J. Hansen, S. Hissam, G. A. Moreno] estimates WCET
values based on a statistical method, the extreme value theory. This method not only
estimates the WCET, it also gives a probability that a possible execution time will
exceed the estimations.

2.2 Tools
In this work two open source tools were used as base for WCET analysis. The main

tool was the LLVM compiler infrastructure [14], version 2.7, which provides an
architecture independent compiler (based on GCC 4.2), optimizer and an analyzable
intermediate code representation. Besides the C and C++ front-end, the LLVM project
provides several others tools for code analysis, optimization, code generation, etc. For
this work the llvm-gcc front-end with debug information was the base for the static

11

analysis, while for the dynamic analysis is also used the native machine code generator
(llc).

Specifically for the dynamic analysis, a cycle accurate simulator was chosen,
Avrora, an AVR framework for simulation and analysis [15].

2.2.1 LLVM

The LLVM project aims for versatility, flexibility and reusability, these
characteristics fit into our approach for a WCET analysis method, since LLVM provides
also a well documented and architecture independent assembly. It specifies three
different representations of assembly, an in-memory compiler, an on-disk bitcode and a
human readable assembly, all generate from C/C++ codes. For this work, the static
analysis was made over the human readable assembly aggregated with the debug
information, Figure 2.1.

Figure 2.2 - LLVM code Example

The human readable assembly is a designed set of instructions with low-level
representation but with support for high-level analyses. For this the instruction set does
not define any machine specific constraints or features such pipelines, physical registers
or call conventions. The registers are in Static Single Assignment (SSA) form used for
compiler optimization and can only hold scalar values as Boolean, integer, floating
point and pointer. All memory is explicitly allocated and it is partitioned into stack,
heap and global memory, and its data are accessed only with load and store instructions.
About the LLVM instruction set types, the system is very simple and can easily
represent high-level classes combining the low-level types, it is also strongly-typed
(every SSA value and memory locations has an type associated as seen in Figure 2.1)
allowing easy mismatch type detection and optimizations.

 12

For the WCET analysis one very important characteristic from the LLVM assembly
code is the explicit Control Flow Graph (CFG) organization. The code is structured in
many Basic Blocks (BB), which are defined as a linear sequence of code having one
entry point (labeled normally with “bb” and explicitly listing the successors basic
blocks) and one exit point (a Terminator Instruction) also described by [Frances E.
Allen] in [20]. This construction allows the full flow mapping with a near to machine,
but independent code. These mappings are widely use for loops identification, described
in chapter 3.2, and the full path calculation for the static analysis. This feature is used by
the LLVM infrastructure for analysis and optimizations of control flow, for example.

All these characteristics makes the LLVM project a base for several other projects
that have to deal with low level, platform independent code, which gives, since the
beginning a very modular foundation.

2.2.2 Avrora

Avrora [15] is a research project of the UCLA Compilers Group and is a set of
simulation and analysis tools implemented in Java [16] for AVR microcontrollers
produced by Atmel. The framework provides also a Java API and infrastructure for
experimentation, profiling and analysis. The core from the whole Avrora project is their
cycle-accurate simulator for AVR microcontroller that allows a precise timing analysis
for real programs.

For the purpose of simulation and debugging breakpoints are inserted into the code
to terminate or pause the simulation. After the complete simulation a report with the
results is automatically generated, Figure 2.2 shows an Avrora report example. In
addition to the timing analysis, this framework can also emulate the behavior of on-chip
devices, like led blinking.

Figure 2.3 – Avrora Report Example

Avrora [Beta 1.6.0] - (c) 2003-2005 UCLA Compilers Group

This simulator and analysis tool is provided with absolutely no warranty,

either expressed or implied. It is provided to you with the hope that it be

useful for evaluation of and experimentation with microcontroller and sensor

network programs. For more information about the license that this software is

provided to you under, specify the "license" option.

Loading RLencode.od...[OK: 0.484 seconds]

=={ Simulation events }==

Node Time Event

===

Simulated time: 2436497 cycles

Time for simulation: 3.937 seconds

Total throughput: 0.61887145 mhz

13

For this work the single simulation mode in the dynamic analysis is used. This mode
offers several configuration options, like clock speed, interrupt schedule,
microcontroller model, monitors, platform, etc.. The microcontroller model used here
was the ATmega128, briefly explained in chapter 4.1.

The Avrora framework proved to be easy to use and deploy. Their reports and
analysis fits on what was necessary for this project and provided a feasible result on
measurements.

 14

3 PROPOSED STATIC BASED WCET ANALYSIS

Static analysis is a well know technique for evaluation and verification of code.
Specifically for WCET prediction, its allows a fast and modular analysis. For this work,
a technique of basic blocks mapping and instructions counting is used.

Based on the human readable LLVM assembly with debug information and the
source code in C or C++, two mappings are performed, one is the loops mapping from
de source code to the LLVM, and another is the target architecture instructions cycles to
LLVM instructions mapping. These informations are the inputs for the whole execution
time analysis and from them, is possible to predict the worst execution time from a
program code.

3.1 Source Code Programming
As previously mentioned, there are some non-predictable factors in calculating de

worst case execution time from a program. This implies some programming restrictions
and code annotations in order to make any execution time prediction possible.

Some programming problems mentioned by [P. Puschner, Ch. Koza] in [22] are that
loops and recursions end‘s conditions, or maximum number of iterations or recursion
depth, cannot be easily calculated or determined statically, because of the possibility of
very complex conditions that cannot be automatic determined. Furthermore pointers to
functions can reference functions that the timing is not known and implicitly implement
recursion, besides the case of GOTO usage, which can disturb with the whole program
structure. These conditions can be avoided by some programming restrictions and code
descriptions.

3.1.1 Code Restrictions

In order to avoid the determination of a recursive and loops end’s condition and non
structured control flow, some programming restrictions were defined:

- Program cannot contain any kind of recursion (direct or indirect) [21] [22].

- GOTOs and unconditional changes of flow are not allowed, which do not really
performs a restriction according to [22].

- Loops should have a specified iteration or time bound, and it cannot overcome
this limit.

- Functions should be called explicitly and each function must have a calculated
WCET.

15

3.1.2 Annotations

In this work, some additional information is defined to be inserted in the analyzed
code. This information aims at specifying which functions should be analyzed and the
loops iteration bounds.

The annotations follow a very simple syntax and should be added as normal
comments in the source C code, as shown in Figure 3.1. The beginning and the end of a
function to be analyzed should follow the syntax “<F><Function_Name>” and
“</F><Function_Name>” respectively. This syntax was defined to facilitate the
identification of the functions to be analyzed.

The loop bounds annotation defines how many times each loop would iterate. This
should be provided by the programmer, so this must be known or pre defined during
developing phase. Following the same idea at the function annotation,
“<I><#Iterations>”, defines the loop opening, and “</I><#Iterations>”, the loop
closure. Each loop statement (for, while, do) should have its own bound, allowing
nesting. These bounds are used later on the loops identification and mapping (after
optimization some loop can be unrolled) and for the WCET counting, to determine how
many times a basic block, inside a loop, will be executed.

Figure 3.1 – Function and Loop Bounds Syntax Example

3.2 Loops Mapping
As shown in Figure 1.1, two codes are used for the static time analysis, the source

code in C and the human-readable LLVM assembly. The LLVM assembly is the
analyzed base code, because it has been already processed in compilations. That means,
it does not contain architecture dependent directives and already has been optimized and
transformed, becoming quite near the actual target code. However many loops

//<F><example>

void example()

{

 //<I><12>

 while(i++ < T)

 {

 //<I><127>

 for(j=0; j<W; j++)

 {

 ...

 }//</I><127>

 }//</I><12>

}

//</F><example>

 16

annotated on the C code can be optimized and unrolled during compilation. Those loops
would not exist anymore in LLVM code, being necessary thus a mapping between these
two codes for a correct loop counting.

To determine which loops have not been optimized a control flow analysis was used
to identify the loops and then, with the assistance of debug informations, map the loop
bounds described on C code to the LLVM basic blocks. To find the loops, a well
described algorithm to find Natural Loops as described by [A. V. Aho, R. Sethi, J. D.
Ullman] in [23] was used.

3.2.1 Natural Loops

Before presenting the natural loop identification algorithm, the loop itself must be
defined. The loop intuitive properties are that, they should have a single entry point and
the edges must form at least a cycle. From this it is inferred that not every cycle is a
natural loop.

The algorithm presented in [23] uses a technique that consists of three components
to find and identify natural loops. The first component is to build a dominator tree out of
the Control Flow Graph (CFG). The formal definition of dominators is:

• Node d dominates n (d dom n) in a graph if every path from the start node to
n goes through d.

A dominator can be found if all paths to a given node have to go though another
node. Starting from the entry node in a CFG, the algorithm needs to check if there is a
path to the slave node from the entry. This path must avoid the master node, so, if it is
possible to reach the slave node without touching the master node, it can be determined
that the master node does not dominate the slave node.

The second component is identifying the back edges, this step use the dominator list
done in the previous component. The algorithm performs a depth first search in the CFG
and for each retreating edge tail->head, where head dominates tail (checking if head is
tail’s dominator list), defines a back edge.

Finally the natural loop of a back edge is the smallest set of nodes that includes the
head and tail of the back edge, and has no predecessor outside the set, except for the
predecessors of the header. The algorithm in short is, delete the header from the flow
graph and find all nodes that can reach the tail (those nodes plus header form the
natural loop of tail->header).

3.3 Instructions Mapping
Besides the two input files, C code and LLVM assembly, another file is used in the

analysis as instructions cycles reference. The Instructions Weight Map describes the
number of cycles from the target architecture for each LLVM assembly instruction. For
the static analysis performed in this work it is the only information used from the target
architecture.

This mapping is extracted compiling each LLVM instruction to the ATmega128 and
which is possible because the AVR Microcontroller has a very simple architecture. The
processor achieves a throughput of 1 MIPS per MHz, meaning that almost all its
instructions execute in a single clock cycle. However LLVM deals with high level

17

instructions that cannot be directly mapped as 1-to-1. For example, an 32 bits AND
operation between two registers in LLVM is written as follows:

 %0 = and i32 %i, %j

While in AVR assembly it becomes, besides some context instructions:

ldd r24, Y+1

ldd r25, Y+2

andi r24, 0x00

andi r25, 0x28

For the and instruction it is easy to detect the reason for the difference, which is
the fact that the microcontroller ATmega128 works with 8 bits registers, while the
LLVM instruction is explicitly dealing with 32 bits. However when dealing with more
complex LLVM instructions, that do not have any near representation in AVR, the
difference becomes really big. For instance, in the case of floating point instructions, an
fadd instruction in LLVM is mapped to a 768 lines AVR assembly code.

 18

load 20
lshr 8
mul 25
or 9
phi 0
ptrtoint .. to 8
ret 8
sdiv 75
select 8
sext .. to 8
shl 8
shufflevector 0
sitofp .. to 616
srem 78
store 18
sub 14
switch 75
trunc .. to 8
udiv 46
uitofp .. to 652
unreachable 0
unwind 0
urem 41
va_arg 0
xor 12
zext .. to 8

Table 1 – LLVM instructions cycles mapping

The Table 1 shows the number of cycles mapped from ATmega128 [17] to each
LLVM instruction. This table was generated with a reverse engineering process, since
LLVM is not portable to AVR yet. Each LLVM instruction was compiled back to a low
level C (by the LLVM tool chain) and the C code compiled to AVR assembly, from
which the cycle counting was taken.

3.4 WCET Mapping and Calculation
The full static analysis is based on the basic blocks control flow and in the

instructions counting from each BB. The process begins on the algorithm planning
phase, where developers should define which functions or methods will be measured
and the others functions related to the main one. During development programmers
should define also the loops bounds for each loop defined in the algorithm, as explained
in section 3.1.2. Another pre-analysis task is to map the target architecture instructions
cycles to LLVM instructions, as shown in section 3.3.

Having the code ready, it is necessary to compile it to the readable LLVM assembly
version with the debug information and the intended optimization level. This is done by
the following command line:

LLVM Instruction AVR cycles
add 14
alloca 55
and 10
ashr 8
bitcast .. to 8
br 23
call 6
extractelement 47
extractvalue 39
fadd 1085
fcmp 16
fdiv 819
fmul 917
fpext .. to 18
fptosi .. to 417
fptoui .. to 1512
fptrunc .. to 18
frem 823
fsub 1123
getelementptr 8
icmp 24
indirectbr 0
insertelement 118
insertvalue 93
inttoptr .. to 8
invoke 0

19

llvm-gcc (LLVM optimizer and code generator) –emit-llvm (emit LLVM IR) –S
(readable assembly) –g (debug information) –O0..4 (desired optimization level) *.c –o
*.ll

Generated the three inputs (Instruction Weight Mapping, Source Code and LLVM
Code), the analysis begins with the Natural Loops detection on the LLVM code, as
described in section 3.2. The detection generates a Natural Loop list that is mapped with
the loops annotations included in the source code with the aim of extracting the bounds
information. The mapping involves the use of the debug information as guide for the
lines positions from the loops. The debug information in LLVM use a special type
called metadata; this directive can be attached to instructions in the program to provide
extra information about the code to the optimizer, code generator, debugging or any
other analysis.

All metadata has the metadata type and is identified syntactically by a preceding
exclamation point ‘!’. There are also two primitives defining this type: strings and
nodes, the debug information uses metadata nodes which are represented with notation
similar to structure constants, for example:

Here “!20” represent location information metadata. The four fields represent
respectively: line number, column number, scope and original scope from the source
code. This information was used to map the loop bound from the C code to LLVM IR.

Figure 3.2 – C source Example

1.//<F><main>

2.int main(void) {

3. int i, j, k,l;

5. //<I><100>

6. for (i = 0; i < 100; i++) {

7. //<I><100>

8. for (j = 0; j < 100; j++) {

9. //<I><100>

10. for (k = 0; k < 100; k++) {

11. l = i+j+k;

12. } //</I><100>

13. } //</I><100>

14. } //</I><100>

15. return l;

16.}

17.//</F><main>

“!20 = metadata !{i32 51, i32 0, metadata !15, null}”

 20

As observed in Figure 3.2, the first annotated loop begins at line 6. Searching for
the metadata node that represents line 6 in the LLVM code, in Figure 3.3, we find the
metadata “!11”. So on, all loops are mapped this way, and from this it is possible to
decide which basic blocks are inside each loop, and how many times they will iterate
and their nesting level. Of course when a loop is unrolled by the compiler, it will not
have a related metadata with its line.

Figure 3.3 – LLVM IR with metadata

Continuing the analysis, each basic block is then mapped into a list with the
following information: Name, Predecessor, Metadatas, Branches, Calls and Weight,
where:

• Name is the tag given by the compiler for the basic block, each BB has a
unique name

• Predecessor is a list with all BB that reaches the mapped BB in the CFG

• Metadatas are the metadatas associated to this BB

• Branches is the list of reachable BBs in the CFG

define i32 @main() nounwind {

entry:

 %i = alloca i32

…

store i32 0, i32* %i, align 4, !dbg !11

br label %bb7, !dbg !11

...

bb7:

%16 = load i32* %i, align 4, !dbg !11

%17 = icmp sle i32 %16, 99, !dbg !11

br i1 %17, label %bb, label %bb8, !dbg !11

…

return:

%retval9 = load i32* %retval, !dbg !15

ret i32 %retval9, !dbg !15

}

...

!11 = metadata !{i32 6, i32 0, metadata !1, null}

21

• Calls is a list with all other functions called in this particular BB, used for
later link, when all functions are analyzed

• Weight is the sum of the weight, mapped in Instruction Weight Mapping file,
from all instructions in this BB

After the loop and the weight mapping, these two information are merged into one,
where the matches between them generates the full BB mapping, and then their weight
are multiplied by the iteration number when applicable (if the BB received a loop
bound). In the loop mapping description, the fields mean respectively: metadata, BB
name, nesting level and iterations.

Figure 3.4 shows the simple BB report on the left with only the BB informations and
the weight from each BB, while on the right is the full analysis report, with the BB
weights already multiplied by the iteration number resulting in the expected cycle’s
number for each BB. As final result, the sum from all BB cycles is given.

Figure 3.4 – Simple and Full WCET Repo

(!13,bb3,3,1000000)
(!11,bb6,1,100)

Simple Report:

Name: entry

Preds:

Metadatas: !7 !11

Branchs: bb7

Calls: llvm.dbg.declare

Weight: 450

...

Name: return

Preds: bb8

Metadatas: !15

Branches: END

Calls:

Weight: 28

Full Report:

Function - main

******BASIC BLOCKS EXECUTED******

Name: entry

Calls: llvm.dbg.declare

Loop Iteraction: 0

BB cycles: 450

...

Name: return

Loop Iteration: 0

BB cycles: 28

Total Executed Cycles: 290844777

 22

3.5 Analysis
In this work, two classical algorithms [24] were used to evaluate the accuracy of the

researched static analysis. The chosen algorithms were a Dijkstra shortest path
algorithm, and an encode algorithm that uses the Huffman Compress code. They were
selected because of their structure. Dijkstra presents interesting nesting levels between
loops, while the encoder works with a single loop in the main function but with large
case structure. The C codes of each algorithm can be found in annexes.

3.5.1 Dijkstra’s Algorithm

The Dijkstra’s Algorithm [24] created by Edsger Dijkstra and published in 1959 is a
search algorithm for graph that solves the single-source path problem producing the
shortest path between the source and all other reachable nodes. In a graph, given a
source vertex, the algorithm finds the shortest path leaving the source to all other vertex.
This algorithm is widely used to find the shortest route between cities and in network
routing protocols.

The algorithm is implemented in this way:

1. Beginning with the source node, current node:

a. Set its value to 0.

b. Set value of all other nodes to “infinity”.

c. Mark all nodes as unvisited

2. For each unvisited node, adjacent to the current node:

a. If the value of the current node plus the value of the edge is less than the
value of the adjacent node, change the value of the adjacent node to this
sum value.

b. Otherwise leave the value as it is.

3. Set the current node to visited.

4. Finish if every node have been visited. Otherwise, set the unvisited node with
the smallest value as the new current node a go to step 2.

The value recorded in each node is the final and minimal distance between this node
and the source.

3.5.2 Huffman Compression Algorithm

Huffman compression [24] is an encoding algorithm used for lossless compression.
It belongs to a family of algorithms called entropy encoding algorithms which refers to
the use of a variable-length code table. That means the characters symbols are replaced
by bit sequences with different lengths. Based on the estimated probability of
occurrence of each symbol in the source, symbols that tend to occur more, are encoded
into fewer bits, while rarely used symbols gets longer bit sequences.

The code used in this work implements a simple Huffman compression that expects
a binary file with a sparse distribution of bits with the value 1. The compression process

23

is performed by counting the number of zeroes between each successive pair of ones
and then, encoding these outcomes using a symbol code table.

3.6 Results
Following the approach described previously, Table 2 shows some results acquired

from the algorithm with static analysis, with the instructions weights from Table 1, in
two optimization level, O0 and O3, meaning no optimization at all and the common
optimization level used in general, all performed by LLVM tool chain. These results
will be compared with the Simulations results acquired by Monte Carlo Analysis on
Avrora AVR simulator.

 -O0 -O3

Dijkstra 4.814.878.170 Cycles 2.181.701.037 Cycles

Huffman Compress 66.603.932.946.841 Cycles 3.138.178.705 Cycles
Table 2 – Static Analysis Results

 24

4 SIMULATION AND EVALUATION

This chapter discusses the results from the static and dynamic analysis. Both
evaluations are compared in order to ensure some validity and quality of the static
analysis. First of all, the simulations process is explained.

4.1 Simulations
The simulations were performed to be compared with the static analysis results and

give an approximation of the real WCET. Following a Monte Carlo approach, the inputs
were randomly generated and simulated on the cycle accurate simulator AVRORA. By
the end of the execution the simulator provides a report informing the number of cycles
for the program execution.

4.1.1 Simulation Architecture

Performing a simulation, AVRORA was used as the main engine for the dynamic
analysis approach.

4.1.1.1 AVRORA

The AVRORA framework is implemented in Java and focus on a clean design and
program representation. Each type of instruction has it own class and, instances of these
classes represent the instructions from a program. The core of the framework is the Java
package avrora.sim which contains a set of classes that implements the simulator.

The simulator is the execution engine of a simulation. It contains an interpreter for
all AVR instructions in the set and store states of the program including SRAM, IO
registers and general purpose registers. Inserted in the layer of a microcontroller
(devices built on a chip) it emulates the behavior of on-chip devices and provides an
interface with off-chip devices (platform level). The simulations for this work were
performed over the ATMega128 microcontroller class.

4.1.1.2 ATmega128

ATmega128 is a simple microcontroller with RISC architecture. With most of its
133 instructions executing in one clock cycle, so it can reach up to 16 MIPS at 16 MHz.
It has also 128 KB of program memory, 4 KB EEPROM and 4 KB SRAM. This
architecture was chosen by its simplicity, since it doesn’t implements any kind of
pipeline, cache protocol and branch prediction, features expected for future works
improvements.

25

4.1.2 Monte Carlo Method

Monte Carlo methods consist in repeatedly run some algorithm with random inputs
and collect their results. These methods are frequently used for simulating physical and
mathematical systems, when is not feasible or is impossible to generate and run a
deterministic algorithm to calculate an exact result, like simulations of systems with a
large degree of freedom, multiples variables and complicated boundary conditions.

Algorithms itself are process that fits on “complicated to predict and simulate”
concept, so, for this work the Monte Carlo method was used. As Monte Carlo doesn’t
define a single method indeed, but a set of algorithms that follows the described
concept, the approach used for generating the inputs and simulating the algorithms in
this work was:

- Define the inputs bounds, based on their respective types and memory size

- Generate random inputs between the defined limits

- Run the algorithm on simulator

- Save execution time from simulation

The inputs for the evaluation algorithms were generated by a script written in the
language Perl [25]. The scripts generate random inputs values in the model expected by
the evaluations algorithms. The model used for the inputs were C header codes included
during compilation time, since the simulator do not accept dynamic inputs references.
Huffman compress and Dijkstra’s inputs scripts are in the appendix.

4.1.3 Analysis

Using the same algorithms described in Chapter 3.5, the dynamic analysis was
performed by a Shell Script following these steps executed inside a “while loop”
(iterating as much as possible):

- Generate random inputs; input scripts, in appendix.

- Compile code using “avr-gcc” and generate a .elf binary file.

- Dumb object from binary file using “avr-objdump” (the simulator expect this
format).

- Run simulator and keep the simulated time result.

The results generated on the dynamic analysis are shown in Table 3 and also each
algorithm was tested with two different optimization levels. The minimum and the
maximum number of cycles reached during the simulations shows the difference
between the best and the worst case of executed cycles during simulation.

4.2 Results Evaluation
The Table 3 shows the absolute values from the dynamic and static analysis. The

difference between the maximum number of cycles simulated and the WCET prediction
is also calculated. This first comparison shows only the big difference between both
analyses, being necessary a more meaningful examination.

 26

Simulation Static max - static

min max

Huffman Compress
 -O0 16670 10715636 6,66039E+13 6,66039E+13

 -O3 950 5816066 3138178705 3132362639

Dijkstra
 -O0 209 190375882 4814878170 4624502288

 -O3 145 31839495 2181701037 2149861542
Table 3 – Absolute values from analysis

Over the simulated data, displayed graphically in Figures 4-1 and 4-2, was taken
more accurate information to be compared with the static analysis. The graphic in
Figure 4.1 shows the distribution in the simulation results, where the X axis is
represented by the number of vertex in the input graph and the Y axis the source node of
the Dijkstra’s shortest path. Following the same idea of showing the number of
simulated cycles by the algorithms inputs, the axes X and Y in Figure 4.2 represents N
(number of 0’s) and M (number of 1’s) respectively.

Figure 4.1 – Dijkstra’s Simulation

Figure 4.2 – Huffman Compress Simulation

27

From the dynamic analysis results was calculated the standard deviation of each
algorithm and their optimization level in order to measure how many deviations the
static analysis is from the longest simulated time. This difference, shown in Table 4, is
also compared with how many times the static analysis is bigger than the dynamic.
These evaluations allow some conclusions to be taken.

The measures shows that the static method clearly produced higher values than the
dynamic, meaning that, it predicted a number of cycles for these algorithms bigger than
the observed in simulations by Monte Carlo method. This observation shows that for a
real execution of these algorithms over the Atmega128 microcontroller the execution
time won’t almost certainly exceed the worst execution time statically predicted.

Dynamic Static static/dynamic(max) Deviations

max from max

Huffman Compress
 -O0 10715636 6,66039E+13 6215583,746 36008296,31

 -O3 5816066 3138178705 539,5706832 2229,93

Dijkstra
 -O0 190375882 4814878170 25,29142935 125,21

 -O3 31839495 2181701037 68,52184801 272,15

Table 4 – Relation between results

 28

5 CONCLUSION AND FUTURE WORK

This chapter explains the whole development of this work and the conclusions taken
during the research. Also describes the challenges faced to active the goal and the next
steps to improve it.

5.1 Conclusion
Timing verification in real-time systems algorithms is essential for a feasible

parallelization between processes. This kind of verification aims calculation of the
upper bound time from processes, called worst case execution time. This task can be
performed mainly with two methods, dynamic and static. While the dynamic analysis
involves timing accurate simulators or a platform, and a lot of effort running algorithms
a bunch of times trying to get a good input and scenario to generate “worst cases”, a
static analysis look for a accurate architecture/platform model to perform the measures
over the code.

Following the static approach, the main problem in build the hardware models for
the code evaluation is their features, like pipelines and cache, used to improve the
hardware performance. They difficult the timing prediction, once there is a lot of
variation on their execution. This way, the goals of the WCET static predictions are
perform a safe and precise analysis, generating a result that could not be exceeded by a
real execution and won’t be so long that the effort of the parallelization process would
not have benefits.

This work follows a simple static approach applied over an architecture independent
infrastructure, the LLVM project. Over this core, was possible build a modular WCET
static analysis. The analysis performed showed that the results taken from the static
analysis have a good margin of safety, however, based on the dynamic analysis results,
not very precise. Once the LLVM compiler don’t create code directly to the used AVR
architecture another compiler [26] was used, so the assembly executed in the simulation
and the one analyzed are similar but different in structure and size.

5.2 Future Work
As a continuation of this work, solving the problem of the difference between the

codes analyzed statically and the one executed in the simulation, would be develop a
backend for the LLVM code generator. This way, the code generated for static analysis
would be closer to the real executed code. However, if the target platform is one already
supported by LLVM, this wouldn’t be a problem.

29

Another solution to reduce and to accurate the WCET prediction is applied more
complex platform modeling to the analysis. Since the example platform was very
simple, this wasn’t necessary, but for more complex and modern platforms, models with
pipelines and cache simulation/analysis are also needed. According to the references
works much of this kind of modern processors modeling is already being done.
However, is missing integration between all the models and modeling process to
develop more reliable and accurate WCET predictions. Also important to note that the
improvements in this area should make WCET prediction each time more applicable
and automatic in real-time systems projects context.

 30

LIST OF ABBREVIATIONS AND ACRONYMS

WCET – Worst Case Execution Time

LLVM – Low Level Virtual Machine

IR – Intermediate Representation

CFG – Control Flow Graph

BB – Basic Block

31

FIGURE LIST

Figure 1.1 – Static Analysis Workflow ... 8

Figure 2.1 – WCET calculations .. 10

Figure 2.2 - LLVM code Example .. 11

Figure 2.3 – Avrora Report Example ... 12

Figure 3.1 – Function and Loop Bounds Syntax Example ... 15
Figure 3.2 – C source Example .. 19

Figure 3.3 – LLVM IR with metadata ... 20

Figure 3.4 – Simple and Full WCET Repo ... 21

Figure 4.1 – Dijkstra’s Simulation ... 26

Figure 4.2 – Huffman Compress Simulation .. 26

 32

TABLE LIST

Table 1 – LLVM instructions cycles mapping .. 18

Table 2 – Static Analysis Results .. 23

Table 3 – Absolute values from analysis .. 26

Table 4 – Relation between results ... 27

33

REFERENCES

[1] R. Wilhelm, et al. The worst-case execution-time problem—overview of
methods and survey of tools. ACM Trans. Embedd Comput. Syst. 7, 3, Article 36 April
2008.

[2] F. Mueller. Static Cache Simulation and its Applications. Doctor Dissertation,
Florida State University of Tallassee, July 2004.

[3] S. Thesing. Safe and Precise WCET Determination by Abstract Interpretation of
Pipeline Models. Doctor Dissertation, Universität des Sarrlandes, July 2004.

[4] M. Schlickling, M. Pister. Semi-Automatic Derivation of Timing Models for
WCET Analysis, LCTES’10, April 2010.

[5] G. Bernat, A. Colin, S. Petters. pWCET: a Tool for Probabilistic Worst-Case
Execution Time Analysis of Real-Time Systems. Technical Report YCS-2003-353,
University of York, January 2003.

[6] I. Wenzel, R. Kirner, B. Rieder, P. Puschner, "Measurement-Based Worst-Case
Execution Time Analysis," seus, pp.7-10, Third IEEE Workshop on Software
Technologies for Future Embedded and Ubiquitous Systems (SEUS'05), 2005.

[7] Y. Zhou, L. R. Welch, E. Huh, C. Alexander, D. Lawrence, S. Mehta, C.
Cavanaugh. Important considerations for execution time analysis of dynamic, periodic
processes. Parallel and Distributed Processing Symposium., Proceedings 15th
International, vol., no., pp.1024-1031, April 2001.

[8] J. Hansen, S. Hissam, G. A. Moreno. Statistical-Based WCET Estimation and
Validation. 9th Intl. Workshop on Worst-Case Execution Time (WCET) Analysis,
November 2009.

[9] M. Langenbach, S. Thesing, R. Heckmann. Pipeline Modeling for Timing
Analysis. Lecture Notes In Computer Science; Vol. 2477, Proceedings of the 9th
International Symposium on Static Analysis, pp. 294 – 309, 2002.

[10] Mingsong Lv, Nan Guan, Qingxu Deng, Ge Yu. Performance Comparison of
Techniques on Static Path Analysis of WCET. IEEE/IFIP International Conference on
Embedded and Ubiquitous Computing. EUC '08, pp. 104 – 111, 2008.

[11] P. Pushner, Ch. Koza. Calculating the Maximum Execution Time of Real-Time
Programs. Journal of Real-Time Systems, Volume 1, Number 2, pp. 159-176, September
1989.

[12] Y.-T.S. Li, S. Malik, A. Wolfe. "Efficient microarchitecture modeling and path
analysis for real-time software," Real-Time Systems Symposium, 1995. Proceedings.,
16th IEEE , vol., no., pp.298-307, 5-7 Dec 1995.

 34

[13] http://www.absint.com/ait/, AbsInt Home Page. Last accessed 14.05.2011

[14] http://llvm.org/, LLVM Project Home Page. Last accessed 14.05.2011

[15] http://compilers.cs.ucla.edu/avrora/, Avrora Home Page. Last accessed
17.05.2011

[16] http://www.java.com, Java Home Page. Last accessed 14.05.2011

[17] ATMEL, 8-bit AVR Microcontroller with 128K Bytes In-System Programmable
Flash Datasheet

[18] C. Lattner, V. Adve. The LLVM Instruction Set and Compilation Strategy.
Technical Report #UIUCDCS-R-2002-2292, Computer Science Dept., Univ. of Illinois,
Aug. 2002.

[19] V. Adve, C. Lattner, M. Brukman, A. Shukla, B. Gaeke. "LLVA: A Low-level
Virtual Instruction Set Architecture". Proceedings of the 36th annual ACM/IEEE
international symposium on Microarchitecture (MICRO-36), San Diego, California,
Dec. 2003.

[20] Frances E. Allen. Control flow analysis. In Proceedings of a symposium on
Compiler optimization. ACM, New York, NY, USA, 1-19.
DOI=10.1145/800028.808479, 1970.

[21] Mingsong Lv, Zonghua gu, Nan Guan, Qingxu Deng, Ge Yu. “Performance
Comparison of Techniques on Static Path Analysis of WCET”, in Proc. of the 6th
IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (EUC
2008).

[22] P. Puschner, Ch. Koza. Calculating the maximum, execution time of real-time
programs. Real-Time Syst. 1, 2, 159-176. DOI=10.1007/BF00571421, September 1989.

[23] A. V. Aho, R. Sethi, J. D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[24] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein. Introduction to
Algorithms (Second ed.), MIT Press and McGraw-Hill.ISBN 0-262-03293-7, 2001.

[25] http://www.perl.org/, Perl Programming Language Home Page. Last accessed
14.05.2011

[26] http://winavr.sourceforge.net/, Atmel AVR Compiler Home Page. Last accessed
14.05.2011

35

ANNEXE A - DIJKSTRA’S ALGORITHM IN C

#include "input.h"

void findTheRotines(int source)

{ int i, j, k, my_vertex, ek;

 SHORTEST_PATH[source] = 0;

 my_vertex = source;

 i=0;

 while(i++ < vertexNum)

 { //we will decide to which vertex is closer that is not in Y (not visited)

 for(j=0; j<vertexNum; j++)

{ //if we find a vertex that is not Y, lets work on it

if(VISITED[j] == 0)

 { //if there is a connection with the vertexes

 if(PATHS[my_vertex][j] != -1)

 { //decide the shortest paths

if(SHORTEST_PATH[j] > PATHS[my_vertex][j] +
SHORTEST_PATH[my_vertex])

{ //we found more shortest way.. change the old one

SHORTEST_PATH[j] = PATHS[my_vertex][j] +
SHORTEST_PATH[my_vertex];

for(k=0; k<vertexNum; k++)

 { ROUTE2[j][k] = ROUTE2[my_vertex][k]; }

 k=0;

 while(ROUTE2[j][k] != -1)

 { k++;}

 ROUTE2[j][k] = my_vertex;

 }}}}

 36

ek = MAX_INT;

for(j=1; j<vertexNum; j++)

{

if(VISITED[j] == 0)

{

if(SHORTEST_PATH[j] < ek)

{

ek = SHORTEST_PATH[j];

my_vertex = j;

}}}

VISITED[my_vertex] = 1;

}

for(i=0; i<vertexNum; i++)

{

if(ROUTE2[i][0] != -1 || source == i)

{

k=0;

while(ROUTE2[i][k] != -1)

{k++;}

ROUTE2[i][k] = i;

}}}

37

ANNEXE B - HUFFMAN COMPRESS ALGORITHM IN C

#include "input.h"

// maximum permitted run of zeroes.

#define RMAX 69

//maximum loop interaction

#define LOOPMAX 32766

// compressor (run length) for a sparse file.

// usage: RLencode < filep.01.10000 > file.RLZ

// Uses Huffman codewords that were generated using huffman.p

// http://www.inference.phy.cam.ac.uk/mackay/perl/huffman.p

// (c) Davi d J.C. MacKay

// License: GPL http://www.gnu.org/copyleft/gpl.html

// Originates from:

// http://www.inference.phy.cam.ac.uk/mackay/itprnn/code/c/compress/

void print_encoded(int);

void printfa(char*);

char* sconcat(char*,char*);

char* out;

int size = 0;

int main() {

 char *fp;

 fp = STRING_FILE;

 int r;

 // unsigned char c ;

 int c, tot0 = 0, tot1 = 0;

 r = 0;

//Iteraction limit

unsigned int iteraction = 0;

 38

 int i;

 for (i = 0; i < STRING_SIZE && iteraction < LOOPMAX; i++)

 {

 c = fp[i];

 if (c == '1') {

 print_encoded(r);

 r = 0;

 tot1++;

 } else if (c == '0') {

 r++;

 tot0++;

 if (r == RMAX) {

 print_encoded(r);

 r = 0;

 }

 } else { // carriage returns}

 iteraction++;

 } //</I><32766>

 // clear the buffer of remaining stuff.

 if (r > 0) {

 r = RMAX;

 print_encoded(r);

 }

 return 1;

}

39

APPENDIX - INPUT SCRIPTS

Huffman Compress Input Script:

#!/usr/bin/perl -w

returns a subset of M 1s among N-M zeroes

usage:

randNchooseM.p N=10000 M=100

MAX N = 32766

$max = 32766;

$N = int(rand($max));

$M= int(rand($N));

if($N<$M){

 $N = $N + $max/2;

}

$NTOTAL = $N;

$seed="123"; # new feature 99 07 30

print "N = $N, M = $M\n";

open TEMP,">>simulated_time.txt" or die("Cannot create file.");

print TEMP "N = $N, M = $M\n";

close (TEMP);

open FILE,">input.h" or die("Cannot create file.");

 40

Dijkstra Input Script:

eval "\$$1=\$2" while @ARGV && $ARGV[0]=~ /^(\w+)=(.*)/ && shift;

srand($seed) ;

print FILE "#define STRING_FILE \"";

while($N) {

 if (($M *1.0/$N) > rand()) {

 print FILE "1" ;

 $M -- ;

 } else { print FILE "0" ; }

 $N -- ;

}

print FILE "\"\n#define STRING_SIZE $NTOTAL\n";

close (FILE);

#!/usr/bin/perl -w

$max = 127;

$vertnum = int(rand($max));

$source = int(rand($vertnum));

$seed="123"; # new feature 99 07 30

print "Vertex number: $vertnum, source: $source\n";

open FILE,">input.h" or die("Cannot create file.");

srand($seed) ;

#Define "#defines"

print FILE "#define MAX_INT 65535\n";

print FILE "#define MAX_ITERACTION $max\n";

print FILE "#define VERTNUM $vertnum\n";

41

#vertexnum and Source Node

print FILE "int vertexNum = VERTNUM;\n";

print FILE "int source = $source;\n";

print FILE "int SHORTEST_PATH[VERTNUM] = {";

for($i = 0; $i < $vertnum-1; ++$i)

{

 print FILE "MAX_INT,";

}

print FILE "MAX_INT};\n";

#PATH definition

$upperLimit = 90;

print FILE "int PATHS[VERTNUM][VERTNUM] = { ";

for($i = 0; $i < $vertnum-1; ++$i) {

 print FILE "{";

 for($j = 0; $j < $vertnum-1; ++$j) {

 if($i == $j){

 print FILE "0" ;

 } else {

 $rand = int(rand($upperLimit));

 if ($rand > 60) {

 print FILE "-1" ;

 } else {

 print FILE "$rand";

 }

 }

 print FILE ",";

 }

 $rand = int(rand($upperLimit));

 if ($rand > 60) {

 print FILE "-1" ;

 } else {

 print FILE "$rand";

 }

 print FILE "},";

}

 42

print FILE "{";

for($j = 0; $j < $vertnum-1; ++$j) {

 $rand = int(rand($upperLimit));

 if ($rand > 60) {

 print FILE "-1" ;

 } else {

 print FILE "$rand";

 }

 print FILE ",";

}

print FILE "0}};\n";

#ROUTE2 definition

print FILE "int ROUTE2[VERTNUM][VERTNUM] = { ";

for($i = 0; $i < $vertnum-1; ++$i) {

 print FILE "{";

 for($j = 0; $j < $vertnum-1; ++$j) {

 print FILE "-1,";

 }

 print FILE "-1},";

}

print FILE "{";

for($j = 0; $j < $vertnum-1; ++$j) {

 print FILE "-1,";

}

print FILE "-1}};\n";

#VISITED definition

print FILE "int VISITED[VERTNUM] = {";

for($i = 0; $i < $vertnum-1; ++$i)

{

 print FILE "0,";

}

print FILE "0};\n";

close (FILE);

