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ABSTRACT

This dissertation presents a generalized closed-form framework for detecting data
alignments in large unordered noisy multidimensional datasets. In this approach, the in-
tended type of data alignment may be a geometric shape (e.g., straight line, plane, circle,
sphere, conic section, among others) or any other structure, with arbitrary dimension-
ality that can be characterized by a linear subspace. The detection is performed using
a three-step process. In the initialization, a p (n− p)-dimensional parameter space is
defined in such a way that each point in this space represents an instance of the intended
alignment described by a p-dimensional subspace in some n-dimensional domain. In turn,
an accumulator array is created as the discrete representation of the parameter space. In
the second step each input entry (also a subspace in the n-dimensional domain) is mapped
to the parameter space as the set of points representing the intended p-dimensional sub-
spaces that contain or are contained by the entry. As the input entries are mapped, the bins
of the accumulator related to such a mapping are incremented by the importance value of
the entry. The subsequent and final step retrieves the p-dimensional subspaces that best
fit input data as the local maxima in the accumulator array.

The proposed parameterization is independent of the geometric properties of the align-
ments to be detected. Also, the mapping procedure is independent of the type of input data
and automatically adapts to entries of arbitrary dimensionality. This allows application of
the proposed approach (without changes) in a broad range of applications as a pattern
detection tool. Given its general nature, optimizations developed for the proposed frame-
work immediately benefit all the detection cases.

I demonstrate a software implementation of the proposed technique and show that it
can be applied in simple detection cases as well as in concurrent detection of multiple
kinds of alignments with different geometric interpretations, in datasets containing mul-
tiple types of data. This dissertation also presents an extension of the general detection
scheme to data with Gaussian-distributed uncertainty. The proposed extension produces
smoother distributions of values in the accumulator array and makes the framework more
robust to the detection of spurious subspaces.

Keywords: Subspace detection, pattern recognition, subspace parameterization, parame-
ter space, generalization, error propagation, Grassmannian, Hough transform, geometric
algebra, Clifford algebra.





RESUMO

Sobre a Generalização da Detecção de Subespaços em Dados Multidimensionais
não Ordenados

Este trabalho apresenta uma solução geral para a detecção de alinhamentos de dados
em conjuntos multidimensionais não ordenados e ruidosos. Nesta abordagem, o tipo
requerido de alinhamento de dados pode ser uma forma geométrica (e.g., linha reta, plano,
círculo, esfera, seção cônica, entre outras) ou qualquer estrutura, com dimensionalidade
arbitrária, que possa ser caracterizada por um subespaço linear. A detecção é realizada
por meio de um procedimento composto por três etapas. Na etapa de inicialização, um
espaço de parâmetros com p (n− p) dimensões é definido de modo que cada ponto neste
espaço represente uma instância do alinhamento requerido, descrito por um subespaço
p-dimensional em um domínio n-dimensional. Em seguida, uma grade de acumuladores
é criada como sendo a representação discreta do espaço de parâmetros. Na segunda etapa
do procedimento, cada elemento no conjunto de dados de entrada (também um subespaço
no domínio n-dimensional) é mapeado para o espaço de parâmetros como os pontos (no
espaço de parâmetros) representando os subespaços requeridos que contém ou que estão
contidos no elemento de entrada. À medida que os elementos de entrada são mapeados, as
células do acumulador relacionadas com o mapeamento são incrementadas pelo valor de
importância do elemento mapeado. A etapa final do procedimento recupera os subespaços
p-dimensionais que melhor se ajustam aos dados de entrada como sendo os máximos
locais na grade de acumuladores.

A parametrização proposta é independente das propriedades geométricas dos alinha-
mentos a serem detectados. Além disso, o procedimento de mapeamento é independente
do tipo de dado de entrada e é capaz de se adaptar a elementos com dimensionalidades
arbitrárias. Essas características permitem a utilização da técnica (sem a necessidade de
modificações) como uma ferramenta para a detecção de padrões em uma grande quan-
tidade de aplicações. Por conta de sua natureza geral, otimizações desenvolvidas para a
abordagem proposta beneficiam, de forma imediata, todos os casos de detecção.

Neste trabalho eu demonstro uma implementação em software da técnica proposta e
mostro que ela pode ser aplicada tanto em casos simples de detecção, quanto na detecção
concorrente de tipos diferentes de alinhamentos, com diferentes interpretações geométri-
cas e em conjuntos de dados compostos por vários tipos de elementos. Esta dissertação
também apresenta uma extensão do esquema de detecção para dados de entrada com dis-
tribuição Gaussiana de incerteza. A extensão proposta produz distribuições de valores
mais suaves na grade de acumuladores e faz com que a técnica fique mais robusta à de-
tecção de subespaços espúrios.

Palavras-chave: Detecção de subespaços, reconhecimento de padrões, parametrização
de subespaços, espaço de parâmetros, generalização, propagação de erro, Grassmaniana,
transformada de Hough, álgebra geométrica, álgebra de Clifford .
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1 INTRODUCTION

Data analysis is a fundamental element in scientific discovery and data mining. In
many scientific fields, visual inspection of experimental datasets is often performed in
order to identify strong local coherence in the data. Such coherence results from data
alignments (in some multidimensional space), and usually emerges as geometric shapes
and patterns. For instance, straight lines and circles appear as well-defined structures in
the analysis of electron backscatter diffraction images (Figure 1.1a) and clonogenic essays
(Figure 1.1b), respectively. However, when large volumes of data need to be analyzed,
visual inspection becomes impractical. For this reason, automatic detectors for specific
types of data alignments have been broadly applied by scientists in many different areas,
such as particle physics (MANKEL, 2004; FECHNER et al., 2009), astronomy (KR-
ISHNAN et al., 2004; ABBOTT et al., 2008), microbiology (BEWES; SUCHOWER-
SKA; MCKENZIE, 2008; KüRNER; FRANGAKIS; BAUMEISTER, 2005), crystallog-
raphy (NAUMOVIć et al., 2001; LIU; RAABE; ZAEFFERER, 2008), and medicine (KO-
BATAKE; YOSHINAGA, 1996; DING; FENSTER, 2003). In data mining for e-commerce,
large datasets have been analyzed in search for patterns of customer behaviors and pref-
erences (BöHM et al., 2004). Automatic detectors are also a central component of many
computer vision (HARTLEY; ZISSERMAN, 2004) and image processing (GONZALEZ;
WOODS, 2008) applications. The goal of automatic detectors is to identify certain kinds
of alignments that best fit a given unordered dataset, even in presence of noise and dis-
continuities.

This thesis introduces an approach for detecting data alignments in unordered noisy
multidimensional data. The proposed approach is based on the observation that a wide
class of alignments (e.g., straight lines, planes, circles, spheres, conic sections, among
others) can be represented as linear subspaces. Thus, instead of defining a different detec-
tor for each specific case and input data type, it is possible to design a unifying framework
to detect the occurrences of emerging subspaces in multidimensional datasets. The pro-
posed approach presents the following properties:

1. It has a closed-form solution for the detection of subspaces of a given dimension-
ality on datasets that may be heterogeneous and contain elements (i.e., subspaces)
with arbitrary dimensionalities;

2. It can be applied, without changes, to the detection of any class of data alignments
that can be characterized by a linear subspace;

3. It is independent of the dimensionality and the metric of the space where data re-
sides; and

4. It guarantees the use of the smallest set of parameters in the representation of the in-
tended subspaces. Thus, when applied as a geometric shape detector, the proposed
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Figure 1.1: Automatic detection of data alignments on real datasets. (a) Elec-
tron backscatter diffraction image (445× 445 pixels) taken from a particle of wulfen-
ite (PbMoO4). The detection of straight lines is key for the identification of the
particle’s crystalline phase. (b) Gray image (529× 534 pixels) of infection with
A/Memphis/14/96-M (H1N1) in MDCK-SIAT1 cells. The detection of circles is impor-
tant for automated counting process in clonogenic assays. The proposed approach was
used, without any changes, to automatically detect the straight lines and circles shown
in (a) and (b) from the edge information shown in (c) and (d), respectively.

approach always represents the intended shapes in the most compact way.

I have formulated the subspace detector using Geometric Algebra (GA). GA is a
powerful mathematical system encompassing many mathematical concepts (e.g., complex
numbers, quaternions algebra, Grassmann-Cayley algebra, and Plücker coordinates) un-
der the same framework (DORST; FONTIJINE; MANN, 2007; PERWASS, 2009). GA
is mainly based on the algebraic system called Clifford Algebra (LOUNESTO, 2001),
but with a strong emphasis on geometric interpretation. In GA, subspaces are treated as
primitives for computation. As such, it is an appropriate mathematical tool for modeling
the subspace-detection problem. Also, GA has been proven to be capable of represent-
ing many types of geometry. Examples of models of geometry (MOGs) successfully
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encoded by GA include Euclidean, Projective (HESTENES; ZIEGLER, 1991), Spheri-
cal (HESTENES, 1987, 2001), Hyperbolic (LI, 1997), and Conic (PERWASS; FÖRST-
NER, 2006) spaces. These MOGs provide practical applications for the proposed tech-
nique as a detector of emerging geometric shapes on datasets like, but not limited to,
images, volumetric datasets, and point clouds.

1.1 Conventional Approaches

Most of the techniques for detecting data alignments are derived from the Hough
Transform (HT) (HOUGH, 1959, 1962), Random Sample Consensus (RANSAC) (FIS-
CHLER; BOLLES, 1981), or Tensor Voting (TV) (MEDIONI; LEE; TANG, 2000) par-
adigms. A discussion on these paradigms and some of their variations is presented in
Chapter 2.

The HT performs the detection of an intended type of shape by mapping each input
entry from the dataset to a set of points (in a parameter space) representing the shapes po-
tentially passing through that entry. Based on this simple mechanism, the shape detection
problem can be converted into the simpler problem of identifying peaks in an accumulator
array representing the discretized parameter space.

The RANSAC is a non-deterministic technique where the most significant instance
of a given type of data alignment is identified by iteratively setting candidate instances
from randomly sampled input data entries. After a given number of trials, the candidate
instance which approximates the most entries in the dataset is reported as detected.

The TV paradigm retrieves the most salient surfaces, curves and junctions in a dataset
by encoding the geometric information associated with each input entry into tensor form.
Then, the encoded information is propagated throughout a neighborhood via tensor voting
fields. After two rounds of voting and refinement, the salient features (with any dimen-
sionality) are identified as peaks of votes in dense tensor voting maps computed (at the
same time) for each type of feature.

In order to use the HT or RANSAC approaches, one needs to assume a mathematical
model for the intended type of data alignment with respect to the expected type of input
data. Thus, traditionally, the variations of the HT and RANSAC have been designed for
detecting specific types of structures in a given type of data. Such a specialization pre-
vents the development of generally applicable techniques and optimizations due to speci-
ficities in their formulations. Although there are partial generalizations of the HT and
RANSAC designed to some classes of analytic shapes (BALLARD, 1981; SCHNABEL;
WAHL; KLEIN, 2007; ACHTERT et al., 2008) and HTs for non-analytic shapes (BAL-
LARD, 1981; WANG; REEVES, 1990), such approaches are still restrictive regarding the
assumed input or intended output data.

The TV, on the other hand, follows a generalized definition. It is designed to detect
alignments with arbitrary dimensionality in heterogeneous datasets. The TV, however,
returns all possible features at the same time. Such a behavior prevents the efficient de-
tection of predefined types of alignments, because it requires a subsequent filtering step.

1.2 Thesis Statement

I propose a generalization of the voting-based approaches for detecting data align-
ments that can be characterized by subspaces in any MOG. The central thesis statement
of this research is presented as follows:
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Figure 1.2: Automatic detection of data alignments on heterogeneous synthetic datasets.
(a) Detection of lines that best fit an input set comprised by 45 points and 1 plane. In this
example, we are concerned with the detection of lines on the input plane that best fit sub-
sets of input points. (b) Concurrent detection of plane and spheres by a single application
of the proposed approach. The input dataset is comprised by 43 points, 1 straight line,
and 3 circles.

It is possible to define a parameterization for linear subspaces which is inde-
pendent of the dimensionality of the intended subspace, the input data type,
and the metric of the whole space. Moreover, since linear subspaces of a
given dimensionality can be interpreted as some type of data alignments by
assuming a model of geometry, it is possible to use such a parameterization
in the development of a generalized voting-based approach for the automatic
detection of data alignments in heterogeneous datasets.

Three central issues must be addressed in order to explore the domain associated with
the proposed detection framework. The first one is to define a parameterization for linear
subspaces of a given dimensionality embedded in some n-dimensional space. Chapter 4
presents a derivation where p-dimensional subspaces, for 0 ≤ p ≤ n, are parameterized
by p (n− p) rotation operations applied to a canonical subspace with the same dimen-
sionality. The parameterization is defined in such a way that it is independent of the
interpretation of the subspace in the actual context (i.e., the geometric interpretation in
some MOG).

The second problem is to define a duality relationship between input data and the
parameters characterizing the intended subspaces. This relationship is used to derive a
procedure for mapping input entries with arbitrary dimensionality to the parameter space.
Such a mapping is the central component of a voting scheme, where a discrete repre-
sentation of the parameter space is used in order to identify which are the p-dimensional
subspaces that best fit input data. This subject is explored in Chapter 5, where general
mapping and voting procedures for input r-dimensional subspaces (0 ≤ r ≤ n) are de-
fined in such a way that no prior knowledge on the geometric interpretation of input data
is taken into account. These procedures are further extended in Chapter 6 by allowing
input datasets to contain data with Gaussian distributed uncertainty. In such a case, the
uncertainty intrinsic to experimental (real) data is taken into account while spreading
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votes in the discrete map.
The third issue is how to retrieve the most relevant subspaces from the discrete rep-

resentation of the parameter space after the voting procedure has been performed. This
topic is discussed in Chapter 7, where a sweep-hyperplane approach for performing peak-
detection in a multidimensional histogram is proposed.

1.3 Overview of the General Subspace Detection Framework

A p-dimensional subspace BBB〈p〉 in a n-dimensional space can be characterized by a
set of m = p (n− p) rotations applied to a canonical subspace (EEE〈p〉) used as reference.
More precisely, in GA notation:

BBB〈p〉 = TTT EEE〈p〉 /TTT , (1.1)

whereTTT is the rotor (rotors are defined in Chapter 3) encoding the sequence ofm rotation
operations. The computation ofTTT is presented in Chapter 4. In Equation 1.1, the transfor-
mation encoded byTTT is applied on EEE〈p〉 in order to obtainBBB〈p〉. The m rotation angles are
the parameters characterizing BBB〈p〉, and the values of p and n depend on the intended data
alignment. For instance, by assuming the homogeneous (or projective) MOG for line de-
tection in images (Figure 1.1a), n = 2 + 1 = 3 and p = 2, leading to m = 2 (3− 2) = 2.

Table 1.1: The steps of the proposed subspace detection framework. It takes as input a
set X of subspaces (i.e., the input dataset encoded into a MOG), the dimensionality p of
subspaces interpreted as the intended data alignment (see Table 3.1 for a few examples)
in the same MOG, and the dimensionality n of the whole vector space. The algorithm
outputs the p-dimensional subspaces that best fit the input set X .

Step Description
1. Initialization Setup the model function for p-dimensional subspaces (Equa-

tion 1.1), and define the parameter space Pm (Equation 1.2)
from it. Then, create (and initialize with zeros) an
m-dimensional accumulator array as the discrete representa-
tion of Pm.

2. Voting Procedure Map each input subspace XXX〈r〉 ∈ X to P
m using the procedure

described in Chapter 5 or in Chapter 6. During the mapping,
some parameters receive a single value, while others assume
all values in [−π/2, π/2). However, given the discrete nature
of the accumulator array, these parameters only need to assume
a set of discrete values in the [−π/2, π/2) range. As a result,
the mapping procedure retrieves a finite set of points in Pm.
These points are used to address bins in the accumulator array.
Voting is performed by incrementing such bins by the impor-
tance ω of XXX〈r〉.

3. Peak Detection Identify the bins that correspond to local maxima in the ac-
cumulator array. Use the coordinates of such bins (i.e., pa-
rameter vectors) to retrieve the most significant p-dimensional
subspaces.
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The m rotation angles related to the sequence of rotation operations in Equation 1.1
define a parameter space for p-dimensional subspaces. The proposed subspace detector
uses such parameter space. The application of the approach consists of three steps:

1. Create an accumulator array as a discrete representation of the parameter space;
2. Perform a voting procedure where the input dataset is mapped to the accumulator

array; and
3. Search for the peaks of votes in the accumulator, as they correspond to the intended
p-dimensional subspaces that best fit the input dataset.

Table 1.1 summarizes these steps. Step (1) defines a parameter space (Pm) for the m
degrees of freedom:

P
m = {(θ1, θ2, · · · , θm) | θt ∈ [−π/2,π/2)}, (1.2)

where each parameter vector (θ1, θ2, · · · , θm) ∈ Pm characterizes an instance of a p-dimen-
sional subspace in some n-dimensional vector space. The values of p and n are related
to the MOG where data has been encoded and the type of data alignment (represented in
such a MOG) one wants to detect. In practice, one needs to discretize Pm, for which an
accumulator array is built to receive “votes” and initialized with zeros.

Step (2) maps the input dataset to parameter space. Essentially, the mapping proce-
dure takes each r-dimensional subspaceXXX〈r〉 in the input dataset and identifies the param-
eters (coordinates in Pm) of all p-dimensional subspaces related to it. When r ≤ p, the
mapping procedure identifies in Pm all p-dimensional subspaces containingXXX〈r〉 (e.g., the
lines containing input points in Figure 1.2a). If r ≥ p, the procedure identifies in Pm

all p-dimensional subspaces contained in XXX〈r〉 (e.g., the lines on the input plane in Fig-
ure 1.2a).

After the voting procedure has been performed for all XXX〈r〉, the number of votes de-
posited in each accumulator bin defines the importance of that bin to the input subspaces.
Thus, the most voted bins represent the detected p-dimensional subspaces. The final
step of the approach searches for local maxima in the accumulator array. The parameter
vectors associated with such bins are used in Equation 1.1 to retrieve the detected sub-
spaces. This is achieved by applying the sequence of rotations specified by these bins
(θ1, θ2, · · · , θm) to the canonical subspace EEE〈p〉.

1.4 Results

This dissertation presents some original results that include:

• A general framework for subspace detection in unordered multidimensional datasets;
• A parameterization scheme for subspaces based on the rotation of a canonical sub-

space with the same dimensionality;
• An algorithm that enumerates all instances of subspaces with a given dimensional-

ity p that either contain or are contained by an input subspace of arbitrary dimen-
sionality;
• A procedure that maps subspaces with Gaussian distributed uncertainty to the pa-

rameter space characterizing p-dimensional subspaces;
• A number of experimental evidences supporting that the open affine covering of

the Grassmannian (HARRIS, 1992) can be used as an auxiliary space where the
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uncertainty of geometric structures like straight line, plane, circle, sphere and conic
section, among others, can be handled in an unified fashion; and
• An algorithm that identifies local maxima in a multidimensional histogram.

In addition to these original results, the following assertions about the proposed frame-
work will be demonstrated:

• It is the generalization of the HTs for analytical shapes representable by linear sub-
spaces;
• It allows the detection of subspaces that best fit an input set of subspaces with

different dimensionalities and different geometric interpretations (e.g., the detection
of straight lines that best fit points and planes – Figure 1.2a);
• It allows the concurrent detection of subspaces with different geometric interpreta-

tions (e.g., planes and spheres – Figure 1.2b) but with the same dimensionality in a
given MOG;
• The intended p-dimensional subspaces are represented with the smallest possible

number of parameters, leading to the most compact parameterization of analyti-
cal shapes (e.g., straight lines, circles, and general conic sections in the plane are
parameterized with two, three, and four parameters, respectively);
• The detection can be driven to a specific type of data alignment just by changing

the assumed MOG where data have been encoded, while the formulation of the
detection scheme remains unchanged; and
• An approximation of the dth-order Voronoi diagram (VORONOI, 1908) of a set of

points in R
d can be retrieved as byproduct of the detection of subspaces geometri-

cally interpreted as circles, spheres, and their higher-dimensional counterparts.

It is important to emphasize that the proposed approach is not restricted to the detection
of geometric shapes. It can be applied to any domain in which a problem can be cast as
a subspace detection one. For example, the subspace clustering problem in data mining
applications, where the goal is to find among all possible subspaces those that accom-
modate as many database objects as possible. Also, as a closed-form solution, the same
implementation of the proposed framework and its optimizations naturally generalize to
all detection cases.

1.5 Demonstration and Validation of the Techniques

The technique proposed in this thesis is demonstrated by proof of concept implemen-
tations of the described algorithms. The implementations are validated by applying the
subspace detection framework to real (Figure 1.1) and synthetic (Figure 1.2) datasets.
The proposed framework has a broad range of applications as a pattern detection tool.
For the purpose of illustration, however, the examples shown in this thesis are restricted
to the important problem of detecting analytic geometric shapes in spaces of arbitrary
dimensionalities.
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2 STATE OF THE ART

This chapter discusses techniques for detecting data alignments, geometric shapes
and patterns that best fit a given unordered datasets. The discussion is focused on the
generality of the approaches. Despite many detecting techniques have been proposed in
the last decades, most of them are derived from one of three main paradigms:

i. Hough Transform (HT).
ii. Random Sample Consensus (RANSAC);

iii. Tensor Voting (TV); and

In Section 2.1 an in-depth treatment to HT is given because the generalized subspace
detection scheme proposed in this thesis is closely related to the HT. Sections 2.2 and 2.3
present a brief description of RANSAC and TV, respectively.

2.1 Hough Transforms

The HT is a classical paradigm for detecting instances of geometric shapes and pat-
terns in an unordered dataset. Initially proposed to detect straight lines in binary im-
ages (HOUGH, 1959, 1962; DUDA; HART, 1972), the HT was specialized to iden-
tify other types of shapes, such as circles (DUDA; HART, 1972; KIMME; BALLARD;
SKLANSKY, 1975), parabolas (SKLANSKY, 1978), and ellipses (BENNETT; BUR-
RIDGE; SAITO, 1999); and generalized for the detection of non-analytical shapes in
images (BALLARD, 1981).

A HT can be defined for any shape that can be represented by a model function with
the form:

f (x1, x2, · · · , xd; p1, p2, · · · , pm) = 0, (2.1)

where xxx = (x1, x2, · · · , xd) is an entry from the input dataset (usually a point in Rd), and
ppp = (p1, p2, · · · , pm) ∈ Pm is a vector in a parameter space Pm. Each parameter vector
ppp in Pm characterizes an instance of the intended shape. By using a mapping procedure,
the HT takes each input xxx and determines all instances of the shape potentially passing
through xxx. For each such an instance, its associated parameter vector ppp is used to address
a bin in an accumulator array (i.e., a discrete representation of Pm). The value stored in
the bin is then incremented by some importance value ω (usually one). At the end of the
process, the bins having the largest values correspond to the parameters of the most likely
shapes in the input data.

The mapping function used in the voting procedure is obtained from the model func-
tion (Equation 2.1) and consists in arbitrating a subset of k parameter values from ppp (for
k < m) and computing the (m− k) non-arbitrated parameter values using a mapping
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Figure 2.1: The accumulator array produced for a simple example of straight line detec-
tion from points. (a) A simple image containing approximately straight line segments.
(b) A 3-dimensional visualization of the accumulator array after the voting procedure.
The two peaks represent the two main lines in (a).

function with the form:

(pk+1, pk+2, · · · , pm) = g (x1, · · · , xd; p1, · · · , pk) . (2.2)

Equation 2.2 is evaluated for all (p1, · · · , pk) ∈ Pk. Choosing which parameters are ar-
bitrated and which ones are computed depends on how the model (Equation 2.1) and the
mapping (Equation 2.2) functions are defined. For instance, when the normal equation of
the line (Equation 2.3) is used as model function in straight line detection from points:

x cos φ+ y sinφ− ρ = 0, (2.3)

the mapping function can be written as:

ρ = x cosφ+ y sinφ, (2.4)

where φ ∈ [0, π) is the arbitrated parameter, and ρ is the parameter computed from φ and
from the (x, y) coordinates of some input point. In Equations 2.3 and 2.4, (ρ, φ) is the
parameter vector characterizing a straight line. In such a formulation, ρ defines the dis-
tance from the origin of the coordinate system of the image to the line, and φ is the angle
between the x-axis and the normal to the line. Figure 2.1b shows a 3-dimensional visu-
alization of the accumulator array associated with the set of pixels shown in Figure 2.1a.
The two peaks represent the two main straight lines approximated by larger pixel seg-
ments in the image.

The strong aspects of the HT are its robustness to noise, clutter, and missing data.
Its major deficiencies are the computational load associated to its voting scheme, and
the large memory required for the accumulator array. Illingworth and Kittler (1988) and
Leavers (1993) provide in-depth discussions of many attempts to minimize the drawbacks
of the HT.

2.1.1 Specialized Detection Cases

Traditionally, a different variation of the HT has been designed to detect specific types
of data alignments or shapes in a given type of input data. That is because one needs to
assume a model (Equation 2.1) and define a mapping function (Equation 2.2) for each
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combination of input data type and intended structure. For instance, Duda and Hart (1972)
propose the use of the normal equation of the line (Equation 2.3) while performing the
line detection from points. The circle detection of Duda and Hart (1972), instead, uses
the center-radius parameterization as model:

(x− xc)2 + (y − yc)2 − r2 = 0,

where (xc, yc, r) is the parameter vector for circles centered at (xc, yc) and with radius r;
and (x, y) are the coordinates of some input point.

The specialization of the HT prevents the development of optimizations that are gen-
erally applicable. Thus, optimizations to the HT need to be done on a case-by-case basis.
For instance, O’Gorman and Clowes (1973) pointed out that line detection from feature
pixels in images may be optimized by the use of gradient information computed for the
pixels. Kimme et al. (1975) follow such an approach providing the same level of opti-
mization to the HT for circles in images. Note that the same optimization took almost
two years to be extended to a single case of HT. The design of most general variations
of the HT may lead to the development of optimizations that immediately benefit all the
detection cases.

2.1.2 Previous Attempts to Generalize the Hough Transform

Ballard (1981) presented a conceptual HT algorithm for detecting analytical curves
on the plane, like straight lines, circles, parabolas, and ellipses. This algorithm does
not have a closed formulation for the transform, relying on the derivatives of the curves
with respect to a point in order to define the mapping function. As pointed out by Bal-
lard (1981), the algorithm often requires considerable algebraic manipulations to be de-
fined. Also, it restricts the expected input data type.

Recently, Achtert et al. (2008) proposed a HT to find oriented flat spaces (e.g., straight
lines, planes, and their higher-dimensional counterparts) that fit a set of points in Rd. The
approach uses spherical coordinates in the parameterization of the intended structures.
Thus, it constraints the detected elements to flat subspaces and type of input data to points
only. This technique can be seen as the generalization of the straight line detection scheme
proposed by Duda and Hart (1972) to higher dimensional flat spaces.

The Generalized Hough Transform (GHT) is a Hough-like method for detecting shapes
(in images) that cannot be represented analytically (BALLARD, 1981). The intended
shape is described by a lookup table that stores a list of gradient directions and boundary
positions relative to some reference point on the shape. The method allows the identi-
fication of the occurrences of the shape regarding changes in location, orientation, and
scaling. The extension of the GHT to 3-dimensional shapes is described by Wang and
Reeves (1990). As pointed out by Leavers (1993), the GHT is not suitable for the detec-
tion of analytical shapes because it does not offer an efficient representation of all such
shapes. For instance, straight lines in the plane can be represented with two parameters,
while the GHT uses four parameters for any shape in the plane. In order to achieve an
efficient representation of straight lines, the parameterization of the GHT must be explic-
itly changed.

2.2 Random Sample Consensus

The RANSAC (FISCHLER; BOLLES, 1981) identifies the most significant instance
of a given model (i.e., a mathematical representation of the intended shape) in a dataset
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by consecutive adjustments of the model on randomly selected minimal sets from input
data. A minimal set is the smallest number of entries (usually points) required to uniquely
define an instance of the model.

The RANSAC is an iterative and non-deterministic technique. It produces reasonable
result only with a certain probability, which increases as more iterations are allowed. At
each iteration, a candidate instance is created from a random minimal set of input entries.
The candidate is tested against all entries in the data to determine a score value indicating
how many of the entries are well approximated by the instantiated shape. After a given
number of trials, the candidate instance which approximates the most entries is reported
as detected and the algorithm continues on the remaining data.

The technique exhibits the following desirable properties:

• It is conceptually simple, which makes it easily extensible and straightforward to
implement;
• It can deal with data containing noise and discontinuities; and
• It allows its application in a wide range of settings by specializing the assumed

model, the assumed input data type, the computation of the score, and the criteria
for testing how much input entries approximate an instance of the model.

Its major deficiency is the considerable computational load if no further optimizations
are applied. Raguram et al. (2008) provide a comparative analysis of many optimized
RANSAC-based techniques.

It is important to notice that to define a generalized model that allows for the concur-
rent detection of multiple types of shapes with RANSAC is not a simple task. Usually the
concurrent detection is performed by assuming more than one model at the same time,
and by using specialized testing criteria for each model; with some heuristic to compare
the score of candidate instances having different models. Also, the design of a RANSAC
for working with heterogeneous datasets (i.e., comprised by many types of input data) is
a challenging task. It implies in defining a different comparative function for each com-
bination of input data type and intended model. The random sampling is also affected
because not every combination of heterogeneous data can be used while fitting a model.
For instance, in the case of detecting the most significant planes in a heterogeneous set
comprised by straight lines and points, two random selected lines may not fit a plane,
while three points, or one line and one point, do. One of the most general variations of
the RANSAC was proposed by Schnabel et al. (2007). It allows the detection of planes,
spheres, cylinders, cones, and tori in unorganized point clouds.

2.3 Tensor Voting

The TV framework (MEDIONI; LEE; TANG, 2000) is a unified methodology for
the robust inference of local features from noisy data. Such features are retrieved in
terms of emerging surfaces, curves, and labeled junctions in a given set of points, points
with an associated tangent direction, points with an associated normal direction, or any
combination of the above. Initially proposed for working in 3-dimensional spaces (GUY;
MEDIONI, 1995), the framework was generalized for the n-dimensional case (TANG;
MEDIONI; LEE, 2001).

The detection procedure starts by encoding the geometric information associated with
each input entry into tensor form. The technique identifies initial local features by spread-
ing the encoded information within a neighborhood via tensor voting fields. This process
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refines the input data by assigning some confidence and surface orientation to it, and by
discarding noise. After this initial voting step, each input has its confidence and surface
orientation encoded into a generic second order symmetric tensor. The input entries vote a
second time to propagate their refined information throughout a neighborhood. The result
is a dense tensor map which assigns a measure of confidence and saliency to each point
in the domain. In the 3-dimensional case, the dense map is decomposed into three other
dense maps, each one representing a geometric feature (i.e., surface, curve, and junction),
which are analyzed during feature extraction.

The TV approach exhibits the following desirable properties:

• It requires no initial guess or thresholding, the only free parameter is the size of the
neighborhood to be considered while processing the entries in a given dataset;
• It can be applied on the detection of features having arbitrary dimensionality; and
• It can robustly deal with high amounts of noise and discontinuities.

The major deficiency of TV is its considerable computational load.
While TV can compete with RANSAC in terms of robustness against noise, it is, how-

ever, inherently model-free. As a result, it cannot be efficiently applied to the detection of
predefined types of data alignments. By definition, it retrieves, at the same time, all the
salient structures (with any dimensionality) embedded in a dataset. A subsequent filtering
step is required in order to perform the detection of some intended type of structure.

2.4 Discussion

The three main approaches for detecting the most likely structures in a given dataset
were presented in this chapter, namely RANSAC, TV and HT. These approaches are a
central component of many computer vision, image processing, and data mining applica-
tions (BROWN, 1984). The overall operation of each one of the techniques was described,
as well as their strength and weakness. The HT received special attention because it is
closely related to the technique proposed in this thesis.

The goal of this work is the development of general technique for detecting data align-
ments in unordered multidimensional datasets. A technique is general if it can be applied,
without changes, to the detection of any structure in heterogeneous data. The voting
mechanism of the HT fits better the goals of this work. The generality of a voting-based
technique depends on the representational capacity of the assumed model. Ideally, such a
model should systematically adapt itself to the intended structure, providing a represen-
tation with the smallest set of parameters. In contrast to other approaches, voting-based
techniques may be designed to process the input entries individually. By doing so, the
mapping and voting procedures can be formulated to handle arbitrary types of data.
RANSAC-based techniques, on the other hand, depend on the random selection of in-
put entries in order to define a candidate instance of a given model. As pointed out in
Section 2.2, such a procedure may lead to the selection of incompatible types of entries
while setting an instance of the model. Finally, the TV approach is quite general. How-
ever, the detection of a pre-defined type of data alignment or geometric shape goes against
its model-free nature.

I propose a voting-based framework for detecting the occurrences of emerging lin-
ear subspaces (with a given dimensionality) in multidimensional datasets. The proposed
approach is based on the representation of subspaces as primitives in GA (Chapter 3).
By assuming a MOG, such subspaces can be geometrically interpreted as some shape
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Figure 2.2: Hierarchical representation of the generalization of detection techniques re-
lated to the HT. The approaches (1) and (2) are proposed in this thesis. When applied to
the detection of geometric shapes they can be seen as the generalization of the HTs for
analytic shapes (of arbitrary dimensionality) that can be represented by some linear sub-
space, e.g., (3-9). It is important to note that the techniques (10) and (11) target a different
problem: the detection of shapes (in images) that cannot be represented analytically.

(e.g., straight lines, circles, planes, spheres, among others) or other data alignments (e.g.,
customer behaviors and preferences in e-commerce databases may emerge as linearly
correlated data (BöHM et al., 2004)). Unlike in conventional HTs (HOUGH, 1959, 1962;
DUDA; HART, 1972; O’GORMAN; CLOWES, 1973; KIMME; BALLARD; SKLAN-
SKY, 1975; SKLANSKY, 1978; BENNETT; BURRIDGE; SAITO, 1999; BALLARD,
1981; ACHTERT et al., 2008), the parameterization used by the proposed approach is
independent of the geometric properties of the structure to be detected. Moreover, the
proposed mapping procedures are independent of the input data type. Actually, the frame-
work can be seen as a generalization of the HTs specialized for the detection of structures
that can be characterized by linear subspaces. Figure 2.2 shows a hierarchical repre-
sentation of the generalization of detection techniques related to the HT. The technique
depicted as (2) in Figure 2.2 is discussed in Chapters 4, 5 and 7. The technique depicted
as (1) extends the former by handling input subspaces with Gaussian distributed uncer-
tainty. It is defined by combining Chapters 4, 6 and 7.
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In contrast to Ballard’s conceptual algorithm relying on the derivatives of analytical
curves (BALLARD, 1981), the proposed approach presents a closed-form solution for
the detection of any analytical shape representable by some linear subspace. Also, it is
important to note that this thesis targets a different problem than the GHT described by
Ballard (1981), which is defined for detecting non-analytical shapes in images. The GHT
variations for 2- and 3-dimensional images are depicted in Figure 2.2 as (10) and (11),
respectively.
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3 GEOMETRIC ALGEBRA

This chapter introduces the concepts of Geometric Algebra (GA) used in this thesis.
Sections 3.1 to 3.8 present geometric primitives, transformations, and algebraic operations
in a more abstract level. For the sake of simplicity, the mathematical formalisms are
kept to a minimum, and the geometrical intuition is illustrated with examples whenever
possible. Section 3.9 discusses how one can assume a model of geometry (MOG) in order
to give practical geometric interpretation to the elements discussed in previous sections.
A more detailed introduction to GA can be found in (FERNANDES; OLIVEIRA, 2009).
The books by Dorst et al. (2007) and Perwass (2009) provide in-depth treatments to the
subject.

3.1 Oriented Subspaces (Blades) as Primitives

By definition, a vector space R
n consists of a set of elements called vectors, which is

closed under finite vector addition and scalar multiplication. By assuming a basis {eeei}ni=1

for Rn, an arbitrary vector (i.e., a 1-dimensional subspace) is written as a linear combina-
tion of the basis vectors. Figure 3.1a illustrates a vector

aaa = α1 eee1 + α2 eee2 + α3 eee3 ∈ R
3,

where αi ∈ R is the i-th coefficient of aaa. In the graphical representation, the 1-dimensional
subspace is the oriented straight line that passes through the origin and supports the arrow.
The arrow’s length represents the weight of the subspace, while the arrow’s tip indicates
its orientation.

In GA, a 2-dimensional subspace can be spanned as the outer product of two linearly
independent vectors. The outer product is formally defined in Section 3.3.1. Figure 3.1b
shows a 2-dimensional subspace computed as:

CCC〈2〉 = aaa ∧ bbb,

where ∧ (the wedge symbol) denotes the outer product, and aaa and bbb are two vectors. In
Figure 3.1b, CCC〈2〉 is the oriented supporting plane for the disk. The disk’s radius and the
curved arrow illustrate, respectively, the weight and orientation of the subspace. Note that
the orientation ofCCC〈2〉 respects the order of the terms in the outer product, i.e., from aaa tobbb.

Using the outer product one can span k-dimensional oriented subspaces, for 0 ≤ k ≤ n.
In GA, such subspaces are called k-blades (the terms blade and subspace are used inter-
changeably), and k is said to be the grade of the blade (the terms grade and dimensionality
are also used interchangeably). Thus, for instance, a scalar value α ∈ R is a 0-blade, a
vector aaa ∈ Rn is a 1-blade, CCC〈2〉 = aaa ∧ bbb is a 2-blade, and so on. k-Blades are computa-
tional primitives in GA as vectors are primitive elements in vector algebra.
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(a) (b)

Figure 3.1: Graphical representation of subspaces in R3. (a) A 1-dimensional subspace aaa
is drawn as an arrow, where the arrow’s length and the arrow’s tip represent, respectively,
the weight and the orientation of aaa. (b) A 2-dimensional subspace CCC〈2〉, spanned from
vectors aaa and bbb, is drawn as a disk. Its weight is represented by the radius of the disk,
while the orientation is the curved arrow. The basis vectors {eeei}3i=1 are not shown in this
image for sake of clarity.

An arbitrary blade BBB〈k〉 presents the following properties:

attitude The stance of the blade in the surrounding space. The subspaces written in
the form αBBB〈k〉, for any α ∈ R, have the same attitude.

weight The value of α in BBB〈k〉 = αJJJ〈k〉, where JJJ〈k〉 is a reference blade with the
same attitude as BBB〈k〉.

orientation The sign of the weight relative to JJJ〈k〉.

direction The combination of attitude and orientation.

3.2 Multivector Space

In order to treat blades with arbitrary dimensionality as primitives for computation,
one needs a basis more robust than the basis of a vector space which, by definition, sup-
ports only 1-dimensional subspaces. In GA,

∧
Rn is the multivector space built from

a vector space R
n. The 2n basis elements of

∧
R

n are defined as the k-combinations of
vectors from the set {eeei}ni=1 (i.e.,

∑n
k=0

(
n
k

)
= 2n). As an example, the basis of

∧
R3 is:{

1, eee1, eee2, eee3, eee1 ∧ eee2, eee1 ∧ eee3, eee2 ∧ eee3, eee1 ∧ eee2 ∧ eee3
}

{ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

Scalars Vector Space Bivector Space Trivector Space
R =

∧0
R3 R3 =

∧1
R3

∧2
R3

∧3
R3

(3.1)
By combining zero elements out of the set {eeei}3i=1, one takes the basis blade “1” for
0-dimensional subspaces, i.e., values in R. As one would expect, the basis blades for
1-dimensional subspaces are the three basis vectors defining R3. For 2-dimensional sub-
spaces in

∧2
R

3, the three basis blades are computed by combining two elements out of
the set of three basis vectors. Finally, the outer product of all basis vectors define the
basis blade for 3-dimensional subspaces. Note that blades in

∧3
R3 are a scaled version of



43

the whole 3-dimensional space. Such blades are often called pseudoscalar, and the unit
positive pseudoscalar is typically denoted by:

III〈n〉 = eee1 ∧ eee2 ∧ · · · ∧ eeen, (3.2)

for
∧
Rn

A linear combination of the basis elements of a multivector space is called a multi-
vector. It is used to encode blades and rotors (rotors are introduced in Section 3.8). The
multivector structure for the basis of

∧
R3 (Equation 3.1) is:

M = μ1 1 + μ2 eee1 + μ3 eee2 + μ4 eee3

+ μ5 eee1 ∧ eee2 + μ6 eee1 ∧ eee3 + μ7 eee2 ∧ eee3 + μ8 eee1 ∧ eee2 ∧ eee3,

where μi ∈ R is the i-th coefficient of M .
Notice that multivectors encode k-blades as the linear combination of the k-dimensional

basis elements of the multivector space
∧
Rn. However, it is important to notice that not

every combination of basis elements in
∧k

Rn make a k-blade. Only the ones which are
factorisable in terms of the outer product do. The simplest example occurs in a multi-
vector space build from a 4-dimensional vector space with basis {eee1,eee2,eee3,eee4}. In such a
case, the element (eee1 ∧ eee2 + eee3 ∧ eee4) ∈

∧2
R4 cannot be written as a 2-bladeCCC〈2〉 = aaa ∧ bbb.

Such an observation is key in Chapter 4 where it is demonstrated that the proposed pa-
rameterization characterizes subspaces by using the smallest set of parameters.

3.3 Some Nonmetric Products

The concept of subspace and its basic properties (Section 3.1) are independent of
any metric properties of a vector space Rn, and hence a multivector space

∧
Rn might

have (DORST; FONTIJINE; MANN, 2007). GA defines some products which are also
independent of the metric of

∧
Rn. In this dissertation we are concerned only with the

outer product (Section 3.3.1) and the regressive product (Section 3.3.2). In Chapters 4, 5
and 6 these products are used in the definition of the proposed subspace detection scheme.

3.3.1 The Outer Product

Formally, the outer product is a mapping:

∧ :
∧r

R
n ×

∧s
R

n →
∧r+s

R
n.

It is defined from a small set of properties:

antisymmetry aaa ∧ bbb = −bbb ∧ aaa, thus ccc ∧ ccc = 0

distributivity aaa ∧ (bbb + ccc) = aaa ∧ bbb + aaa ∧ ccc

associativity aaa ∧ (bbb ∧ ccc) = (aaa ∧ bbb) ∧ ccc

scalars commute aaa ∧ (β bbb) = β (aaa ∧ bbb)

The following expression presents a step-by-step algebraic manipulation where the
properties of the outer product are used to build a 2-blade CCC〈2〉 ∈

∧2
R3 from vectors
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Figure 3.2: The regressive product can be used to build blades as the subspace shared by
pseudovectors. For instance, the 1-dimensional subspace ccc is computed as the regressive
product of AAA〈2〉 and BBB〈2〉.

aaa = α1 eee1 + α2 eee2 + α3 eee3 ∈ R3 and bbb = β1 eee1 + β2 eee2 + β3 eee3 ∈ R3:

CCC〈2〉 = aaa ∧ bbb = (α1 eee1 + α2 eee2 + α3 eee3) ∧ (β1 eee1 + β2 eee2 + β3 eee3)

= α1 β1 eee1 ∧ eee1 + α1 β2 eee1 ∧ eee2 + α1 β3 eee1 ∧ eee3 (by distributivity)
+ α2 β1 eee2 ∧ eee1 + α2 β2 eee2 ∧ eee2 + α2 β3 eee2 ∧ eee3
+ α3 β1 eee3 ∧ eee1 + α3 β2 eee3 ∧ eee2 + α3 β3 eee3 ∧ eee3

= α1 β2 eee1 ∧ eee2 + α1 β3 eee1 ∧ eee3 (by antisymmetry)
− α2 β1 eee1 ∧ eee2 + α2 β3 eee2 ∧ eee3
− α3 β1 eee1 ∧ eee3 − α3 β2 eee2 ∧ eee3

= (α1 β2 − α2 β1)eee1 ∧ eee2 (by grouping terms)
+ (α1 β3 − α3 β1)eee1 ∧ eee3
+ (α2 β3 − α3 β2)eee2 ∧ eee3.

This example is equivalent to the one depicted in Figure 3.1b. It is important to note
that the same set of properties are used while spanning subspaces from two blades having
arbitrary grades in

∧
Rn.

3.3.2 The Regressive Product

The regressive product can be regarded as the correct dual operation to the outer
product. While the outer product returns the subspace spanned by linearly independent
blades, the regressive product returns the subspace shared by linearly dependent blades
that span the whole space.

By using the regressive product one can build k-dimensional oriented subspaces from
(n− k) pseudovectors (i.e., (n− 1)-blades in

∧
Rn). Figure 3.2 shows a vector ccc (i.e., a

1-dimensional subspace) in R
3 computed as:

ccc = AAA〈2〉 ∨BBB〈2〉,

where ∨ (the vee symbol) denotes the regressive product, and AAA〈2〉 and BBB〈2〉 are pseu-
dovectors.

The regressive product is a mapping:

∨ :
∧n−r

R
n ×

∧n−s
R

n →
∧n−(r+s)

R
n.
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Its properties are similar to the ones from the outer product:

antisymmetry AAA〈n−1〉 ∨BBB〈n−1〉 = −BBB〈n−1〉 ∨AAA〈n−1〉, thus CCC〈n−1〉 ∨CCC〈n−1〉 = 0

distributivity AAA〈n−1〉 ∨ (BBB〈n−1〉 +CCC〈n−1〉) = AAA〈n−1〉 ∨BBB〈n−1〉 +AAA〈n−1〉 ∨CCC〈n−1〉

associativity AAA〈n−1〉 ∨ (BBB〈n−1〉 ∨CCC〈n−1〉) = (AAA〈n−1〉 ∨BBB〈n−1〉) ∨CCC〈n−1〉

scalars commute AAA〈n−1〉 ∨ (βBBB〈n−1〉) = β (AAA〈n−1〉 ∨BBB〈n−1〉)

3.4 Metric and Some Inner Products

In order to compare the weight or the angle between two subspaces having different
attitudes, one needs products which depend on the metric of

∧
Rn, extending the usual

vector inner product from vector algebra to higher dimensional subspaces.
The vector inner product (denoted by the center dot symbol) multiplies two arbitrary

vectors and returns a scalar value that characterizes their metric relation:

aaa · bbb = Q (aaa,bbb) , (3.3)

where Q is a scalar-valued function defining a metric on the vector space Rn. A practical
way to implement Q is by using a metric matrix:

M =

⎛⎜⎜⎜⎝
μ1,1 μ1,2 · · · μ1,n

μ2,1 μ2,2 · · · μ2,n

...
... . . . ...

μn,1 μn,2 · · · μn,n

⎞⎟⎟⎟⎠ ,

where M is a symmetric positive-definite matrix encoding the inner product of pairs of
basis vectors {eeei}ni=1, and μi,j = Q(eeei,eeej), for 1 ≤ i,j ≤ n. Section 3.9 shows how one
can give meaningful geometric interpretations for subspaces and related operations by
assuming a metric for Rn. For instance, by letting M be an identity matrix one is assuming
Euclidean metric (i.e., eeei · eeej is one for i = j, and zero otherwise), and the inner product
becomes the well known vector dot product from linear algebra. The vector dot product
is typically used to measure the smallest angle between two vectors.

Sections 3.4.1 and 3.4.2 present two extensions of the vector inner product for general
blades. See Dorst et al. (2007) and Perwass (2009) for other metric products (i.e., products
which depend on the metric of Rn).

3.4.1 The Scalar Product

The scalar product between blades is denoted by ∗ and extends the vector inner
product to arbitrary subspaces having the same dimensionality. The resulting scalar value
characterizes the metric relation between the subspaces. When multiplying blades with
different dimensionality the outcome is zero.

The scalar product is a mapping:

∗ :
∧k

R
n ×

∧k
R

n → R, (3.4)
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θ
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(a)
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Figure 3.3: Using the scalar product to measure angles. (a) In a Euclidean vector space,
the vector inner product can be used to compute the smallest angle between two vectors:
θ = cos−1 ((aaa · bbb) / (‖aaa‖ ‖bbb‖)). (b) In the same way, the scalar product introduced in
Section 3.4.1 allows one to measure the smallest angle between two arbitrary subspaces
having the same dimensionality: θ = cos−1

((
AAA〈2〉 ∗BBB〈2〉

)
/
(∥∥AAA〈2〉

∥∥ ∥∥BBB〈2〉
∥∥)).

and presents the following properties:

symmetry AAA〈r〉 ∗BBB〈s〉 = BBB〈s〉 ∗AAA〈r〉
distributivity AAA〈r〉 ∗ (BBB〈s〉 +CCC〈t〉) = AAA〈r〉 ∗BBB〈s〉 +AAA〈r〉 ∗CCC〈t〉

scalars commute AAA〈r〉 ∗ (βBBB〈s〉) = β (AAA〈r〉 ∗BBB〈s〉)

It is important not to confuse the scalar product presented here with the vector dot product
from linear algebra, also known as scalar product in vector algebra. The former operates
on k-blades, while the latter operates only on vectors in a Euclidean space.

The vector inner product (Equation 3.3) is the special case of the scalar product for
1-blades. Such backward compatibility implies that the metric assumed for the original
vector space Rn automatically extends to blades in

∧k
Rn. Also, such equivalence allows

the comparison between two subspaces having higher dimensionality, while using the
same basic principles adopted for vectors. For instance, in Euclidean space, the scalar
product between k-blades is written as:

AAA〈k〉 ∗BBB〈k〉 =
∥∥AAA〈k〉

∥∥ ∥∥BBB〈k〉
∥∥ cos θ. (3.5)

So, the scalar product can be used for computing the smallest angle between subspaces
(under Euclidean metric), as shown in Figure 3.3 for k = 1 (Figure 3.3a) and k = 2 (Fig-
ure 3.3b). In the proposed subspace detection scheme, the scalar product is applied to
check whether two blades have the same dimensionality and are not orthogonal.

In Equation 3.5,
∥∥AAA〈k〉

∥∥ is the norm of a blade. The square of the norm is computed as:∥∥AAA〈k〉
∥∥2 = AAA〈k〉 ∗ Ã̃ÃA〈k〉, (3.6)

where
Ã̃ÃA〈k〉 = (−1)k(k−1)/2AAA〈k〉 (3.7)

is the reverse of a subspace. The reverse operation decomposes a blade AAA〈k〉 in its vec-
tor factors (e.g., AAA〈k〉 = aaa1 ∧ aaa2 ∧ · · · ∧ aaak) and produces the reverse Ã̃ÃA〈k〉 by reversing
the order of such factors (e.g., Ã̃ÃA〈k〉 = aaak ∧ aaak−1 ∧ · · · ∧ aaa1). Thus, due to the antisym-
metry of the outer product, the reverse operation produces a sign change related to the
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(a) (b)

Figure 3.4: Geometric intuition for computing the contraction of aaa onto BBB〈2〉 in a Eu-
clidean space R3. (a) First, the 1-blade aaa is orthogonally projected onto BBB〈2〉, resulting in
vector ppp. Then, vectors aaa and ppp are operated under the scalar product, resulting in a scalar
value γ. (b) In turn, γ scales the portion of BBB〈2〉 that is orthogonal to aaa, resulting in ccc.

grade k of the subspace (Equation 3.7). The sign change under the reversion exhibits a
+ + − − + + − − · · · pattern over the values of k, for k ≥ 0. It is important to com-
ment that the reverse operation is distributive over addition, so it can be applied to general
multivectors.

This chapter does not present an algorithm for computing the scalar product regarding
an arbitrary metric space, or a procedure for solving any other particular metric product
from GA. Instead, Section 3.5 shows that some bilinear products (e.g., ∧, ∗, and 	 intro-
duced in the Section 3.4.2) can be defined in terms of a more general product, namely
geometric product, for which an implementation is described.

3.4.2 The Left Contraction

One of the most important metric products for blades is the left contraction:

CCC〈s−r〉 = AAA〈r〉 	BBB〈s〉, (3.8)

denoted by 	. Its geometric interpretation can be described as removing from BBB〈s〉 (the
contractee) the part that is “like”AAA〈r〉 (the contractor), returning the portionCCC〈s−r〉 ⊆ BBB〈s〉
that is “unlike” AAA〈r〉 in the assumed metric. In Equation 3.8, if AAA〈r〉 includes at least one
vector factor that is orthogonal toBBB〈s〉 (e.g., when r > s) then the outcome is zero, because
the condition CCC〈s−r〉 ⊆ BBB〈s〉 cannot be satisfied. Figure 3.4 illustrates the case of a vector
aaa contracted on BBB〈2〉, resulting in the ccc vector. Euclidean space R3 is assumed for this
example. In Figure 3.4a, the vector ppp is the projection of aaa onto BBB〈2〉. It is the part on BBB〈2〉
that is most like aaa. When the left contraction is applied, aaa and ppp are multiplied together
under the scalar product (Section 3.4.1), resulting in a scalar value γ. In Figure 3.4b,
the part of BBB〈2〉 orthogonal to aaa is then scaled by γ, resulting in vector ccc. Note that
the orientation of ccc is consistent with the orientation of both ppp and BBB〈2〉. It is important
to comment that ppp does not need to be explicitly computed while performing the left
contraction, because the projection of aaa is implicitly handled by the product.

The left contraction defines a mapping:

	 :
∧r

R
n ×

∧s
R

n →
∧s−r

R
n.
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Note that such mapping generalizes Equation 3.4 when r = s. Therefore, the scalar prod-
uct is a particular case of the left contraction:

AAA〈k〉 	BBB〈k〉 = AAA〈k〉 ∗BBB〈k〉,

and the three metric products presented so far are backward compatible for 1-blades:

aaa · bbb = aaa ∗ bbb = aaa 	 bbb.

The properties of the left contraction are:

symmetry AAA〈r〉 	BBB〈s〉 = BBB〈s〉 	AAA〈r〉, iif r = s

distributivity AAA〈r〉 	 (BBB〈s〉 +CCC〈t〉) = AAA〈r〉 	BBB〈s〉 +AAA〈r〉 	CCC〈t〉

scalars commute AAA〈r〉 	 (βBBB〈s〉) = β (AAA〈r〉 	BBB〈s〉)

3.5 The Geometric Product

The geometric product is the fundamental product in GA for two reasons: (i) unlike
the other products, the geometric product is invertible; and (ii) many of the products pre-
sented so far (i.e., ∧, ∗, and 	) can be defined in terms of it. By combining these two fea-
tures, the geometric product is an invaluable tool for solving geometric problems. From
our experience, the clear geometrical meaning of the other products is very helpful while
designing a solution to a problem. However, we develop our final (and simpler) solutions
by replacing the conventional products by the geometric product whenever possible, and
by taking advantage of its invertibility while performing algebraic manipulations.

The geometric product has no special symbol and it is denoted by a thin space. For
real values (i.e., 0-dimensional subspaces) it is equivalent to the standard multiplication
operation. For vectors, it is defined as the linear combination of the vector inner product
(Equation 3.3) and the outer product (Section 3.3.1):

aaabbb = aaa · bbb + aaa ∧ bbb. (3.9)

In Equation 3.9, when aaa · bbb = 0, the outcome of the geometric product is the subspace
spanned as the outer product of aaa and bbb. On the other hand, when aaa ∧ bbb = 0, the result
is the scalar value computed as the inner product of vectors aaa and bbb. In both cases, the
geometric product of vectors returns a subspace. However, when both aaa · bbb and aaa ∧ bbb are
not zero, the geometric product produces a multivector of mixed grade. Section 3.8 shows
that elements computed as the geometric product of an even number of unit invertible
vectors are called rotors, and encode rotations under Euclidean metric.

The geometric product extends to elements of higher dimensionality. Unfortunately,
for arbitrary dimensions, it is hard to provide an intuitive and/or illustrated description of
the product. For this reason the general definition of the geometric product is provided
in Appendix A. Such equations are the most conservative way to implement it, and can
be used within any metric space. As an alternative, Dorst et al. (2007) describe how
to implement the geometric product using matrix multiplication. However, the matrix
approach suffers from numerical instability. Dorst et al. (2007) also describe how one can
compute the geometric product of basis blades in an orthogonal metric space. Moreover,
they show how one can temporarily switch the actual basis vectors of a nonorthogonal
basis to a new basis that is orthonormal. This way, one can compute the geometric product
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in the general case using a single algorithm. However, I believe that the set of equations
presented in Appendix A provides a more elegant definition.

The inverse geometric product is denoted by / (the forward slash symbol). In the
following expression:

C = A /B = AB−1, (3.10)

A, B , and C are arbitrary multivectors. In the context of this thesis, however, such multi-
vectors only encode blades or rotors (Section 3.8). Note from Equation 3.10 that having
the inverse allows us to divide by multivectors. Therefore, the “divisor” B must be in-
vertible. A blade (or rotor) B is invertible if B B̃ �= 0 ∈ R. The invertibility of arbitrary
multivectors is discussed in (DORST; FONTIJINE; MANN, 2007). The inverse BBB−1

〈k〉 of
a blade BBB〈k〉 satisfies BBB〈k〉BBB−1

〈k〉 = BBB−1
〈k〉BBB〈k〉 = 1, and is computed as:

BBB−1
〈k〉 =

B̃̃B̃B〈k〉∥∥BBB〈k〉
∥∥2 . (3.11)

Since the geometric product can produce multivectors of mixed grade, it defines a
mapping: ∧

R
n ×

∧
R

n →
∧

R
n.

The properties of the geometric product are:

distributivity A (B + C ) = AB + AC

associativity A (B C ) = (AB)C

scalars commute A (β B) = β (AB)

neither fully symmetric ∃ A,B ∈
∧

Rn : AB �= B A
nor fully antisymmetric

From the last property, one must be aware that the order of the elements matter while per-
forming a sequence of geometric products. The only exceptions are when: the geometric
product can be replaced by a scalar product (which is commutative); one of the operands
is a scalar value (i.e., scalars commute); or it multiplies together two orthogonal trans-
formations (e.g., two rotations in disjoint planes). Notice that the non-commutability of
the geometric product implies that the division in Equation 3.10 is also non-commutative.
Thus, recall that the operator / is a division on the right by B .

3.5.1 Subspace Products from the Geometric Product

The outer product (Section 3.3.1), the scalar product (Section 3.4.1), and the left con-
traction (Section 3.4.2) are special cases of the geometric product. These products can be
computed as:

AAA〈r〉 ∧BBB〈s〉 =
〈
AAA〈r〉BBB〈s〉

〉
r+s

, (3.12)

AAA〈r〉 ∗BBB〈s〉 =
〈
AAA〈r〉BBB〈s〉

〉
0

, and (3.13)

AAA〈r〉 	BBB〈s〉 =
〈
AAA〈r〉BBB〈s〉

〉
s−r

, (3.14)

where 〈M 〉k denotes the grade extraction operation (or grade projection), which re-
trieves the k-grade part of a multivector M . Blades of negative grade or with grade higher
than n are equal to zero. Therefore, the outer product is zero when (r + s) > n (Equa-
tion 3.12), and the left contraction is zero when r > s (Equation 3.14).
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3.6 Dual Representation of Subspaces

The number of basis blades in each graded part of a multivector space
∧
Rn (Sec-

tion 3.2) suggests the existence of a relation between k-blades and (n− k)-blades. Such
symmetry in the number of basis elements of

∧k
Rn and

∧n−k
Rn is related to the equiva-

lence on the combinations of basis vectors (i.e.,
(
n
k

)
=
(

n
n−k

)
). In GA, the dual represen-

tation of a k-bladeAAA〈k〉 is its (n− k)-dimensional orthogonal complement, with the same
absolute weight of AAA〈k〉, and a well-defined orientation. The dual of AAA〈k〉 is computed as:

AAA∗
〈k〉 = AAA〈k〉 	 III−1

〈n〉, (3.15)

where �∗ (the superscripted asterisk symbol) denotes the taking the dual operation, and
III〈n〉 is the unit pseudoscalar of the n-dimensional space (Equation 3.2). Optionally, one
can replace the left contraction in Equation 3.15 by a geometric product because they
are equivalent in this context, since AAA〈k〉 ⊆ III−1

〈n〉. However, the use of the left contraction
provides to Equation 3.15 a clear geometric interpretation: returning the portion of III−1

〈n〉
that is orthogonal to AAA〈k〉.

It is important to emphasize that AAA∗
〈k〉 is an (n− k)-blade, as suggests the outcome of

AAA〈k〉 contracted on III−1
〈n〉 in Equation 3.15. Therefore, the dualization defines a mapping:

�∗ :
∧k

R
n →

∧n−k
R

n.

At first sight, the dual of the dual representation of a blade should result in the direct
representation of the blade. However, as demonstrated in Equation 3.16,

(
AAA∗

〈k〉
)∗

= AAA〈k〉
does not hold in the general case:(

AAA∗
〈k〉
)∗

=
(
AAA〈k〉 	 III−1

〈n〉
)
	 III−1

〈n〉 = AAA〈k〉 III−1
〈n〉 III

−1
〈n〉 = (−1)n(n−1)/2AAA〈k〉. (3.16)

Equation 3.16 shows that the successive application of two dualization operations may
change the orientation of the resulting blade according to the value of n. It is because
III−1
〈n〉 III

−1
〈n〉 = (−1)n(n−1)/2. In order to correct this issue, it is necessary to define the taking

the undual operation as:
DDD−∗

〈n−k〉 = DDD〈n−k〉 	 III〈n〉. (3.17)

This way, the dual representation of a blade can be correctly mapped back to its direct
representation: (

AAA∗
〈k〉
)−∗

=
(
AAA〈k〉 	 III−1

〈n〉
)
	 III〈n〉 = AAA〈k〉 III−1

〈n〉 III〈n〉 = AAA〈k〉. (3.18)

In Equation 3.18, III−1
〈n〉 III〈n〉 = 1 ensures that the relative orientation of AAA〈k〉 will be pre-

served for all n.

3.7 Meet and Join of Subspaces

The meet and join products are the GA analogs of intersection and union operators
from set theory. For any two blades AAA〈r〉 and BBB〈s〉 one can factor out a blade MMM〈t〉 from
both AAA〈r〉 and BBB〈s〉:

AAA〈r〉 = AAA′
〈r−t〉 ∧MMM〈t〉 and BBB〈s〉 =MMM〈t〉 ∧BBB′

〈s−t〉.
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Meet returns the subspace shared by AAA〈r〉 and BBB〈s〉:

AAA〈r〉 ∩BBB〈s〉 =MMM〈t〉, (3.19)

while the join is the subspace spanned by the disjoint and by the common parts of AAA〈r〉
and BBB〈s〉:

AAA〈r〉 ∪BBB〈s〉 = AAA′
〈r−t〉 ∧MMM〈t〉 ∧BBB′

〈s−t〉. (3.20)

Both meet (Equation 3.19) and join (Equation 3.20) are independent of the particular
metric since they are based on factorization by the nonmetric outer product.

In the implementations produced for this thesis the join of two arbitrary subspaces
(i.e., JJJ〈r+s−t〉 = AAA〈r〉 ∪BBB〈s〉) is computed by using the efficient algorithm proposed by
Fontijne (2008). Once one has the join, the meet can be computed using:

MMM〈t〉 = AAA〈r〉 ∩BBB〈s〉 =
(
BBB∗

〈s〉 ∧AAA∗
〈r〉
)−∗

by recalling that the dual (Equation 3.15) and undual (Equation 3.17) operations, in this
case, are not relative to the pseudoscalar of the total space (III〈n〉), but of the pseudoscalar
JJJ〈r+s−t〉 of the space within which the intersection problem resides.

Meet and join are nonlinear products. However, if AAA〈r〉 andBBB〈s〉 are disjoint, thenMMM〈t〉
is a scalar value (i.e., AAA〈r〉 ∩BBB〈s〉 =MMM〈0〉 = 1, a 0-blade) and the join reduces to the outer
product (i.e., AAA〈r〉 ∪BBB〈s〉 ≡ AAA〈r〉 ∧BBB〈s〉), which is linear. Similarly, if the join of AAA〈r〉 and
BBB〈s〉 is the total space (i.e., AAA〈r〉 ∪BBB〈s〉 = III〈n〉, the pseudoscalar) the meet reduces to the
regressive product (i.e., AAA〈r〉 ∩BBB〈s〉 ≡ AAA〈r〉 ∨BBB〈s〉), which is also linear and nonmetric.

3.8 Encoding Rotations with Rotors

The reflection of an arbitrary vector aaa with respect to an invertible vector vvv is obtained
using a sandwiching construction involving the geometric product:

aaa′ = −vvvaaa /vvv = −vvvaaavvv−1,

where aaa′ denotes the transformed vector, / denotes the inverse geometric product (Equa-
tion 3.10), and �−1 is the inverse of a blade (Equation 3.11). A sequence of reflection
operations results in an orthogonal transformation applied to aaa. For instance, an even
number of reflections under Euclidean metric gives a rotation while an odd number of
reflections represent a reflection followed by a rotation, or a rotation followed by a re-
flection. Figure 3.5 shows how the double reflection of aaa in vectors ppp and qqq is equivalent
to the rotation of aaa in the ppp ∧ qqq plane. In such a case, the rotation angle φ is twice the
angle between ppp and qqq. The sense of rotation is given by the orientation of the 2-blade
(i.e., from ppp to qqq) and by the sign of φ.

A rotor is defined as the geometric product of an even number of unit invertible
vectors. Under Euclidean metric, rotors encode rotations. In Euclidean 3-dimensional
spaces, they are closely related to unit quaternions (see (DORST; FONTIJINE; MANN,
2007; PERWASS, 2009) for details). In fact, rotors are the generalization of quaternions
to n-dimensional spaces.

The transformation encoded by a rotor TTT is applied to a k-blade AAA〈k〉 by using the
sandwiching construction:

AAA′
〈k〉 = TTT AAA〈k〉 /TTT = TTT AAA〈k〉TTT−1 = TTT AAA〈k〉 T̃TT ,
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Figure 3.5: Rotation as double reflection. Let aaa be a vector in a Euclidean space. By
reflecting aaa in vector ppp and, in turn, in vector qqq, one gets the same result as by rotating aaa
in the ppp ∧ qqq plane by φ radians, where φ/2 is the angle from ppp to qqq.

where �̃ is the reverse (Equation 3.7). As for the inverse of blades, the inverse of TTT is
computed using Equation 3.11. However, since rotors have unit positive squared norm,
their inverse reduces to the reverse (i.e., TTT−1 = T̃TT ).

As orthogonal transformations, rotors preserve both the symmetric inner product and
the outer product. This way, the structure preservation of rotors holds for the geometric
product (Equation 3.9), and hence to all other products in GA:

TTT (A ◦ B) /TTT = (TTT A /TTT ) ◦ (TTT B /TTT ) , (3.21)

where the ◦ symbol represents any product of GA, and, as a consequence, any operation
defined from the products (e.g., inversion and duality):

TTT (A◦) /TTT = (TTT A /TTT )◦ .

An alternative and more practical way to define rotors is to use the exponential of
2-blades. Under Euclidean metric, the rotorRRR encoding a rotation of φ radians on the unit
plane PPP〈2〉 is given by:

RRR = exp

(
−φ
2
PPP〈2〉

)
= cos

(
φ

2

)
− sin

(
φ

2

)
PPP〈2〉. (3.22)

By using the exponential form one can easily define a rotation in an arbitrary plane without
being concerned about the handedness of the space. This is because the sense of rotation
is related only to the given angle and to the rotation plane. Also, the exponential form
allows the definition of rotors directly from the 2-blades, instead of from pairs of vectors
spanning them. In Chapter 4, I propose the use of rotations in the parameterization of
p-dimensional subspaces.

3.9 Models of Geometry

So far, this chapter has presented the most fundamental concepts of GA. This sec-
tion disscusses four MOGs that can be used in daily computations. A MOG provides a
practical geometric interpretation to blades, rotors, and other elements in GA. Such inter-
pretation is achieved by embedding the d-dimensional base space Rd (i.e., space where
the geometric interpretation happens) into an n-dimensional representational space Rn

(i.e., the total vector space), and by defining a metric to the representational space. The
geometric properties of the space depend on the chosen metric. Appendix B presents a
quick reference for defining geometric primitives as blades in the discussed MOGs, from
parameters that are typically used with linear algebra.
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Figure 3.6: The outer product can be used to solve homogeneous systems of linear equa-
tions. Here, fff1 and fff2 are the normal vectors of the planes related to the equations of the
system presented in Equation 3.23. The solution set is the vector defined by the intersec-
tion of the planes. It is compute as (fff1 ∧ fff2)−∗.

3.9.1 The Euclidean Model

As the name suggests, in the Euclidean model one assumes Euclidean metric for Rn.
This way, k-blades are geometrically interpreted as k-dimensional Euclidean subspaces,
i.e., oriented flats (e.g., straight lines, planes, and their higher-dimensional counterparts)
that pass through the origin of the vector space. The Euclidean model has been used to
illustrate all examples given so far (Figures 3.1 to 3.5).

Euclidean subspaces in Rn are important because they represent the solution set to
any homogeneous system of linear equations with n variables. For instance, consider the
following system: {

2eee1 − 3eee2 = 0
eee1 − 2eee2 + 3eee3 = 0

(3.23)

Each equation of the system is associated with a plane that passes through the origin of
R

3. As depicted in Figure 3.6, the vectors fff1 = 2eee1 − 3eee2 and fff2 = eee1 − 2eee2 + 3eee3 are
the normal vectors (i.e., the dual representation) of such planes. The solution set is the
intersection of the planes, which can be computed using the outer product:

(fff1 ∧ fff2)−∗ = 9eee1 + 6eee2 + eee3. (3.24)

Here, the 2-blade spanned as the outer product of fff1 and fff2 is the dual of the solution. The
final solution is obtained by taking its undual. The undual operation is defined in Equa-
tion 3.17. The resulting subspace will be zero when the system has no solution. Note that
the technique presented in Equation 3.24 can also be used to solve underdetermined sys-
tems (i.e. systems with more variables than the number of homogeneous linear equations
plus one). In such a case, the result is a subspace whose dimensionality is higher than one.

3.9.2 The Homogeneous Model

The homogeneous (or projective) model (HESTENES; ZIEGLER, 1991) is similar
to the use of homogeneous coordinates in linear algebra. It assumes Euclidean met-
ric and a representational space Rd+1 with basis {eee0,eee1,eee2, · · · ,eeed}. In this MOG, the
d-dimensional base space is embedded in Rd+1 in such a way that the extra basis vector
eee0 is interpreted as the origin of the base space. In Figure 3.7a, the plane parallel to eee1 ∧ eee2
is the homogeneous representation of the 2-dimensional base space in Figure 3.7b.

In the homogeneous model, vectors are geometrically interpreted as points. A proper
point is a vector defining a finite location (α1, α2, · · · , αd) in the base space. Such a



54

(a) Representational space R2+1

e1

e
2

e0

c

a

b

L�2�

(b) Base space R2

Figure 3.7: Geometric interpretation of blades in the homogeneous model. In (a), the
plane parallel to eee1 ∧ eee2 is the homogeneous representation of the 2-dimensional base
space in (b). The geometric interpretation of blades is given by their intersection with
the base space. For instance, vectors eee0, aaa, and bbb in (a) are interpreted as proper points
in (b), while vectors eee1, eee2, and ccc in (a) are interpreted as improper points, or directions,
in (b). The straight line in (b) is defined by the intersection of a 2-blade with the base
space in (a). In such a case, LLL〈2〉 = aaa ∧ bbb.

location is given by the intersection of the 1-blade with the base space (see eee0, aaa, and bbb in
Figure 3.7). Unit proper points are written in the form:

ppp = eee0 + α1 eee1 + α2 eee2 + · · ·+ αd eeed. (3.25)

Note that the coefficient assigned to eee0 in Equation 3.25 is equal to one. A general proper
point γ ppp is a weighted version of a unit point, and it is interpreted as having the same
location (i.e., the weight does not change the geometric interpretation of a blade).

When a vector is parallel to the base space (as eee1, eee2, and ccc in Figure 3.7) it is called an
improper point, or a point at infinity. Improper points can be seen as directions, because
they are in the purely directional space Rd of the representational space Rd+1. Unlike
proper points, directions have the coefficient of eee0 equal to zero:

ddd = β1 eee1 + β2 eee2 + · · ·+ βd eeed. (3.26)

Higher dimensional oriented flat subspaces, like straight lines and planes, are spanned
as the outer product of proper and improper points. For instance, the line in Figure 3.7
is defined as LLL〈2〉 = aaa ∧ bbb. Optionally, one can create a line from a proper point and a
direction by using the same construction. The result will be a 2-blade to be used as a
computing primitive.

In the homogeneous model, 3-blades are geometrically interpreted as planes. As one
would expect, they are defined in d-dimensional base spaces (for d ≥ 3) as the outer
product of: (i) three proper points; (ii) two proper points and one direction; or (iii) one
proper point and two directions; as far the vectors are linearly independent. As one can
see, the definition of k-flats (for 0 ≤ k < d) in the homogeneous model is straightforward.
It is based on the outer product of (k + 1) vectors. Blades spanned exclusively from
improper points are geometrically interpreted as k-flats at infinity.

3.9.3 The Conformal Model

The conformal model (HESTENES, 1987, 2001) improves and extends the homoge-
neous model. Unlike the homogeneous model, in the conformal model blades can be
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geometrically interpreted not only as directions and flats, but also as rounds (e.g., point
pairs, circles, spheres, and their higher-dimensional counterparts) and tangent subspaces.

The representational vector space Rd+2 of the conformal model is defined from the
basis vectors {ooo,eee1,eee2, · · · ,eeed,∞∞∞}, where the d-dimensional base space is enhanced with
two extra dimensions: ooo, a null vector interpreted as the origin point (pronounced “no”);
and∞∞∞, a null vector interpreted as the point at infinity (pronounced “ni”). They are null
vectors due to the special metric assumed in the conformal model. Equation 3.27 shows
the multiplication table for the vector inner product of the basis vectors:

· ooo eee1 eee2 · · · eeed ∞∞∞
ooo 0 0 0 · · · 0 −1
eee1 0 1 0 · · · 0 0
eee2 0 0 1 · · · 0 0
...

...
...

... . . . ...
...

eeed 0 0 0 · · · 1 0
∞∞∞ −1 0 0 · · · 0 0

(3.27)

Note that ooo · ooo =∞∞∞ ·∞∞∞ = 0, while ooo ·∞∞∞ = −1. One consequence of this definition is
that the inner product of two unit finite points (i.e., points at a finite distance from the
origin) is given in terms of the square of the Euclidean distance between them:

ppp · qqq = −1
2

d∑
i=1

(
αi − βi

)2, (3.28)

where (α1, α2, · · · , αd) and (β1, β2, · · · , βd) are the location of points ppp and qqq, respec-
tively. This way, finite points are also null vectors (i.e., ppp · ppp = 0). Having the inner prod-
uct related to the Euclidean distance of points is an interesting feature of the conformal
model. That allows the definition of a coordinate-free solution, because the comparison of
points is independent of their location relative to an assumed origin. In the homogeneous
model, the outcome of the inner product of proper points depends on how far they are
from eee0.

Unit finite points are written in the form:

ppp = ooo + α1 eee1 + α2 eee2 + · · ·+ αd eeed +
1

2

d∑
i=1

(
(αi)2

)
∞∞∞, (3.29)

while general finite points are weighted points (γ ppp) having the same location. Fig-
ure 3.8a shows that the set of all unit finite points in a 2-dimensional base space defines
a paraboloid in the∞∞∞-direction of the representational space. In this example, the total
4-dimensional vector space is presented as a 3-dimensional homogeneous space, where
ooo is treated as the homogeneous coordinate. The base space shown in Figure 3.8b cor-
responds to the plane at the bottom of Figure 3.8a. Note that the paraboloid touches the
base space at its origin, and that the location of finite points (e.g., ooo, aaa, bbb, and ccc) is given
by their orthogonal projection onto the base space.

From the outer product of two, three, and four finite points one builds, respectively,
point pairs, circles, and spheres. So, the construction of k-spheres (for 0 ≤ k < d) is
straightforward. It is achieved from the outer product of (k + 2) points. Figure 3.8d
shows a circle defined as CCC〈3〉 = aaa ∧ bbb ∧ ccc. Note in Figure 3.8c that such circle is a cross
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Figure 3.8: Geometric interpretation of blades in the conformal model. The representation
of a 2-dimensional base space is shown on the left. In such a representation, the basis
vectors eee1, eee2, and ∞∞∞ are seen as a homogeneous space having the basis vector ooo as
homogeneous coordinate. The 2-dimensional base space (on the right) corresponds to the
plane at the bottom of the images on the left. Points on the paraboloid are interpreted
as finite points in the base space (see ooo, aaa, bbb, and ccc in (a) and (b)). As depicted in (c)
and (d), the circle defined by aaa, bbb, and ccc is computed as CCC〈3〉 = aaa ∧ bbb ∧ ccc. In (e) and (f),
the straight line that passes thought aaa and bbb is defined as LLL〈3〉 = aaa ∧ bbb ∧∞∞∞.

section of the paraboloid, orthogonally projected onto the base space. Appendix B in-
cludes formulas for defining k-spheres from their usual center-radius parameterization.

As commented in Section 3.9.2, improper points in the homogeneous model are char-
acterized as points at infinity in such a way that each direction is one of these points. In
the conformal model, however, the base space is “closed”. It means that∞∞∞ is the unique
point at infinity, with a well defined location that one can approach from any direction.
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So,∞∞∞ is common to all flat subspaces, because they stretch to infinity. This way, straight
lines and planes are built as the outer product of ∞∞∞ with, respectively, two and three
finite points. For instance, the line passing through aaa to bbb in Figure 3.8e is computed
as LLL〈3〉 = aaa ∧ bbb ∧∞∞∞. It is important to note that all the equations for construction of
flat subspaces in the conformal model are backward compatible with the ones from the
homogeneous model, but including∞∞∞.

In Figure 3.8e, the cross section defined by LLL〈3〉 is a parabola whose orthogonal pro-
jection on the base space is a straight line (Figure 3.8f). Now, note how similar CCC〈3〉 and
LLL〈3〉 are (Figures 3.8c and 3.8e). Both are 3-blades which define cross sections in the
paraboloid. In fact, the projection of both cross sections can be interpreted as circles in
the base space, where LLL〈3〉 (Figure 3.8f) is a circle with infinite radius. Such a generality
on the geometric interpretation of blades is explored by the proposed detection frame-
work in order to perform concurrent detection of subspaces with different interpretations
but with the same dimensionality.

In order to be interpreted as a direction, a blade must have only directional properties
and no locational aspects. The location of a blade is defined in terms of the assumed
origin point ooo. Therefore, directions (also called free blades) are built asAAA〈k〉 ∧∞∞∞, where
AAA〈k〉 ⊂ (eee1 ∧ eee2 ∧ · · · ∧ eeed). This is the natural extension of blades, which are interpreted
as directions in the homogeneous model, to the conformal model.

The final type of conformal blade is the tangent subspace. As the name suggests,
such primitives are tangent to something. In such a case, they encode the subspace tangent
to rounds or flats at a given location. Therefore, tangent subspaces have a point-like inter-
pretation, and also direction information assigned to them. For a given round (or flat)XXX〈k〉
passing thought the point ppp, the tangent subspace at the location of ppp isTTT〈k−1〉 = ppp 	 X̂̂X̂X〈k〉.
The general equation for tangents subspaces is:

TTT〈k+1〉 = ppp ∧ (−ppp 	 (Â̂ÂA〈k〉∞∞∞)),

where AAA〈k〉 ⊂ (eee1 ∧ eee2 ∧ · · · ∧ eeed) defines the direction.

3.9.4 The Conic Model

In a recent work, Perwass and Forstner (2006) show how to embed a 2-dimensional
base space R2 in a 6-dimensional representation space R6 in order to encode conic sec-
tions (e.g., circle, ellipse, straight line, hyperbola, parallel line pair, and intersecting line
pair) as blades.

This MOG assumes Euclidean metric and the basis {eee1,eee2,eee3,eee4,eee5,eee6} for R6. Unit
finite points are written in the form:

ppp = α eee1 + β eee2 +
1√
2
eee3 +

1√
2
(α)2 eee4 +

1√
2
(β)2 eee5 + αβ eee6,

where α and β define the location of a point in the base space.
From the outer product of two, three, and four finite points one builds point pairs,

point triplets, and point quadruplets. The outer product of five distinct points defines a
5-blade interpreted as one of the types of conic sections.

3.10 Discussion

The main concepts of GA used in this thesis were introduced in the current chapter.
GA is a mathematical formalism that allows the development of solutions whose geomet-
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rical meaning can be written directly as algebraic equations. Also, it treats subspaces as
primitives for computation. As such, GA is an appropriate tool for modeling a generalized
subspace detection framework.

In GA, each MOG assumes a particular metric for the representational space Rn. Such
a metric is key for the geometrical interpretation of blades. Table 3.1 summarizes the
geometric primitives that can be represented as blades in the MOGs discussed in Sec-
tions 3.9.1 to 3.9.4. This table can be extended to higher dimensions, to other geometric
shapes, and to other MOGs. See (DORST; FONTIJINE; MANN, 2007; PERWASS, 2009)
for in-depth discussions on the subject.

The proposed subspace detection scheme is based on nonmetric definition of GA.
As a result, the actual metric can be replaced by any convenient metric. In Chapters 4,
5 and 6, Euclidean metric is assumed for Rn in all computations in order to prescind
the interpretation of blades in the actual MOG. This way, blades can be (temporally)
interpreted as Euclidean subspaces rather than specific geometric shapes.
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Table 3.1: Geometric interpretation of subspaces according to four MOGs (E: Euclidean,
H: Homogeneous, C: Conformal, and N: Conic). n indicates the dimensionality of the
representational space, and d is the dimensionality of the base space. The extra dimen-
sions (added to d) are imposed by the MOG. A 2-dimensional base space is assumed.
The only exceptions are for shapes marked with †. In such cases, the base space is
3-dimensional. The rows group shapes according to their class (frees, flats, rounds, tan-
gents, point sets, and conic sections). The table entries show the dimensionality of the
subspaces.

E H C N
n→ d d+ 1 d+ 2 6

Fr
ee

s 1-dimensional direction 1 1 2

2-dimensional direction 2 2 3

3-dimensional direction† 3 3 4

Fl
at

s Flat point 1 2

Straight line 2 3

Plane† 3 4

R
ou

nd
s Point pair 2

Circle 3

Sphere† 4

Ta
ng

en
ts Point 1

1-dimensional tangent direction 2

2-dimensional tangent direction† 3

Po
in

tS
et

s Point 1

Point pair 2

Point triplet 3

Point quadruplet 4

C
on

ic
s Circle, Ellipse, Straight line,

Hyperbola, Parallel line pair, 5

Intersecting line pair



60



61

4 PARAMETERIZATION OF SUBSPACES

This chapter provides the derivation for a model function that characterizes an arbi-
trary p-blade thought a set of p (n− p) angular parameters, where n is the dimensionality
of the representational vector space Rn from which a multivector space

∧
Rn is built.

The basic properties of subspaces are revisited. A parameterization of such properties
is described for vectors (i.e., 1-blades in

∧
Rn) and pseudovectors (i.e., (n− 1)-blades

in
∧

Rn). The parameterization of blades with arbitrary dimensionality is comprised by
the parameters characterizing the vectors (or pseudovectors) used in their construction.
The choice for one of the two constructions is based on the value of p and n, and will be
discussed later in Section 4.1.

As pointed out in Section 3.1, an arbitrary subspace presents four basic properties:
attitude, weight, orientation, and direction. These properties are intrinsic to the con-
struction of the blade by the outer product of its vector factors, or by the regressive product
of pseudovectors. Both the outer and the regressive products are independent of the met-
ric of Rn. Therefore, the basic properties are also independent of the assumed MOG and
its metric. The nonmetric nature of these definitions allows the replacement of the ac-
tual metric by any convenient metric while defining a parameterization. In the following
derivations Euclidean metric is assumed for Rn in all computations in order to prescind
the interpretation of subspaces in the context of a given MOG. This way, blades are inter-
preted as Euclidean subspaces rather than as specific geometric shapes.

Despite the attitude to be a nonmetric property, it affects the geometric interpretation
of the subspace. This is illustrated in Figure 3.7 for LLL〈2〉 = aaa ∧ bbb, where the interpretation
of LLL〈2〉 as a straight line is shown in Figure 3.7b according to the homogeneous MOG.
The attitude of LLL〈2〉 is its stance in the surrounding 3-dimensional space (Figure 3.7a).
By changing the sign of the subspace (i.e., −LLL〈2〉) one changes the orientation of the line
from aaa→ bbb to bbb→ aaa. Both lines defined by LLL〈2〉 and −LLL〈2〉 determine the same set of
points stretching to infinity because they have the same attitude. Multiplying the subspace
by a scalar value (e.g., 3LLL〈2〉) produces a blade with a different weight. Again, both LLL〈2〉
and 3LLL〈2〉 determine, essentially, the same line. The later could be said to pass through
its points three times faster than the former. In order to get a different straight line, one
has to change the attitude of LLL〈2〉. Thus, a parameterization must describe the attitude of
a blade in order to be independent of the geometric interpretation of the parameterized
subspace and also be capable of characterizing different instances of a given type of data
alignment.

An arbitrary vector aaa can be expressed in a n-dimensional Euclidean space by (n− 1)
angles and a scalar value. Assuming a basis {eeei}ni=1 for Rn, and taking eeen as reference
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Figure 4.1: A sequence of two rotation operations in well defined planes describe the
attitude of an arbitrary vector in R3. By assuming eee3 as reference vector (a), the vector
aaa in (c) can be computed from one rotation of θ3,2 = π/4 radians on plane eee3 ∧ eee2 (b),
followed by a rotation of θ3,1 = π/3 radians on plane eee2 ∧ eee1 (c).

unit vector, aaa can be written as:

aaa = γ SSSn eeen /SSSn, (4.1)

where
SSSn = RRRn,1 · · ·RRRn,n−2RRRn,n−1 (4.2)

is a rotor encoding a sequence of rotations of θn,j radians on the unit planes eeej+1 ∧ eeej , for

RRRn,j = cos

(
θn,j

2

)
− sin

(
θn,j

2

)
(eeej+1 ∧ eeej) (4.3)

(see Equation 3.22), and j ∈ {n− 1, n− 2, · · · , 1}. Note that j is consistent with the
order of the rotations applied to eeen: the rotors RRRn,j in Equation 4.2 are applied to eeen in
Equation 4.1 from inside to outside of the sandwiching construction. Thus, the first rota-
tion applied is RRRn,n−1, followed by RRRn,n−2, and so on. By assuming θn,j ∈ [−π/2, π/2),
it is ensured that SSSn eeen /SSSn (Equation 4.1) is inside the hemisphere defined by +eeen. Such
a condition guarantees that the rotation angles encode aaa’s attitude. In Equation 4.1, γ ∈ R

characterizes the weight, and γ’s sign characterizes the orientation of aaa. A sequence of
two rotation operations characterizing a vector in R

3 is illustrated in Figure 4.1. In this ex-
ample, eee3 is the reference vector (Figure 4.1a), eee3 ∧ eee2 and eee2 ∧ eee1 are the rotation planes,
θ3,2 and θ3,1 are, respectively, π/4 and π/3 radians (Figures 4.1b and 4.1c), and γ = 1.

In the notational convention of this work, SSSn (Equation 4.2) encodes a sequence of
(n− 1) rotations in an n-dimensional space (note the subscript n). RRRn,j (Equation 4.3),
in turn, represents one of such rotations on the plane eeej+1 ∧ eeej .

The parameterization of vectors naturally extends to pseudovectors through the dual
relationship between 1-dimensional and (n− 1)-dimensional subspaces. By making the
parameterized pseudovector AAA〈n−1〉 = aaa∗ and the reference unit blade EEE〈n−1〉 = eee∗n (�∗ is
the dual operation, defined in Equation 3.15), Equation 4.1 becomes:

AAA〈n−1〉 = γ SSSnEEE〈n−1〉 /SSSn. (4.4)

A parameterization that is equivalent for both 1-dimensional and (n− 1)-dimensional
subspaces is convenient due the possibility to build p-blades from these subspaces while
using the smallest number of parameters. For instance, when p < (n− p), spanning a
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p-blade as the outer product of p vectors uses less parameters than spanning it as the
regressive product of (n− p) pseudovectors. However, when p > (n− p), the best choice
is to use (n− p) pseudovectors. In the proposed parameterization the reference unit
subspace for p-blades is built as:

EEE〈p〉 =

{∧
v∈V eeev for p �= q∨
v∈V eee

∗
v for p = q

, (4.5)

where q = max(p, n− p),
∧

v∈V denotes the outer product of vectors eeev, and
∨

v∈V is the
regressive product of pseudovectors eee∗v, for

V = {2 (q + i)− n}n−q
i=1 . (4.6)

As for the parameterization of vectors and pseudovectors (Equations 4.1 and 4.4, respec-
tively), the weight and orientation of an arbitrary blade BBB〈p〉 are expressed by a scalar
value (γ), while its attitude is characterized by a set of rotations (TTT ) applied to the
reference blade EEE〈p〉:

BBB〈p〉 = γTTT EEE〈p〉 /TTT , (4.7)

where
TTT = SSSnSSSn−2 · · ·SSS 2 (q+1)−n, (4.8)

and SSS v are rotors computed according to Equation 4.2. Note that the rotorTTT is computed
as a sequence of rotors SSS v. Each one of such rotors SSS v is related to the parameterization
of the attitude of a reference vector (or pseudovector) used in the construction of the
reference blade EEE〈p〉 (Equation 4.5) for BBB〈p〉. Note that eeev, eee∗v, and SSS v have the same
index v.

The geometric interpretation of blades is not affected by γ (i.e., the weight and ori-
entation of the blade), only by the rotation operations. Therefore, one can safely assume
γ = 1 in Equation 4.7, leading to:

BBB〈p〉 = TTT EEE〈p〉 /TTT , (4.9)

and define the parameterization of subspaces regarding

m =
∑
v∈V

(v − 1) = p (n− p)

rotation angles θv,j . Such a practice is consistent with existing HTs. For example, Duda
and Hart’s approach (DUDA; HART, 1972) retrieves lines having unit weight and positive
orientation.

Equation 4.9 is regarded as the proposed function for modeling subspaces of dimen-
sionality p, where 0 ≤ p ≤ n. The m rotation angles related to the sequence of rotation
operations in Equation 4.9 define a parameter space for p-blades:

P
m = {(θ1, θ2, · · · , θm) | θt ∈ [−π/2,π/2)}, (4.10)

where each parameter vector (θ1, θ2, · · · , θm) ∈ Pm characterizes an instance of a p-blade,
and θt is the rotation angle of the t-th rotationRRRv,j (Equation 4.3) applied toEEE〈p〉 in Equa-
tion 4.9, for 1 ≤ t ≤ m. Notice that the double-index notation used so far (i.e., n and j
in θn,j) has been simplified to single index (i.e., t in θt, Equation 4.10) because it is more
convenient for the definition of the parameter vector.
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4.1 Avoiding Ambiguous Representations of Subspaces

Consecutive values for v ∈ V (Equation 4.6) used in Equations 4.5 and 4.8 are spaced
two units apart. This avoids ambiguous sets of vectors/pseudovectors while defining BBB〈p〉
(Equations 4.7 and 4.9), and leads to a more compact parameterization. The example
shown in Figure 4.2 illustrates this. Note that the example is described in terms of pseu-
dovectors. Therefore, it immediately extends to pairs of pseudovectors in spaces of any
dimensionality and to vectors by duality. The construction of blades with arbitrary di-
mensionality is achieved by the successive application of this example on representational
spaces with dimensionality n, (n− 2), (n− 4), and so on. For this example, consider the
parameterization of a straight line in 3-dimensional base space under the homogeneous
MOG. In such a case, the representational space has 4 dimensions (i.e., n = 3 + 1 = 4)
and the straight line (BBB〈2〉) is a 2-blade. The homogeneous MOG in GA is analogous to
using homogeneous coordinates in projective geometry. In this example, the basis vectors
are {eee1,eee2,eee3,eee4} and eee4 is geometrically interpreted as the point at the origin.

BBB〈2〉 can be written in terms of the intersection (regressive product) of pseudovectors
FFF〈3〉 and GGG〈3〉, geometrically interpreted as planes in Figure 4.2a:

BBB〈2〉 = FFF〈3〉 ∨GGG〈3〉. (4.11)

The choice of arbitrary pairs of planes can lead to ambiguous representations for BBB〈2〉.
For instance, by rotatingFFF〈3〉 and GGG〈3〉 around the lineBBB〈2〉 in Figure 4.2a, one gets differ-
ent pairs of planes, and hence different parameterizations for the attitude of BBB〈2〉. Recall
that rotations parameterizing the attitude of BBB〈2〉 come from the parameters of the planes
(pseudovectors) defining it (see the sequence of rotors SSS v in Equation 4.8). In the pro-
posed parameterization, such ambiguity is avoided by choosing GGG〈3〉 and FFF〈3〉 such that
they satisfy some constraints:

1. GGG〈3〉 is the plane whose smallest distance to eee4 is the same as the smallest distance
from BBB〈2〉 to eee4. In such a situation, ppp is the closest point to the origin eee4 for both
BBB〈2〉 and GGG〈3〉. It can be computed as the orthogonal projection of eee4 onto GGG〈3〉, and
hence onto BBB〈2〉.

2. FFF〈3〉 is chosen as the plane passing throughBBB〈2〉 as well as through the point qqq = GGG−∗
〈3〉.

Note that the undual operation �−∗ (Equation 3.17) makes qqq be orthogonal to GGG〈3〉
in the 4-dimensional representational space. Therefore, it is guaranteed that FFF〈3〉
includes one vector factor that is orthogonal to GGG〈3〉.

By definition, ppp and qqq are orthogonal vectors in the representational space, because
ppp ⊂GGG〈3〉 and qqq is orthogonal to GGG〈3〉. It is important to emphasize that the same two con-
straints can be imposed to pairs of pseudovectors in representational spaces of arbitrary
dimensionality n. Also, that the actual geometrical interpretation of these pseudovectors
can be cast as hyperplanes in homogeneous MOG, where eeen is geometrically interpreted
as the point at the origin.

Now, let’s replace GGG〈3〉 in Equation 4.11 by the pseudovector parameterization in
Equation 4.4:

BBB〈2〉 = FFF〈3〉 ∨
(
β SSS 4EEE〈3〉 /SSS 4

)
. (4.12)

where EEE〈3〉 = eee∗4 = eee4 	 III−1
〈4〉 = −eee1 ∧ eee2 ∧ eee3 is the reference blade for GGG〈3〉. Note that

SSS 4 is computed from rotations (see Equation 4.2) in such a way that any vector in the
4-dimensional space is affected by it. Therefore, FFF〈3〉 is also affected by SSS 4. One can
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Figure 4.2: Pseudovectors used in the construction of a 2-blade in
∧
R

3+1. By assuming
the homogeneous MOG and a 3-dimensional base space: (a) BBB〈2〉 is the blade (interpreted
as a straight line) resulting from the intersection of pseudovectors FFF〈3〉 and GGG〈3〉 (inter-
preted as planes). GGG〈3〉 defines the distance from BBB〈2〉 to the origin eee4. ppp is the closest
point to eee4 for both BBB〈2〉 and GGG〈3〉. FFF〈3〉 includes qqq = GGG−∗

〈3〉, a vector that is orthogonal to
GGG〈3〉 in the 4-dimensional representational space. (b) Configuration obtained after rolling
back rotations RRR4,1 and RRR4,2 from the blades ppp, qqq, BBB〈2〉, FFF〈3〉, and GGG〈3〉. Here, the � sym-
bol indicates that AAA�

〈k〉 = (RRR−1
4,2RRR

−1
4,1)AAA〈k〉 / (RRR−1

4,2RRR
−1
4,1), where AAA〈k〉 is some blade in (a).

(c) The same situation illustrated in (c) for eee3, eee4, ppp� and qqq�, but disregarding eee1 and eee2.

write FFF〈3〉 = SSS 4FFF
′
〈3〉 /SSS 4 and replace it in Equation 4.12:

BBB〈2〉 =
(
SSS 4FFF

′
〈3〉 /SSS 4

)
∨
(
β SSS 4EEE〈3〉 /SSS 4

)
.

From the structure preservation property of rotors (Equation 3.21):

BBB〈2〉 = β SSS 4

(
FFF′

〈3〉 ∨EEE〈3〉
)
/SSS 4. (4.13)

In Equation 4.13, SSS 4 encodes a sequence of three rotation operations in well defined
planes and EEE〈3〉 is the reference pseudovector for GGG〈3〉. Thus, three parameters of BBB〈2〉
have been defined from the rotations in SSS 4. One must write FFF′

〈3〉 in terms of Equation 4.4
in order to retrieve the one parameter that is missing (i.e., the attitude of a 2-blade in∧
R4 is expressed by m = 2 (4− 2) = 4 parameters). Figure 4.2b shows that, rolling

back RRR4,1 and RRR4,2 (the latest transformations in SSS 4) from blades in Figure 4.2a, one gets
ppp� = (RRR−1

4,2RRR
−1
4,1)ppp / (RRR

−1
4,2RRR

−1
4,1) and qqq� = (RRR−1

4,2RRR
−1
4,1)qqq / (RRR

−1
4,2RRR

−1
4,1) in the space spanned

by {eee3,eee4}. This situation is also illustrated in Figure 4.2c, where eee3, eee4, ppp� and qqq� are
drawn in a 2-dimensional vector space, since the coordinates related to eee1 and eee2 are zero
for all these elements. By also rolling back RRR4,3 (a rotation on the 2-blade eee4 ∧ eee3), all
the transformations defining SSS 4 are removed from ppp and qqq. A rotation on eee4 ∧ eee3 applied
to vectors in the space {eee3,eee4} (such as ppp� and qqq�) is interpreted in Figure 4.2b as a
translation along the line through eee4 with direction eee3. As a result,RRR−1

4,3 qqq
� /RRR−1

4,3 translates
qqq� to the origin and makes it equal to eee4 up to a scaling factor (as one would expect from
Equation 4.1 and Figure 4.2c). Also, RRR−1

4,3 ppp
� /RRR−1

4,3 translates ppp� to the infinity, until it
becomes eee3 up to a scaling factor. Since {ppp,qqq} ⊂ FFF〈3〉, we can state that {eee3,eee4} ⊂ FFF′

〈3〉
and write

FFF′
〈3〉 = FFF′

〈1〉 ∧ eee3 ∧ eee4, (4.14)

whereFFF′
〈1〉 is the weighted portion ofFFF′

〈3〉 that is enclosed in the space spanned by {eee1,eee2}.
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By rolling back SSS 4 from the blades in Figure 4.2a, GGG〈3〉 has become the reference
subspaceEEE〈3〉 = −eee1 ∧ eee2 ∧ eee3. According to Equation 4.14,FFF〈3〉 has becomeFFF′

〈3〉, which
can be factored in terms of the outer product as two well defined vector factors (i.e., eee3
and eee4) and one free factor (i.e.,FFF′

〈1〉). By definition,FFF′
〈1〉 is orthogonal to eee3 and eee4. Thus,

it must be in R2. Using the pseudovector parameterization from Equation 4.4 over FFF′
〈1〉,

Equation 4.14 becomes:

FFF′
〈3〉 =

(
αSSS 2EEE

′
〈1〉 /SSS 2

)
∧ eee3 ∧ eee4, (4.15)

whereEEE′
〈1〉 = eee2 	 III−1

〈2〉 = −eee1 is the reference blade forFFF′
〈1〉, a pseudovector in the {eee1,eee2}

space, and III〈2〉 is the pseudoscalar of such bidimensional space. Replacing Equation 4.15
in Equation 4.13:

BBB〈2〉 = β SSS 4

(((
αSSS 2EEE

′
〈1〉 /SSS 2

)
∧ eee3 ∧ eee4

)
∨EEE〈3〉

)
/SSS 4. (4.16)

Note that rotation planes from SSS 2 do not affect subspace eee3 ∧ eee4 nor EEE〈3〉, because
such rotation planes are orthogonal to the former and they are contained by the latter. As
a result, Equation 4.16 can be rewritten as

BBB〈2〉 = γ (SSS 4 SSS 2)
((
EEE′

〈1〉 ∧ eee3 ∧ eee4
)
∨EEE〈3〉

)
/ (SSS 4 SSS 2) . (4.17)

Since EEE′
〈1〉 ∧ eee3 ∧ eee4 = −eee1 ∧ eee3 ∧ eee4 = eee∗2 and EEE〈3〉 = eee∗4 (from Equation 4.12), Equa-

tion 4.17 can be simplified to

BBB〈2〉 = γ (SSS 4 SSS 2) (eee
∗
2 ∨ eee∗4) / (SSS 4SSS 2) . (4.18)

Recall that reference pseudovectors for FFF〈3〉 and GGG〈3〉 are the dual representations of vec-
tors eee2 and eee4, respectively (as one would expect from Equation 4.5, for V = {2, 4} and
p = q = 2), and γ = αβ.

In Equation 4.18, SSS 2 and SSS 4 describe two sequences of rotations. The former consists
of 1 rotation. It is similar to the case depicted in Equation 4.2, but in a dimensionality
lower than n = 4. The latter consists of 3 rotations, exactly like in Equation 4.2. Together,
the 4 rotation angles describe the attitude of BBB〈2〉.

4.2 Rotation Angles as a Coordinate Chart for the Grassmannian

The Grassmannian G(k,n) is the set of all k-dimensional linear subspaces of a vector
space Rn (HARRIS, 1992). In GA, the multivector representation of k-blades resides in∧k

Rn, i.e., the portion of the multivector space
∧

Rn with k-dimensional basis elements
(Section 3.2). For example, in Equation 3.1, the basis of

∧2
R3 is {eee1 ∧ eee2,eee1 ∧ eee3,eee2 ∧ eee3}.

The linear combination of basis elements in
∧k

R
n is called a k-vector. However, an ar-

bitrary k-vector is not necessarily a k-blade. The k-blades are the k-vector which can be
factored in terms of the outer product of k linearly independent vectors. Thus, G(k,n)
corresponds to a subset of k-vectors (i.e., the k-blades) in

∧k
Rn.

The Grassmannian defines a projective variety of dimension k (n− k) in the
(
n
k

)
-dimen-

sional space of
∧k

Rn (HARRIS, 1992). Therefore, an arbitrary k-dimensional subspace
requires at least k (n− k) coordinates to be addressed in such variety. By choosing a
reference subspace one may define an open affine covering Ak (n−k) for G(k,n). The cov-
ering is open because the k-dimensional subspaces orthogonal to the reference are not
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properly represented in the affine space Ak (n−k) (i.e., they reside at infinity). The remain-
ing k-dimensional subspaces in G(k,n), on the other hand, are represented uniquely as
points in Ak (n−k), where the reference subspace is related to the point at the origin. To
see this in coordinates, let’s assume the subspace spanned by {eee1,eee2, · · · ,eeek} as the ref-
erence. It follows that any k-dimensional subspace in the open affine covering of G(k,n)
may be represented as the row space of a unique matrix of the form:⎛⎜⎜⎜⎝

1 0 · · · 0 α1,1 α1,2 · · · α1,n−k

0 1 · · · 0 α2,1 α2,2 · · · α2,n−k

...
... . . . ...

...
... . . . ...

0 0 · · · 1 αk,1 αk,2 · · · αk,n−k

⎞⎟⎟⎟⎠ , (4.19)

where the entries αi,j define a location in Ak (n−k) (HARRIS, 1992). Thus, a subspace
may be mapped from a point in Ak (n−k) to a blade BBB〈k〉 ∈

∧k
Rn through:

BBB〈k〉 =
k∧

i=1

(
eeei +

n−k∑
j=1

(
αi,j eeek+j

))
.

A blade BBB〈k〉 may be mapped from
∧k

Rn to Ak (n−k) by decomposing BBB〈k〉 into vector
factors and, in turn, computing the row reduced echelon form of its k × n matrix repre-
sentation. It leads to Equation 4.19 when BBB〈k〉 is not orthogonal to eee1 ∧ eee2 ∧ · · · ∧ eeek.

The parameter space Pm (Equation 4.10) introduced in this chapter provides a coordi-
nate chart for G(p,n). In such a coordinate system, a p-dimensional subspace is addressed
by a set of p (n− p) rotation angles in the [−π/2, π/2) range (i.e., the parameter vector).
In contrast to the open affine covering Ak (n−k) of G(k,n), the proposed parameteriza-
tion can represent all the p-dimensional linear subspaces in

∧p
R

n. The drawback of the
parameterization is that, for some p-blades, the mapping between Pm and

∧p
Rn is not

unique. It follows that all parameter vector in Pm map to a single p-blade in
∧p

Rn, but
there are p-blades in

∧p
R

n that map to an infinite set of parameter vectors in P
m.

One example of many parameter vectors in Pm characterizing the same blade in∧p
Rn is the parameterization of the vector eee3 ∈

∧1
R3. In such a case, p = 1, n = 3

and m = 1 (3− 1) = 2, leading to:

P
2 = {(θ3,2, θ3,1) | θ3,2, θ3,1 ∈ [−π/2,π/2)}.

From Equation 4.5, the reference blade is EEE〈1〉 = eee3. According to Equation 4.2, the
two rotations applied to EEE〈1〉 are, respectively, on planes eee3 ∧ eee2 and eee2 ∧ eee1. Notice that
the parameterized blade (eee3) is equal to the reference blade. So the rotation on eee3 ∧ eee2
(i.e., from eee3 to eee2) must be of zero radians, leading to θ3,2 = 0. The second rotation is on
a plane orthogonal eee3. As a result, θ3,1 may assume any value in [−π/2,π/2). Thus, eee3
may be characterized by any parameter vector in the form (0,θ3,1) for θ3,1 ∈ [−π/2,π/2).
Such an ambiguity (related to the so-called gimbal lock) is inherent to the description of
the attitude of a rigid body (i.e., a body in which the relative position of all its points is
constant) in some Euclidean space though a set of rotations (HOFFMAN; RAFFENETTI;
RUEDENBERG, 1972). Fortunately, the gimbal lock does not compromise the proposed
subspace detection framework. Chapters 5 and 6 describe general procedures for mapping
subspaces of arbitrary dimensionality to Pm even in the presence of gimbal lock.
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4.3 The Proposed Parameterization as a Subset of Euler Angles

Euler (1765) showed that the orientation of a rigid body in 3-dimensional Euclidean
space requires exactly three parameters to be described. When these parameters are de-
fined in the form of angles they are called the Euler angles. Hoffman et al. (1972) had gen-
eralized the Euler angles to n-dimensional spaces. They presented an algorithm whereby
n-dimensional orthogonal matrices, and hence rigid bodies with n-dimensional coordi-
nate systems, can be represented in terms of n (n− 1)/2 independent parameters, for
n ≥ 2. Appendix C presents the derivations proposed by Hoffman et al. (1972), origi-
nally with linear algebra, converted here to GA notation. In GA, it is equivalent to setting
the parameterization/decomposition of rotors in terms of generalized Euler angles.

The parameterization proposed in the current chapter targets a different problem than
(HOFFMAN; RAFFENETTI; RUEDENBERG, 1972): to express the attitude of p-blades
through a set of rotation angles. In such a case, the number of parameters required
(i.e., p (n− p)) is smaller than the number of parameters for describing a n-dimensional
coordinate system with respect to a reference basis. The only exceptions is for vectors
in R2, where a single parameter is required in both approaches. However, the parame-
terization of p-blades can be cast as the parameterization of the rotor TTT that transforms
a reference blade EEE〈p〉 into a given subspace (Equation 4.9). In such a case, one may set
an n-dimensional coordinate system where most of the rotation operations (from Euler
angles) happen on planes orthogonal to, or contained by, the reference subspace. The
remaining rotations (i.e., the subset of generalized Euler angles that affect EEE〈p〉) are equiv-
alent to the proposed parameterization.

4.4 Discussion

The function for modeling p-dimensional linear subspaces in an n-dimensional total
space was introduced in this chapter, as well as the parameter space defined from such
a function. The idea behind the proposed parameterization is conceptually quite simple:
the attitude of an arbitrary p-blade can be expressed by a sequence of p (n− p) rotation
operations applied to a canonical subspace with the same dimensionality, while its weight
and orientation can be expressed by a scalar value. Since the geometric interpretation of
blades is related only to its attitude, the rotation angles are sufficient to define a parameter
space where every point characterizes a p-dimensional linear subspace.

In contrast to model functions from conventional HTs (HOUGH, 1959, 1962; DUDA;
HART, 1972; O’GORMAN; CLOWES, 1973; KIMME; BALLARD; SKLANSKY, 1975;
SKLANSKY, 1978; BENNETT; BURRIDGE; SAITO, 1999; ACHTERT et al., 2008),
the proposed model function is independent of the type of data alignment that is being
detected, as well as of the type of data comprising the input dataset. It depends only on
the dimensionality of the subspace representing the intended data alignment (p) and the
dimensionality of the representational space (n). Such a feature is key for the definition
of a general framework for data alignment detection. It allows the development of general
procedures for mapping arbitrary types of data to the parameter space, and hence for the
design of generally applicable voting schemes, such as the ones presented in Chapters 5
and 6.

In the proposed subspace detection framework, an accumulator array is created as the
discrete representation of the parameter space for p-blades. Therefore, another desirable
feature of such parameter space is to be representable in a finite range of parameter values.
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By definition, the rotation angles used as parameters are restricted to the [−π/2, π/2)
domain. The use of the open affine covering of the Grassmannian, by contrast, would
require handling coordinates in the (−∞,+∞) range, with the further drawback of not
being able to properly represent all the p-dimensional subspaces. A discussion on the
discretization of the proposed parameter space is presented in the next chapter.
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5 VOTING PROCESS FOR INPUT SUBSPACES

The voting process is composed of two stages: (i) mapping the entries in the input
dataset to a (continuous) parameter space (using the function described in Figure 5.2),
and (ii) spreading the “votes” on the bins of the accumulator array (i.e., the discrete rep-
resentation of the parameter space) according to such a mapping. Chapter 4 presented a
parameter space (Pm) for characterizing p-blades, i.e., the linear subspaces that represent
the intended type of data alignment. The current chapter presents a mapping procedure
that takes each r-dimensional subspaceXXX〈r〉 in the input dataset (for 0 ≤ r ≤ n) and iden-
tifies the parameters (coordinates in P

m) of all p-blades related to it. This chapter also
describes a voting procedure that uses this mapping scheme.

The proposed mapping procedure is based on three key observations. The first obser-
vation is that the dimensionality of an arbitrary input blade XXX〈r〉 defines a containment
relationship between XXX〈r〉 and CCC〈p〉 ∈ C (i.e., XXX〈r〉 is contained or it contains CCC〈p〉), where
C is the set of all p-blades related to XXX〈r〉. In Chapter 4, BBB〈p〉 denotes an arbitrary p-blade.
In the current chapter, CCC〈p〉 has a more restricted definition, denoting a p-blade related
to XXX〈r〉.

Since p-blades are expressed as orthogonal transformations applied to a reference
blade EEE〈p〉 (Equation 4.9), the containment relationships between XXX〈r〉 and CCC〈p〉 can be
extended through the sequence of transformations:{

XXX
(t)
〈r〉 ⊆ CCC

(t)
〈p〉 for r ≤ p

XXX
(t)
〈r〉 ⊇ CCC

(t)
〈p〉 for r ≥ p

, (5.1)

where
XXX

(t)
〈r〉 = RRR−1

t+1XXX
(t+1)
〈r〉 /RRR−1

t+1 (5.2)

and
CCC

(t)
〈p〉 = RRRtCCC

(t−1)
〈p〉 /RRRt

for XXX(m+1)
〈r〉 = XXX〈r〉, CCC

(0)
〈p〉 = EEE〈p〉, RRRm+1 = 1, and 1 ≤ t ≤ m. Here, RRRt encodes the t-th

rotation applied to EEE〈p〉. In Chapter 4, a double-index notation (e.g., v and j in RRRv,j) was
used to emphasize that rotations RRRv,j are related to a rotor SSS v, and hence to a reference
vector eeev or pseudovector eee∗v. In this chapter the notation has been changed to a single
index (t) because it is more convenient for the following derivations. Thus, one can think
of the model function (Equation 4.9) by replacing the rotorTTT by its component rotors SSS v

and, in turn, by replacing each SSS v by its component rotors RRRv,j , leading to:

CCC〈p〉 = RRRm

(
RRRm−1 · · ·

(
RRR2

(
RRR1EEE〈p〉 /RRR1

)
/RRR2

)
· · · /RRRm−1

)
/RRRm. (5.3)
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Figure 5.1: Trees of possibilities for vvv1 = eee2 (a) and vvv2 = eee4 (b) in a 4-dimensional rep-
resentational space (n = 4 and p = 2). Vectors eee2 and eee4 at the first row are the vectors
spanning a reference blade. Rows t = 1 to t = 4 represent the rotation of reference vec-
tors on the planes eee2 ∧ eee1, eee4 ∧ eee3, eee3 ∧ eee2, and eee2 ∧ eee1, respectively. From Equations 4.8
and 4.2 one should note that the first rotation plane comes from the single rotation defining
SSS 2, and the other three planes came from the rotations defining SSS 4. The colored squares
at each row correspond to the space of possibilities (Equation 5.5) related to vectors vvv1
and vvv2, respectively, after applying the rotations up to a given row.

In the adopted notation, the superscript in parentheses (e.g., t in XXX
(t)
〈r〉 and CCC

(t)
〈p〉, Equa-

tion 5.1) indicates that the element is an intermediate variable in the context of the t-th
rotation operation.

The second observation is related to the rotation of basis vectors spanning EEE〈p〉. They
comprise the set E :

E =

{
{eeev}v∈V for p �= q

{eeev}v∈V\{eeei}ni=1 for p = q
, (5.4)

where A\B denotes the relative complement of A in B. As the rotation operations are
applied to vectors vvvl ∈ E (for 1 ≤ l ≤ |E|, where |E| = p denotes the cardinality of E),
the dimensionality of the regions of Rn that can be reached by vectors vvvl increases.
These regions are called spaces of possibilities. Figure 5.1 illustrates the tree of possibil-
ities of reference vectorsvvv1 = eee2 (Figure 5.1a) andvvv2 = eee4 (Figure 5.1b), for E = {eee2,eee4}
and n = 4. In Figure 5.1, each row of the grid is related to a rotation on the plane PPP

(t)
〈2〉.

The values of index t are indicated on the left side, and the rotation planes (e.g., eeei ∧ eeej)
are indicated on the right. The set of colored squares at each row corresponds to the region
that can be reached by the reference vector after applying the rotations up to the corre-
sponding row (i.e., the space of possibilities FFF(t)

l , defined in Equation 5.5). For instance,
after applying the three first rotations to vvv1 = eee2, it can becomes a vector in the space
spanned by FFF

(3)
1 = eee1 ∧ eee2 ∧ eee3.

The spaces of possibilities are computed as:

FFF
(t)
l =

{
FFF

(t−1)
l ∪PPP(t)

〈2〉 for grade (FFF(t−1)
l ∩PPP(t)

〈2〉) = 1

FFF
(t−1)
l otherwise

, (5.5)

where FFF
(t)
l is the space reachable by vector vvvl ∈ E after the application of the first t ro-
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tations. Therefore, FFF(0)
l = vvvl. PPP

(t)
〈2〉 is the plane where the t-th rotation happens, ∪ and ∩

denote, respectively, the join and the meet operations (Section 3.7), and the grade func-
tion retrieves the dimensionality of a subspace. Notice that Equation 5.5 determines how
a tree of possibilities grows: FFF(t)

l will always be equal to or have one more dimension than
its predecessor, FFF(t−1)

l . FFF(t)
l and FFF

(t−1)
l are equal when the rotation plane PPP(t)

〈2〉 is contained

by or is orthogonal to FFF
(t−1)
l . For instance, in Figure 5.1a, FFF(4)

1 = FFF
(3)
1 = eee1 ∧ eee2 ∧ eee3 be-

cause a rotation on PPP
(4)
〈2〉 = eee2 ∧ eee1 does not affect FFF(3)

1 . By the same token, FFF(t)
l will have

one more dimension than FFF
(t−1)
l when only one of the dimensions of FFF(t−1)

l is affected by
the t-th rotation operation. For example, FFF(3)

2 = eee2 ∧ eee3 ∧ eee4 in Figure 5.1b. By applying
a rotation on planePPP(4)

〈2〉 = eee2 ∧ eee1, the portion eee2 inFFF(3)
2 can reach any vector in the eee2 ∧ eee1

plane, leading to FFF
(4)
2 = eee1 ∧ eee2 ∧ eee3 ∧ eee4.

The spaces of possibilities are important because they impose a set of restrictions for
the vector factors of a given blade CCC〈p〉 ∈ C. By writingCCC〈p〉 in terms of the outer product
of its orthonormal vector factors cccl:

CCC〈p〉 = ccc1 ∧ ccc2 ∧ · · · ∧ cccp,

one should notice that a parameter vector (θ1, θ2, · · · , θm) ∈ Pm defines the transforma-
tion of each vvvl ∈ E into a vector ccc(t)l ⊆ FFF

(t)
l , where

ccc
(t)
l = RRRt ccc

(t−1)
l /RRRt,

for ccc(0)l = vvvl and ccc
(m)
l = cccl. Thus, a given ccc

(t)
l is “confined” in a well defined tree of

possibilities.
The third observation is that rotations do not commute. Therefore, one needs to

respect the sequence of rotations while computing the parameter vectors of blades
in C. Since XXX〈r〉 and EEE〈p〉 are the only data available to compute the elements in C, the
proposed approach calculates the parameter vectors starting from the last to the first
θt (i.e., from θm to θ1). Thus, using XXX

(t)
〈r〉 (Equation 5.2) as input, the t-th rotation angle

is computed. In the case of Figure 5.1, XXX(4)
〈r〉 = XXX〈r〉 is related to the last row of the trees

of possibilities. By computing the last parameter one is able to find the rotation that takes
XXX〈r〉 into the previous row (i.e., one finds XXX(3)

〈r〉) and so on, until all the θt values have been

computed, and finally reach XXX
(0)
〈r〉. XXX

(0)
〈r〉 is then related to the canonical reference EEE〈p〉.

5.1 Mapping Procedure for r ≥ p

The procedure for mapping a given input blade XXX〈r〉 to parameter space Pm is pre-
sented in Figure 5.2. The algorithm assumes that r ≥ p. The case involving r ≤ p
is discussed in Section 5.2. By making r ≥ p, the condition depicted in Equation 5.1
and the second observation guarantees the existence of vectors ccc(t)l ⊆ (XXX

(t)
〈r〉 ∩FFF

(t)
l ) for all

1 ≤ l ≤ |E|. This holds because CCC(t)
〈p〉 can be factorized as

CCC
(t)
〈p〉 = ccc

(t)
1 ∧ ccc

(t)
2 ∧ · · · ∧ ccc(t)p , (5.6)

where each factor ccc(t)l is related to a space of possibilitiesFFF(t)
l , andXXX(t)

〈r〉 includes the entire

bladeCCC(t)
〈p〉. In Figure 5.1, it means that the transformed input bladeXXX(t)

〈r〉 will always share
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Require: An input r-blade XXX〈r〉
1: P(m) ←

{
(XXX〈r〉,∅)

}
2: for t = m down to 1 do
3: Let PPP(t)

〈2〉 be the rotation plane of the t-th rotation applied to EEE〈p〉 in Equation 5.3
4: P(t−1) ← ∅

5: for all (XXX(t)
〈r〉,Θ

(t)) ∈ P(t) do
6: T ← CalculateParameter(XXX

(t)
〈r〉)

7: P(t−1) ← P(t−1) ∪
{
(RRR−1

t XXX
(t)
〈r〉 /RRR

−1
t , (θt,Θ

(t)
1 ,Θ

(t)
2 , · · · ,Θ

(t)
m−t)) |

RRRt = cos
(

θt

2

)
− sin

(
θt

2

)
PPP

(t)
〈2〉, and θt ∈ T

}
8: end for
9: end for

10: return
{
Θ(0) | (XXX(0)

〈r〉,Θ
(0)) ∈ P(0)

}
Figure 5.2: The algorithm used to map an input r-blade XXX〈r〉 to P

m (Equation 4.10). The
procedure returns a set of parameter vectors Θ(0) ∈ Pm characterizing the p-blades that
are contained by XXX〈r〉.

at least one vector factor with each space of possibilities at each row of the trees (not
necessarily a basis vector, but a vector in the space of possibilities). At the first row of
Figure 5.1, XXX(0)

〈r〉 must include vvv1 = eee2 and vvv2 = eee4.
In its first step (Figure 5.2, line 1), the mapping procedure initializes a set P(m) with a

2-tuple comprised by the input bladeXXX〈r〉 and an empty set (∅) denoting that no parameter
was calculated yet. At each iteration (lines 2 to 9, for t = m down to 1) the 2-tuples in
P(t) are processed and a new set P(t−1) is created. For each 2-tuples in P(t) (inner loop,
lines 5 to 8), the procedure CalculateParameter (defined in Figure 5.4) calculates the
parameter θt for the CCC

(t)
〈p〉 blades related to XXX

(t)
〈r〉. Recall that a given input blade XXX〈r〉

can lead to one or more parameter vectors, and hence one or more blades CCC〈p〉 ∈ C. It
depends on how many p-blades are related to XXX〈r〉. Calculating the t-th parameter implies
identifying the ccc

(t)
l vectors in Equation 5.6, for the current t, and computing the RRRt that

ensures the existence of vectors

ccc
(t−1)
l = RRR−1

t ccc
(t)
l /RRR−1

t

inside their respective FFF(t−1)
l spaces. In other words, computing the value for θt consists

of guaranteeing that each tree of possibilities includes at least one vector of XXX(t)
〈r〉 for all t

values.
When θt is being calculated it can assume a single value (i.e., it is computed from

input data) or assume all values in [−π/2,π/2) (i.e., it is arbitrated). Given the discrete
nature of the accumulator array, to assume all values in [−π/2,π/2) means replicate the
current 2-tuple being processed and assign a discrete value in the [−π/2,π/2) range to
each one of the replicas. The possible values for θt define the set T and are computed
by the CalculateParameter function (line 6). Once θt is known, its related rotation
must be rolled back from the input blade in order to not affect the computation of θt−1

(see the sandwiching construction RRR−1
t XXX

(t)
〈r〉 /RRR

−1
t in line 7, where PPP

(t)
〈2〉 is the rotation

plane of the t-th rotation applied to EEE〈p〉 in Equation 5.3). Also, the parameter vector
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Figure 5.3: A 2-dimensional Euclidean subspace XXX〈2〉 (a) mapped to the parameter
space (b) characterizing vectors in R3. Each point of the curve in (b) represents a vector
contained by XXX〈2〉 in (a).

must be updated (see (θt,Θ
(t)
1 ,Θ

(t)
2 , · · · ,Θ

(t)
m−t) in line 7) by including the new parameter

value θt with the other parameters {Θ(t)
k }m−t

k=1 computed so far. At the end of the process
(line 10), XXX(0)

〈r〉 ⊇ EEE〈p〉 for all (XXX(0)
〈r〉,Θ

(0)) ∈ P(0), where Θ(0) is a parameter vectors result-

ing from mappingXXX〈r〉 to Pm. Note thatRRR−1
t XXX

(t)
〈r〉 /RRR

−1
t in line 7 can be further simplified

to R̃RRtXXX
(t)
〈r〉RRRt. The inverse (RRR−1

t ) is used in the algorithm in order to emphasizes that a

rotation is being rolled back from XXX
(t)
〈r〉.

Figure 5.3 shows a set of parameter vectors (the points defining the curve in Fig-
ure 5.3b) resulting from mapping a 2-blade (XXX〈2〉 in Figure 5.3a) to the parameter space
for 1-blades in R3, thus r = 2, p = 1, n = 3, and m = 1 (3− 1) = 2. In this case, an
input blade maps to several points in the parameter space because a 2-dimensional linear
space is comprised by an infinite set of vectors. Note that the parameter space is defined
onto a periodic domain. Therefore, curves resulting from mapping input data can appear
discontinuous regarding a single [−π/2,π/2)× [−π/2,π/2) period. In this example, the
parameter θ3,1 (or θ2 in single-index notation) was arbitrated by theCalculateParameter
function in the first iteration of the mapping procedure (the outer loop in Figure 5.2). Note
that there are points covering the entire [−π/2,π/2) range of θ3,1. The parameter θ3,2 (or
θ1) was computed in the second iteration of the algorithm as a single value for each pos-
sible θ3,1 value arbitrated previously.

In conventional HTs the input data type is known a priori. Thus, conventional map-
ping procedures predefine which parameters must be arbitrated and which ones must be
computed. The proposed approach, on the other hand, does not have prior information
about input data. It decides at runtime how to treat each parameter θt. Such a behavior is
key for the generality of the proposed subspace detection framework. Another practical
advantage is the ability to check at runtime which parameters can be arbitrated and which
ones need to be computed to handle the gimbal lock problem. The rotations at gimbal
lock are always arbitrated because they do not affect the attitude of related input and re-
sulting blades. For the case where the input data type is known a priori, one can predict
how the mapping procedure handles the parameters and apply the same treatment to each
input blade. This way, the computational load of the technique can be reduced.

The CalculateParameter function is presented in Figure 5.4. It takes as input the
blade YYY(t), computed in Figure 5.2 as XXX(t)

〈r〉. In this algorithm, the input blade is denoted
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by YYY(t) instead of XXX(t)
〈r〉 because its dimensionality may be changed while executing the

procedure.
The function in Figure 5.4 is iterative (see the loop in lines 4 to 16). In line 5 it creates a

setM containing the intersection (meet) ofYYY(t) with the spaces of possibilitiesFFF(t)
l . Here

we are concerned with the intersections (MMM(t)
l ) whose vector factors can be associated

to well defined FFF
(t)
l ’s at current t. These intersections define the set N in line 6, where

S is a set comprised by blades MMM(t)
h that are not orthogonal to MMM

(t)
l and have the same

dimensionality as MMM(t)
l . As a result, a 1-bladeMMM(t)

l ∈ N is related (exclusively) to the l-th
space of possibilities, while a 2-blade MMM(t)

l ∈ N is related to two well-defined spaces of
possibilities and so on. When N is empty (line 7), θt assumes all value in [−π/2, π/2)
and the procedure stops. Assuming all values in [−π/2, π/2) means that all rotation
values keep at least one vector factor ofXXX(t−1)

〈r〉 = RRR−1
t XXX

(t)
〈r〉 /RRR

−1
t (Equation 5.2) inside the

(t− 1)-th spaces of possibilities. Therefore, the condition depicted in Equation 5.1 will
be respected. However, when N is not empty it must be ensured that 1-blades MMM(t)

l ∈ N
contained in FFF

(t)
l will also be contained in FFF

(t−1)
l after rolling back RRRt from them. Thus,

the set O (line 10) is defined as containing the vectors in N that can potentially “leave”
FFF

(t−1)
l . Notice that it may happens only when the dimensionality of FFF(t−1)

l is smaller than
the dimensionality of FFF(t)

l . The vector

rrr
(t)
l = FFF

(t−1)
l 	FFF(t)

l (5.7)

in Figure 5.4 (line 3) represents the additional dimension of FFF(t)
l . An example of rrr(t)l in

Figure 5.1a is vector eee3 at t = 2 and t = 3.
In line 11, the set Q is comprised by the nonzero vectors qqq(t)l resulting from the con-

traction of vectors mmm(t)
l ∈ O onto the rotation plane PPP(t)

〈2〉. When qqq
(t)
l is zero, it means that

mmm
(t)
l is orthogonal to PPP

(t)
〈2〉 and, thus, it is not affected by a rotation in PPP

(t)
〈2〉 and cannot

leave FFF(t−1)
l . However, when qqq

(t)
l is not zero there is a single rotation angle θt that makes

RRR−1
t mmm

(t)
l /RRR−1 be insideFFF(t−1)

l . Such angle is computed in line 13 from the outer product:

qqq
(t)
l ∧ rrr

(t)
l = −α sin

(
θt
)
PPP

(t)
〈2〉 (5.8)

and the scalar product:
qqq
(t)
l ∗ rrr

(t)
l = α cos θt (5.9)

of qqq(t)l and rrr
(t)
l . The vector qqq(t)l is orthogonal to mmm

(t)
l and is contained in plane PPP

(t)
〈2〉, as

one would expect from the left contraction in line 11. α is the product of the weights
of qqq(t)l and rrr

(t)
l , and θt is the smallest angle between qqq

(t)
l and rrr

(t)
l . The rotation angle θt

that makes rrr(t)l parallel to qqq
(t)
l is the only rotation angle that respects the condition in

Equation 5.1 after rolling back rotation RRRt from XXX
(t)
〈r〉. This is because it ensures that

RRR−1
t mmm

(t)
l /RRR−1

t will be included in FFF
(t−1)
l . The vector rrr(t)l is included in PPP

(t)
〈2〉 and FFF

(t)
l , but

it is not included in FFF
(t−1)
l . By orthogonality, as qqq(t)l gets parallel to rrr

(t)
l and goes out of

the tree of possibilities,mmm(t)
l keeps inside of the related tree. As in line 13:

θt = tan−1

⎛⎝
(
qqq
(t)
l ∧ rrr

(t)
l

)
∗PPP(t)

〈2〉

qqq
(t)
l ∗ rrr

(t)
l

⎞⎠ . (5.10)
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Require: YYY(t), the current input blade
1: Let PPP(t)

〈2〉 be the rotation plane of the t-th rotation applied to EEE〈p〉 in Equation 5.3

2: Let FFF(t)
l be a space of possibilities as defined in Equation 5.5

3: Let rrr(t)l ← FFF
(t−1)
l 	FFF(t)

l , i.e., the vector factor in FFF
(t)
l that is not in FFF

(t−1)
l

4: loop
5: M←

{
(YYY(t) ∩FFF(t)

l ) | l ∈ Z, and 1 ≤ l ≤ |E|
}

6: N ←
{
MMM

(t)
l |MMM

(t)
l ∈M, and grade (MMM

(t)
l ) = |S| ,

where S ←
{
MMM

(t)
h |MMM

(t)
h ∈M, and MMM

(t)
l ∗MMM

(t)
h �= 0

}}
7: ifN = ∅ then
8: return

{
θt | θt ∈ [−π/2,π/2)

}
9: end if

10: O ←
{
MMM

(t)
l |MMM

(t)
l ∈ N , and grade (MMM

(t)
l ) = 1, and grade (rrr

(t)
l ) = 1

}
11: Q ←

{
qqq
(t)
l | qqq

(t)
l = (mmm

(t)
l 	PPP

(t)
〈2〉), and mmm

(t)
l ∈ O, and qqq

(t)
l �= 0

}
12: ifQ �= ∅ then
13: return

{
θt | θt = tan−1

(
((qqq

(t)
l ∧ rrr

(t)
l ) ∗PPP(t)

〈2〉) / (qqq
(t)
l ∗ rrr

(t)
l )
)

,

where qqq(t)l is one of the vectors inQ
}

14: end if
15: YYY(t) ← (MMM

(t)
l )−1 	YYY(t), where MMM(t)

l is the blade with the highest dimensionality
in the setN

16: end loop

Figure 5.4: Function CalculateParameter. It complements the mapping procedure in
Figure 5.2. The algorithm takes as input a r-blade YYY(t) and determines if the t-th param-
eter in Θ(0) (Figure 5.2, line 10) can be computed from YYY(t) or if it must be arbitrated.

By replacing Equations 5.8 and 5.9 in Equation 5.10, it follows that:

θt = tan−1

⎛⎝α sin (θt)
(
−PPP(t)

〈2〉 ∗PPP
(t)
〈2〉
)

α cos θt

⎞⎠ = tan−1

(
α sin θt

α cos θt

)
= tan−1

(
sin θt

cos θt

)
.

If the set Q is empty, then there is no vector qqq(t)l to be used to compute θt. In such a
case, the input blade YYY(t) is updated (line 15) by removing from YYY(t) its highest dimen-
sional portion that certainly will not “leave” the related spaces of possibilities after rolling
back RRRt for any value of θt.

The procedure in Figure 5.4 executes p iterations in the worst case. This happens
when YYY(t) is updated, at each iteration, by contracting (in line 15) only one of the factors
shared with CCC

(t)
〈p〉.

5.2 Mapping Procedure for r ≤ p

For the case involving r ≤ p, one can explore the dual relationship between k-dimen-
sional and (n− k)-dimensional subspaces (Section 3.6) in order to compute the parameter
vectors of blades in C. By takingXXX∗

〈r〉 as input andEEE∗
〈p〉 as reference blade, the containment

relationship between XXX〈r〉 and the elements in C changes from:

XXX〈r〉 ⊆ CCC〈p〉
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to
XXX∗

〈r〉 ⊇ CCC∗
〈p〉,

reducing the mapping problem to the case described in Section 5.1. It is important to
notice that when r ≤ p one needs to use the set E\{eeei}ni=1 while defining the trees of
possibilities, because it contains the basis vectors spanningEEE∗

〈p〉.

5.3 Case Study: Mapping a Point to the Parameter Space for Straight
Lines in 3-Dimensional Base Space

Section 4.1 presents how the proposed function (Equation 4.9) for modeling p-dimen-
sional subspaces in some n-dimensional space is defined in order to avoid ambiguous
representations for modeled subspaces. It is illustrated with an example where the ho-
mogeneous MOG (Section 3.9.2) over a 3-dimensional base space is assumed, leading
to n = 3 + 1 = 4 (the dimensionality of the representational space). In Section 4.1, it
is shown that the parameterization of 2-blades (thus, p = 2) geometrically interpreted
as straight lines in the MOG is defined from the parameters of pairs of pseudovectors
(3-blades interpreted as planes) containing them. The current section extends such an
example by discussing the case study of mapping the vector

xxx = 0.5eee1 + 0.3eee2 +eee4 ∈ R
4 (5.11)

to the parameter space P
4 (Equation 4.10) defined for p = 2 and n = 4. Recall from

Section 4.1 that {eee1,eee2,eee3,eee4} are the vectors of the representational space, and eee4 is
geometrically interpreted as the point at the origin of the 3-dimensional base space. Under
the homogeneous MOG, xxx (Equation 5.11) is geometrically interpreted as a proper point
at the location (0.5, 0.3, 0.0) of the base space.

The algorithm that maps input r-blades to P
m is presented in Figures 5.2 and 5.4, and

it is described in Section 5.1. The mapping algorithm is defined for input subspaces hav-
ing dimensionality greater or equal to the dimensionality of intended subspaces. However,
in the current example, the input subspace (xxx) is one-dimensional, while the intended sub-
spaces interpreted as straight lines are bidimensional in the assumed MOG. Thus, accord-
ing to Section 5.2, one needs to take the dual of xxx as the used input (XXX〈r〉 in Figure 5.2),
and to use the dual of eee∗2 ∨ eee∗4 (i.e., the reference subspace for 2-blades, see Equation 4.18)
as reference blade (EEE〈p〉 in Figures 5.2 and 5.4). By doing so:

XXX〈4−1〉 = xxx∗ = 0.5eee2 ∧ eee3 ∧ eee4 − 0.3eee1 ∧ eee3 ∧ eee4 − eee1 ∧ eee2 ∧ eee3 (5.12)

and
EEE〈4−2〉 = (eee∗2 ∨ eee∗4)

∗ = −eee2 ∧ eee4, (5.13)

reducing the mapping procedure to the case described in Section 5.1 (i.e., r ≥ p, be-
cause r = 4− 1 = 3 in Equation 5.12, and p = 4− 2 = 2 in Equation 5.13). From the
basis vectors spanning the reference blade EEE〈4−2〉 (Equation 5.13), it follows that the set
E = {eee2,eee4}. In this case, the spaces of possibilities FFF(t)

l of vectors vvvl ∈ E (used in Fig-
ure 5.4) are the ones depicted in Figure 5.1.

In the first step of the mapping algorithm (Figure 5.2, line 1), the setP(4) is initialized:

P(4) =
{
(XXX〈4−1〉,∅)

}
,
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where XXX〈4−1〉 is given by Equation 5.12. The (single) 2-tuple in P(4) is processed during
the first iteration of the loop (line 2 to 9, for t = 4), resulting in the set P(3). In line 6, the
CalculateParameter function is called in order to determine if the 4th coordinate of the
resulting parameter vectors (θ4) can be computed from XXX〈4−1〉 or if it must be arbitrated.
In this case, the parameter is arbitrated. Notice, by looking to the line t = 4 of Figure 5.1,
that there is no rotation on plane PPP

(4)
〈2〉 = eee2 ∧ eee1 that, when applied to XXX〈4−1〉, makes the

transformed input subspace leave some of the trees of possibilities by complete at t = 3.
Actually, there is no 3-blade that can be spanned outside some of the spaces of possibilities
at t = 3. The space of possibilitiesFFF(3)

1 = eee1 ∧ eee2 ∧ eee3, for instance, does not include only
one of the dimensions of the total 4-dimensional space (i.e., eee4, in Figure 5.1a, for t = 3).
The same happens to FFF

(3)
2 = eee2 ∧ eee3 ∧ eee4, where only the dimension eee1 is missing. Also,

the dimension not included by FFF
(3)
1 is included by FFF

(3)
2 , and vice-versa.

In this case study, the step for defining the linear discretization of the parameter space
is π/6. By arbitrating the value of the 4th parameter (θ4):

T =
{
−π

2
,−π

3
,−π

6
, 0, π

6
, π

3

}
,

in line 6, and P(3) is comprised by six 2-tuples:

P(3) =
{
( 0.30eee2 ∧ eee3 ∧ eee4 + 0.50eee1 ∧ eee3 ∧ eee4 − eee1 ∧ eee2 ∧ eee3, (−π

2
)),

( 0.51eee2 ∧ eee3 ∧ eee4 + 0.28eee1 ∧ eee3 ∧ eee4 − eee1 ∧ eee2 ∧ eee3, (−π
3
)),

( 0.58eee2 ∧ eee3 ∧ eee4 − 0.01eee1 ∧ eee3 ∧ eee4 − eee1 ∧ eee2 ∧ eee3, (−π
6
)),

( 0.50eee2 ∧ eee3 ∧ eee4 − 0.30eee1 ∧ eee3 ∧ eee4 − eee1 ∧ eee2 ∧ eee3, ( 0)),

( 0.28eee2 ∧ eee3 ∧ eee4 − 0.51eee1 ∧ eee3 ∧ eee4 − eee1 ∧ eee2 ∧ eee3, ( π
6
)),

(−0.01eee2 ∧ eee3 ∧ eee4 − 0.58eee1 ∧ eee3 ∧ eee4 − eee1 ∧ eee2 ∧ eee3, ( π
3
))
}

.

(5.14)

It is important to comment that the coefficients of the blades (the first entry of the tuples
in P(3)) were rounded to two digits after the decimal point in order to fit the page. In
practice, 32-bit floating-point representations have being used in the computations.

In the second iteration of the outer loop (Figure 5.2, line 2 to 9), t = 3. Each element
in P(3) is processed during the inner loop (line 5 to 8), resulting in the set P(2). For
all these elements, the current parameter (θ3) is arbitrated by the CalculateParameter
function for the same reasons as in previous iteration: there is no 3-blade that can be
spanned outside the spaces of possibilities at t = 2, and FFF

(2)
1 = eee1 ∧ eee2 and FFF

(2)
2 = eee3 ∧ eee4

are complementary with respect to the whole space. As a result, P(2) is comprised by 36
tuples (i.e., each one of the six elements in P(3) creates six elements in P(2)). The six new
tuples related to the first 2-tuple in Equation 5.14 are presented next. The other tuples are
omitted for sake of simplicity:

P(2) =
{

(0.3eee2 ∧ eee3 ∧ eee4 + 0.50eee1 ∧ eee2 ∧ eee4 − eee1 ∧ eee2 ∧ eee3, (−π
2
,−π

2
)),

(0.3eee2 ∧ eee3 ∧ eee4 + 0.25eee1 ∧ eee3 ∧ eee4 + 0.43eee1 ∧ eee2 ∧ eee4 − eee1 ∧ eee2 ∧ eee3, (−π
3
,−π

2
)),

(0.3eee2 ∧ eee3 ∧ eee4 + 0.43eee1 ∧ eee3 ∧ eee4 + 0.25eee1 ∧ eee2 ∧ eee4 − eee1 ∧ eee2 ∧ eee3, (−π
6
,−π

2
)),

(0.3eee2 ∧ eee3 ∧ eee4 + 0.50eee1 ∧ eee3 ∧ eee4 − eee1 ∧ eee2 ∧ eee3, ( 0,−π
2
)),

(0.3eee2 ∧ eee3 ∧ eee4 + 0.43eee1 ∧ eee3 ∧ eee4 − 0.25eee1 ∧ eee2 ∧ eee4 − eee1 ∧ eee2 ∧ eee3, ( π
6
,−π

2
)),

(0.3eee2 ∧ eee3 ∧ eee4 + 0.25eee1 ∧ eee3 ∧ eee4 − 0.43eee1 ∧ eee2 ∧ eee4 − eee1 ∧ eee2 ∧ eee3, ( π
3
,−π

2
)), · · ·

}
.
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It is important to emphasize that the CalculateParameter procedure (Figure 5.4) is
capable to identify that parameters θ4 and θ3 must be arbitrated in the current case study.
However, in order to avoid the tedious repetition of the procedure, such an identification
was performed up to this point by using some geometric intuition about spaces of possibil-
ities and the dimensionality of the given input blade rather than by running the algorithm
in Figure 5.4 step-by-step. For the next iteration in Figure 5.2, the CalculateParameter
function must be evaluated in order to compute a single value for θ2. It is because there is
no guarantee that all possible rotations on plane PPP(2)

〈2〉 = eee4 ∧ eee3 (Figure 5.1, t = 2) make
the transformed input subspace keep at least one vector factor inside each space of pos-
sibilities for t = 1 (FFF(1)

1 = eee1 ∧ eee2, and FFF
(1)
2 = eee4 in Figure 5.1). For instance, by making

θ2 = −π/2, the blade related to the first tuple in P(2) would be transformed from:

XXX
(2)
〈4−1〉 = 0.3eee2 ∧ eee3 ∧ eee4 + 0.50eee1 ∧ eee2 ∧ eee4 − eee1 ∧ eee2 ∧ eee3, (5.15)

to:

XXX
(1)
〈4−1〉 = RRR−1

2 XXX
(2)
〈4−1〉 /RRR

−1
2

= 0.3eee2 ∧ eee3 ∧ eee4 − 0.5eee1 ∧ eee2 ∧ eee4 + eee1 ∧ eee2 ∧ eee3,
(5.16)

which has no common vector factor withFFF(1)
2 = eee4 (Figure 5.1b, t = 1). In Equation 5.16,

RRR2 = cos
(
−π
4

)
− sin

(
−π
4

)
eee4 ∧ eee3.

In the third iteration of the mapping procedure, t = 2, and the inner loop processes
each element in P(2). The first tuple in P(2) is XXX(2)

〈4−1〉 (Equation 5.15). In line 6 of Fig-

ure 5.2, the CalculateParameter function is called having XXX
(2)
〈4−1〉 as argument, making:

YYY(2) = XXX
(2)
〈4−1〉 = 0.3eee2 ∧ eee3 ∧ eee4 + 0.50eee1 ∧ eee2 ∧ eee4 − eee1 ∧ eee2 ∧ eee3 (5.17)

in Figure 5.4. The set M is created in line 5 of Figure 5.4 as the set of subspaces
resulting from the intersection of YYY(2) (Equation 5.17) with the spaces of possibilities
FFF

(2)
1 = eee1 ∧ eee2 and FFF

(2)
2 = eee3 ∧ eee4:

M =
{
YYY(2) ∩FFF(2)

1 = eee2,

YYY(2) ∩FFF(2)
2 = 0.8eee3 − 0.4eee4

}
.

(5.18)

Both subspaces inM are associated with well defined spaces of possibilities. Notice that
eee2 is contained only in FFF

(2)
1 , while 0.8eee3 − 0.4eee4 is related exclusively to FFF

(2)
2 . Thus,

according to line 6 of Figure 5.4, the set N is defined as N =M. Since N is not empty,
it follows from line 10 that:

O =
{
0.8eee3 − 0.4eee4

}
, (5.19)

because the only tree of possibilities whose spaces of possibilities change the dimension-
ality from t = 2 to t = 1 is the one in Figure 5.1b. This way, the set Q is computed in
line 11 as:

Q =
{
(0.8eee3 − 0.4eee4) 	 (eee4 ∧ eee3) = −0.4eee3 − 0.8eee4

}
. (5.20)
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Finally, the 2nd parameter (θ2) can be computed in line 13 from the vector in Q and the
reference vector rrr(2)2 = −eee3 as:

θ2 = tan−1

(
(qqq

(2)
l ∧ rrr

(2)
l ) ∗PPP(2)

〈2〉

qqq
(2)
l ∗ rrr

(2)
2

)

= tan−1

(
((−0.4eee3 − 0.8eee4) ∧ (−eee3)) ∗ (eee4 ∧ eee3)

(−0.4eee3 − 0.8eee4) ∗ (−eee3)

)
= tan−1

(
−0.8
0.4

)
= −1.1071.

(5.21)

The current parameter (θ2) is computed for each element in P(2) in the same way
as presented for XXX(2)

〈4−1〉 in Equations 5.17 to 5.21. After the tuples in P(2) have being
processed by the mapping procedure (Figure 5.2), the resulting set P(1) is:

P(1) =
{

(0.3eee2 ∧ eee3 ∧ eee4 + 1.12eee1 ∧ eee2 ∧ eee4, (−1.11,−π
2
,−π

2
)),

(0.3eee2 ∧ eee3 ∧ eee4 + 0.25eee1 ∧ eee3 ∧ eee4 + 1.09eee1 ∧ eee2 ∧ eee4, (−1.16,−π
3
,−π

2
)),

(0.3eee2 ∧ eee3 ∧ eee4 + 0.43eee1 ∧ eee3 ∧ eee4 + 1.03eee1 ∧ eee2 ∧ eee4, (−1.33,−π
6
,−π

2
)),

(0.3eee2 ∧ eee3 ∧ eee4 + 0.50eee1 ∧ eee3 ∧ eee4 + 1.00eee1 ∧ eee2 ∧ eee4, (−1.57, 0,−π
2
)),

(0.3eee2 ∧ eee3 ∧ eee4 + 0.43eee1 ∧ eee3 ∧ eee4 − 1.03eee1 ∧ eee2 ∧ eee4, ( 1.33, π
6
,−π

2
)),

(0.3eee2 ∧ eee3 ∧ eee4 + 0.25eee1 ∧ eee3 ∧ eee4 − 1.09eee1 ∧ eee2 ∧ eee4, ( 1.16, π
3
,−π

2
)), · · ·

}
.

(5.22)

At this point, the three last parameters of the 2-dimensional subspaces (interpreted as
straight lines) related to the input blade xxx were calculated. Section 4.1 has been shown
that those parameters are related to the pseudovector defining the distance of the line
to the origin of the base space (i.e., they are related to the plane GGG〈3〉 in Figure 4.2a).
Those parameters are also related to the direction of the intended lines, up to one degree
of freedom defining FFF〈3〉. Such a degree of freedom is represented by the parameter θ1,
computed at the last iteration of the mapping procedure.

In the last iteration, the 2-tuples in P(1) (Equation 5.22) are processed by the mapping
algorithm in order to create the set P(0) with blades XXX(0)

〈4−1〉 and the resulting parameter
vectors. In this case study, the parameter θ1 assumes a single value for each one of the
blades in P(1). After the end of the last iteration, the set P(0) is given by:

P(0) =
{
(0.30eee2 ∧ eee3 ∧ eee4 + 1.12eee1 ∧ eee2 ∧ eee4, (0.00,−1.11,−π

2
,−π

2
)),

(0.39eee2 ∧ eee3 ∧ eee4 + 1.09eee1 ∧ eee2 ∧ eee4, (0.69,−1.16,−π
3
,−π

2
)),

(0.53eee2 ∧ eee3 ∧ eee4 + 1.03eee1 ∧ eee2 ∧ eee4, (0.96,−1.33,−π
6
,−π

2
)),

(0.58eee2 ∧ eee3 ∧ eee4 + 1.00eee1 ∧ eee2 ∧ eee4, (1.03,−1.57, 0,−π
2
)),

(0.53eee2 ∧ eee3 ∧ eee4 − 1.03eee1 ∧ eee2 ∧ eee4, (0.96, 1.33, π
6
,−π

2
)),

(0.39eee2 ∧ eee3 ∧ eee4 − 1.09eee1 ∧ eee2 ∧ eee4, (0.69, 1.16, π
3
,−π

2
)), · · ·

}
,

and the resulting parameter vectors (Figure 5.2, line 10) are:{
(0.00,−1.11,−π

2
,−π

2
), (0.69,−1.16,−π

3
,−π

2
), (0.96,−1.33,−π

6
,−π

2
),

(1.03,−1.57, 0,−π
2
), (0.96, 1.33, π

6
,−π

2
), (0.69, 1.16, π

3
,−π

2
), · · ·

}
.
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It is important to emphasize that the actual geometric interpretation of the input blades
or of the intended subspaces were not taken into account while performing the mapping
procedure. From our experience, it is being difficult to express the relation among the
computation of the parameters used in the proposed subspace detection scheme and the
computation of the ones from conventional parameterizations. It was observed that it is
better to always think about Euclidean subspaces rather than specific geometric shapes in
order to understand the computational chain or while extending the proposed framework.

5.4 Voting Procedure

Mapping an input blade XXX〈r〉 to parameter space Pm would result in a continuous
curve/surface in Pm. Thus, the use of a discrete representation of the parameter space
requires a voting procedure for rasterizing the continuous structure and incrementing the
related bins in the accumulator array. The simplest way to perform the rasterization is by
setting the values of arbitrated parameters according to the discretization of Pm, and by
rounding the computed parameters to their closest discrete values. In this way, a continu-
ous structure is approximated by a set of discrete point samples, and the incrementing is
performed by adding the importance value ω of XXX〈r〉 to the bins addressed by the coordi-
nates of the samples. However, an improper choice of discretization values may lead to
the identification of sparse bins in the accumulator array. Figures 5.5a and 5.5c illustrate
this situation in the accumulator arrays produced for, respectively, straight line detection
and circle detection from a single input point. In Figure 5.5a the homogeneous MOG
(Section 3.9.2) over a 2-dimensional base space is assumed, leading to n = 2 + 1 = 3
(the dimensionality of the representational space), p = 2 (the dimensionality of blades
interpreted as straight lines in the MOG), m = 2 (3 = 2) = 2 (the dimensionality of the
parameter space), and r = 1 (the dimensionality of the input vector interpreted as a point).
In Figure 5.5c the parameter space for circles in conformal MOG (Section 3.9.3) is pre-
sented, where n = 2 + 2 = 4, p = 3, m = 3 (4− 3) = 3, and r = 1. In both examples,
the step for defining the linear discretization of the parameter spaces is π/180. Note how
the representation of the continuous structures is compromised as θ3,2 in Figure 5.5a and
θ4,3 in Figure 5.5c approach π/2. In these examples, the range of values for θ3,2 and θ4,3

have been translated from [−π/2, π/2) to [0, π) in order to improve the visualization of
gaps in the rasterized structures.

A more accurate representation of curves and surfaces in the accumulator array can
be obtained using a small discretization step. However, such an approach may lead to
excessive use of memory to allocate the accumulator array, especially for higher dimen-
sional parameter spaces (i.e., when m > 2). Also, it has been shown by van Veen and
Groen (1981), and Lam et al. (1994), that improper choice of discretization values in
conventional HTs (and hence in the generalization describe in this dissertation) may lead
to unsharp or multiple peaks of votes. When the parameter space is poorly discretized
the bins may be too big and represent too many instances of the intended data alignment,
preventing the accurate detection of the intended shapes. On the other hand, when the
bins are too small the votes will fall in the neighboring bins, thus reducing the visibility
of the main peaks of votes.

The solution proposed in this work is to use a not so small discretization step defined
empirically for a given detection case, and to perform linear interpolation among samples
(points) on the continuous curves/surfaces in order to avoid gaps. The results of the inter-
polation for the examples depicted in Figures 5.5a and 5.5c are presented in Figures 5.5b
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Figure 5.5: An improper choice of discretization values may lead to discontinuities in the
representation of continuous curves and surfaces in the accumulator array. The accumu-
lator array for the detection of straight lines in the 2-dimensional homogeneous MOG is
presented in (a) and (b). The curve represents all the straight lines passing through a given
input point. In (a) a naive voting procedure was performed. Note how the discretization
step of π/180 produces a set of sparse samples on the curve. In (b) the voting is performed
by interpolating pairs of neighbor samples. The problem of discontinuity can also be ob-
served in (c), where the surface should represent all the circles passing through a given
point encoded in the conformal MOG. In (d) the problem is corrected using interpolation.

and 5.5d, respectively. The interpolation-based voting procedure takes a given input blade
XXX〈r〉 and uses the mapping scheme described in Sections 5.1 and 5.2 to identify in Pm a set
of samples (points) on the curve/surface related toXXX〈r〉. The arbitrated parameters receive
values according to the discretization of Pm, while the other parameters receive the values
computed regarding the continuous domain (i.e., rounding is not performed as in the naive
voting procedure). A mesh of k-simplices (e.g., a 0-simplex is a point, a 1-simplex is a
straight line segment, a 2-simplex is a triangle, and so on) is created by connecting neigh-
bor samples, and the bins are incremented according to the rasterization of such a mesh.
The dimensionality of simplices (k) is determined by the number of arbitrated parameters.
Therefore, when no parameter is arbitrated, k = 0 and the voting is performed regarding
a single point in Pm. For one (k = 1), two (k = 2) and three (k = 3) arbitrated parameter
the voting procedure rasterizes, respectively, a polygonal line, a mesh of triangles and
a mesh of tetrahedra. Notice that to tessellate a mesh of simplices from the samples is
straightforward because the neighborhood of a sample is known from the arbitrated pa-
rameter values. Thus, from a set of 2k neighbor samples one can build a k-dimensional
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cube and use a precomputed tessellation of the cube to define a piece of the mesh. In the
examples depicted in Figures 5.5a and 5.5b, the parameter θ3,1 was arbitrated, while the
parameter θ3,2 was computed from the values of θ3,1 and the given input blade, leading to
180 samples due to the assumed discretization step π/180. In this example, the samples
on the curve define a polygonal line, whose rasterization is shown in Figure 5.5b.

In the examples presented in this dissertation, the rasterization of a given mesh to the
accumulator array has been performed using a two-stage approach. In the first stage an
auxiliary buffer of Boolean values with the same size of the accumulator array (i.e., the
presence buffer) is initialized with false, indicating that they are not related to any simplex.
The cells of the presence buffer are set to true as the simplices are rasterized to them. The
rasterization is performed using the Standard Model (ANDRES, 2003). The Standard
Model is an analytical description model for the discretization of Euclidean linear objects
(e.g., point, half space, k-flat and k-simplex) in dimension m. The algorithm for the
rasterization of a given k-simplex is presented in Appendix D. In the second stage, the
bins of the accumulator array related to the cells marked with true in the presence buffer
are incremented by the importance ω. The presence buffer helps to avoid incrementing
a single bin multiple times for the same mesh. That could happen, for instance, while
rasterizing simplices sharing a face or vertex directly to the accumulator array.

5.5 Results and Discussion

The mapping and voting procedures introduced in this chapter have been implemented
using C++, and the detection results (as well as all the other images presented in this dis-
sertation) have been displayed with MATLAB� . I have chosen to use my own GA library
(i.e., Geometric Algebra Template Library, GATL) in such proof of concept implementa-
tions. However, any other library implementing the basic products of GA could be used
instead (e.g., Gaigen 2 (FONTIJNE, 2006), GluCat (LEOPARDI, 2009)). The advantage
of using GATL is that it is based on meta-programming with template and is designed to
automatically execute low level algebraic manipulation in the implemented procedures.
This way, GATL is capable to perform some basic optimizations on the program at com-
pile time, as opposed to other solutions (FONTIJNE, 2006) that require an additional
profiling step in order to produce the same kind of optimization.

Figure 5.6b illustrates the accumulator array computed for the straight-line detection
from points ppp1 and ppp2 in Figure 5.6a. In this example the homogeneous MOG over a
2-dimensional base space is assumed, leading to n = 2 + 1 = 3, p = 2, and r = 1. The
importance value (ω) of each input is set to one (i.e., the rasterized curves increment the
related bins of the accumulator array by only one vote). The two curves in Figure 5.6b are
defined by mapping ppp1 and ppp2 to the 2-dimensional parameter space (m = 2 (3− 2) = 2).
In such a mapping, the parameter θ3,1 assumes all values in [−π/2, π/2), while θ3,2 is
computed from θ3,1 and a given input vector. The intersection of the curves in the accu-
mulator array (the bin having two votes) defines the parameter vector related to LLL〈2〉 in
Figure 5.6a. In Figure 5.6b, the accumulator array is obtained as the linear discretization
of the parameter space, using π/180 as discretization step.

The accumulator array for a simple case of circle detection is presented in Figure 5.7b.
For this example, data is being represented in the conformal MOG, leading to p = 3,
n = 2 + 2 = 4, and m = 3 (4− 3) = 3. The points qqq1, qqq2, and qqq3 in Figure 5.7a are used
as input vectors (r = 1). Each input vector maps to a curved surface in parameter space
(see Figure 5.7b). The intersection of the three surfaces defines the parameter vector
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Figure 5.6: Resulting accumulator arrays for a simple detection case of line from points:
(a) In homogeneous MOG, the 2-blade LLL〈2〉 = ppp1 ∧ ppp2 is interpreted as a straight line,
and vectors ppp1 and ppp2 are interpreted as points. (b) Accumulator array resulting from the
straight-line detection using points ppp1 and ppp2 from (a) as input data. The bin with two
votes corresponds to the parameters of LLL〈2〉.

related to CCC〈3〉 in Figure 5.7a. In this example, ω = 1 and the step for linear discretization
of the parameter space is π/180.

Figure 1.1a shows the detection of subspaces geometrically interpreted as the straight
lines that best fit a set of 395,248 vectors interpreted as points under homogeneous MOG.
Those points were generated by supersampling (16×) each one of the 24,703 edge pixels
in Figure 1.1c, obtained from Figure 1.1a after a Canny edge detector (CANNY, 1986)
plus thresholding and thinning. The supersampling is used in order to treat edge pixels as
area elements rather than as point elements, leading to a smoother distribution of votes in
the resulting accumulator array. In this example, the discretization step for defining the
accumulator array is π/900, and the importance value of each input is the magnitude of
the gradient computed by the edge detector.

Figure 1.1b illustrates the detection of circles that best fit a set of 1,353,760 subspaces
encoding tangent directions in conformal MOG. A tangent direction (Table 3.1, column 3,
line 11) is a geometric primitive encoding the subspace tangent to rounds at a given lo-
cation. Therefore, tangent directions have a point-like interpretation, and also direction
information assigned to them. The input tangent directions (2-blades, leading to r = 2)
were computed from 8,461 edge pixels (Figure 1.1d) and their gradient vector directions
(supersampled as 160 random samples per edge pixel to account for ±0.35 radians of
uncertainty on the gradient direction). As in Figure 1.1a, ω is the magnitude of gradient
directions. In order to make the irregular imaged structures become more circular, the
image in Figure 1.1b was convolved with a pillbox filter of radius 5 pixels before edge de-
tection. Retrieved circles having radius larger than 50% the image width were discarded
to avoid detecting the plate. In this example, the accumulator array was defined as the
linear discretization of the parameter space, using π/900 as discretization step.

The use of tangent directions (2-blades) while searching for circles allows a simpler
voting procedure than when using points (1-blades without tangent information), due to
the constraint imposed by the directional information. Figure 5.7c illustrates the result
of the mapping of directions tangent to CCC〈3〉 at points qqq1, qqq2, and qqq3 (Figure 5.7a) to the
parameter space. By comparing the accumulator arrays in Figure 5.7b and Figure 5.7c,
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Figure 5.7: Resulting accumulator arrays for a simple detection case of circle from points
and tangent subspaces: (a) In conformal MOG, the 3-blade CCC〈3〉 = qqq1 ∧ qqq2 ∧ qqq3 is inter-
preted as a circle, and vectors qqq1, qqq2 and qqq3 are interpreted as points. (b) Accumulator
array resulting from circle detection using points qqq1, qqq2, and qqq3 from (a) as input. (c) An-
other circle detection case involving (a). However, for this example the subspaces tangent
to CCC〈3〉 at points qqq1, qqq2, and qqq3 were used as input, leading to a simpler voting procedure.
The bins with three votes in (b) and (c) correspond to the parameters of CCC〈3〉.

one should notice that the directional information of a given tangent direction restricts the
mapping of each input blade to a curve (Figure 5.7c) on the surface related to its respective
point (Figure 5.7b). Such an expected behavior is a natural outcome of the proposed gen-
eral mapping procedure (Section 5.1). The subspace detection from tangent directions in
the conformal MOG corresponds to the generalization of the conventional HTs presented
by O’Gorman and Clowes (1973), and Kimme et al. (1975) (the techniques (8) and (9) in
Figure 2.2).

The mapping procedure described in this dissertation allows the detection of sub-
spaces in heterogeneous datasets. Figure 1.2a presents a synthetic dataset illustrating the
use of homogeneous MOG for detection of lines (p = 2) that best fit a heterogeneous in-
put set comprised by 45 points (r = 1) and 1 plane (r = 3) in a 3-dimensional base space
(leading to n = 3 + 1 = 4, and m = 2 (4− 2) = 4). The task in this example is to de-
tect the lines on the input plane that are also best fit for collinear input points. In order to
solve this problem, the importance of the points was set to ω = 1 and the importance of the
plane to ω = 45 (the number of points). After performing the voting procedure, the bins
in the accumulator array having 47 votes or more represent the lines (on the plane) defined
by at least two points. Notice in Figure 1.2a that one subset of the points clearly defines
a line, but it was not retrieved because such line is not on the plane. This example shows
how the proposed approach can be used to perform more complex coherence queries on
data than conventional HTs. For this example, the accumulator array was defined as the
linear discretization of the parameter space, using π/360 as discretization step.

Some MOGs may represent different geometric shapes with subspaces having the
same dimensionality. In conformal MOG, for instance, lines and circles are 3-dimensional
subspaces, and planes and spheres are 4-dimensional subspaces (Table 3.1). The proposed
approach takes advantage of such a feature, allowing the concurrent detection of all shapes
that have the same dimensionality on a given MOG. Figure 1.2b illustrates this situation,
where 1 plane and 2 spheres (p = 4) are detected simultaneously. In this example the het-
erogeneous (synthetic) dataset is comprised by 43 points (r = 1), 1 straight line (r = 3),
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Figure 5.8: Detection of planes from points encoded into the 3-dimensional homogeneous
MOG. (a) The input dataset is comprised by 2,386 vectors geometrically interpreted as
points. Here, 2,186 of the input vectors define three pseudovectors geometrically inter-
preted as planes, while 200 input vectors characterize noise. (b) Two subspaces inter-
preted as planes are approximated by 1,355 vectors interpreted as points. A subset of
1,500 vectors characterizes noise in the input dataset.

and 3 circles (r = 3) in conformal MOG. The importance values of input blades was set
to one, and the accumulator array was defined by using π/360 as discretization step.

Figure 5.8 shows two synthetic datasets comprised by points encoded into homoge-
neous MOG (n = 3 + 1, and r = 1). The points were randomly distribution on grids in
order to improve the visualization of them as part of some plane to be detected (p = 3).
In Figure 5.8a, 2,186 points are contained by three planes. The dataset also includes
200 uniformly distributed random points characterizing noise. The three detected planes
are shown in orange. Notice that these planes fit the coplanar points. The dataset in
Figure 5.8b is comprised by 1,355 points which approximate two planes, and 1,500 uni-
formly distributed random points (the non-coplanar ones), leading to 2,855 input entries
altogether. The example depicted Figure 5.8b shows that the proposed approach can iden-
tify subspaces even in datasets having noise. In this example, the signal-to-noise ratio is
1.9. For the examples in Figure 5.8, the importance value of input blades was set to one,
and the accumulator array was defined by using π/450 as discretization step (i.e., 450 dis-
crete angular values per axis of the 3-dimensional parameter space).

Figure 5.9 presents two synthetic datasets under conformal MOG (n = 3 + 2). In Fig-
ure 5.9a, 1,821 points (r = 1) define two spheres (p = 4), while 500 points characterize
outliers in the 3-dimensional base space. Altogether, there are 2,321 input entries. Notice
that both spheres where detected. However, they do not fit perfectly to the input data. The
sphere at the right side of Figure 5.9a, for instance, is slightly shifted upwards. It is due
to the coarse discretization step assumed for the accumulator array (π/90 radians). As
a results, each bin of the accumulator array may represent a large set of p-dimensional
subspaces. Figure 5.9b illustrates the detection of a plane and a sphere (p = 4) in an input
set of 3,314 points (r = 1), where 1,500 of such points characterize random noise with
uniform distribution (the signal-to-noise ratio is 2.21).

An approximation of the dth-order Voronoi diagram (VORONOI, 1908) of a set of
points in Rd can be retrieved as byproduct of the detection of subspaces geometrically
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Figure 5.9: Detection of planes and spheres from points encoded into the 3-dimensional
conformal MOG. (a) The input dataset is comprised by 2,321 vectors geometrically in-
terpreted as points. Here, both spheres where detected, but the coarse discretization of
the parameter space leads to a small translation on the sphere at right. (b) The concurrent
detection of one plane and one sphere in a set of 3,314 input points, where 45.26% of such
input entries characterize noise.

interpreted as (d− 1)-spheres (e.g., a 1-sphere is a circle, a 2-sphere is an ordinary
sphere, and so on) in the conformal MOG. Figure 5.10 presents an example in R

2 (thus,
n = 2 + 2 = 4). The points pppi in Figure 5.10a were encoded in conformal MOG and
used as input for the detection of circles (p = 3). Each point maps to a surface in the
3-dimensional parameter space (m = 3 (4− 3) = 3). From the intersection of three or
more surfaces one retrieves the circles passing thought three or more input points. The
centers of the circles having the smaller radius correspond to the vertices of the Voronoi
diagram (points vvvj in Figure 5.10a). As Figure 5.10b shows, such circles reside (in pa-
rameter space) on a surface defined by the superposition of mapped input data. Thus,
the vertices of the diagram can be retrieve just by looking for the bins having the largest
values on that surface (i.e., more than two votes). The bins having two votes correspond
to the circles whose centers are at an edge of the Voronoi diagram (the gray points in
Figure 5.10a). The votes accumulated by the bins below the green surface in Figure 5.10b
are not shown for sake of clarity. In this example, the discretization step for defining the
accumulator array is π/720, and ω = 1.

In order to have an accumulator array which approximates the Voronoi diagram, one
has to assume the following order for the basis vectors of the representational space:

{eee1,eee2, · · · ,eeed,∞∞∞,ooo} .

From this basis, the detection of pseudovectors (i.e., the blades interpreted as (d − 1)-
spheres in conformal MOG) defines

EEE〈d+1〉 = ooo∗ (5.23)

as reference blade (Equation 4.5). EEE〈d+1〉 is geometrically interpreted as a (d− 1)-sphere
of radius zero at the origin of Rd. The dual in Equation 5.23 is computed with respect to
the pseudoscalar III〈d+2〉 = eee1 ∧ eee2 ∧ · · · ∧ eeed ∧∞∞∞∧ ooo, and it is evaluated under Euclidean,
as well as all the computations performed by the proposed technique.
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Figure 5.10: The Voronoi diagram of a set of points can be retrieved from the accumula-
tor array produced while performing circle detection with the conformal MOG: (a) The
vertices (vvvj) and edges (approximated by gray points) of the Voronoi diagram of pointspppi

are defined by the center of circles having no points in their interior and passing through
more than two, and passing through exactly two input points, respectively. (b) These cir-
cles reside on a well defined surface at the parameter space. They can be identified as
the bins, in such surface, having more than two and two votes, respectively. The multiple
detection of vertices vvv6, vvv7 and vvv8 in (a), and the width of the edge between ppp4 and ppp5

are related to the quasi-alignment of the surfaces related to ppp4 and ppp5 in parameter space,
leading to multiple intersections while defining the surface depicted in (b).

The subspace detection scheme defines a sequence of (d+ 1) rotation operations ap-
plied to EEE〈d+1〉. Such rotations happen on planes:

PPP
(1)
〈2〉 = ooo ∧∞∞∞, PPP

(2)
〈2〉 =∞∞∞∧ eeed, PPP

(3)
〈2〉 = eeed ∧ eeed−1, · · · , and PPP

(d+1)
〈2〉 = eee2 ∧ eee1.

The first rotation (on plane PPP
(1)
〈2〉 = ooo ∧∞∞∞) is closely related to the uniform scale opera-

tion. Actually, as the value of rotation angle θ1 (or θ4,3 in double-index notation) increases
from 0 to π, the radius of the (d− 1)-sphereRRR1EEE〈d+1〉 /RRR1 also increases. The other rota-
tions (on planesPPP(2)

〈2〉 toPPP(d+1)
〈2〉 ) are geometrically interpreted as translatingRRR1EEE〈d+1〉 /RRR1

on the base space Rd. By mapping input vectors interpreted as points to the parameter
space, the voting procedure increments the bins of the accumulator array related to such a
mapping. The surface closest to the origin of the parameter space and at the positive side
of the θ1-axis is comprised by the parameter vector of the circles with smaller radius and
including at least one of the input points (i.e., they receive at least one vote). The cells
related to the faces of the Voronoi diagram are the ones receiving d votes, while the cells
representing vertices receive more than d votes.

The idea of using a rasterizing scheme to construct 2-dimensional Voronoi diagrams
of points was first suggested by Haeberli (1990), and efficiently implemented in Graph-
ics Hardware by Hoff et al. (1999). The approach computes the discrete diagram by
Z-buffering right circular cones onto a 2-dimensional canvas. The base of the cones is de-
fined as being parallel to the image plane and the apex points are located at the point sites.
By rendering a polygonal approximation of the cones, all distances across the polygonal
mesh are represented and stored as depth in a Z-buffer. The Z-buffer depth test compares
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the new depth value to the previously stored value. If the new value is less, the Z-buffer
records the new distance, and the frame buffer records the site’s ID as a unique color
assigned to each site. In this way, each pixel in the frame buffer will have a color cor-
responding to the site to which it is closest, and the depth-buffer will have the distance
to that site. After all the cones have being rendered, an approximation of the Voronoi
diagram can be retrieved from the boundaries of the resulting image.

The Voronoi example (Figure 5.10) shows that one can restrict the proposed voting
procedure to a specific region of the parameter space in order to restrict the detection
process to a subset of geometric shapes (e.g., circles with radius in a given range). Note
that such a specialization is driven by the geometric properties of the intended shape.
However, it does not affect the generality of the proposed approach because the map-
ping procedure (Section 5.1) is not affected. By specifying a smaller range of interest in
the parameter space, the memory and computational requirements of the technique are
reduced.

Due to practical issues, the examples presented in this chapter are restricted to the
detection of subspaces encoded in the homogeneous and the conformal MOGs, with 2-
or 3-dimensional base space. It is because the proof of concept implementations of the
described algorithms (Figures 5.2 and 5.4) keep the complete accumulator array allocated
in the main memory, as well as some auxiliary data structures. When the accumulator
array has more than three dimensions, or when the discretization step is too small, the
total memory required by the program can exceed the amount of memory that a process
can allocate. In Windows� XP 32-bit, such a limit is 4 GB per program. By increas-
ing the discretization step, a higher-dimensional accumulator array may be allocated in
some acceptable amount of memory. However, the representation of the subspaces may
be affected by the coarse discretization. This is the case of the detection of subspaces
geometrically interpreted as 2-dimensional conic sections. The MOG used to encode
such geometric shapes as single blades (Section 3.9.4) is defined oven R6, where the di-
mensionality of subspaces interpreted as conic sections is p = 5. As a consequence, the
space of parameters has m = 5 (6− 5) = 5 dimensions. The study of solutions for the
memory-budget problem is a promising direction for future exploration.

For the results presented in this dissertation, the discretization step of the accumulator
arrays was defined according to the number of dimensions of the parameter space. The
assumed criteria was set the discretization step as the smallest value that allows the alloca-
tion of the accumulator array, while respecting the restrictions imposed by the operating
system.
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6 VOTING PROCESS FOR INPUT SUBSPACES
WITH UNCERTAINTY

Experimental data often contain errors due to imprecisions in the instruments used
to collect them. For instance, raster images captured by digital cameras are resolution
dependent, and measurements made with a ruler are based on a discrete set of marks.
Thus, experimental data always contain some uncertainty, as opposed to being the true
measurements.

The uncertainty intrinsic to experimental data can be taken into account while per-
forming subspace detection by supersampling input entries according to their distribution
of uncertainty and, in turn, by processing each sample with the technique described in
Chapter 5. The quality of sampling-based approaches, however, depends on the number
of samples (COWAN, 1998), and the computational load increases as more samples are
used. This chapter presents a technique that avoids brute force sampling by predicting
how the votes should be spread in the parameter space as a result of the uncertainty in
the input data. The spot in Figure 6.1a illustrates 10,000 samples (shown as a histogram)
generated by sampling a given input straight line (a 2-blade in homogeneous MOG, thus
r = 2) with Gaussian distributed uncertainty and mapping the samples to the parameter
space used in line detection (p = 2, n = 2 + 1 = 3, and m = 2 (3− 2) = 2). The enve-
lope, on the other hand, was computed by the approach described in this chapter. With this
approach, the distribution of votes inside the envelope can be efficiently approximated.

The voting scheme presented in this chapter extends the mapping and voting proce-
dures discussed in Chapter 5 by handling input blades with Gaussian distributed uncer-
tainty. The extended mapping procedure is based on first-order error propagation analy-
sis (COWAN, 1998). It transports the uncertainty of each input element throughout the
computations into an auxiliary parameter space where the uncertainty is described by a
multivariate Gaussian distribution (Figure 6.1b). In turn, such a distribution is mapped
to the actual parameter space Pm by the extended voting procedure, leading to warped
(non-Gaussian) distributions of votes in the accumulator array (Figure 6.1a).

A brief introduction to first-order error propagation analysis and how it can be applied
to GA equations is presented in Sections 6.1 and 6.2, respectively. Section 6.3 describes
the mapping procedures for input r-blades with uncertainty. Section 6.4 shows how to
calculate the number of votes to be incremented to each bin in the accumulator array
by projecting the bins from Pm (Figure 6.1a) to the auxiliary space (Figure 6.1b). The
warping of the distribution of votes is a natural consequence of such a mapping.
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6.1 First-Order Error Propagation

According to the error theory, the error e in some experimental value x is given by the
difference of x with respect to the true value xtrue (COWAN, 1998). Therefore, the error
in x is defined as:

e = x− xtrue.

Once xtrue is unknown, it follows that the error e is also an unknown value. Thus, e
can only be estimated with some probability. An experimental uncertain value can be
expressed by a random variable x, where the uncertainty is described by some probability
distribution function (PDF). It is assumed in this chapter that the uncertainty is always
Gaussian, so the PDF is fully determined by its expectation (x) and variance (σ2

x).
If a value y is calculated as a function of parameters x1, x1, · · · , xn, i.e.,

y = f(x1, x1, · · · , xn),

and the input values have error, then y also has error (COWAN, 1998). By expressing the
uncertain data as random scalar variables, it follows that the expectation (mean) of y is
given by:

y = f(x1, x2, · · · , xn).
For the case where the input variables are not correlated, the variance of y can be com-
puted as:

σ2
y =

n∑
i=1

((
∂y

∂xi

)2

σ2
xi

)
,

and when the input variables are correlated, the variance can be approximated using:

σ2
y ≈

n∑
i=1

((
∂y

∂xi

)2

σ2
xi

)
+ 2

n∑
i=1

(
∂y

∂xi

n∑
j=i+1

(
∂y

∂xj
σxi,xj

))
, (6.1)

The covariance σxi,xj
in Equation 6.1 indicates the degree of correlation of two variables.

Equation 6.1 defines the first-order error propagation model for scalar valued ran-
dom variables with Gaussian distributed uncertainty (COWAN, 1998). The model can be
extended to vector-valued random variables. In such a case, Equation 6.1 can be rewritten
in the matrix form in order to simplify the notation:

Σy ≈ Jy Σx J
T
y , (6.2)

where Σx and Σy are the covariance matrices of the vector-valued random variables x and
y, respectively, and �T denotes the transpose of a matrix. In Equation 6.2, Jy is the Jaco-
bian matrix for the function f(x) = y that computes the expectation y of y from the terms
of the expectation x of x. As for random scalar variables, the PDF of a vector-valued ran-
dom variable with Gaussian distributed uncertainty is fully determined by its expectation
and covariance matrix.

It is important to comment that a function of Gaussian distributed random variables
may produce a non-Gaussian distribution. First-order error propagation provides, there-
fore, an approximation of the resulting uncertainty. As pointed out by Cowan (1998) and
Perwass (2009), it should be checked whether the resultant distribution can be approxi-
mated well by a Gaussian distribution. What amount of error is tolerable depends on the
actual application. For cases where the resulting distribution is Gaussian, a better approx-
imation of the uncertainty (or even the correct distribution) can be achieved by extending
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Figure 6.1: The sampling-based versus the error-propagation-based approach. (a) A vi-
sualization of the parameter space P2 for blades interpreted as straight lines in the 2-
dimensional homogeneous MOG. (b) A visualization of the open affine covering A2 for
the Grassmannian of the same kind of subspace. The red spots in (a) and (b) represent
the uncertainty of a given straight line. The distribution is shown as a histogram com-
puted by sampling the input line according to its Gaussian distributed uncertainty and
mapping each sample to P2 (a) and A2 (b). The quality of the sampling-based approach
depends on the number of samples. The envelopes in (a) and (b) were defined analytically
by the error-propagation-based approach. This approach can efficiently approximate the
distribution of uncertainty inside the envelopes.

the first-order error propagation model (Equation 6.2) to higher orders. Note that Equa-
tion 6.2 considers only the first-order derivatives of the function computing y. In order to
obtain the exact result, all derivatives up to order four have to be considered:

Σy = Jy Σx J
T
y + By(Σx). (6.3)

In Equation 6.3, By is a function that computes a bias term related to third- and fourth-order
derivatives. For functions producing Gaussian distributed uncertain values, the derivatives
of orders higher than four have no effect on the error propagation, since they are equal to
zero. See (PERWASS, 2009) for a definition of By to bilinear products in GA.

Latter, in this chapter, it is shown that the first-order error propagation without the
bias term (Equation 6.2) fits well to the proposed subspace detection framework. It is
because input entries are processed individually by the mapping and voting procedures.
In this case, if an input entry has Gaussian distributed uncertainty, such uncertainty will
be kept Gaussian up to a well known stage of the computational flow describe in Sec-
tion 6.3 (i.e., the auxiliary parameter space). After that, the distribution is converted to
non-Gaussian in a natural way through the correspondence between the auxiliary and the
actual parameter space.

6.2 Tensor Representation of Geometric Algebra Operations

First-order error propagation (Section 6.1) can be applied to GA equations by ex-
pressing multivectors as component vectors and GA operations as tensor contrac-
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tions (PERWASS, 2009). With such a representation, the Jacobian matrix in Equation 6.2
can be calculated as for conventional linear algebra equations.

In order to express multivectors as component vectors, let {EEEi}2
n

i=1 be the basis of a
multivector space

∧
Rn. For the example in Equation 3.1:

EEE1 = 1, EEE2 = eee1, EEE3 = eee2,
EEE4 = eee3, EEE5 = eee1 ∧ eee2, EEE6 = eee1 ∧ eee3,
EEE7 = eee2 ∧ eee3, EEE8 = eee1 ∧ eee2 ∧ eee3.

A multivector M ∈
∧
Rn, and hence a blade or a rotor, may then be written as:

M =
2n∑
i=1

(
μiEEEi

)
,

where μi is the i-th component of a vector in R
2n .

The geometric product between two multivectors A and B may be written in terms of
a tensor contraction:

C = AB =
2n∑

i,j,k=1

(
αj βk Γi,j,kEEEi

)
, (6.4)

where EEEi is the i-th basis element of
∧
Rn, {αj}2nj=1 and {βk}2nk=1 are the coefficients of

A and B , respectively, and Γ is a 3rd-rank tensor encoding the geometric product (Sec-
tion 3.5). If C =

∑2n

i=1 (γ
iEEEi) then the relation among {γi}2ni=1, {αj}2nj=1, and {βk}2nk=1 is:

γi =

2n∑
j,k=1

(
αj βk Γi,j,k

)
∀ i ∈ {1, 2, · · · , 2n}.

The computation of the entries of Γ is performed by evaluating the product between
pairs of basis elements, i.e.:

EEEj EEEk = Γi,j,kEEEi ∀ j, k ∈ {1, 2, · · · , 2n}. (6.5)

Notice that entries of the tensor Γ (Equation 6.5) do not depend on the arguments A and B
in Equation 6.4. Thus, Γ can be treated as a constant term while computing the derivatives
in the Jacobian matrix used by the first-order error propagation model.

The same principle depicted in Equation 6.5 can be used to compute a different tensor
for each bilinear product presented in Sections 3.3, 3.4 and 3.5. This is achieved just by
replacing the geometric product in Equation 6.5 by the intended product. In Section 6.3,
the tensor representation of the geometric product and left contraction are denoted
by Γ and Λ, respectively.

Some unary operations may be expressed by 2nd-tensors (i.e., matrices). In Sec-
tion 6.3, Υ denotes the tensor representation of the reverse operation (Equation 3.7):

Ã =

2n∑
i=1

(
αi Υi,iEEEi

)
.

Note that Υ is a diagonal matrix whose entries are either 1 or −1.
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6.3 Mapping Procedure

First-order error propagation (Section 6.1) provides a good approximation for Gaus-
sian distributed uncertainty (COWAN, 1998; PERWASS, 2009). However, Figure 6.1a
clearly shows that the resulting distribution of votes in the parameter space is non-Gaussian.
For instance, it is not symmetric around the mean (marked with a + in Figure 6.1a), and
the main axes are bent. Hence, standard first-order error propagation cannot be applied
directly on the computation chain of the mapping procedure presented in Sections 5.1
and 5.2. The technique described in current section avoids such an issue by includ-
ing an alternative computation flow to propagate the uncertainty through the proce-
dures in Figure 6.2 and Figure 6.3. The alternative computation represents a resulting
parameter vector Θ(0) (Figure 6.2) mapped as the point at the origin of a m-dimensional
open affine covering Am for the Grassmannian G(p,n) (the Grassmannian was introduced
in Section 4.2). This way, the uncertainty of Θ(0) is described by a multivariate Gaussian
distribution at the origin of Am. Figure 6.1b illustrates the affine space and the probability
distribution for the example depicted in Figure 6.1a.

6.3.1 Mapping Procedure for r ≥ p

The procedure that maps input r-blades with uncertainty to the parameter space Pm

characterizing p-dimensional subspaces is presented in Figure 6.2, for r ≥ p. Its com-
plementary CalculateParameterun. function is presented in Figure 6.3. The algorithm
takes as input a random multivector variable XXX〈r〉, whose expectation XXX〈r〉 is a blade and
covariance matrix is ΣXXX〈r〉 . The procedure returns a set of 2-tuples comprised by a param-
eter vector Θ(0) ∈ Pm (Figure 6.2, line 10), and a vector-valued random variable a. By
definition, the expectation of a is at the origin of Am (i.e., a = (0, 0, · · · , 0)T ∈ Am). The
covariance matrix of a is computed with the first-order error propagation model (Equa-
tion 6.2):

Σa = JaΣXXX〈r〉 J
T
a . (6.6)

In order to evaluate Equation 6.6, one needs to compute the Jacobian matrix Ja for the
equation that calculates the mean point a in terms of the coefficients of the input mean
blade XXX〈r〉. However, expressing the entire computation chain as a single equation, and
from it computing the Jacobian matrix, turns out to be impractical. Note that intermediate
variables can be combined in different ways. The combination depends on which param-
eters must be arbitrated and which ones must be computed while mapping the input data
to the parameter space. As a result, the definition of Ja must handle all possible compu-
tation flows. The proposed solution for this problem is to solve the partial derivatives in
matrix Ja using the chain rule, step-by-step, until the final result is found. In Figure 6.2
and Figure 6.3 the derivatives of intermediate computation steps are kept as the Jacobian
matrices of intermediate variables. The following derivations show how these matrices
are evaluated.

The extended mapping procedure starts by initializing a set P(m) (Figure 6.2, line 1)
with a 5-tuple:

(XXX
(m)
〈r〉 , JXXX(m)

〈r〉
,KKK (m), JKKK (m) ,Θ(m)) ∈ P(m), (6.7)

where XXX
(m)
〈r〉 = XXX〈r〉 is the input (mean) blade, J

XXX
(m)
〈r〉

= I is the Jacobian matrix of XXX(m)
〈r〉

with respect to XXX〈r〉 (i.e., an identity matrix), and KKK (m) = 1 is an identity rotor denoting
that no rotor RRRt was computed yet. In subsequent steps of the algorithm, KKK (t) is a ro-
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Require: A random multivector variable XXX〈r〉 with expectation XXX〈r〉 and covariance
matrix ΣXXX〈r〉

1: P(m) ←
{
(XXX〈r〉, I, 1, 0,∅)

}
2: for t = m down to 1 do
3: Let PPP(t)

〈2〉 be the rotation plane of the t-th rotation applied to EEE〈p〉 in Equation 5.3
4: P(t−1) ← ∅

5: for all (XXX(t)
〈r〉, JXXX(t)

〈r〉
,KKK (t), JKKK (t),Θ(t)) ∈ P(t) do

6: T ← CalculateParameterun.(XXX
(t)
〈r〉, JXXX(t)

〈r〉
)

7: P(t−1) ← P(t−1)∪
{
(XXX

(t−1)
〈r〉 , J

XXX
(t−1)
〈r〉

,KKK (t−1), JKKK (t−1), (θt,Θ
(t)
1 ,Θ

(t)
2 , · · · ,Θ

(t)
m−t)) |

XXX
(t−1)
〈r〉 = R̃RRtXXX

(t)
〈r〉RRRt, and KKK (t−1) = KKK (t)RRRt,

and RRRt = cos
(

θt

2

)
−sin

(
θt

2

)
PPP

(t)
〈2〉, and (θt, Jθt) ∈ T

}
8: end for
9: end for

10: return
{
(Θ(0), a) | a is computed according to Equation 6.17,

Σa = Ja ΣXXX〈r〉 J
T
a , and (XXX

(0)
〈r〉, JXXX(0)

〈r〉
,KKK (0), JKKK (0) ,Θ(0)) ∈ P(0)

}

Figure 6.2: The procedure that extends the algorithm presented in Figure 5.2 to blades
with uncertainty. It takes as input an random r-blade XXX〈r〉 and returns a set of pairs com-
prised by a parameter vector Θ(0) ∈ Pm characterizing a p-blades that is contained by
XXX〈r〉, and a vector-valued random variable a describing the Gaussian uncertainty of the
p-blade represented as the origin of the open affine covering of the Grassmannian.

tor composite by the geometric product of the last (m− t) rotors RRRt applied to EEE〈p〉 in
Equation 5.3, i.e.,

KKK (t) = KKK (t+1)RRRt+1,

for 1 ≤ t ≤ m, and KKK (m+1) = 1. At the end of the mapping process, KKK (0) = TTT (TTT is
defined in Equation 4.8) is the rotor used to transform the reference blade EEE〈p〉 into the
blade characterized by the resulting parameter vector Θ(0) (line 10). In Equation 6.7,
JKKK (m) = 0 is the Jacobian matrix of KKK (m) (i.e., a zero row matrix), and Θ(m) = ∅ is an
empty set denoting that no parameter was calculated yet.

At each iteration of the procedure (lines 2 to 9), the function CalculateParameterun.

(called in line 6 of Figure 6.2 and defined in Figure 6.3) returns a set T of 2-tuples:

(θt, Jθt) ∈ T ,

where θt is the t-th parameter of some p-blade related to XXX〈r〉, and Jθt is its Jacobian
matrix, whose definition is presented later in Equation 6.29. The rotation angle θt is used
in line 7 of Figure 6.2 to compute the rotor RRRt as:

RRRt = cos

(
θt

2

)
− sin

(
θt

2

)
PPP

(t)
〈2〉

= cos

(
θt

2

)
− sin

(
θt

2

) 2n∑
i=1

(
φi
tEEEi

)
,

(6.8)
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where PPP(t)
〈2〉 is a constant rotation plane with coefficients {φi

t}2
n

i=1, leading to the Jacobian
matrix:

Ji,zRRRt
=
∂ρit
∂χz

= −1
2
Ji,zθt

⎧⎨⎩sin
(

θt

2

)
for i = 1

φi
t cos

(
θt

2

)
otherwise

. (6.9)

Following the tensor representation introduced in Section 6.2, {ρit}2
n

i=1 and {χz}2nz=1 in
Equation 6.9 denote the coefficients of, respectively, RRRt and XXX〈r〉.

The rotor RRRt is used in line 7 to compute

XXX
(t−1)
〈r〉 = R̃RRtXXX

(t)
〈r〉RRRt

=

2n∑
i,j,k,l=1

(
ρjt λ

k
t ρ

l
t Ψ

i,j,k,lEEEi

)
,

(6.10)

where {ρit}2
n

i=1 and {λit}2
n

i=1 denote the coefficients ofRRRt andXXX(t)
〈r〉, respectively. The tensor

Ψi,j,k,l = Υj,j
2n∑
h=1

(
Γh,j,k Γi,h,l

)
(6.11)

is comprised by constant values computed from the tensors Γ and Υ encoding, respec-
tively, the geometric product and the reverse operation. The derivatives in the Jacobian
matrix of XXX(t−1)

〈r〉 (Figure 6.2, line 7) are given by:

Ji,z
XXX

(t−1)
〈r〉

=
∂λit−1

∂χz
=

2n∑
j,k,l=1

(
ρjt J

k,z

XXX
(t)
〈l〉
ρltΨ

i,j,k,l

)
+

2n∑
j,k,l=1

(
λkt

(
Jj,zRRRt

ρlt + ρjt J
l,z
RRRt

)
Ψi,j,k,l

)
,

(6.12)
The Jacobian matrix of RRRt (JRRRt , in the summation at the right side of Equation 6.12) is
defined in Equation 6.9.

The rotor RRRt is also used in Figure 6.2 (line 7) to compute:

KKK (t−1) = KKK (t)RRRt

=
2n∑

i,j,k=1

(
κjt ρ

k
t Γ

i,j,kEEEi

)
.

(6.13)

The coefficients of KKK (t−1) are denoted by {κit−1}2
n

i=1 and its Jacobian matrix is defined as:

Ji,z
KKK (t−1) =

∂κit−1

∂χz
=

2n∑
j,k=1

((
Jj,z
KKK (t) ρ

k
t + κjt J

k,z
RRRt

)
Γi,j,k

)
. (6.14)

After all the parameters θt of the p-blades related to XXX〈r〉 have been calculated, one
also has computed their respective rotorsKKK (0) = TTT . Recall from Equation 5.3 that a rotor
TTT transforms the reference blade EEE〈p〉 into the blade CCC〈p〉 related to a given parameter
vector Θ(0). The last step of the mapping procedure is to define the open affine covering
Am for the Grassmannian (Section 4.2) in such a way that CCC〈p〉 (and Θ(0)) is represented
as the point at the origin of Am. Such origin point is denoted by a. The computation of
its coordinates leads to the Jacobian matrix Ja (Equation 6.18) used in Equation 6.6 to
compute the covariance matrix of a vector-valued random variable a (line 10).
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As a point at the origin, the coordinates of a are equal to zero. According to Equa-
tion 4.19, the origin of Am is actually related to the blade AAA〈p〉 = eee1 ∧ eee2 ∧ · · · ∧ eeep, and
not to an arbitrary blade CCC〈p〉. Thus, a mapping from CCC〈p〉 to AAA〈p〉 must be defined. The
rotor

WWW = TTTA K̃KK
(0)

=
2n∑

i,j,k=1

(
ζj κk0 Υ

k,k Γi,j,kEEEi

) (6.15)

performs a change of basis, mapping CCC〈p〉 to AAA〈p〉 (i.e., WWW CCC〈p〉 W̃WW = AAA〈p〉). In Equa-
tion 6.15, TTTA is the rotor that transforms EEE〈p〉 into AAA〈p〉. Its coefficients are denoted as
{ζj}2nj=1. Notice that TTTA may be precomputed from the parameter vector returned by the
procedure in Figure 5.2 (or Figure 6.2) when AAA〈p〉 is given as input.

The Jacobian matrix of WWW (Equation 6.15) is computed as:

Ji,zWWW =
∂ωi

∂χz
=

2n∑
j,k=1

(
ζj Jk,z

KKK (0) Γ
i,j,k
)

, (6.16)

where JKKK (0) is given by Equation 6.14.
Finally, the coordinates of a (denoted by αi,j in Equation 4.19 and by αt in current

section) are computed as:

αt =
(
WWW ccci W̃WW

)
∗ eeep+j = 0, (6.17)

where t = (i− 1) (n− p) + j, for i ∈ {1, 2, · · · , p} and j ∈ {1, 2, · · · , n− p}. In Equa-
tion 6.17, the vector

WWW ccci W̃WW = eeei +

n−p∑
j=1

(
αi,j eeep+j

)
= eeei

is at the i-th row of the matrix representation of AAA〈p〉 in row reduced echelon form (Equa-
tion 4.19), and

ccci = W̃WW eeeiWWW

is the i-th vector spanning CCC〈p〉 = ccc1 ∧ · · · ∧ ccci ∧ · · · ∧ cccp.
From Equation 6.17, it follows that the coordinates {αt}mt=1 of a can be rewritten in

tensor form as:

αt =

2n∑
h,i=1

(
εh�2 Λ

1,i,h

2n∑
j,k,l=1

(
ωj γk�1 ω

l Ξi,j,k,l
))

,

leading to the Jacobian matrix:

Jt,za =
∂αt

∂χz
=

2n∑
h,i=1

(
εh�2 Λ

1,i,h
2n∑

j,k,l=1

(
γk�1

(
Jj,zWWW ωl + ωj Jl,zWWW

)
Ξi,j,k,l

))
, (6.18)

where �1 = � t
n−p
� and �2 = t+ n− � t

n−p
� (n− p) are indices computed from t, and

��� denotes the ceiling function. The Jacobian matrix JWWW used in Equation 6.18 is de-
fined in Equation 6.16. The constant values {γk�1}2

n

k=1 and {εh�2}2
n

h=1 are the coefficients of
ccc�1 and eee�2 , respectively. The constant Ξ is given by

Ξi,j,k,l = Υl,l
2n∑
h=1

(
Γh,j,k Γi,h,l

)
.
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Require: YYY(t), the current input blade
Require: JYYY(t) , the Jacobian matrix of YYY(t) with respect to XXX〈r〉

1: Let PPP(t)
〈2〉 be the rotation plane of the t-th rotation applied to EEE〈p〉 in Equation 5.3

2: Let FFF(t)
l be a space of possibilities as defined in Equation 5.5

3: Let rrr(t)l ← FFF
(t−1)
l 	FFF(t)

l , i.e., the vector factor in FFF
(t)
l that is not in FFF

(t−1)
l

4: loop
5: M←

{
(MMM

(t)
l , JMMM(t)

l
) |MMM(t)

l = YYY(t) ∩FFF(t)
l , l ∈ Z, and 1 ≤ l ≤ |E|

}
6: N ←

{
(MMM

(t)
l , JMMM(t)

l
) | (MMM(t)

l , JMMM(t)
l
) ∈M, and grade (MMM

(t)
l ) = |S| ,

where S ←
{
MMM

(t)
h | (MMM

(t)
h , JMMM(t)

h
) ∈M, and MMM

(t)
l ∗MMM

(t)
h �= 0

}}
7: ifN = ∅ then
8: return

{
(θt, 0) | θt ∈ [−π/2,π/2)

}
9: end if

10: O ←
{
(MMM

(t)
l , JMMM(t)

l
) | (MMM(t)

l , JMMM(t)
l
) ∈ N , and grade (MMM

(t)
l ) = grade (rrr

(t)
l ) = 1

}
11: Q ←

{
(qqq

(t)
l , Jqqq(t)l

) | qqq(t)l = (mmm
(t)
l 	PPP

(t)
〈2〉), and (mmm

(t)
l , Jmmm(t)

l
) ∈ O, and qqq

(t)
l �= 0

}
12: ifQ �= ∅ then
13: return

{
(θt, Jθt) | θt = tan−1

(
((qqq

(t)
l ∧ rrr

(t)
l ) ∗PPP(t)

〈2〉) / (qqq
(t)
l ∗ rrr

(t)
l )
)

,

where (qqq
(t)
l , Jqqq(t)l

) is one tuple inQ
}

14: end if
15: YYY(t) ← (MMM

(t)
l )−1 	YYY(t), where (MMM

(t)
l , JMMM(t)

l
) ∈ N and MMM

(t)
l has the highest

dimensionality in the setN
16: JYYY(t) ← the Jacobian matrix of YYY(t) (line 15) with respect of XXX〈r〉
17: end loop

Figure 6.3: Function CalculateParameterun.. It complements the mapping procedure in
Figure 6.2. The algorithm extends the procedure presented in Figure 5.4 by computing
the Jacobian matrix of the intermediate variables with respect to the coefficients of the
input variable XXX〈r〉 in Figure 6.2.

The scalar values {αt}mt=1 are computed using a scalar product (see the ∗ operator
in Equation 6.17). However, the tensor representation of the left contraction (i.e., Λ)
has been used while computing their derivatives in Equation 6.18. It is because the left
contraction (Section 3.4.2) reduces to the scalar product (Section 3.4.1) when applied to
blades with the same dimensionality. In such a case, only the first coefficients of the
resulting multivector need to be evaluated. Note in Equation 6.18 that the very first index
of Λ has been set to 1.

6.3.2 The CalculateParameterun. Function

Figure 6.3 complements the procedure presented in Figure 6.2. It takes as input the
bladeYYY(t) and the Jacobian matrix JYYY(t) , computed in Figure 6.2 asXXX(t)

〈r〉 and J
XXX

(t)
〈r〉

, respec-

tively (see Figure 6.2, line 6).
The meet operation in Figure 6.3 (line 5) must be evaluated in terms of the pseu-



100

doscalar III(t)l of the space where the intersection problem resides (i.e., III(t)l = YYY(t) ∪FFF(t)
l ).

By doing so, the meet reduces to the application of two left contraction:

MMM
(t)
l = YYY(t) ∩FFF(t)

l =
(
FFF

(t)
l 	 (III

(t)
l )−1

)
	YYY(t) = DDD

(t)
l 	YYY(t)

=
2n∑

i,j,k=1

(
δjt,l η

k
t Λ

i,j,kEEEi

)
.

(6.19)

In Equation 6.19,DDD(t)
l = FFF

(t)
l 	 (III

(t)
l )−1 is a constant blade. The derivatives in the Jacobian

of MMM(t)
l are given by:

Ji,z
MMM

(t)
l

=
∂μi

t,l

∂χz
=

2n∑
j,k=1

(
δjt,l J

k,z

YYY(t) Λ
i,j,k
)

. (6.20)

In Equations 6.19 and 6.20, the coefficients ofMMM(t)
l ,DDD(t)

l andYYY(t) are denoted by {μi
t,l}2

n

i=1,
{δjt,l}2

n

j=1 and {ηkt }2
n

k=1, respectively.
Recall from Section 5.1 that N (Figure 5.4, line 6) is a subset of M (Figure 5.4,

line 5). WhenN is empty (Figure 5.4, line 7), θt can assume any value in the [−π/2,π/2)
range. Hence, in Figure 6.3 line 8, the Jacobian matrix of θt (i.e., the second element in
resulting tuples) is a zero row matrix because the θt values do not depend on the input
blade.

When N is not empty, O is computed as a subset of N (Figure 6.3, line 10). In turn,
Q (line 11) is defined as the set of 2-tuples (qqq

(t)
l , Jqqq(t)l

), where qqq
(t)
l is a nonzero vector

resulting from the contraction of vectors mmm(t)
l ∈ O onto the rotation plane PPP(t)

〈2〉:

qqq
(t)
l =mmm

(t)
l 	PPP

(t)
〈2〉

=

2n∑
i,j,k=1

(
μj
t,l φ

k
t Λ

i,j,kEEEi

)
.

(6.21)

The Jacobian matrix J
qqq
(t)
l

of qqq(t)l is computed from J
mmm

(t)
l

(Equation 6.20), the coefficients

of PPP(t)
〈2〉 (denoted by {φk

t }2
n

k=1), and the tensor Λ:

Ji,z
qqq
(t)
l

=
∂βi

t,l

∂χz
=

2n∑
j,k=1

(
Jj,z
mmm

(t)
l

φk
t Λ

i,j,k

)
. (6.22)

Recall from Section 5.1 that, when Q is not empty, one of the tuples in Q is used to
compute the parameter θt (Figure 13 line 13). The same is true for in the procedure in
Figure 6.3. However, in order to simplify the definition of the Jacobian of θt, the equation

θt = tan−1

⎛⎝
(
qqq
(t)
l ∧ rrr

(t)
l

)
∗PPP(t)

〈2〉

qqq
(t)
l ∗ rrr

(t)
l

⎞⎠
is rewritten as:

θt = tan−1

(
τt,l
νt,l

)
, (6.23)
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where

τt,l =
(
qqq
(t)
l ∧ rrr

(t)
l

)
∗PPP(t)

〈2〉 = qqq
(t)
l ∗

(
rrr
(t)
l 	PPP

(t)
〈2〉
)

=
2n∑

j,k=1

(
βj
t,l Ω

j,k
)

,
(6.24)

and

νt,l = qqq
(t)
l ∗ rrr

(t)
l

=
2n∑

j,k=1

(
βj
t,l ψ

k
t,l Λ

1,j,k
)

,
(6.25)

with Ω (in Equation 6.24) being a constant defined as:

Ωj,k = Λ1,j,k
2n∑

h,l=1

(
ψh
t,l φ

l
t Λ

k,h,l
)

. (6.26)

In Equations 6.24, 6.25 and 6.26, {βj
t,l}2

n

j=1, {ψk
t,l}2

n

k=1 and {φl
t}2

n

l=1 denote the coefficients
of, respectively, qqq(t)l (Equation 6.21), rrr(t)l (defined in Equation 5.7) and PPP

(t)
〈2〉.

The derivatives of τt,l (Equation 6.24) and νt,l (Equation 6.25) are, respectively:

J1,zτt,l
=
∂τt,l
∂χz

=

2n∑
j,k=1

(
Jj,z
qqq
(t)
l

Ωj,k

)
(6.27)

and

J1,zνt,l
=
∂νt,l
∂χz

=

2n∑
j,k=1

(
Jj,z
qqq
(t)
l

ψk
t,l Λ

1,j,k

)
. (6.28)

Once one has τt,l (Equation 6.24), νt,l (Equation 6.25), Jτt,l (Equation 6.27), and Jνt,l
(Equation 6.28), one can compute the Jacobian of θt (Equation 6.23) as:

J1,zθt =
∂θt

∂χz
=

1

(τt,l)2 + (νt,l)2

(
J1,zτt,l

νt,l − τt,l J1,zνt,l

)
(6.29)

At each iteration of the loop in Figure 6.3, the blade YYY(t) is updated (see line 15) by
removing from it the blade MMM(t)

l ∈ N having the highest dimensionality. The new YYY(t) is
given by:

YYY(t) = (MMM
(t)
l )−1 	YYY(t)

old = NNN
(t)
l 	YYY

(t)
old

=
2n∑

i,j,k=1

(
ξjt,l η

k
t,old Λ

i,j,kEEEi

)
,

(6.30)

where

NNN
(t)
l = (MMM

(t)
l )−1 =

M̃MM
(t)
l

MMM
(t)
l ∗ M̃MM

(t)
l

=
1∑2n

h,k=1

(
μh
t,l μ

k
t,l Υ

k,k Λ1,h,k
) 2n∑

j=1

(
μj
t,l Υ

j,jEEEj

) (6.31)
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is an intermediate multivector variable with coefficients {ξjt,l}2
n

j=1. The derivative of {ξjt,l}2
n

j=1 is:

Jj,z
NNN

(t)
l

=
∂ξjt,l
∂χz

=
2n∑

h,k=1

((
Jj,z
MMM

(t)
l

μh
t,l μ

k
t,l − μ

j
t,l J

h,z

MMM
(t)
l

μk
t,l

−μj
t,l μ

h
t,l J

k,z

MMM
(t)
l

)
Υj,j Υk,k Λ1,h,k

)
, (6.32)

and the Jacobian of the new YYY(t) (Equation 6.30) is:

Ji,z
YYY(t) =

∂ηit
∂χz

=
2n∑

j,k=1

((
Jj,z
NNN

(t)
l

ηkt,old + ξjt,l J
k,z

YYY
(t)
old

)
Λi,j,k

)
. (6.33)

The coefficients of YYY(t)
old and MMM

(t)
l are denoted in Equations 6.30, 6.31, 6.32 and 6.33 by

{ηkt,old}2
n

k=1 and {μi
t,l}2

n

i=1, respectively. The reverse operation is encoded by Υ, and the left
contraction and the scalar product are encoded by Λ.

It is important to notice that tensors encoding GA operations are sparse structures.
Also, multivectors encoding k-blades have at most

(
n
k

)
nonzero coefficients (i.e., the ones

related to
∧k

Rn), and rotors use only the coefficients related to even-dimensional basis
blades of

∧
Rn. It follows that the summations in all preceding derivations only need to

be evaluated for possible nonzero multivector’s coefficients and tensor’s entries. Such a
feature may be used to reduce the computational load of computing the Jacobian matrices.

6.3.3 Mapping Procedure for r ≤ p

As discussed in Section 5.2, when the dimensionality of an input blade is less or
equal than the dimensionality of the intended type of subspace one can take the dual
of input (XXX∗

〈r〉) and reference (EEE∗
〈p〉) blades in order to reduce the mapping procedure to

the case described in Section 5.1 (i.e., where r ≥ p). Thus, for input subspaces with
uncertainty, the dual of a random multivector variable XXX〈r〉 must be considered.

In this case, the set P(m) in Figure 6.2 (line 1) is initialized with a 5-tuple (see Equa-
tion 6.7) having: (

XXX〈r〉
)∗

= XXX〈r〉 	 III−1
〈n〉 = XXX〈r〉 	 ĨII〈n〉

=

2n∑
i,j,k=1

(
χj ιk Υk,k Λi,j,kEEEi

) (6.34)

as its first entry. The second entry of the 5-tuple is the Jacobian matrix of
(
XXX〈r〉

)∗
, whose

derivatives are computed as:

∂λim
∂χz

=
2n∑
k=1

(
ιk Υk,k Λi,i,k

)
. (6.35)

The other three entries of the 5-tuple are, respectively, KKK (m) = 1, JKKK (m) = 0 and ∅. In
Equations 6.34 and 6.35, {λi}2ni=1 denotes the coefficients of

(
XXX〈r〉

)∗
, and {ιk}2nk=1 are the

coefficients for the (constant) pseudoscalar III〈n〉. It is important to notice that, when r ≤ p,
the derivatives in the Jacobian matrices computed by the mapping procedure are related
to the coefficients {χz}2nz=1 of the direct representation of the mean input blade XXX〈r〉.
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6.4 Voting Procedure

The subspace detection framework presented in this thesis identifies the most likely
p-blades in a given dataset by performing a voting procedure using an accumulator array
as the discrete representation of Pm (Equation 4.10). The mapping procedure described
in Section 6.3 is key for such a voting. It takes an uncertain r-blade (XXX〈r〉) and decompose
it as parameter vectors Θ(0) ∈ Pm and vector-valued random variables a. The resulting
parameter vectors are computed from the expectation of XXX〈r〉. Thus, they characterize the
most probable p-blades related to the input entry. The p-blades related to the uncertainty
around the expectation of XXX〈r〉 are represented in an auxiliary space Am by a.

For a given pair (Θ(0), a) (Figure 6.2, line 10), the number of votes to be incremented
to each accumulator’s bin can be computed by: (i) mapping the bin’s region from Pm to
Am; and, in turn, (ii) weighting the importance value ω of the inputXXX〈r〉 by the probability
of a related p-blade be in the mapped region. Ideally, such a probability should be com-
puted in Am as the hypervolume under the portion of the (normalized) multivariate “bell”
curve contained by the mapped region. However, as depicted in Figure 6.4, rectangular
regions in the actual parameter space (Figure 6.4a) map to warped regions in the auxiliary
parameter space (Figure 6.4b). It is a challenging and computationally intensive task to
evaluate the probability in such warped regions (COWAN, 1998). The proposed solution
for this issue is to define, for each bin’s region at Am, a representative box aligned to
the eigenvectors of the covariance matrix Σa of a. As depicted in Figure 6.4c, in the
space defined by the orthogonal eigenvectors of Σa, the eigenvalues represent the vari-
ances of an axis-aligned Gaussian distribution (in Figure 6.4c, the unit eigenvectors are
scaled by the eigenvalues), and the covariances are equal to zero. Hence, the result-
ing probability can be efficiently computed as the product of the probabilities of the
intervals defined by the representative box.

The representative box of a bin having coordinates Θbin is built from points {Θi
face}2mi=1

placed at the center of bin’s faces in the parameter space (Figure 6.4a). By using Δθt ra-
dians as step in the linear discretization of the t-th dimension of the parameter space, the
center of the faces are computed as:

Θi
face = Θbin +Θoffseti ∀ i ∈ {1, 2, · · · , 2m},

where

Δoffseti =

{
(0, · · · ,−Δ

θ�
i+1
2 �, · · · , 0) for odd i

(0, · · · ,+Δ
θ�

i+1
2 � , · · · , 0) for even i

is the translation vector from the center of a bin to the center of a bin’s face. ��	 denotes
the floor function.

Each point Θi
face is mapped from Pm to Am (Figure 6.4b) by using the following pro-

cedure:

1. The vectors spanning the reference blade EEE〈p〉 (Equation 5.4) are transformed by
the rotor WWW TTT i

face, where TTT i
face is computed according to Equation 4.8 using the

coordinates (rotation angles) of Θi
face. The rotor WWW is given by Equation 6.15 for

current pair (Θ(0), a);
2. The vectors resulting from step 1 are used to defined a p× n matrix representation

the subspace related to Θi
face;

3. The location of Θi
face in Am (denoted by points aiface in Figure 6.4b) is retrieved from

the row reduced echelon form of the matrix build in step 2.
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Θ 1Θ 1
faceface

Θ 3Θ 3
faceface Θ 4Θ 4

faceface

Θ 2Θ 2
faceface

(a) Parameter space P
2 (3−2)

a 1a 1
faceface

a 3a 3
faceface

a 4a 4
faceface

a 2a 2
faceface

(b) Open affine covering A2 for G(2,3)

a 1a 1
faceface

a 3a 3
faceface

a 4a 4
faceface

a 2a 2
faceface

Eigenvectors-Aligned
Bounding Box

Eigenvectors-Aligned
Bounding Box

(c) Orthonormal basis of eigenvectors in A2

Figure 6.4: Computing the number of votes to be incremented to a given bin of the ac-
cumulator array: The points Θi

face at the center of the bin’s face (a) are mapped to the
open affine covering for the Grassmannian as points aiface (b). In turn, the points aiface
are mapped to the basis defined by the orthonormal eigenvectors of the distribution of
probability (c). An axis-aligned bounding box is computed for aiface in such a basis. The
number of votes is proportional to the weight of the input blade and the probabilities of
an intended p-blade be inside of the box.

Once the points {aiface}2mi=1 are known, each aiface is transformed to the basis defined by the
(orthonormal) eigenvectors of Σa (Figure 6.4c). The transformation is achieved by pre-
multiplicating aiface by the transpose of a matrix having such eigenvectors as its columns.
The eigenvectors-aligned bounding box including {aiface}2mi=1 is the representative box of
the bin’s region in Am. Each dimension of such a box defines an interval [mint,maxt]
in one of the axis related to an eigenvector (see Figure 6.4c). The number of votes to be
incremented in the bin is computed as:

votes = ω
m∏
t=1

(
Φ

(
maxt
σt

)
− Φ

(
mint

σt

))
, (6.36)

where σt is the square root of the eigenvalue related to the t-th eigenvector of Σa, ω is the
importance of the input entry XXX〈r〉, and Φ is the cumulative distribution function of the
standard normal distribution (COWAN, 1998).

As depicted in Figure 6.4, one needs to compute votes only for the bins intersecting the
footprint of the Gaussian distribution in Am. It is because the number of votes for the bins
beyond three standard deviations (the ellipses in Figures 6.4b and 6.4c) are negligible.
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Intuitively, Equation 6.36 can be evaluated starting at the bin containing Θ(0) (i.e., the
parameter vector related to the expectation a) and moving outwards (in parameter space,
Figure 6.4a) in a flood fill fashion, until the returned values are lower than a threshold
εvotes. For the examples presented in this chapter εvotes had been empirically set to 10−6.

It is important to notice that the vector-valued random variable a defines a k-dimensional
multivariate Gaussian distribution in Am, for 0 ≤ k ≤ m. It means that its distribution of
uncertainty may have arbitrary dimensionality in the open affine covering, and hence also
in Pm. The dimensionality of the Gaussian distribution (k) will be equal to m if and only
if the following conditions are satisfied:

1. A given input entry XXX〈r〉 maps to only one pair (Θ(0), a) (i.e., all parameter values
were computed and returned by Figure 6.3, line 13); and

2. The uncertainty in XXX〈r〉 does not restrict the distribution of a to a linear subspace in
Am having a dimensionality smaller than m.

When condition (1) fails then the distribution of a will have at most k = (m− s) dimen-
sions, where s is the number of arbitrated parameters (Figure 6.3, line 8). In such a case,
the distributions of votes centered at the coordinates of each parameter vector Θ(0) ∈ Pm
define (warped) parallel profiles in Pm.

The distribution of a also loose dimensions when condition (2) fails. It happens when
there is no uncertainty in some of the degrees of freedom of the input entry XXX〈r〉. In
an extreme case, the input blade does not have uncertainty at all. In this situation, the
extended voting scheme presented in this chapter reduces to the approach presented in
Chapter 5, spreading votes in the accumulator array using the simpler voting procedure
described in Section 5.4 (i.e., the one without interpolation).

From our experience, the interpolation scheme described in Section 5.4 is not neces-
sary for uncertain data. This is because the flood-fill voting is capable to fill the gaps in
the structures rasterized in the accumulator array.

6.5 Results and Discussion

A mapping and a voting procedure for input subspaces with Gaussian distributed un-
certainty were presented in this chapter. The mapping scheme uses first-order error prop-
agation to transport the uncertainty from input data to an auxiliary space defined as the
open affine covering Am for the Grassmannian G(p,n). The propagated uncertainty de-
fines a Gaussian profile in Am, which is mapped by the voting procedure to the actual
parameter space Pm as a non-Gaussian distribution of votes.

The prerequisite for using first-order error propagation is to check whether the result-
ing uncertainty can be well approximated by a Gaussian distribution (COWAN, 1998;
PERWASS, 2009). This condition was asserted for the proposed mapping procedure
by carrying out two sets of sampling-based statistical experiments. In the first of the
two sets, each experiment assumes a detection case (i.e., r-dimensional subspaces in a
n-dimensional representational space), and one input uncertain r-blade having a given
covariance matrix. The covariance matrices were defined by rotating the principal axes of
a reference axis-aligned Gaussian distribution according to its degrees of freedom (i.e., the
k (k − 1)/2 generalized Euler angles – Appendix C – characterizing the orientation of a
k-dimensional Gaussian distribution). In this way, the experiments cover a wide range of
settings for Gaussian distributions. For each experiment, a set of 1,000 random samples of
the input uncertain blade was generated according to the assumed Gaussian distribution.
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The uncertain blade was then mapped to Am with the procedure presented in Section 6.3.1
(or Section 6.3.3). In turn, the samples related to the uncertain blade where mapped to
the same auxiliary space Am. Recall from Section 6.3.1 that Am is defined in such a way
that the expectation of the uncertain blade is at its origin. Thus, the samples are mapped
to points around the origin of Am. This distribution of points must be Gaussian (Nor-
mal) in order to validate the assumption that first-order error propagation can be used to
predict a distribution of uncertainty in A

m. The normality of the distribution of points
was verified with the statistical hypothesis test proposed by Mardia (1970). Mardia’s pro-
cedure (MARDIA, 1970) computes a P -value for the skewness, and another one for the
kurtosis of a given set of points. If these P -values are greater or equal to the significance
level α = 0.05, then the results are statistically not-significant (i.e., the distribution of
points is probably Gaussian because there is only a 5% chance of the expected measures
of skewness and kurtosis have happened by coincidence). Otherwise, for P -values lower
that α, there is a reasonable chance of the distribution being non-Gaussian.

Tables 6.1 and 6.2 summarize the P -values computed, respectively, for skewness and
kurtosis in all the experiments of the first of two sets. These experiments (1,530 alto-
gether) are grouped by table entries according to a detection case (see the n and p values
at column headers), and a dimensionality of input uncertain blades (see the r value for
each row). Each table entry shows a relative frequency histogram of P -values (the ab-
scissa, in logarithmic scaling) for the respective detection/input case. Notice that almost
all computed P -values had fallen in the bins at right side of (and including) the signif-

Table 6.1: Relative frequency histograms of P -values computed for the skewness of dis-
tributions of points in the auxiliary space Am. The histograms at table entries are related
to experiments carried out regarding the combination of a given detection case (columns)
with input uncertain blades having a given dimensionality r (rows). Notice that the most
frequent P -values are greater or equal to the significance level α = 0.05 (the dashed
lines). These results show that distributions of points related to almost all the experiments
have the skewness of a Gaussian distribution.

n = 3, p = 1 n = 3, p = 2 n = 4, p = 1 n = 4, p = 2 n = 4, p = 3
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icance level α = 0.05 (denoted by the dashed lines). These results suggest that samples
mapped to Am define Gaussian distributions for different values of variance and covari-
ance in the input uncertain blades. However, some of the P -values presented in Tables 6.1
and 6.2 are smaller than α. Thus, it is necessary to verify whether these P -values are re-
lated with some sensibility of Mardia’s procedure, or with some bounding limit for input
uncertainty.

The results in Tables 6.1 and 6.2 motivated the development of another set of sampling-
based statistical experiments. With this second set of experiments we want to observe how
the “quality” of skewness and kurtosis change as the uncertainty of input blades changes.
For these experiments, it is assumed the detection of straight lines in the 2-dimensional
homogeneous MOG. Thus, p = 2 and n = 2 + 1, leading to m = 2 (3− 2) = 2.

Initially, a set of 1,225 blades was created by choosing 35× 35 parameter vectors
linearly distributed over the parameter space P2 for 2-blades in

∧
R2+1. Through Equa-

tion 4.9, each one of the parameter vectors is related to a blade, which is regarded here
as the expectation (XXX〈2〉) of a random multivector variableXXX〈2〉. By converting XXX〈2〉 to the
parameterization defined by the normal equation of the line:

x cos φ+ y sinφ− ρ = 0, (6.37)

and by assigning a standard deviation to ρ (denoted by σρ) and another one to φ (denoted
by σφ), one can define the covariance matrix ofXXX〈2〉 from σρ and σφ. This way, it is possi-
ble to verify changes on the skewness and kurtosis of distributions of samples mapped to
A

2 as an effect of changing the uncertainty in parameters having a clear geometrical in-
terpretation: ρ defines the distance from the origin point of the base space to the line, and

Table 6.2: Relative frequency histograms of P -values computed for the kurtosis of distri-
butions of points in the auxiliary space Am. This table complements the results presented
in Table 6.1. It shows that distributions of points related to almost all the experiments
have the kurtosis of a Gaussian distribution.
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φ is the angle between the x-axis and the normal to the line. The mean normal parameters
of the line are computed from XXX〈2〉 as:

ρ = ‖sss‖ and φ = tan−1

(
nnn ∗ eee2
nnn ∗ eee1

)
, (6.38)

where sss =
(
eee−1
0 	

(
eee0 ∧XXX〈2〉

))
/ddd is the support vector of the line, ddd = eee−1

0 	XXX〈2〉 is its

direction, and nnn = eee−1
0 	

(
eee0 ∧

(
XXX〈2〉

)∗)
is the normal to the line, with the condition that

sss ∗ nnn ≥ 0. Recall from Section 3.9.2 that the basis vector eee0 is interpreted in the homoge-
neous MOG as the point at the origin. Vectors eee1 and eee2 define the coordinate system of the
base space. They are related to, respectively, x and y in Equation 6.37. It is important to
comment that, in an implementation, one should evaluate the arctangent in Equation 6.38
with the function ATAN2 in order to provide numerical stability and additionally make
φ ∈ [−π, π). In such a case, one should assume ρ ∈ [0,∞). The ATAN2 function is avail-
able in many programming languages. The expectation of XXX〈2〉 can be computed from ρ

Table 6.3: P -values computed for the skewness of distributions of points in the auxil-
iary spaces A2 related to uncertain 2-blades. These blades were chosen as the parameter
vectors defining a 35× 35 grid in parameters space P2. The 3-dimensional visualization
of P2 at table entries are related to experiments carried out regarding the input uncertain
blades and given values for standard deviations σρ (rows) and σφ (columns). The heights
of the surfaces represent the P -values, while the dark spots on the plane at the bottom
of the charts denote those P -values which are lower than the significance level α = 0.05.
Notice that the skewness of some distributions differ from the one expected for a Gaussian
distribution only at σρ = 0.08.
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and φ (Equation 6.38) using:

XXX〈2〉 =
(
ρ
(
eee−1
0

)
− cos

(
φ
)
eee1 − sin

(
φ
)
eee2
)−∗

. (6.39)

It follows that the covariance matrix of XXX〈2〉 is defined as:

ΣXXX〈r〉 = JXXX〈r〉

(
σ2
ρ 0
0 σ2

φ

)
JTXXX〈r〉 , (6.40)

where the derivatives in the Jacobian matrix JXXX〈r〉 are computed as:

Ji,1XXX〈r〉 =
∂χi

∂ρ
=

2n∑
k=1

(
δk0 Λ

i,1,k
)

, (6.41)

and

Ji,2XXX〈r〉 =
∂χi

∂φ
= sin

(
φ
) 2n∑

k=1

(
δk1 Λ

i,1,k
)
− cos

(
φ
) 2n∑

k=1

(
δk2 Λ

i,1,k
)

. (6.42)

In Equations 6.41 and 6.42, the coefficients of the constant subspaces
(
eee−1
0

)−∗, eee−∗
1 , and

eee−∗
2 are denoted by {δk0}2

n

k=1, {δk1}2
n

k=1, and {δk2}2
n

k=1, respectively.

Table 6.4: P -values computed for the kurtosis of distributions of points in the auxiliary
spaces A2 related to uncertain 2-blades. This table complements the results presented in
Table 6.3. Notice that the kurtosis is less sensitive to variations on the input uncertain
than the skewness. The first distributions having kurtosis different from the one expected
for a Gaussian distribution had appeared at σρ = 0.08 and σφ = 0.17.
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After the 1,225 mean blades XXX〈2〉 had been written as a function of their mean normal
parameters ρ and φ (Equation 6.39), a value for σρ and another one for σφ was chosen,
and the covariance matrices ΣXXX〈2〉 were computed using Equation 6.40. Then, two canon-
ical sets with 500 random real values each were generated following a standard Normal
distribution. A copy of these canonical samples was assigned to each input uncertain
blade XXX〈2〉, and converted to the Gaussian distribution of its respective ρ and φ variables.
The use of canonical samples is important because they make possible the comparison of
skewness and kurtosis of distributions related to different input uncertain subspaces XXX〈2〉.
Finally, as well as in the first set of experiments presented in this section, each uncertain
blade was mapped to A2. In turn, its respective samples where mapped to the same auxil-
iary space, and the normality of the distribution of points in A2 was verified with Mardia’s
procedure (MARDIA, 1970). Tables 6.3 and 6.4 present the P -values produced for, re-
spectively, the skewness and kurtosis of the distributions of points in An. The table entries
group the experiments according to the values assumed for σρ (rows) and σφ (columns).
The P -values are shown as heights of a surface on a 3-dimensional visualization of the
parameter space P2 (i.e., the height at the parameter vector related to a XXX〈2〉 is the P -value
estimated from the samples of the respective ρ and φ variables). The P -values lower than
α = 0.05 are distinguished as darker colors on the plane at the bottom of the charts. No-
tice that the samples mapped to A2 define Gaussian distributions even for larger values of
σρ and σφ (i.e., there are a few small dark spots in Tables 6.3 and 6.4). The first asym-
metric distributions had appeared only for σρ = 0.08 (see the dark spots at third row of
Table 6.3), while the tails of a few distributions differ from a Gaussian distribution only
for σρ = 0.08 and σφ = 0.17 (see the two dark spots at the last entry of Table 6.4). By
assuming an image with coordinates in [−1,+1]× [−1,+1] range and the homogeneous
MOG, it follows that the higher uncertainty values (σρ = 0.08 and σφ = 0.17) define a
confidence interval of±0.24 units for the distance from the center of the image to a given
line (i.e., almost 1/4 of image’s size), and a confidence interval of ±0.51 radians for the
direction of the line (i.e., almost π/3 radians). These results show that, as far the uncer-
tainty are kept low, input random multivector variables define Gaussian distributions in
A2. Therefore, P -values smaller than α = 0.05 observed in Tables 6.1 and 6.2 may be
related to high uncertainty in the input blades.

From Tables 6.1, 6.2, 6.3, and 6.4 it is possible to conclude that error propagation
can be used to predict the distribution of uncertainty of blades mapped to Am. But it
is also important to verify if first-order analysis is sufficient to approximate the expected
Gaussian distributions. Such an analysis was performed by comparing the covariance ma-
trix computed for random samples mapped to Am with the covariance matrix estimated
by processing the respective uncertain blade XXX〈r〉 with the proposed mapping procedure
(Sections 6.3.1 and 6.3.3). These two covariance matrices were compared with the dis-
tance function described by Bogner (1981). Such a function receives as input a true (or
estimated) distribution (i.e., in this case, the covariance matrix computed with first-order
error propagation) and a set of observations (i.e, the points resulting from mapping ran-
dom samples to Am). Bogner’s function (BOGNER, 1981) returns a real value D as a
measure of the distance between the two distributions and the expected theoretical vari-
ance for the distance, computed from the size of the matrix. This variance can be used to
interpret the resulting values as a similarity measurement.

Table 6.5 shows the distances computed for the examples depicted in Tables 6.3
and 6.4. Here, the heights of the surfaces represent the distance D computed by Bogner’s



111

procedure (BOGNER, 1981). For these examples, the theoretical variance is equal to:

σ2
D = m (m+ 1) = 2 (2 + 1) = 6,

where m is the dimensionality of the distribution (in this case, the same as the dimen-
sionality of A2). The charts in Table 6.5 denote one and two standard deviations of D by
dashed red lines. Notice that all the distances are below 1.5 σD. These results show that
the Gaussian distribution estimated with first-order error propagation is consistent with
the Gaussian distribution of samples in A2. A behavior that can be further investigated is
why the propagated distribution fits better the samples for larger values of σρ and σφ.

A clear advantage of the voting procedure based on first-order error propagation over
a sampling-based approach is the reduced computational load of the former. It is because,
with first-order analysis, only one uncertain blade needs to be processed per entry of the
input dataset. With a sampling-based voting procedure, on the other hand, hundreds of
samples must be generated and processed in order to properly represent the uncertainty
on a given input entry. Another advantage is the possibility of spreading smoother dis-
tributions of values over the bins of the accumulator array. Such a feature improves the

Table 6.5: Measure of the similarity between Gaussian distributions approximated with
first-order error propagation analysis and a respective distribution of points obtained
through a sampling-based approach. This table displays results for the same experiments
carried out for Tables 6.3 and 6.4. The heights of the surfaces represent the distance be-
tween two sets of covariance matrices. The first one was estimated with first-order error
propagation while mapping uncertain blades XXX〈2〉 to A

2. The second set of matrices was
computed from points resulting from mapping random samples of XXX〈2〉 to A2. These re-
sults show that first-order analysis provides a good approximation for the distribution of
samples. Notice that the computed distances are lower than 1.5 standard deviations (σD).
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(d) Base space R2 (edge pixels)

Figure 6.5: The 22 most relevant detect lines obtained using the proposed first-order error-
propagation-based voting scheme (a) and a sampling-based approach (b). These results
where obtained from the edge information shown in (c) and (d), respectively.

identification of local maxima in the resulting map of votes by reducing the occurrence of
spurious peaks of votes. Figure 6.6 presents a comparison between the accumulator array
produced in straight-line detection in Figure 6.5 with the technique described in the cur-
rent chapter (Figures 6.6a) and the sampling-based voting using the technique described
in Chapter 5 (Figure 6.6b). Figures 6.6c and 6.6d show a detailed view of the highlighted
portions in Figures 6.6a and 6.6b, respectively. Notice the smoother transitions of votes
produced by the error-propagation-based technique. In these example, the input dataset
is comprised by 15,605 uncertain subspaces encoding straight lines in the 2-dimensional
homogeneous MOG. The input 2-blades were computed from the edge pixels of the im-
age (Figures 6.5c and 6.5d) and their gradient vector directions. The standard deviation
for coordinates of a given edge pixel is 2/(512

√
12), where 2 is the size of the image

after normalizing its coordinates to the [−1,+1] range, 512 is the number of pixels in
each dimension of the image, and 12 come from the second central moment of a pixel
with unit side length. The standard deviation assumed for gradient directions was 0.13,
leading to ±0.39 radians of uncertainty on the direction normal to a given input line. The
accumulator arrays where obtained as the linear discretization of the parameter space P2,
using π/360 as discretization step. The importance value ω of each input is the magnitude
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(b) Accumulator array for P2 (3−2)

(c) Highlighted portion of (a) (d) Highlighted portion of (b)

Figure 6.6: The accumulator arrays produced for Figures 6.5a and 6.5b are shown in (a)
and (b), respectively. The highlighted portions are presented in detail by (c) and (d). The
colors where changed in order to improve the contrast of the accumulated values. Notice
that first-order error propagation (c) produces smoother distributions of votes than the
sampling-based approach (d). As a result, the former is less prone to the detection of
spurious subspaces.

of the gradient computed by the edge detector. For the sampling-based voting procedure,
each one of the 15,605 uncertain blades was represented by 160 random samples.

By processing various datasets it was observed that the approximation assumed for
computing the number of votes to be incremented to a given bin of the accumulator ar-
ray (Figure 6.4c) affects the resulting distributions of votes by a small scaling factor.
When the accumulator arrays are shown in grayscale, the voting maps produced with
the sampling-based approach seem a little more brighter than the ones produced with
first-order error propagation. Also, it was observed a small shift (up to one bin) on the
location of some peaks. Such a displacement is not uniform in the whole parameter space.
It is important to comment that while a displacement occurs it seems not to have affected
the quality of detections.
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7 PEAK DETECTION

The last step of the subspace detection framework is performed after the voting pro-
cedure has been applied to all input data entries. It consists in identifying the bins
that correspond to local maxima in the accumulator array. This chapter describes the
sweep-hyperplane-based peak detection scheme developed for accumulator arrays having
arbitrary dimensionality. The proposed approach is an extension of the peak detection
technique described in (FERNANDES; OLIVEIRA, 2008) for 2-dimensional accumula-
tor arrays. The technique returns a list with all detected vote peaks, sorted according to
their importance (i.e., number of votes).

Given an m-dimensional accumulator array, the first step is to create a list pointing
to all bins that received at least a given minimum number of votes (τmin). Then, this
list is sorted in descending order according to the result of the convolution of the bins
with a discrete hypercubic Gaussian kernel Gfilter of side Sfilter and variance σ2

filter. For the
examples presented in this dissertation, Sfilter = 5, σ2

filter = 0.25, and the threshold τmin was
set as the lowest importance value (ω) among the input blades, times the number of input
blades required to define an intended p-dimensional subspace. However, it is important
to comment that fine-tunned values for Sfilter and σ2

filter may improve the identification of
peaks of votes.

The entries of the discrete Gaussian kernel are computed using:

Gi
filter =

1

Afilter
exp

(
− 1

2 σ2
filter

m∑
t=1

(
it − Sfilter + 1

2

)2
)

,

where Afilter is a normalization factor computed as:

Afilter =
∑
i∈I

(
exp

(
− 1

2 σ2
filter

m∑
t=1

(
it − Sfilter + 1

2

)2
))

,

and i ∈ I denotes a multi-index addressing a cell in Gfilter, with

I =
{
i = (i1, i2, · · · , im) | it ∈ Z, and 1 ≤ it ≤ Sfilter

}
being the set of all multi-indices i.

The filtering operation smoothes the accumulator array, helping to consolidate adja-
cent peaks as single ones which characterize an intended subspace. Figure 7.1 presents
the detection of the 39 most relevant lines in a given image. Figures 7.1a and 7.1c show
the obtained result with the use of convolution, whereas for Figures 7.1b and 7.1d no
convolution has been applied. Note the recovered lines labeled with (A), (B) and (C) on
Figures 7.1a and 7.1c. These lines fit to edge pixels which, when mapped to parameter
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space, define unsharp peaks of votes at neighbor bins of the accumulator array. The con-
volution combines the peaks into larger ones, resulting in three significant lines. For the
result shown in Figures 7.1b and 7.1d, since no convolution has been applied, the three
lines were missed and replaced by some other less significant features. For instance, the
peak detection applied to Figure 7.1b retrieved three concurrent lines very close to the
corner of the image, labeled by (F), (G), and (H), which are less relevant. The lines de-
noted by (D) and (E) in Figure 7.1a, and (I) and (J) in Figure 7.1b, correspond to other
lines detected in one image but not in another. The voting procedure presented in Chap-
ter 6 was used in the examples depicted in Figure 7.1. The discretization step for defining
the accumulator array is π/1800, and the importance value of each input is ω = 1.

After the sorting step, the elements of the list are visited from the first to the last one.
By treating the accumulator array as a height map (i.e., the accumulated values define
heights of a hypersurface in a (m+ 1)-dimensional space), visiting the elements of the
list is analogous to gradually moving a sweeping hyperplane from each peak toward the
τmin height. For each visited element, it is checked if any of its vertex-connected neighbors
(i.e. the (3m − 1) bins in the accumulator array sharing at least one vertex with current
bin) has already been visited. If so, the current bin should be in the decay of some local
maxima (i.e., it is at a lower portion of the hypersurface, next to a taller one). In such a
case, the bin is marked as visited and the procedure moves the sweeping hyperplane to
the next element in the list. Otherwise, the coordinates of the current bin is added to the
list of detected peaks, the bin is marked as visited, and then, the sweeping hyperplane is
moved to the next element in the list. The procedure stops after all elements have been
visited by the sweeping hyperplane, or after a given number of bins have been added to
the list of detected peaks. The resulting group of detected peaks contains the parameter
vectors of the most significant p-dimensional subspaces identified in the input dataset,
already sorted by number of votes.

7.1 Discussion

The proposed peak detection scheme was used in all examples of subspace detection
presented in this work. The worst case scenario for the approach is achieved by requiring
the detection of all peaks of votes (even the negligible ones) and by setting τmin = 0.
In this case, the convolution is applied to every bin in the accumulator array. Also, all
bins are visited by the sweeping hyperplane, leading to redundant verifications of visiting
status of neighbor bins. However, in practice, the value of τmin can be defined in such a
way that bins having negligible values are not included in the visitation list used by the
sweeping hyperplane. This is achieved, for instance, by computing τmin as a function of
the smaller importance value ω in the input dataset, and the number of input entries used
to define an intended subspace. Also, a typical situation is to know in advance how many
resulting subspaces one wants to detect (or at least be capable to deduce when to stop
reporting detected peaks). This way, the redundant work of checking the visiting status of
neighbors is performed only for a small subset of bins close to the main peaks of votes.

While implementing the described algorithm, one may include an extra bin at the
beginning and another one at the end of each dimension of the accumulator array. Such
extra bins never receive votes. However, they allow one to treat all actual bins in the same
way. For instance, the use of extra bins avoids testing whether a given actual bin is on the
edge of the accumulator array while checking the visiting status of its neighbors. Also,
by assuming that the accumulator array is allocated in a continuous block of memory,
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(b) Without Gaussian filtering
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(c) With Gaussian filtering (edge pixels)
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(d) Without Gaussian filtering (edge pixels)

Figure 7.1: The 39 most relevant detected lines obtained using the voting scheme pre-
sented in Chapter 6 and the proposed peak detection procedure on the edge pixels (shown
in (c) and (d)) of a given image (shown in (a) and (b)). In (a) and (c), a 5× 5 Gaussian ker-
nel was convolved with the accumulator array before performing peak detection. On (b)
and (d), no convolution was applied prior the peak detection. Note that some important
subspaces (denoted by (A), (B) and (C) in (a)) were not detected in (b).

addressing neighbors of any (actual) bin is achieved by adding some offset to the memory
address of the current bin.
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8 CONCLUSIONS AND FUTURE WORK

The analysis of large volumes of unordered multidimensional data is a problem con-
fronted by scientists and data analysts every day. Often, it involves searching for data
alignments that emerge as well-defined structures or geometric patterns in datasets. The
development of automatic detectors has been explored and extended in many ways in or-
der to produce techniques specialized in specific types of alignments of a given type of in-
put. This research has presented a more general framework for detecting data alignments.
The proposed approach is independent of the geometric properties of the alignments to be
detected, as well as independent of the type of input data. This closing chapter presents
a summary of the major points discussed in this dissertation. It also provides additional
discussions on the generality claim and on the limitations of the approach. The chapter
ends with a list of suggested areas for future exploration.

8.1 Synopsis

This thesis has presented a framework for detecting emerging data alignments in un-
ordered noisy multidimensional data. This approach results from the observation that a
wide class of alignments can be represented as linear subspaces in some multidimensional
space. Thus, instead of defining a different detector for each specific case and input data
type, it is possible to design a unifying framework to detect the occurrences of emerging
subspaces in multidimensional datasets. The proposed subspace detector is based on a
voting strategy, and it is formulated with GA. By doing so, the technique takes advantage
of the conceptual simplicity of the voting paradigm for pattern recognition, while explor-
ing the superior modeling capability of computational primitives and operations in GA.

The concepts of GA used in this dissertation have been discussed. The geometric
intuition of its operations have been illustrated with examples, and the interpretation of
its primitive structures have been presented in different MOGs.

I have described a parameterization for p-dimensional subspaces embedded in some
n-dimensional vector space, for 0 ≤ p ≤ n. In such a parameterization, the attitude of
a subspace is characterized by p (n− p) angular values describing rotation operations in
well defined planes. The stance of a subspace is retrieved from its parameters by ap-
plying rotation operations on a canonical subspace with dimensionality p. By definition,
the attitude is a nonmetric property of subspaces. Thus, the proposed parameterization is
independent of the actual geometric interpretation of a given subspace. The number of
parameters used by the proposed approach is in accordance with the smallest set of pa-
rameters required to characterize a p-dimensional subspace. As a consequence, the data
alignments encoded by such subspaces are also represented in the most compact way.

I have presented two algorithms for mapping subspaces of arbitrary dimensionality r
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(i.e., 0 ≤ r ≤ n) to the parameter space defined for p-dimensional subspaces. The map-
ping procedure identifies in the parameter space all p-blades that contain the given input
entry (for r ≤ p), or all p-blades contained in the input (for r ≥ p). The first mapping
algorithm assumes that input entries are exact. The second algorithm extends the former
by taking into account the uncertainty intrinsic to experimental data while performing
the mapping procedure. In such a case, the input data entries are modeled with random
variables, where the uncertainty is described by some Gaussian probability distribution
function. The mapping of uncertain data is achieved by using the affine cover of the
Grassmannian as an alternative space where the uncertainty of arbitrary geometric primi-
tives can be handled in an unified fashion.

The subspace detection framework uses a discrete representation of the parameter
space in order to verify which are the most likely p-dimensional subspaces in input data.
The mapping procedure is used to spread votes in such a discrete accumulator array. Af-
ter all input subspaces have been mapped to parameter space and the bins related to such
a mapping have been incremented, the peaks of votes in the accumulator array identify
which are the subspaces that best fit the dataset. I have presented an algorithm for detect-
ing local maxima in the accumulator array. The technique retrieves the group of detected
peaks, already sorted by number of votes.

The techniques proposed in this dissertation have been demonstrated by implementa-
tions of the algorithms described. The implementations have been validated by applying
the subspace detection framework in real and synthetic datasets.

8.2 Discussion

8.2.1 Generality of the Proposed Framework

As one would expect, the proposed framework is limited to the detection of elements
that can be represented by linear subspaces in some multidimensional space. However,
it is sufficient for detecting a wide class of data alignments. Examples of alignments
include, but are not limited to:

• Euclidean subspaces in Euclidean MOG;
• Flats and directions encoded as blades in the homogeneous MOG;
• Flats, rounds, directions and tangents represented in the conformal MOG; and
• General conic sections in the conic MOG.

It is important to notice that, since the approach is independent of the metric space, it can
be used without any change even in some MOG that may be defined in the future. Per-
wass (2009) provides a discussion on how general the geometries modeled in GA can be.
As pointed out by Perwass (2009), a multivector space may be defined over a space other
than a real vector space. The particular examples considered in his book are the Hilbert
space of random variables and the Hilbert space of the basis functions of a finite Fourier
series. In all cases, the concepts of blades and combinations of subspaces are still valid
even though they may not have the same geometric meaning than in conventional MOGs.

Regarding the extension presented in Chapter 6, it is limited to input subspaces with
Gaussian distributed uncertainty. It is because first-order error propagation analysis had
been used to propagate the uncertainty of each input element throughout the computa-
tions. The treatment of non-Gaussian distribution would require a more cumbersome
error propagation scheme. For instance, some approach based on Monte Carlo.
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8.2.2 Usability

The application of the generalized subspace detection scheme is straightforward. It re-
quires no initial guess or thresholding. The definition of the parameter space requires only
the dimensionality p of the subspace interpreted as the intended type of data alignment,
and the dimensionality n of the representational space. Thus, a MOG must be assumed.
The input data must be encoded in such a MOG, and the detected alignments (i.e., the
p-dimensional subspaces) will be represented in the same MOG. As pointed out in Ap-
pendix B, the conversion between GA primitives and the representations typically used
with linear algebra is simple and, in many situations, no extra computation is required.
Such a conversion will not be necessary in cases where GA is adopted as the mathematical
system of the whole solution.

The construction of the accumulator array requires some discretization criterion. For
the examples presented in this dissertation the accumulator array was defined as the linear
discretization of the parameter space. The discretization step was chosen regarding the
amount of memory available in the computational system.

8.2.3 Memory Requirements and Computational Load

A naive implementation of the proposed approach suffers from the same drawbacks
as conventional HTs: large memory requirement and computational cost. However, as
any HT, the proposed approach is robust to the presence of outliers and is suitable for
implementation on massively parallel architectures. Moreover, the generality of the tech-
nique guarantees that any optimization immediately benefits the processing of all de-
tectable data alignments. The attempts to minimize drawbacks in conventional HTs, on
the other hand, are targeted at particular versions of HTs due to specificities in their for-
mulations (ILLINGWORTH; KITTLER, 1988; LEAVERS, 1993).

8.3 Future Work

Some possible areas for further exploration include the design of generally applicable
optimizations, the study of the proposed parameter space in order to perform the detection
of manifolds with boundary, and the detection of arbitrary shapes.

8.3.1 Generally Applicable Optimizations

Mapping existing HT optimizations for the proposed framework constitutes some
promising direction for future exploration. For instance, I believe that the Statistical
Hough Transform described by Dahyot (2009) for straight-line detection could be gen-
eralized to the subspace detector. This would overcome limitations due to the use of a
discrete accumulator array. Such limitations are related to the trade-off in between the
number of bins in the accumulator, the number of available input entries and the number
of alignments observed in data. Too many bins for too few observations would lead to
a sparse representation of the importance of the alignments. Too few bins would also
reduce the resolution in the parameter space, and therefore, limit the precision of the esti-
mates. Dahyot (2009) states that limitations related to the discrete accumulator array can
be avoided by replacing it by a continuous representation of the parameter space.

The generalization of the real-time line detection scheme presented in (FERNANDES;
OLIVEIRA, 2008) operates on clusters of approximately collinear pixels and seems to be
a promising workaround for reducing the computation load of the proposed subspace
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detector. For each cluster, votes are cast in the accumulator array by using an oriented
elliptical-Gaussian kernel that models the uncertainty associated with the best-fitting line
with respect to the corresponding cluster. Such an approach not only significantly im-
proves the performance of the voting procedure for line detection, but also produces a
much cleaner accumulator array and makes the HT more robust to the detection of spu-
rious lines. The generalization of such optimization consists of defining a generalized
clustering algorithm for input subspaces with arbitrary dimensionality. The voting proce-
dure for the uncertainty associated to the best-fitting p-dimensional subspace is precisely
the extension presented in Chapter 6.

The more we delve into the computer vision and image processing literature, the
more optimizations for conventional HTs we find (ILLINGWORTH; KITTLER, 1988;
LEAVERS, 1993). Some of these techniques may not have contributed significantly to
advancing the state of the art of HT simply because they have not been applied in the
detection of the same type of data alignment. However, by combining them into a gener-
alized detection framework, such optimizations may be key for allowing the definition of
an approach having low computational burden and memory requirements.

8.3.2 Detection of Manifolds with Boundary

The conventional HT specialized in detecting straight lines in images provides the
parameters of the lines but not the length or the end points of line segments. Atiquzzaman
and Akhtar (1995) had observed that line segments can be determined by analyzing the
distribution of votes around the peaks in an accumulator array for line detection. The
novelty of their algorithm with respect to other solutions (RICHARDS; CASASENT,
1991; ATIQUZZAMAN; AKHTAR, 1994) is its independence of the accuracy with which
the peaks can be detected. Kierkegaard (1992), and Pei and Horng (1995) had used a
similar analysis to determine the parameters of circular arcs from the accumulator array
of conventional HT variations for circle detection. Such an analysis can be extended to
accumulator arrays computed with the subspace detection framework described in this
dissertation. By doing so, it will be possible to perform the detection of a broad class of
manifolds with boundaries. Such boundaries could include line segments, circular and
elliptical arcs, spherical and ellipsoidal caps, among others.

8.3.3 Detection of Arbitrary Shapes

Finally, I believe that the detection of arbitrary shapes with the proposed framework
can be achieved by defining a MOG where arbitrary structures can be represented (or
at least approximated) by pseudovectors in some high-dimensional space. A promising
direction for future investigation is to explore radial basis functions (RBFs) in the repre-
sentation of smooth manifolds and to define a multivector space over such a functional
basis. RBFs have been successfully applied in the reconstruction of 3-dimensional sur-
faces from point-cloud data obtained from range scanners (CARR et al., 2001). In such
a case, RBFs approximate the function that describes the surface that one wants to re-
construct. Such a problem is analogous to the representation of arbitrary shapes. The
drawback of this approach is the dimensionality of the functional basis, which leads to a
high-dimensional accumulator array.
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APPENDIX A DEFINITION OF THE GEOMETRIC PROD-
UCT

This appendix presents the algebraic definition of the geometric product (or Clifford
product) of two general blades (see Section 3.5). By exploring the distributivity over
the sum, one can use the formulas presented in this appendix to implement the geometric
product involving pairs of basis blades in a multivector.

Before one can define the geometric product, it is necessary to introduce the co-basis
elements (Section A.1), the complement, and the regressive product (Section A.2).
These operations are used in the definition of the interior product and the generalized
Grassmann product (Section A.3), which are key for defining the geometric product of
blades (Section A.4). The following equations are based on the formulas described by
Browne in (BROWNE, 2001).

A.1 Co-Basis

The basis {eeei}ni=1 of a vector space Rn induces the definition of a co-basis. The
co-basis element related to a basis vector eeei is denoted by eeei (do not confuse the co-basis
notation used in this appendix with the random variable notation used in Chapter 6). It is
defined as the outer product of the remaining basis elements. As a result, the outer prod-
uct of a given basis element with its related co-basis element is equal to the unit positive
pseudoscalar of the n-dimensional space:

eeei ∧ eeei = eee1 ∧ eee2 ∧ · · · ∧ eeen = III〈n〉.

This way, the co-basis of eeei is:

eeei = (−1)i−1eee1 ∧ eee2 ∧ · · · ∧ ĕeei ∧ · · · ∧ eeen, (A.1)

where ĕeei indicates that eeei is not present in this sequence of outer products. The definition
of co-basis is valid for n-dimensional spaces with any metric.

A.2 Complement and Regressive Product

The complement of a basis vector eeei is computed as:

eeei = δ

n∑
j=1

μi,j eeej , (A.2)
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where eeej is the co-basis element (Equation A.1) of eeej and δ is a constant scalar value,
computed from the metric matrix M = (μi,j)n×n as:

δ =
1√

det (M)
.

The notion of complement can be extended from basis vectors to basis blades because
the complement of a basis bladeEEE〈m〉 = eee1 ∧ eee2 ∧ · · · ∧ eeem is defined in terms of the basis
vectors spanning it:

EEE〈m〉 = eee1 ∧ eee2 ∧ · · · ∧ eeem = eee1 ∨ eee2 ∨ · · · ∨ eeem. (A.3)

Again, it is important not to confuse the complement notation used in Equations A.2
and A.3 for the complement, with the notation used for the expectation of a random
variable in Chapter 6.

In Equation A.3, ∨ denotes the regressive product (Section 3.3.2). The regressive
product of two arbitrary blades AAA〈r〉 and BBB〈s〉 is compute as:

AAA〈r〉 ∨BBB〈s〉 =

{
CCC〈t〉 for (r + s+ t) = n

0 otherwise
, (A.4)

where n is the number of dimensions of Rn, and

CCC〈t〉 ≡
(
A′A′A′〈r−t〉 ∧B′B′B′〈s−t〉 ∧CCC〈t〉

)
∨CCC〈t〉,

for AAA〈r〉 = A′A′A′〈r−t〉 ∧CCC〈t〉, and BBB〈s〉 = B′B′B′〈s−t〉 ∧CCC〈t〉. Note that the regressive product is
computed by finding the subspace CCC〈t〉 shared by AAA〈r〉 and BBB〈s〉. For basis blades, CCC〈t〉 is
found simply by checking which basis vectors are used to span the input blades.

A.3 Generalized Grassmann Product and Interior Product

The equations presented so far are used in the definition of the generalized Grassmann
product of order k:

AAA〈r〉 Δ
k
BBB〈s〉 =

ν∑
j=1

(
AAA〈r〉 ΘBBB

(j)
〈k〉
)
∧BBB(j)

〈s−k〉, (A.5)

where ν =
(
s
k

)
, Θ denotes the interior product (Equation A.7), and ∧ is the outer prod-

uct. In the generalized Grassmann product, the blade BBB〈s〉 is represented using all the
j = {1,2, · · · ,ν} combinations of its factors, separated in a blade of grade k and another
one of grade (s− k):

BBB〈s〉 = BBB
(j)
〈k〉 ∧BBB

(j)
〈s−k〉

= BBB
(1)
〈k〉 ∧BBB

(1)
〈s−k〉 = · · · = BBB

(ν)
〈k〉 ∧BBB

(ν)
〈s−k〉.

(A.6)

The factors ofBBB〈s〉 are the s vectors used in its construction. For instance, by assuming
BBB〈3〉 = bbb1 ∧ bbb2 ∧ bbb3 and k = 2, Equation A.6 results in:

BBB〈3〉 = BBB
(1)
〈2〉 ∧BBB

(1)
〈1〉 = (bbb1 ∧ bbb2) ∧ (bbb3)

= BBB
(2)
〈2〉 ∧BBB

(2)
〈1〉 = − (bbb1 ∧ bbb3) ∧ (bbb2)

= BBB
(3)
〈2〉 ∧BBB

(3)
〈1〉 = (bbb2 ∧ bbb3) ∧ (bbb1) .



131

The generalized Grassmann product (Equation A.5) is composed by a part which does
not depend on the metric of the space (i.e., the outer product at the right side of the equa-
tion) and a part that depends on the metric (i.e., the interior product inside the parenthesis).
The interior product of blades AAA〈r〉 and FFF〈k〉 (where FFF〈k〉 ≡ BBB

(j)
〈k〉 is not necessarily equal

to BBB〈s〉) is computed as:

AAA〈r〉 ΘFFF〈k〉 =

{
AAA〈r〉 ∨FFF〈k〉 for r ≥ k

0 otherwise
, (A.7)

where ∨ is the regressive product (Equation A.4) and FFF〈k〉 is the complement of FFF〈k〉, as
presented in Equation A.3 for basis blades.

A.4 Geometric Product

Finally, the geometric product of blades AAA〈r〉 and BBB〈s〉 is expressed as:

AAA〈r〉BBB〈s〉 =
min(r,s)∑
k=0

(−1)k(r− k+1
2

)
(
AAA〈r〉Δ

k
BBB〈s〉
)

,

where Δ
k

is the generalized Grassmann product of order k, defined in Equation A.5.
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APPENDIX B GEOMETRIC PRIMITIVES AS BLADES

This appendix presents a collection of equations related to geometric algebra. It aims
at being a quick reference guide for defining geometric primitives as blades in some mod-
els of geometry (MOGs), from parameters that are typically used with linear algebra. For
an in-depth discussions on the subject, see (DORST; FONTIJINE; MANN, 2007; PER-
WASS, 2009).
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APPENDIX C PARAMETERIZATION OF ROTORS

The Euler angles characterize the orientation of a rigid body in 3-dimensional Eu-
clidean space (EULER, 1765). Hoffman et al. (1972) presented a generalization of the
Euler angles for a rigid body in n-dimensional Euclidean space. As described by Hoff-
man et al. (1972), the generalized Euler angles may be used to characterize an arbitrary
rotation matrix in terms of n (n− 1)/2 independent parameters. This appendix presents
the derivations proposed by Hoffman et al. (1972), originally with linear algebra, which I
adapted to geometric algebra. In such a context, the generalized Euler angles are used in
the parameterization of rotors.

C.1 Generalized Euler Angles

Let aaa be an arbitrary vector in Euclidean vector space Rn with orthonormal basis
{eeei}ni=1. The direction of aaa (i.e., the combination of attitude and orientation, Section 3.1)
may be expressed by (n− 1) rotation operations applied to a reference vector. Without
loss of generality, one may choose eeen as the canonical vector and {eeen ∧ eeej}n−1

j=1 as the
rotation planes. By assuming the domain of the rotation angles as:

−π
2
≤ φ1, φ2, · · · , φn−2 ≤ π

2
−π ≤ φn−1 < π,

all possible directions of aaa are characterized by a set of parameters {φj}n−1
j=1 , where φj is

the angle (in radians) related to the rotation on plane eeen ∧ eeej .
Now, let {aaai}ni=1 be another orthonormal basis in Rn. By making aaan be the vector

aaa in previous example, we know that (n− 1) rotations are necessary to map eeen to aaan.
In the notational convention of this appendix, the angles of such rotations are denoted
by {φn,j}n−1

j=1 . The operations describing the direction of aaan also affect vectors aaa1, aaa2,
· · · , aaan−1. Thus, there is an (n− 1)-dimensional space subjacent to aaan where (n− 2)
rotation operations may be used to describe the direction of aaan−1 with respect to eeen−1.
The rotation angles used in such a subjacent space are depicted as {φn−1,j}n−2

j=1 . This
recursive definition shows that

n∑
u=2

(u− 1) =
n (n− 1)

2

rotations map a basis {eeei}ni=1 to {aaai}ni=1 and vice versa. The domain of the parameter φu,j ,
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for u ∈ {2, 3, · · · , n} and j ∈ {1, 2, · · · , u− 1}, is given by:

−π
2
≤ φu,1, φu,2, · · · , φu,u−2 ≤ π

2
(C.1)

−π ≤ φu,u−1 < π.

C.2 Computing a Rotor from its Generalized Euler Angles

A rotorWWW encoding an arbitrary rotation in Euclidean n-dimensional space is defined
from its generalized Euler angles {φu,j} by the composition of rotations on planes eeeu ∧ eeej:

WWW = VVV n · · · VVV 3VVV 2, (C.2)

where
VVV u = UUU u,u−1 · · · UUU u,2UUU u,1 (C.3)

is the sequence of (u− 1) rotation operations used to redirect the vector eeeu in an u-dimen-
sional space. A rotor UUU u,j in Equation C.3 encodes a rotation of φu,j radians on plane
eeeu ∧ eeej . It is computed as:

UUU u,j = cos

(
φu,j

2

)
− sin

(
φu,j

2

)
(eeeu ∧ eeej) .

Recall from Section 3.8 that rotors are applied to subspaces by using a sandwiching
construction, where the rotation operations are evaluated from inside to outside of it.
Therefore, by reading Equation C.2 from right to left, the geometric interpretation of the
application of a rotor WWW is the successive transformation of vectors in a basis {eee(u)i }ui=1 to
a basis {eee(u+1)

i }u+1
i=1 , for u ∈ {2, 3, · · · , n}.

C.3 Computing the Generalized Euler Angles of a Rotor

The procedure for computing the generalized Euler angles of an arbitrary rotor WWW
is given by the recursive application of Equations C.4 to C.7, starting with u = n and
WWW (n) =WWW . In such a procedure,(
WWW (u) eeeu /WWW

(u)
)
/eeeu = βu,0+βu,1 eee1∧eeeu+βu,2 eee2∧eeeu+ · · ·+βu,u−1 eeeu−1∧eeeu (C.4)

is the square of the simplest rotor that transforms the vector eeeu into the vector resulting
from WWW (u) eeeu /WWW

(u). The right side of Equation C.4 can be used to compute the Euler
angles related to VVV u (Equation C.3):

φu,k = sin−1

(
βu,k

cos φu,1 cos φu,2 · · · cosφu,k−1

)
, (C.5)

for k ∈ {1, 2, · · · , (u− 2)}, and

φu,u−1 = tan−1

(
βu,u−1

βu,0

)
. (C.6)

The angles computed with Equations C.5 and C.6 are used to retrieve WWW (u−1) as:

WWW (u−1) = VVV −1
u WWW (u), (C.7)
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where VVV u is defined in Equation C.3. The geometric product of VVV −1
u and WWW (u) means

that all the transformations that affect the vector eeeu are being removed from WWW (u). The
remaining transformations affect only the (u− 1)-dimensional space subjacent to eeeu.

It is important to comment that the arctangent in Equation C.6 must be evaluated
with the function ATAN2, available in many programming languages. By doing so, one
guarantees that the limits defined in Equation C.1 will be respected while computing the
parameters of a rotor.
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APPENDIX D RASTERIZATION OF SIMPLICES

This appendix presents an algorithm that takes a k-simplex in continuous m-dimen-
sional space and converts it to a raster representation in some discrete m-dimensional
domain. The algorithm receives as input a set of (k + 1) points defining the vertices of
the simplex in Pm (i.e., the continuous parameter space for p-blades, Equation 4.10). In
the proposed rasterization scheme, the discretization of the simplex is defined analytically
by inequalities according to the Standard Model (ANDRES, 2003). Such inequalities
impose a set of restrictions that are used to identify which hyxels in Dm (i.e., the discrete
domain) are related to the given simplex. A hyxel is a hyper-volume picture element, as
the pixel in raster images and the voxel in raster volumes. In practice, each inequality
defines a discrete half-space (i.e., that portion of Dm obtained by removing from it that
part lying on one side of a hyperplane). Thus, the discrete simplex is given by hyxels at
the intersection of discrete half-spaces.

The discrete space Dm is defined as

D
m =

{(
δ1, δ2, · · · , δm

)
| δt ∈ N0

}
,

where N0 denotes the set of all natural numbers including zero. A point in Dm can be
regarded as the address of a bin in the m-dimensional accumulator array used by the
voting procedure presented in Section 5.4.

In its initialization step, the rasterization algorithm defines a set J of multi-indices.
The multi-indices are all the strictly growing sequences of d-combinations of the values
in the set {1, 2, · · · , m}, for d ∈ Z varying from 1 to min (k + 1, m):

J = {j ∈ N
d | 1 ≤ j1 < j2 < · · · < jd ≤ m, 1 ≤ d ≤ min (k + 1, m)}. (D.1)

The multi-indices in J are used by the Standard Model (ANDRES, 2003) while comput-
ing the set of inequalities describing the discrete simplex. In the proposed rasterization
scheme, the multi-indices have a slightly different definition (and usage) from the ones
originally presented by Andres (2003). However, the resulting inequalities are equivalent.

After the initialization, the application of the algorithm consists of three steps:

1. Map vertices from Pm to the real vector space Rm containing Dm;
2. Use the Standard Model to create a set of discrete half-spaces whose intersection

define the intended discrete k-simplex; and
3. Identify the hyxels included in all half-spaces, and hence in the simplex.

Step (1) of the algorithm uses(
α1, α2, · · · , αm

)
=

1

Δθ

(
θ1 +

π

2
, θ2 +

π

2
, · · · , θm +

π

2

)
, (D.2)
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to map the vertices of the input simplex from Pm to the real vector space Rm contain-
ing Dm. In Equation D.2, (α1, α2, · · · , αm) are the coordinates of a point in Rm, Δθ is
the linear step assumed for the discretization of Pm, and (θ1, θ2, · · · , θm) ∈ Pm are the
coordinates of one of the original vertices.

Step (2) generates the inequalities (i.e., half-spaces) which will define the analytical
discrete representation of the simplex. For each multi-index j ∈ J the rasterization algo-
rithm builds a matrix with the form:

S =

⎛⎜⎜⎜⎝
α1,j1 α1,j2 · · · α1,jd 1

α2,j1 α2,j2 · · · α2,jd 1
...

... . . . ...
...

αk+1,j1 αk+1,j2 · · · αk+1,jd 1

⎞⎟⎟⎟⎠ . (D.3)

The rows of S store the coordinates of the (k + 1) vertices represented in space Rm (Equa-
tion D.2) and, in turn, orthogonally projected onto the subspace spanned by the d basis
vectors of Rm indexed by j. Notice that the projection is achieved just by discarding the
coordinates which are not indexed by j.

When the rank of the matrix S (Equation D.3) is less than the number of basis vec-
tors indexed by j (i.e., rank (S) < d), it means that the projected simplex induces a flat
subspaces with low dimensionality in the d-dimensional subspace. In such a case, no in-
equality needs to be generated because there is some other multi-index that will handle
the projection of the simplex onto a lower dimensional subspace. The cases that generate
inequalities are: rank (S) = d, and rank (S) = d+ 1.

The projected simplex induces a hyperplane in the d-dimensional space defined by
current multi-index j when the rank of S is equal to d. In such a case, two inequalities are
generated:⎧⎨⎩−γ ≤

(
βj1 δj

1
+ βj2 δj

2
+ · · ·+ βjd δj

d
+ βm+1

)
< γ if it has standard orientation

−γ ≤ −
(
βj1 δj

1
+ βj2 δj

2
+ · · ·+ βjd δj

d
+ βm+1

)
< γ otherwise

.

(D.4)
In Inequation D.4, (δ1, δ2, · · · , δm) are the coordinates of a hyxel in Dm to be tested later
against the inequalities. The coefficients (β1, β2, · · · , βm+1) of the inequalities are com-
puted as the entries at the last row of the matrix in D.5, while the threshold γ is computed
using Equation D.6. Andres (2003) state that a half-space has a standard orientation if
β1 = β2 = · · · = βi = 0 and βi > 0, for any 1 ≤ i ≤ m.

The coefficients of a half-space in some d-dimensional subspace induced by j are
computed as the cofactors for the entries at the last row of the matrix:⎛⎜⎜⎜⎜⎜⎝

αl1,j1 αl1,j2 · · · αl1,jd 1

αl2,j1 αl2,j2 · · · αl2,jd 1
...

... . . . ...
...

αld,j1 αld,j2 · · · αld,jd 1

βj1 βj2 · · · βjd βm+1

⎞⎟⎟⎟⎟⎟⎠ , (D.5)

i.e.,

βjt = (−1)(d+1) t det

⎛⎜⎜⎜⎝
αl1,j1 αl1,j2 · · · αl1,jt−1

αl1,jt+1 · · · αl1,jd 1

αl2,j1 αl2,j2 · · · αl2,jt−1
αl2,jt+1 · · · αl2,jd 1

...
... . . . ...

... . . . ...
αld,j1 αld,j2 · · · αld,jt−1

αld,jt+1 · · · αld,jd 1

⎞⎟⎟⎟⎠ ,
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where 1 ≤ t ≤ (d+ 1). The (m− d) coefficients βi not indexed by j in matrix D.5 are
equal to zero. In this matrix, l denotes a set of indices indicating d linearly independent
rows in S (Equation D.3). Once one has the coefficients (β1, β2, · · · , βm+1), the threshold
used in Equations D.4 and D.7 is computed as:

γ =
1

2

m∑
i=1

abs
(
βi
)
. (D.6)

Such a threshold is geometrically interpreted as an offset added to the hyperplane at the
edge of the half-space, leading to the inclusion of hyxels crossed by the hyperplane while
defining the discrete half-space.

When the rank of S (Equation D.3) is equal to (d+ 1), the projected simplex defines
a convex polytope (not necessarily a simplex) which induces the whole d-dimensional
space. In this case, an inequality is generated for each facet of the polytope. From the
convex hull of the projected vertices one can identify which points (rows) in matrix S lie
on the vertices of the polytope, and also the facets defined by them. Thus, each facet has
a multi-index l pointing to rows in S. The inequality for a given facet is written as:⎧⎨⎩

(
βj1 δj

1
+ βj2 δj

2
+ · · ·+ βjd δj

d
+ βm+1

)
< γ if it has standard orientation(

βj1 δj
1
+ βj2 δj

2
+ · · ·+ βjd δj

d
+ βm+1

)
≤ γ otherwise

,

(D.7)
where the coefficients (β1, β2, · · · , βm+1) and the threshold γ are computed using, respec-
tively, Equations D.5 and D.6 with the multi-index l of the given facet. In Equation D.7,
(δ1, δ2, · · · , δm) are the coordinates of a hyxel in Dm to be tested later against the inequal-
ities. It is important to notice that a half-space defined by Equation D.7 must include all
the vertices of the polytope.

After all the inequalities have being computed, the step (3) of the rasterization algo-
rithm identifies the hyxels related to the input k-simplex by testing, against the inequali-
ties, all the hyxels inside the axis-aligned bounding box of the given input points in Dm.
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APPENDIX E RESUMO EXPANDIDO
(EXTENDED ABSTRACT IN PORTUGUESE)

A análise de dados é um elemento fundamental na descoberta científica e na miner-
ação de dados. Em diversos campos da ciência, a inspeção visual de dados experimen-
tais é realizada com o objetivo de identificar coerência local acentuada. Essa coerên-
cia resulta do alinhamento de dados (em algum espaço multidimensional) e, usualmente,
emerge como formas geométricas e padrões. Por exemplo, linhas retas e círculos apare-
cem como estruturas bem definidas na análise de imagens produzidas por difração de
elétrons retroespelhados (Figura E.1a) e ensaios clonogênicos (Figura E.1b), respectiva-
mente. Entretanto, quando um grande volume de dados precisa ser analisado, a inspeção
visual torna-se impraticável. Por este motivo, detectores automáticos para tipos específi-
cos de alinhamentos de dados têm sido amplamente empregados por cientistas em difer-
entes áreas, tais como física de partículas (MANKEL, 2004; FECHNER et al., 2009), as-
tronomia (KRISHNAN et al., 2004; ABBOTT et al., 2008), microbiologia (BEWES; SU-
CHOWERSKA; MCKENZIE, 2008; KüRNER; FRANGAKIS; BAUMEISTER, 2005),
cristalografia (NAUMOVIć et al., 2001; LIU; RAABE; ZAEFFERER, 2008) e medic-
ina (KOBATAKE; YOSHINAGA, 1996; DING; FENSTER, 2003). Na mineração de
dados para comércio eletrônico, grandes conjuntos de dados têm sido analisados na busca
por padrões no comportamento e na preferência de consumidores (BöHM et al., 2004).
Detectores automáticos também são o componente central de muitas aplicações em visão
computacional (HARTLEY; ZISSERMAN, 2004) e processamento de imagens (GON-
ZALEZ; WOODS, 2008). O objetivo de detectores automáticos é identificar as instâncias
de um tipo de alinhamento requerido que melhor se ajustam a um conjunto de dados não
ordenados, mesmo na presença de ruído e de descontinuidade.

Esta tese introduz uma abordagem para a detecção de alinhamentos em conjuntos de
dados multidimensionais não ordenados em ruidosos. A abordagem proposta é baseada
na observação de que uma vasta classe de alinhamentos (e.g., linhas retas, planos, cír-
culos, esferas, seções cônicas, entre outros) pode ser representada como subespaços lin-
eares. Portanto, ao invés de definir um detector diferente para cada caso específico de
alinhamento e tipo de dado de entrada, é possível o desenvolvimento de uma abordagem
unificada para detectar a ocorrência de subespaços emergentes em conjuntos de dados
multidimensionais. A abordagem proposta apresenta as seguintes propriedades:

1. É uma solução com formulação fechada para a detecção de subespaços de uma
dada dimensionalidade em conjuntos de dados que podem ser heterogêneos e conter
elementos (i.e., subespaços) com dimensionalidades arbitrárias;

2. Pode ser aplicada, sem alterações, na detecção de qualquer classe de alinhamento
de dados que possa ser caracterizada por um subespaço linear;
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(d)

Figure E.1: Detecção automática de alinhamentos em conjuntos de dados reais. (a) Im-
agem produzidas por difração de elétrons retroespelhados (445× 445 pixels) obtida de
uma partícula de wulfenita (PbMoO4). A detecção de linhas retas é chave para a identi-
ficação da fase de partículas cristalinas. (b) Imagem em tons de cinza (529× 534 pixels)
de infecção por A/Memphis/14/96-M (H1N1) em células MDCK-SIAT1. A detecção de
círculos é importante para o processo automático de contagem em ensaios clonogênicos.
A abordagem proposta foi usada, sem qualquer alteração, na identificação automática das
linhas retas e dos círculos exibidos em (a) e (b) a partir da informação de borda exibida
em (c) e (d), respectivamente.

3. É independente da dimensionalidade e da métrica do espaço onde os dados resi-
dem; e

4. Garante o uso da menor quantidade de parâmetros na representação do tipo de sube-
spaço requerido. Logo, quando aplicada como um detector de formas geométricas,
a técnica proposta sempre representa a forma requerida pela maneira mais com-
pacta.

Eu formulei o detector de subespaços utilizando Álgebra Geométrica (GA, do inglês
Geometric Algebra). GA é um sistema matemático poderoso que engloba muitos con-
ceitos (e.g., números complexos, álgebra de quaternions, álgebra de Grassmann-Cayley e
coordenadas de Plücker) sob o mesmo formalismo (DORST; FONTIJINE; MANN, 2007;
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PERWASS, 2009). GA é baseada principalmente na Álgebra de Clifford (LOUNESTO,
2001), mas com forte ênfase na interpretação geométrica. Em GA, subespaços são trata-
dos como primitivas para computação. Deste modo, GA é uma ferramenta matemática
apropriada para a modelagem do problema de detecção de subespaço. Além disso, GA
tem se mostrado capaz de representar muitos tipos de geometria. Como exemplos de
modelos de geometria (MOGs, do inglês models of geometry) codificados por GA, po-
dem ser citados o espaço Euclidiano, Projetivo (HESTENES; ZIEGLER, 1991), Es-
férico (HESTENES, 1987, 2001), Hiperbólico (LI, 1997) e Cônico (PERWASS; FÖRST-
NER, 2006). Esses MOGs provêem aplicações práticas para a abordagem proposta como
um detector de formas geométricas emergentes em conjuntos de dados como, mas não
limitados a, imagens bidimensionais, imagens volumétricas e nuvens de pontos.

E.1 Abordagens Convencionais

Muitas das técnicas para detecção de alinhamentos de dados são derivadas do para-
digma da Transforma de Hough (HT, do inglês Hough Transform (HOUGH, 1959, 1962)),
da RANSAC (do inglês RANdom SAmple Consensus (FISCHLER; BOLLES, 1981)) ou
de Votação de Tensores (TV, do inglês Tensor Voting (MEDIONI; LEE; TANG, 2000)).
Uma discussão sobre esses paradigmas e algumas de suas variações é apresentada no
Capítulo 2.

A HT executa a detecção de um tipo requerido de forma geométrica por meio do
mapeamento de cada elemento do conjunto de dados de entrada para pontos (em um
espaço de parâmetros) representando as formas que passam sobre o elemento informado.
Com base neste mecanismo, o problema de detecção de formas geométricas pode ser
convertido no problema mais simples de identificação de picos de votos em uma grade de
acumuladores que representa o espaço de parâmetros discretizado.

A RANSAC é uma técnica não determinística onde as instâncias mais significativas
de um tipo de alinhamento de dados são identificadas por meio de ajustes sucessivos de
instâncias candidatas sobre amostras aleatórias dos dados de entrada. Após certo número
de tentativas, a instância candidata que aproxima a maior quantidade de elementos de
entrada é indicada como sendo a instância detectada.

O paradigma de TV recupera as superfícies, curvas e junções mais salientes em um
conjunto de dados através da codificação da informação associada a cada elemento do
conjunto na forma de um tensor. A informação codificada é propagada por uma vizin-
hança por meio de campos de votação de tensores. Após duas rodadas de votação e re-
finamento, as características salientes (com qualquer dimensionalidade) são identificadas
como picos em mapas de votos densos calculados (ao mesmo tempo) para cada tipo de
característica saliente.

Para utilizar as abordagens da HT ou RANSAC, é preciso assumir um modelo ma-
temático para o tipo requerido de alinhamento, definido com respeito ao tipo esperado
de dado de entrada. Então, tradicionalmente, as variações da HT e RANSAC têm sido
projetadas para detectar tipos específicos de estruturas em um tipo específico de dado.
Este nível de especialização impede o desenvolvimento de técnicas que possam ser apli-
cadas de maneira geral, e de otimizações que possam ser empregadas em todas as for-
mulações. Apesar de existirem generalizações parciais da HT e RANSAC projetadas
para algumas classes de formas geométricas analíticas (BALLARD, 1981; SCHNABEL;
WAHL; KLEIN, 2007; ACHTERT et al., 2008) e HTs para formas não analíticas (BAL-
LARD, 1981; WANG; REEVES, 1990), tais abordagens são ainda restritivas quanto ao
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Figure E.2: Detecção automática de alinhamentos de dados em conjuntos sintéticos de
dados heterogêneos. (a) Detecção das linhas retas que melhor se ajustam aos dados de
entrada compostos por 45 pontos e 1 plano. Neste exemplo, nós estamos interessados na
detecção das retas que estejam sobre o plano e que também se ajustem a subconjuntos de
pontos. (b) Detecção concorrente de planos e esferas a partir de uma única aplicação da
técnica proposta. O conjunto de dados de entrada é composto por 43 pontos, 1 linha reta
e 3 círculos.

tipo de dado de entrada assumido ou ao tipo de estrutura a ser detectada.
A técnica de TV, por outro lado, segue uma definição generalizada. Esta abordagem

é projetada para a detecção de alinhamentos com dimensionalidades arbitrárias em con-
juntos de dados heterogêneos. TV, entretanto, retorna todas as estruturas possíveis ao
mesmo tempo. Tal comportamento impede a detecção eficiente de tipos de alinhamentos
pré-definidos, pois a técnica iria requer uma etapa subseqüente de filtragem das detecções.

E.2 Idéia Central

Eu proponho a generalização das técnicas baseadas em votação para a detecção de
alinhamentos de dados que possam ser caracterizados por um subespaço em qualquer
MOG. A idéia central defendida nesta pesquisa é apresentada abaixo:

É possível definir uma parametrização para subespaços lineares que seja in-
dependente da dimensionalidade do subespaço requerido, do tipo de dado
de entrada e da métrica do espaço como um todo. Além disso, desde que
subespaços lineares de uma dada dimensionalidade podem ser interpretados
como algum tipo de alinhamento de dados em um modelo de geometria as-
sumido, é possível utilizar tal parametrização no desenvolvimento de uma
técnica, baseada em votação, para a detecção automática de alinhamentos
em conjuntos de dados multidimensionais.

Para explorar o domínio associado ao esquema de detecção proposto, é preciso que
três problemas sejam resolvidos. O primeiro é definir uma parametrização para sube-
spaços lineares de uma dada dimensionalidade em um espaço n-dimensional. O Capí-
tulo 4 apresenta uma derivação onde subespaços p-dimensionais, para 0 ≤ p ≤ n, são
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parametrizados por p (n− p) operações de rotação aplicadas a um subespaço canônico
com a mesma dimensionalidade. A parametrização é definida de tal modo que ela é inde-
pendente da interpretação do subespaço no contexto atual (i.e., a interpretação geométrica
em algum MOG).

O segundo problema é definir a relação de dualidade entre os dados de entrada e
os parâmetros que caracterizam os subespaços requeridos. Esta relação é utilizada no
desenvolvimento de um procedimento que mapeie, para o espaço de parâmetros, ele-
mentos com dimensionalidades arbitrárias vindos do conjunto de dados de entrada. Tal
mapeamento é o componente central de um esquema de votação, onde uma representação
discreta do espaço de parâmetros é usada a fim de identificar quais são os subespaços
p-dimensionais que melhor se ajustam às entradas. A questão da votação é explorada no
Capítulo 5, onde procedimentos gerais de mapeamento e votação são definidos para sube-
spaços r-dimensionais (0 ≤ r ≤ n) de entrada, de tal modo que o conhecimento prévio da
interpretação geométrica dos dados não é requerido. Os procedimentos de mapeamento e
votação são estendidos no Capítulo 6 para o tratamento de subespaços de entrada com dis-
tribuição Gaussiana de incerteza. Neste caso, a incerteza intrínseca a dados experimentais
é levada em consideração durante a distribuição de votos no mapa discreto.

O terceiro problema a ser resolvido é como encontrar os subespaços mais relevantes a
partir da representação discreta do espaço de parâmetros, após o procedimento de votação
ter sido executado. Este tópico é discutido no Capítulo 7, onde é proposta uma técnica
para detecção de picos em histogramas multidimensionais.

E.3 Breve Descrição da Técnica Geral para Detecção de Subespaços

Um subespaço p-dimensionalBBB〈p〉 inserido em um espaço n-dimensional pode ser car-
acterizado por um conjunto dem = p (n− p) rotações aplicadas a um subespaço canônico
(EEE〈p〉) utilizado como referência. Mais precisamente, na notação de GA:

BBB〈p〉 = TTT EEE〈p〉 /TTT , (E.1)

onde TTT é o rotor (rotores são definidos no Capítulo 3) que codifica uma seqüência de m
operações de rotação. A derivação de TTT é apresentada no Capítulo 4. Na Equação E.1,
a transformação codificada por TTT é aplicada sobre EEE〈p〉 com o intuito de obter BBB〈p〉 como
resultado. Os m ângulos de rotação são os parâmetros que caracterizam BBB〈p〉 e os valores
de p e n dependem do tipo requerido de alinhamento de dados. Por exemplo, ao assumir
o MOG homogêneo (ou projetivo) para a detecção de retas em imagens (Figura E.1a),
n = 2 + 1 = 3 e p = 2, levando a m = 2 (3− 2) = 2.

Os m ângulos de rotação relacionados com a seqüência de rotações na Equação E.1
definem um espaço de parâmetros para subespaços p-dimensionais. O detector proposto
utiliza este espaço de parâmetros. A aplicação da técnica consiste de três passos:

1. Criar uma grade de acumuladores como sendo a representação discreta do espaço
de parâmetros;

2. Executar o procedimento de votação, onde o conjunto de dados de entrada é ma-
peado para a grade de acumuladores; e

3. Buscar pelos picos de votos na grade de acumuladores, pois eles correspondem aos
subespaços p-dimensionais que melhor se ajustam aos dados de entrada.

A Tabela E.1 resume os três passos. O passo (1) define um espaço de parâmetros (Pm)
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para os m graus de liberdade:

P
m = {(θ1, θ2, · · · , θm) | θt ∈ [−π/2,π/2)}, (E.2)

onde cada vetor de parâmetros (θ1, θ2, · · · , θm) ∈ P
m caracteriza uma instância de um

subespaço p-dimensional em um espaço vetorial n-dimensional. Os valores de p e n estão
relacionados ao MOG onde os dados foram codificados e ao tipo de alinhamento (também
representado neste MOG) que se deseja detectar. Na prática, é preciso discretizar Pm, para
o qual uma grade de acumuladores é criada para receber “votos” e inicializada com zeros.

O passo (2) mapeia os dados de entrada para o espaço de parâmetros. Essencialmente,
o mapeamento pega cada subespaço r-dimensional XXX〈r〉 no conjunto de dados de entrada
e identifica os parâmetros (coordenadas em Pm) de todos os subespaços p-dimensionais
relacionados a ele. Quando r ≤ p, o mapeamento identifica em P

m todos os subespaços
p-dimensionais que contém XXX〈r〉 (e.g., as linhas contendo pontos dados como entrada
na Figura E.2a). Se r ≥ p, o procedimento identifica em Pm todos os subespaços p-
dimensionais contidos emXXX〈r〉 (e.g., as linhas no plano dado como entrada na Figura E.2a).

Após o procedimento de votação ter sido executado para todoXXX〈r〉, o número de votos
depositado em cada célula do acumulador define a importância dos subespaços represen-
tados pelas células com relação aos dados de entrada. Logo, as células que receberam

Table E.1: Os passos da técnica proposta para detecção de subespaços. Como entrada
é requerido um conjunto X de subespaços (i.e., os dados de entrada codificados em um
MOG), a dimensionalidade p dos subespaços interpretados como os tipos de alinhamento
requeridos e a dimensionalidade n do espaço vetorial como um todo. O algoritmo retorna
os subespaços p-dimensionais que melhor se ajustam ao conjunto de entrada X .

Passo Descrição
1. Inicialização Utilize a função que modela subespaços p-dimensionais

(Equação E.1) na definição do espaço de parâmetros Pm

(Equação E.2). Então, crie (e inicialize com zeros) uma grade
m-dimensional de acumuladores como sendo a representação
discreta de Pm.

2. Votação Mapeie cada subespace de entrada XXX〈r〉 ∈ X para Pm uti-
lizando o procedimento descrito no Capítulo 5 ou no Capí-
tulo 6. Durante o mapeamento, alguns parâmetros assumem
um único valor, enquanto que outros assumem todos os val-
ores no intervalo [−π/2, π/2). Entretanto, por conta da na-
tureza discreta da grade de acumuladores, esses parâmetros
precisam assumir apenas um subconjunto de valores discretos
em [−π/2, π/2). Como conseqüência, o mapeamento retorna
um conjunto finito de pontos em Pm. Esses pontos são usados
para endereçar células na grade de acumuladores. A votação é
realizada pelo incremento dessas células conforme a importân-
cia ω de XXX〈r〉.

3. Detecção de Picos Identifique as células que correspondem aos máximos locais
na grade de acumuladores. Utilize as coordenadas dessas
células (i.e., vetores de parâmetros) para obter os subespaços
p-dimensionais mais significativos.
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mais votos representam os subespaços p-dimensionais detectados. O passo final da abor-
dagem busca pelos máximos locais na grade de acumuladores. Os vetores de parâmetros
associados a essas células são utilizados na Equação E.1 a fim de se obter os subespaços
detectados. Isso é feito pela aplicação da seqüência de rotações especificadas pelo en-
dereço das células (θ1, θ2, · · · , θm) sobre um subespaço canônico EEE〈p〉.

E.4 Resultados

Esta dissertação apresenta resultados originais que incluem:

• Uma abordagem geral para a detecção de subespaços em conjuntos de dados mul-
tidimensionais não ordenados;
• Um esquema para a parametrização de subespaços baseado na rotação de um sube-

spaço canônico de mesma dimensionalidade;
• Um algoritmo que enumera todas as instâncias de subespaços, com uma dada di-

mensionalidade p, que contenha ou que esteja contido em um subespaço de dimen-
sionalidade arbitrária informado como entrada;
• Um procedimento que mapeia subespaços com distribuição Gaussiana de incerteza

para o espaço de parâmetros que caracteriza subespaços p-dimensionais;
• Um conjunto de evidências experimentais mostrando que a cobertura afim da Grass-

maniana (HARRIS, 1992) pode ser usada como um espaço auxiliar, onde a in-
certeza de estruturas geométricas como linhas retas, planos, círculos, esferas e
seções cônicas, entre outras, é tratada de maneira unificada; e
• Um algoritmo para identificar máximos locais em um histograma multidimensional.

Além dessas contribuições, as seguintes afirmações são demonstradas com relação à
abordagem proposta:

• Ela é uma generalização das HTs para formas analíticas que podem ser represen-
tadas por subespaços lineares;
• Ela permite a detecção dos subespaços que melhor se ajustam a conjuntos de dados

compostos por subespaços com diferentes dimensionalidades e diferentes interpre-
tações geométricas (e.g., a detecção de linhas retas que melhor se ajustam a pontos
e planos – Figura E.2a);
• Ela permite a detecção concorrente de subespaços com interpretações geométricas

diferentes (e.g., planos e esferas – Figura E.2b) mas com a mesma dimensionalidade
em um dado MOG;
• Os subespaços p-dimensionais requeridos são representados com a menor quanti-

dade possível de parâmetros, levando à parametrização mais compacta de formas
analíticas (e.g., linhas retas, círculos e seções cônicas no plano são parametrizadas
com dois, três e quatro parâmetros, respectivamente);
• A detecção pode ser direcionada a um tipo específico de alinhamento com a simples

troca do MOG assumido na codificação dos dados, enquanto que a formulação do
esquema de detecção permanece inalterada; e
• Uma aproximação do diagrama de Voronoi de d-ésima ordem (VORONOI, 1908)

para um conjunto de pontos em R
d pode ser obtida como um subproduto da de-

tecção de subespaços geometricamente interpretados como círculos, esferas e seus
equivalentes de dimensionalidade mais alta.
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É importante enfatizar que a abordagem proposta não está restrita à detecção de formas
geométricas. Ela pode ser aplicada sobre qualquer domínio no qual um problema possa
ser caracterizado por um problema de detecção de subespaços. Por exemplo, o problema
de agrupamento de subespaços em aplicações de mineração de dados, onde o objetivo é
encontrar os subespaços que acomodem a maior quantidade de objetos da base de dados.
Além disso, como uma solução fechada, a mesma implementação da abordagem proposta
e de suas otimizações naturalmente generaliza para todos os casos de detecção.

E.5 Demonstração e Validação das Técnicas

As técnicas propostas nesta tese são demonstradas pela implementação dos algoritmos
descritos. As implementações são validadas pela aplicação do esquema de detecção de
subespaços sobre conjuntos de dados reais (Figura E.1) e sintéticos (Figura E.2). A abor-
dagem proposta apresenta uma faixa de aplicações bastante ampla como uma ferramenta
para detecção de padrões. Porém, Para efeitos de ilustração, os exemplos exibidos nesta
tese são restritos ao problema importante de detecção de formas geométricas analíticas
em espaços com dimensionalidade arbitrária.
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