
Anahy: A Programming Environment for
Cluster Computing�

Gerson Geraldo H. Cavalheiro1, Luciano Paschoal Gaspary2,
Marcelo Augusto Cardozo3, and Otávio Corrêa Cordeiro3

1 Universidade Federal de Pelotas (UFPel)
Pelotas – Rio Grande do Sul – Brazil
gerson.cavalheiro@ufpel.edu.br

2 Universidade Federal do Rio Grande do Sul (UFRGS)
Porto Alegre – Rio Grande do Sul – Brazil

paschoal@inf.ufrgs.br
3 Universidade do Vale do Rio dos Sinos (UNISINOS)

São Leopoldo - Rio Grande do Sul – Brazil
{mcardozo,otaviocc}@anahy.org

Abstract. This paper presents Anahy, a programming environment for
cluster computing. Anahy is presented in terms of its programming in-
terface (API) and its scheduling mechanism. The main features of this
environment are the specification of a POSIX thread-based API and the
use of dynamic scheduling techniques based on Directed Acyclic Task
Graphs (DAG). The main advantage obtained with these features is the
dissociation between the description of the concurrency of an applica-
tion and its parallel execution. The paper examines how Anahy builds a
DAG describing the dependencies among tasks at execution time from
a multithreaded program and how this DAG is handled by the runtime
to apply dynamic scheduling techniques. The paper concludes discussing
three case studies of applications developed in the context of Anahy
environment.

1 Introduction

New runtime environments have been proposed for cluster computing to assist
the development of applications. Some of them are composed by a layered archi-
tecture, wherein at the top they propose a high level application programming
interface (API) to describe the concurrency of an application as a concurrent
program and, at the bottom, a runtime to execute this program. Therefore, an
efficient execution depends on a good strategy for scheduling the computational
cost generated by the program in execution (computation, data, and communi-
cation) over the computational resources available on the hardware (processors,

� The Anahy project is supported by CNPq/PDPG-TI (55 2196/2002-9), FAPERGS
(02/0571.4), and was developed in collaboration with UNISINOS and HP Brazil
R&D.

M. Daydé et al. (Eds.): VECPAR 2006, LNCS 4395, pp. 198–211, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Anahy: A Programming Environment for Cluster Computing 199

memories, and network). Such scheduling cannot be undertaken in a straightfor-
ward manner, since it must consider information related to program behavior.

Overcoming the above difficulty is a challenge that involves both program-
ming model [1] and scheduling. A common approach taken in the development
of programming tools and runtime environments (e.g. Athapascan-1 [2], Cilk [3],
Clik [4], Pyrros [5], and GrADS [6]) is building an intermediate level between
the program in execution and the scheduler describing the program structure in
terms of a Directed Acyclic task Graph (DAG). Since the literature on scheduling
strategies taking graphs as input is vast (e.g. [5,7,8,9]), the interaction between
graph and scheduling is well known (e.g. [10]). However, traditional program-
ming tools for cluster computing (such as those based on multithreading and/or
message passing) don’t offer high level programming resources for creating such
graph representation.

This paper addresses the aforementioned problem by proposing Anahy, a pro-
gramming environment for cluster computing. We present the programming in-
terface (API) proposed for this environment as well as some aspects related to its
scheduling mechanism. The main features of this environment are the specifica-
tion of a POSIX thread-based API and the use of dynamic scheduling techniques
based on DAGs. The main advantage obtained with these features is the dissocia-
tion between the description of the concurrency of an application and its parallel
execution [11]. The paper examines how Anahy builds a DAG describing the de-
pendencies among tasks at execution time from a multithreaded program and
how this DAG is handled by the runtime to apply dynamic scheduling techniques.

The remaining of the paper is organized as follows. In the next section, related
work is briefly presented. Section 3 presents the Anahy programming interface.
Section 4 covers the algorithm employed to schedule concurrent programs. Sec-
tion 5 presents three case studies, and Section 6 concludes the paper with final
remarks and perspectives for future work.

2 Related Work

A DAG is a typical abstraction to model the structure of programs in terms
of concurrent activities and data communications [12]. In this abstraction, each
concurrent activity defined by the program, named task, is represented by a ver-
tex and a communication between two tasks is represented by an arc connecting
two vertices. The use of DAG is very common in static schedulers. Dynamic tech-
niques have been proposed ([13]) in order to avoid inefficiency on blind dynamic
scheduling techniques [14] (that is, schedule techniques that don’t considering
the program structure).

Scheduling DAG is a NP-hard problem [15]. Most of the DAG schedulers are
based on list scheduling techniques (e.g. [8] and [7]). Those schedulers handle
the tasks generated by the program in priority list. This technique is based on
a two step algorithm: in the first step a priority list is built by assigning each
task generated by the program a priority; in the second step tasks are mapped
to processors respecting their execution priorities.

200 G.G.H. Cavalheiro et al.

In 1995 Feitelson has observed in [16] that although lots of researches were
being made on DAG scheduling strategies, few efforts were observed in exploiting
their use on runtime systems. Nowadays, the research on the area is still popular
(e.g. [17,18,19,6]). Nevertheless, the number of programming and execution envi-
ronments employing DAG based scheduling is limited, particularly if we consider
those that support applications whose DAGs are created at execution time. Cilk
[3] and Athapascan-1 [2] are examples of them for SMP and cluster architectures.
Both Cilk and Athapascan-1 propose APIs that allow building graph structures
at execution time and a runtime able to apply dynamic scheduling techniques
based on list strategies.

The Cilk API provides resources for the explicit creation and synchroniza-
tion of concurrent activities, called threads, and to access a shared memory
space. These features allow the programmer to introduce synchronizations among
threads in order to control data exchange. The Athapascan-1 API offers special
data types in a shared memory space and a primitive to create concurrent ac-
tivities, called tasks. Tasks are created explicitly but, differently from Cilk, the
programmer must identify the input and the output data of each task.

The approach considered by both Cilk and Athapascan-1 takes into account
that the scheduler can exploit the structure of the graph during its construc-
tion. In such way, they can apply a heuristic to explore the program structure in
order to achieve an index of performance and avoid inefficiency of blind schedul-
ing techniques. Nevertheless, the graph built in Cilk represents only the prece-
dence among threads, not representing concurrency in a smaller unit such as a
task. As a consequence, the Cilk scheduler is able to exploit only serial parallel
graphs (nested fork and join operations). On the other hand, the graph built in
Athapascan-1 is more complete since it includes the data dependencies among
tasks. In this case the scheduler has more information about the program in
execution but the cost to build and manage the graph is higher. We propose to
mix these two approaches by offering a programming environment able to obtain
data dependencies among tasks from a graph describing execution precedence
among threads.

3 The Anahy Programming Interface

The Anahy API offers high level programming resources to handle a large number
of concurrent activities and communications in a multithreading style. This API
offers a fork/join-based model to describe the concurrency in terms of threads.
An intermediate level between this API and the runtime is responsible for iden-
tifying the concurrency in smaller units, called tasks, and creating a DAG rep-
resenting the data dependencies between tasks.

3.1 Handling Tasks with Anahy

The Anahy API provides services to explore a shared memory multiprocessor ar-
chitecture. These services allow the creation and the synchronization of threads

Anahy: A Programming Environment for Cluster Computing 201

Level 3

Ready Executing
��
��
��
��

��
��
��
��

Blocked Terminated

���
���
���
���
���

���
���
���
���
���

t
0

Level 0

tt 1.1.31.1.2t1.1.1

tt3.1.23.1.1 3.1.3t

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���

���
���
���
���
���

����
����
����
����
����

����
����
����
����
����

3.3
t

3.2
tt

1.3
t

1.2
t

1.1
t

1
t

2
t

3
t

3.1

Level 1

Level 2

Fig. 1. Graph representing threads creation

and can be represented by the operations fork/join/exit. A fork consists in the
creation of a new execution flow responsible for executing a function F defined
in the body of the program having a set of data X as input. The fork opera-
tor returns an identifier for the newly created thread. Although the thread is
ready to be executed, the programmer cannot predict when this thread will be
triggered. The exit corresponds to the last operation performed by the thread
extinguishing the execution flow. The synchronization upon termination of a
thread is performed through a join, identifying the flow to be synchronized.
This operation allows a thread to be blocked until the termination of another
thread, so that it can gather the results Y produced by F(X).

Figure 1 shows a snapshot of threads state taken during the execution of
an Anahy program. The graph in this figure contains all threads created until
the snapshot: notice that they are in different states reflecting their life cycle
(executing, ready, blocked, and terminated). The threads are grouped in levels,
based on their depth in the program: a thread from level i creates threads on
level i + 1. For example, thread t0 creates threads t1, t2 and t3 (in this order).
Arrows in this representation identify the relation of creation; dotted arrows
were employed to identify threads on the same level created by the same thread.

3.2 A POSIX-Like Thread Interface

Considering the programming model, both fork and join operations create new
tasks. We have implemented this model in Anahy as a library for C/C++ pro-
grams offering a programming interface closer to the POSIX threads standard
in order to provide a multithreading programming style. Therefore, although
fork and join handle tasks, the API of Anahy offers primitives to create and
synchronize (join) Anahy threads.

The body of a thread. The body of a thread is defined as a conventional C
function, as follows:

202 G.G.H. Cavalheiro et al.

void * func(void * in) {
/* code */
return out;

}

In this example, func corresponds to the function to be executed in a new
thread and in corresponds to the memory address (in the shared memory) where
the input data for the function is located. The return instruction (return out)
corresponds to the exit operation. Notice that when a thread finishes its output
is stored in the shared memory at the address specified by out.

Synchronization of threads. The pthread_create and pthread_join ser-
vices correspond to the creation and join-synchronization of threads in POSIX
threads standard. The corresponding syntaxes in Anahy are:

int athread_create(athread_t *th, athread_attr_t *attr,
void *(*func)(void *), void *in);

int athread_join(athread_t th, void **res);

athread_create creates a new thread to execute the function defined by func;
the input data of func is stored in the address specified by in. The parameter
th will be updated to get a value to identify the new thread created. The attr
argument specifies thread attributes to be applied to the new thread (as memory
requirements or computational costs). In the operation of athread_join the
thread on which the synchronization is to be performed is identified by th and
res will be updated to point to a position in the shared memory where the
output of the function executed by the thread th can be found.

Migration of threads. Although Anahy interface provides a multithreaded
programming style, executions can be achieved on distributed memory architec-
tures. Thus, threads can be migrated between nodes. The scheduling mechanism
was developed to migrate threads transparently. Nonetheless, the programmer
must provide the execution support with information about the data required
(parameters) and produced (results) by the threads allowing the data trans-
fers. The mechanism adopted introduces the use of pack/unpack functions. The
prototypes of pack/unpack functions for a given thread are the following:

int packInFunc(void *in, char **buff);
int unpackInFunc(void *in, char **buff);
int packOutFunc(void *res, char **buff);
int unpackOutFunc(void *res, char **buff);

The first parameter of each pack/unpack function represents the data to be
sent (in) or produced (res) to/by a thread. The second parameter (buff) rep-
resents the buffer where the input data for a thread must be packed – in thread
creation – or from where data must be read to be unpacked – in thread launch-
ing –. Each function must return the size (in bytes) of data packed/unpacked.
The programmer associates specific pack/unpack functions to threads in the
thread attributes (athread attr t):

Anahy: A Programming Environment for Cluster Computing 203

int athread_attr_setpackinput(athread_attr_t *attr,
int (*func)(void *in, char **buff));

int athread_attr_setunpackinput(athread_attr_t *attr,
int (*func)(void *in, char **buff));

int athread_attr_setpackoutput(athread_attr_t *attr,
int (*func)(void *res, char **buff));

int athread_attr_setunpackoutput(athread_attr_t *attr,
int (*func)(void *res, char **buff));

The default value (NULL) allows the thread to execute only in the node where
it was created.

To illustrate the use of Anahy, the program presented in Figure 2 implements
the code able to generate the graph in Figure 1. Due to space limitations the
code not related to Anahy and the one describing pack/unpack operations are
not presented.

void *foo(void *depth) {
athread_t child[3];
int mydepth, *childdepth, *ret, *res = new int(0);
mydepth = (int *) i*depth;
if(mydepth > 3)

*res = computeSomething(mydepth);
else {

*childdepth = new int(mydepth+1);
for(int i = 0 ; i < 3 ; i++)

athread_create(&child[i], NULL, foo, childdepth);
for(int i = 0 ; i < 3 ; i++) {

athread_join(child[i], (void **)&ret);
*res += computeSomething(*ret);
delete(*ret);

}
delete(childdepth);

}
return res;

}
int main() {

int complexity, *result;
result = foo((void *) &complexity)
free(result);
return 0;

}

Fig. 2. An example of Anahy program

4 The Anahy Scheduler

While the API of Anahy provides a multithreaded abstraction to describe the
concurrency of applications, the scheduling strategy deals with tasks. The in-
terface between the API and the scheduling builds a DAG considering accesses
to the shared memory. These tasks are implicitly defined when the program
executes calls to athread_create and athread_join.

A call to a athread_create implies the creation of two tasks: the first one is
defined in the context of the new thread spawned. This task has as input data
the arguments of the thread itself. The second task is created in the original

204 G.G.H. Cavalheiro et al.

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������
��������������������������������

���
���
���
���
���

���
���
���
���
���

τ0 τ2

Level 0

Level 1

fork join exit
Ready Executing

��
��
��
��

��
��
��
��

Blocked Terminated ���
���
���
���
���

���
���
���
���
���

2
t

1
t

3
t

τ1 τ4τ3

0t

Fig. 3. Zoomed section of the DAG representing the tasks of thread t0 in Figure 1

thread, having as input the data present in the local memory of this thread and
the identifier of the new thread created. A call to a athread_join implies the
creation of one new task: the thread terminates the execution of the current task
and creates a new one starting in the instruction that follows (in lexicographical
order) the join. This new task has as input data the local memory of the current
thread and the output produced by the last task executed in the synchronized
thread.

The set of tasks created in the context of thread t0 (Figure 1) is represented in
Figure 3. In this figure arrows represent data dependencies among tasks. Down
arrows represent fork operations while the up arrow represents a join.

4.1 Scheduling Algorithm

The scheduling algorithm assumes shared memory architecture. A task is defined
as the unit of scheduling manipulation as well as is assumed to be executable
in a finite time. Tasks finish by executing fork, join or exit operations. The
basic algorithm generates three lists: the ready, containing the tasks with no
restrictions to be launched; the terminated list, containing the tasks that have
finished; and the blocked list containing the tasks waiting for synchronization.

First we introduce the scheduling algorithm considering a mono-processor ar-
chitecture. The processor is initially idle, then it takes the first task, τ0, from the
list of ready tasks and starts its execution. The instructions of τ0 are processed
sequentially until τ0 finishes by executing one operation involving the scheduling
process (fork/join/exit). The execution of a fork produces the creation of two
tasks τ1 and τ2. Task τ2 is the one explicitly created by the fork and task τ1 is
the one created to be the continuation of τ0 just after the fork. τ2 is stored in
the list of ready tasks while τ1 is launched. When a join is executed, for example
τ1.join(τ2), τ1 terminates and a new task τ3 is created: the code of task τ3 starts
at the instruction that follows the join; the initial state of τ3 is blocked. The
next scheduling action executes τ2: the task τ2 is taken from the ready list of
and launched. At the termination of τ2, τ3 is unblocked (becomes ready) and
started. Notice that τ3 has as input both the data produced by τ2 and τ1. This
process can be recursively applied.

In the case of a parallel architecture, there are two or more processors exe-
cuting the algorithm described above. So, when a task τi requests a join with
τj , two new situations may arise: either τj has already terminated or τj is being

Anahy: A Programming Environment for Cluster Computing 205

executed at that moment. In both cases τi finishes and a new task τi+1 is created.
In the former case (τj has terminated), the procedure consists of recovering the
data produced by τj , allowing the processor to continue with the execution of
τi+1 (τj is removed from the list of terminated tasks). In the latter case (τj is
being executed), τi+1 remains blocked and the processor looks for a new activity
on the list of ready tasks. τi+1 will become ready when τj terminates.

The Anahy scheduler was conceived to exploit list scheduling strategies. Thus,
its implementation was guided by the existence of a critical path defining the
largest sequence of tasks in the program. Considering this critical path, the
best performance can be achieved if the scheduler guarantees that during the
execution of a program, at least one of the processors is executing a task from this
path. Since Anahy focuses dynamic execution of programs, the real critical path
is unknown during the execution of the program. Therefore, considering that the
concurrent execution of a program must give the same result that a sequential
one, the scheduling assumes that the first and the last tasks of the critical path
are, respectively, the first and the last task created in the context of t0 (the first
thread launched). The algorithm was implemented in order to guarantee that
a processor will be dedicated to execute the tasks of t0 or the tasks defined in
the context of the threads synchronized by t0. The optimization obtained by the
Anahy implementation exploits the recursive nature of the scheduling: while a
processor is dedicated to execute the path starting on t0, a second processor is
dedicated to execute the path starting at t1, another to the path starting at t2
and so on.

4.2 Multilevel Scheduling

To execute an Anahy program, the user must inform a description of the real
architecture that will be explored. Like in MPI or PVM, it is necessary to inform
the number of nodes of a cluster involved in the execution as well as, for each
node, the number of virtual processors (VPs) desired ([20]). The Anahy virtual
machine is loaded as a runtime kernel when the program is launched on each
node. This runtime executes cooperatively and supports the implementation of
the scheduling algorithm. This implementation was conceived in three layers. The
lowest is handled by the operating system. In this level the VPs are scheduled
as system threads over the real processors on each node of the cluster. There is
no migration of VPs between nodes.

The second level refers to the allocation of tasks to VPs considering task status
(ready, terminated etc.). This level was implemented to consider the locality of
tasks. The list of tasks is implemented as a tree where each node represents an
Anahy thread (Figure 1) an Anahy thread is a sequence of tasks. This tree has
as root the first thread executed by the program, whereas the threads created
by the root thread compose the second level. The threads in the second level
are the roots of new sub-trees of threads and so on – as shown in figures 1 and
3. So, a VP handles only a section of the tree where there are tasks involved
in the execution of the current thread. When a VP has no more threads to be
executed in its local section, it tries to steal one from a different VP. If so, the

206 G.G.H. Cavalheiro et al.

VP will choose one thread ready to execute from the highest level of the tree.
Such thread is expected to have a larger amount of work than those in lower
levels. Another key aspect of this strategy is related to the locality of tasks inside
threads. Since each thread defines a sequence of tasks, the data transfers between
them are accomplished without accesses to the shared memory.

Finally, the third level of scheduling is demanded by the distribution of com-
putational load among the nodes of the cluster. The algorithm is an extension
of the second level, taking into account the (communication) costs involved in
thread migration between nodes. The implemented load distribution strategy
considers the depth of threads in the graph and the size of the data to be sent
between nodes. Other factors, including the computational and the physical loca-
tion of the data, can be added to this basically strategy. Notice that this scheme
doesn’t consider the migration of running threads.

5 Case Study

In this paper, we discuss the use of Anahy to support the description of ap-
plications describing DAGs. A general performance assessment of Anahy can
be found in [21] and the performance of a specific application developed in the
context of the Anahy project is presented in [22].

To illustrate the use of Anahy we present a synthetic program in Figure 4.
This program implements a recursive algorithm able to construct a binary tree
structure with a great number of concurrent activities. More details can be
found in [21]. The main input of the program is the one defining the num-
ber of recursive interactions to be accomplished. Figure 5 presents the graph
generated by running this program. In this figure, we also highlight the depen-
dencies between tasks (continuation dependency), between a task and a thread
(creation dependency), and between a thread and a task (join dependency). The
final structure of the graph (a binary tree) reflects the locality of references
of data (inputs and outputs of threads). Those dependencies are exploited at
execution time by the Anahy scheduler in order to optimize the execution of
tasks in the critical path. Notice that all threads execute the same amount of
work.

Figure 5 presents the graph generated by the program in Figure 4 and Figure
6 presents the execution trace of the same program. For the trace, the Anahy
runtime was configured with 4 VPs. In the figure, each line segment represents
a thread executed by a VP. Each different line style represents a different VP
responsible for executing the corresponding thread. Thus, it is possible to observe
that the scheduling strategy confer different priorities to threads according to
VPs – each VP is give a high priority to execute the tasks in the path . In this
figure we have highlighted the threads executed by the VP 1 to exemplify the
scheduling behavior.

In the context of the Anahy project we are working on the development of
real applications, among them we name a dynamic programming based sequence
alignment algorithm and a fluid dynamics simulation. The DAGs for these appli-
cations are represented in Figure 7 – circles represent tasks and boxes the data

Anahy: A Programming Environment for Cluster Computing 207

#include <athread.h>
int main(int argc, char **argv){

athread_t thr;
void *dta, *res;
dta = malloc(...); *dta = foo(...);
athread_create(&thr, NULL, tree, &dta);
athread_join(thr, &res);
free(dta);
doSomething(*res);
free(res);
return 0;

}

void *tree(void *argVoid){
void *arg0, *arg1, *res, *aux0, *aux1;
athread_t thr0, thr1;

if(notFinish(*argVoid)) {
arg0 = malloc(...); *arg0 = foo(*argVoid);
arg1 = malloc(...); *arg1 = bar(*argVoid);
athread_create(&thr0, NULL, tree, &arg0);
athread_create(&thr1, NULL, tree, &arg1);
*res = doSomething(arg0, arg1);
athread_join(thr0, &aux0);
athread_join(thr1, &aux1);
*res += doSomething(*aux0, *aux1);
free(aux0); free(aux1);

}
else res = NULL;

return res;
}

Fig. 4. Synthetic program executing a recursive algorithm

exchanged between them. In [22] it is presented an evaluation of the performance
obtained with the dynamic programming application.

The dynamic programming application describes a regular DAG (Figure 7.a).
In this application, a recursive algorithm fills in a matrix representing the com-
parison of two sequences. The value of each cell of the matrix corresponds to the
similarity between the elements of these sequences. The matrix is filled in from
top to bottom and from left to right, with element Mi,j requiring three values
that were previously calculated according to the concurrency relation: M(i, j) =
F(Mi−1,j−1, Mi−1,j, Mi,j−1). As shown in Figure 7.a, data locality can be pre-
dicted by the scheduler considering the regular structure of communications.

On other hand, fluid dynamics simulation is an irregular application, since
it presents an unpredictable program structure (Figure 7.b). The proposed

208 G.G.H. Cavalheiro et al.

. .

Continuation dependency Creation dependency Join dependency

main

Level 2

Level 3

Level 1

Fig. 5. DAG generated by the Anahy runtime for the recursive program presented in
Figure 4

VP 2

Fig. 6. Trace representing the execution of the DAG presented in Figure 5

implementation divides the physical space into triangles. A thread is generated
for each triangle to compute the fluid velocity using Euler equation. Once a
thread finishes computing the equation, new threads can be generated to give
sequence to the simulation. Although the DAG is irregular, the scheduler can

Anahy: A Programming Environment for Cluster Computing 209

. . .

.

. . .

(a)
. . .

. . .
(b)

Fig. 7. Sections of DAGs generated by a regular (a) and an irregular (b) application

apply a load balancing strategy considering the depth of threads in the graph:
the closer to the top a thread is, the higher is the probability of this thread
accumulating a large amount of work.

6 Conclusion

This paper presented Anahy, an environment for exploring high performance pro-
cessing in cluster architectures. Anahy was presented in terms of its API and the
principles adopted for introducing an intermediate level responsible for building
a DAG at execution time. This DAG is exploited by the Anahy runtime to avoid
inefficacity of blind dynamic scheduling strategies in the execution of tasks. An-
other key contribution of this work is the adoption of an API based on the POSIX
threads standard allowing the development of programs to distributed memory ar-
chitectures without dealing with issues related to message exchange mechanisms.

The next steps of this work include the development of load balancing strate-
gies and the extension of the API to include all POSIX-defined synchronization
mechanisms for thread execution control (as critical sections and condition vari-
ables). Even though the use of such mechanisms is not recommended in the
Anahy programming model, due to potential performance loss, they will be in-
cluded to increase compatibility with legacy code.

References

1. Alverson, G.A., Griswold, W., Lin, C., Snyder, L.: Abstractions for portable,
scalable parallel programming. IEEE Trans. on Parallel and Distributed Systems
9(1) (1998) 71–86

2. Galilée, F.,Cavalheiro,G.G.H.,Roch, J.L.,Doreille,M.:Athapascan-1: on-line build-
ing data flow graph in a parallel language. In: Proc. of the 7th International Confer-
ence on Parallel Architectures and Compilation Techniques (PACT), Paris (1998)

210 G.G.H. Cavalheiro et al.

3. Blumofe, R., Joerg, C.F., Kuszmaul, B.C., Leiserson, C.E., K. H. Randall, Y.Z.:
Cilk: an efficient multithreaded runtime system. Journal of Parallel and Distributed
Computing 37(1) (1996) 55–69

4. Mendes, R., Whately, L., de Castro, M.C., Bentes, C., Amorim, C.L.: Runtime
system support for running applications with dynamic and asynchronous task par-
allelism in software DSM systems. In: Proc. of the 18th International Symposium
on Computer Architecture and High Performance Computing (SBAC-PAD’06),
Ouro Preto (2006)

5. Yang, T., Gerasoulis, A.: DSC: Scheduling parallel tasks on an unbounded number
of processors. IEEE Transactions on Parallel and Distributed Systems 5(9) (1994)
283–297

6. Berman, F., Casanova, H., Chien, A., Cooper, K., Dail, H., Dasgupta, A., Deng,
W., Dongarra, J., Johnsson, L., Kennedy, K., Koelbel, C., Liu, B., Liu, X., Mandal,
A., Marin, G., Mazina, M., Mellor-Crummey, J., Mendes, C., Olugbile, A., Patel,
M., Reed, D., Shi, Z., Sievert, O., Xia, H., YarKhan, A.: New grid scheduling
and rescheduling methods in the grads project. International Journal of Parallel
Programming 33(2–3) (2005) 209–229

7. Coffman, E., Graham, R.: Optimal scheduling for two-processor systems. Acta
Informatica 1 (1972) 200–213

8. Hu, T.: Parallel sequencing and assembly line problems. Operations Research
19(6) (1961) 841–848

9. Kwok, Y.K., Ahmad, I.: Benchmarking and comparison of the task graph schedul-
ing algorithms. Parallel and Distributed Computing 59(3) (1999) 381–422

10. Cavalheiro, G.: A general scheduling framework for parallel execution environ-
ments. In: Proc. of the SLAB’01, Brisbane (2001)

11. Black, D.L.: Scheduling support for concurrency and parallelism in the mach
operating system. IEEE Computer 23(5) (1990) 35–43

12. Xiao, Z., Li, W., Jenq, J.: On unit task linear-nonlinear two-cluster scheduling
problem. In: Proc. of the ACM Symposium on Applied Computing, Santa Fe
(2005)

13. Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task
graphs to multiprocessors. ACM Comput. Surv. 31(4) (1999) 406–471

14. Culler, D., Arvind: Resource requirements of dataflow programs, Honolulu (1988)
15. Garey, M., Johnson, D.: Computers and intractability: a guide to the theory of

NP-Completeness. (1979)
16. Feitelson, D., Rudolph, L.: Parallel job scheduling: issues and approaches. In

Feitelson, D., Rudolph, L., eds.: Proc. of the IPPS’95. Volume 949., Springer (1995)
1–18

17. Iverson, M.A., Özgüner, F.: Dynamic, competitive scheduling of multiple DAGs in a
distributed heterogeneous environment. In: Heterogeneous Computing Workshop.
(1998)

18. Sinnen, O., Sousa, L.: List scheduling: extension for contention awareness and
evaluation of node priorities for heterogeneous cluster architectures. Parallel Com-
puting (V. 30:1. 2004)

19. Sakellariou, R., Zhao, H.: A hybrid heuristic for DAG scheduling on heterogeneous
systems. Proc. of the Heterogeneous Computing Workshop (2004)

20. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM (V. 33:8.
1990)

Anahy: A Programming Environment for Cluster Computing 211

21. Cordeiro, O., Peranconi, D., Villa Real, L., Dall’Agnol, E., Cavalheiro, G.: Ex-
ploiting multithreaded programming on cluster architectures. In: Proc. of the 19th

Annual International Symposium on High Performance Computing Systems and
Applications (HPCS), Guelph (2005)

22. Peranconi, D.S., Cavalheiro, G.G.H.: Using Active Messages to explore high per-
formance in cluster of computers. In: Proc. of the 15th International Conference
of the Chilean Computer Science Society (SCCC). (2005)

	Introduction
	Related Work
	The Anahy Programming Interface
	Handling Tasks with Anahy
	A POSIX-Like Thread Interface

	The Anahy Scheduler
	Scheduling Algorithm
	Multilevel Scheduling

	Case Study
	Conclusion
	References

