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ABSTRACT

Path planning is the ability to �nd a path free of obstacles from an arbitrary
initial position to a given �nal position. One constraint when �nding this path,
is the size of the environment in which the search is made. Large environments
increase the computational time of algorithms to an unwanted level. In this work, we
address the problem of path planning in large environments. Our approach is based
on a recent implementation of a high performance algorithm for the creation of a
dynamic voronoi diagram for complex sites. We use it as the underlying structure
for path planning. Our approach is able to produce smooth paths with arbitrary
clearance.More than this, it handles dynamic obstacles and allow space for steering
behaviors. Our results show that it is possible to produce, in real-time, smooth paths
with arbitrary clearance in large dynamic environments.

Keywords: UFRGS, path planning, smooth path, multi-agent, voronoi diagram,
large scale environments, games.



RESUMO

Planejamento de Caminho em Grandes Ambientes em Tempo Real
baseado no Diagrama de Voronoi Dinâmico

Planejamento de caminho é a habilidade de encontrar um caminho livre de ob-
stáculos a partir de uma posição inicial arbitrária até uma posição �nal dada. Uma
limitação no momento de procurar este caminho, é o tamanho do ambiente onde a
busca é realizada. Grandes ambientes aumentam o tempo computacional de algo-
ritmos para um nível indesejado. Neste trabalho, abordamos o problema do plane-
jamento de caminho em grandes ambientes. A nossa abordagem é baseada em uma
implementação recente de um algoritmo de alta performance para criação de um
diagrama de voronoi dinâmico para sítios complexos. Usamos este como uma es-
trutura para o planejamento de caminho. A nossa abordagem é capaz de produzir
caminhos suaves com afastamento arbitrário. Mais do que isto, ela lida com ob-
stáculos dinâmicos e permite espaço para comportamentos que mudem a direção
de movimento. Nossos resultados mostram que é possível produzir, em tempo real,
caminhos suaves com afastamento arbitrário em grandes ambientes dinâmicos.

Palavras-chave: planejamento de caminho, caminhos suaves, multi-agentes, jogos,
diagrama de voronoi, grandes ambientes, UFRGS.
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1 INTRODUCTION

The games industry is one of the largest entertainment industries in the world.
Games are interactive and therefore rely mostly in real-time solutions. One of the
bottlenecks of games, are the arti�cial intelligence(AI) components. At �rst, games
did not use many AI algorithms, because they required more processor speed and
memory than it was available. With improvements in hardware, more and more AI
solutions were able to be used. Therefore, the area received a special interest from
the big industry.

Although the hardware and algorithms improved, the AI is still a problem when
it comes to real-time solutions. Planning paths for virtual autonomous characters
in real-time is still a challenge. We understand a path as going from one point to
another without intersecting any obstacle in the way. There are several di�erent
approaches for virtual agents path planning (LAVALLE, 2006).

There is also a necessity to produce high quality paths, because players want the
virtual characters to behave as real as possible. In this meaning, virtual human char-
acters should walk like humans. Those paths are always calculated within a given
environment. In this environment, di�erent obstacles appear. A game environment
can have static and dynamic obstacles. Static obstacles represent the environment
part which does not change often, as for example virtual buildings. Dynamic obsta-
cles, on the contrary, represent those obstacles which change their position or shape
often, like the virtual characters themselves for instance.

There are several intrinsic di�culties to dynamic obstacles and ever growing
environments. If a path planner is going to treat them, it should keep special atten-
tion to the desired frame-rate. Our goal is then to achieve high performance path
planning in these large dynamic environments. For this, we decided to have a solid
structure that would allow us to keep track of dynamic obstacles and represent the
large environments.

In this work, we propose an approach to deal with the problems in path plan-
ning mentioned before. It deals with path planning in large scale environments �lled
with static and dynamic obstacles. More than this, natural-looking paths are pro-
duced in real time. To achieve this, we use a recently proposed dynamic voronoi
diagram for complex sites (PINTO; FREITAS, 2010). Pinto's contribution is that
the voronoi diagram is dynamic, because it performs local updates, and analytical,
instead of being discrete as when the graphics hardware is used. We believe that
in order to achieve real-time solutions for path planning, a robust underlying struc-
ture is needed. This structure should account for proximity queries and allow the
implementation of reactive behaviors (REYNOLDS, 1999). The rest of this work is
organized as follows.
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In chapter 2 we start by showing some related work. We discuss voronoi diagram-
based algorithms, illustrate the use of potential �elds and review the latest ap-
proaches using navigation meshes. We also give a glimpse over comercially available
path planning middleware software. After that, in chapter 3, we give a brief descrip-
tion of the dynamic voronoi algorithm used in this work. We present its general idea
and show its properties of most importance when building our solution. On chapter
4, we explain our approach to path planning. We show how we deal with obstacle
avoidance, path �nding with arbitrary clearance, large environments, smooth paths
and steering behaviors. At chapter 5, we show the results achieved and interpret
them. Finally, we draw our conclusions and analyze further improvements and pos-
sibilities at chapter 6.



13

2 RELATED WORK

In this chapter we show related work in the area. Path planning is an active area
of research for many years already, therefore it is not our intention to perform a
complete bibliographic research. Thus, we will illustrate only the most important
works that are closely related to ours.

The Voronoi Diagram is the conjunction of all the points that are maximally far
from their surrounding sites. To accelerate the computation of generalized voronoi
diagrams, the graphics hardware was used. Therefore, allowing the use of a voronoi
diagram for path planning (HOFF III et al., 2000). But it was still a discrete aprox-
imation of the diagram. Later, a better aproximation of the generalized voronoi
diagram has been used to construct a roadmap. It was considered �computing the
Voronoi Diagram in an exact manner infeasible in realistic environments where
obstacles can have arbitrary shapes� (NIEUWENHUISEN; KAMPHUIS; OVER-
MARS, 2007). Higher order discrete voronoi diagrams calculated using graphics
hardware were used to achieve navigation graphs for multi agents, (SUD et al., 2008).
Still using a voronoi diagram approach, but aiming at producing smooth paths, a
technique which uses composite bezier curves was introduced (HO; LIU, 2009). This
latter approach does not deal with dynamic obstacles. If the reader would like to
know more about the concepts behind voronoi diagrams and its applications, please
refer to the following book (OKABE et al., 2000).

Another approach to solve the path planning problem is using the potential �elds
technique (HWANG; AHUJA, 1992). One of the biggest problems with potential
�elds is the local minimum problem. This problem appears frequently in mazes,
but not only. Recent research was made to solve it (MABROUK; MCINNES, 2008;
SILVEIRA et al., 2010). Silveira et al. showed that the paths produced by this
technique can be very similiar to human paths. This kind of approach was also used
for crowd simulations with collision free path planning (TREUILLE; COOPER;
POPOVI�, 2006).

Another crowd simulation approach is the division of the environment in blocks
called `Crowd Patches'. Those patches are used to handle large crowd simulations.
Each block contains intern pre-calculated paths and connections to other blocks.
The global path is then a connection of many patches (YERSIN et al., 2009). The
resulting paths are good for simulation purposes, but the solution is not able to
handle goal-based interactivity. Therefore, it is not suitable for player controlled
autonomous characters.

Navigation meshes refer to the use of any type of polygonal mesh to represent
walkable areas in a given environment. A more speci�c navigation mesh used to
perform navigational queries are the ones made with triangles. Such triangulations
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allow a variety of important navigational queries to be made with a complexity
related to the number of segments used to describe the world. A special triangulation
called Local Clearance Triangulation (LCT) was used to e�ciently compute locally
shortest paths with arbitrary clearance. The Local Clearance name refers to the fact
that the triangles constructed by the method are free of obstacles. The LCT requires
a pre-computation of O(n2) to achieve high quality paths very e�ciently. The LCTs
are also not calculated for dynamic obstacles, therefore other techniques should be
employed to treat them (KALLMANN, 2010).

The next paragraphs are dedicated to comercially available solutions for path
planning.

The PathEngine is a comercial path�nding library licensed for many games being
currently developed. Their core is, in their words:

�A powerful and well-de�ned motion space description (essentially: aug-

mented navigation meshes for ground management + static and dynamic ob-

stacle detail + automatic expansion by path�nding agent shape).

Paired path�nding and collision, for e�cient and e�ective reactive be-

haviours and fundamentally robust movement planning.

Fast path�nding over long distances, with no aliasing.�

They achieve fast path�nding over long distances by the cost of a preprocessing
phase. Their preprocess is made per agent shape. Depending on the size and com-
plexity of an environment, it can cost a lot of memory to save the preprocessment
data. Because, for each agent size, they need to save the preprocessment data for
the whole environment. Therefore, an application using their planner should take an
extra consideration about their agent size variation so as to reduce the total number
of preprocess computation and memory footprint.

Their main path�nding queries are the shortest path from a known start position
to a known end position and the shortest path away from a region around a speci�c
position. The second can be used as basis for a �run away� behaviour.

The path returned by the shortest path queries does not look natural, having
straight lines and sharp turns at corners. Therefore, they have another phase in
which they smooth the path, generating curves at corners.

Their solution allows collision queries for di�erent cases:

• Points collision;

• Lines collision;

• Directional movement;

• Overlapping agents.

The collision query for directional movement will return true if there will be a
collision when moving in the given direction (PATHENGINE, 2010).

HavokTMAI is an SDK with support for e�cient path �nding for dynamic game
environments. Their focus is on automatic navigation mesh generation. They have
optimized solutions for runtime queries, such as single and multiple goal path�nding
and proximity queries. Their solution is multithreaded without restriction on mesh
size. They also provide a system called navigation mesh streaming, which allows the
creation of di�erent navigation meshes for di�erent parts of the game world, for later
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connecting them on-the-�y (HAVOK, 2010). There were not enough details about
its algorithms.

We propose a new approach because we want to �ll the gaps found in the related
works. We want to be able to handle large environments together with dynamic
obstacles. We also want to produce smooth paths that have an arbitrary clearance
from obstacles. More than this, we want to do all of this in real-time. So, even though
there are very good works which deal with one or two of this problems at a time,
our goal is to be able to deal with all of them at once. Therefore, we will start with
an overview about the underlying structure of our algorithm.
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3 DYNAMIC VORONOI DIAGRAM

The Voronoi Diagram is the conjunction of all the points that are maximally far
from their surrounding sites. A site is here de�ned as being a point, line segment or
polygon. Most of the voronoi diagrams are de�ned only for points. For this reason,
when refering to voronoi diagrams which are de�ned for any shape of site, the use of
the word �generalized� is common. The Generalized Voronoi Diagram is also called
a maximum-clearance roadmap (LAVALLE, 2006). Clearance means here the free
space away from obstacles. Therefore, in a maximum-clearance roadmap, any point
of the roadmap is as far away from any obstacle as it could be. In the rest of this
work, we will call the Generalized Voronoi Diagram simply as Voronoi Diagram.

For the complete construction of the voronoi diagram, all sites are divided into
subsites, which are vertices and segments. The voronoi diagram is then de�ned for
the subsites, following these possibilities:

Segment-Segment: Voronoi Line Segment

Vertex-Vertex: Voronoi Line Segment

Segment-Vertex: Voronoi Parabole Segment

Connecting these possibilities, we are able to build the voronoi diagram for
points, line segments and polygons (PINTO; FREITAS, 2010). In Figure 3.1, we
see the voronoi diagram as a line between two segments (�gure 3.1a), line between
two points (�gure 3.1b) and parabole between a point and a segment (�gure 3.1c).

(a) Segment-Segment (b) Vertex-Vertex (c) Segment-Vertex

Figure 3.1: Voronoi diagram simpli�cation. The red lines represent the voronoi seg-
ments. Black lines and points represent subsites. (a) Two segments de�ne a voronoi
line segment. (b) Two vertices also de�ne a voronoi line segment. (c) A segment and
a vertex de�ne a voronoi parabole segment.
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The main contribution of Pinto is the possibility of removal of complex sites (lines
and polygons) and voronoi diagram update in interactive time, therefore called Dy-
namic Voronoi Diagram. The e�cient insertion of sites is already a well known
operation. With the insertion and removal de�ned, it is possible to move the sites,
therefore allowing dynamic movement. More than this, with a real-time update, we
can have the correct voronoi diagram even in the presence of those dynamic sites.

The dynamic voronoi diagram is analytically de�ned and its update is done
locally. Therefore, it achieves high frame rate even if the complete environment has
more than a million points. There are two phases in the diagram update: the update
of the sites and the update of the diagram.

The �rst phase is the insertion and removal of sites. On the insertion, the in-
serted site just goes to the quadtree, which armazenates the sites with a geometrical
distribution. On the removal, the site is removed from the quadtree and all the sites,
which de�ne an edge with the removed one, are noti�ed - this other sites are called
pair sites. Every edge of the voronoi diagram is de�ned by two sites which are pair
of each other. A site has a structure associated with it which lists every edge of the
diagram de�ned by it and also the pair sites with whom those edges are de�ned.
This structure allows, in case of deletion, the removal of all invalid edges of the
diagram and the elimination of the deleted site from the list of its pair sites. Both
the insertion and the deletion make the diagram be incomplete and require it to be
updated. Every inserted site or that had one of its pair sites removed are marked to
be the starting point for the diagram update.

For every site marked in the previous process, a radial search in the quadtree
starts at the node which contain the site (more than one node can contain the
same site). The search goes through the imediate neighbors in the quadtree and
expands itself gradually until all neighboring sites with whom the site in focus de�ne
valid voronoi edges are analyzed. The search stops when the diagram is complete
in reference to the voronoi edges de�ned for the focused site. When all previously
marked sites are submitted to this search process and edge creation, the diagram
update will be completed.

The dynamic voronoi diagram has �an exact, continuous-space e�cient solution
[. . . ] involving from points to polygonal sites� (PINTO; FREITAS, 2010). That is
the reason why it can be used for representing virtual worlds, where a lot of di�erent
obstacle shapes are involved. Below is the illustration of some important properties
for the use of the voronoi diagram as an underlying structure for path planning. It
is not our purpose here to fully describe all the properties that a voronoi diagram
has.

Property 1. For every position C in the voronoi diagram, there is a circle tangent

to at least two sites with the center exactly at C. This circle does not include

any other site within its borders, and is therefore called Empty-Circle.

Property 2. A voronoi vertex is de�ned by at least three generator sites. The

empty-circle, whose center is at the voronoi vertex, is tangent to all those

sites.

Property 3. The union of all empty-circles de�ned by the diagram covers the com-

plete environment.
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Property 4. The voronoi diagram is connected as a graph, where voronoi vertices

are nodes and voronoi segments are edges.

This was just a simple overview about the dynamic voronoi diagram, with just
the necessary for the understanding of this work. We refer the reader to the original
article for a more extensive explanation (PINTO; FREITAS, 2010).
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4 PATH PLANNING ALGORITHM

Path planning using a roadmap can be split into four phases:

1. World modeling

2. Roadmap construction

3. Path �nding

4. Path smoothing

In the next sections we will show how our algorithm handles each phase.

4.1 World Modeling and Roadmap Construction

A world model is usually built once and then modi�ed through the life of the
application. In our solution we allow the world to be designed with points, lines and
polygons. For instance, a building could be a polygon and a single lamppost could
be a single point. The person who is modeling it, the designer, have the freedom
to create any polygon in a planar environment. It is important to pay attention to
speci�c details when modeling an agent in the environment. Those details are for
example its size, or shape. In robotics, for example, if we have a two meters square
robot, it would not be advisable to model it as a half meter line, otherwise we would
lose the ability to predict when it would hit obstacles. Therefore, we decided to
model our agent as having a center point and an arbitrary radius. Describing the
size and shape of the agent with a circle has enough accuracy and allows fast collision
checks.

As we create the world model by adding points, lines and polygons, the dynamic
voronoi diagram is calculated at the same time. This works because we can update,
at an interactive rate, the diagram with every new object insertion. Therefore, at the
end of the modeling phase, we have already �nished the second phase, the roadmap
construction. This leads us also to the ability of adding content to the world model
in real-time. We could use it to create exploration in unknown worlds, where the
world would grow as we explore it. This mechanism can be seen in �gure 4.1, where
three moments in time are shown. It is important to notice that the agent is part of
the diagram as an obstacle.

For static environments it is enough to build a roadmap just once. But for dy-
namic environments, this solution does not work. The roadmap should be constantly
updated, as the environment changes. More than this, the update should be done as
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(a) Step 1 (b) Step 2 (c) Step 3

Figure 4.1: Update of the dynamic voronoi diagram. The red lines are the voronoi
diagram, the black lines represent the obstacles and the black circles are the agents.
In the �rst step, we insert one obstacle and show how the dynamic voronoi diagram
updates to accomodate it (a). Then, another obstacle is inserted (b). Finally, a
triangular obstacle and two agents are inserted (c).

soon as the changes happen, so we do not have incoherent roadmaps, which represent
an old moment in time (Figure 4.2). With this comes the problem of having a real-
time update. This is specially the case when we have large environments �lled with
dynamic obstacles. The roadmap update in this case would probably take more time
than we have available. To solve this problem, we use the dynamic voronoi diagram
implementation to address the roadmap calculation and consequently updates, as
implemented in (PINTO; FREITAS, 2010). It gives us means to always maintain a
coherent maximum-clearance roadmap, even within large environments �lled with
dynamic obstacles. More than this, we have a continuous and exact representation
of the world with it.

(a) Initial Con�guration (b) Incoherent Roadmap (c) Coherent Roadmap

Figure 4.2: Incoherence. At the initial con�guration, there are two agents with dif-
ferent goals (a). At a given time, the agents moved, but the roadmap representation
was not updated (b). Therefore, the �gure shows the worst case scenario, where an
agent is blocking a path that should be free. The other �gure shows the diagram
produced when the update is made (c).
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4.2 Path Finding

Path �nding means, for us, solving the problem of �nding a path from an ar-
bitrary start position to a de�ned end position. To perform this with a roadmap,
an algorithm should �rst connect the start and goal positions to it, and then later
search for a path connecting both through the nodes and edges of the roadmap.

In our method, the algorithm �rstly connects the start and goal positions to the
dynamic voronoi diagram. After this, it uses the diagram as a graph to �nd the
shortest path between the connections. We will start by explaining how to connect
the goal and then we will explain how to connect the start position. We can see that
the voronoi diagram performs just like a roadmap.

4.2.1 Connecting the start and goal positions

A valid goal position will always be situated inside a voronoi cell. The goal
position will be connected with one of the voronoi segments of the cell. The shortest
path from the connection point to the goal position is a straight line. Therefore,
for us to choose the shortest connection, we need to �nd a point in the voronoi
segment and make sure that the straight line connecting the point to the goal does
not pass through any obstacle. To �nd a point in the diagram, which ful�lls these
requirements, we use the empty-circle property of voronoi diagrams, shown in section
3. A simpli�ed algorithm for �nding the best empty-circle is shown in �gure 4.3. The
center of the best empty-circle will be the connection point.

1 For every segment of the voronoi in the relevant neighborhood:

2 Find the empty-circle which best embeds the goal position

3 End For

4 Return the best empty-circle found

Figure 4.3: Choosing the best embedding of the goal position.

The relevant neighborhood in line 1 means that we search only in segments of the
voronoi cell which contains the goal position. That is because the other segments are
farther away and searching through them would be meaningless. On line 2, the circle
which best embeds the goal position means that the goal is further from the edge of
this circle than to others. This search for the best circle is an analytical inference,
which means it is exact and has high performance. At line 4, the algorithm returns
the best empty-circle found inside the loop. This is just a simpli�ed explanation
of a feature implemented by Pinto that is very important for this work. Figure 4.4
illustrates the choice for the best empty-circle.

We could use the same technique mentioned above to connect the start position.
It would involve taking the agent out from the diagram, and then performing the
same task as when connecting the goal. In the beginning of the project, we thought
it was necessary to do this in order to �nd a path. Our algorithm �rst took the agent
out of the voronoi diagram, connected it and then searched for a path through the
voronoi vertices. After returning the path it would then search for the �rst empty-
circle, in the direction of the path, tangent to the agent, which gives the agent a safe
(free of obstacles) step destination towards the center of the circle. An explanation
about why we decided to make the agent follow the empty-circles is given later at
section 4.3. The older algorithm to �nd this circle was simple but involved a series
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Figure 4.4: Best embedding empty-circle. The best empty-circle embedding the goal
position is shown in blue. The goal position is shown as a purple point. The green
circles also embed the goal position, but the goal is closer to their edges than it is
to the edges of the blue circle.

of problematic tasks, because of their high risk of programming errors. But with
the initial results, we were able to create a better technique to connect the position
of the agent to the voronoi diagram. All empty-circles tangent to the agent have
their centers exactly at the voronoi vertices of the diagram when the agent is still
considered as an obstacle. The logic behind it is that every empty-circle of a voronoi
vertex is tangent to at least three obstacles, otherwise it would not be a voronoi
vertex. Therefore, all voronoi vertices which are directly de�ned by the agent have
empty-circles tangent to it. We can see it clearer by the representation in Figure
4.5. It is good to notice that we consider the agent's position as being its center.
Therefore, the circles are tangent to the center point and not the outter radius.

The new technique goes as follows. Leaving the agent as an obstacle, it generates
a cell in the voronoi diagram with at least two voronoi vertices. Since the space
between the agent and any of its surrounding voronoi vertices is guaranteed to be
obstacle-free by the voronoi diagram de�nition, we can consider every one of the
vertices of the agent cell as being a connection to the voronoi diagram. Therefore,
the �rst step of the algorithm is to get all the voronoi vertices that are around the
agent. This is achieved by getting all the voronoi vertices de�ned by the site which
represents the agent. The next step is to add all of them as starting vertices to the
graph search algorithm. This new technique has a major advantage over the older
one, which is the reduction of one voronoi diagram update per agent step. To move
the agent one step we can insert it at the new position just after removing it from
the last position. There is no need for an update of the diagram between these two
operations. For this technique to work �ne, the costs of the starting vertices should
be well calculated. We will discuss how we calculate them later, at section 4.2.2.

The search for the shortest path can start as soon as we have the start vertices
and the end vertices. We already talked about the start vertices, but we only showed
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Figure 4.5: Empty-circles tangent to the agent with their centers exactly at the
neighboring voronoi vertices are shown in blue. The black circle in the middle is the
agent. The red lines represent the voronoi diagram. The black lines represent the
borders of the obstacles.

how to �nd the goal connection and nothing about how to get the end vertices. That
is because it is a simple task, the algorithm just needs to get both vertices of the
segment on which we have the connection point.

The path�nding algorithm we used will be seen in the next section.

4.2.2 Path�nding with A*

The algorithm used to search the graph for the shortest path was the A*. It is a
classical path�nding algorithm. If the reader does not know the algorithm, a clear
visual explanation of it can be found in (PATEL, 2010). The following optimizations
were added to the original algorithm:

• The open nodes are armazenated in a multiset using an implementation from
the C++ standard library

• There is the possibility to stop the execution after a given amount of iterations

• An edge can be considered as non-existent if the radius of its smallest empty-
circle is bigger than the size of the agent. This will be discussed again in section
4.4.1

In our case, the use of an A* has some advantages. The �rst motivation is its sim-
plicity and high performance. To achieve a safe navigation in dynamic environments,
the path must be recalculated every frame. Therefore, it is mandatory the use of a
simple but e�cient algorithm. Another important ability the algorithm give us is
the possibility of breaking the calculations at an arbitrary moment. It is something
valuable when dealing with large environments, specially with many agents at the
same time. In real time applications, we do not want our agents to be stalled until
the algorithm returns the complete path. Most of the time it is enough to calculate
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just a part of it and then making the �rst step. It is specially true when all the
calculations are thrown away in the next step, as is our case.

With the voronoi diagram de�nition in a continuous space, the A* is exact and
provides the shortest path from any vertex to another arbitrary vertex. That is be-
cause we have a continuous, uniform and isotropic space and therefore, the euclidian
distance is the size of the shortest path possible.

The A* uses two di�erent cost functions. The �rst one is the path cost since the
start. The second is the estimate path cost until the end. It then expands nodes
comparing the sum of both. Using the euclidian distance as the estimation for the
second cost function we can assure the optimality of the path.

The cost of going from one voronoi vertex to another is the length of the segment
connecting both.

As we said before, there are some details concerning the costs of the start and
end vertices. The cost of an end vertex is the length from it until the goal connection
point. The cost of a start vertex is the euclidian distance to the agent's position. We
can see a representation of them in �gure 4.6.

Figure 4.6: Representation of the start and end costs.

4.3 Smooth Paths

When roadmaps are used to �nd a path, the raw path following the roadmap
vertices and edges does not look natural, with sharp curves and edges, specially the
start and goal connections. Therefore, after calculating the path, another phase is
necessary to smooth it.

In our solution, smooth paths are easily achieved, without this extra phase. We
achieve it by directly using the information provided by the voronoi diagram. We
decided to make the agent follow in the direction of the �rst voronoi vertex calculated
by our planner. The reason behind it is that the empty-circle of the voronoi vertex
is tangent to the agent. Therefore, the agent always moves towards the middle of
an empty space, avoiding obstacles. More than this, while following the path, this
voronoi vertex smoothly changes its position, respectively changing the empty-circle
position, and guiding the agent towards the goal. We can see in �gure 4.7 a smooth
path followed by an agent. In the next section we will talk about steering behaviors
which allow to perform a better navigation when confronted with more complex
challenges.
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Smooth path

(a) (b) (c)

(d) (e) (f)

Figure 4.7: The path followed by the agent is shown in orange. The goal position is
shown in purple with its empty-circle in green. The Voronoi Diagram is shown in
red. The blue circle is the empty-circle of the leading voronoi vertex. The sequence
shown from (a) to (f) is a zoom at the moment the agent made the second curve.
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4.4 Features

In this section we show features that required small programming e�ort to be
achieved.

4.4.1 Arbitrary Clearance

Games commonly involve more than one kind of agents. For example, soldiers and
tanks in a RTS(Real-Time Strategy) game. They occupy di�erent sizes in the world.
Therefore, they should be represented with di�erent sizes. In our implementation,
we map the shape of the agent within a circle. Therefore, we can represent its size
with that circle. Collision checks with circles are fast, it is just necessary to check the
radius of both circles. But other shapes could also be handled, if di�erent limitations
for di�erent directions were used.

Keeping it simple, smaller agents pass where bigger agents do not. This is a prob-
lem also often faced in robotics, where the location data of the robot is not always
precisely equal to its place in real life. Therefore, it is advisable to �nd paths arbitrar-
ily far from obstacles. To solve this in an e�cient way, the path planning algorithm
could treat it at the path �nding level. We use the voronoi diagram information to
create this kind of behavior. In possession of the size of the agent, the A* algorithm
searches for a path that allows the agent to cross all segments on it. To know how
much of free space there is when crossing a segment, we use its empty-circles. The
size of the smallest empty-circle of a voronoi segment gives us the maximum size of
the agent allowed to cross the complete segment. It is simple to �nd the smallest
empty-circle of a voronoi segment (blue circle in �gure 4.8). That is because it is
analytically de�ned. The algorithm to �nd it was already implemented by (PINTO;
FREITAS, 2010). With this information, the A* algorithm handles segments, which
have smaller apertures than the size of the agent, as non-existents and only returns
a path when the agent can cross all of its segments.

Figure 4.8: Smallest empty-circle. In this case, the smallest empty-circle found by a
path traversing from left to right is the one in blue. The circles shown in green are
other possibilities, but they have bigger radius.

4.4.2 Obstacle Avoidance

One of the most important reasons to have path planning is to �nd a path in a
given environment which avoid obstacles. Using the voronoi diagram as a roadmap,
we assure that our path will be clear. Because the voronoi diagram has vertices which
are maximally distant from obstacles, as we can deduce from the �rst property shown
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in section 3. We also have the information about all the empty-circles in the path,
which create a free channel like the one in �gure 4.9. So, with this free channel, it
is possible to know exactly how far the obstacles are from any point, because it is
de�ned in a continuous space. Therefore, it allows the agents to avoid obstacles in
real-time.

Figure 4.9: Voronoi free channel. It is made of the empty-circles of every point
de�ned in the voronoi path.

4.4.3 Large Environments

Dealing with large environments is another concern for path planners. The bigger
the environment, more data needs to be analysed. One of our contributions to solve
this problem is to apply a fast and useful underlying structure. Instead of using a
grid-based approach, we focus on a structure which gives us a lot of useful informa-
tion and handles dynamic changes in the environment. This structure, the dynamic
voronoi diagram, handles the updates locally.

For example, if the environment is a very large empty �eld, with only two houses
on each side. The respective voronoi diagram will have a very small amount of
vertices. Therefore, the path �nding algorithm will be able to give quick results, as,
regarding e�ciency, it does not matter the length of the segments, only the number
of voronoi vertices. We can see in �gure 4.10 an example of such an environment.

With the same logic, a very complex environment will impose a higher di�culty.
Nevertheless, techniques can be used to accelerate the path�nding in those cases:

• Break the A*: Return the best path calculated so far. The one that leads to
the nearest found position to the goal. It can be done using a di�erent range
of metrics.

� Max iterations: Stop when reached a maximum number of iterations.
It is the same as stopping when expanded more than a certain amount
of vertices.
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Figure 4.10: A large empty �eld.
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� Time: Stop when reached a time limit.

• Block Streaming: Stream blocks of the environment as the agent moves,
therefore performing the path �nding only in relevant areas.

When we think about games, we hardly have the case where the complete map
of the environment is available for the path planner. It is usually the case that the
map is being discovered as the agent travels. Therefore, the ability to add obstacles
at run-time is of great value. Using our approach, we can achieve this, because
the voronoi diagram updates at real-time. Therefore, obstacles can be added and
we always keep a coherent maximal-clearance roadmap. This can also be seen as a
block streaming technique, where the environment changes as the agent moves.

Breaking the A* before it �nds a complete path brings another challenge, which
is what we call �Dead-Ends�. A dead-end is de�ned as a place where the straight
forward path is cut by some obstacle. The classical example of it is the `U' obstacle
(�gure 4.11a). The implemented technique to address this challenge is based on
the perception of dead-ends. Therefore, we give it a technical de�nition based on
the voronoi diagram. What happens is that when an agent reaches a dead-end, all
voronoi vertices in its path have less than 3 incident edges. After the agent perceives
a dead-end, it ignores its maximum number of iterations for computing a path
through the A* algorithm until a voronoi vertex closer to the goal is found. We
can see in Figure 4.11 an example where there are two obstacles in sequence with a
high probability of creating dead-ends. Our agent was set with the maximum of 5
iterations for the A* algorithm, representing an almost blind agent. In Figure 4.11b
we can see that our agent is able to perceive a dead-end and bypass it.

(a) `U' Dead-End (b) Bypassing the Dead-End

Figure 4.11: Dead-End bypassing.

4.5 Behaviors

Having more than one agent in the same environment is common for games,
but this is a problem for path planners. That is because they all need to �nd free
paths and avoid hitting each other. There are some behaviors we added to our agent
entity in order to overcome this and other problems. They will be explained in the
sequence.
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4.5.1 Empty-Circle

The �rst and most important behavior is the action of moving the agent in the
direction of the center of an empty-circle. With this behavior, the agent moves to
the interior of a free space, meaning it will get far from obstacles. The combination
of path following with this behavior is perfect. That is because following the �rst
voronoi vertex returned by the path �nding algorithm is the same thing as going
towards the center of an empty-circle tangent to the agent. This is derived from a
property of voronoi vertices, shown at section 3. The sequence at Figure 4.7 uses this
behavior. When the path of two or more agents cross, the size of the empty-circle
will be updated respectively to those agents. Therefore, when all agents move to the
interior of their empty-circles, they automatically avoid each other.

4.5.2 Space Negotiation

This behavior intends to keep agents away from hitting each other. It also works
as a static obstacle avoidance behavior. In cases where the agent �nds no path, this
behavior is extremely important to keep away from dynamic obstacles that may
want to pass over the position of the agent. It is a force that pushs the agent to
the contrary direction of an incoming obstacle when the distance is smaller than a
given threshold. If the agent is stopped and another agent pass very close to it, this
force will move the stopped agent away from the incoming one. The incoming agent
will also change its velocity respectively to the force which acts on it. The query for
nearest obstacles was already implemented by (PINTO; FREITAS, 2010).

4.5.3 Goal Focus

There are cases where we want a more aggressive agent trying to reach the goal.
For instance, the situation with pedestrians crossing a road. At a given moment,
their goal is to reach the other side of the street. Then, the pedestrian semaphore
turns to red. What is expected is that the pedestrians walk until the border of
crossing and wait until the semaphore turns to green. In this example, when the
semaphore closes, there is theoretically no path anymore to the other side of the
street. Thus, the pedestrian, our agent, would stop wherever they are, without this
behavior. With it, they walk until the border of the street, in direction of their goal.
What keeps them from crossing to the other side of the street is the last behavior
described. In the example given, the street would have been modeled as an obstacle.
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5 RESULTS

In this chapter we show the results of our approach.

5.1 Test Environment Details

For simulation purposes we implemented the algorithm on top of the dynamic
voronoi implementation, in C++ with OpenGL and GLUT to build the user in-
terface. The results shown here were produced with an Intel Core 2 Duo CPU PC
with Windows 7 as operating system, Nvidia GeForce GT 120M as graphics card
and 3Gb of usable memory(RAM). Only one processor was used. Our simulation
testbed is limited from -1 to 1 in x and y. Since we use double precision, we can
represent pratically any environment by scaling it accordingly. In the simulations
we represent 1 meter as the value 0.001. Therefore, 10 meters is 0.01 and so on.

5.2 Simulation 1

This simulation is to test the limits of our algorithm with respect to the number
of agents.

• Environment: No obstacles, except the other agents;

• Agents: 20, 40, 60, 100, 200;

• Goals: Arbitrarily chosen;

• StepSize: Between 0.5m and 1.5m.

We can see in �gure 5.1a the beginning of the simulation with 20 agents. The
red lines represent the voronoi diagram. There are 10 black points on each line
representing the agents. And 10 purple points per line representing the goals. We can
see in �gure 5.1b how the voronoi diagram dynamically adapts itself to the dynamic
agents. Figure 5.1c shows the end of the simulation. The colorful lines represent the
path each agent traveled. In �gure 5.2a we can see the same simulation but now
with 200 agents.

The tables shown in this section use the following structure:

Number of Agents. This is simply the number of agents of the simulation.

Max Number of Voronoi Segments. This is the maximum number of voronoi
segments in the complete environment achieved during the simulation.
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Mean Step Time Per Agent(s). This is the mean time, in seconds, that one
agent takes to move one step. The mean is made over the data from the
complete simulation.

Mean Iterations. This is the mean number of iterations taken to �nd a path for
each agent in the simulation.

Maximum Length(m). This is the maximum size of a path, considering all the
paths calculated in the simulation.

We can see on table 5.1 that the maximum number of voronoi segments increased
according to the number of agents. This is because every agent is considered a site in
the voronoi diagram. The number of iterations needed by the A* algorithm to �nd a
path was in�uenced by the number of voronoi segments. Both of them contributed
to slightly increase the mean step time. No optimizations of the A* were used in
this simulation.

(a) Start (b) Middle (c) End

Figure 5.1: Simulation 1: 20 Agents

Table 5.1: Simulation 1

Number of Agents 20 40 60 100 200
Max Number of Voronoi Segments 212 430 682 1,280 2,031
Mean Step Time Per Agent (s) 0.0002 0.0003 0.0003 0.0004 0.0008
Mean Iterations 24.98 49.52 62.94 90.05 99.77
Maximum Length (m) 796.61 766.15 772.22 765.77 1,930.95

5.3 Simulation 2

The objective of this simulation is to show how the algorithm performs when
confronted with an environment full of obstacles.

• Environment: 9,604 blocks of 15m x 15m separated by 5m

• Agents: 10, 20, 50
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(a) Start (b) Zoomed

Figure 5.2: Simulation: 200 Agents. (a) The beginning of the simulation. (b) Zoom
showing the voronoi diagram created by the agents (black points) at a speci�c mo-
ment.

• Goals: Randomly chosen around the center block

• StepSize: Between 0.5m and 1.5m

We can see in �gure 5.3 two moments in the simulation. Both are a zoom at the
city center. We can see a top view of the full city in �gure 5.4. As shown in table
5.2, there are more than 100 thousand voronoi segments. Nevertheless the algorithm
works at a high frame rate, with the mean step time for each agent below 1ms.
That happens because all the voronoi diagram updates are done locally and only if
something changed. In the next simulation we will see how it performs when there
are many obstacles between the agent and its goal.

Table 5.2: Random Paths

Number of Agents 10 20 50
Max Number of Voronoi Segments 105,960 106,040 106,338
Mean Step Time (s) 0.0005 0.0005 0.0007
Mean Iterations 11 3.93 38.71
Maximum Length (m) 3.1 6.04 88.08

5.4 Simulation 3

This simulation is to show the performance when crossing the whole city envi-
ronment.

• Environment: 9604 blocks of 15m x 15m separated by 5m
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(a) Top View (b) Perspective

Figure 5.3: Random paths

• Agents: 1

• Goals: At the other side of the city diagonal

• StepSize: 1m

As we can see by the table 5.3, the complete city has more than 100 thousand
voronoi segments. The �rst path calculated had almost 4km and needed more than
48 thousand iterations. Even with this high amount of work, the step time was kept
between 30ms and 40ms. If we do not have more than one agent, than this is a
reasonable time. Otherwise, it is possible to limit the number of iterations, therefore
achieving faster results. We can see it on the next simulation.

Figure 5.4: Path traversing a city with 9,604 blocks
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Table 5.3: Large Environment

Number of Agents 1
Max Number of Voronoi Segments 105,877
Mean Step Time (s) 0.036
Mean Iterations 48,376.64
Maximum Length (m) 3,927.82

5.5 Simulation 4

At this simulation we mix the previous ones, performing simulations across the
whole environment.

• Environment: 9,604 blocks of 15m x 15m separated by 5m

• Agents: 10, 40

• Goals: Arbitrarily chosen

• StepSize: Between 0.5m and 1.5m

• Maximum Iterations: 1,000

The simulation represented by table 5.4 is very similar to the ones from table
5.1. Except that here the environment is full of obstacles, represented by more than
a thousand voronoi segments. This answers the higher amount of iterations needed
to �nd a path. In this simulation the agents were relatively close to each other, as
we can see by looking at the maximum path length. Therefore, even though the
maximum number of iterations was kept on 1,000, they did not reach it.

The next simulation, represented in table 5.4, increases the distance between the
agents. They now have to cross the entire city, as we can see by the maximum path
length, almost 2km. We have seen before that without the limitation on the number
of iterations the mean step time was more than 30ms with just one agent. But here,
with the limitation of 1,000 iterations, we can see that it is possible to achieve a
faster step time, even in the presence of more agents. As we can see in Figure 5.5b,
the resulting paths are still the shortest paths. We can also see, at Figure 5.5c, that
they smoothly avoid each other because their voronoi vertices guide them in a free
direction. In the sequence, they return to their original path, Figure 5.5d.

Table 5.4: Simulation in a Large Environment: 40 Agents

Number of Agents 40 10
Max Number of Voronoi Segments 106,177 106,009
Mean Step Time (s) 0.0003 0.0005
Mean Iterations 314.49 334.62
Maximum Length (m) 392.92 1,988.33
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(a) Start (b) End

(c) Zoom With Voronoi Diagram (d) Zoom

Figure 5.5: Simulation in a large environment
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5.6 Comparisons

In this section we will compare our work to others.

Figure 5.6: Comparation with discrete-points approximation of the voronoi diagram

Figure 5.6 shows a representation of the northern half of the Morningside Campus
of the University of Columbia, New York. At the left, there is an approximation of
the voronoi diagram using discrete points (BLAER, 2001). The campus map contains
4,407 points in their dicrete-point approximation. At the right, we can see the same
campus map as represented by our application. The map was hand-made in less than
30 minutes with lines and polygons. It shows how easier it is to model the world in
our approach. There is also a representation of a path calculated in each one of the
applications. Their voronoi diagram calculation takes time and is not suitable for
dynamic environments.

(a) Local Clearance Triangulation channel (b) Empty-circles channel

Figure 5.7: Comparation between circular and triangular channels. (a) The black
lines represent the channel. (b) The channel is represented by the circular blue area.
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In this comparation we show that our approach is able to produce channels like
the ones created with triangular meshes. The di�erence is that, in our case, the circles
represent more of the free space than the triangles. We can see the result of both
approaches in �gure 5.7. The empty-circles are drawn picking point samples from
the path that are very small apart. Joining them together we can build a channel
which indicates the possible free space an agent has when following the calculated
path.
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6 CONCLUSIONS AND FUTURE WORK

In this work we presented an approach to perform path planning in large dynamic
environments. The proposed algorithm makes use of a high performance underlying
structure, the dynamic voronoi diagram. With its calculation at interactive rates,
we were able to build an optimal maximal-clearance roadmap. We used then the
properties of the voronoi diagram to calculate smooth paths with arbitrary clearance
by calculating a path which takes into account the empty-circles. We showed that
our algorithm is able to perform real-time smooth path planning in the face of large
environments �lled with static and dynamic obstacles for more than one agent.

There are some improvements that can be made in the algorithm. As for example
the addition of a block streaming technique to contain the path search to relevant
areas. Di�erent heuristics to control the movement of the agent could also be added.
For instance making the agent walk randomly towards a place inside the empty-
circle on the direction of the path. Therefore creating unique movements while still
keeping the obstacle avoidance. We are also planning to provide our source code on
the internet, but �rst we should make it more robust to user input.
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