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This paper addresses the problem of the detemzil/ation of regiam 
(f s/abiliry for linear systems \\'ith delayed inputs and subject to 
inpul saturation through anti-windllp strategies. Differently of the 
most t/nti-windup techniques, where the desigl/ of the anti-windllP 
loop is introduced lI'ith the objectil'e of minimizing the pelfor­
/11al/ce degradatiOI/. we are particular/)' interested in the synthesis 
()f allti-windup gains in order to guarantee the stability of the 
c1osed·loop systemfor regio/lS of admissible initial states as large 
as possible, With Ihis aill/, due to the presence of delay in the input 
II'C propose delay dependem results. [DOI: 10.1115/1.1569953] 

1 lntroduction 
Consider the linear continuous-time delay system: 

J xU)=Ax(t)+Bu(t- r) 

ly(t)=Cx(t) 

with the initial conditions 

(I) 

where x( t) e (R", u( t) e (Rm, y (t) e (RP are the state, the input and 
the measured output vectors, respectively. Matrices A, B and C are 
real constant matrices of appropriate dimensions. 

Considering system (I), we assume that an nc-order dynamic 
output stabilizing compensator described by 

i](t) =A c TJ(t) + Bcy(t) 

v( t ) = C c TJ( t ) + D cY (t ) 

where TJ(t) e (R"< is the controller state, y(t) is the controller in­
put, and v(t) is the controller output, has been determined. In fact, 
the control signal to be injected in the system is a saturated one, 
that is, 

u(t) = sat( v(t» =sat( Cc TJ(t) + D cCx(t» (3) 
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where each component of sat(v(t» are defined for i= I, ... ,m 
as: sat(v(i)(t»=sign(v(i)(t»min(lv(i)(t)I,uo(i) where UO(i»O 
denotes the control bound of the ith input. In order to mitigate the 
undesirable effects of windup caused by input saturation, an anti­
windup term Ec(sat(v(t»- v(t» can be added to the controller 
[I]. Thus, considering the dynamic controller and this anti-windup 
strategy, the c1osed-loop system reads: 

i(t) =Ax(t) + Bsat( v(t - r» 

y(t)= Cx(t) 

i](t) = Ac TJ(t) + Bcy(t) + Ec(sat( v(t» - v(t» 

v(t)= Cc TJ(t) + D cy(t) 

Let us now define the extended state vector 

[ 
x( t) 1 g(t)= e (Rn+nc 
TJ(t) 

and the following matrices of appropriate dimensions 

[
A 

~= 
. BcC B=[~l, 

Hence. the closed-Ioop system reads: 

~(t) = Ag(t) + Adg(t- r) - BIjt(iI\.g(t- r» - JREcljt(iI\.g(t» 

(4) 

(5) 

In Eg. (5), Ijt(Kg(t» = vU)-sat(v(t»=Kg(t)-sat(Kg(t» is 
decentralized deadzone nonlinearity and satisfies lhe folJowing 
seclOr condition [3]: 

where A is a diagonal matrix whose diagonal elements A(i.i) are 
simply denoted by À(i)' with O";;;À(i)< I, and the polyhedral set 
S(K.u8) is defined by: S(K,u8) = g e (Rn+n<; - uO(i/I- À(i) 
,,;;;Klilg";;;uo(i/I-À(i) ,i= I, ... ,m}. 

The augmented system (5) admits an augmented initial 
condition 

'V Oe [- 1',0] 

where cpç( O) is supposed to satisfy 11 cp.;llc";;; v, v>O. Note that the 
initial condition of the dynamic output controller CP.,,( O) is related 
to CPu(O), 'VOe[ - 1',0] due to the relation CPu(O)=Cccp.,,(O) 
+DcCCPx(O). 

It is important to note that the c1osed-loop matrix A will be 
asymptotically stable if and only if matrices A and A c are asymp­
totically stable. Indeed, even if Ac has been chosen asymptotically 
stable, A may admit some unstable or not wished eigenvalues. In 
this case, we should study the stability of cJosed loop system (5) 
in a delay dependent context. System (5) is said globally asymp­
totically stable if for any initial condition satisfying 11 CP€llc";;; v with 
any finite v>O, the trajectories of system (5) converge asymptoti­
cally to the origino Similar to the case of delay-free (1'= O), the 
determination of a global stabilizing controller is possible only 
when some stability hypothesis are verified by the open-Ioop sys­
tem (u(t)=O) [6]. When this hypothesis is not verified, it is only 
possible to achieve local stabilization. The basin of attraction of 
system (5) corresponds to aJl initial conditions CP€( O) e C~ such 
that the corresponding trajectories converge asymptotically to the 
origino Since the determination of the exact basin of attraction. is 
praclically impossible, a problem of interest is to' ensure the 
asymptotic stability for a set 

<1>0= {CP€e C~ ;11 cp.;II;,,;;; 8} (7) 
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of admissible initial conditions 4Jç(f}) [7]. Of course, the set 410 is 
inc1uded in the basin of attraction. Throughout the paper we refer 
a set 410 as a region of stability for system (5). 

The problem we aim to solve throughout this paper is summa­
rized as rollows. 
Problem 1: Determine the anti-windup gain matrix Ec and a 
sealar 8, ~; large as possible. sueh that the asymptotic stability of 
closed-Ioop system (5) is ensured for ali initial eonditions 4J1j( 8) 
e4l0 , V8e[-T,0]. 

Since cI>-0 can be viewed as an estimate of the basin of attraction 
of the system (5), the implicit idea behind Problem 1 is to enlarge 
this basin over the choice of the anti-windup gain matrix Ec. 
Throughout the paper, Problem 1 is addressed in the delay depen­
dent context [5]. The measures and the criteria allowing to opti­
mize the size of the region of stability of the closed-loop system, 
the tradeoff between this one and the delay magnitude will be 
discussed. 

2 Maio Results 
In this section, we present a theoretical result, based on the 

verification of a set of matrix inequalities, that alIows to compute 
an anti-windup gain Ec and an associated region of stability for 
the closed-Ioop system (5). 
Proposition 1: lf there exist symmetrie positive definite matriees 
of appropriate dimensions W, X, R. H. U, Dl' D2 • D 3. and D .. ; 
diagonal positive definite matriees A, G l , and G 2 ; a matrix Z; 
and a positive sealar ')' satisfying: 

QI Q2 Q3 Q4 Qs Qó 

* Q7 O O O O 

* * Qs O O O 
Q= <O (8) 

* * * Qg O O 

* * * * QIO O 

* * * * * Qll 

(1- À(j» WK(il] 
2 "",O.i= \, . ... m 

')'uO(;) 
(9) 

O~À(j)< l,i= 1, .. .. m (lO) 

* 
: ] <O. 

-2G2 

O] [TA~ O] 
O, Q3= O O, 

O O O 

O] O , 
O 

[

-TR 

Qs= * 

. [-TH 
Qg= * 
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Table 1 6 for dlfferent values of T 

T 0.05 0.1 0.2 0.3 0.4 
5 3.7330 1.0297 0.2943 0.1429 0.0837 

Ec 0.1840 0.3027 0.7100 0.9718 0.4922 
A 0.8050 0.6560 0.4175 0.2397 0.09 

5/in 0.1954 0.1912 0.1658 0.1233 0.0830 
5E,_o 2.9110 1.0274 0.2802 0.1361 0.0829 

Q O=[-TU TU 1 Qll=-T(D 1+D2+D3+D4), 
I * -T(U+D4 ) , 

then the gain matrix Ec=ZG I 1 and the set 410={tPeC:!T;II4JII~ 
~8} with 8= ')'-11 8N and 8N = ÀrruunV-l)+3;I2[Àm",,(A~(R-l 
+ D;l)Ad) + Àrnax(i3' (H- l +D)')B)IIAKI12) + ~/2[Àm",,(A' (X-I 

+ Dll )A) + Àrnax(E;1R' (U- I + D; l)REc)IIAKI12] are solutions to 
Problem 1. 
Proof: II is omitted for reasons of place but can be found in [2]. It 
uses Lyapunov-Krasovskii functíonal V(ç,)=ç(t)'Pç(t)+S(ç,). 
where P=P'>O and S(ç,) is a positive definite quadratic formo 
and the fact that to ensure the stability of the closed-loop system 
(5), it suffices to ensure the stability for the folIowing one [4]: 

with the initial data 

3 Computational Issues 

Proposition I provides constructive conditíons for determining 
an anti-windup gain Ec and a domain of initial states for which the 
closed-Ioop asymptotic stability is guaranteed. However. some bi­
linearities appear in the relations of Proposition 1 due to the prod­
uct between A and W. To overcome these difticulties. iterative 
schemes can be used. Furthermore. the implicit objective consists 
in obtaining a set 410 as large as possible. Thus. we can consider 
the following optimization criterion: 

min{f3o')'+ 131 traee( W- 1) + f32traee(H-1 + D)l) + f33traee( A~( R - I 

.;- D~ I )Ad) + f3 .. traee(A' (X- I + D 12)A.) + f3straee( U- I 

-;"D;l)} 

where f3i' i = O, ... ,5 are weighting parameters. An algorithm 
based on some relaxations schemes and using the previous opti­
mization criterion can then be proposed for providing a solution to 
Problem I (see more details in [2]). 

4 lllustrative Example aod Concluding Remarks 
Consider the simple example borrowed from [3] in which the 

anti-windup problem is treated for T=O. System (1) is described 
by the following data: 

A =O.I;B= l;C= I ;Uo= I 

and the dynamic controller is defined by: 

Ac=O;Bc= -0.2;Cc = I;D c=-2 

The open-loop system is unstable since A = 0.1 > O. Thus matrix A 
defined in Section 2 is also unstable, whereas matrix A + Ad is 
asymptotical1y stable: eig(A + Ad ) = - 0.4=jO.2. 
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Table 1 shows the values of Ô resulting from the application of 
the algorithm presented in [2] for different values of 'T. It indicates 
that we obtain greater ô for small 'T. Note that the values of Ô, 

denoted ôlin , obtained for each value of 'T in the saturation avoid­
ance casé (A=O, Ec=O, 1/1=0) are always smaller than those ob­
tained in the saturation allowance case. We can also notice that, in 
the case Ec=O, the values of Ô, denoted ÔEc=O, obtained for each 
value of 'T, are lower than in the case Ec*O. 

Furthermore, for 'T>0.5, it appears that the stability of the 
c1osed-Ioop system is only obtained in the linear case, that is the 
saturation is not allowed (1/1= O) and the anti-windup strategy is 
not used (Ec = O). Furthermore by searching the maximal vai ue of 
the delay for which the linear c1osed-Ioop system g( t) = Aç( t) 
+ AdÇ(t - 'T) is asymptotically stable one obtains: 'T max= 9.9989. 
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This paper addresses the problem of the preservation of the full 
relative degree under sampling, for a particular class ofnonlinear 
time delay systems, on the basis of the work by Barbot, Monaco, 
and Normand-Cyrot, (UA Sampled Normal Form for Feedback 
Linearization," Mathematics of Contrai, Signals and Systems, 
1996. No. 9, pp. 162-188). The preservation of the relative de­
gree, in arder to build up the controllaw, has many advantages in 
the delayless case. The results of this paperare a first step in 
arder to achieve the same advantages in the delayed case, toa. 
[DOI: 10.1115/1.1570857] 

1 Introduction 
The sampling problem for linear time-delay systems, has been 

addressed by many authors, and results are available in literature 
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(see e.g., [1] and references therein), while, to my knowledge, the 
sampling problem for nonlinear time-delay systems has not been 
extensively addressed in literature. Papers are avai1able in litera­
ture about sampling of nonlinear delayless systems (see for in­
stance [2] and references therein). And results are available, too, 
for linearization and control of discrete time nonlinear systems 
(see, e.g., [3-7] and references therein). 

In this paper, the sampling problem for a class of nonlinear time 
delay systems is addressed, on the basis of the methodologies 
shown in paper [2]. The discrete time equations of the approxi­
mated sampled nonlinear time delay system are found. Then, the 
main result is shown, that is, by using a suitable dummy output, 
the same given in [2], the full relative degree is preserved under 
sampling up to an approximation of order n in the sampling pe­
riod, with n the length of the system variables x(t). 

This result can be successfully used to build up discrete time 
control laws for nonlinear time delay systems, as it is done for 
nonlinear delayless systems [2]. The great advantage of having a 
digital controller is evident, as far as the implementation is con­
cemed. Take into account that a continuous time controller, which 
presents delays, is an infinite dimensional system, and its approxi­
mation generally is not a trivial task (see [8] and references 
therein). 

An illustrative example is reported, showing the effectiveness 
of the digital control law built up by using the result of full rela­
tive degree preservation. 

2 Preliminaries 

Con'sider the following system 

i(t)= f(x(t»+ g(x(t)) 

. (p I (x(t),x( t- ê.) )1I( r) + p~(XU),x(t- ê.»)) (2.1) 

y(t)=h(x(t», t;;':O (2.2) 

with initial conditions x('T)=xo('T), 'TE[ -ê.,O], where .1.>0 is 
an arbitrary, fixed delay, x(t) E Rn, u(t) E R and y(t) E R, f, g: 
R" $ R", h: Rn $ : R, p I ,P2: R" x R" $ R are analytic functions, 
with continuous derivatives of any order. 

From here on we suppose that the following hypothesis is sat­
isfied by the system (2.1) (2.2): 
Hp ) the triple (f, g, h) admits full ulliform relative degree; 

'V(XO,XI) E R"X RIJ
• PI(XO,XI)*O; 

the ftmction q.,:R"-R", defined by q.,(x) 
= [h(x) Ifh(x) ... Ir I h(x) f, x E RIJ

, is analytic and invertible, 
and the in verse q., - I is analytic and C" toa. 

Remark 2.1: When the system (2.1) (2.2) satisfies the hypothesis 
H p' then it admits full uniform delay relative degree (see [9]). 

Let 

ZT(t)=[y(t) yll)(t) ... y(n-'\t)f, t;;':O, 

Z(T)= q.,(xo('T»,'TE [-ê..0] (2.3) 

Let us rewrite the system (2.1) (2.2) in normal form 

i(t)=Az(t)+ B(llh( q., -1(Z(t») +Iglrl h( q., -1(Z(t))) 

. (PI( q., -l(Z(t) ),q.,- L(Z(t- À»)u(t) 

+ P2( q., - L(Z(t»), q., - L (z(t- À))))) 

z( 'T) = q.,(xo( 'T)), 'TE [ - À,O] 

(2.4) 

where A, B have the Brunowsky canonical form (see [10], pp. 
153,231). For a suitable integer m;;,:l, let T=À/m be the sam­
pling period. Let z(i)(t) denote the i-th time derivative of z(t), 
t;;':O, i;;,: I. 

As in [2], we sample the system (2.4) by the Taylor formula 
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