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ABSTRACT 

The use of design automation tools has allowed complex projects to reach feasible 

time-to-market and cost parameters. In this context, logic synthesis is a critical 

procedure in the design flow. The technology independent step (part of the logic 

synthesis which is performed regardless any physical property) is traditionally 

performed over equations. The development of new multi-level optimization algorithms 

has recently shifted towards the use of And-Inverter-Graphs (AIGs). The number of 

nodes and the graphs depth in AIGs present better correlation with resulting circuit area 

and delay than any characteristic of other representations. In this work, a technology 

independent synthesis algorithm that works on top of an AIG data structure is proposed. 

A novel approach for AIG construction, based on a new synthesis paradigm called 

functional composition, is introduced. This approach consists in building the final AIG 

by associating simpler AIGs, in a bottom-up approach. The method controls, during the 

graphs construction, the characteristics of final and intermediate graphs by applying a 

cost function as a way to evaluate the quality of those AIGs. The goal is to minimize the 

number of nodes and the depth of the final AIG. This multi-objective synthesis 

algorithm has presented interesting features and advantages when compared to 

traditional approaches. Moreover, this work presents a method for AIGs construction 

for multiple output functions, which enhances structural sharing, improving the 

resulting circuit. Results have shown an improvement of around 5% in number of nodes 

when compared to ABC tool. 
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Síntese lógica independente de tecnologia visando múltiplos objetivos, 

aplicada a funções de múltiplas saídas, empregando composição 

funcional de AIGs 

RESUMO 

O emprego de ferramentas de automação de projetos de circuitos integrados 

permitiu que projetos complexos atingissem time-to-market e custos de produção 

factíveis. Neste contexto, o processo de síntese lógica é uma etapa fundamental no fluxo 

de projeto. O passo independente de tecnologia (parte do processo de síntese lógica, que 

é realizada sem considerar características físicas) é tradicionalmente realizado sobre  

equações. O desenvolvimento de novos algoritmos de otimização multi-nível 

recentemente migrou para o emprego de And-Inverter Graphs (AIGs). O número de 

nodos e a altura de um grafo apresentam melhor correlação com os resultados em área e 

atraso de um circuito, se comparados com as características de outras formas de 

representação. Neste trabalho, um algoritmo de síntese lógica independente de 

tecnologia, que funciona sobre uma estrutura de AIGs, é proposto. Uma nova 

abordagem para a construção de AIGs, baseada no novo paradigma de síntese chamado 

de composição funcional, é apresentado. Esta abordagem consiste em construir o AIG 

final através da associação de AIGs mais simples, em uma abordagem bottom-up. 

Durante a construção do grafo, o método controla as características dos grafos 

intermediários e finais, a partir da aplicação de uma função de custo, como forma de 

avaliação da qualidade desses AIGs. O objetivo é a minimização do número de nodos e 

da altura do AIG final. Este algoritmo de síntese lógica multi-objetivo apresenta 

características interessantes e vantagens quando comparado com abordagens 

tradicionais. Além disso, este trabalho apresenta a síntese de funções com múltiplas 

saídas em AIGs, o que melhora a característica de compartilhamento de estruturas, 

melhorando o circuito resultante. Resultados mostraram a melhora em torno de 5% em 

número de nodos, quando comparados com os resultados obtidos com a ferramenta 

ABC. 
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1 INTRODUCTION 

The advances in the integration scale of electronic devices have increased 

drastically the complexity of developing an integrated circuit (IC). Therefore, Electronic 

Design Automation (EDA) tools and an adequate project approach are essential to 

enable engineers to meet project requirements in a feasible time and without increasing 

the project cost. One of the most frequently adopted approaches for developing 

Application Specific Integrated Circuits (ASICs) is the standard cell project flow. The 

standard cell flow is based on cell libraries, consisting on having a specific design for a 

predefined set of logic gates. This approach leads to reduce the design time because of 

the reuse of previous made layouts in different circuits and of different parts of the same 

circuit.  

A standard cell design flow consists of a sequence of steps starting from an 

abstract description of the circuit and resulting in the entire circuit, with all its elements 

properly specified, placed and routed. A standard cell flow may be divided into two 

main parts: logic synthesis and physical synthesis. The logic synthesis is responsible for 

optimizing the original description of the circuit and selecting the most appropriate cells 

to describe it. The physical synthesis is responsible for placing and routing these cells in 

the circuit area.  

Traditionally, logic synthesis is usually performed in two steps: one performed 

over Boolean equations (regardless any physical property) and another where the 

resulting logic is mapped into a cell library or any other physical implementation. The 

first step is known as technology independent step and the second one is called 

technology dependent step. 

During many years, the technology independent step was performed by equation 

factoring. Although it is a core procedure in logic synthesis, the only known optimality 

result for factoring (until 1996) was the one presented by Lawler in 1964, according to 

(HACHTEL, 1996). Heuristic techniques have been proposed for factoring and they 

have achieved high commercial success. This includes the quick_factor (QF) and 

good_factor (GF) algorithms available in the SIS tool (SENTOVICH, 1992). SIS (and 

others similar algorithms) is composed of several logic operations such as 

Decomposition Extraction, Factoring, Substitution and Elimination (HATCHTEL, 

1996). 

Most of the proposed factoring algorithms for technology independent logic 

synthesis take as input a sum-of-products (SOP) or a product-of-sums (POS). As 

SOP/POS forms are completely specified, the don’t cares are not treated during the 

factoring but while generating the SOP/POS. Thus, the whole process is not completely 

optimized (not exact). However, algorithms that start from functional descriptions of the 
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functions and are able to handle don’t cares are usually too slow to complete their 

execution for all functions of 4 variables (REIS, 2009). 

Recently, factoring methods that produce exact results for functions that may be 

expressed without repeating literals (read-once factored forms) have been proposed 

(GOLUMBIC, 2001) and improved (GOLUMBIC, 2008). However, the proposed IROF 

algorithm is restrict to read-once functions. The Xfactor algorithm (GOLUMBIC, 1999) 

is exact for read-once forms and produces good heuristic solutions for functions not 

included in this category. 

Recently, a novel approach based on function composition was proposed by 

(REIS, 2009). It works in a bottom-up way combining equations in order to generate the 

equation that implements the target function. The great achievement of this method is to 

provide good solutions in reasonable time, allowing optimizing multiple goals.  

Other approach is the use of Binary Decision Diagrams (BDDs) for performing 

technology independent optimizations. The advantages of this approach rely mainly in 

the existence of well known algorithms for handling BDDs and the fact that BDDs do 

not depend of a previous equation description of the function. However, mapping 

circuits over a BDD is far more difficult than mapping over other Direct Acyclic Graphs 

(DAGs).  

Three-level And-Not Networks (TANTs) were also considered as an alternative 

to equation factorization to perform technology independent optimization. The main 

advantage of TANT is the possibility of logic sharing and the fact that its description 

has as start point a function description. However, TANTs are not appropriate for 

implementing multi-objective optimizations (which consist in targeting more than one 

circuit characteristic at the same time, such as circuit area, delay propagation, etc.) and 

the characteristics of the TANT‟s graph are not strongly reflected in the resulting 

mapped circuit.  

The factoring algorithms presented in (GOLUMBIC, 1999; REIS, 2009) do not 

include sub-expression reuse. The reuse of sub-expressions makes multi level 

representations, like TANT networks (LEE, 1978), more competitive than two-level 

expressions (MISCHENKO, 2003). The sub-expression reuse properties of multi level 

representations lead to another interesting use of these methods, which is multiple 

output synthesis. Supporting multiple functions allows the logic sharing of sub-

expressions presented in more than one function, enhancing the circuit timing and 

consumption by reducing circuit area. 

The development of new multi-level optimization algorithms has recently 

shifted towards the use of AIGs (MISHCHENKO, 2006). The use of AIG nodes is 

justified as it is expected to produce better correlation with final area and delay once the 

circuit has been mapped to a target technology (MISHCHENKO, 2006). This 

advantage, when comparing to using equations, comes from: (1) the fact that AIGs are 

multi-level representations, which allows sharing of nodes; and (2) the AIG node is a 

simple structure, which keeps correlation with area as all nodes have homogeneous 

simple granularity. However, a recent work (JOSWIAK, 2008) has shown that for small 

circuits there is still room for area gains with respect to AIG based tools. In this sense, 

there is a need for a Boolean algorithm for AIG rewriting.  



 

 

 

The title of this work, “Multiple objective technology independent logic 

synthesis for multiple output functions through AIG functional composition”, may be 

explained as follows: 

  

 Multiple objective: consider a cost function with more than one parameter, 

in order to improve more than one characteristic that reflects improvements in the 

resulting circuit. In this work, number of nodes followed by graph height; 

 Technology independent logic synthesis: step on the logic synthesis flow 

which is performed regardless any physical property; 

 For multiple output functions: able to support several functions at a time, 

enhancing logic sharing. 

 Through AIG functional composition: build functions as And-Inverter 

Graphs in a bottom-up approach. 

The main purpose of this work is to propose a method to perform algorithmic 

logic synthesis using AIGs (due to the characteristics previously mentioned) associated 

with the new synthesis paradigm called functional composition (REIS, 2009). The 

approach proposed herein consists of constructing AIGs from association of simpler 

ones, in a bottom-up approach. The method controls, during the graphs construction, the 

characteristics of final and intermediate graphs by applying a cost function as a way to 

evaluate the quality of those AIGs (the cost function may reflect only the number of 

nodes, graph height or an association of these two criteria). This work also discuss the 

possibility of considering initial costs for the function variables, which may be used to 

represent the different arrival time of signals in a circuit and, therefore, that a given 

input must be favored in detriment of others. Moreover, an approach for handling 

multiple output functions during the function composition is proposed, presenting good 

results, especially when compared to handling each input separately. A post processing 

algorithm for duplicating logic in case of extremely large node fanouts makes the 

circuits resulting from this approach feasible. 

Chapter 2 presents the basic concepts regarding logic synthesis and a short 

comparison among the most frequently adopted approaches, besides discussing briefly 

cost estimation fundamentals. Chapter 3 presents the proposed algorithm for AIG 

composition, describing each step of the main algorithm and detailing the characteristics 

for special situations such as optimizing multiple aspects of the resulting circuit and 

optimizing multiple output circuits. Chapter 4 presents examples of AIGs constructed 

by the proposed method and comparisons to other methods. The results are presented 

and discussed in Chapter 5. This chapter also compares the results from the proposed 

method with the results from the function composition method applied to equations 

(instead of AIGs). Moreover, the results from the proposed method are compared to the 

ones from the approach of using ABC (running equation factoring, using “good_factor” 

from SIS, and building the AIGs using the FRAIG algorithm, which is also embedded 

in ABC). Chapter 6 presents the conclusion of this work and discusses the next steps for 

this research. In the annex the class diagram and a short description of all classes are 

presented. 
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2 BACKGROUND 

This chapter presents the basic concepts and the state of the art of the subjects of 

interest in this work. Section 2.1 discusses Boolean equations, the concept of cofactors, 

cube-cofactors and read-once functions. Moreover, it presents truth tables, binary 

decision diagrams (BDDs) and and-inverter graphs (AIGs). This review is important to 

understand the basis of the state of the art algorithms and the proposed method‟s 

characteristics. 

Sections 2.2 and 2.3 present general aspects of the logical synthesis flow and 

detail the state of the art of the most frequently approaches adopted to perform the 

technology independent synthesis step. Moreover, in the end of Section 2.3, a 

comparison between these methods is performed. This comparison is part of the 

motivation of this work since any of the presented methods is able to provide all the 

desirable qualities. Finally, Section 2.4 presents the concept of cost estimation for a 

solution and the approaches for targeting area, delay or both. Cost estimation is an 

important concept since this work aims to improve multiple aspects of the resulting 

circuit. 

2.1 Basic Concepts 

2.1.1 Boolean Equation 

 

A Boolean function describes how to determine a Boolean output based on some 

logical calculation performed over Boolean inputs. An equation is one representation of 

a function, which may also be described as a Binary Decision Diagram (BDD) or as a 

Truth Table (TT), for instance. Every representation of a function may be classified as 

canonical or non-canonical. A representation is said to be canonical if every function 

will always be described exactly in the same way. Examples of canonical 

representations are BDDs and TTs (as long as the variables ordering are the same). 

Usually, equations are non-canonical representations of a function; therefore, the same 

function may be described by different equations. For instance, equations (2.1) and (2.2) 

represent exactly the same function. However, there is a way to represent an equation in 

a canonical way, which is the SOP representation. An equation is composed of literals 

and operators. A literal is an instance of a variable (positive literal, for instance “A”) or 

its complement (negative literal, for instance “!A”). Operators are AND (“*”), OR (“+”) 

and NOT (“!”). 

 

 



 

 

 

F=A*B+C         (2.1) 

F=(A+C)*(B+C)         (2.2) 

2.1.2 Cofactors and Cube-cofactors 

 

A Shannon Decomposition is a method to represent any Boolean function as the 

sum of two sub-functions of the original one. A cofactor is a sub element of a Shannon 

Decomposition generated by either setting the value of a given variable to “0” or to “1”,  

When a cofactor is generated for a function F by setting a variable v to “0”, it is called 

the negative cofactor of the function F with respect to variable v. 

For instance, equation (2.3) presents a function F represented by it‟s two sub 

elements, one related to x and the other one related to !x. There are the positive and 

negative cofactors of the F function in x, respectively. 

 

F=x*Fx +!x*F!x         (2.3) 

  

A cofactor with respect to a given variable is obtained by setting the variable to 

one (positive cofactor) or to zero (negative cofactor), eliminating then the variable from 

the function. For example, consider the function (2.4). 

 

F=(A*C)+(B*C)+(!A*B*D)       (2.4) 

The positive cofactor with respect to the variable A (which is generated by 

setting A to one) is: 

F(A=1)= C+(B*C)         (2.5) 

While the negative cofactor with respect to the variable A (which is generated by 

setting A to zero) is: 

F(A=0)= (B*C)+(B*D)        (2.6) 

A cube-cofactor is obtained when setting more than one variable to a fixed logic 

value. In other words, a cube-cofactor is a cofactor from a cofactor. The cube-cofactor 

of the function presented in (2.4) with respect to A=0 and B=1 is presented in (2.7) 

F(A=0, B=1)= C+D         (2.7) 

 

2.1.3 Function Order 

 

Two Boolean functions may be compared and classified according to their 

relative order. Considering G = F1 + F2: 

 

 F1 is larger than F2 if F1 = G and F1 ≠ F2 

 F1 is smaller than if F2 if F2 = G and F1 ≠ F2 

 F1 not comparable to F2 if F1 ≠ F2 ≠ G 
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2.1.4 Unateness 

 

Boolean function variables may be classified according to their unateness. A 

function F is said to be positive (negative) unate in a variable v if the positive cofactor 

of v in F is larger (smaller) than the negative cofactor of v in F. If the positive and 

negative cofactors are not-comparable, the function F is said to be binate in v. 

Therefore: 

 F is positive unate in v if Fv=1 is larger than Fv=0 

 F is negative unate in v if Fv=1 is smaller than Fv=0 

 F is binate in v if Fv=1 is not comparable to Fv=0 
 

2.1.5 Read-once Functions 

 

A function F is called read-once if it can be represented as a factored form in 

which each variable appears only once. In other words, a function is said to be read-

once if there is a factored form of it that do not present any repeated literal.  
 

If a function F can be represented through a read-once formula, all the partial 

sub-equations in the formula correspond to functions that are cube cofactors of F. As 

each variable appears as a single literal, they can all be independently set to non-

controlling values, which makes only one literal disappear at a time. This way, any sub-

equation (or sub-set) of F can be obtained by assigning non-controlling values to the 

variables to be eliminated.  

 

2.1.6 Truth Tables 

 

A truth table (TT) is another way to represent Boolean functions. It consists in a 

table containing columns for all inputs and for the output of the function. Each line of 

the table consists in one combination of values for the inputs. For instance, the XOR 

function of two inputs is presented in Table 2.1. 

Table 2.1: Sample of truth table for the XOR function 

 Input 1 Input 2 Output 

0 0 0 

0 1 1 

1 0 1 

1 1 0 

 

If two TTs present the same inputs in the same order, they will only vary on the 

output column. Therefore, a representation of a TT must only present the data of this 

column and the input names and ordering. The output column of the TT may be seen as 

a vector of Boolean values (for the example in Table 2.1, the output vector would be 

[0,1,1,0]). The vector may also be described as an integer (again in the example in Table 

2.1., the integer would be 0110 in binary representation, or 6, in decimal 



 

 

 

representation). The number of bits of an integer may vary from architecture to 

architecture, but usually they are limited to 32 or 64 bits. If the number of lines in the 

TT (and therefore the number of bits in the vector or the number of bits in the integer) is 

larger than the number of bits in a single integer, it is possible to use a vector of integers 

to store the TT data. Table 2.2 presents the relation between the number of inputs, 

number of bits and number of integers required to store this information in both 32 and 

64 bits architectures. 

Table 2.2:  Relation between the number of inputs, number of bits and number of 

integers required to store this information in both 32 and 64 bits architectures. 

 Inputs Bits Integers 

(32 Bits) 

Integers 

(64 Bits) 

1 2 1 1 

2 4 1 1 

3 8 1 1 

4 16 1 1 

5 32 1 1 

6 64 2 1 

7 128 4 2 

8 256 8 4 

9 512 16 8 

10 1024 32 16 

n 2
n 

2
n 

/ 32 2
n 

/ 64 

  

2.1.7 Binary Decision Diagram 

A Binary Decision Diagram (BDD) is a directed acyclic graph (DAG) which 

represents a Boolean function. The nodes contain the variables while the edges 

represent the values assumed by the variables. If no reduction rules are applied, the 

BDD is actually a tree, presenting the output node of the function it implements as the 

root and Boolean values „1‟ and „0‟ at the leaves. Figure 2.1 presents the BDD and the 

TT for the function represented by the equation Q=A*B+C. 

Table 2.3: Truth table for Q=A*B+C equation. 

A B C Q 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 
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Figure 2.1. BDD representing the function in Table 2.3. 

 

 Considering the BDD without any reduction, it may be considered canonical if 

and only if the ordering of the variables is specified (for instance, if the variables are 

ordered lexicographically). For a different variable ordering (for instance, in Figure 2.2 

the order is C, A and B, instead of A, B and C in Figure 2.1), the BDDs will differ. 

 

 

Figure 2.2. BDD representing the same function than BDD from Figure 2.1, but with a 

different variable ordering. 

 

The size of a BDD grows exponentially with the number of variables. Moreover, 

the time for building a BDD is also exponentially proportional to its number of 

variables. Therefore, several different techniques to reduce the size of a BDD were 

proposed. One of the most popular approaches is called ROBDD (which stands for 

Reduced Ordered Binary Decision Diagram). The ROBDD is a BDD with some specific 

improvements in building time (which does not increase the time for building the 

BDD). The most significant improvement is that if there are two identical nodes, they 

are collapsed.  



 

 

 

  

(a) (b) 

Figure 2.3. ROBDD representing the same function than (a) BDD from Figure 2.1. and 

(b) BDD from Figure 2.2. 

 

The advantage of using ROBDD instead of simple BDDs is the gain in size 

(number of nodes and complexity) without a significant penalty in building time. 

Moreover, it maintains the characteristic of being canonical, as long as the variable 

ordering is the same (as simple BDDs). 

2.1.8 And-Inverter Graph 

And-Inverter Graph (AIG) is another way to represent a Boolean function. An 

AIG is a directed acyclic graph (DAG) which is composed exclusively of two inputs 

AND gates and inverters. The inverters are usually represented as a special flag on the 

graph‟s edge and therefore all nodes on the graph represent two input ANDs. Figure 2.4 

presents one AIG for the equation F=A*!B*C.  

 

Figure 2.4. Sample of AIG for the function represented by the equation F=A*!B*C. 

As AIGs are not canonical, different AIGs may represent the same Boolean 

function. Figure 2.5 presents three different AIGs for the same function (the output of 

the TT of this function is 01010111).  
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(a) (b) 

Figure 2.5. Sample of AIG representing the same function but described as (a) F= 

A*B+C and (b) F=(A+C)*(B+C). 

 

 

2.2 Logic Synthesis Flow 

Logic synthesis is the process to generate a design implementation of a circuit 

from its abstract description (typically a structural or a RTL – register transfer level - 

description). Figure 2.6 presents a diagram representation of the logic synthesis steps 

and inputs. 

 

Figure 2.6. Diagram representing the logic synthesis flow and its inputs and outputs. 

 

The abstract description must inform mainly the logic behavior of the circuit to 

be synthesized and, therefore, must describe at least the set of inputs and outputs and the 

values of the outputs for all combination of the inputs (for combinational circuits)  or 



 

 

 

must describe both the combination of the inputs and previous state information (for 

sequential circuits).  

Considering only combinational circuits (in order to simplify the flow analysis), 

the logic synthesis is usually performed in two steps, one performed over Boolean 

equations (regardless any physical property) and another where the resulting logic is 

mapped into a physical cell library or other physical implementation.  

The first step, called technology-independent step, may be either a two-level 

approach or a multi-level approach. The two-level approach consists of representing a 

function as a SOP, which means that the first level contains product terms (AND) and 

the second level logic contains sum terms (OR). It may also be necessary to employ 

inversions (NOT) to some of the inputs of the product terms. 

The multi-level approach is composed of several logic operations such as 

Decomposition, Extraction, Factoring, Substitution and Elimination (HACHTEL, 

1996). These operations may be either explicitly performed (SENTOVICH, 1992) or 

implicitly performed by other methods such as And-Inverter Graph (AIG) rewriting, as 

in the ABC tool (BERKELEY 2010). The result of this technology-independent step is 

an improved abstract description of the circuit. The typical cost function during this 

optimization is the total literal count of the factored representation of the logic function, 

although recent works proposed different cost functions considering multiple goals. 

The second step, called technology-dependent step, uses the improved abstract 

description provided by previous step to build a DAG and perform technology mapping 

over this graph. The result of this step (and consequently, of the logic synthesis flow) is 

the circuit described as a network of gates in a given technology.  

While the technology-independent step may be performed in the same way 

either in an ASIC or in a FPGA flow, the technology-dependent step must consider 

specific restrictions for each flow and, therefore, must present specific characteristics 

for ASIC and for FPGA flows. ASIC flow restricts technology mapping to the available 

cells in the cell library, while FPGA flow presents restriction regarding the maximum 

number of inputs of a given cell and other resources restrictions. 

Some of the most used techniques for the technology-independent step are 

discussed in the next section. 

2.3 Technology Independent Logic Synthesis Flow 

Technology independent synthesis consists in computing a representation of a 

given combinational circuit with optimized costs measured independently of the target 

technology. These costs may be related to the number of literals in an equation (e.g. 

number of literals and logic depth) or TANT (LEE 1978, PERKOWSKI 1990), BDD 

(YANG, 1999 – VEMURI, 2002) or AIG (KUEHLMANN, 2002, MISHCHENKO 

2005, FIGUEIRO 2010) nodes (e.g. number of nodes and graph depth measured in 

nodes). In SIS (SENTOVICH 1992), the technology independent cost was based on 

literals. In more recent tools like ABC (BERKELEY 2010), the technology independent 

cost is based on AIG nodes.  

The following sections discuss the most relevant algorithms types for 

performing technology independent synthesis. 
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2.3.1 Equation Factorization 

Equation Factorization was the first approach used in the technology-

independent step in the logic synthesis flow. It consists of decomposing the equation in 

smaller and relatively independent elements, called factors. Equation 2.4 presents a 

simple equation in SOP form while equation 2.5 presents the same function 

implemented as a factorized equation. 

F=A*B+A*C         (2.4) 

F=A*(B+C)         (2.5) 

The factorized equation always implements the same function than the original 

equation, but it usually presents a reduced number of literals once it groups equivalent 

elements. This enhancement in the equation is also reflected in the resulting circuit 

since it allows logic sharing of some equivalent elements.  

This approach applies a sequence of optimization steps, having the goal of 

removing redundant nodes, finding better logic boundaries, discovering shared logic, 

and simplifying the node representations.  

The method of factoring equations present several drawbacks, such as operating 

over equations and optimizing the number of literals, while technology mappers 

(CONG 1994, KUKIMOTO 1998) operate over DAGs and usually consider other cost 

functions than number of literals. 

2.3.2 Using Boolean Decision Diagrams 

Although Equation Factorization may present good results in most AND-OR 

structures, it is not completely satisfactory when optimizing circuits which present some 

XOR behavior.  

The BDD structure presents several characteristics that would be interesting to 

the technology independent optimization step (YANG, 1999 – VEMURI, 2002). These 

characteristics are: 

 BDDs are canonical (when variables are ordered); 

 BDDs allow logic sharing; 

 Reductions on BDDs usually reflect reductions in circuit logic;  

 Variable reordering on BDDs usually represent gain in final optimization. 

The reason why BDDs are not widely used in the technology independent step in 

logic synthesis flow is that a BDD is not a good structure for technology mapping and it 

is not easy to convert the BDD to such structure. 

2.3.3 Equation Composition 

Equation Composition is a novel approach (REIS, 2009) based on the 

construction of equations by associating simpler sub-equations. The objective of this 

method is to provide an equation that represents a good description of a given input 

function.  



 

 

 

Figure 2.7 presents a description in pseudo-code of the algorithm. The method 

consists in first determining a set of allowed sub-functions, which will be the functions 

that are considered as possible partial elements of the target function (line 5). The 

second step is to create equations for all functions considering only one variable (line 

7). The algorithm continues by combining these equations two by two until composing 

the final equation (lines 10 to 14). In order to evaluate whether a generated equation 

implements or not an allowed function (and therefore must be considered in further 

compositions). A TT is used for each equation, which specifies in a canonical way the 

functions (it was also possible to use BDDs in this point, but at (REIS, 2009) only TTs 

were used). 

 

Figure 2.7. Pseudo-code for the Equation Composition algorithm. (REIS, 2009). 

 

This method is able to constructively control the characteristics of final and 

intermediate equations, allowing the adoption of secondary criteria other than the 

number of literals for optimization. The drawback of using Boolean equations in the 

optimization step is the difficulty of handling logic sharing. 

2.3.4 Three-level And-Not Networks  

A Three-level And-Not Network (TANT) is a network composed exclusively of 

ANDs and inverters (NOTs) whose topology present only three levels (LEE, 1978, 

PERKOWSKI, 1994). It was proven (SASAO, 1982) that by using three logic levels it 

is possible to represent in a small quantity of nodes nearly all Boolean functions. On the 

other hand, using only two levels (such as in SOP or POS approaches) it affects 

drastically the logic size (SASAO, 1982). 

Therefore, TANT networks are able to represent logic functions in a reduced 

form and there are several algorithms that perform this reduction efficiently and with 

low computational effort (LEE 1978, VINK 1978, PERKOWSKI 1990). Moreover, in 

opposition to other approaches, TANT networks are able to properly handle logic 

sharing by connecting several elements of a higher level to the same element in the 

lower level, increasing its Fan-In to more than 1. 

However, one limitation of the TANT networks is exactly the number of levels 

(only three levels are possible). Moreover, the number of nodes in the TANT network is 

not directly correlated to the final circuit size (different fan-in nodes represent different 
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area in the resulting circuit), which both reduce the benefit of the nodes reduction (once 

it can actually represent an area increase of the circuit) and make difficult to apply 

TANT networks in multiple goals optimizations.  

2.3.5 Using And-Inverter Graph 

AIGs are a multi-level logic representation, whose construction and size are 

proportional to the size of the circuit. The characteristics of the AIG are better 

correlated to the circuit characteristics than any other strategy mentioned in this chapter.  

The best possible equation does not ensure the best AIG and, therefore, another 

AIG generated by a not-so-good equation may be the best AIG. This is the reason why 

recent logic synthesis applications are based in AIG and AIG optimization.  

ABC (BERKELEY 2010) uses AIGs for optimizing the logic before performing 

any technology mapping. The AIG is first built and than AIG rewriting techniques are 

applied in order to reduce its number of nodes (MISHCHENKO 2006, BRUMMAYER 

2006).  

The rewriting procedure is a fast greedy algorithm that reduces the AIG size by 

iteratively selecting its subgraphs and replacing them with smaller pre-computed 

subgraphs, with the same functionality. The rewriting technique presented by 

(MISHCHENKO 2006) extends the work from (BJESSE 2004), by restricting rewriting 

to preserve the number of logic levels, using 4-feasible cuts instead of two-level 

subgraphs and by balancing AIGs using algebraic tree-height reduction. 

It consists in enumerating all 4-feasible cuts and, for each cut, computing the 

Boolean function and search for its NPN-class in a hash-table. Fast manipulation of 4-

variables functions is achieved by representing them as TT of 16 bits bit-strings. After 

this first reduction procedure, logic sharing between the new subgraphs and nodes 

already existent in the complete AIG is determined. In case of total or partial logic 

sharing, these new shared nodes are removed and the old subgraph is used instead. After 

trying all available subgraphs for the given node, the one that leads to the largest 

improvement at a node is used.  

Another approach to improve AIGs is the Functional Reduced And-Inverter 

Graph (FRAIG) technique (MISHCHENKO 2005), which is also available in ABC and 

may be used to generate the first AIG before performing AIG rewriting procedures.  

The FRAIG technique consists in a method for building AIGs from a factorized 

Boolean equation. Figure 2.8 present the pseudo-code for the FRAIG construction. 

The FRAIG construction algorithm starts by using a structural hashing for 

ensuring that some equivalent nodes present the same behavior. This may be performed 

in one-level or in two-level modes, which consider input permutations - or even node 

permutations in two-level mode (KUEHLMANN, 2002) - and structural changes in the 

nodes. The second step is performed to detect functional equivalence by calling a SAT 

solver (it was used the MiniSat (EEN 2004)). 

The resulting AIG is considerably reduced from normal AIGs without penalty 

performance, once the optimizations are performed in construction time. Moreover, the 

FRAIG gives the AIG a semi-canonical form, since most of the equivalences are 

detected and translated to the same AIG. 

 



 

 

 

Aig_Node * OperationAnd( Aig_Man * p, Aig_Node * n1, Aig_Nodee * n2 ) 
{ 
    Aig_Node * res, * cand, * temp; Aig_NodeArray * class; 
    /*** trivial cases ***/ 
    if ( n1 == n2 ) return n1; 
    if ( n1 == NOT(n2) ) return 0; 
    if ( n1 == const ) return 0 or n2; 
    if ( n2 == const ) return 0 or n1; 
    if ( n1 < n2 ) { /*** swap the arguments ***/ 
        temp = n1; n1 = n2; n2 = temp; 
    } 
    /*** one level structural hashing ***/ 
    res = HashTableLookup( p->pTableStructure, n1, n2 ); 
    if ( res ) return res; 
    res = CreateNode( p, n1, n2 ); 
    HashTableAdd( p->pTableStructure, res );  
 
    if ( p->FlagUseOneLevelHashing ) return res; 
    /*** functional reduction ***/ 
    class = HashTableLookup( p->pTableSimulation, n1, n2 ); 
    if ( class == NULL ) { 
        class = CreateNewSimulationClass( res ); 
        HashTableAdd( p-> pTableSimulation, class ); return res; 
    } 
    for each node cand in class 
    if ( CheckFunctionalEquivalence( cand, res ) ) { 
        AddNodeToEquivalenceClass( class, res ); return cand; 
    } 
    AddNodeToSimulationClass( class, res ); return res; 
} 

Figure 2.8. Pseudo-code of the AIGs construction by the FRAIG method 

(MISHCHENKO 2005). 

 

2.3.6 Comparing Methods 

In this section, a simplified comparison between the presented methods for 

technology independent logic optimization in the logic synthesis flow is presented. 

Table 2.4 present a comparison of the characteristics of the presented methods. 

The column “Start Point” compares the different approaches regarding the need 

of having either a Boolean equation in SOP form or may be any functional description. 

The next column, “Incompletely Specified Function” indicates if the method is able to 

handle Don‟t Care variables. The “Multiple Solutions” column indicate if the approach 

may return several results for a following evaluation and the “Multiple Objective” 

column indicate if it is possible to consider more than one goal while performing 

optimizations. The last column, “Logic Sharing”, indicates if the method is able to 

provide logic sharing, whenever it is possible. In the case of BDDs, logic sharing may 

be possible depending on the specific method. 
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Table 2.4: Comparison between properties of the discussed methods. 

Method Start Point 

Incompletely 

Specified 

Function 

Multiple 

Solutions 

Multiple 

Objective 

Logic 

Sharing 

Equation 

Factorization 
SOP No No No No 

Using BDD Functional Yes No No Yes 

Equation 

Composition 
Functional Yes Yes Yes No 

TANT Functional Yes Yes No Yes 

Using AIG 

SOP or 

Factorized 

Equation 

No Yes Yes Yes 

 

Although TANT networks present most of the desirable characteristics presented 

in Table 2.4, there are some other issues that must be considered when choosing the best 

approach for the technology independent step. One is the technology dependent step, 

i.e., the mapping algorithm that will be executed right after. There are several 

implemented solutions for mapping that consist in DAG / AIG covering, but are not 

able to properly cover a TANT if it presents large fan-in nodes. Moreover, as mentioned 

earlier, TANT size (number of nodes) does not correlate properly with resulting circuit 

area. 

Moreover, none of the described methods is able to handle multiple equations 

and provide a logic sharing among these functions. 

 

2.4 Cost Estimation 

2.4.1 Optimization Targeting Area 

Traditionally, improving circuit area is (and has always been) one key target for 

any well-succeeded logic synthesis tool. The reason for that is that any circuit area 

reduction usually reflects positively in several different optimization design goals, such 

as reducing circuit power consumption, reducing fabrication cost, reducing 

interconnections delay, improving circuit yield, among others. Moreover, circuit area is 

usually simpler to estimate and does not require any signal evaluation. 

Therefore, all algorithms applied for circuit automatic synthesis usually present 

estimations of resulting circuit area. There are several ways to estimate area, and the 

best choice depends both on the information available and on the precision required at 

the evaluation moment. For instance, during the mapping stage (when the cells are 

chosen from a pre-characterized library) it is possible to use the precise area of the cells 

available and select the set of cells with the smaller area (although the effects of routing 

in circuit area are hard to estimate). In the technology independent step of the logical 

synthesis flow, where the cell area is unknown, a simpler estimation is used in order to 



 

 

 

evaluate what is the best solution in terms of area.  In this case the estimation will be 

performed according to the selected approach, but usually reflecting the number of 

nodes of a graph (in AIGs or BDDs), the number of nodes and their number of inputs 

(TANTs) or the number of literals and operations performed (equations). 

 

2.4.2 Optimization Targeting Delay 

Although targeting area for circuit optimization has presented quality results for 

several years, recent works are including other goals for optimization in order to either 

improve or favor a given characteristic of their circuit. 

In a logic circuit, a path is a sequence of nets that are used to link two given 

points - usually linking one circuit input to one circuit output. Therefore, more than one 

path may exist linking a given input to a given output. Figure 2.9 shows an example of a 

small circuit containing two paths from input C to output Q, represented as Path 1 

(dashes) and Path 2 (dots). Path 1 can be described as {C, g2, n1, g3, n2, g5, Q} while 

Path 2 can be described as {C, g2, n1, g4, n3, g5, Q}. 

 
Figure 2.9. Small circuit showing two paths from input C to output Q, represented as 

Path 1 (dashes) and Path 2 (dots). 

 

The effort (time) required to pass through the longest (slowest) path among all 

existent paths will be said to be the logical depth (complexity, cost) of this input 

regarding the output. Moreover, it is possible to define the logical depth of the complete 

circuit as the maximum of the logical depth among all inputs. There are several ways to 

measure logical depth, and the choice of the best measure depends both on the 

information available and on the precision required at the evaluation moment. For 

instance, during the mapping stage (when the cells are chosen from a pre-characterized 

library) it is possible to consider the delay of the cells, but it is hard to consider the 

interconnections delay. Another example is when the circuit is being globally placed 

and routed, where the interconnections parasites must be considered in order to obtain 

quality results. In the technology independent step of the logical synthesis flow, neither 

the cell information nor the interconnection information are available and, therefore, 

some simpler estimations are used in order to estimate the paths logical depth.  These 

estimations depend on the structure used to perform the synthesis, but usually reflect the 

height of a graph (in AIGs or BDDs), the complexity of the elements (TANTs) or the 

operations performed (equations, which, in several times, are evaluated by the height of 

a parsing tree generated by the equation).  

The logical depth is important because it is the expression of the time required to 

the output of the given circuit to reflect the changes in any of its inputs in a given 

instant. Therefore, it will affect directly the possible circuit operation frequency. 
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The existing algorithms for optimizing circuits are not able to handle hundreds 

of thousands cells at once (especially considering the amount of possible paths that this 

may generate and the interdependence of signals in the design. Therefore, splitting the 

circuit in subcircuits (as in divide-an-conquer approaches) is a common and efficient 

way to handle larger circuits in a feasible time. In this sense, several different strategies 

for circuit splitting were proposed (K-Cuts, KL-Cuts) and are not the focus of this 

discussion. Figure 2.10 presents a circuit long path from G to Q and a possible splitting 

of this circuit in three parts, (a), (b) and (c). 

 

 
Figure 2.10.  A circuit long path from G to Q and a possible splitting of this circuit in 

three parts, (a), (b) and (c). 

 

The cost (delay) of the complete path may be considered as the sum of the costs 

attributed to each element in the path. Therefore, for any path starting in A, passing 

through B and ending in C, the cost function cf{{AC} will be cf{AB} + cf{BC}. 

For instance, Figure 2.11 presents the same path than Figure 2.10, plus adding 

hypothetical cost to all gates (and no cost to the interconnections, as if it was in the 

mapping step). The (a) portion of the path will present cost cf{Gg3} = 10 + 2 + 5 = 

17, the (b) portion cost cf{n3g6} = 6 + 6 + 5 = 17 and the (c) portion cost cf{n6Q} 

= 6 + 2 + 5 = 13. Therefore, the cost cf{GQ} = cf{Gg3} + cf{n3g6} + 

cf{n6Q} = 17 + 17 + 13 = 47. 

 

 
Figure 2.11.  Same circuit path presented in Figure 2.10, including the hypothetical cost 

to the gates. 

Considering this transitiveness property of the cost function, it is possible to 

optimize a single portion of the circuit and it will improve the circuit as a hole (as long 

as all paths passing the given portion are considered together). For instance, consider 

the circuit presented in Figure 2.9 as a subcircuit, with hypothetical costs, as shown in 

Figure 2.12. 



 

 

 

 
Figure 2.12. Same circuit presented in Figure 2.9 presenting costs in the inputs and 

gates. 

 

The subcircuit presented in Figure 2.12 has the paths and costs presented in 

Table 2.5. The logical depth for each input to the subcircuit output is obtained by the 

maximum cost related to the input. Therefore, for ni1 the cost is 38 (there is only one 

path associated) but for ni2 it is 31 because it is the longest (more expensive) path 

associated to input ni2. The final cost of this subcircuit is the cost of the more expensive 

path of them all, which, in this case, is the cost of path 0, 38. 

Table 2.5: The Logical Depth (Cost) of each path in the subcircuit presented in Figure 

2.12. 

Path Start End Elements Logical Depth (Cost) 

0 ni1 

no1 

ni1, g3, n2, g5, no1 26 + 6 + 6 = 38 

1 
ni2 

ni2, g2, n1, g3, n2, g5, no1 9 + 10 + 6 + 6 = 31 

2 ni2, g2, n1, g4, n3, g5, no1 9 + 10 + 5 + 6 = 30 

3 
ni3 

ni3, g2, n1, g3, n2, g5, no1 13 + 10 + 6 + 6 = 35 

4 ni3, g2, n1, g4, n3, g5, no1 13 + 10 + 5 + 6 = 34 

5 
ni4 

ni4, g2, n1, g3, n2, g5, no1 11 + 10 + 6 + 6 = 33 

6 ni4, g2, n1, g4, n3, g5, no1 11 + 10 + 5 + 6 = 32 

7 ni5 ni5, g1, n4, g4, n3, g5, no1 19 + 2 + 5 + 6 = 32 

Although optimizing any other path cost might be interesting in some situations, 

the main goal should be optimizing path 0 since its cost (38) is the cost that will be 

associated to no1 for any evaluation of the next subcircuits that uses no1 as input. 

2.4.3 Optimizing Multiple Targets 

Area optimization, for all mentioned in Section 2.4.1, continues to be an 

important goal in any circuit automatic synthesis process. Besides that, synthesizing a 

balanced circuit is desirable since the circuit delay will be its worst path delay. 

Moreover, other circuit characteristics such as the number of transistors in series are 

important and regarding more than one characteristic while synthesizing a circuit may 

provide much better results. 

For instance, an algorithm for equation composition regarding both area (by 

controlling the number of literals in an equation) and number of transistors in series (by 

evaluating the sequence of operations in the resulting equation) is presented by Reis 

(REIS, 2009). Moreover, algorithms that optimize the number of nodes in a tree (either 

an AIG or a BDD) and try to generate a tree as balanced as possible are also available in 

the literature (YANG, 1999; MISCHENKO, 2006). 
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Hence, approaches targeting multiple objectives are rising in the last ten years. 

These approaches combine area and delay information either in a hierarchical 

improvement sequence (first improve area and among the results with smaller area 

obtain the one with smaller delay) or in a weighted cost function, attributing weights for 

each characteristic and reducing the resulting cost. 

 

2.5 Related Tools 

2.5.1 ABC Tool 

 

ABC (BERKELEY, 2010) is a system for synthesis and verification for both 

combinational and sequential logic circuits appearing in hardware designs. ABC 

combines fast scalable logic optimization based on And-Inverter Graphs (AIG) with 

innovative algorithms for integrated sequential optimization and verification. ABC is 

meant to provide an experimental implementation of these algorithms and, at the same 

time, become a convenient programming environment for building similar applications 

in the future.  

 



 

 

 

3 PROPOSED METHOD 

The method is based on combining AIGs of simpler functions in order to obtain 

AIGs of more complex functions until the target function is found. Functions are 

represented as pairs composed by one truth table (represented as an integer) and by one 

AIG node that is known to represent the function. The composition of the functions is 

performed by applying ANDs and ORs operations in both elements of the pair. Figure 

3.1 illustrates this concept. There is a subtle consequence of using the double 

representation. Once the operations are made in both elements of the pair, the resulting 

pair will have a structural representation (AIG) whose functional representation (truth 

table) is also known. Notice that the double operations on the pair {AIG, Truth Table} 

are less expensive than computing the AIG from a truth table or vice-versa. This is a 

core observation for the understanding of the method. The AND operation and the OR 

operation on AIGs are very simple, as they imply only on the creation of a single node 

connecting the two AIGs, as shown in Figure 3.2. Notice that the OR operation in 

Figure 3.2. (b) is represented as a AND node with inverting signs on all three arcs, 

resulting in a De Morgan equivalent of an OR-operation node. 

  

 
Figure 3.1. Diagram presenting how the AND and OR operations are applied to the 

functions during composition. 

 

The truth table class is basically composed of the output vector of the function 

and the list of variables of the target function (ordered lexicographically). The AND and 

OR operations may be performed in a straightforward way on the output vector since 

the variable ordering is always the same in all functions. The AIG class consists 

basically in two pointers for other AIG object and one string used to store a variable 



 

 

35 

name. If the AIG object is a one variable function, it contains the variable name on the 

string and the two pointers are NULL. If it is not a one variable function, the string is 

empty and the pointers indicate the two AIGs associated to it. Since every AIG is 

composed only by AND nodes, the AND operation is performed by simply adding the 

two AIGs as children nodes of a new AIG node, which will correspond to the new 

graph. The OR operation is performed based on the DeMorgan property (A+B is 

equivalent to !(!A*!B)) and therefore the new graph may be generated by including both 

children AIGs inverted and inverting its output as well. 

Figure 3.2 presents how two AIGs are composed by AND and OR operations. 

 

  
(a) (b) 

Figure 3.2. The (a) AND operation and the (b) OR operation over two AIGs, generating 

a new one. 

 

The proposed algorithm is performed in three steps. The first step is to construct 

a set of allowed sub-functions, to reduce the search space. The second step is to create 

the single variable function representations that will be used as the start point of the 

algorithm. From the single-variable function representations, the algorithm proceeds to 

combine existing functions to produce new associations that will be stored if they are in 

the list of allowed sub-functions and discarded otherwise. These steps are described in 

further detail in the following sections. The pseudo-code for the proposed method is 

presented in Figure 3.3. 

 
AIG build_aig(TruthTable target_function) { 

  vector<TruthTable> allowed_functions = build_allowed_subfunctions(target_function); 

 

 create_one_variable_subfunctions(target_function); 

  

 while( solution not found) { 

     ++bucket_number; 

     combine_subfunctions(allowed_functions, bucket_number); 

  } 

 

  return solution; 

} 

Figure 3.3. The pseudo-code of the algorithm. 

 

3.1 Building the Allowed Functions 

In order to reduce the search space of sub-functions and, therefore, improve the 

performance and space required by the algorithm, a set of allowed sub-functions is 



 

 

 

determined. The strategy to produce the allowed sub-functions is to compute the 

cofactors and the cube-cofactors of the target function. Moreover, it is necessary to add 

all the functions resulting of the AND-operation and the OR-operation between 

functions present in the list of cofactors and cube-cofactors. Also, the target function is 

also included as an allowed sub-function. Figure 3.4 presents the pseudo-code of the 

building allowed sub-functions algorithm.  

 
vector<TruthTable> build_allowed_subfunctions(TruthTable target_function) { 

 

vector<TruthTable> allowed_subfunctions = build_cofactors(target_function); 

 

allowed_subfunctions +=  build_cube_cofactors(cofactors, target_function); 

 

allowed_subfunctions += combine_cofactors(allowed_subfunctions); 

 

return allowed_subfunctions; 

} 

Figure 3.4. The pseudo-code of the build allowed sub-functions method. 

 

Suppose that the target function is given by Equation (3.1), and the truth table 

presented in Table 3.1. The cofactors are obtained by setting a single variable to a fixed 

logic value. For instance, making a=1 will result in cofactor b+c. The cube cofactors 

are obtained by setting more than one variable to a fixed logic value. For instance, 

making c=0 and b=1 will result in cube cofactor a. It is very important to notice that 

these operations are made directly into the truth table representation, before any AIG or 

equation is computed. Additionally, for the purpose of knowing if a function is allowed 

or not, only the functional representation (truth table) is stored. The complete set of 

distinct cofactors and cube-cofactors are listed in Figure 3.6. 

 

F=(A+C)*(B+C)         (3.1) 

 

First, as all truth tables may be represented by the output vector only, it is 

possible to represent the target function as 01010111. 

 

Table 3.1: Truth table for the equation F = (A+C)*(B+C). 

A B C F 

0 0 0 0 

0 0 1 1 

0 1 0 0 

0 1 1 1 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

 

The calculation of the negative and the positive cofactors for the “A” variable is 

performed as follows: The negative cofactor is built from the values from the output 

vector where “A” variable is „0‟ and these set is replicated for where the “A” variable is 

„1‟. Therefore, since the values where “A” is „0‟ are 0101, after the replication the 

negative cofactor of the target function for “A” is 01010101. Similarly, the positive 
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cofactor of the target function for the variable “A” is built based on the values of the 

output when “A” is „1‟ and replicated for the values where “A” is „0‟. Therefore, the 

positive cofactor for “A” is 01110111. The cofactors for the variables “B” and “C” are 

calculated in the same way and their values are presented in Table 3.2. 

 

Table 3.2: Cofactors of the target function 01010111. 

Target 

Function 

A B C 

Neg. 

Cofactor 

Pos. 

Cofactor 

Neg. 

Cofactor 

Pos. 

Cofactor 

Neg. 

Cofactor 

Pos. 

Cofactor 

01010111 01010101 01110111 01010101 01011111 00010001 11111111 

 

After obtaining the cofactors, the cube-cofactors are calculated recursively. The 

cube-cofactor is the cofactor for a variable calculated over the values of a cofactor. For 

instance, the Negative Cofactor for the variable “A” may be used to generate 4 cube-

cofactors (positive and negative, for variables “B” and “C”). The cube-cofactors are 

calculated in the same way of the cofactors. The recursion stops in two situations: a 

cofactor or a cube-cofactor presents a constant value (i.e. 00000000 or 11111111) or the 

cube-cofactor is identical to the cofactor used to calculate it. Notice that the cube-

cofactor for a given variable is not calculated over the cofactor for the same variable.  

 

Table 3.3: Cube-cofactors of the cofactors of the target function Q = A*B+C. 

 Cofactors 
Cube-cofactor  in A Cube-cofactor  in B Cube-cofactor  in C 

Negative Positive Negative Positive Negative Positive 

A Neg. 

Cofactor 
01010101 - - 01010101 01010101 00000000 11111111 

 Pos. 

Cofactor 
01110111 - - 01010101 11111111 00110011 11111111 

B Neg. 

Cofactor 
01010101 01010101 01010101 - - 00000000 11111111 

 Pos. 

Cofactor 
01011111 01010101 11111111 - - 00001111 11111111 

C Neg. 

Cofactor 
00010001 00010001 00010001 00000000 01010101 - - 

 Pos. 

Cofactor 
11111111 - - - - - - 

 

The complete vector of cofactors and cube-cofactors (which do not contain any 

repeated value) is presented in Figure 3.5:  

 

 allowed_subfunctions [01010101, 01110111, 01011111, 00010001, 11111111, 00000000, 

00110011, 00001111] 

Figure 3.5. The vector with all distinct cofactors and cube-cofactors for the target 

function f=A*B+C. 

 

The final step of the process of building the allowed sub-functions is to combine 

the cofactors and cube-cofactors among themselves using both the AND and the OR 

operators (only the constant values are not considered because they add no gain in this 

process). Since both AND and OR operators are symmetric, it is not necessary to 

evaluate f1*f2 and f2*f1. Taking this into consideration reduces the effort of combining 

by half. 



 

 

 

The resulting sub-functions that were not already present in the allowed sub-

functions vector are then included. Table 3.4 presents the results for the AND 

operations for the functions presented in Figure 3.5 while Table 3.5 presents the results 

for the OR operations for the same set of functions. The new functions, that will be 

included in the set of allowed sub-functions, are underlined. The final set of allowed 

sub-functions is presented in Figure 3.6. 

 

Table 3.4: AND operations applied over the cofactors and cube-cofactors resulting of 

previous steps. 

 01010101 01110111 01011111 00010001 00110011 00001111 

01010101 - 01010101 01010101 00010001 00010001 00000101 

01110111 - - 01010111 00010001 00110011 00000111 

01011111 - - - 00010001 00010011 00001111 

00010001 - - - - 00010001 00000001 

00110011 - - - - - 00000011 

00001111 - - - - - - 

 

Table 3.5: OR operations applied over the cofactors and cube-cofactors resulting of 

previous steps. 

 01010101 01110111 01011111 00010001 00110011 00001111 

01010101 - 01110111 01011111 01010101 01110111 01011111 

01110111 - - 01111111 01110111 01110111 01111111 

01011111 - - - 01011111 01111111 01011111 

00010001 - - - - 00110011 00011111 

00110011 - - - - - 00111111 

00001111 - - - - - - 

 

 

allowed_subfunctions [01010101, 01110111, 01011111, 00010001, 11111111, 00000000, 

00110011, 00001111, 00000101, 01010111, 00000111, 000010011, 00000001, 00000011, 01110111, 

01111111, 00011111, 00111111] 

Figure 3.6. The complete vector with all allowed sub-function. 

3.2 Create Single Variable Functions 

The creation of pairs {truth table, AIG} is straightforward. These representations 

are necessary in the initialization phase of the algorithm, as the algorithm start with the 

simplest possible structures, i.e.: the descriptions of single variable {truth table, AIG} 

pairs. Notice that only the variable functions that are present in the allowed functions 

list must be created in the initialization. 

Each variable has its own truth table constructed, according to their value in a 

truth table containing all variables of the target function, ordered in a lexicographic 

manner. Moreover, for each variable, its complementary value is also computed. 

Considering the truth table presented in Table 3.1, the three variables “A”, “B” 

and “C” would present the values in Table 3.6. If is allowed to the graph to present the 

inverted inputs as well, the complemented values of the variables “!A”, “!B” and “!C” 

must also be generated. 
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Table 3.6: Truth tables of the variable functions and their inverted values. 

A B C !A !B !C 

00001111 00110011 01010101 11110000 11001100 10101010 

 

Depending on the target function, not all variables (and their inverted values) 

will be necessary to the composition. The selection of what functions should be kept for 

the composition step could be performed by evaluating the unateness of the input 

variables. Positive unate variables would not require their complement, while negative 

unate variables would not require their direct value. Binate variables would require both 

direct and negated values. However, the unateness evaluation may be avoided by 

checking the list of allowed subfunctions. Since the allowed subfunctions derive from 

the cofactors and cube-cofactores of the target function, by removing the functions that 

are not present in the allowed functions list (generated in the previous step), only the 

required functions are kept.. In the current example, only the elements [00001111, 

00110011, 01010101] should be maintained.  

 

3.3 Combining and Evaluating Functions 

 

As it was already mentioned, the method is based on combining AIGs of simpler 

functions in order to obtain AIGs of more complex functions until the target function is 

found. The starting point is the set of known sub-functions represented by the pair 

{truth table, AIG} of the single variable functions. All the AIGs of those functions 

present zero nodes, since they are just a variable representation. Figure 3.7 illustrates 

the process for creating all the buckets up to 4-nodes AIGs. The first step is creating 

from scratch the bucket of 0-nodes AIG, which was already described in Section 3.2. 

Then, the 0-nodes AIGs are combined among themselves through AND and OR 

operations {1} to create the 1-node AIG bucket. In a similar way, the combination {2} 

of the elements from the 0-nodes AIG bucket with the elements from the 1-node AIG 

bucket creates the 2-nodes AIG bucket. The 3-nodes AIGs bucket is generated by the 

association of the elements from the 0-nodes bucket and 2-nodes bucket {3} as well as 

by operating, two by two, the elements from the 1-node bucket {4}. Finally, the 4-nodes 

bucket is composed of combinations among 0-nodes and 3-nodes buckets {5} and 

among the 1-node and 2-nodes buckets {6}. This process continues until reaching the 

target function.  

 

 

 



 

 

 

 

Figure 3.7.  Diagram presenting how the AND and OR operations are applied to 

function representations during composition. The numbers in brackets indicates the 

algorithm step order. 

 

The pseudo-code of the proposed algorithm for combining a given set of 

functions is presented in Figure 3.8. This algorithm is called several times, as shown in 

the while loop presented in the pseudo-code in Figure 3.1. 

Since the proposed algorithm for the construction of the AIG works in a bottom 

up approach, the initial step consists in combining the one variable functions allowed, 

which are the ones presented in the first column of Table 3.7, with the other functions of 

one variable, presented in the second column. Whenever the combination consist in 

elements from the same group (same number of nodes) there is no point in combining 

all elements among themselves since the operations are symmetric (A+B == B+A and 

A*B == B*A). This last consideration reduces the operations by half. 

 

 

 

map<TruthTable, AIG> combine_subfunctions(vector<map<TruthTable, AIG>> all_functions, 

…………………………………………….vector<TruthTable> allowed_functions, int bucket_number)   { 

  map<TruthTable, AIG> generated_functions; 

 

  for(int i = 0; i <= bucket_number/2; ++i) { 

      bucket1 = all_functions[i]; 

      bucket2 = all_functions[bucket_number – i]; 

  

      for each bucket1Element in bucket1 

            for each bucket2Element in bucket2 

                  newElement = bucket1Element AND bucket2Element; 

 

                  if(newElement is allowed)  

                      if((newElement does not exist) 

                         add newElement to generated_functions; 

                      else if(cost(existentElement) > cost(newElement)) 

                         add newElement to generated_functions; 

   } 

   return generated_functions; 

} 

Figure 3.8. The pseudo-code of the combining sub-functions method. 
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Table 3.7: OR (+) and AND(*) operations applied over the one variable functions. 

0 Nodes 0 Nodes 1 Node (+) 1 Node (*) 

00001111 

00110011 
00001111 + 00110011 = 

00111111 

00001111 * 00110011 = 

00000011 

01010101 
00001111 + 01010101 = 

01011111 

00001111 * 01010101 = 

00000101 

00110011 01010101 
00110011 + 01010101 = 

01110111 

00110011 * 01010101 = 

00010001 
 

The generated functions that are not present in the allowed function vector 

generated in previous step (presented in Figure 3.4) are discarded. In this specific case, 

all are accepted and, therefore, are used in the next step. Table 3.8 present the resulting 

functions in the 0-nodes AIGs bucket and in the  1-node AIGs bucket. The next step 

consists in combining the elements with 0 nodes to the ones with one node, as presented 

in Table 3.9. 
 

 

Table 3.8: OR operations applied over the cofactors and cube-cofactors resulting of 

previous steps. 

0 Nodes 1 Node 

00001111 00111111 

00110011 00000011 

01010101 01011111 

 00000101 

 01110111 

 00010001 

 

Table 3.9: OR operations applied (+) and AND(*) operations applied over the one 

variable functions (o nodes functions) with the 1 node functions. 

0 Nodes 1 Node 2 Nodes (+) 2 Nodes (*) 

00001111  

00111111 00111111 00001111 

00000011 00001111 00000011 

01011111 01011111 00001111 

00000101 00001111 00000101 

01110111 01111111 00000111 

00010001 00011111 00000001 

00110011  

00111111 00111111 00110011 

00000011 00110011 00000011 

01011111 01111111 00010011 

00000101 00110111 00000001 

01110111 01110111 00110011 

00010001 00110011 00010001 

01010101 

00111111 01111111 00010101 

00000011 01010111 00000001 

01011111 01011111 01010101 

00000101 01010101 00000101 

01110111 01110111 01010101 

00010001 01010101 00010001 

 



 

 

 

All generated functions that are not on the allowed functions set are discarded. 

Moreover, considering a simple cost function where the solution with the smaller 

number of nodes is always better, all results found for 2 nodes that were already found 

with 0 or 1 nodes, are discarded.  

3.4 Cost Functions and Implications 

In the third step of the presented algorithm, a cost function is used in order to 

evaluate which of the generated functions presented the best results for the next 

iterations. This cost function may consider only one aspect of the AIG, such as number 

of nodes or graph depth; or an association of these aspects. 

In single equation factoring (REIS 2009), where sharing is not allowed, this 

construction can be proven optimal by using dynamic programming principles. 

However, the growth of AIGs does not behave this way for area (number of nodes) cost. 

Once the number of nodes reflects directly the final circuit area and reducing area 

generally improves other circuit characteristics such as power consumption and timing, 

presenting the smaller number of nodes is the main optimization goal of the algorithm. 

However, there are different solutions that may present the same number of nodes in the 

AIG but different graph depth. In this case, the graph with the smaller depth will lead to 

a circuit with smaller paths (or at least with a smaller critical path) and, therefore, better 

timing characteristics. 

For example, consider the function represented by the truth table presented in 

Table 3.10. Consider that the algorithm already found a solution that corresponds to this 

function, represented by the AIG in Figure 3.9 (a). Instead of concluding the execution, 

it continues evaluating all other solutions that do not increase the number of nodes in 

the AIG. It will consequently find the solution presented in Figure 3.9 (b). Considering 

the graph depth, the AIG presented in Figure 3.9 (b) will be selected, since it presents 

length 2 and the other solution presents length 3.  

 

Table 3.10: Truth table for the equation Q = A*B+C+D. 

A B C D Q 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 1 

0 1 0 0 0 

0 1 0 1 1 

0 1 1 0 1 

0 1 1 1 1 

1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 1 

1 1 0 0 1 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 1 
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(a) 

 

 

(b) 

Figure 3.9. (a) An AIG resulting for the function from the truth table presented in table 

3.10 and (b) another AIG for the same function, presenting the same number of nodes 

but a smaller graph depth. 

3.5 Multiple Outputs 

The characteristics of the AIG structure associated with the constructive 

approach allow the adoption of a straightforward implementation for supporting 

multiple outputs. This strategy consists in handling each output function as an 

independent target function, but maintaining the already generated structure for one 

function available to be shared by the next ones. The costs related to the number of 

nodes of the structures that are shared only are considered once, in the time of its 

creation. All other functions that decide to use this structure will consider the number of 

nodes to be zero. However, the cost associated to the logic depth must be considered in 

every use of the structure. 

Consider, for instance, that the algorithm is processing two functions, Q1 = 

A*B+C and Q2 = A*B+D. The first function will be processed and generate an AIG 

equal to the one presented in Figure 3.11. When processing the second equation, the 

algorithm identifies that an intermediate graph is already available, consider its cost to 

be zero (in terms of number of nodes) and decides to share this structure. The resulting 

AIG for both outputs is the one presented in Figure 3.12.  

When processing a large number of equations at a time, or really large 

equations, which may present logic sharing inside the own function, it is possible to 

generate an AIG which present one (or some) nodes with a large fun out. This 

characteristic may be an issue since the circuit generated using this graph would 

probably need a larger circuit (by either using large drive strength cells or replicating 

the circuit. As one of the main characteristics of the AIG is the direct relation with the 

resulting circuit characteristics, it may be desirable to handle this specific situation.  

In this work, an algorithm for handling all nodes presenting fanout larger than a 

given threshold is proposed. It simple looks in the graph for every occurrence of these 

extremely shared nodes and replicates the subgraph starting from this node, dividing 



 

 

 

equally the load in all copies of the structure. This algorithm is executed as a post 

processing and it does not represent any significant extra cost in the complete run. 

3.6 Different Costs for Inputs 

The proposed algorithm may be used to optimize entire circuits, but usually it 

will be used to optimize a combinational portion of a larger circuit. In this last situation, 

each input signal of the circuit portion may present different characteristics (e.g., 

different arrival times) and, therefore, building a balanced graph (such as the one 

discussed in Section 3.4) may not present the best results. 

For this reason, the proposed method may receive, besides the target function, a 

list of costs for all input variables. The provided costs are used together with the costs 

estimated during the function composition. 

For instance, consider the function presented in Table 3.11 and the cost for the 

inputs presented in Table 3.12. 

If the algorithm do not consider the inputs cost, which means saying that all 

inputs present the same cost, the resulting AIG would be the one presented in Figure 

3.10 (a). Notice that the graph is well balanced, presents 5 nodes and the final length of 

the critical path is 6 (2 nodes from the output to the variable A plus the cost 4 of the 

variable A). If the cost is taken into consideration, another AIG graph may present 

better results. Figure 3.10 (b) presents an AIG not much balanced (especially if 

compared with the previous one). However, the final cost for this second graph is 5 (1 

node from the output to the variable A and the cost 4 of the variable A). 

 

Table 3.11: Truth table for the equation Q = !A*B*!C*!D+!A*C*D. 

A B C D Q 

0 0 0 0 0 

0 0 0 1 0 

0 0 1 0 0 

0 0 1 1 1 

0 1 0 0 1 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 1 

1 0 0 0 0 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 0 

1 1 0 0 0 

1 1 0 1 0 

1 1 1 0 0 

1 1 1 1 0 

 

Table 3.12: Costs for the inputs in the proposed example. 

A B C D 

4 1 1 1 
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(a) 

 

(b) 

Figure 3.10. (a) An AIG resulting for the function from the truth table presented in 

Table 3.11 without considering the inputs costs and (b) another AIG for the same 

function, presenting the same number of nodes but a smaller graph depth as it considers 

the costs in Table 3.12. 

 

3.7 Disjoint Approach 

The algorithm described in previous subsections may be improved to reduce 

even further the search space for the solution, by using distinct buckets for functions 

with different orders with respect to the target function. The approach consists in 

separating them in three different groups of buckets, instead of comparing all generated 

functions among themselves: smaller than the target function, larger than the target 

function, and not-comparable to the target function. A function f1 is said to be larger (or 

smaller) than another function f2 when the on-set of f1 is a superset (or a subset) of the 

on-set of f2. Two functions are not-comparable when the on-sets are not contained by 

each other. In the disjoint effort approach, the functions in the smaller group are only 

associated to other functions by the OR operator, while functions in the larger group are 

only associated to other functions by the AND operator. The not-comparable functions 

are still combined by both OR and AND operators. 

For instance, consider the step of building the bucket of three nodes function. In 

the regular approach, there are four combinations to generate the candidates: 

 OR operation between one element from 0 nodes bucket and one element from 2 

nodes bucket; 

 AND operation between one element from 0 nodes bucket and one element from 

2 nodes bucket; 

 OR operation between two elements from 1 node bucket; 

 AND operation between two elements from 1 node bucket. 

 

Considering that the occupation of these buckets are the ones presented in Figure 

3.11, the number of required operations to build the 3 nodes bucket would be 386. 



 

 

 

 
Figure 3.11. Number of elements in the buckets with 0 nodes, 1 node and 2 nodes 

functions in the regular approach. 

 

In the same situation (building the bucket of three nodes function), the disjoint 

approach will present fourteen combinations to generate the candidates: 

 OR operation between one element from smaller 0 nodes bucket and one 

element from smaller 2 nodes bucket; 

 OR operation between one element from smaller 0 nodes bucket and one 

element from not-comparable 2 nodes bucket; 

 OR operation between one element from not-comparable 0 nodes bucket and 

one element from smaller 2 nodes bucket; 

 OR operation between one element from not-comparable 0 nodes bucket and 

one element from not-comparable 2 nodes bucket; 

 AND operation between one element from not-comparable 0 nodes bucket and 

one element from not-comparable 2 nodes bucket; 

 AND operation between one element from not-comparable 0 nodes bucket and 

one element from larger 2 nodes bucket; 

 AND operation between one element from larger 0 nodes bucket and one 

element from not-comparable 2 nodes bucket; 

 AND operation between one element from larger 0 nodes bucket and one 

element from larger 2 nodes bucket; 

 OR operation between two elements from smaller 1 node bucket; 

 OR operation between one element from smaller 1 node bucket and one element 

from not-comparable 1 node bucket; 

 OR operation between two elements from not-comparable 1 node buckets; 

 AND operation between two elements from not-comparable 1 node buckets; 

 AND operation between one element from not-comparable 1 node bucket and 

one element from larger 1 node bucket; 

 AND operation between two elements from larger 1 node buckets. 

 

Although presenting a much larger set of combinations, since the number of 

elements in each bucket reduces, the exponential factor that controls the number of 

operations is significantly decreased. Considering that the occupation of the buckets are 

the ones presented in Figure 3.12, the number of required operations to build the 3 

nodes bucket in the disjoint approach would be 238, which is a reduction of around 38% 

of operations when compared to the regular approach. 
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Figure 3.12. Number of elements in the buckets with 0 nodes, 1 node and 2 nodes 

functions in the disjoint approach. 

3.8 Algorithm Complexity 

As presented in Figure 3.3, the three main steps of the algorithm are the building 

of allowed subfunctions, the creation of the single variable subfunctions and the 

combination of subfunctions. 

Although the time required to execute the building of allowed subfunctions may 

vary significantly on what concerns the specific characteristics of the target function, 

the building of allowed subfunctions complexity is quadratic to the number of literals. 

The cost is quadratic due to the combination using the AND and OR operations between 

the cofactors and cube-cofactors. 

The second step of the algorithm, which is the creation of single variable 

subfunctions, presents a literal cost regarding the number of literals in the target 

function, since it is based in simple generating the functions representing the positive 

and negative values of the input literals. 

The complexity of the third step of the algorithm, which is the combination of 

the subfunctions is also quadratic regarding the subfunctions available in the buckets 

that are combined, since it is based in performing AND and OR operations among the 

subfunctions available two by two.  

All the improvements described in this chapter (disjoint approach and the 

reduction of the allowed subfunction does not affect the complexity of the algorithm, 

although reducing the base value of the quadratic cost. Moreover, the handling of 

multiple outputs and of the different weights in the inputs does not affect the complexity 

as well. 



 

 

 

 

 

4 EXAMPLES 

This chapter presents some examples of AIGs generated by the proposed method 

considering the different features explained in previous chapter. In some cases 

comparison with other approaches are also presented. 

4.1  Main algorithm  

The first example consists in a four inputs function (not read-once), represented 

by the equation (4.1) and by the truth table in Table 4.1.  

Q=((!B*!C*D)+(B*!C*!D)+(!A*C*D)+(A*!B*!D))          (4.1) 

 

 Table 4.1: Truth table for the equation 

Q=((!B*!C*D)+(B*!C*!D)+(!A*C*D)+(A*!B*!D)) 

A B C D Q 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 0 

0 0 1 1 1 

0 1 0 0 1 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 1 

1 0 0 0 1 

1 0 0 1 1 

1 0 1 0 1 

1 0 1 1 0 

1 1 0 0 1 

1 1 0 1 0 

1 1 1 0 0 

1 1 1 1 0 

 

The resulting graph for the ABC + FRAIG is presented in Figure 4.1 while the 

AIG generated by the proposed method is shown in Figure 4.2. Notice that the proposed 

method has presented the reduction of one node when compared to ABC + FRAIG and, 

besides, has reduces the graph height by one as well. 
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Figure 4.1. The AIG built by running ABC followed by FRAIG, for the equation (4.1). 

 

 

Figure 4.2. The AIG built by the proposed method for the equation (4.1). 

4.2 Logic sharing example 

The second example consists in a four inputs function (not read-once), represented 

by the Equation (4.2) and by the truth table in Table 4.2.  

Q= !B*!C*D+!A*(B*C*D+!D*(B*!C+!B*C))     (4.2) 

 



 

 

 

Table 4.2: Truth table for the equation Q= !B*!C*D+!A*(B*C*D+!D*(B*!C+!B*C)) 

A B C D Q 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 1 

1 0 0 0 0 

1 0 0 1 1 

1 0 1 0 0 

1 0 1 1 0 

1 1 0 0 0 

1 1 0 1 0 

1 1 1 0 0 

1 1 1 1 0 

 

The resulting graph for the ABC + FRAIG is presented in Figure 4.3 while the 

AIG generated by the proposed method is shown in Figure 4.4. Notice that the proposed 

method has presented the reduction of one node when compared to ABC + FRAIG and, 

besides, has reduces the graph height by two nodes. 

 

 

Figure 4.3. The AIG built by running ABC followed by FRAIG, for the equation (4.2). 

The AIG constructed by the proposed method presents one node with fanout 

larger than one. This means that the proposed method was able to reuse part of the 

graph in more than one path, reducing the final number of nodes in the graph and, 

therefore, reducing resulting circuit area. 
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Figure 4.4. The AIG built by running the proposed method for Equation 4.2. Notice the 

circled node which presents fanout larger than one. 

 

4.3  Multiple outputs example 

The third example consists in running the proposed method for two functions at 

the same time (multiple outputs mode). The two functions present six inputs function 

(not read-once) and are represented by the Equations 4.3 and 4.4.  

Q1=!(A+B+(C+D)*(E+F))       (4.3) 

Q2=!(A+B+C*D*(E+F))       (4.4) 

The resulting graphs for the execution of one equation at a time are presented in 

Figure 4.5 (Equation 4.3 in (a) and Equation (4.4) in (b)). Figure 4.6 presents the 

resulting graph for the multiple outputs mode, where both equations were processed at 

once. Notice that this approach reduces two nodes than the previous solutions. 

 

  

(a) (b) 

Figure 4.5. The AIGs built by running the proposed method for (a) Equation 4.3 and (b) 

Equation 4.4, one at a time. 



 

 

 

 

Figure 4.6. The AIGs built by running the proposed method for Equation 4.3 and 

Equation 4.4, both at the same time in multiple outputs mode. 

 

4.4 Different input weights example 

The fourth example consists in running the proposed method for a read-once 6 

inputs function for 4 different input weights. The function represented by the Equation 

4.5 was used as input to the algorithm for 4 different inputs costs. The costs used are 

shown in Table 4.3.  

Q= !(A+B+C*D+E*F)        (4.5) 

 

Table 4.3: Costs used as inputs costs to the AIG construction algorithm.  

Cost A B C D E F 

1 1 1 1 1 1 1 

2 1 1 1 1 1 3 

3 3 1 1 1 1 3 

4 3 1 1 4 1 3 

 

The resulting graphs for the execution of each of the costs presented in Table 4.3 

are presented in Figure 4.7. Figure 4.7 (a) presents the same costs for all inputs. The 

graph presented in Figure 4.7 (b) favors input F in order to compensate its higher cost. 

The AIG in Figure 4.7 (c) favors both A and F, which present higher costs in cost 3. 

Figure 4.7 (d) presents the result when favoring inputs A, D and F, but D with a higher 

cost. 
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(a) (b) 

  

(c) (d) 

 

Figure 4.7. The AIGs built by running the proposed method for the function represented 

by Equation 4.5 and different input costs presented in Table 4.3. (a) for cost 1, (b) for 

cost 2, (c) for cost 3 and (d) for cost 4. 



 

 

 

  

5 RESULTS 

In order to evaluate the proposed algorithm, a comparative test was performed. 

Two sets of functions were created to be used in the evaluation of several aspects of the 

proposed method. The set A is composed of 3982 functions which present up to 4 

variables while the set B is composed of 400 read-once functions presenting from 5 to 8 

input variables. 

5.1 Main Algorithm  

The first test performed was regarding the main structure of the algorithm. The 

purpose is to evaluate if the new approach is able to produce better results than the 

method available in ABC for generating an optimized AIG for a single equation. 

Therefore, the two sets (A and B) of functions were processed by ABC (first 

executing the Good Factor “GF” algorithm for factorization and then executing the 

FRAIG construction algorithm. The same functions were also processed by the 

Equation Composition method followed by the FRAIG construction and by the method 

proposed in this work. 

For the set A of functions, the proposed method presented a reduction of 4.97% 

in total number of nodes when compared to running ABC + FRAIG and of 2.15% when 

compared to the Equation Composition + FRAIG. Table 5.1 presents the total of nodes 

generated by the three methods and the average number of nodes. 

Table 5.1: Comparison of And-Inverter Graphs generated by ABC + FRAIG and the 

proposed method for set A of input functions. 

 ABC + 

FRAIG 

Equation Composition 

+ FRAIG 

Proposed 

Method 

Number of Nodes 32813 31904 31258 

Average Number of  Nodes 8.24 8.01 7.84 
 

Moreover, an evaluation of the distribution of nodes was performed between 

ABC + FRAIG method and the proposed method. In most cases, the two solutions 

presented the same number of nodes but, for over 1100 functions, the proposed method 

was able to reduce one node and for more than 400 functions it has reduced two nodes. 

for all functions and the reduction. Figure 5.1 presents the distribution of gained nodes 

by the proposed method when compared to ABC followed by FRAIG for the functions 

from set A. 
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Figure 5.1. The distribution of number of nodes gained by the proposed method when 

compared to the ABC + FRAIG method, when applied to the input functions from set 

A. Negative values represent advantage to ABC + FRAIG, while positive values 

represent advantage to the proposed method. 

 

For the set B of functions, the proposed method presented the same number of 

nodes than using Good Factor followed by FRAIG construction. This is because the set 

contains only read once functions, a specific type of functions that are usually easier to 

simplify and several methods claims to present the exactly best solution for these 

functions.  

5.2 Multiple Outputs 

In order to evaluate the support for multiple outputs, the set A (composed of 

3982 functions) was used. The test groups these functions in sets of 2 or 4, providing to 

the system these sets as multiple output functions. In order to allow an easier 

comparison, 2 functions were removed from the total, so the amount of functions is 

divisible for 2 or 4. Therefore, from the 3982 functions, 3980 cells were considered for 

the test, creating 1990 sets of two functions and 995 sets of four functions. Table 5.2 

presents the results for this comparison. A graph comparing the average number of 

nodes and the average logical depth is presented in Figure 5.2. 

 
 

Table 5.2: Evaluation of multiple outputs result for groups of 2 or 4 functions compared 

to single output as well 

 Single 

Output 

2 

Outputs 

4 

Outputs 

Number of Nodes 31250 28587 26153 

Average Number Nodes 7.85 7.18 6.57 

Average Nodes Reduction - 8.52 % 16.31 % 

Sum of Logical Depths 15308 15585 15978 

Average Logical Depth 3.85 3.92 4.02 

Average Logical Depth Increase - 1.81 % 4.38 % 
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Figure 5.2. The impact of grouping functions in order to perform the multiple outputs 

algorithm in terms of average number of nodes and in terms of average logical depth 

decrease, when applied to the input functions from set A. 

 

The results show a reduction of 8.52% in the number of nodes when grouping 

the functions two by two and a reduction of 16.31% when grouping the functions four 

by four. This reduction is a result of the sharing of nodes among the grouped functions. 

In this context, an increase of 1.81% in the logical depth was notice for the 2 functions 

sets and an increase of 4.38% in the logical depth for the 4 functions sets. This is an 

expected side effect of considering the number of nodes as the primary cost and the 

logical depth as the secondary cost and consider the nodes previous generated by other 

functions as of cost zero in terms of number of nodes.  

 

5.3 Secondary Criterion  

In order to evaluate the impact of targeting multiple objectives in the 

construction phase of the AIG, we proposed generating an improved equation with the 

Equation Composition (REIS 2009) constructive approach and apply the FRAIG 

algorithm for all cells present in the previous test. The logical depth is used as cost 

function for our approach and we compare both the number of nodes and the resulting 

logical depth for both approached. Table 5.3 presents the comparison for the Equation 

Composition followed by the FRAIG algorithm available in the ABC against the 

proposed method. 

Table 5.3: Comparison of And-Inverter Graphs generated by Equation Composition + 

FRAIG and the proposed 

 Equation 

Composition 

+ FRAIG 

Proposed 

Method 

Sum of Logical Depths 17933 15356 

Average Logical Depth 4.50 3.85 

Average Logical Depth Reduction - 16.88% 
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A second test was performed in order to evaluate the advantages of applying 

secondary criterion during the AIG construction. The test described in Section 5.1 using 

the set B of functions presented the results shown in Table 5.4.  

 

Table 5.4: Comparison of And-Inverter Graphs generated by Equation Composition + 

FRAIG and the proposed 

 ABC + 

FRAIG 

Proposed 

Method 

Sum of Logical Depths 1992 1958 

Average Logical Depth 4.98 4.89 

Average Logical Depth Reduction - 1.71% 
 

5.4 Different Costs for Inputs 

In order to evaluate the support for different costs in the inputs, the same set 

composed of 3983 functions presenting up to 4 variables were used as input to the 

proposed method (either considering or not the inputs cost to evaluate the best AIG 

solution). As different costs should be applied to the input, the cost vectors presented in 

Table 5.5 were applied. 

Table 5.5: Inputs Cost vectors used during this test. 

 A B C D 

Vector 1 4 3 2 1 

Vector 2 3 4 1 2 

Vector 3 2 1 4 3 

Vector 4 1 2 3 4 

 

For all 3982 equations, the 4 cost vectors were used as inputs to the proposed 

algorithm without considering the inputs cost in the composition process of the AIG. 

This results in generating 15928 AIGs. The same equations and cost vectors were 

applied to the proposed algorithm considering the inputs cost when selecting the best 

AIG. Table 5.6 presents the sum of logical depths for all 15928 AIGs and the average 

logical depth for both cases. Notice that the algorithm that considers the inputs cost 

presented a reduction of 6.65% in terms of logical depth, without increasing the number 

of nodes. 

Table 5.6: Comparison of And-Inverter Graphs generated by the proposed method 

either ignoring or not the inputs cost 

 Proposed 

Method  

(Ignoring inputs 

cost) 

Proposed 

Method 

(Considering 

inputs cost) 

Sum of Logical Depths 121029 112967 

Average Logical Depth 7,598 7,092 

Average Logical Depth Reduction - 6.65% 



 

 

 

 

 

5.5 Disjoint Approach 

In order to evaluate the impact of using the disjoint approach in the proposed 

algorithm, another test was performed. For the same set of functions used in the 

previous tests, the algorithm was executed in disjoint effort mode and both the number 

of nodes and the number of operations were considered. Table 5.7 presents the 

comparison for the regular effort and disjoint effort modes of the proposed method.  

 

Table 5.7: Comparison of And-Inverter Graphs generated by the proposed method in 

both regular and disjoint efforts 

 Proposed Method 

(Regular approach) 

Proposed Method 

(Disjoint Approach) 

Number of Nodes 31258 31694 

Average No.  Nodes 7.84 7.95 

Average Nodes Increase - 1.4 % 

Number of Operations 887179 767042 

Average No. Operations 2217 1917 

Average Op. Decrease - 15.65 % 
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6 CONCLUSION 

Sum of products and factored forms were used in SIS to represent logic function 

of single output circuit nodes. However, the granularity of the logic functions could 

vary, leading to optimizations in the number of literals that would not translate in better 

circuit characteristics after mapping. For this reason, current logic synthesis tools are 

using AIGs to perform the technology independent improvements in the circuit 

descriptions prior the mapping procedure. The AIG advantages when compared to other 

strategies that apply TANT networks, BDDs or equation manipulations greatly justify 

this tendency. 

AIGs characteristics reflect closely the characteristics of the resulting circuit. 

There are several techniques to reduce AIGs size, available both in building time (such 

as FRAIG) and after construction enhancements (techniques for AIG rewriting). 

Moreover, AIGs are especially adequate for minimizing a cost function regarding 

multiple goals, such as size (number of nodes) and logic depth (graph height). 

However, the techniques used to handle AIGs present some limitations, such as 

requiring an initial optimized (factorized or composed) equation. Therefore, some 

possible quality improvements are not performed, while there are other techniques that 

may receive functional description only, but still can not perform some possible quality 

improvements since they may be minimizing a cost function that do not reflect its 

improvement in the resulting circuit.  

It is possible to join the AIG approach with the Equation Composition approach 

in order to implement an algorithm for performing the technology independent step in 

the logic synthesis flow with both logic sharing and able to handle don‟t care variables 

and independent of a previous factorization step (Figueiro 2010). 

This work has proposed a novel approach for local AIG rewriting algorithm. The 

proposed method is based on a new synthesis paradigm (functional composition), which 

consists in associating simpler  known pairs of functions (truth tables) and 

implementation (AIGs) in order to generate more complex ones. 

In a first moment, a review about algorithmic logic synthesis was presented, 

with special interest in the technology independent step. The most frequently adopted 

approaches (Equation Factorization, BDDs, TANT, Equation Composition and AIGs) 

were presented and their positive and negative aspects were discussed. Moreover, a 

table comparing these methods was presented, indicating that none of the mentioned 

approaches were able to contemplate all aspects evaluated (start point, incompletely 

specified function, multiple solutions, multiple objective, logic sharing). The method 

proposed in this work associate two of the presented methods (functional composition + 



 

 

 

AIGs), being able to present the qualities expressed by the previously mentioned 

aspects. 

Since the proposed method employs as data structure a pair containing a truth 

table and an AIG, using the truth table as index of the functions, it does not depends on 

the initial description of the target function (start point). On the other hand, since the 

AIGs are not a canonical structure, it is possible to generate different AIGs for the same 

function, allowing the system to retrieve multiple solutions for the same target function, 

being the selection of the most appropriate solution performed by means of a cost 

function. The proposed algorithm combines sub-functions (both the truth table and the 

AIG elements of the structure) in order to reach the target function. This combination is 

performed applying the “AND” and the “OR” operators. During the construction, it is 

possible to evaluate if a given solution has already implemented the same sub-function 

with a smaller cost, and, therefore, eliminate the more expensive result. This bottom up 

approach allows the system to control the characteristics of the resulting graph by 

controlling the creation of the sub-graphs. Results have shown that the proposed method 

reduces in around 5% the number of nodes for simple functions (up to four variables), 

when compared to performing a factorization over an input equation and then building 

an AIG. For read-once functions, it was shown that the algorithm is able to produce the 

best solution available, as in the prior factoring algorithm proposed by (MARTINS 

2010). 

This work has also discussed the possible metrics for evaluating the resulting 

graphs and determining the cost of each solution. This cost is associated to the number 

of nodes of an AIG (which presents a better correlation with the resulting area of the 

circuit than the number of literals in an equation) and the association of graph height 

with paths delay. Logic depth results have shown that the algorithm is very effective in 

taking secondary criteria into account. The proposed method, when compared to the 

equation composition followed by FRAIG algorithm, presented an average decrease of 

16% in the graph height (critical path length).  

Another feature presented by the proposed algorithm is the possibility of 

considering different initial costs for the function variables, which may be used to 

represent the different arrival times of signals in a circuit and, therefore, that a given 

input (or inputs) must be favored in detriment of other(s). Results have shown that 

disregarding the arrival time costs may increase the average resulting logical depth in 

around 6.5 %. 

Moreover, an approach for handling multiple output functions during the 

function composition is proposed, presenting good results, especially if compared to 

handling each input separately. A post processing algorithm for duplicating logic in case 

of extremely large node fanouts makes the circuits resulting from this approach feasible. 

The logic sharing among the functions may provide an area gain of over 8%, when 

processing 2 functions at once (and over 16% if processing 4 functions at once) instead 

of handling each function at a time. 

Finally, since the proposed algorithm still presents a deficit in terms of 

performance, a disjoint effort approach was presented. This approach separates the sub-

functions in smaller, larger or not comparable with the target function, associating the 

smaller ones only with the “OR” operator and the larger ones only with the “AND” 

operator. This leads to a significant reduction in the number of operations (around 

15%), and increasing by only 1.5% the average number of nodes. We have knowledge 
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that this does not affect quality in single equation factoring (REIS 2009, MARTINS 

2010), where sharing is not allowed. However in the current implementation based on 

AIGs, the final quality is being negatively affected and we have to investigate if this is 

intrinsic to logic sharing and cannot be solved or if it is only an implementation issue 

that can be fixed with a more careful ordering of the buckets taking sharing into 

account. 

As future works, we indent to further improve the performance of the algorithm, 

since it is known that there are many possible enhancements in the implementation. It is 

also intended to explore other possible algorithmic enhancements, such as the one 

presented as “disjoint effort level” in this work. Moreover, the possibilities for handling 

multiple outputs may be further explored, especially in what concerns optimizing the 

target functions at the same time, trying to enhance the reuse of logic, since a sub-

function may not be the best solution for none of the target functions, but, when 

evaluating all functions together, may present the better cost.  
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APPENDIX    SÍNTESE LÓGICA INDEPENDENTE DE 

TECNOLOGIA VISANDO MÚLTIPLOS OBJETIVOS, 

APLICADA A FUNÇÕES DE MÚLTIPLAS SAÍDAS, 

EMPREGANDO COMPOSIÇÃO FUNCIONAL DE AIGS  

O emprego de ferramentas de automação de projetos de circuitos integrados 

permite cada vez mais que projetos complexos atingissem time-to-market e custos de 

produção factíveis. Uma das abordagens de projeto mais freqüentemente adotadas no 

desenvolvimento de circuitos integrados de aplicação especifica (ASIC) é o projeto 

baseado em biblioteca de células, também conhecido como standard cell. Este fluxo de 

projeto consiste em compor o circuito pela associação de instancias de células presentes 

em um conjunto pré-definido. Esta abordagem leva a uma redução do tempo de projeto 

uma vez que as células são construídas uma só vez e são replicadas muitas vezes em um 

mesmo projeto e mesmo em diferentes projetos. 

Um fluxo de projeto baseado em biblioteca de células consiste em uma 

sequência de passos que partem de uma descrição abstrata do circuito e culminam no 

circuito completo, apresentando todos os seus elementos bem especificados, 

posicionados e roteados. Este fluxo pode ser dividido em dois blocos: síntese lógica e 

síntese física. A síntese lógica é responsável pela otimização da descrição original do 

circuito e pela seleção das células mais apropriadas para descrevê-lo. A síntese física é 

responsável pelo posicionamento das células e o roteamento de suas interconexões no 

circuito. 

A síntese lógica é um processo para geração de uma implementação de um 

design a partir de uma descrição abstrata (tipicamente uma descrição estrutural ou em 

RTL). Esta descrição abstrada deve prover as informações a respeito do comportamento 

lógico esperado do circuito a ser sintetizado.  

Em geral, o algoritmo de síntese lógica se divide em duas etapas, uma delas 

executada sobre uma descrição lógica do circuito (independente de qualquer 

propriedade física) e outra em que a lógica resultante da etapa anterior é mapeada na 

biblioteca de células ou em outra implementação física. A primeira etapa é conhecida 

como independente de tecnologia e a segunda como dependente de tecnologia. 

Esta primeira etapa, dita independente de tecnologia, pode ser tanto uma 

abordagem em dois níveis quanto uma abordagem multi-nivel. A abordagem em dois 

níveis consiste em representar a função como uma SOP ou POS, o que significa dizer 

que o primeiro nível contém os termos produto e o segundo nível os termos soma (no 

caso da POS, o primeiro nível contem os termos soma e o segundo nível os termos 



 

 

 

produto). Algumas inversões podem ser necessárias nas entradas dos termos do 

primeiro nível.  

Por sua vez, a abordagem multi-nível, em geral, é composta de diversar 

operações lógicas, tais como decomposição, extração, fatoração, substituiçao e 

eliminação (HACHTEL, 1996). Estas operações podem ser tanto explícitas 

(SENTOVICH, 1992) ou implicitas, como na ferramenta ABC (BERKELEY 2010). O 

resultado do passo independente de tecnologia é uma descrição abstrata melhorada.  

 A síntese independente de tecnologia consiste em gerar uma representação de 

um dado circuito com um custo otimizado, estimado independentemente de aspectos da 

tecnologia. Este custo pode ser relacionado com o número de literais em uma equação 

ou com o número de nodos de uma TANT (LEE 1978, PERKOWSKI 1990), de um 

BDD (YANG, 1999 – VEMURI, 2002) ou de um AIG (KUEHLMANN, 2002, 

MISHCHENKO 2005, FIGUEIRO 2010). Na ferramenta SIS (SENTOVICH 1992), o 

custo do passo independente de tecnologia é baseado no número de literais de uma 

equação. Em ferramentas mais recentes, como o ABC (BERKELEY 2010), o custo é 

baseado em número de nodos de um AIG. 

A segunda etapa do fluxo de síntese lógica, dita dependente de tecnologia, 

utiliza a descrição aprimorada oriunda da etapa anterior a fim de construir um DAG (se 

este já não lhe é fornecido) e realizar o mapeamento tecnológico sobre esse grafo. O 

resultado desta etapa (e consequentemente, da síntese lógica como um todo) é um 

circuito descrito como uma rede de portas lógicas selecionadas dentre as disponíveis em 

uma biblioteca de células e a informação de como essas portas devem ser interligadas.  

Durante muitos anos, o passo independente de tecnologia foi executado através 

de algoritmos de fatoração de equações. Diversas heuristicas foram propostas para a 

fatoração e algumas delas atingiram alto sucesso comercial. Dentre estas se inclui o 

algoritmo quick_factor (QF) e o good_factor (GF), ambos disponíveis na ferramenta 

SIS. A maioria dos algoritmos de fatoração propostos para o passo independente de 

tecnologia da síntese lógica recebem como entrada uma soma de produtos (SOP). Neste 

caso, o processo de fatoração não é completamente otimizado (não é exato, pois 

depende de como os don´t cares foram tratados na criação da SOP).  

Recentemente, métodos de fatoração que produzem resultados exatos para 

funções que possam ser representadas sem repetição de literais (funções read-once) 

foram propostos (GOLUMBIC, 2001) e melhorados (GOLUMBIC 2008). Contudo, o 

algoritmo proposto nestes trabalhos (IROF) é restrito a funções read-once, o que limita 

sua aplicação em projetos reais mais complexos. 

Uma nova abordagem baseada na composição de funções foi apresentada em 

(REIS, 2009). O algoritmo apresentado opera por combinação de equações de uma 

maneira bottom-up, até gerar a equação que representa a função alvo. Outra abordagem 

é o emprego de diagramas de decisão binária (BDDs) para realizar as otimizações 

independentes de tecnologia. A vantagem desse método está principalmente na 

existencia de métodos bem conhecidos para lidar com BDDs e o fato de BDDs não 

dependerem de como a função de entrada foi descrita. Contudo, o processo de 

mapeamento de circuitos sobre BDDs é muito mais complexo do que sobre outras 

estruturas de grafos acíclios dirigidos (DAGs).  

Three-level And-Not Networks (TANTs) também foram consideradas como uma 

alternativa para a fatoração a fim de se realizar otimizações independentes de 
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tecnologia. As principais vantagens das TANTs são: a possíbilidade de se obter 

compartilhamento de lógica e; sua estrutura independe da descrição de entrada da 

função. Entretando, TANTs não são apropriadas para a maioria das implementações que 

visam otimizar mais de um objetivo (como, por exemplo, buscar melhorar a área do 

circuito juntamente com o atraso de propagação, etc.) e as características de um grafo 

TANT não se refletem tão diretamente no circuito mapeado, em especial pelo grande 

fan-in que alguns de seus nodos constumam apresentar. 

 Os algoritmos de fatoração apresentados em (GOLUMBIC, 1999; REIS, 2009) 

não incluem reuso de sub-expressões. O reuso de sub-expressões faz com que 

representação multi-nível, como TANT (LEE, 1978), sejam mais competitivas que 

expressões de dois níveis (MISCHENKO, 2003). As propriedades de reuso de sub-

expressões presentes nas representações multi-nível levam a um outro emprego 

interessante destes métodos, que é a síntese que funções com multiplas saídas. O 

suporte a multiplas saídas viabiliza o compartilhamento de lógica entre as saídas (no 

lugar de tratá-las como funções independentes), melhorando aspectos temporais e de 

consumo através da redução da área do circuito. 

O desenvolvimento de novos algoritmos multi-nível pendeu recentemente para o 

emprego de AIGs (MISHCHENKO, 2006). AIGs são grafos acíclicos dirigidos que são 

compostos exclusivamente de ANDs de duas entradas e inversores. Os inversores 

costumam ser representados como um indicador especial nos arcos do grafo, e, portanto, 

todos os nodos do grafo representam portas AND. AIGs são outra maneira multi-nível 

de representar uma função Booleana. Seu tempo de construção e seu tamanho são 

proporcionais ao tamanho do circuito final. As características dos AIGs estão 

fortemente ligadas as características do circuito final. Por estas razões os algoritmos 

mais recentes de síntese lógica empregam AIGs no seu funcionamento. 

Uma abordagem para a obtenção de AIGs otimizados é a construção de um AIG 

inicial que represente a função alvo e seu posterior aprimoramento através de técnicas 

de reescrita (AIG rewriting) (MISHCHENKO 2006, BRUMMAYER 2006). Uma 

técnica de reescrita corrente é a implementação de um algoritmo guloso que reduz o 

tamanho do AIG através de buscas iterativas por subgrafos que são substituidos por 

equivalentes reduzidos pré-computados. A técnica de reescrita apresentada por  

(MISHCHENKO 2006) extende o trabalho de (BJESSE 2004), ao restringir a reescrita 

para preservar o número de níveis lógicos e ao balancear os AIGs pelo emprego de 

técnicas algébricas de redução de altura de árvores. 

Outra abordagem disponível para melhorar AIGs é conhecida como Functional 

Reduced And-Inverter Graph (FRAIG) (MISHCHENKO 2005). Ela está disponível na 

ferramenta ABC e pode ser usada para gerar o primeiro AIG antes dos procesimentos de 

reescrita. A técnica FRAIG consiste em um método para a contrução de AIGs a partir 

de uma forma fatorada de uma equação Booleana. O algoritmo emprega uma tabela 

hash estrutural para garantir que  nodos equivalentes não sejam replicados. Desta forma, 

pode realizar melhorias em um nível (considerando permutação das entradas) ou em 

dois níveis (considerando permutação de nodos) (KUEHLMANN, 2002). O segundo 

passo realiza a detecção de equivalências funcionais por meio de um avaliador de 

satisfabilidade (SAT solver). O AIG resultante é consideravelmente reduzido (se 

comparado com o procedimento convencional) sem penalizar a performance, uma vez 

que as otimização são realizadas em tempo de construção. Além disso, FRAIGs dão ao 



 

 

 

AIG uma forma semi-canonica, uma vez que diversas equivalências são detectadas e 

traduzidas para o mesmo AIG. 

Nos últimos anos, portanto, foi demonstrado que AIGs são uma estrutura 

conveniente para emprego em algoritmos de síntese lógica. Isto se deve a alta 

correlação de suas características com as do circuito final (número de nodos se 

aproxima da área e altura do grafo se aproxima da complexidade do caminho crítico) 

(MISHCHENKO, 2006).  Contudo, ainda existe espaço para melhorias em termos de 

área com algoritmos baseados em AIGs (JOSWIAK, 2008). Neste contexto, existe a 

necessidade de um algoritmo Booleano para reescrita de AIGs. 

O objetivo deste trabalho é apresentar um método para realizar a síntese lógica 

independente de tecnologia pelo emprego de AIGs, os associando ao novo paradigma de 

síntese lógica conhecido como functional composition (REIS, 2009). O método é 

baseado na combinação de AIGs de funções mais simples a fim de obter AIGs de 

funções mais complexas até que a função alvo seja gerada. As funções são 

representadas como pares compostos de uma tabela verdade (representada como 

inteiros) e um nodo AIG que é a raiz da árvore que representa a função associada. A 

composição de funções é feita através das operações AND e OR, tanto entre as tabelas 

verdade quanto entre os grafos AIG. Essas duas operações são rápidas pois a associação 

entre AIGs se trata apenas de acrescentar um nodo associando os dois grafos anteriores 

e a associação entre tabelas verdade são operações lógicas entre os inteiros que 

representam seus vetores de saída.  

A tabela verdade é representada basicamente pelo seu vetor de saída e pela lista 

de variáveis na ordem em que aparecem na tabela (neste trabalho todas as tabelas 

verdades tem suas entradas ordenadas lexicograficamente). O AIG consiste basicamente 

de dois ponteiros para outros nodos AIGs e uma string para guardar o nome da variável 

associada (para os nodos folha). Os arcos contém a indicação se são inversores ou não. 

A operação OR é realizada con o mesmo nodo AND (não existe outro disponível em um 

AIG) a partir de uma equivalencia por DeMorgan (A+B é equivalente a !(!A*!B)). 

 O algoritmo proposto é composto de três passos. O primeiro consiste em 

construir um conjunto de funções permitidas, a fim de reduzir o espaço de soluções. O 

segundo consiste em criar as funções de uma única variável, que serão usadas como as 

sementes para a associação bottom-up das funções. Por fim, o terceiro passo consiste em 

combinar as funções iniciais, pela aplicação dos operadores AND e OR, até que a 

função alvo seja encontrada. Neste passo, só são consideradas as funções intermediárias 

geradas que estejam presentes na lista de funções permitidas. 

 No terceiro passo do algoritmo apresentado, uma função custo é usada a fim de 

avaliar qual das soluções obtidas apresenta o melhor resultado. A solução escolhida será 

armazenada para as próximas iterações. A função custo pode considerar diversos 

aspectos do AIG. Neste trabalho foi empregado o número de nodos como critério 

principal e a profundidade do grafo como critério secundário. 

 Uma técnica para suporte a múltiplas saídas (funções de multiplas saídas) 

também é apresentada neste trabalho. A estratégia consiste em processar uma saída de 

cada vez e, a cada nova saída, considerar disponíveis para reuso as estruturas geradas 

pelas anteriores. Assim, o custo relativo ao número de nodos é computado apenas uma 

vez, sendo visto como zero para os reusos pelas demais funções (o custo em termos de 
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profundidade do grafo é preservado, pois este será associado de maneira independente 

ao atraso de cada saída).  

 Devido a complexidade dos projetos de circuitos integrados, dificilmente um 

algoritmo de síntese é utilizado para otimizar um circuito completo. Assim, em geral, a 

otimização é realizada por blocos, e a união desses blocos gera a síntese completa do 

circuito. Como diferentes sinais, oriundos de diferentes blocos predecessores, podem 

apresentar características muito distintas, é interessante que um algoritmo de síntese 

seja capaz de lidar com estimativas de diferentes atrasos dos sinais. Por exemplo, neste 

trabalho, um AIG balanceado é apropriado para quando todos os sinais de entrada 

apresentam tempos de chegada próximos. Contudo, no caso de algum sinal apresentar 

um atraso muito maior que os demais, esta entrada deve ser favorecida, a fim de que o 

novo bloco apresente um melhor atraso. Portanto, o método proposto é capaz de 

receber, além da função alvo, uma lista de pesos para os sinais de entrada e é capaz de 

considerar essa informação em tempo de construção do AIG final. 

A abordagem consiste, portanto, em construir o AIG que representa a função 

alvo a partir da associação de AIGs mais simples, em uma estratégia bottom-up. O 

método controla as características dos grafos construídos (tanto o final quanto os 

intermediários) através de uma função custo que avalia a qualidade dos AIGs (esta 

função emprega o número de nodos como critério principal e a altura do grafo como 

critério segundário de avaliação). Este trabalho também discute a possibilidade de 

considerar um custo inicial para as variáveis de entrada da função, o que pode ser usado 

para representar diferentes tempos de chegada desses sinais (oriundos de outros 

circuitos) e, assim, utilizar essa informação para favorecer temporalmente algumas 

entradas em detrimento de outras. Além disso, uma abordagem para tratar funções com 

multiplas saídas é apresentada, propiciando o compartilhamento de lógica entre as 

saídas e, assim, reduzindo o número de nodos necessários para descrevê-la. Um 

algoritmo de pós-processamento para duplicação de lógica em caso de nodos com fan-

out muito grandes é empregado para preservar a correlação das características do grafo 

com as do circuito resultante. 

Uma vez que o método proposto emprega como estrutura de dados um par 

contendo uma tabela verdade e um AIG, ele é independente da descrição da função 

alvo. Por outro lado, uma vez que os AIGs não são canônicos, é possível gerar 

diferentes soluções para posterior avaliação através de uma função custo. Esta avaliação 

é feita em tempo de construção, não sendo honerosa ao algoritmo uma vez que apenas a 

sub-função com melhor custo é mantida para as etapas posteriores. Os resultados 

mostram uma redução de 5% no número de nodos de uma única função se comparado 

ao resultado da ferramenta ABC (fatoração da equação seguida da construção de um 

FRAIG). 

Este trabalho discute as métricas possiveis para avaliar os grafos resultantes e 

determiner o custo de cada solução. O custo é avaliado pelo número de nodos do AIG e 

sua associação com a área resultante do circuito e pela altura do grafo e sua associação 

com o atraso dos caminhos críticos. As alturas dos grafos resultantes demonstram que o 

algoritmo é bem sucedido ao levar este segundo critério em consideração. O método 

proposto, quando comparado com algoritmos de composição de equações (REIS, 2009) 

seguido da construção de FRAIG, apresentou uma redução méria de 16% na altura 

média dos grafos, sem perda em número de nodos. Ao se permitir levar em 

consideração custos distintos nas entradas, foi possível reduzir a profundidade lógica 

média dos circuitos gerados em aproximadamente 6,5%. Os resultados obtidos com a 



 

 

 

abordagem proposta para multiplas saídas são promissores. O compartilhamento de 

lógica ao se tratar duas funções ao mesmo tempo apresentou um ganho de área médio 

de 8% e, ao se tratar quatro funções, de 16%. Finalmente, uma abordagem disjunta foi 

apresentada a fim de melhorar a performance do algoritmo. Esta abordagem serapa as 

funções menores, maiores e não comparáveis com a função alvo. As funções menores 

são associadas somente pelo operador “OR” e as maiores somente pelo operador 

“AND”. Esta abordagem reduz em média 15% o número de operações necessárias, 

aumentando em menos de 1,5% o número de nodos no grafo final.  
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ANNEX DESCRIPTION OF THE CLASSES AND CLASS 

DIAGRAM OF THE PROPOSED METHOD  

The proposed method was implemented in C++, using an object oriented 

programming paradigm. The class diagram presenting the implemented classes, their 

relation and the most relevant methods is presented in Figure 1.  In this description, both 

the class diagram and the classes description omits the sets and gets methods for 

simplicity.  

Function_Composer class 

This is the main class of the system, which must be instantiated in any program that 

wish to use the method described in this work. All the configuration concerning the way 

the algorithm works is selected in this class.  

Attributes: 

map<string, int> allowed_subfunctions: A list of all sub-functions that may be 

generated for implementing a given function. This list was implemented as a map in 

order to improve the searching time, since it is just built once and consulted several 

times. 

map<string, double> already_generated: Indicates all solutions that were already 

generated in any bucket already processed by the function_composer object, using as 

key the truth table converted to a string and as element the current cost, in order to use a 

fast comparison. 

map<string, double> variable_weight: Stores all input variable weights. This 

information is used through the algorithm in order to determine the cost of every 

evaluatd solution. 

int effort_level: Indicates the effort level code for running the algorithm. 

Methods: 

bucket_element compose_function(string equation): performs the composition of 

the function. It is the main method of this application, calling all the internal methods 

that calculate the allowed functions and coordinating the buckets construction. 

vector<bucket_element> compose_multiple_functions (vector<string> equation): 

Method implemented to handle multiple functions at a time. It uses the compose 

function and handles the data of logic sharing between functions. 

 



 

 

 

 

Figure 1. Class diagram of the implemented algorithm. 

 

AIG_Manager class 

This class is responsible to handle the information common to all nodes of an AIG. 

Moreover, it builds the nodes and it keeps record of all available nodes to be 

instantiated and reused. 

Attributes: 

vector<aig_nodes> avail_nodes: Points to all nodes already created by the system 

that may be instantiated during the composition process. 

Methods: 

integer get_max_fanout(aig_node node): evaluates all the graph from the node 

given as parameter and retrieves the maximum fanout of the nodes of the subgraph. 

integer count_nodes_on_graph(aig_node node): counts all nodes that are 

connected in the graph, using as root the node given as parameter.  
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aig_node build_node(string equation): all AIG nodes necessary to represent the 

function described by the equation provided as parameter and retrieves the root node of 

the graph.  

aig_node build_node(parse_tree pt): builds all AIG nodes necessary to represent 

the function described by the parse_tree provided as parameter and retrieves the root 

node of the graph. 

aig_node add_variable(string variable): adds to the manager an AIG node 

representing the variable whose name is given as parameter.  

 

AIG_Node class 

This is the class responsible for storing all information pertinent to the nodes of an 

AIG. It also performs the composition of nodes using either AND or OR operations. 

Attributes: 

aig_node input1: One of the inputs of the node. It is always another AIG node since 

literals are considered a special case of an AIG node. 

aig_node input2: Other of the inputs of the node. It is always another AIG node 

since literals are considered a special case of an AIG node. 

bool input1_negated: Indicates the input1 is negated or not. 

bool input2_negated: Indicates the input2 is negated or not. 

string id: Identifier for an AIG node. In case the node is just a literal, it is the literal 

itself. 

Methods: 

integer get_logic_level(): returns the logic level (distance – in depth – of the more 

distant input) of the node. 

integer get_fanout(): returns the fanout of the node, which is the number of 

elements that have it as a child node. 

aig_node AND(aig_node node): performs the AND operation between a node given 

as parameter and the node itself. It creates and retrieves a new node, which has this 

node and the node given as parameter as child nodes. 

aig_node OR(aig_node node): performs the OR operation between a node given as 

parameter and the node itself. It creates and retrieves a new node, which has this node 

and the node given as parameter as child nodes. It also performs the handling of the 

negation of the graph edges since it builds the OR operation using the AND node and 

negating the inputs and output by applying the DeMorgan law. 

bool is_equal(aig_node node): compares two AIGs from the roots (one is the aig 

node itself and the other is the node provided as parameter) and returns if the complete 

graph is equal or not.  

 

 



 

 

 

Truth_Table class 

This class stands for the truth tables of the system. It presents the output vector of 

the function it implements, it variables and the variable ordering of the vector. 

Attributes: 

vector<int> table: Output vector of the truth table. Each integer may represent from 

32 to 64 bits of the truth table (depending of the system architecture).  

vector<string> variables: The variables present in the function implemented by the 

truth table, in the same order that they appear on the table. 

Methods: 

truth_table(string equation): builds the truth table of the function described by the 

equation provided as parameter. 

truth_table(truth_table tt): builds the truth table as a copy of the truth table 

provided as parameter. 

void invert(): inverts all bits of the truth table output vector. 

bool is_smaller(truth_table tt): compares two truth tables and returns if the truth 

table is smaller than the one provided as parameter. 

bool is_comparable(truth_table tt): evaluates two truth tables and returns if they are 

comparable or not (being comparable is having the same number of bits and the same 

variables). 

bool is_equal(truth_table tt): compares two truth tables and returns if they are equal 

or not. 

truth_table AND(truth_table tt): performs the AND operation between a truth table 

given as parameter and the truth table itself. It creates and retrieves a new truth table. 

truth_table OR(truth_table tt): performs the OR operation between a truth table 

given as parameter and the truth table itself. It creates and retrieves a new truth table. 

 

Parse_Tree class 

This class is used to support functions described as equations. It handles an input 

equation and is used by the truth table class constructor when it receives an equation as 

input. 

Attributes: 

string literal: In cases where the parse tree is only one literal, the literal value is 

stored in this attribute. In other cases, this attribute is empty. 

vector<parse_tree> operands: Vector containing one or two operands of this level 

of the parse tree (depending of the operation). These operands are also parse trees which 

allow the multi-level parse trees to be supported. The two operands are associated by 

the operation specified in the operator attribute. 

operator_type operator: Indicates de operator used to associate the two operands of 

this parse tree root. Valid operators are “INV”, “AND” and “OR”. 
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Methods: 

parse_tree(string equation): performs the parsing of the equation provided as 

parameter and builds the parse tree. 

integer count_literals(): returns the number of literals present in the parse tree.  

integer count_variables(): returns the number of variables present in the parse tree. 

integer get_tree_height(): returns the height of the parse tree. 

vector<string> get_variables(): retrieves all variables present in the parse tree. 

 

Bucket class 

This class is responsible for handling all intermediate functions, grouping them 

according to their specific characteristics and combining them in order to generate new 

buckets. 

Attributes: 

bool using_low_effort: Indicates if the algorithm is running in disjoint effort level. 

map<string, bucket_element> larger_elements: Stores all elements generated 

during this bucket construction which are larger then the target function. 

map<string, bucket_element> smaller_elements: Stores all elements generated 

during this bucket construction which are smaller then the target function. 

map<string, bucket_element> other_elements: Stores all elements generated during 

this bucket construction which are not comparable to the target function. 

Methods: 

void add_bucket_element(bucket_element element): adds an element to the bucket. 

When running in disjoint effort mode, it compares the element with the target function 

and stores it in the appropriate vector of elements (larger, smaller or other). When 

running in regular mode, all elements are added to the same vector (other). 

void append_bucket(bucket bkt): adds all elements present in the bucket provided 

as argument to the bucket. 

bool has_function(truth_table tt): searches the elements in the bucket trying to find 

the function provided as a truth table.  

bucket_element get_function(truth_table tt): retrieves the element that corresponds 

to the function represented by the truth table provided as argument. 

void combine_elements_in_bucket(bucket bkt): combines all elements in bucket 

among themselves in order to generate the elements that will be appended to the bucket. 

void combine_elements_in_buckets(bucket bkt1, bucket bkt2): combines all 

elements in bucket 1 with all elements in bucket 2 in order to generate the elements that 

will be appended to the bucket.  

 



 

 

 

Bucket_Element class 

This class stands for the elements that are handled by the bucket class. They 

represent a function and are associated to both a truth table (which is used as a key in a 

hash due to its canonicity) and a function, which may be an AIG (whose construction is 

the main purpose of this application) or an equation (for comparison and test reasons). 

The bucket element objects know how to combine and compare themselves. 

Attributes: 

function func: The function (either described as an AIG or as an equation) which is 

part of the bucket element. 

truth_table tt: The truth table of the function of the bucket element. 

Methods: 

bool is_smaller(bucket_element bkt): compares two bucket elements and returns if 

the bucket element is smaller than the one provided as parameter. 

bool is_comparable(bucket_element bkt): evaluates two bucket elements and 

returns if they are comparable or not (being comparable is having the same number of 

bits and the same variables in the truth table associated to the them). 

bool is_equal(bucket_element bkt): compares two bucket elements and returns if 

they are equal or not. Two bucket elements are considered equal if both their truth 

tables and their function associated (either an equation or an AIG are equal). 

bucket_element AND(bucket_element bkt): performs the AND operation between a 

bucket element given as parameter and the bucket element table itself. It creates and 

retrieves a new bucket element. 

bucket_element OR(bucket_element bkt): performs the OR operation between a 

bucket element given as parameter and the bucket element itself. It creates and retrieves 

a new bucket element. 

bucket_element INV(): inverts the bucket element (inverting all bits of the truth 

table and inverting the function) and retrieves the resulting new bucket element. 

Function class 

This class represents every function of the system. It implements the methods and 

presents the attributes that are common both to the functions represented as AIGs and to 

the functions represented as equations. 

 

Equation_Function class 

This class implements the functions that are represented by equations. It inherits 

from the function class and it may be associated to a bucket element if the system is 

operating over equations (and not AIGs). 

Attributes: 

string equation: string containing the equation of the function. For instance: 

“a+b*c”. 
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Methods: 

double get_cost(): performs the cost estimation of the associated equation (mainly 

building a parse tree and obtaining its characteristics such as depth, number of literals 

and number of variables).  

void invert(): inverts the equation.  

equation_function AND(equation_function func): performs the AND operation 

between a equation function given as parameter and the equation function itself. It 

creates and retrieves an equation function. 

equation_function OR(equation_function func): performs the OR operation between 

a equation function given as parameter and the equation function itself. It creates and 

retrieves a new equation function. 

 

AIG_Function class 

This class implements the functions that are represented by AIGs. It inherits from 

the function class and it is associated both to the AIG manager class (which stores all 

AIG and to the AIG node class, which is the root of the function graph) 

Attributes: 

bool inverted: Flag that indicates if the output of the AIG associated to this object is 

inverted or not. 

AIG_node node: The root node of the AIG associated to this object. 

Methods: 

double get_cost(): performs the cost estimation of the associated AIG.  

bool is_inverted(): returns if the associated AIG output is inverted or not.  

aig_function AND(aig_function func): performs the AND operation between a AIG 

function given as parameter and the AIG function itself. It creates and retrieves a AIG 

function. 

aig_function OR(aig_function func): performs the OR operation between a AIG 

function given as parameter and the AIG function itself. It creates and retrieves a new 

AIG function. 

 

 

 


