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adaptive neighborhood [8]. For the proposed algorithm, it may be pos-
sible to set the parameter ���� �� in a more elaborative way such that
the amplitude of the relative entropy is fully exploited.

APPENDIX

In this Appendix, we present the derivation of (13) and (17). To
derive (13), we assume that ��� � ��� � � � � � ����� � � and
��� � ��� � ����� �� � � � � � ��. Using (6) and (9), we have
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The grayscale-based representation of ��, denoted by � , is given by
�� 	 �� �������. From the above results, we can write
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Therefore, we have
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Equation (13) can now be easily derived from (27).
We now derive (17). From (14), we can write
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 (28)

We note that� 	 ��� �� 	 ���
��� 	�� and ������ 	 ����� �.

Equation (17) can be easily derived from (28) by making the substitu-
tions and using the definition �� �	�� 	 � ���	����.
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Phase-Adaptive Superresolution of Mammographic Images
Using Complex Wavelets
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Abstract—This correspondence describes a new superresolution ap-
proach for enhancing the resolution of mammographic images using
complex wavelet frequency information. This method allows regions of
interest of a mammographic image to be viewed in enhanced resolution
while reducing the patient exposure to radiation. The proposed method
exploits the structural characteristics of breast tissues being imaged and
produces higher resolution mammographic images with sufficient visual
fidelity that fine image details can be discriminated more easily. In our
approach, the superresolution problem is formulated as a constrained
optimization problem using a third-order Markov prior model and adapts
the priors based on the phase variations of the low-resolution mammo-
graphic images. Experimental results indicate the proposed method is
more effective at preserving the visual information when compared with
existing resolution enhancement methods.

Index Terms—Adaptive, mammography, phase, superresolution.

I. INTRODUCTION

Breast cancer is one of the most common types of cancer and is
one of the leading causes of cancer death worldwide. To reduce the
risk of death due to breast cancer, it is important to detect and treat
breast cancer in its early stages. One of the most effective methods for
detecting breast cancer is through the use of mammography, where a
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breast radiograph is acquired and analyzed for possible signs of abnor-
mality, such as the presence of masses and microcalcifications.

Some important factors to consider in digital mammography are
radiation dosage and image quality. It is important to minimize the
patient exposure to radiation. However, low radiation dosage can lead
to low signal-to-noise ratios (SNR), which affects image quality. To
improve SNR, larger detector pixel dimensions can be used but at
the expense of image resolution. Fortunately, the image resolution
can be enhanced by multiframe registration techniques. In particular,
Robinson et al. [7] showed that mammographic images with similar
quality as a single image acquired at a normal dosage of 226 mAs, can
be produced using multiple images at a reduced combined dosage of
169.5 mAs. In this case, a set of spatially shifted low radiation images
are acquired, and a higher resolution image is composed representing
the registered image set. In practice, the image shifts can be obtained
by X-ray tube rotations, or by moving the imaged object with respect
to the X-ray source. Also, in some cases, the shifted images are
acquired by a set of sensors spatially displaced [8]. The key advantage
to this approach is that high-resolution mammographic images can be
obtained by combining lower radiation images. As such, multisource
superresolution reconstruction is a promising algorithmic solution
for obtaining mammographic images with resolutions higher than
can be achieved by the physical radiographic hardware in a single
image at a given dosage, thereby improving the visibility of suspicious
structures. Multisource superresolution reconstruction techniques also
can help avoiding patient discomfort, and additional X-ray exposure,
when suspicious breast structures are re-examined in higher detail,
providing higher quality image scaling than other available methods,
as discussed later in this correspondence.

Given the benefits of image superresolution, several methods
have been proposed for the purpose of enhancing medical images.
Greenspan et al. [1] and Kennedy et al. [2], [3] utilized the iterative
back-projection (IBP) method proposed by Irani et al. [4] to construct
high-resolution magnetic resonance (MR) and positron emission
tomography (PET) images, respectively, from spatially shifted images.
In the IBP approach, an estimate of the high-resolution image is com-
pare with low-resolution image estimates. The differences between the
estimated low-resolution images and the actual low-resolution images
are then used to refine the high-resolution image in an iterative manner.
Hsu et al. [5] proposed to create high-resolution cardiovascular images
using a superresolution method based on projection on convex sets
(POCS) [6]. In the POCS approach, a convex constraint set is set up to
maintain consistency with the low-resolution images. The estimated
high-resolution image is projected onto each constraint within the
convex constraint set until the desired condition is satisfied. Other
super-resolution methods include maximum a posteriori methods
[7], [9], Bayesian methods [10], neural network methods [11], and
wavelet-based methods [12]. One major drawback to existing methods
is that they treat all image content equally from a structural perspec-
tive. This leaves enhancing the visual fidelity of the high-resolution
medical images based on the structural characteristics of the under-
lying image content largely unexplored. This is particularly important
in enhancing mammographic images, where the structural detail of the
breast region being imaged is critical to the early clinical diagnosis of
cancer, improving the chances of success of breast cancer treatments.

The main contribution of this paper is a novel superresolution
method for producing high-resolution mammographic images. The
proposed method is based on complex wavelet phase information and
tunes the high-resolution image for improved detail visibility. In this
paper, the superresolution problem is described in the context of mam-
mographic images in Section II. The proposed method is described
in Section III. Experimental results are presented and discussed in
Section IV. Finally, conclusions are drawn in Section V.

II. PROBLEM FORMULATION

The multisource image superresolution problem can be formulated
in the context of mammographic images as follows. Consider � 2-D
low-resolution mammographic images ��� ��� � � � � �� of size � �� .
Each low-resolution image can be viewed as being acquired from a
single high-resolution source image � of size �� � �� (where �
is the resolution enhancement factor), under various forms of signal
degradation such as decreased sampling, warping, and blurring. Low-
resolution images can undergo different degradations, and a low-reso-
lution image �� is represented in the following matrix-vector form:
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�
� �

�
(1)

where ��
�
�
�

is a ��� � �	 vector representing a low-resolution image
�� lexicographically ordered, ���

�
is a �������	 vector representing

the high-resolution image � lexicographically ordered, �� is a ��� �

���� 	 matrix representing the degradation function for a low-reso-
lution image, and �

�
is a �����	 noise vector added to a low-resolu-

tion image. The degradation function typically is composed of multiple
degradation functions, modeling different types of image degradation
and can be derived based on the characteristics of the imaging device.

The relationship between all � low-resolution images and the high-
resolution image can then be expressed as follows:
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For the sake of simplicity, (2) can be expressed in the following form:

� � ����
�
� � (3)

where � indicates a vector composed of vectors �
�
� �

�
� � � � � �

�
stacked

on top of each other, and � indicates a matrix composed of matrices
������ � � � ��� stacked on top of each other. Using the above rela-
tionship between the low-resolution image and the source high-reso-
lution image, the multisource image superresolution problem can be
formulated as an inverse problem, where a model of the high-resolu-
tion source image � is derived from the observed low-resolution images
��� ��� � � � � ��. This multisource image superresolution problem is un-
derdetermined, and no unique solution exists.

III. PROPOSED METHOD

The proposed method can be briefly described as follows. First, com-
plex wavelet phase information is extracted from the low-resolution
mammographic images. Second, the superresolution problem is for-
mulated as a constrained optimization problem, using a third-order
Markov prior model that is adapted based on phase coherence moments
derived from the complex wavelet phase information. This optimiza-
tion problem can then be solved using an iterative solver.

A. Complex Wavelet Phase Information Extraction

The proposed method has been designed to reconstruct high-resolu-
tion mammographic images, while preserving structural details of these
images so that a better visualization of the patient conditions can be
achieved. Therefore, it is necessary to use a method for measuring the
structural significance of breast features in the individual low-resolu-
tion images, so more of the relevant details are better preserved in the
image reconstruction. A recent approach that has been shown to be par-
ticularly effective in measuring structural significance of image char-
acteristics is the use of complex wavelet phase information [13]–[17].
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A particularly important complex wavelet phase characteristic with re-
spect to structural significance is phase coherence. Such techniques are
based on the postulate that structurally significant signal characteris-
tics occur at points in a signal, where there is maximal phase order
in a frequency domain representation of the signal. Furthermore, local
phase coherence is insensitive to local contrast and intensity variations
in an image, which can be important in the case of mammographic im-
ages. Considering these benefits, local phase coherence is utilized by
the proposed method to measure the significance of features in a mam-
mographic image.

In the proposed method, complex-valued Log–Gabor wavelets [18]
are used to obtain localized frequency information from a low-reso-
lution mammographic image at different scales � and orientations �.
Given an image � , the local amplitude � and phase � at a particular
scale � and orientation � can be determined as follows:

����� �� � ����� � � �
� ����

� � ����� � � �
� ����

� (4)

����� �� � ����� ����� � � �

� ����

����� � � �
� ����

(5)

where � �

� ��� and � �

� ��� are the pair of even-symmetric and odd-sym-
metric Log–Gabor wavelets at scale � and orientation �, and � denotes
the image point ��� 	�. Given amplitude � and phase �, a measure of
local phase coherence at a particular orientation � was proposed by
Morrone et al. [13] as the amplitude-weighted sum of local phase de-
viations �	���� �� across multiple scales relative to the mean phase

���� �� across multiple scales


 ��� �� �
�

����� ���	���� ��

�

����� ��
(6)

where

�	���� �� � �� ����� ��� 
���� �� � (7)

From (6), it can be observed that as the individual wavelet compo-
nents approach maximal phase order, representing maximal structural
significance, the local phase deviation terms �	���� �� approach one
across scales, the amplitude-weighted sum of local phase deviations
approaches the sum of individual amplitudes and the local phase co-
herence measure 
 ��� �� approaches one. As the wavelet components
become maximally out of phase, representing minimal structural sig-
nificance, the local phase deviation terms�	���� �� approach zero and
the local phase coherence measure 
 ��� �� approaches zero. The main
advantage of the aforementioned measure is that it depends primarily
on phase information, thereby largely invariant to the local contrast and
intensity variations found in mammographic images.

Two important issues with the formulation of local phase coherence
proposed by Morrone et al. [13] is that it is sensitive to noise and pro-
vides poor structural feature sensitivity and localization [15]. To ad-
dress these issues, the proposed method utilizes a modified measure of
local phase coherence proposed by Kovesi [15], which improves phase
coherence sensitivity as well as reduces noise sensitivity. To improve
phase coherence sensitivity, it was proposed that the phase deviation

term �	���� �� can instead be formulated based on the fact that when
maximal phase order occurs, the cosine of the phase deviation is large,
and the absolute value of the sine of the phase deviation is small

�	���� �� � �� ����� ��� 
���� ��

� �� ����� ��� 
���� �� � (8)

To further improve phase coherence localization, it was proposed that a
phase coherence weighting function� be introduced across wider fre-
quency spreads. The higher � , the higher the phase coherence across
wider frequency spreads, and the greater is the local structural signifi-
cance [15]. To reduce noise sensitivity, it was proposed by Kovesi [16]
that a noise threshold  be applied to the product of the amplitude ��

and the phase deviation term �	���� ��, for each scale �, to reduce the
effect of noise prior to normalization by the sum of individual ampli-
tudes


 ��� �� � �

� ��� �� ������ ���	���� ���  �

�

����� �� � �
(9)

where � is a small constant to prevent division by zero. The values of
� , �, and  used during testing are the same as those outlined in [16].

Since we wish to obtain a single measure of structural significance
for low-resolution mammographic image features, it is necessary to
combine the local phase coherence information, computed for the dif-
ferent wavelet orientations, in such a way that takes advantage of the
variations in local phase coherence due to orientation. In the proposed
method, a moment analysis approach was used to combine local phase
coherence information. This approach is based on that proposed by
Kovesi et al. [16], as it was shown to provide improved structural fea-
ture localization over existing methods. The second-order moments of
phase coherence are computed to determine a phase coherence covari-
ance matrix � in each image point � [see (10) shown at the bottom of
the page].

The eigenvalues of ���� can then be obtained by eigendecompo-
sition, and corresponds to the squared length of the major and minor
axes of local phase coherence. The maximum complex wavelet phase
coherence moment ���� corresponds to the largest eigenvalue of ����
and was shown to be a good indication of structural significance [16].
Given that ���� is a 2 � 2 matrix, the maximum moment ���� can be
expressed as shown in (11) at the bottom of the next page.

A high value of ���� implies strong structural significance of the
local feature at �, in the low-resolution mammographic image, and
should be well preserved in the reconstructed high-resolution mammo-
graphic image.

B. Constrained Optimization With Phase-Adaptive Prior Model

With the phase-based measure of structural significance of mammo-
graphic image features in place, it is necessary to determine how this
information can be used to enhance the visual fidelity of the high-res-
olution mammographic image. The superresolution problem posed in
(3), can be formulated as an optimization problem as follows:

����� � ������ ����� � 
� (12)
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Fig. 1. ROI from TEST 1: a) low-resolution image, b) bicubic interpolation,
c) IBP method, d) proposed method, and e) reference image.

where ����
�

is a vector representing the estimated high-resolution image
�� lexicographically ordered.

In real-world situations, we often have only a few mammographic
image acquisitions made to limit patient discomfort and radiation expo-
sure. Therefore, the problem described in (12) is under-determined and,
therefore, ill-posed. One method of regularizing this ill-posed problem
is to impose a prior model onto the system, such that a unique solu-
tion can be found. This regularized superresolution problem can be ex-
pressed as follows:

����
�
� ����	
 ����

�
�

��  ����
�

(13)

where � represents the prior constraints. Given this formulation,
we wish to impose a set of prior constraints on the superresolution

TABLE I
PSNR FOR TEST DATA-SETS

Fig. 2. ROI from TEST 2: a) low-resolution image, b) bicubic interpolation,
c) IBPmethod, d) proposed method, and e) reference image.

problem that provides a smooth, unbiased estimation of the high-reso-
lution mammographic image, using the low-resolution mammographic
images without unexpected variations. Using a third-order Markov
model [19], the proposed method imposes second-order thin plate
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Fig. 3. ROI from TEST 3: a) low-resolution image, b) bicubic interpolation,
c) IBP method, d) proposed method, e) reference image.

spline [20] constraints on each point � � ��� ��, which minimizes an
approximate curvature and can be expressed as follows:

�������
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(14)
Based on the aforementioned third-order Markov prior constraints and
discrete approximations of partial derivatives, the prior constraints term
� can be expressed for each point � in matrix form, as follows:

���� �
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� (15)

The central element of the matrix ���� represents �. One effective ap-
proach to enhancing the visual fidelity of the high-resolution mammo-
graphic image is to adapt the prior constraints based on phase coher-
ence characteristics, preserving important structural characteristics of
the breast tissues.

In the proposed method, the third-order Markov prior constraints
imposed at each mammographic image location are adaptively scaled,
based on phase coherence characteristics. This form of scaling allows
fine-grained control over the level of approximation at each point in
the image. As the scaling increases, system conditioning is improved,
while the level of approximation is reduced. As such, the scaling of

prior constraints can be adjusted to either preserve image characteris-
tics by using smaller scalars, or provide a smoother estimate of image
characteristics by using larger scalars. In clinical diagnosis of breast
cancer, we are motivated to reduce scaling to avoid over-smoothing at
image points with high phase coherence. At the same time, it is im-
portant to suppress image degradation and noise in areas of low phase
coherence, avoiding misdiagnosis due to imaging anomalies. As such,
we are motivated to increase scaling to provide a smoother approxima-
tion, and reduce such degradation and noise.

The aforementioned conflicting motivations are accommodated as
follows. At each point of the mammographic image �, the scalar ap-
plied to the third-order Markov prior constraints is determined using a
square root scaling function, which is based on the maximum complex
wavelet phase coherence moments

���� � ���� � ��� 	���� ����� � ����� (16)

where ���� and ���� are the maximum and minimum scalars, and
	��� is the maximum phase coherence moment. It can be observed
from (16) that as the maximum phase coherence moment increases, the
scalar � decreases. This formulation agrees with our motivations as
mammographic features with high structural significance (indicated by
high phase coherence moments) are preserved (by reducing scaling),
and mammographic features with weak structural significance (indi-
cated by low phase coherence moments) are smoothed (by increasing
scaling) to reduce degradation and noise. The square root term in (16)
is designed to decrease the rate of influence of lower magnitudes of
maximum phase coherence moments (representing mammographic
features with weak structural significance), and increase the rate of
influence of higher magnitudes of phase coherence moments (repre-
senting mammographic features with high structural significance). For
testing purposes, ���� and ���� are set to 1.0 and 0.3, respectively.

What this accomplishes is to adaptively adjust the contribution of
information from the low-resolution mammographic images to the re-
construction of the high-resolution mammographic image. In this way,
important structural characteristics of breast tissues are emphasized for
improved visualization. The maximum phase coherence moment used
is extracted from the low-resolution mammographic images used in the
reconstruction process, averaged, and up-sampled to the same resolu-
tion as the estimated high-resolution mammographic image. The prior
constraints associated with each image location is then multiplied by
the calculated scalar ����. The final moment-adaptive prior constraints
� can be defined based on the following expression:
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or in matrix form

���� �

� � ���� � �

� ����� �	���� ����� �

���� �	���� ������ �	���� ����

� ����� �	���� ����� �

� � ���� � �

� (18)

The high-resolution mammographic image is obtained by solving
a phase-adaptive constrained optimization problem, using an iterative
solver such as the LSQR algorithm [21].

IV. EXPERIMENTAL RESULTS

To illustrate the effectiveness of the proposed resolution enhance-
ment method in terms of visual fidelity, the proposed method was tested
using digital mammographic images obtained from the Mammographic
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Fig. 4. ROI from TEST 5: a) low-resolution image, b) bicubic interpolation,
c) IBP method, d) proposed method, and e) reference image.

Image Analysis Society (MIAS) database [23]. The system used to
acquire the mammographic images was a Joyce–Loebl microdensito-
meter SCANDIG-3, with a linear response in the optical density range
0–3.2. Each mammographic image is 8-bit grayscale with a pixel res-
olution of �� �m � �� �m. The test data-sets can be summarized as
follows.

1) TEST 1: MIA database mammogram 002. Background tissue:
fatty-glandular. Class of abnormality: well-defined/circumscribed
masses. Severity of abnormality: benign.

2) TEST 2: MIA database mammogram 145. Background tissue:
dense-glandular. Class of abnormality: spiculated masses.
Severity of abnormality: benign.

3) TEST 3: MIA database mammogram 148. Background tissue:
fatty. Class of abnormality: spiculated masses. Severity of abnor-
mality: malignant.

4) TEST 4: MIA database mammogram 211. Background tissue:
fatty-glandular. Class of abnormality: calcification. Severity of
abnormality: malignant.

5) TEST 5: MIA database mammogram 212. Background tissue:
fatty-glandular. Class of abnormality: calcification. Severity of
abnormality: benign.

Each data-set consists of six low-resolution mammographic
images generated from a reference mammographic image.
To simulate low-resolution and low dosage conditions, each
low-resolution mammographic image is generated by applying
a 4 � 4 average blur, Poisson-distributed noise (to simulate
quantum noise in mammographic images [22]), a spatial shift
(based on the arbitrarily chosen translations ������� �
������� ����� ��� ������ ������ ��� ����������� ����� ����� ������),
as well as a resolution reduction by a factor of 4 with respect to the
reference mammographic image. The underlying goal is to increase
the resolution by a factor of 4 in each dimension. For comparison
purposes, Bicubic interpolation and the iterative back-projection
(IBP) method [4] were evaluated. The IBP method was tested since
it has been used by Greenspan et al. [1] and Kennedy et al. [2],
[3] for medical image superresolution purposes. To evaluate the
performance of the proposed method in a quantitative manner, the
peak-signal-to-noise ratio (PSNR) was computed for the resolution
enhanced images obtained with the tested algorithms, relative to the
reference image used to generate the low-resolution images.

The PSNR results for all the test data-sets are summarized in Table I.
It can be observed that the PSNR values for the mammographic images
generated using the proposed method are noticeably higher than those
produced using the other methods, for all test data-sets. To visualize the
improvements obtained from using the proposed method, regions of in-
terest (ROI) extracted from the high-resolution mammographic images
produced using the evaluated methods for TEST 1, TEST 2, TEST 3,
and TEST 5 are shown in Figs. 1–4, respectively. It is important to
note the images were contrast enhanced through intensity normaliza-
tion to improve visibility of details in the figures. It can be seen that
the proposed method produces high-resolution mammographic images
with noticeably improved visual fidelity compared to other methods,
both quantitatively and visually. In TEST 1, the shape and boundaries
of the calcifications are better defined in the superresolution image ob-
tained with the proposed method. In TEST 2, the nodule boundaries are
difficult to interpret in the high-resolution mammographic image ob-
tained using bicubic interpolation. Both IBP and the proposed method
provide noticeably improved structural detail pertaining to the nodule
boundary, with the proposed method providing improved structural
contrast around the boundary when compared to the IBP method. In
TEST 3, there is a calcification behind dense tissues that is very diffi-
cult to interpret in the high-resolution mammographic image obtained
using bicubic interpolation. Both IBP and the proposed method pro-
vide noticeably improved structural detail pertaining to the calcifica-
tion, with the proposed method providing improved structural contrast
over the IBP method. It can be seen in TEST 5 that both IBP and the
proposed method provide sharper images of the masses compared with
bicubic interpolation. However, the shape, boundaries and structure of
the masses tend to be better defined in the image provided by the pro-
posed method.

V. CONCLUSION

In this paper, we introduced a novel phase-adaptive superreso-
lution approach, designed to facilitate detailed visual screening of
mammographic images. The reconstructed high-resolution mammo-
graphic image can be tuned to preserve and accentuate important
structural characteristics of breast tissues, improving the visibility of
suspicious structures, such as nodule boundaries and calcifications.
The proposed method solves the multisource image superresolution
reconstruction problem using complex wavelet phase information,
and imposing third-order Markov prior constraints. Experimental
results are illustrated using mammographic images from the Mam-
mographic Image Analysis Society (MIAS) database [23], and we
show that improved visual fidelity can be achieved using the proposed
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method when compared to existing techniques. Future work involve
the integration of intensity remapping techniques into the proposed
superresolution method to correct for signal nonhomogeneities in the
acquired mammographic images. Also, we plan on integrating contrast
enhancement to further accentuate structural characteristics in breast
tissues. Furthermore, we plan on evaluating the proposed method for
other types of imaging modalities such as MR and PET against more
superresolution methods.
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