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New Techniques for Improving the Performance
of the Lockstep Architecture for SEEs Mitigation

in FPGA Embedded Processors
F. Abate, L. Sterpone, C. A. Lisboa, L. Carro, and M. Violante

Abstract—The growing availability of embedded processors
inside FPGAs provides unprecedented flexibility for system de-
signers. The use of such devices for space or mission critical
applications, however, is being delayed by the lack of effective low
cost techniques to mitigate radiation induced errors. In this paper
a non invasive approach for the implementation of fault tolerant
systems based on COTS processors embedded in FPGAs, using
lockstep in conjunction with checkpoint and rollback recovery, is
presented. The proposed approach does not require modifications
in the processor architecture or in the application software. The
experimental validation of this approach through fault injection is
described, the corresponding results are discussed, and the addi-
tion of a write history table as a means to reduce the performance
overhead imposed by previous implementations is proposed and
evaluated.

Index Terms—Embedded processors reliability, single event ef-
fects, lockstep, checkpoint, rollback recovery, fault injection.

I. INTRODUCTION

T HE evolution of the technology, providing ever smaller
and faster devices, is at the same time bringing new chal-

lenges to the design of fault tolerant systems. The higher sen-
sitiveness of those new devices to radiation induced transient
faults, a long time concern for space and mission critical appli-
cations, makes the detection and correction of transient errors
also a mandatory issue to be considered even in the design of
general purpose systems used at sea level [1]. Moreover, the ef-
fects of single event transients (SETs) on combinational logic
are now becoming a design concern as important as those of
single event upsets (SEUs) affecting memory devices [2].

In parallel, the increasing availability of field programmable
devices that include commercial off-the-shelf (COTS) processor
cores makes this type of device the ideal platform for several
applications. Their low cost and design flexibility are key fac-
tors to provide competitive products with shorter time to market,
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making them an ideal alternative for the consumer products in-
dustry. However, the effects of radiation on the internal compo-
nents of such devices so far precluded their unrestricted use in
most of space and mission critical applications.

In this class of devices, three different types of components
must be protected against radiation: the configuration memory,
used to define the function to be implemented by the reconfig-
urable logic, the reconfigurable logic itself, and the hardwired
processor cores.

The protection of the configuration bits against SEUs can be
achieved through the use of well known error detection and cor-
rection (EDAC) techniques [3]. More recently, the use of flash
memories has been proposed as an alternative to EDAC. Be-
sides providing lower power consumption, an important feature
for space applications, flash memories are relatively immune to
SEUs and SETs, due to the high amount of charge required to
discharge the floating gate.

As to errors caused by SETs affecting the programmable logic
components, they can be mitigated through the use of spatial re-
dundancy techniques such as triple modular redundancy (TMR).
While this approach implies a high penalty in terms of area and
power consumption, it is so far the best available alternative
for protection of the programmable logic inside SRAM-based
FPGAs [3], [4].

In contrast, the mitigation of errors caused by radiation in-
duced transient faults affecting the internal components of the
embedded processor cores is still an open issue, undergoing in-
tensive research. Despite the fact that the code and data used by
the processors can be protected against radiation effects through
the use of EDAC, after they are read and stored in the internal
memory elements of the processor they are subject to corruption
by radiation induced transients before they are used, leading to
unpredictable results. Furthermore, even when fault tolerance
techniques such as checkpoints are used to periodically save the
system context for future recovery, this corrupted data can be
inadvertently stored within the context, leading to latent errors
that may manifest themselves later, when a recovery procedure
requires the use of this information. Finally, when information
used by the processor to manage the control flow is corrupted,
catastrophic errors can occur, leading the system to irrecover-
able states.

While several hardware and/or software based techniques for
protection of the processor have been proposed in the literature,
most of them cannot be applied for commercial off-the-shelf
processors, for which the access to internal elements of the ar-
chitecture is limited.
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Software-based detection approaches work on faults affecting
the control flow or data used by the program, and also provide
coverage of those faults that affect the memory elements em-
bedded in the processor, such as the processor’s status word,
or temporary registers used by the arithmetic and logic units
[5], [6]. The main benefit stemming from software-based ap-
proaches is that fault detection is obtained only by modifying
the software that runs on the processor, introducing instruction
and information redundancies, and consistency checks among
replicated computations. However, the increased dependability
implies extra memory (for the additional data and instructions)
and performance (due to the replicated computations and the
consistency checks) overheads which may not be acceptable in
some applications.

Hardware-based techniques insert redundant hardware in
the system to make it more robust against single event effects
(SEEs). One proposed approach is to attach special-purpose
hardware modules known as watchdogs to the processor in
order to monitor the control-flow execution, the data accesses
patterns [7], and to perform consistency checks [8], while
letting the software running on the processor mostly untouched.
Although watchdogs have limited impact on the performance
of the hardened system, they may require non-negligible de-
velopment efforts also at the software level, in order to decide
the right amount of processing between each disarming of
the watchdog. For this reason, watchdogs are barely portable
among different processors.

To combine the benefits of software-based approaches with
those of hardware-based ones, a hybrid fault detection solution
was introduced in [9]. This technique combines the adoption of
software techniques in a minimal version, for implementing in-
struction and data redundancy, with the introduction of an Infra-
structure-Intellectual Property (I-IP) attached to the processor,
for running consistency checks. The behavior of the I-IP does
not depend on the application the processor executes, and there-
fore it is widely portable among different applications.

Other researchers explored alternative paths to hardware re-
dundancy, which consisted basically in duplicating the system’s
processor and inserting special monitor modules that check
whether the duplicated processors execute the same operations
[10], [11]. These approaches are particularly appealing in those
cases where processor duplication does not impact severely
the hardware cost. Moreover, since they do not require modi-
fications to the software running on the duplicated processors,
commercial off-the-shelf software components can be hardened
seamlessly.

In the past, the use of checkpoints combined with rollback
recovery as a means to build systems that can tolerate transient
faults has also been proposed, and several studies aiming the im-
plementation of architectures with this approach have been pub-
lished. Among the proposed solutions, some require hardware
support for its implementation, and some depend on software
support, i.e., they imply modifications either in the hardware or
in the software of the system to achieve fault tolerance. A com-
prehensive review of such studies can be found in [12].

This paper describes part of an ongoing research project
aiming to build fault tolerant systems using COTS based

FPGAs without the need to modify the processor’s core archi-
tecture or the main application software. In this work, a new
approach for the use of the lockstep mechanism [11] combined
with checkpoints and rollback to resume the execution of the
application from a safe state is proposed, in which the perfor-
mance overhead imposed by previous solutions is significantly
reduced. The trade-offs between the frequency of checkpoints,
the fault detection latency and the error correction time are
discussed, and the use of an IP module to speed up checkpoints
for applications with large data segments is proposed and
evaluated.

The remainder of the paper is organized as follows: Section II
reviews the basic concepts applied in the proposed implemen-
tation, and Section III describes the details of the resulting ar-
chitecture. Section IV describes the fault injection experiments
conducted to validate the implementation and discusses their re-
sults, while in Section V the modifications aiming to improve
the overall performance of the application are presented and
discussed. Finally, Section VI summarizes the conclusions and
points to future work to be developed in the scope of this re-
search project.

II. LOCKSTEP, CHECKPOINT, AND ROLLBACK RECOVERY

Aiming at detecting errors affecting the operation of the
processor, the lockstep technique uses two identical processors
running in parallel the same application. The processors are
first synchronized to start from the same state and both receive
the same inputs, and therefore the states of the two processors
should be equal at every clock cycle, unless an abnormal
condition occurs. This characteristic of lockstep allows for the
detection of errors affecting one of the processors through the
periodical comparison of the processors’ states. The retrieval
and comparison of processor states, here named consistency
check, is performed after the program has been executed for a
predefined amount of time or whenever a milestone is reached
during program execution (e.g., a value is ready for being
committed to the program user or for being written in memory).
When the states differ, the execution of the application must
be interrupted, and the processors must restart the computation
from a previous error-free state.

To restart the application from its beginning is very expen-
sive in terms of computation time, and sometimes is also not
feasible. In order to avoid that, checkpoints are used in conjunc-
tion with lockstep to keep a copy of the last error-free state in a
safe storage. With this purpose, whenever a consistency check
shows that the states of the processors are equal, a copy of all in-
formation required to restore the processors to that state when an
error is detected is saved in a storage device which is protected
against soft errors or that allows the detection and correction of
those errors when they occur. This set of information is usu-
ally named context, and encompasses all information required
to univocally define the state of the processor-based system (it
can include the contents of the processor’s registers, the pro-
gram counter, the cache, the main memory, etc.).

If the consistency check fails, i.e., the states of the two pro-
cessors are different, an operation named rollback must be per-
formed to return both processors to a previous error-free state.
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Fig. 1. Flow chart of rollback recovery using checkpoint.

Fig. 2. Example of execution of rollback recovery using checkpoint.

This is done by retrieving the most recent context saved during a
previous checkpoint and using it to restore the processors to that
state, from which the execution of the application is resumed.

The flowchart of the above described technique is depicted in
Fig. 1. When a rollback is performed, the computation executed
since the last checkpoint until the moment when the consistency
check was executed must be repeated.

Fig. 2 shows an example of application execution flow using
the lockstep technique combined with checkpoint and rollback
recovery. The arrow on the left indicates the timeline (T).

Initially, processor 1 executes one portion of the application
until it reaches a predefined point. The context of processor 1 at
this point is A1. Then, processor 2 executes the same portion
of the application, reaching the same point with context A2.
When both processors reached the same predefined point, their
contexts are compared and, if they are equal, a checkpoint is
performed, saving the states of the two processors in a soft error
tolerant memory.

Next, the execution of the application is resumed, with pro-
cessor 1 performing another portion of the code until it reaches
a second predefined point, with context B1, and then processor
2 executes the same portion of the application, stopping at the
same second predefined point, with context B2. At this point a
new consistency check is done and, if no error occurred, a new
checkpoint is performed, saving contexts B1 and B2, and so on,

until the whole application has been successfully executed by
both processors.

Now, let us suppose that, as shown in Fig. 2, one SEU occurs
and causes one error while processor 2 is processing the second
portion of the application code. In this case, when it reaches the
second predefined point and the consistency check is performed,
the state of processor 2 is X2, instead of B2, which indicates that
one error occurred and that, as a consequence, a rollback must
be performed.

The rollback operation, then, restores both processors to their
last error-free states using the information saved during the last
checkpoint performed by the system, i.e., contexts A1 and A2,
respectively. The execution of the application is then resumed
as previously described, with processor 1 and then processor 2
executing, one at a time, the same portion of the application that
was affected by the error, and if no other error occurs the proces-
sors finally reach the correct states B1 and B2 and a new con-
sistency check is performed, saving contexts B1 and B2. This
way, the error caused by the SEU has been detected during the
consistency check, and corrected by the repeated execution of
the code segment in which the error has occurred.

While the techniques used in this approach are apparently
simple, their implementation is not trivial, demanding the
careful consideration of several issues.

A particularly critical aspect is the criteria to be used when
defining at which points the application should be interrupted
and a consistency check performed, since it can severely impact
the performance of the system, the error detection latency, as
well as the time required to recover from an erroneous state.
Clearly, checking and saving the states of both processors at
every cycle of execution provides the shortest fault detection
and error recovery times. However, this imposes unacceptable
performance penalties to any application. In contrast, long inter-
vals between consecutive checkpoints may lead to catastrophic
consequences due to the error propagation in systems where the
results produced by one module are forwarded to other mod-
ules for further processing, as well as to the loss of deadlines in
real-time applications when one error occurs. Therefore, a suit-
able trade-off between the frequency of checkpoints, error de-
tection latency and recovery time must be established, according
to the characteristics of the application, and taking into account
the implementation cost of the consistency check as well.

A second issue is the definition of the consistency check pro-
cedure to be adopted. Considering that the consistency check
aims to detect the occurrence of faults affecting the correct op-
eration of the system, the consistency check method plays an
important role in the achievement of the fault tolerance capa-
bilities of the system. The optimal balance between maximum
fault detection capability and minimum consistency check im-
plementation cost must be pursued.

In the definition of the context of the processors, designers
must identify the minimum set of information that is necessary
to allow the system to be restored to an error-free state when
a fault is detected. The amount of data to be saved affects the
time required to perform checkpoints and also to rollback when
one error is detected. Therefore, in order to provide lower per-
formance overhead during normal operation, as well as faster
recovery when an error occurs, the minimum transfer time for
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those operations must be pursued, together with a low imple-
mentation cost.

The storage device used to save the context data must be im-
mune to the type of faults that the system tolerates, in order to
ensure that the information used to restore the processors to a
previous state when one error is detected has been also pre-
served from such faults between the checkpoint and rollback
operations.

Finally, the most efficient methods should be used to develop
the checkpoint and rollback procedures, since they require ac-
cess to all the memory elements containing the context of the
processors, and have to be performed every time a checkpoint
must be stored, after a successful consistency check, or a roll-
back must be performed to load an error-free context into the
processors, when one error is detected by the consistency check.
Depending on the definition of the context, the frequency of
consistency check execution, as well as the error rate, check-
point/rollback operations may be performed very frequently,
and therefore the time spent while moving data to and from the
processor must be minimized.

III. THE PROPOSED IMPLEMENTATION

The implementation of synchronized lockstep combined with
checkpoints and rollback recovery presented in this paper was
inspired in the approaches proposed in [10] and [11], and it
is an extension of the implementation presented in [13]. It has
been conceived to harden processor cores embedded in FPGA
devices against soft errors affecting the internal memory ele-
ments of the processors, and has been initially implemented
using a Xilinx Virtex II Pro FPGA, which embeds two 32-bit
IBM Power PC 405 hard processor cores. However, the ap-
proach is general and it can be extended to different FPGA de-
vices with two embedded processors (e.g., the Actel devices
with embedded ARM processors).

In the following subsections, we describe the adopted solu-
tions for the aforementioned main issues.

A. Consistency Check Implementation

Due to the availability of two processor cores in the devices
used for the implementation, processor duplication with output
comparison was adopted to implement the consistency check.
The developed approach uses two processors running the same
application software. Considering that the processors are syn-
chronized, and executing the very same software, they are ex-
pected to perform exactly the same operations. By observing the
information travelling to and from the processor it is therefore
possible to identify fault-induced misbehaviors.

The consistency check is performed every time the two pro-
cessors perform a write cycle, i.e., every time they send infor-
mation to the memory. The control bus is monitored to detect
when each processor is issuing a write operation. The proces-
sors run alternately in a hand shake fashion: one processor exe-
cutes the software until a write instruction occurs; it then stops
the execution, and waits for the second processor to execute ex-
actly the same segment of the application. As soon as the second
processor executed the write operation, it is also stopped, and
the consistency check is performed by comparing the informa-
tion sent through the data and address busses by each processor

Fig. 3. Architecture of the synchronized lockstep with rollback.

in order to confirm that both wrote the same data in the same
address. After a successful consistency check, a checkpoint is
performed and the first processor resumes the execution of the
software.

The need to stop one processor while the other is running
the application arises from the fact that the device used in this
work has a single memory, which is shared by both processors
through the PLB bus, as shown in Fig. 3. Therefore, only one
processor can access the memory at each time. To overcome
this restriction, in a previous work targeting the same device
[13] both processors run in parallel, but only one of them writes
the results of the computation into memory. In that work, how-
ever, when a mismatch occurs the system cannot know which
of the processors failed, and therefore the technique proposed
there has no error correction capability, being only able to de-
tect errors, while the technique proposed here uses checkpoints
to allow error correction.

The frequency of checkpoints can affect both the performance
and the dependability of the implemented solution. For the anal-
ysis of those parameters, we define the time spanning between
two consecutive checkpoints as execution cycle, while we de-
fine lockstep cycle as the time spanning between the start of the
execution of one application segment by the first processor, and
the completion of the write operation by the second processor.

In our approach, one execution cycle can include one or more
lockstep cycles, and only at the end of each execution cycle
a dedicated hardware module performs the consistency check
and triggers the checkpoint operation to save the status of the
memory elements of both processors in a dedicated memory
area, thereby saving the context of the system.

B. Context Definition and Storage

In this work the context to be saved during the checkpoint
operation includes the contents of the 43 user registers (32 gen-
eral purpose registers and 11 special purpose registers, 32-bit
wide), program counter, stack pointer, processor status word,
and the data segment of each processor. It does not include the
status of the processor’s cache, which therefore is assumed to be
disabled. However, the implementation can be extended to deal
with the cache too, by flushing the data cache contents to the
main memory during checkpoint, before the context is saved,
and by invalidating the data/instruction cache upon execution
of a rollback operation.
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For the sake of this paper we assume the memory used to store
the processor’s context is immune to SEUs, i.e., it is hardened
using suitable EDAC codes as well as memory scrubbing.

C. Overall Architecture

The architecture of the proposed implementation is shown in
Fig. 3, and it includes the following modules:

• PPC0 and PPC1: the two Power PC 405 processors em-
bedded in the FPGA, working in lockstep mode.

• Interrupt IP0 and Interrupt IP1: two custom IP modules
used to trigger the interrupt routines that perform the
checkpoint and rollback operations for each processor.

• Opb intC0 and Opb intC1: interrupt controller IPs pro-
vided by Xilinx that are connected to PPC0 and PPC1 to
manage the interrupt requests from Interrupt IPs 0 and 1,
sending the interrupts signals to the processors.

• DMA0 and DMA1: DMA controller IPs provided by
Xilinx, used to provide faster transfer of context informa-
tion between the application data segments and the context
saving storage during checkpoints.

• Lockstep Unit: a custom IP that monitors the operations
of the two processors, using the halt0/halt1 signals to
stop each processor immediately after it issues a write oper-
ation, and restart them to resume execution. The bus master
signal is used to determine which processor is currently
writing to memory. Whenever it receives the go signal
from the Control Unit, the Lockstep Unit starts one lock-
step cycle. Once both processors have performed the same
write instruction, it performs the consistency check and
uses the lockstep done signal to inform to the Control
Unit that a cycle has been completed, and also activates the
error signal when a mismatch occurs.

• Control Unit: a custom IP that interacts with the Lockstep
Unit to execute the application in lockstep mode and re-
ceives the results of the consistency checks. After the pre-
defined number of successful write operations has been
performed, it triggers the interrupt routines on each pro-
cessor to perform the checkpoints when no error occurred.
When a mismatch has been found, the interrupt routines
perform a rollback operation. This new approach repre-
sents a major change with respect to [13], providing im-
provements in terms of dependability and performance.

D. Implementation Improvements and Details

The system includes a standard DDR RAM memory for both
code and data segments storage, which is divided into two in-
dependent addressing spaces, each used by only one processor,
i.e., one processor cannot read from nor write into the addressing
space of the other. The context of each processor and the copies
of their data segments are also stored in DRAM, in areas not
used by the application software.

In order to minimize the time needed for checkpoint and roll-
back execution, they have been implemented using the interrupt
mechanisms made available by the processors. When an inter-
rupt request is received the processor stops executing the ap-
plication, saves its context into the stack, and starts executing
the corresponding interrupt handling routine. When the interrupt
handling routine ends, the processor restores its context from

the stack and resumes the execution of the application from the
point it has been interrupted.

During checkpoint the system performs the following steps:
• After the interrupt routine request is raised, the processor

saves its context in the stack.
• The checkpoint interrupt service routine saves the contents

of the stack in the context memory.
• The checkpoint interrupt service routine copies the section

of the main memory where the program’s data segment is
stored to the context memory. This operation is performed
using the DMA controller for a direct memory-to-memory
data transfer.

Conversely, the rollback mechanism restores a previously
saved context, performing the following operations:

• The rollback interrupt routine copies the previously saved
processor’s context from the context memory to the stack.

• The rollback interrupt routine uses a DMA transfer to copy
the stored data from the context memory to the program’s
data segment.

• When the processor returns from the rollback interrupt rou-
tine, it overwrites the processor’s context with the stack
contents, thus resuming program execution from the same
error-free state saved during the last checkpoint.

The above described implementation of the rollback and
checkpoint operations brings significant improvements with
respect to the one described in [13], which requires tailoring
the application to be run in the system. Specifically, in that
implementation the data segment contents were not saved in the
context, which required the application to be written in a partic-
ular way in order to preserve the integrity of the data between
a given checkpoint and a possible rollback following it. The
program could only write new values to variables in memory at
the end of the execution, otherwise a rollback performed in the
middle of the execution could lead the processor to an incon-
sistent state. In such cases, the context information would be
reversed to a safe state, while memory variables would remain
with their last, possibly erroneous, contents. That restriction
imposed a strong limitation for application developers.

Moreover, in the approach presented here consistency checks
are executed every time a write occurs, while checkpoints are
triggered only after the number of write operations defined at
design time has been performed. This brings two new important
improvements with respect to [13]. The first one is the reduc-
tion of the performance overhead, since the checkpoint opera-
tion implies saving the entire register set and data segment con-
tents of both processors into memory. The second advantage re-
gards the dependability of the solution. In fact, the experimental
analysis described in [13] showed that in some cases SEEs may
remain latent in a context, i.e., one SEE is latched by one of the
processors (e.g., in a general register) during execution cycle ,
but the affected data is used for computation only during execu-
tion cycle . In such cases, a faulty context is saved during
the checkpoint following execution cycle , thus preventing the
successful execution of the recovery mechanism after the error
is detected by the consistency check during any subsequent ex-
ecution cycle, and leading the system to an endless sequence
of rollback operations. By extending the execution cycle to in-
clude more write operations, the probability that a latent SEE
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TABLE I
SENSITIVE BITS FOR IP

manifests itself within the same execution cycle during which
it is latched has been increased, and so the probability of suc-
cessful execution of the rollback, thereby providing higher de-
pendability for the whole system.

IV. FAULT TOLERANCE ANALYSIS

This section describes and discusses the fault injection exper-
iments that have been performed for assessing the capability of
the proposed approach to cope with soft errors affecting the pro-
cessor’s memory elements. In this phase of the research work,
only SEEs affecting the processor’s registers have been inves-
tigated. However, the use of ground facilities to explore other
types of radiation induced effects is planned as future work.

Besides the two PowerPC processors, the proposed architec-
ture uses only a limited amount of the FPGA resources: 6 991
slices and 48 16-kB blocks of RAM. Therefore, it is suitable for
being embedded in complex designs, where larger devices are
expected to be used.

Concerning the FPGA’s configuration memory, the number of
bits that may cause a system failure has been computed using the
STAR tool [14]. Table I reports the obtained results, which have
been classified according to the different modules of the archi-
tecture, plus the glue logic implementing the processor chipset,
e.g., to interface with the DDR RAM. Since the configuration
memory of the selected device is composed by 11 589 920 bits,
one can see that only 3.6% of them are expected to be sensitive.

While the present work proposes a technique to cope with er-
rors affecting only the processor cores embedded in the FPGA,
it is important to note that the configuration memory and the re-
configurable logic themselves must be hardened too, since ion-
izing radiations may also affect them. However, within the scope
of this work, the proposed architecture has been deemed tol-
erant to the SEUs affecting the configuration memory and the
reconfigurable logic, and no faults have been injected in those
elements.

For the specific devices used to implement and test the tech-
nique proposed in this work, the protection of the configura-
tion memory and the reconfigurable logic could be implemented
through the use of the X-TMR tool from Xilinx, which uses the
triple modular redundancy (TMR) technique to harden all the
design components against SETs, with exception of the Power
PCs [4].

However, TMR is not a bullet proof technique, since it uses
a voter circuit to choose, among the outputs of three modules,
which are the correct ones. Although the area of the voter circuit
is usually much smaller than that of the tripled modules that it
protects, its components are still subject to radiation effects and
must also be hardened by suitable techniques. Among those, the

use of larger transistors dimensions and the use of one additional
TMR instance to triple the voter circuit and then use a fourth
voter to choose the correct output are the more widely used to
minimize the error rate. Furthermore, in the unlikely event of
two simultaneous faults affecting the same output bit of two of
the tripled modules, the voter will silently choose the wrong
result as the one to be forwarded to the output of the circuit,
with catastrophic consequences. A deeper discussion of TMR
hardening techniques, however, is out of the scope of this paper.

The injection of faults in the internal registers of the PPC mi-
croprocessors has been performed using the method described
in [15]. To simulate the occurrence of a Single Event Upset
(SEU), during each run of the application one bit of one internal
register of the microprocessor is complemented. The register
and the bit to be flipped are selected randomly, using a specially
developed hardware. A Fault Injection Hardware Unit (FIHU),
placed between a host computer and the microprocessors, per-
forms the fault injection process using part of the reconfigurable
hardware and manages the injection of faults affecting the mi-
croprocessors internal elements. On the host computer, a Fault
Injection Manager controls the fault-injection process through
the FIHU and using the P debugger primitives. Detailed re-
ports concerning the results obtained during the fault-injection
campaign are produced by a Result Analyzer module. The com-
munication channel between the host computer and the FIHU
implemented within the FPGA exploits the communication fea-
tures provided by the JTAG interface.

For analysis purposes, the effects of the fault injection on the
outputs of the system have been classified as follows:

• wrong answers, when the outputs of both processors were
equal, but different from the expected ones;

• corrected, when the error caused by the injected fault was
detected and corrected by the implemented mechanism, so
that the output results were the same for both processors,
and were equal to the expected ones;

• latent, when the injected fault caused a latent error which
escaped the detection and correction mechanism em-
bedded in the system, and therefore after the execution
of rollback and repetition of the computation the outputs
produced by the two processors were still different; and

• silent, when the injected fault did not have any conse-
quence on the results generated by the application.

A preliminary set of results has been collected using as bench-
mark application the multiplication of two 3 3 integer ma-
trices. The application code has not been modified, except for
the insertion before it of a small prologue needed to register
the interrupt routine. The application has a code length of 100
bytes and requires 1 922 272 clock cycles for completion. For
the selected application we analyzed the overhead introduced by
checkpoint execution, and the sensitivity of the hardened system
to SEEs.

The application has been executed with three different ver-
sions of the system, which performed a checkpoint at every
cycle (saving 100% of the contexts), at every 3 cycles (33% of
contexts) and at every 6 cycles (16.7% of contexts), respectively,
and the collected results are reported in Table II.

These figures confirm that the execution of one checkpoint
after each write instruction imposes a too heavy penalty on the
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TABLE II
RESULTS OF FAULT INJECTION ON THE PROCESSORS

performance of the system, while limiting the checkpoints to
one at every 6 writes leads to a much lower overhead. As far as
SEE sensitivity is concerned, one can notice that all the injected
faults have been appropriately handled in our experiments. The
faults that had effects on the program execution have been cor-
rected thanks to rollback and those that caused latent errors have
been detected at the end of the computation, since the data seg-
ments of the two processors contained results that were different
among them. Moreover, it is worth noticing that the number
of latent errors decreases sharply when the frequency of con-
text savings decreases, while the number of corrected errors in-
creases. This fact shows that errors are less likely to remain la-
tent at the end of the execution cycle when a larger number of
writes per execution cycle is used.

The preliminary experimental analysis confirmed that the
proposed approach is an efficient and scalable method for hard-
ening processors systems when two processors are available
at low cost. However, it has also shown that some errors may
become latent and not be detected by the proposed mechanism
at the end of the execution cycle in which they have been
latched. To cope with this type of errors, a scalable solution,
able to trade-off dependability with resource occupation, has
been devised.

This solution extends our technique by saving multiple con-
secutive contexts during the execution of the application. This
way, when one error is detected during the consistency check
performed after a given execution cycle, a rollback to the context
saved during the last checkpoint is performed, and the execu-
tion of the application is resumed from that point. If the detected
error was a latent one, the consistency check will fail again at the
end of the same execution cycle, since the erroneous data was
saved during the last checkpoint. This shows that the last saved
context is not error-free, and so the system performs two con-
secutive rollbacks, to bring the system to the last but one saved
state, and resumes the execution from there. If the latent error
was latched only during the last checkpoint, this will lead the
system back to an error-free state and the execution of the ap-
plication will proceed normally. Otherwise, the system will now
perform three consecutive rollbacks, and so on, until it reaches
a context not affected by the latent error and recovers from it, or
the context buffer is exhausted.

While this extension implies higher costs, due to the need of
a larger memory to store contexts, its application can be scaled
according to the criticality of the application to be protected,
being a viable solution to cope with latent errors in the proposed
system.

V. ADDITIONAL PERFORMANCE IMPROVEMENT EXPERIMENTS

The implementation described in Section III improved the
performance and the dependability of the system by reducing

Fig. 4. Architecture modified to include the WHT.

the number of checkpoints performed during the execution of
the application. In the experiments described in Section IV the
number of lockstep cycles per execution cycle has been changed
from 1 to 3 and 6, using an application with a very small data
segment, which performs the multiplication of 3 3 matrices.
However, considering that the whole data segments of the appli-
cations running in both processors must be saved during check-
points, there is still a significant performance penalty for ap-
plications with large data segments. Aiming to further improve
the performance of the system for this kind of application, an-
other experiment has been conducted, in which one additional
IP, named Write History Table (WHT), has been included in the
system, as shown in Fig. 4.

The WHT has been inserted between the Lockstep Unit and
the Control Unit, and it is used to temporarily store the addresses
and values that have been written by the application during one
execution cycle. Whenever the consistency check performed by
the Lockstep Unit determines that address and value are consis-
tent between both processors, they are stored in a new entry of
the table inside WHT. When the table is full, the WHT IP sends
the wht full signal to the Control Unit, which then performs
a checkpoint. When the Lockstep Unit detects an error, the ad-
dress-value pairs already stored in the WHT are flushed and the
error signal is passed forward to the Control Unit, which then
requests a rollback operation.

Considering that the consistency checks ensure that the data
written by both processors is the same, now only one copy of
the data segment is kept in the so-called data segment mirror
area. Moreover, the checkpoint operation performed by the in-
terrupt service routine has been modified in order to write into
the data segment mirror area only those words which have been
changed by the application after the last checkpoint, thereby
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avoiding transferring the whole data segment of both proces-
sors to memory, which can demand a long time for applica-
tions with large data segments. In order to accomplish this task,
during checkpoints data is now copied from the WHT to the data
segment mirror area using processor instructions, and no longer
DMA transfers.

The rollback operation, in turn, besides restoring the pro-
cessor contexts to the stack area of each application, as before,
now copies the single data segment mirror area to the data seg-
ments of both processors using DMA transfers.

In order to confirm that these modifications bring better per-
formance for applications with large data segments, the matrix
multiplication application has been performed several times,
with matrix sizes varying from 2 2 to 20 20, and the number
of cycles required to execute the whole application, including all
checkpoints, has been measured for different configurations of
WHT, respectively with 8, 16, and 31 entries. This means that
the number of lockstep cycles per execution cycle has been also
increased when compared with the previous experiments, with
one checkpoint being performed after every 8, 16, or 31 write
operations, respectively. As show in the previous section, this is
also a dependability increasing factor.

To allow comparing the impact on performance, the same
applications have also been run on the previous version of the
system (without WHT), using the same number of lockstep cy-
cles per execution cycle (8, 16, and 31), and the average number
of cycles per write operation has been calculated.

The graphics in Fig. 5 show the comparison of the average
number of cycles per write operation required by each imple-
mentation for each quantity of lockstep cycles per execution
cycle. In those figures, Lockstep Only refers to the implementa-
tion described in Section III, while Lockstep with WHT refers
to the one described in this section.

By analyzing the results, the expected improvement of perfor-
mance provided by the introduction of the WHT has been con-
firmed for applications with larger data segments. For the im-
plementation of lockstep described in Section III (dotted lines),
as the size of the data segment increases the average number of
cycles per write operation grows almost linearly. In contrast, for
the system with WHT (solid lines) the number of cycles remains
almost constant after a certain data segment size is reached.

In the analysis of the graphics, it is important to highlight that
for applications with small data segments, in this experiment
represented by multiplication of small matrices, the use of WHT
does not improve the performance. Also, the break-even point,
i.e., the size of the data segment from which the use of WHT
becomes an advantage, increases with the number of lockstep
cycles per execution cycle (which is the same as the number of
entries in the WHT). This is due to the use of DMA transfers to
save the data during checkpoints in the system without WHT,
since for small data segments the DMA memory-to-memory
transfer is faster than the execution of 8, 16, or 31 transfers
from the WHT slave registers to memory using processor in-
structions.

Table III shows the relationship between the quantity of en-
tries in the WHT (each entry holds one address-value pair) and
the size of the data segment of the applications in bytes, for the
points where the use of WHT becomes advantageous.

Fig. 5. Average cycles per write vs. matrix size comparison. (a) Checkpoints
at every 8 writes, (b) Checkpoints at every 16 writes, (c) Checkpoints at every
31 writes.

TABLE III
DATA SEGMENT SIZE BREAK-EVEN POINT FOR USE OF WHT

Through those experiments, it has been shown that the use of
the WHT IP can indeed improve the performance of applications
with large data segments, and that the number of entries in the
WHT can be adjusted at design time in order to obtain the best
results for a given data segment size.
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As to the fault tolerance capabilities of the system with
WHT, they are the same described in Section IV, since the
same assumptions concerning the use of memory protected by
EDAC techniques and use of TMR to protect the reconfigurable
logic inside the FPGA have been used. The dependability of the
system, however, increases with the higher number of lockstep
cycles per execution cycle adopted in the implementation
described in this section.

VI. CONCLUSION AND FUTURE WORKS

The use of SRAM-based FPGAs with embedded processors
for the implementation of safety- or mission-critical systems
has been precluded so far by the lack of appropriate techniques
to cope with radiation induced errors affecting the internal ele-
ments of the processors. The increasing availability of FPGAs
with multiple embedded COTS processors makes feasible the
development of new low cost techniques to implement fault tol-
erance without modification of the hardware and/or of the soft-
ware running on the processors.

In this paper, two new incremental approaches for the imple-
mentation of systems tolerant to radiation induced faults, using
the lockstep technique combined with checkpoints and rollback
recovery, have been proposed.

The first one included the application data segment in
memory as part of the context to be saved during checkpoints,
and also increased the number of write cycles between check-
points, thereby precluding the need for special programming
rules to be followed during the development of the application
software, and reducing the number of non detected latent faults.
The second approach introduced an additional IP module,
named Write History Table, aiming to reduce the time required
to perform checkpoints. This was accomplished by writing to
the data segment mirror area only those memory words which
have been modified since the last checkpoint.

By reducing the number of checkpoints, as well as the amount
of data to be stored during each checkpoint, the proposed im-
provements allow to decrease the time dedicated to checkpoints,
thereby imposing less performance overhead to the application,
when compared to previously proposed approaches. At the same
time, the reduction of latent faults obtained by increasing the
number of write operations per execution cycle, leads to im-
proved system dependability provided by the reduction of la-
tent errors. All those benefits are provided without requiring any
modification in the architecture of the embedded processors or
in the main application software running on them.

Further investigations are under development, namely: anal-
ysis of performance degradation due to rollback execution and

the use of a context addressable table to implement WHT, in
order to keep in the table only the last value written into a given
address. In parallel, further validations of the architecture are
being planned, including accelerated radiation ground testing
for investigating the effects of faults that hit the processors in
locations not reachable through simulated fault injection, such
as the processors’ pipeline registers, as well as the use of ad-
ditional fault models in the experiments, such as multiple bit
upsets. It is expected that the radiation experiments results will
report other types of errors due to the propagation of SEE in the
logic, such as Single Event Transients (SETs) and Multiple Bit
Upsets (MBUs).
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