
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009 1073

Maze Routing Steiner Trees With Delay
Versus Wire Length Tradeoff

Renato Hentschke, Jaganathan Narasimhan, Marcelo Johann, Member, IEEE, and
Ricardo Reis, Senior Member, IEEE

Abstract—In this paper, we address the problem of generating
good topologies of rectilinear Steiner trees using path search algo-
rithms. Various techniques have been applied in order to achieve
acceptable run times on a Maze Router that builds Steiner trees. A
biasing technique proposed for wire length improvement, produces
trees that are within 2% from optimal topologies in average. By in-
troducing a sharing factor and a path-length factor we show how to
trade-off wire length for delay. Experimental results show that our
algorithm generates topologies with better delay compared to state
of the art heuristics for Steiner trees, such as AHHK (from 26% to
40%) and P-Trees (from 1% to 30% and from 6% to 21% in the
presence of blockages) while keeping the properties of a routing al-
gorithm. An important motivation for this work lies in the fact that
it can be used for estimation in the early stages as well as for actual
routing, thereby improving the convergence and timing closure of
the design significantly. We also provide some valuable theoretical
background and insights on delay optimization and on how it re-
lates to our maze router implementation.

Index Terms—Delay, maze search, routing, Steiner trees.

I. INTRODUCTION

W IRE LENGTH and wire delay are very important is-
sues in the chip design and need to be considered early

in synthesis and physical design algorithms. In traditional de-
sign flows, early wiring estimates obtained from physical design
are often used in many synthesis iterations in order to achieve
timing closure. Finally global and detailed routing are also per-
formed targeting wire length (wl) reduction thereby improving
delays to critical sinks. Convergence of the optimization process
is affected by the quality of the wiring estimates, placement al-
gorithms, routing algorithms and their ability to optimize delay
to the critical elements of the circuit while keeping the overall
design routable. Convergence is affected based upon how well
estimates made in the early stages match values obtained in later
steps.

Manuscript received February 16, 2007; revised August 24, 2007. First pub-
lished May 19, 2009; current version published July 22, 2009. This work was
supported in part by CNPq and IBM. There is an IBM patent pending on this
work.

R. Hentschke, M. Johann, and R. Reis are with Universidade Federal
do Rio Grande do Sul (UFRGS), Instituto de Informatica, CP 15064-CEP
91501, Porto Alegre, Brazil (e-mail: renato@inf.ufrgs.br; johann@inf.ufrgs.br;
reis@inf.ufrgs.br).

J. Narasimhan is with IBM, International Business Machine, T. J. Watson
Research Center, Yorktown Heights, NY 10598 USA (e-mail: jagan@us.ibm.
com).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2009.2019798

The most commonly used algorithms for routing are based
on maze routing [1]. They are well known and are characterized
by: 1) having high flexibility and ability to handle blockages,
constraints and congestion and 2) producing optimal point-to-
point paths and good tree topologies.

Steiner trees can be used for early estimation because, as
they account for the individual positions of each pin and repre-
sent actual connected sets of paths, they are better than simple
half-perimeter measures. Steiner tree algorithms are also com-
monly used in Global Routing to actually define global routing
solutions for each net. In particular, minimum length rectilinear
Steiner trees (MRSTs) represent very good routes in terms of
wire length. However, wiring topologies strongly affect delay
to the critical sinks and improperly designed MRSTs could lead
to very high delays [2]. Even small changes in topology may
significantly affect delay to sensitive sinks. Additionally, most
Steiner tree algorithms are not flexible enough to handle block-
ages, congestion, and actual routing constraints.

Somewhere in the design flow one has to either decompose
the net into a set of point-to-point connections or to leave the
Steiner solution aside and let a routing algorithm find its own
solution for the whole set of pins. Both approaches have their
drawbacks. By decomposing the net we stop seeing the original
problem; we can get stuck with inflexible Steiner point speci-
fications or lose the ability to recognize better solutions if any-
thing changes at this step. On the other hand, if we just abandon
the early Steiner solution and use a multi-pin router, its solu-
tion may end up completely different from what was previously
considered. Hence, in both cases early estimates used in logic
design may not reflect the actual routes produced finally.

In this work, we take a slightly different approach. We ex-
tended a path search routing algorithm by including dedicated
techniques into it, some old (heuristic search, Hannan grid, etc.)
and some completely new, presented in Sections V, VI-B, and
VI-C, so that it acquired the ability to find very good Steiner
trees. An important motivation for that lies in the fact that the
same algorithm can be used for estimation in the early stages as
well as for actual routing. It is expected that the adoption of the
same algorithm will result in routes that better match previous
estimations, but even in the scenario where they do not match
because the final context have changed, the routing algorithm
still has the same power to understand and tradeoff tree topolo-
gies for wire length or delay optimization.

Various techniques are applied in order to achieve acceptable
run times on a Maze Router for Steiner trees. The main contri-
bution of this paper is to show how to improve an industrial stan-
dard routing algorithm by a selection of techniques so that it can

1063-8210/$26.00 © 2009 IEEE

1074 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

Fig. 1. Steiner topologies for delay optimization; (a) net; (b) minimum Steiner
tree (MST); (c) minimum arborescence (MSA); (d) intermediate topology
between (b) and (c) bounded radius Steiner tree (BRST); (e) star topology;
(f) critical sink approach (CSA).

beat the quality of state-of-the-art heuristic Steiner tree methods
and provide flexibility to tradeoff wire length and delay, while
keeping the properties of a routing algorithm and exhibiting fast
runtimes. The preliminary version of this paper was presented
in ISPD 2007 [3].

II. REVIEW OF BASIC METHODS

A. Topologies for Delay and Wire Length Tradeoff

Delay and wire length are strongly related to Steiner tree
topologies. Various kinds of rectilinear Steiner tree topologies
are shown for a net in Fig. 1. Fig. 1(b) shows a minimum length
Steiner tree (MRST), which minimizes wire length but may
present high delay to nodes that accidentally get connected far
from the driver. Fig. 1(c) shows a minimal Steiner arborescence
(MSA) [4], [2] or shortest path tree (SPT) which is a tree with
shortest paths from the source to any sink. Such a tree minimizes
source to sink distances at the expense of total wire length but
not necessarily minimize overall delay, affected by its increased
wire length and capacitance sharing along the paths. Fig. 1(d)
shows a bounded radius Steiner tree (BRST) [5]–[7] in which
the maximum distance from the source to any sink is bounded,
exhibiting a compromise between MRSTs and SPTs. The star
tree topology shown in Fig. 1(e) has separate wires for each
sink, resulting in optimal path length and minimum sharing, but
possibly huge total wire length and therefore not optimal delay,
depending on technology parameters and on the positions and
number of pins.

It is clear that these topologies tradeoff wire length for delay.
In real designs, there are two main strategies to control algo-
rithms so that timing closure is achieved: slack satisfaction and
critical path optimization. Although slack management is very
precise, it is more complex, and many CAD tools rely on the
optimization of critical paths, that are easily identified by in-
cremental timing analysis. Optimization of critical paths surely
reduce the worst logic delay and is an effective method of im-
proving circuit speed. This way, we can relax the requirement
of reducing the delay for all the sinks and concentrate on a few

critical sinks that participate in critical paths. In this scenario,
[8]–[10] proposed the identified critical sink routing trees in
which a star tree topology is used for one identified critical sink
while the rest of the sinks are connected by a minimum wire
length Steiner tree (resulting in smaller Elmore delay to the crit-
ical sink). An example of such tree is given by Fig. 1(f).

B. Algorithms for Steiner Tree Construction

Performance-driven Steiner tree algorithms have been well
studied and a variety of methods have been proposed. The first
category of algorithms is based upon the minimum spanning
tree and shortest path algorithms. Hou et al. [11] have shown
techniques to find the shortest length Steiner tree under pin delay
constraints. Alpert et al. [6], Boese et al. [10], and Cong et al.
[5], have described several such algorithms. The spanning tree
could be generated based upon different criteria. Boese et al.
[10] proposed the use of an Elmore routing tree for the same
purpose. The AHHK algorithm described by Alpert et al. [6],
just like [5], builds a Steiner tree that trades off between shortest
path and minimum spanning tree [see Fig. 1(d)]. These methods
only see the graph containing net pins to build spanning trees,
and usually employ a separate edge-overlapping procedure for
conversion to rectilinear Steiner trees (RST). Lillis et al. [12]
generate many topologies to minimize the Elmore delay for at-
tending a required delay budget at each sink. The variety of
topologies provides a wide range tradeoff between wire length
and delay. Constructive algorithms have been proposed by Cong
et al. [2], Hong. et al. [13], and Xu et al. [14]. The minimum
Steiner arborescence [MSA—Fig. 1(c)] generated by Cong et
al. [2] tends to have a high total wire length. The reviewed
methods have limited control over the amount of sharing of the
wires. In fact, the edge-overlaping procedure mentioned above
tends to share most of the wires. For this reason, Boese et al.
[10] proposed the SERT-C algorithm for individual critical sink
routing, in which the wire to the critical sink is not shared and
the rest of the tree is build as short as possible disregarding the
delay of the sinks other than the critical one [see Fig. 1(f)].

In general, all the methods described so far do not account
for blockages, congestion, etc. With the exception of [9] and
[10], they also generally minimize the source to sink distance
for all sinks in the net without discriminating between critical
and noncritical sinks.

Algorithms based on path search on the other hand use in-
telligent methods that incorporate the desired properties into
the search process to generate the tree. Commonly used path
search algorithms include basic Dijkstra and the A* algorithm
[18]. Dutt et al. [15] present an algorithm to perform incre-
mental routing using Dijkstra algorithm to connect nodes to an
existing tree in a restricted interval that satisfies the timing con-
straint. Hur et al. [16] present a method based on a multi-graph
model for performance driven routing of two pin nets with wire
sizing. Prasitjutrakal and Kubitz [17] have also proposed a basic
timing-aware router. While this method uses Elmore delay to
drive the A* search, their choice of the next target to be added
to the tree is restrictive and can compromise the quality of the
results in the presence of blockages. Furthermore, they do not
differentiate (except for [12]) between the criticality of different
sinks on the net.

HENTSCHKE et al.: MAZE ROUTING STEINER TREES WITH DELAY VERSUS WIRE LENGTH TRADEOFF 1075

III. PROBLEM DEFINITION

A net is a set of points located at positions on a
grid. These points need to be electrically connected in the cir-
cuit. Point also called the driver, transmits a signal to all other
sinks. All connections will be performed on the specified grid.
Let subset be the set of critical sinks in the net. For each crit-
ical sink it is required that the delay of transmitting the
signal from the driver to be minimized. Critical sinks can
be identified by incremental timing analysis, that is available at
the logic and placement levels of most CAD tools. For the rest
of the sinks delay is not considered and wire length
should be minimized at most.

IV. EFFICIENT SEARCH METHODS

A. A* Search

While implementing a simple path search router using
Dijkstra or A* algorithms [18] is quite simple, based upon
the use of subtle properties of these methods, it is possible to
obtain a variety of results in terms of quality and CPU time
depending on the problem formulation, search sequences, and
other implementation options. With a good understanding of
the A* algorithm and how it behaves in different situations, it
is possible to get routing results whose quality is comparable
to the best known algorithms for tree construction, while using
little CPU time. In this section and in the next sections we will
present some definitions and highlight some properties of the
A* that support this flexibility.

A path search algorithm finds a path with minimum cost from
a source node to a target node in a weighted graph. The A*
algorithm uses a main data structure called open list. A node is
said open when a reference to it is inserted into the open list.
At all times, the open list must be kept sorted by the function
defined below. Initially the source node is open (i.e., inserted in
the open list). The algorithm repeatedly selects the first node
from the open list and expands it. The algorithm terminates
when is selected (or the open list is empty meaning that there
is no path connecting to). When a node is expanded, all
of ’s neighbors are then open. The node is then marked
closed. The open list is sorted in increasing values of

, where is the cost from the source to node
and an estimated cost of going from node to
and is referred to as the heuristic estimator function.

If for every node then A* behaves like the Dijkstra
algorithm, expanding nodes closest to the source first. If is
underestimated, e.g., is always smaller than the actual
cost from to , then is called an admissible heuristic.
The heuristic function helps to reduce the number of nodes ex-
panded, during the search for the optimal path. If the heuristic
function is admissible the A* algorithm guarantees that an
optimal path will be found if such a path exists. In this case
the algorithm is said to be admissible. Computing an underes-
timated function is usually quite straightforward and fast. If

is also consistent, e.g., for
nodes and , then the algorithm also knows the optimal
path from to for each expanded node , and never expands

the same node twice [18]. The higher the heuristic estimator is
(e.g., the closer the heuristic estimator is to the actual distance),
the less nodes are expanded by A*. In routing applications,
Manhattan distance (ManhD) is commonly used as heuristic
estimator, being consistent and admissible (proof is omitted).

Let be the optimum cost of reaching the target from .
Algorithm A* expands each and every vertex with
and no node with [18]. We say that a tie happens
whenever two nodes have the same value of in the open
list. A critical tie is a tie with the additional constraint that

. Simple ties are not a concern, given that all nodes
with must be expanded to ensure admissibility. Yet
critical ties are very significant, specially for routing. The use of
Manhattan distance as estimator and no additional costs for con-
gestion or obstacles in initially empty areas make all estimates
perfect, so all nodes inside the box bounded by the source and
the target have . To get the most efficiency from
A*, a mechanism is needed to avoid expanding all nodes with
critical ties. In [18], Hart et al. point out that critical ties can be
arbitrarily broken but always in favor of the target. Additionally,
vertices that are closer to the target can be chosen to break in-
termediate critical ties for efficiency purposes. So, if two nodes
have the same value of , theoretically the one with higher

should be expanded first. In routing this causes the effect
of depth first searches (DFS) from to in empty areas. Now,
in a regular and uniform grid, each expanded node that is not
aligned to the target in or will open two neighbors with the
same value of and the same value of , what we will
refer to as a depth tie. While depth priority can be used to get
efficiency, depth ties represent a true degree of freedom for se-
lecting between alternate paths every time this choice happens.
A separate mechanism must be implemented to do that, and this
will be addressed in Section V.

There is a final concern regarding ties. The routing grid
cannot be assumed to be regular or to have the same step size in

and . In a Hannan grid, two neighbors of a node may exhibit
different values of , and in this case we would lose the ability
to recognize at this point that these are alternate paths that we
must choose from. To cope with this, instead of using (depth)
as the critical tie breaking criterion, the number of expansion
steps can be employed. For each vertex a value is stored
that indicates how many expansions were needed to reach is
from the source. We pick that vertex with the highest ,
and the definition of a depth tie is adapted accordingly.

In summary, a maze router using the A* algorithm can be
made very efficient for routing. When running in empty and not
congested areas whose costs are uniform and known, with the
perfect Manhattan distance estimator and critical tie breaking
based on the algorithm expands only the nodes that lie
in the optimal path, most like in a DFS. A Hannan grid has
fewer nodes and still preserves the degree of freedom regarding
the choice of nodes that exhibit stepped depth ties. Additional
speedup methods are addressed on Section VII. For global
routing with congestion information, variable costs will slow
down the search and change the occurrence of all types of
ties. In extreme situations, bidirectional search and dynamic
estimation methods such as LCS* [19] can be applied.

1076 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

B. A* With Multiple Sources and Targets

Given a set of pins of the same net, a maze router will start
from a particular pin and grow the tree inserting one pin at a
time with the path search method. However, to properly gen-
erate Steiner trees, the classical approach for path search should
be extended to multiple sources and multiple targets. All the
intermediate points of the current tree are considered sources
for the next search. The path-search algorithm itself selects the
target pin among all marked targets. The details of the algorithm
are given in algorithm 1.

Algorithm 1 A* Mult

Input: A graph , a set of sources and a set
of targets.
Output: A shortest-path with cost from some to
some such that the cost of the
shortest-path from to). New sources are created in

and is removed from .
1: Create an open list and insert a reference into it.
2: for every
3: = 0
4: such that

5:
6: Mark the predecessor pointer as invalid
7: Create a reference with
8: Insert reference into
9: end for

10: while (is not empty)
11: Remove the first reference from
12: Get the vertex from
13: If is closed than continue to the next iteration.
14: Set
15: Mark as closed
16: if then
17: Set as the reached target
18: break
19: end if
20: for each vertex that is adjacent to in and is not

closed
21:
22: Set as in step 4
23:
24:
25: Create with
26: Insert into
27: end for
28: end while
29: if a target is found then
30: Retrace back the path from the reached target until

some is reached. Use (are intermediate
nodes in the path); Insert all in . Move from to .

31: else
32: Report that no is reachable from S
33: end if

Adding the capability of dealing with multiple sources and
targets to the classical A* is straightforward. The algorithm 1
presents the steps of the algorithm in detail. All the sources
are initially open (see steps 2–8) and the priority-queue of the
open nodes will automatically select the most promising node
to start with. Multiple targets can be handled simply by stopping
the algorithm whenever any target is reached (see step 18). The
heuristic function will point to the target that is the closest
to . The concept of chosen target is introduced and stored
in the references that are stored on the open list. Every open
node has an associated chosen target that is the closest target to
it measured by Manhattan distance.

An important property of A* is that monotonically
increases during the search (monotonicity property). This
property was already demonstrated [18] if consistency holds.

Theorem 1 demonstrates the consistency of the multiple
target heuristic estimator.

Theorem 1: For two nodes , each with a different as-
signed target and , respectively,

.
Proof: At node , we know that the closest target is

, so . By the consis-
tency property demonstrated in [18] for single target searches,

. Joining the equa-
tions, we conclude the proof.

In the presence of delay critical sinks, we first route critical
sinks in order of criticality and than we route the noncritical
ones. When routing a critical node, regular nodes are not con-
sidered targets, but they are used for biasing calculation (see
Section V). The algorithm for generating a Steiner tree with pri-
ority to the critical nodes is given in Algorithm 2.

Algorithm 2 A* Steiner with critical nodes

Input: Graph , the net driver and a set of sinks with an
associated criticality.
Output: A Steiner tree connecting to all targets in .

1:
2: while (T is not empty)
3: Call A* such that contains only the nodes

from with highest criticality
4: where t is the A* chosen target
5: where is the set of all vertices in the

path returned by A*, including
6: return S
7: end while

V. WIRE LENGTH OPTIMIZATION

As already stated, often there are situations when two or more
vertices (for instance and) have the same value of as well
as (and). Uniformity of the grid
will lead to such situations. The choice of the appropriate will
determine whether the upper-left shaped wire or the lower-
right shaped wire will be selected, as illustrated by Fig. 2.
These cases are degrees of freedom provided by the A* search.
Either choice is valid and will lead to an admissible (shortest)

HENTSCHKE et al.: MAZE ROUTING STEINER TREES WITH DELAY VERSUS WIRE LENGTH TRADEOFF 1077

Fig. 2. (a) Illustration of a routing situation favorable to wire length minimiza-
tion and (b) a favorable situation for the isolation of the paths.

Fig. 3. Illustration of the biasing technique and the affected target. (a) Shows
one target that is excluded because it is behind the target. (b) Shows one target
that is closer to the existing tree than to the routing bounding box. (c) Example
of a target that will affect the biasing point. In this situation, the path will go
into the direction of node v.

path. Instead of letting the coding style implicitly decide on the
choice we introduce a biasing technique to direct the search ac-
cording to the needs of future connections to unrouted sinks.
Clearly, the choice (a) in Fig. 2 is best for wire length mini-
mization. The biasing technique will attempt to select the wire
accordingly.

Biasing uses a reference point called biasing point that is
used to choose the vertex for expansion. The biasing point is
calculated by first determining a set of affected targets. Let
be the set of vertices in the quadrant with origin (is the
predecessor of the candidate node) that is diagonally opposite
to and be the set of vertices in the quadrant with origin
that is diagonally opposite to . The biasing point will not be
affected by vertices in , since or will be closer to
these vertices than any other vertex in the routing box bounded
by and , as shown in Fig. 3, situation (a).

Likewise, any vertex in the set of vertices (denoted by) that
are closer to the tree than the routing box bounded by and will
not affect the biasing point either, as shown in Fig. 3 situation
(b). Situation (c) represents one node that will affect the biasing
calculation since it is neither behind the source/target nor closer
to the tree than the routing box.

Therefore, . If is the
coordinate of a target whose distance from the

Fig. 4. Visualization of trees (a) without biasing and (b) with biasing.

vertex is the bias point is computed as a weighted centroid
of the affected nodes according to (1)

(1)

The algorithm that calculates the biasing value b(v) is shown
bellow (Algorithm 3).

Algorithm 3 Biasing Value

Input: The node to be expanded , the parent , the closest
target , the complete set of targets , graph .
Output: The value .

1: Compute the unaffected region that is the opposite
quadrant of from .

2: Compute the unaffected region that is the opposite
quadrant of from .

3: Let and be the set of targets in and .
4: Determine the set of vertices that are close to the tree

than to the rectangle defined by and .
5: Compute the centroid as explained before.
6: return

The bias value is calculated by the distance from to
the biasing point. Vertices with the same and in the
open list are sorted by increasing values of (the node with
smaller is selected). Fig. 4 illustrates the effect of the bi-
asing technique on a 7-pins net. In this case, the pin placement
favored the sharing of some wires and the biasing technique pro-
vided a 15% improvement in wire length.

Though biasing helps to reduce the total wire length, it could
potentially result in sharing a path from source to critical
target with paths to other targets thereby increasing the capaci-
tive load on , which, combined with a significant value of wire
resistance, can slow it down. To isolate critical paths and make
them less likely to be shared we suggest the use of repulsive bi-
asing for critical targets. Repulsive biasing sorts the open list in
decreasing order of and tends to route wires that connect
the source to critical targets in such a way that ample space is
available for routing noncritical wires.

We observe that the biasing technique is able to improve the
wire length by breaking ties in the open list. The number of ties
on a search is highly dependent on the modeling of the routing
space. Cost functions that model congestion, for example, will

1078 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

TABLE I
IMPACT OF THE BIASING TECHNIQUE IN AVERAGE FOR WL (MEASURE IN

�M AND RUN TIME (S). IMP ROWS REPRESENT THE IMPROVEMENT

ACHIEVED BY USING THE BIASING TECHNIQUE

reduce the amount of ties occurred in a search. Also, modeling
of the vias will minimize the number of bends but also reduce
the degrees of freedom for the biasing technique, since Z-shaped
connections cost more than L shaped ones.

In order to evaluate the impact of the biasing technique in wire
length and run time we performed experiments in two sets of
benchmarks: random and placed circuit. For the random set we
generated one thousand trees varying the number of pins from
3 to 15 in a space of 300 m 300 m. The placed circuit set
was extracted from the ibm02 circuit from ISPD 2004 placement
benchmarks suite after full placement. This circuit has 19584
nets; 54% are 2-pin nets (those are being ignored) followed by
9%, 9%, 9%, 2%, 1.5%, 1.5%, 2%, 2%, 2.5% for 3, 4, 5, 6, 7,
8, 9, 10, and 11 pins; 7.5% of the nets are between 12 and 134
pins (an average of 4.1 pins per tree). In these experiment, we
obtained an average of 1.1 depth-tie situations per tree, which
means that biasing was applied approximately once per tree in
average. The average results are presented in Table I. For both
options, we study the impact of modeling the vias or not. Ana-
lyzing the table, we report average gains in the order of 1%–3%
considering the vias and 2.5%–3% ignoring the vias, reinforcing
the conclusion that the modeling of the vias will reduce the de-
gree of freedom for the biasing technique and consequently in-
crease wire length.

We observed that the average numbers are very small consid-
ering the visual impact (exemplified by Fig. 4) of the biasing
technique. We then plotted a histogram of the biasing improve-
ment for the placed circuit nets with 3 or more pins. The his-
togram, on Fig. 5, shows that in the big majority of cases the
impact is 0%. Analyzing each case, we could observe that in fact
the case where wire sharing does not help is the most common.
However, for the ones that are affected by wire sharing, biasing
can improve the wire length of a net by up to 20%. We also ob-
served in the histogram the same reduction on the improvement
of the biasing technique with the modeling of the vias.

The computation of whether a target is behind the source or
the target (belongs to sets or) can clearly be performed in
constant time, which makes it for targets. Determining
whether the targets are closer to the existing tree can also be
made in if the distance of each target to the tree is precom-
puted in step 3 of Algorithm 1.

VI. DELAY OPTIMIZATION TECHNIQUES

This section presents an analysis of Steiner tree delays using
the Elmore delay model [20]. While the model lacks accuracy

Fig. 5. Histogram showing the impact of biasing on nets taken from a placed
circuit. The big majority of nets is not affected by biasing, but almost none is
affected negatively while improvements can be in the order of 20%.

it has fidelity [10], which means that ranking trees by Elmore
delay is reasonably accurate.

We observe the following three features of a particular wire
are related to its Elmore delay.

• Total Wire Length: The driver output resistance is multi-
plied by the capacitance of the entire tree. The higher is the
driver resistance the greater is the importance of reducing
wire length of the net. Generally, critical nets consist of
properly sized gates and are likely to have a small driver
resistance.

• Path Length Along the Tree to the Critical Sinks: The wire
resistance to the sink is proportional to the path length.

• Amount of Wire Sharing: Wire delay is proportional to the
amount of capacitance it is driving. A wire that is shared
by many paths has resistance elements that drive a greater
downstream capacitance.

Section VI-A provides a theoretical background for the wire
sharing impact on Elmore delay. We start with the simple case
with one critical node and one noncritical node and then
show how to add new sinks optimally to an existing Steiner tree.
Section VI-B presents our algorithm for controlling the wire
sharing on our Maze Router. Section VI-C presents an algorithm
for controlling the path length to the critical sinks.

A. Theoretical Analysis of the Impact of Sharing

1) Three-Terminal Analysis With One Critical Sink: Fig. 6(a)
shows a three-terminal net with source , critical sink , and
a noncritical sink . The source is connected to the sinks
and by the shortest paths and , of lengths and ,
respectively. The length of wire shared by and is defined
as . Elmore delay to the critical sink is computed
as follows. If is the delay due to the source resistance ,
and and are the delays due to the shared portion
and the non-shared portion , respectively, of the path ,
then is given by . The delay

. We sum the
product of the resistance and downstream capacitance along the
path by integrating along to obtain the value of as

HENTSCHKE et al.: MAZE ROUTING STEINER TREES WITH DELAY VERSUS WIRE LENGTH TRADEOFF 1079

Fig. 6. Simple three-terminal example: (a) delay versus (b) shared wire length.

shown in (2) (where stands for resistance per wire unit and
stands for capacitance per wire unit)

(2)

In a similar way, we compute the delay as
. Since ,

the delay is of the form of (3), where the coefficients
,

and . In the absence of congestion and blockages
the values of and are Manhattan distances for a given
location of the source and sinks.

The plot between delay and the length of wire shared is char-
acterized by (3) and shown in Fig. 6(b). This is an inverted bell
shaped curve and is referred to as the delay curve. The values

and are delays when there is no sharing and at max-
imum sharing, respectively. Clearly the minimum delay occurs
only when the length of wire shared between paths from the
source to the critical sink and the noncritical sink, is either 0 or
the maximum possible. In other words the delay is dominated
by either that due to source resistance or due to wiring delay

(3)

2) Three-Terminal Analysis With Two Critical Sinks:
Fig. 7(a) shows a net with two critical sinks and . Here,
the maximum of the delays to both critical sinks must be
minimized. Fig. 7(b) shows one possible set of delay curves
for sinks of the net shown in Fig. 7(a). The best delay is one
that minimizes the maximum of the delays to sinks and

and is shown using a bold line in Fig. 7(b). In addition to
computing delays with no sharing and maximum sharing, we
may also have to compute delay when sharing is such that
both delays are equal. Let and be the delays of the
critical sinks and , respectively. From (3), we see that

and .
The best delay for the design will occur when there is min-

imum/maximum sharing , or as in this case
when both the delays are equal . Since

, and are known we locate the length of the path to be

Fig. 7. Net with two critical sinks: (a) delay versus (b) shared wire length.

Fig. 8. Inserting a noncritical sink.

shared by solving for in
.

3) Incremental Tree Extension: We now consider incremen-
tally extending a given Steiner tree with an additional sink. Such
an extension can form the basis of a heuristic algorithm to per-
form complete wiring for a net by adding sinks to a tree that is
initialized to be just the source vertex.

a) Adding a Noncritical Sink: We consider the problem of
adding a noncritical sink to net that has an existing Steiner route
and has exactly one critical sink. This algorithm is exact and has
applications in heuristics for generating delay optimal Steiner
trees. For the net in Fig. 8, let be a shortest path from to the
new sink . Let be the portion of added to the existing
tree, and be the portion of shared with . The Steiner
tree to which the sink is being added is shown as the cloud. In
the Elmore delay model the increase in delay due to the addition
of sink can be computed by summing up the delay increase

due to increased capacitance seen by the source resistance
and the increase in delay due to the additional wire

capacitance seen by path . Clearly,
and .

In order to minimize , the delay must be
minimized in conjunction with the product . Con-
sider the addition of a sink using a new wire starting at some
point located between two branching points, and , on the
path of the existing Steiner tree. Assuming to be a vir-
tual source and to be a virtual critical sink, we note that the
curve between the delay at and the shared wire length is an
inverted bell as shown in Fig. 6(b). The best delay at can only
be obtained when the new wire starts either at or at . We
therefore observe that in order to obtain the best delay, sink
can only be connected to a sub tree that is rooted at a branching
point (including source and sink) that is on the path of

1080 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

the existing tree. This observation simplifies our search for the
starting point of the new wire considerably.

Let , be the set of branching points on the path
, where and correspond to the source and to the sink

. Let be the required addition to the sub tree rooted at the
branching point and the shared path. Let and
be the lengths of the new addition and the lengths of the shared
portion of the path, respectively. If a chosen branching point
minimizes then the amount of shared resistance that must
drive the extra capacitance could potentially become very high.
On the other hand, choosing a branching point that minimizes

could potentially make very large. We find the desired
branching point by locating that point corresponding to the
minimum increase in delay

. The optimum value is computed by evaluating de-
lays obtained by connections using the shortest wire from the
new sink to sub trees rooted at each possible value of and
choosing the one with the lowest delay. The distance from the
new sink to all trees rooted at branching points can be computed
in time, where is the number of grid points. In practice,
it is fast since the number of branching points on path is usu-
ally small. If the generated tree is used for estimation purposes
only then using a coarse grid could speed up algorithm.

The tree could contain several critical as well as noncritical
sinks. We use the method outlined in the previous Section. The
method is similar except that branching points along paths from
the source to each critical sinks in the net must be analyzed.
Since this method does not provide any new insight we omit the
details.

b) Adding a Critical Sink: This method is similar to that
described in Section VI-A3 with the difference that delays must
be evaluated not only to the critical sinks in the tree but also to
the new sink being added. Furthermore, the equal delay points
must be analyzed as shown in Section VI-A3 for the new sink
and each critical sink already in the tree. Again, for the sake of
conciseness, we omit the details.

c) Incremental Steiner Tree Construction: Starting with
an initially empty Steiner tree we add one sink at a time in
our heuristic incremental construction of the Steiner tree. We
first add all the critical sinks one by one and then follow by
adding noncritical sinks. We use the methods described in
Section VI-A3b to add critical sinks and that in Section VI-A3a
to add noncritical sinks.

While this algorithm works in principle, we have found that
similar wire sharing effects can be obtained by incorporating
a sharing factor in the maze routing algorithm for Steiner tree
construction. This modification to our heuristic Steiner tree con-
struction simplifies the implementation considerably and also
has desirable wire sharing properties. The sharing factor con-
cept is described in Section VI-B.

B. Sharing Factor on Maze Search

From the theory established in the earlier sections it is clear
that delay performance can be effectively managed by control-
ling the amount of sharing. On the other hand, we observe that
optimizing the delay of trees with multiple sinks is complex,
requiring a heuristic solution instead. We introduce the capa-
bility of wire length to delay trade-off using a parameter called

Fig. 9. Effect of sf on maze search.

Fig. 10. Effect of path length factor on maze search.

the sharing factor (sf). The sharing factor has a value between
0 and 1 and is used to designate some parts of the tree as pro-
hibited for connection, avoiding sharing of these wires. Critical
wires connect the driver to critical sinks. From the formulation
presented in the previous section, sharing a small amount in the
beginning of this wire may be less harmful than sharing longer
portions of a critical wire.

In step 1 of A* Mult algorithm we ascertain, for every node
on the tree whether or not it is part of a critical path. For

every node that is part of the tree, we store the distance of
the node from the source along the path of the tree. This distance
can be obtained by the from previous searches. If is a critical
sink, then all wires that are closer to than are available
for sharing. Clearly, if then all wires in the path from
to are available for sharing and if then no wire in the
path is available for sharing. Fig. 9 shows the effect of different
values of sf on the types of routes generated.

C. Path Length Factor on Maze Search

Path length is the term used for the distance of a critical sink
to the net driver along the tree. If the path length is optimal

for then optimal wire resistance (disregarding possible wire
sizing) is obtained for it. For example, consider Fig. 10, where

and are connected to the driver with optimal path length.
Observe that node can be connected into the path to with
optimal path length as well, but connected to it would have
a small detour.

The previous sections assumed that minimum path length to
the critical sinks could be achieved easily by performing their

HENTSCHKE et al.: MAZE ROUTING STEINER TREES WITH DELAY VERSUS WIRE LENGTH TRADEOFF 1081

connections first. It is always true for a single critical sink but
may not be for multiple critical sinks if sharing is available. In
such cases, we propose the use of a path length factor (plf) in
order to guarantee that the minimum path length for the critical
sinks is achieved. The idea was based on [21] and extended to
attend critical sinks only. For a node , the path length
factor uses (distance from the source along the tree). At each
shared node, a number between 0 and 1 is multiplied by . The
product of this multiplication is set as initial of the node (af-
fecting step 3 of algorithm 1). The effect of initializing with a
constant value like 0 is that the obtained routes will not corre-
spond to shortest wires from the source; the proposed algorithm
will optimize overall path length instead. A tradeoff of the two
goals can be obtained with the plf. If the path length factor is set
to 0, then a MST-like tree will be generated. All intermediate
values tradeoff wire length for path length.

VII. RUN TIME IMPROVEMENT TECHNIQUES

A. Application Specific Grid

In general, the use of a coarser grid improves the speed of
the algorithm at the expense of quality. During early estimation,
speed is of essence. In this case, we use a Hanan grid [22] to
model the space thereby reducing the grid to the smallest size
that accommodates all the sinks. This leads to better memory
usage as well as shorter runtime. During actual routing we use a
finer grid thereby increasing the routability and improving wire
length at the expense of CPU time.

Costs are also supported by a maze router and can be used at
the expense of run time as well. Congestion cost can be mod-
eled by a cost function. It is important to notice that those costs
must remain static during the A* expansion in order to guar-
antee admissibility. Applications such detailed routing could
take benefit of increasing costs dynamically during the expan-
sion to cope with design rules.

Another feature of the maze routers is the ease to model multi-
layer routing. This is merely an extension of the maze router to
a three dimensional scenario with via costs assigned appropri-
ately. As already mentioned, the situation where is unchanged
during the whole search is the best for speeding up the algo-
rithm. To achieve that, in the case where the space is modeled
in 3-D, via costs must be included in the function. If the co-
ordinate of the node being opened is the same as its target and
in any of the situations described as follows, the value of twice
the via cost can be included in the function without harming
the algorithm’s admissibility:

• and ;
• and is horizontal layer;
• and is vertical layer.
This improvement was tested on Steiner trees extracted from

ibm02 placement benchmark and resulted in 17% reduction of
expanded nodes.

B. Simplified Heuristic Function (h) Calculation

Every time a node is open (steps 21–26), it has an associated
closest target (ct) that is used to calculate its value (as demon-
strated in step 23). Consider the scenario where a node , with

associated closest target ct, is being expanded and is opening its
neighbors represented by node . We propose that, instead of
looking at all of the targets, only ct be checked. The value
denotes the function of node forcing it to point at ct without
measuring if ct is actually the closest target from . Consider
two possibilities: and . Theorem 2 explores
the first possibility.

Theorem 2: If , then with the same ct.
Proof:

1) .
2) (monotone property).
3) (combination of 1 and 2).
4) (this step is a requirement of A*—it must choose

the target that leads to smaller).
5) (combination of 3 and 4).
6) The target for can be used.

Considering that , the associated target ct for must
be recalculated because it might have changed. Since will
never be smaller than this calculation could be postponed
until the situation in which there are no more nodes in the open
list with the current value of . This mechanism is implemented
as follows. An auxiliary list of open nodes is created, where
no value is computed. The A* search does not look at this
structure unless the current value changes upward. In this case,
the auxiliary open list is flushed and an open list is built afresh.

C. Specialized Open List

The open list data structure must be a priority queue sorted
by and respectively. The insertion and removal
operations in a standard STL priority queue implemented as a
binary heap take time. While this is not a strong per-
formance limitation by itself, it demands any open node to
have calculated , and values. In our algorithm,
we want to postpone the calculation of to expansion time
(see Section VII-D), for it is more expensive. Therefore, the bi-
nary heap turns out not to be the best data structure. We propose
a specialized open list supported by theorems 3 and 4, which
can be classified as a bounded height priority queue, a structure
similar to what is used in bucket sorting.

Theorem 3: During an A* search (with a single source node),
the difference of the smallest to the largest in the open list
at all times is restricted to twice the maximum cost in the graph.

Proof: Consider the initial situation where the only open
node is the source node with . After it is expanded, neigh-
bors are open and inserted in the open list. The one with
largest will cost where is the highest
cost edge connected to that points in the opposite direction
of the target . In the worst case, by the admissi-
bility property and is the highest cost in the graph (High-
estCost). In this case, the range in the open list is given by

. As the search
advances, the situation will be repeated for the expanded nodes

that follow. While has the worst case will be given
by the same equation . When a node
with a higher value for is expanded, the largest will be
given by , but the range is still given by

since the smallest in the open list is now .

1082 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

TABLE II
WIRE LENGTH COMPARISON OF AMAZE TO OPTIMAL TREES (GEOSTEINERS) AND OTHER HEURISTICS

Theorem 4: Given multiple sources, the range is given by
the maximum between the range of the initially open nodes
and .

According to the monotone property, the minimum value
is given by the first node expanded in the search. Based on

the maximum range for the function from Theorems 3
and 4, we implement a circular array of positions, indexed
by . At each node, there is another array
indexed by and finally, at each node of this two dimensional
array there is a linked list of references to nodes. This infrastruc-
ture provides constant time insertion. On access or removal the
array must be traversed until a non-empty list is found. The time
complexity of such operations will be in the worst
case and on average.

At the expand procedure, a linked list is located for the cur-
rent value of and . If this list contains only one node it is
returned to A*Mult. When the list contains two or mode nodes,
the biasing technique is applied to decide which should be ex-
panded first. The advantages of such a structure is that the bi-
asing point and values are computed only if necessary, e.g.,
if A* reached both nodes and must decide which one to expand.

VIII. EXPERIMENTAL RESULTS

The algorithm developed here with all the previously de-
scribed techniques will be called AMAZE from now on. The
experimental results are divided into the following sections.

• Wire Length Experiments: to compare trees that AMAZE
generates when optimizing WL alone to the optimal
topologies, to heuristics for Steiner trees construction and
to maze routers.

• Delay Experiments: to compare the trees generated by
the AMAZE critical sink approach and AMAZE critical
arborescence approach (path length factor is set to 1) to
heuristics like AHHK [6] and P-Trees [12].

• Wire Length Versus Delay Tradeoff Analysis.
• Analysis of the Impact of Blockages on the Generated

Topologies.
In all subsections, we applied randomly generated trees since

we understand that, statistically, they cover all possible patterns.
Placed circuits may exhibit an uneven distribution of the pat-
terns that is sometimes consequence of that particular circuit or
placement algorithm.

A. Wire Length Experiments

Initially we verified the wire length of our trees disregarding
delay optimization. We compared AMAZE to three other algo-
rithms: 1) the GeoSteiner software [23] that finds the optimal

Steiner tree in an acceptable time; 2) the Labyrinth maze router
[24]; and 3) the AHHK algorithm [6] configured for best wire
length.

Table II presents the average results for 30 randomly gener-
ated trees ranging from 3 to 100 nodes. All values are normal-
ized to the GeoSteiner solutions (optimal trees). In summary, we
can observe that AMAZE generates near optimal trees (within
2% in average) while run time is better than even the AHHK
heuristic. We can also observe that Labyrinth could not find
good trees and requires significant more run time. The case with
100 nodes in a tree could not finish because of memory require-
ments. Such a result enforces the importance of the techniques
described in this paper to the routing community.

B. Delay Experiments

We have conducted experiments with randomly generated
nets, varying the numbers of total sinks (and critical sinks

. For each pair we averaged the results of 100 ran-
domly generated nets. We compared three configurations of our
algorithm to the P-Trees [12] and to a special version of AHHK
[25]. The first configuration (AMAZE WL) is set to minimize
WL only. As demonstrated in the previous section, our trees are
close to optimal in terms of WL. The second and the third con-
figuration (AMAZE) are set to demonstrate the effectiveness of
the sharing factor while fixing the path length factor to 0 and 1,
respectively.

In these tests we used our own implementation of the AHHK
algorithm, configured to use 0, 0.25, 0.5, 0.75, and 1 as the con-
trol factor, as suggested in [25]. When implementing the edge
overlapping procedure, however, we selected a method that re-
sults in less shared wires, as it produced tress with smaller de-
lays. Therefore, this implementation, called DAHHK from now
on, has better delay results and yields to higher wire lengths
when compared to the results obtained from [26]. The same ob-
servation is valid for our previous publication [3] as well.

The P-Trees are configured to have required arrival times of 0
ps in the critical sinks, while the remaining sinks have no timing
requirements, and are generated from the executable provided
by the authors.

All these algorithms enable the user to choose the best tree
considering the wire length and delay tradeoff. In all cases, we
pick the best delay configuration, disregarding wire length. We
claim that the most critical nets of the circuit must have min-
imum possible delay, and congestion will not be strongly af-
fected since these nets represent a small portion of the wires.

In our experiments, we used wire resistance and capacitance
values from an actual fabrication line and source resistance and

HENTSCHKE et al.: MAZE ROUTING STEINER TREES WITH DELAY VERSUS WIRE LENGTH TRADEOFF 1083

TABLE III
DELAY COMPARISON OF AMAZE TO DAHHK AND P-TREES IN A (300 �M� 300 �M) AREA

TABLE IV
DELAY COMPARISON OF AMAZE TO DAHHK AND P-TREES IN A (100 �M� 100 �M) AREA

sink capacitance values from libraries currently used in indus-
trial designs. For the source resistance we chose a strong cell,
since it will be driving a critical net. This is, in fact, a favorable
scenario for the AMAZE algorithm. By increasing the driver re-
sistance by 30 the AMAZE improvement over DAHHK went
down by approximately 1%–8% (proportional to the size of the
tree) while the improvement over P-Trees went down by approx-
imately 0%–4%. With this increased driver resistance, the gate
delay (driver resistance times total capacitance) was roughly
around 10%–25% of the whole delay. In order to compute the
Elmore delay, we used a 3 RC circuit to model the wires. The
validity of the data obtained from the delay model was con-
firmed by a set of electrical simulations performed on sample
trees.

Tables III and IV report the experimental results. In
Table III, the trees were randomly generated in a window
of 300 m 300 m. In Table IV the window is reduced for
100 m 100 m while we excluded 5 critical pins configura-
tions. Additionally, in Table IV, only AMAZE with path length
factor set to 1 is used.

The following facts can be observed from Table III.
• AMAZE best setting for delay is AMAZE with path length

factor (plf) 1.
• AMAZE scales very well with the addition of a noncritical

sink. Note that the delay of configurations with one critical
sink is always close to 30 ps.

• AMAZE improvement is better (in delay) for cases with
one critical sink. It does not scale well with the addition

Fig. 11. Best tree for delay of: (a) AMAZE; (b) DAHHK; and (c) P-Trees.

of other critical sinks. It delivers good results compared to
P-Trees and DAHHK with up to three critical sinks.

• AMAZE delay is consistently better than DAHHK
(ranging from 26% to 42% in average).

• AMAZE delay for 1 or 3 critical sinks is consistently better
than P-Trees (ranging from 1% to 30% in average).

• AMAZE does better on the whole with larger trees.
In Table IV, we can observe similar advantages of AMAZE

to P-Trees and DAHHK algorithms.
Fig. 11 compares nets produced by the three algorithms. We

observe that, in the AMAZE algorithm, the path to the critical
sinks has minimum length and minimum sharing, while the rest
of the tree is optimized for wire length. The best effort of the

1084 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

TABLE V
STEINER DELAY COMPARISON WITH BLOCKAGES BETWEEN AMAZE AND P-TREES

Fig. 12. Delay and wire length range of the studied algorithms. Within this
range you can trade WL for delay. The worst case wire length leads to best
delay vice versa.

DAHHK algorithm found the minimum path length to all sinks
(building an arborescence), however it did not help much for the
delay of the critical sinks, since the path is fully shared by both
sinks. For the P-Trees algorithm, among 35 different topologies
evaluated, the one that was best for minimizing delay to critical
sinks has separated wires to the critical sinks. The P-Trees’s
drawback that impacted the delay is the fact that the overall wire
length is too large (affecting the product of driver resistance
per total capacitance). Another drawback is the generation of
overlapped wires, that need to be somehow resolved in actual
routing.

C. WL Versus Delay Tradeoff Analysis

We provide a comparison of the wire length and delay
trade-off produced by the three studied algorithms (ours,
DAHHK and P-Trees) in Fig. 12. The delay and wire length
ranges are average numbers for 7 pin nets with one critical sink.
The best delay generally leads to the worst wire length (wl).
The algorithms will tradeoff wl for delay in this range.

The following facts can be observed from Fig. 12.
• In the case of one critical sink, AMAZE worst case wire

length is better than the other studied algorithms, while
delay obtained is the best.

• AMAZE and P-Trees have a wider range to tradeoff wire
length and delay, since they can control the amount of
sharing more effectively.

• The addition of a critical sink increases significantly the
tradeoff range, since extra wire is inserted to isolate the
wire.

D. Blockage Analysis

Since AMAZE is a maze router it naturally handles block-
ages. As a potential problem, we observe that our critical wire
isolation approach (sharing factor) will be less effective if a
blockage is in the middle of the way. In such case, AMAZE
will select the possibility with minimum length and this might
lead to a worse topology of the overall tree since the wires will
not be shared. We enforce that AMAZE should be executed with
varied sharing factors (path length factor can be set to 1) to avoid
extremely long wires.

We compared our algorithm to the P-Trees. Since DAHHK
trees cannot handle blockage directly we left it out of the com-
parison. Our experimental setup was as follows: We generated
trees ranging from 5 to 9 pins, where 1 to 3 of the sinks were
critical. For each configuration we generate 100 trees randomly
with one blockage. Given the Hannan grid of the tree, sliced
horizontally and vertically in the Hannan points, the blockage
is constrained to interrupt at least one of the slices. After that,
we run the AMAZE (with) and P-Trees algorithms for
each of the trees picking the best tree for delay to the critical
sinks. We then compare the obtained trees with and without the
blockage. If the solution of both algorithms are identical to the
non-blockage version, we discard the tree from the experiment
set. We observed that half of the generated trees fall into this
criteria.

Table V presents all the experimental results where the fol-
lowing facts can be observed: 1) AMAZE is consistently better
than P-Trees in average for all tested configurations, from 5%
to 32% in delay; 2) besides the better delay of critical sinks,
AMAZE could deliver better wire length up to 26%; and 3) both
algorithms suffer from a degradation for the blockage insertion.
AMAZE degrades less in the cases with one critical sink and
more than five pins.

To conclude with, we can observe that AMAZE has some
important features that help in the blockage handling.

HENTSCHKE et al.: MAZE ROUTING STEINER TREES WITH DELAY VERSUS WIRE LENGTH TRADEOFF 1085

1) The critical sinks are routed first. This fact prevents that
blockage detours made by wires to noncritical sinks even-
tually change the topology of the critical connection. This
feature is not present in the P-Trees.

2) Each sink is routed separately, isolating the detour to the
blocked branch only.

3) Even in an extreme case (a very long detour is needed),
AMAZE will not change the strategy of isolating the crit-
ical wire. It might happen thought that wire length in-
creases too much.

In these cases, the solution is to relax the isolation of critical
wires by playing with the sharing factor.

IX. APPLICATION TO TIMING DRIVEN ROUTING

The techniques presented in this paper called sharing factor,
path length factor, and biasing provide means of controlling,
respectively, the amount of sharing of critical wires, path length
of critical wires and overall wire length. By understanding the
impact of those parameters to the delay of critical elements in
a circuit and playing with them it is possible to obtain a variety
of tree topologies. For instance, an arborescence can be built
simply by setting all sinks to critical and the path length factor
to 1. A star tree can be built using the sharing factor 0. All inter-
mediate values provide topologies that tradeoff sharing of crit-
ical wires, path length and wire length in such a way that an
appropriate topology is found.

In our experiments, we target at obtaining a path with min-
imum delay. For that, our best setting is to fix the path length
factor to one (minimum path length) and vary the sharing factor
from 0 to 1 in steps of 0.25. This way, 5 different topologies are
generated and we simply pick the best for delay (ignoring the
delays to noncritical sinks).

The algorithm is also flexible to handle other applications.
An arborescence can be generated by setting all sinks as critical
and the path length factor to 1. By playing with intermediate
values of this factor and providing multiple levels of criticality
(as more detailed in Algorithm 2), delays to less critical sinks
can be improved. This methodology can be applied to obtain the
best tree that satisfies a certain slack.

As regarding speed, our algorithm also provides means of ob-
taining very fast routing combining existing techniques such as
heuristic search and Hannan grid with some new ones such as an
improved function that predicts vias, an improved data struc-
ture for the open nodes with constant time insertion and time
access, an auxiliary open list to delay computation of function
for some expensive cases, and a method for fast expansion of
nodes in the critical path. To evaluate run time, we performed
415 AMAZE runs on 5, 7, 9, and 15 pin nets and achieved re-
spectively 0.61, 0.94, 1.24, and 2.45 s. We also performed the
same experiment inserting one random blockage as described
in the previous section obtaining, respectively, 0.69, 1.01, 1.35,
and 2.7 s. There is a small degradation with the blockage since
the heuristic based on Manhattan distance will not be exact in
some cases, demanding some more nodes to be expanded in
order to assure the minimal path. The hardware platform used
was a Mac Dual G5 with 1 GB of RAM. Due to the speed of our
results, we conclude that AMAZE can be used for higher level
estimation such as placement and for routing as well.

X. CONCLUSION AND FUTURE WORK

In this paper, we addressed the application of several tech-
niques in a path search based algorithm called AMAZE so that
it becomes able to compete with state-of-the-art methods for
building Steiner trees. AMAZE has also the ability to tradeoff
wire length for delay, minimizing the delay for critical sinks
while reducing the overall wire length for the rest of the tree.
Our biasing technique is the key to achieve wl reduction by max-
imizing wire sharing. On the other hand, path length and sharing
factors were introduced to isolate critical paths so that delay to
the identified critical sinks is minimized.

In terms of delay, AMAZE outperformed algorithms used in
the industry and in the state-of-the-art academic research, such
as AHHK (by 25%-40% in average) and P-Trees (by 1%–30%
in average). We also observed that a wide range of topologies
are available for the algorithm, which is able to find the ap-
propriate tree according to the needs of the net being routed.
On the blockage analysis, AMAZE maintained a good behavior
and outperformed P-Trees from 5% to 32%. Congestion could
also be incorporated in the algorithm by providing costs to the
routing graph. Cost functions should be carefully used since
they will reduce the occurrence of critical ties that eventually
happen during the A* search, affecting the benefits obtained in
this paper by exploring those ties.

Novel properties and data structures of path search that can
be used to obtain better run time were demonstrated. Those op-
timizations include an open list with a bounded number of po-
sitions that can be read in constant time. By cleverly combining
our contributions with heuristic search, the routing algorithm
can take great advantage of the heuristic estimator (behaving
like a direct DFS search) and have run times compatible with
heuristic Steiner tree algorithms that are considered fast.

We believe that due to their speed and quality, our algorithms
will find applications both in obtaining wiring estimates that are
required during early design like placement, as well as during
the actual routing. For example, applications such as global
routing could potentially benefit from the added flexibility and
tradeoff provided by our algorithm. Designs dominated by
a small number of highly critical paths could benefit greatly
by optimizing these paths for delay at the expense of some
additional wire length.

ACKNOWLEDGMENT

The authors would like to thank students G. Flach, G. Santos,
and G. Wilke for their help with reviewing the paper and stu-
dent R. Fonseca for the implementation of the Elmore delay.
They would also like to thank Dr. M. Hrkic and Dr. J. Lillis for
providing them support with the P-Trees, and Dr. C. Alpert and
Dr. S. Quay for their help with AHHK.

REFERENCES

[1] C. Lee, “An algorithm for path connections and its applications,” IRE
Trans. Electron. Comput., pp. 346–365, Sep. 1961.

[2] J. Cong, K.-S. Leung, and D. Zhou, “Performance-driven interconnect
design based on distributed rc delay model,” in Proc. 30th Int. Conf.
Des. Autom. (DAC), New York, 1993, pp. 606–611.

[3] R. F. Hentschke, J. Narasimham, M. O. Johann, and R. L. Reis, “Maze
routing steiner trees with effective critical sink optimization,” in Proc.
Int. Symp. Phys. Des. (ISPD), New York, 2007, pp. 135–142.

1086 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 17, NO. 8, AUGUST 2009

[4] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor, “The
rectilinear steiner arborescence problem,” Algorithmica, vol. 7, pp.
277–288, Dec. 1992.

[5] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C. K. Wong,
“Provably good performance driven routing,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 11, no. 6, pp. 739–752, Jun. 1992.

[6] C. J. Alpert, T. C. Hu, J. H. Huang, A. B. Kahng, and D. Karger,
“Prim-dijkstra tradeoffs for improved performance-driven routing tree
design,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol.
14, no. 7, pp. 890–896, Jul. 1995.

[7] J. Cong, C.-K. Koh, and P. Madden, “Interconnect layout opti-
mization under higher order RLC model for mcm designs,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 20, no. 12, pp.
1455–1463, Dec. 2001.

[8] A. Khang and G. Robins, On Optimal Interconnects for VLSI.
Boston, MA: Kluwer, 1995.

[9] M. Borah, R. M. Owens, and M. J. Irwin, “A fast algorithm for
minimizing the Elmore delay to identified critical sinks,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 16, no. 7, pp. 753–759,
Jul. 1997.

[10] K. D. Boese, A. B. Kahng, and B. A. McCoy, “Near optimal critical
sink routing,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 14, no. 12, pp. 1417–1436, Dec. 1995.

[11] S. S. S. H. Hou and J. Hu, “Non-hanan routing,” IEEE Trans. Comput.-
Aided Des. Integr. Circuits Syst., vol. 18, no. 4, pp. 436–444, Apr. 1999.

[12] J. Lillis, C.-K. Cheng, T.-T. Y. Lin, and C.-Y. Ho, “New performance
driven routing techniques with explicit area/delay tradeoff and simul-
taneous wire sizing,” in Proc. 33rd Annu. Conf. Des. Autom. (DAC),
New York, 1996, pp. 395–400.

[13] X. Hong, T. Xue, E. S. Kuh, C.-K. Cheng, and J. Huang, “Performance-
driven steiner tree algorithm for global routing,” in Proc. 30th Int. Conf.
Des. Autom. (DAC), New York, 1993, pp. 177–181.

[14] J. Xu, X. Hong, T. Jing, Y. Cai, and J. Gu, “An efficient hierarchical
timing-driven steiner tree algorithm for global routing,” in Proc. Conf.
Asia South Pac. Des. Autom./VLSI Des. (ASP-DAC), Washington, DC,
2002, p. 473.

[15] S. Dutt and H. Arslan, “Efficient timing-driven incremental routing for
vlsi circuits using dfs and localized slack-satisfaction computations,”
in Proc. Conf. Des., Autom. Test Eur. 3001 (DATE), Leuven, Belgium,
2006, pp. 768–773.

[16] H. S.-W., A. Jagannathan, and J. Lillis, “Timing-driven maze routing,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 19, no. 2,
pp. 234–241, Feb. 2000.

[17] S. Prasitjutrakul and W. J. Kubitz, “A timing-driven global router for
custom chip design,” in Proc. Int. Conf. Comput.-Aided Des. (ICCAD),
1990, pp. 48–51.

[18] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the
heuristic determination of minimum cost paths,” IEEE Trans. Syst. Sci.
Cybern., vol. SSC-4, no. 2, pp. 100–107, Feb. 1968.

[19] M. Johann and R. Reis, “Net by net routing with a new path search algo-
rithm,” presented at the 13th Symp. Integr. Circuits Syst. Des., Manaus,
Brazil, 2000.

[20] W. C. Elmore, “The transient response of damped linear network with
particular regard to wideband amplifiers,” J. Appl. Phys., vol. 19, pp.
55–63, 1948.

[21] A. Caldwell, Personal Contact 1997.
[22] M. Hannan, “On steiner problem with rectilinear distance,” SIAM J.

Appl. Math., vol. 30, pp. 255–265, 1992.
[23] M. Zachariasen, “Rectilinear full steiner tree generation,” Networks,

vol. 33, pp. 125–133, 1999.
[24] R. Kastner and M. Sarrafzadeh, “Labyrinth,” Jan. 2005 [Online]. Avail-

able: http://www.ece.ucsb.edu/~kastner/labyrinth
[25] C. J. Alpert, T. Chan, D. J.-H. Huang, I. Markov, and K. Yan,

“Quadratic placement revisited,” in Proc. 34th Annu. Conf. Des.
Autom. (DAC), New York, 1997, pp. 752–757.

[26] C. J. Alpert, A. B. Kahng, C. N. Sze, and Q. Wang, “Timing-driven
steiner trees are (practically) free,” in Proc. 43rd Annu. Conf. Des.
Autom. (DAC), New York, 2006, pp. 389–392.

Renato Hentschke received the B.S., M.S., and
Ph.D. degrees in computer science from Federal
University of Rio Grande do Sul (UFRGS), Porto
Alegre, Brazil.

He is currently with Intel Corporation, Hillsboro,
OR. Prior to Intel, he worked for six months as a
temporary Professor with State University of Rio
Grande do Sul, Guaiba, RS, Brazil, and interned
at IBM, Yorktown Heights, NY, for nine months.
He holds one U.S. patent and is a coauthor of 20
papers in the field of computer-aided design of ICs.

He is a reviewer of prestigious conferences such as DAC and ICCAD. His
research interests include algorithms for physical design of VLSI circuits, such
as placement, routing, and layout verification.

Jagannathan Narasimhan received the B.Tech. de-
gree in mechanical engineering and the M.Tech. de-
gree in industrial engineering and operations research
from the Indian Institute of Technology Kharagpur,
India, in 1977 and 1979, respectively, and the Masters
degree in computer science from Texas Tech Univer-
sity, Lubbock, in 1982, and the Ph.D. degree in elec-
trical engineering from the University of Maryland,
College Park, in 1992.

He has worked for several years as an Operations
Research Analyst for an airline and as an operating

systems developer for Burroughs Corp. before starting his doctoral work, and
for the last 16 years he has worked in the area of CAD for VLSI at IBM Research,
Yorktown Heights, NY. He has published on topics that include various areas of
CAD for VLSI, fault tolerant computing, etc. He holds several patents in related
areas as well. His current research interests include combinatorial and parallel
algorithms and their applications to synthesis and physical design.

Marcelo Johann (M’00) received the Bachelor’s,
Master’s, and Ph.D. degrees in computer science
from the Federal University of Rio Grande do Sul
(UFRGS), Porto Alegre, Brazil, in 1992, 1994, and
2000, respectively, having spent six months at the
University of California at Los Angeles (UCLA).

He worked as a Professor with the Catholic Uni-
versity of Rio Grande do Sul (PUCRS), Porto Alegre,
Brazil, from 2000 to 2002, and is a full-time Professor
at UFRGS since 2003. He coauthored 6 book chap-
ters and published 30 conference papers in topics re-

lated to computer aided design of ICs. His research interests include algorithms
for placement and routing, combinatorial optimization, and his teaching activi-
ties include also operating systems, game programming, and computer music.

Ricardo Reis (M’81–SM’06) studied electrical en-
gineering at Federal University of Rio Grande do Sul
(UFRGS), Porto Alegre, Brazil, in 1978. He received
the Ph.D. degree from the Institut National Polytech-
nique de Grenoble, Grenoble, France, in 1983.

He has been a full Professor with the Federal Uni-
versity of Rio Grande do Sul, Porto Alegre, Brazil,
since 1981. He is research level 1 of the CNPq
(Brazilian National Science Foundation) and head of
several research projects supported by Government
Agencies and Industry. Since January 2008, he has

been the Vice President of the IEEE Circuits and Systems representing Region
9 (Latin America). He has published more than 300 papers in journals and
conferences proceedings. He has also authored and coauthored several books.
His research interests include physical design, physical design automation,
design methodologies, digital design, CAD, circuits tolerant to radiation, and
microelectronics education.

